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In this paper, we employ a fully microscopic approach to the study of interlayer excitons in
hetero-bilayers. We use Fowler’s and Karplus’ method to access the dynamical polarizability of
non–interacting interlayer excitons in a WSe2/WS2–based van der Waals heterostructure. Follow-
ing from the calculation of the linear polarizability, we consider Svendsen’s variational method to
the calculation of the dynamic third–order polarizability. With this variational method, we study
both two–photon absorption and third–harmonic generation processes for interlayer excitons in a
WSe2/WS2 hetero–bilayer, discussing the various selection rules of intra–excitonic energy level tran-
sitions.

I. INTRODUCTION

The advent of the study of two–dimensional lay-
ers with atomic thickness has renewed the interest in
transition–metal dichalcogenides (TMDs) and their opti-
cal/optoelectronic properties [1]. These materials, which
have been studied in their bulk form since the 1960’s
[2, 3], have been shown to be good candidates for various
optical and optoelectronic applications [4–7].

The optical response of these materials is dominated
by excitons [8], and optically bright exciton absorption
peaks have been shown to correspond to the excitation of
states in the ns series [9, 10]. As for np–series excitons,
these can be controlled magnetically despite being opti-
cally dark in TMDs [11]. The selection rules of excitons
in TMDs for absorption experiments have been recently
thoroughly studied[12].

The linear dielectric response of TMDs consists of two
distinct regimes: the interband regime, where electrons
from the valence band are excited to the conduction
band, leaving being a hole [6, 13]. The attractive electro-
static interaction between this newly–formed electron–
hole pair leads to the formation of a bound state (ex-
citon), and its ns states are optically active and can
be observed in absorption measurements [14]. The sec-
ond regime, characterized by intra-exciton transitions,
consists on the transition between the excitonic ground
state (1s) and the empty np states [15, 16]. Each of the
1s→ np transitions [17–19] is characterized by a peak in
the dynamical polarizability which, in turn, determines
the dielectric response of the system in a pump–probe
experiment [20, 21].

Interlayer excitons are formed when two monolayers
are brought together with type–II band alignment, where
the conduction band minimum and the valence band
maximum are located in different layers [22, 23]. This
allows the intralayer electron–hole pairs to tunnel into in-
terlayer excitons (Fig. 1–left), which have a significantly
longer life–time due to the small overlap of the individual
electron and hole wave functions [24, 25]. Additionally,
interlayer excitons exhibit luminescence at lower ener-
gies than their intralayer counterpart [26] which, together

Figure 1. Left: Interlayer exciton in a van der Waals het-
erostructure. Right: Diagram of pump-probe experiments for
observing np (dark) excitonic states.

with their lower binding energies, allows for an easier
identification of the specific species in question in po-
larizability measurements [21]. Recently, Merkl et al.[21]
were able to observe the transition between interlayer and
intralayer excitonic phases in van der Waals heterostruc-
tures. This observation was performed via the measure-
ment of the linear dielectric function of the excitons in
a pump–probe experiment (Fig. 1–right), observing a
significant shift in maximum of the optical conductivity.

The excitonic energy levels are known to depend on
whether the system is confined or not (for example, the
Rydberg series for the two–dimensional Hydrogen atom is
strongly affected by radial confinement [27]). Following
recent advancements in the fabrication of TMD–based
meta–materials with atomic precision [28, 29], we focus
our attention on radially confined interlayer excitons in
a WSe2/WS2 bilayer.

From studying the dynamic polarizability of the ex-
citonic states, the full dielectric response of the excited
sample can be extracted. This transition from polariz-
ability to dielectric response is one from the microscopic
(individual exciton) to the macroscopic (when many exci-
tons form a low–density exciton gas). The susceptibility
of this exciton gas would be given, in a simplified form,
as χinter

ex = NXα
ε0

, with NX the exciton density in the two–
dimensional material, α the linear polarizability, and ε0
the vacuum dielectric constant. Separating the real and
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imaginary part of the susceptibility, these can be experi-
mentally measured [20, 21, 30, 31] and, therefore, would
provide a good comparison point for the results we obtain
for the linear polarizability.

The non–linear polarizabilities of the hydrogen atom
have been thoroughly studied throughout the years [32,
33], providing a good starting point for the study of these
same non–linear processes in excitons. Recently, the
non–linear optical effects from intra–excitonic transitions
have been the focus of many theoretical and experimental
works. This has been performed for several TMDs, in-
cluding but not limited to WSe2 [34, 35] and WS2 [36, 37],
as well as hBN homostructures [38]. Through doping pro-
cesses, the optical non–linear properties of TMDs can be
tuned [39] which, along with their large non–linear opti-
cal coefficients [12], increases their feasibility for practical
aplications [40] (e.g., as optical modulators).

We begin this paper by discussing the necessary mod-
ifications to the Rytova–Keldysh potential [41, 42] when
dealing with interlayer excitons, followed by analyzing an
harmonic oscillator approximation to this potential which
will motivate the chosen variational wave–function. Af-
ter defining this ansatz, we outline the complete set of
basis functions we will use to approximate the excited
states of the exciton. The necessary material–dependent
set of parameters characteristic of the specific van der
Waals heterostructure in question will also be discussed,
obtaining the desired energy levels.

In Section III we outline Fowler’s and Karplus’ method
[43, 44] to compute the dynamical polarizability of non–
interacting excitons. We then apply this same method
to interlayer excitons in a WSe2/WS2–based van der
Waals heterostructure, comparing the obtained reso-
nances against the transitions calculated both numeri-
cally and variationally via a finite–basis approach.

In Section IV, we turn to the non–linear response of the
excitons [45, 46]. We focus our discussion on the third–
order polarizability, first outlining a variational proce-
dure based on the ideas of both Karplus and Svend-
sen [43, 47, 48] for the calculation of the intra–excitonic
third–order polarizability. This procedure was recently
studied by Henriques et al., applied to for the study of
the two–photon absorption for excitons in WSe2 [49].
After outlining this variational method, we look at the
two–photon absorption for excitons in WSe2/WS2, dis-
cussing the various intra–excitonic transitions observed.
Finally, we consider the third–harmonic generation, first
with an extremely small broadening as to clearly differen-
tiate each individual resonance, and afterwards with two
much larger broadenings as to ascertain the feasibility of
experimental detection of each peak. A diagrammatic
representation of the various transitions is also presented
for both the two–photon absorption and third–harmonic
generation processes.

We finish the paper with our closing remarks in Section
V.

II. INTERLAYER RYTOVA–KELDYSH
POTENTIAL

We begin this section by discussing the Hamiltonian
in which we focus our attention.This will lead to the
discussion of the necessary modifications to the Rytova–
Keldysh potential when dealing with interlayer excitons.
We define the basis for our variational approach to the ex-
citonic states (starting by the np–series states for Section
III and then the ns– and nd–series for Section IV). We
finish this section by comparing the various variational
energies for the excitonic ground state against the result
from numerical integration of the Schrödinger equation
in a log–grid [50–52] via the Numerov shooting method.

A. Model Hamiltonian in the Dipole
Approximation

Let us now begin by considering the following Hamil-
tonian (in atomic units, as will be used throughout this
paper) in the dipole approximation

H = H0 − r · F (t)

= − 1

2µ
∇2 + V (r)− r · F (t) , (1)

where µ is the reduced mass of the electron–hole system,
∇2 is the Laplacian operator (taken in polar coordinates
throughout this paper), V (r) is a potential energy term
and F (t) is an external time–dependent field. This ex-
ternal field will be initially ignored as to first outline the
variational methods and wave functions that will be used,
and its action will be studied in Sections III and IV, when
the methods to obtain both the linear and the third–order
dynamical polarizability are described, respectively.

Considering this same electron–hole system in a van
der Waals (vdW) heterostructure, their potential energy
is accurately modeled by the Rytova–Keldysh potential
[41, 42]

VRK (r) = − π

2r0

[
H0

(
κ
r

r0

)
−Y0

(
κ
r

r0

)]
, (2)

with κ the mean dielectric constant of the media, r0 an
intrinsic parameter of the 2D material (interpretable as
an in–plane screening length), and H0,Y0 the Struve–
H and Bessel–Y (second kind) special functions of zero–
th order, respectively. The polarizability of intralayer
excitons is discussed in detail in [49, 53].

When considering interlayer excitons, a minimum sep-
aration originating from the physical distance between
the two layers appears in the Rytova–Keldysh potential.
The interlayer modified Rytova–Keldysh potential then
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reads [54]

Vi−RK (r) = − π

2r0

[
H0

(
κ

√
r2 + d2

r0

)
−

−Y0

(
κ

√
r2 + d2

r0

)]
, (3)

with d this interlayer separation distance.
Presenting the same Coulomb tail behaviour as the

Rytova–Keldysh potential [Eq. (2)] at large distances,
the finite interlayer separation d eliminates the logarith-
mic divergence at the origin. The absence of this diver-
gence makes it so that an inverse–exponential ansatz for
the excitonic wave function [55] is not the most adequate.
This, together with the parabolic nature of the interlayer
modified Rytova–Keldysh potential near r = 0, motivates
the ansatz that will be obtained in the following section.

B. Gaussian–Based Ansatz

Ahead we introduce a Gaussian wave function to de-
scribe the ground state of the interlayer 1s state analyt-
ically. In order to motivate this choice, we show below
that the potential Eq. (3) can, indeed, be approximated
by a parabolic potential near r = 0.

In this regime, Eq. (3) can be expanded up to second
order in r as

V (r) ≈ −V0 + γr2, (4)

where

V0 =
π

2r0

[
H0

(
κ
d

r0

)
−Y0

(
κ
d

r0

)]
,

γ = − πκ

4dr2
0

[
H1

(
κ
d

r0

)
−Y−1

(
κ
d

r0

)]
. (5)

Considering this potential, the Hamiltonian will be

H = − ~2

2µ
∇2 − V0 + γr2.

For the harmonic oscillator it is well known [56–58]
that the 1s function is proportional to a Gaussian, that
is, we have

Ψ (η) ∝ e−η/2,

where η = µωr2/~ and ω =
√

2γ/µ. As such, an ansatz
based on this solution is given by

ψ (r) = Ce−
r2

2β , (6)

where C is a normalization constant and β is a variational
parameter. As we are interested in studying interlayer

Double-Gaussian Ansatz

Single-Gaussian Ansatz

Finite-Basis Approximation
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Figure 2. Radial profile of the Double–Gaussian Ansatz [Eq.
(8)], the Gaussian Ansatz [Eq. (7)] and the Finite–Basis Ap-
proximation (Sec. II C) of the ground–state excitonic wave
function.

excitons confined to a finite radius, a multiplicative factor
is added to impose boundary conditions,

ψ0 (r) = Ce−
r2

2β (R− r) , (7)

where R is the radius of the enclosure, considered R =
1200 throughout this paper (in atomic units). This ra-
dius is considered sufficiently large such that the vari-
ational wave functions become zero significantly before
the boundary is reached (clearly seen in Fig. 2, where
the wave functions are already zero at around ∼ R/3).

Similarly to the ansatz defined by Pedersen in [55], we
modify Eq. (7) into a sum of two gaussians, given by

ψ0 (r) = C
(
e−

r2

2a + be−
r2

2c

)
(R− r) , (8)

which will the be ansatz of the excitonic ground state
we will consider throughout this article. Additionally, a
visual comparison of Eq. (7) against Eq. (8), as well as
the approximate wave function obtained via the method
described in Sec. II C, is present in Fig. 2. Clearly the
ansatz (8) performs much better than the ansatz (7).

C. Variational Approach from Boundary
Conditions

In certain conditions, namely for a small interlayer sep-
aration d, the obtained eigenvalues from minimization of
the Hamiltonian

H0 = − 1

2µ
∇2 + Vi−RK (r) (9)

with the ansatz from Eq. (8) are not significantly dif-
ferent from those obtained from numerical integration (a
small difference is present for the present case in Table
II). Additionally, obtaining higher energy states involves
orthogonalization against Eqs. (7) or (8), followed by
normalization, a process whose complexity increases sub-
stantially when increasing the number of excited states
[59].
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A different approach to obtaining variational solutions
to the Schrödinger equation with the interlayer modified
Rytova–Keldysh is by integrating the Hamiltonian ma-
trix elements for a complete basis whose elements obey
the necessary boundary conditions. Truncating this ba-
sis and diagonalizing the Hamiltonian matrix, we obtain
a set of variational wave functions that converge towards
the real wave functions of the system as the basis size
increases.

Following [60], a basis of functions can be constructed
from the solutions of the circular infinite well, given by

ψn,l (r, ϕ) =
Cn,l√

2π
eilϕJl

(
zn,l

r

R

)
, (10)

where Jl (x) is the Bessel function of the first kind of
order l, zn,l is the n-th zero of Jl (z), and Cn,l is a nor-
malization constant given by

Cn,l =

√
2

R2J2
|l|+1 (zn,l)

.

As both VRK (r) and Vi−RK (r) are invariant under
rotations, the quantum number l is well-defined. As such,
we can integrate the Hamiltonian and diagonalize it for
a finite number of functions with fixed l. Knowing this,
we will start the discussion by outlining the necessary
material dependent parameters for a WSe2/WS2 van der
Waals heterostructure.

D. Material Dependent Parameters in WSe2/WS2

To perform the necessary calculations and obtain the
wave functions and energy eigenvalues, we must substi-
tute the material–specific parameters characteristic of a
WSe2/WS2 van der Waals (vdW) heterostructure [21].

The reduced mass of interlayer excitons in this vdW
heterostructure is µ = 0.15 and, as such, the effective
Bohr radius will be a0 ≈ 0.581Å. The thickness of each
layer is considered dmat = 5.7Å and the gap distance is
dgap = 1Å. As such, the effective interlayer distance will
be

deff =
1

2
dmat + dgap +

1

2
dmat = 6.7Å. (11)

The permittivities for each material are given by

ε(n) =
√
ε⊥(n)ε

‖
(n), (12)

where ε‖(n) and ε⊥(n) are the in- and out-of-plane relative
permittivities of the material n. The numerical values
of each component of the relativie permittivities in each
material is present in Table I. Knowing the permittivities
in each material, the average permittivity of the vdW
heterostructure is

κmat =
εWSe2 + εWS2

2
= 9.31.

WSe2 WS2

ε⊥(n) 7.5 6.3

ε
‖
(n) 13.36 11.75

ε(n) 10.01 8.604

Table I. In–plane, out–of–plane, and total relative permittiv-
ities of WSe2 and WS2.

1s State

Finite Basis −0.00143378

Shooting Method −0.00144375

Double–Gaussian [Eq. (8)] −0.00142879

Gaussian [Eq. (7)] −0.00136314

Table II. Comparison of the different estimates for the exci-
tonic ground–state energy eigenvalue for a WSe2/WS2 het-
erostructure. The interlayer distance is given in Eq. (11)

Regarding the screening length r0, this parameter can
be separated as a sum for each layer (as described in [54])

r0 → r
(1)
0 + r

(2)
0 ,

where r(n)
0 denotes the screening length for the layer n.

The screening length for each individual layer can be ob-
tained as [20]

r
(n)
0 =

ε2n − 1

2εn
dn

√
ε
‖
n

ε⊥n
, (13)

where d is the thickness of the layer. As the in- and out-
of-plane relative permittivities of the two materials are
known, the total screening length is

r0 = 70.73Å.

Choosing a basis size of 120 and the same enclosure ra-
dius as in Sec. II B (R = 1200), the ground–state energy
eigenvalue is (in both atomic units and meV)

E1,0 = −0.00143378 = −39.0152 meV.

A comparison against both variational ansatze [Eqs. (7)
and (8)] and the numerical results from considering the
shooting method in a log–grid is given in Table II.

III. DYNAMICAL VARIATIONAL METHOD
FOR LINEAR POLARIZABILITY

In this section we will briefly outline Fowler’s and
Karplus’ [43, 44] method to compute the dynamical po-
larizability of various systems. This discussion will be
along the same lines as in [53], serving as a quick outline
of the procedure as some results will be necessary further
ahead. We apply this method to calculate the linear po-
larizability of interlayer excitons in a WSe2/WS2 circular
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dot, comparing the obtained peaks with the calculated
1s→ np transitions.

Looking back to Eq. (1), we consider (without loss
of generality) the external field pointing along the −x
direction. Closely following the approach presented in
[53], first outlined by Fowler and Karplus [43, 44], the
time–dependent Schrödinger equation reads

[H0 + xF (t)] |ψ (t)〉 = i
∂

∂t
|ψ (t)〉 . (14)

where |ψ (t)〉 describes the wave function of the system
in the presence of the electric field F. The dynamical
polarizability is defined as

α (ω) = −〈ψ0|x
∣∣ψ+

1

〉
− 〈ψ0|x

∣∣ψ−1 〉 (15)

with ψ0 the Gaussian ansatz of Eq. (8) and ψ±1 the
excited p–series states, such that

E (ω) = E0 −
1

2
α (ω)F 2. (16)

As we are working on a finite disk of radius R, Bessel
functions of the first kind are an appropriate complete set
of functions to describe a problem in such a geometry, as
defined in Eq. (10). Using these functions as a basis, we
write ψ±1 (r) as

ψ±1 (r) = cos θ

N∑
n=1

c±n J1

(z1,nr

R

)
, (17)

where J1 (z) is the Bessel function of the first kind of
order 1, z1,n is the n–th zero of J1 (z), N is the number
of Bessel functions we choose to use, and {c±n } are a set
of coefficients yet to be determined. As proposed in Refs.
[43, 61–63], the values of {c±n } are determined from the
minimization of the functional

J± =

∫
drψ±1,n (r) [H0 − E0 ± ~ω]ψ±1,n (r) +

+ 2

∫
drψ±1,n (r) r cos θψ0 (r) , (18)

The discussion of the minimization of the J functional
and the computation of the c±n coefficients is performed
in Appendix A.

The dynamical polarizability is then computed by sub-
stituting Eq. (17) into Eq. (15), together with the c±n
coefficients discussed in Appendix A, being written as

α (ω) = −gvπ
N∑
n=1

(
c+n + c−n

)
×

×
∫ R

0

J1

(z1nr

R

)
r ψ0 (r) r dr. (19)

where gv = 2 is the valley degeneracy. The ω depen-
dence on the right hand side is present in the coefficients
c±n [more explicitly, this dependence is present in the M

Real Part

Imaginary Part
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Figure 3. Real (blue) and imaginary (red) parts of the nor-
malized polarizability for interlayer excitons in a WSe2/WS2

heterostructure. The vertical black lines represent the exci-
tonic 1s→ np transitions.

matrix (Eq. A10) from the g±i (ω) term, as defined in
Eq. (A9)]. We remark that choosing for the ground
state wave function a variational function allows us to
write Eq. (19) exclusively in terms of analytical func-
tions. This considerably simplifies the numerical mini-
mization.

The polarizability for interlayer excitons in a
WSe2/WS2 heterostructure is plotted in Fig. 3, nor-
malized by its value at the maximum for the excitonic
1s → 2p transition (with E1s→2p ∼ 29.0576 meV) for
easier visualization. Additionally, a brief comparison of
the linear polarizability for interlayer and intralayer ex-
citons is made in Appendix B.

Having outlined and obtained the linear polarizability
in Fig. 3, we now turn our attention to the third–order
polarizability of interlayer excitons in this same vdW het-
erostructure.

IV. SVENDSEN’S METHOD FOR THE
THIRD–ORDER POLARIZABILITY

Having outlined Fowler’s and Karplus’ method in Sec-
tion III, we will now consider a similar method for the
third–order polarizability, following the procedure delin-
eated by Svendsen [47, 48] and recently applied by Hen-
riques et al [49] to intralayer excitons in TMDs.

Maintaining the definition for the c± coefficients given
in Eq. (A10), and following closely [43, 48, 49], we write
the functional

K = 〈ξαβ (ωa, ωb)|H0 − E0 + ωa + ωb|ξαβ (ωa, ωb)〉+
+ 〈ξαβ (ωa, ωb)|dβ |ψα (ωa)〉+ 〈ψα (ωa)|dβ |ξαβ (ωa, ωb)〉

(20)

where d is the dipole operator defined previously, E0 the
ground–state energy, H0 the unperturbed Hamiltonian
[defined in Eq. (9)] and |ψα〉 the basis obtained via the
c± coefficients and the Bessel functions J1 (z1,n) in Eq.
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(17). This functional is then minimized with respect to
|ξαβ〉, defined analogously to Eq. (17) as

ξαβ (ωa, ωb; r) = (21)

=

+∞∑
n=1

+∞∑
|l|=0

ζα,βl,n (ωa, ωb) Jl

(
zl,n

r

R

) eilθ√
2π
,

where we will focus our attention on the xx component

of ξαβ .

The discussion of minimization of this K functional,
done in a similar fashion as for the J functional, is per-
formed in-depth in Appendix C.

Having defined both ζx,x0 and ζx,x2 in Eqs. (C9–C12),
respectively, the third–order susceptibility follows from
[49] (with ωσ = ω1 + ω2 + ω3) as

χ(3)
x,x,x,x (−ωσ;ω1, ω2, ω3) =

1

3!
P
{
−c†

(
(−ωσ)

†
)
· [T0 · ζx,x0 (−ω2,−ω3) + T2 · ζx,x2 (−ω2,−ω3)] +

+ [S · c (−ωσ)]×

[
N∑
n=1

c†n

(
(−ω2)

†
)
cn (ω1) 2π

R2

2
[J2 (z1,n)]

2

]}
, (22)

with P denoting the different permutations of the fre-
quencies (−ωσ;ω1, ω2, ω3), T0/2 is defined in Eq. (C3),
and S is the vector in Eq. (A4). Having defined Eq. (22),
we will now utilize it to compute two different regimes
for the third–order polarizability of interlayer excitons in
WSe2/WS2.

A. Two–Photon Absorption in WSe2/WS2

We will now compute the xxxx component of the two–
photon absorption third–order susceptibility, defined as
χTPA
xxxx (ω) = χ

(3)
xxxx (−ω;ω,−ω, ω).

As the two–photon absorption was considered in [49],
we will not discuss it as in–depth as we will with the
third–harmonic generation. Similarly to what was done
in Fig. 3, we plot the real and imaginary parts of the
two–photon absorption third–order susceptibility for a
broadening small enough (0.05 meV) such that each in-
dividual peak can be clearly observed. This plot is visible
in Fig. 4, normalized by the peak value for the 1 → 3d
transition at ∼ 16.6 meV, along with a diagram repre-
senting the 1s→ ns and 1s→ nd transitions.

B. Third–Harmonic Generation

To finalize this paper, we will now compute the
xxxx component of the third–order susceptibility third–
harmonic generation of interlayer excitons in WSe2/WS2,
which is defined as χTHG

xxxx (3ω) = χ
(3)
xxxx (−3ω;ω, ω, ω).

Following the same approach as in Sec. IVA, we will be-
gin by computing χTHG

xxxx (3ω) for a small enough broad-
ening such that each resonance is clear.

The left–hand side of Fig. 5 has been normalized by
the peak value for the resonance at 3~ω = E1s→2p, whilst
the right–hand side features a diagram representing the
various transitions.

Spectral broadening as low as ∆ ∼ 2 meV (i.e., the
broadening that was considered for Fig. 3) can be
achieved for low temperature encapsulated systems [64].
Considering much higher values of the broadening than
in Fig. 5, namely ∆ = 1 meV and ∆ = 2 meV, we recom-
pute χTHG

xxxx (3ω), obtaining Fig. 6.
Although some 1s → np resonances are already ap-

parent at ∆ = 2 meV, namely at ∼ 40 meV (1s → 5p)
and ∼ 60 meV (1s → 8p), most 1s → ns and 1s → nd
transitions only become clearly visible in the sub–meV
regime. At those broadenings, the most clear peaks are
at 3~ω ≈ 50 meV (1s → 3d) and at 3~ω ≈ 56 meV
(1s → 4s). The two resonances at ∼ 72 mev and
∼ 75 mev are joined into one at ∆ = 1 meV, although
their presence is noticeable from comparison with the
adjacent 1s→ np transition peaks.

The 1s→ np resonance peaks occur for 3~ω = E1s→np,
while the 1s → ns and 1s → nd peaks are situated at
3~ω = 3

2E1s→ns/nd. Additionally, the peak at 3~ω =
87.1727 meV corresponds to 3~ω = 3E1s→2p. This is
due to the response at both 2ω [65] and ω also being
present in this process, described in detail in Section 3.2
of [66], i.e. 2~ω = E1s→ns/nd and ~ω = E1s→2p. No other
peaks for ~ω = E1s→np are visible, as they would already
be outside the considered frequency domain (3E1s→3p ∼
105.872 meV, barely outside of the plot).

V. CONCLUSIONS

In this paper, we discussed interlayer excitons in a
WSe2/WS2–based van der Waals heterostructure, for
which recent experimental measurements of the polariz-
ability through pump–probe experiments [21] have been
performed. In these experiments, the transition from
bright to dark states has been accessed for both interlayer
and intralayer excitons. In this paper, we focused our-
selves solely on the transitions between intra–excitonic
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Figure 4.
Left: Real (blue) and imaginary (red) parts of the two–photon absorption third–order susceptibility (normalized by the peak
value for the 1→ 3d transition at ∼ 17.5 meV) as a function of the incident photons’ energies for a broadening ∆ = 0.05 meV
and basis size N = 120. The resonances correspond to 1s → ns transitions (black dashed lines) and to 1s → nd transitions
(dark–orange dashed lines). The dominant 1s → 2p transition is at ∼ 29.0576 meV, outside of the frequency range plotted in
this figure. Right: Diagramatic representation of the 1s → ns (blue arrows) and 1s → nd (red arrows) transitions. Topmost
black line represents the resonance when ~ω = E1s→2p. We remark that the red and blue arrows represent the selection rules
of the system, that is, the only allowed transitions.

states for interlayer excitons in a circular WSe2/WS2 dot.
Approximating the interlayer modified Rytova–

Keldysh potential in a power series, we motivate a Gaus-
sian variational ansatz for the ground state of the sys-
tem. After discussing the necessary material–dependent
parameters, we consider both this ansatz and a complete
set of basis functions the Bessel functions of the first kind
to estimate the excitonic wave functions through varia-
tional methods.

We apply Fowler’s and Karplus’ method variational
method to access the linear polarizability of two–
dimensional interlayer excitons, focusing on the transi-
tion from bright to dark states (more specifically, 1s →
np transitions) in a circular dot of a WSe2/WS2–based
van der Waals heterostructure with Dirichlet boundary
conditions.

For the linear regime we consider a broadening of
∆ = 2 meV, allowing for the clear observation of the mul-
tiple peaks in the excitonic polarizability. We observe an
almost perfect agreement between the frequency of each
resonance and the energy differences between the ground
state and the excited states of the exciton. These en-
ergy differences were calculated both numerically (via
the Numerov shooting method) and variationally (via
both a Gaussian ansatz for the ground–state and a fi-
nite basis of Bessel function of the first kind), allowing
for a greater confidence in their values. As expected [21],
comparing the linear polarizability of interlayer excitons
in the hetero–bilayer against intralayer excitons in each
of the individual layers shows that the binding energies
are much lower in the interlayer regime (Figs. 3 and 7,
Table II and Eq. (B2)).

Onto the third–order polarizability, we began by pro-
viding an in–depth discussion of Svendsen’s variational
method [47, 48]. After outlining this method and ana-
lyzing the required modifications due to the necessity of
orthogonality between the various states, we work on the
algebraization of the method, arriving at a purely vecto-
rial problem after the necessary integrals are computed.
The obtained expression is then tested first with the two–
photon absorption, and then with third–harmonic gener-
ation.

Starting by two–photon absorption, a process which
was discussed in–depth by Henriques et al. [49], we per-
form the necessary calculations with a broadening small
enough such that the resonance associated with each in-
dividual intra–excitonic energy level transition can be
clearly identifiable (∆ = 0.05 meV). The two–photon ab-
sorption third–order susceptibility is then normalized by
the value at the E1s→3d resonance as to facilitate the
comparison of each peak. Of note is the amplitude of the
resonance associated with the E1s→7d transition, peaking
at around 40% of the maximum and being dramatically
larger than the adjacent transitions. Additionally, the
individual selection rules for this system were identified.

Finally turning to the third–harmonic generation in
the third–order susceptibility, we first perform the cal-
culations for a very small broadening (∆ = 0.05 meV).
Each individual transition was clearly identifiable, with
resonances at ~ω = Ei→f and 3~ω = Ei→f for 1s → np
transitions, and at 2~ω = Ei→f for both 1s → ns and
1s → nd transitions. The individual selection rules for
the third–harmonic generation process were clearly iden-
tifiable.
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Figure 5.
Left: Real (blue) and imaginary (red) parts of the third–harmonic generation third–order susceptibility (normalized by the
peak value for the 1 → 2p resonance at ∼ 29.0576,meV) as a function of the incident photons’ energies for a broadening
∆ = 0.05 meV and basis size N = 120. The resonances correspond to 1s → np transitions (black dashed lines), 1s → ns
transitions (green dashed lines) and 1s → nd transitions (dark–orange dashed lines). The ∼ 87.1727 meV resonance (black
dot–dashed line) corresponds to the response at frequency 3~ω = 3E1s→2p. Right: Diagramatic representation of the various
transitions visible in the plot on the left–hand side. The colors of the arrows represent the different transitions: 1s → np
(black), 1s → ns (green), and 1s → nd (dark–orange), while the number of arrows represents the frequency of the transition:
3 arrows for 3~ω = Ei→f , 2 arrows for 2~ω = Ei→f , and 1 arrow for ~ω = Ei→f . Again, as in Fig. 4, the arrows represent the
selection rules associated with the third–harmonic generation (THG) nonlinear process.
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Figure 6. Real (left) and imaginary (right) parts of the normalized third–harmonic generation third–order susceptibility for
different broadening values: ∆ = 2 meV (solid lines) and 1 meV (dashed lines). The basis size is fixed at N = 120. The
resonances correspond to 1s → np transitions (black dashed lines), 1s → ns transitions (green dashed lines) and 1s → nd
transitions (dark–orange dashed lines). The ∼ 87.1727 meV resonance (black dot–dashed line) corresponds to the response at
3~ω = 3E1s→2p.

Considering experimentally–obtainable values of the
broadening, we compare the third–harmonic generation
third–order susceptibility for ∆ = 1 meV and 2 meV.
We argue for the feasibility of experimentally observing
the three well–resolved resonance peaks, associated with
1s → 2p, 1s → 3d, and 1s → 4s transitions, where the
latter two could be an experimental indication of third–
harmonic generation due to intra–excitonic transitions in
this specific van der Waals heterostructure.
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Appendix A: Variational Coefficients for the Linear
Polarizability

Recalling the orthogonality relation of Bessel functions
on a finite disk of radius R [67],∫ R

0

Jν

(zvmr
R

)
Jν

(zvnr
R

)
rdr =

=
R2

2
δnm

[
J|ν|+1 (zvm)

]2
, (A1)

with zvm the m−th zero of Jν (z), one easily shows that
the functional can be rewritten as

J± = π
∑
n=1

∑
k=1

c±n c
±
k Ikn + 2π

∑
n=1

c±nSn+

+
πR2

2

∑
n=1

(
c±n
)2 [ ~2

2µ

z2
1n

R2
− E0 ± ~ω

]
[J2 (z1n)]

2
,

(A2)

where Ikn and Sn refer to the following integrals involv-
ing two and one Bessel functions, respectively

Ikn =

∫ R

0

J1

(z1kr

R

)
VRK (r) J1

(z1nr

R

)
r dr, (A3)

Sn =

∫ R

0

J1

(z1nr

R

)
r ψfin.

0 (r) rdr. (A4)

Differentiating J± with respect to the different c±n co-
efficients, one finds

c±j

{
R2 [J2 (z1j)]

2

2

[
z2

1j

2µR2
− E0 ± ω

]
+ Ijj

}
+

+

N∑
n 6=j

c±n Ijn = −Sj , (A5)

with j ∈ {1, 2, ..., N}. This equation defines a linear sys-
tem of equations whose solution determines the values of
the coefficients c±n .

We can write Eq. (A5) in a more concise manner, using
matrix notation, as

M · c± = −S, (A6)

where c± and S are column vectors defined as[
c±
]T

=
(
c±1 , c

±
2 , . . . , c

±
N

)
,

ST = (S1,S2, . . . ,SN ) , (A7)

and M is a N ×N matrix with:

(M)ij = g±i (ω) δij + Iij , (A8)

where δij is the Kronecker delta and

g±i (ω) =
R2 [J2 (z1i)]

2

2

[
z2

1i

2µR2
− E0 ± ω

]
. (A9)

After M and S are computed using Eqs. (A3) and (A9),
and (A4), respectively, the coefficients that determine
ψ±1 (r) are readily obtained as

c± = −M−1 · S, (A10)

and the solution of the differential equation is found.

Appendix B: Linear Polarizability for interlayer and
intralayer excitons

In this appendix we will make a quick comparison be-
tween the linear polarizability of both interlayer and in-
tralayer excitons in a WSe2/WS2 heterobilayer.

Intralayer excitons are considered for both the WSe2

and the WS2 layers, with the relevant material-dependent
parameters. Additionally, due to the Coulomb-like diver-
gence of the potential at r = 0, we consider the more
appropriate variational ansatz, defined by Pedersen [55],
given by

ψ0 (r) = C
(
e−ar − be−γar

)
(R− r) . (B1)

Minimizing this functional, the ground–state energy
for excitons each layer will be

EWS2
= −0.00438405 = −119.296 meV,

EWSe2 = −0.00541680 = −147.399 meV, (B2)

both closely matching the energies obtained via the finite
basis approach from Sec.II C. These binding energies are
also substantially larger than the ground–state energy
for interlayer excitons in the heterobilayer (Table II), as
expected from experimental studies [21].

Computing the linear polarizability with the formalism
described in Appendix A, normalized by the value at the
1s→ 2p peak, we display the results in Fig. 7.

Appendix C: Variational Coefficients for the
Third–Order Polarizability

Defining g(l)
n (ω) as a more general form of Eq. (A9)

g(l)
n (ω) =

R2
[
J|l|+1 (zl,n)

]2
2

[
z2
l,n

2µR2
− E0 + ω

]
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Figure 7. Imaginary part of the normalized linear polariz-
ability for interlayer excitons in a WSe2/WS2 heterostructure
and intralayer excitons in both a WS2 and a WSe2 monolay-
ers. The peaks correspond to transitions between the 1s state
(ground–state) and the excited np states.

and V(l)
nm analogously to Eq. (A3)

V(l)
nm =

〈
Jl

(
zl,n

r

R

)∣∣∣Vi−RK (r)
∣∣∣Jl (zl,m r

R

)〉
=

∫ R

0

Jl

(
zl,n

r

R

)
Vi−RKJl

(
zl,m

r

R

)
rdr,

the functional of Eq. (20) can then be rewritten using
the both the c±n and the ζl,n coefficients as

K =

+∞∑
n=1

+∞∑
|l|=0

[ζl,n]
†
g(l)
n (ωa + ωb) ζl,n+

+

+∞∑
n,m=1

+∞∑
|l|=0

[ζl,n]
† V(l)

nmζl,m+

+
1

2

+∞∑
n,m=1

{
[ζ0,n]

† T l=0
nm ·

(
c+m + c−m

)
+

+
[
ζ|l|=2,n

]† (T l=2
nm · c+m + T l=−2

nm · c−m
)

+ c.c.
}
. (C1)

In Eq. (C1), T lnm is the dipole transition ampli-
tude between the functions of the basis, denoted by
〈ψα (ωa)|dβ |ξαβ (ωa, ωb)〉 in Eq. (20) and given by

T lnm =
〈
Jl

(
zl,n

r

R

)∣∣∣ r ∣∣∣J1

(
z1,m

r

R

)〉
=

∫ R

0

Jl

(
zl,n

r

R

)
rJ1

(
z1,m

r

R

)
rdr.

The solution of this integral can be written in a closed

form by applying the more general expression∫ 1

0

Jν (αr) rJν+1 (βr) rdr =
αJν+1 (α)

(α2 − β2)
2×

×
[
−2βJν (β) +

(
α2 − β2

)
Jν+1 (β)

]
, (C2)

valid as long as Jν (α) = 0. Comparing with the def-
inition of T lnm, Eq. (C2) can be simplified further as
Jν+1 (β) = 0. Performing the necessary changes of vari-
able, and substituting Jν+1 (β) into Eq. (C2), T lnm can
be written as

T (l=0)
nm = −2R3 z0,nz1,mJ1 (z0,n) J0 (z1,m)(

z2
0,n − z2

1,m

)2 ,

T (l=2)
nm = −2R3 z1,nz2,mJ2 (z1,n) J1 (z2,m)(

z2
1,n − z2

2,m

)2 . (C3)

As done in the appendix of [49], we separate the l = 0
and the l = 2 cases. Looking first at the more compli-
cated case of l = 0, we must ensure that |ξαβ〉 is orthog-
onal to the considered ground–state [(in our case, the
ansatz of Eq. (8)]. As such, to ensure this, we must have

〈ψ0|ξαβ〉 =

+∞∑
n=1

ζα,β0,n (ωa, ωb)
〈
ψ0

∣∣∣J0

(
z0,n

r

R

)〉
= 0, (C4)

where non–zero angular momentum terms vanish upon
angular integration due to the isotropic nature of the
ground–state ansatz. Separating the first term of the
sum, this condition is given by

ζα,β0,1 (ωa, ωb)
〈
ψ0

∣∣∣J0

(
z0,1

r

R

)〉
+

+

+∞∑
n=2

ζα,β0,n (ωa, ωb)
〈
ψ0

∣∣∣J0

(
z0,n

r

R

)〉
= 0,

which can then be rewritten as

ζα,β0,1 (ωa, ωb) =

= −
+∞∑
n=2

ζα,β0,n (ωa, ωb)

〈
ψ0

∣∣J0

(
z0,n

r
R

)〉〈
ψ0

∣∣J0

(
z0,1

r
R

)〉 . (C5)

This means that ζ0,1 is no longer considered an indepen-
dent variable and, as such, we will focus our attention on
the n ≥ 2 terms. For compactness, we define

fn =

〈
ψ0

∣∣J0

(
z0,n

r
R

)〉〈
ψ0

∣∣J0

(
z0,1

r
R

)〉 , (C6)

which lets us rewrite Eq. (C5) as

ζα,β0,1 (ωa, ωb) = −
+∞∑
n=2

ζα,β0,n (ωa, ωb) fn. (C7)

Substituting Eq. (C7) into Eq. (C1) and then differ-
entiating the resulting expression with respect to [ζl,n]

†,
we obtain for n ≥ 2,
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[
g

(0)
1 (ωa + ωb) fnfm + V(0)

1,1 fnfm

]
ζ0,n − V(0)

1,mfnζ0,n − V(0)
n,1fmζ0,n −

1

2
fn

+∞∑
m=1

T l=0
nm ·

(
c+m + c−m

)
+

+

+∞∑
n=2

g(0)
n (ωa + ωb) ζ0,n +

+∞∑
n,m=2

V(0)
nmζ0,m +

1

2

+∞∑
n,m=2

{
T l=0
nm ·

(
c+m + c−m

)
+ c.c.

}
= 0. (C8)

This means that the system can be easily solved algebraically as

ζx,x0 (ωa, ωb) =
[
F + M(0) (ωa + ωb)

]−1

· [Wx,x
0 (ωa) + fx,x0 (ωa)] , (C9)

with M(0) (ωa + ωb) defined as in Eq. (A7) and

Wx,x
0 = −T0 · c,

(fx,x0 )n = fn

N∑
m=1

cmT (0)
1,mcm, (C10)

(F)i,j =
[
g

(0)
1 (ωa + ωb) + V(0)

1,1

]
fifj−

− V(0)
1,j fi − V

(0)
i,1 fj .

The missing coefficient ζα,β0,1 (ωa, ωb) is obtained by cal-
culating Eq. (C7) with the solution of Eq. (C9). Several
expressions have been already simplified by taking ad-
vantage of the parity of Bessel functions of the first kind,

J−l (x) = (−1)lJl (x) .

Looking now at the simpler l = 2 case, and as no
orthogonality–based restrictions need to be applied to its
coefficients, we can directly differentiate Eq. (C1) with
respect to [ζl,n]

† and then minimize the resulting expres-
sion, obtaining

+∞∑
n=1

g(2)
n (ωa + ωb) ζ2,n +

+∞∑
n,m=1

V(2)
nmζ2,m+

+
1

2

+∞∑
n,m=1

{
T l=2
nm · c+m + T l=−2

nm · c−m
}

=0. (C11)

The ζ2,n variational coefficients can then be obtained, in
vector form, as

ζx,x2 (ωa, ωb) =
[
M(2) (ωa + ωb)

]−1

·Wx,x
2 (ωa) , (C12)

a similar system to the one in Eq. (A10) with Wx,x
2

defined analogously to Wx,x
0 , after simplifications from

parity of Bessel functions.
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