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Abstract: Generalized additive models provide a flexible and easily-interpretable method for uncov-
ering a nonlinear relationship between response and covariates. In many situations, the effect of a
continuous covariate on the response varies across groups defined by the levels of a categorical vari-
able. When confronted with a considerable number of groups defined by the levels of the categorical
variable and a factor-by-curve interaction is detected in the model, it then becomes important to com-
pare these regression curves. When the null hypothesis of equality of curves is rejected, leading to the
clear conclusion that at least one curve is different, we may assume that individuals can be grouped into
a number of classes whose members all share the same regression function. We propose a method that
allows determining such groups with an automatic selection of their number by means of bootstrap-
ping. The validity and behavior of the proposed method were evaluated through simulation studies.
The applicability of the proposed method is illustrated using real data from an experimental study in
neurology.
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1. Introduction

One of the main goals of statistical modeling is to understand the effect of some explanatory vari-
ables, Xi, i = 1, ..., p, on a dependent variable, Y , also known as the response. This type of dependence
is often modeled using a generalized linear regression model (GLM) [1] that imposes a linear relation-
ship between explanatory and dependent variables without specifying in advance the function that links
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them. Generalized additive models (GAMs) [2, 3] offer an extension of the GLM through the incor-
poration of nonlinear forms for the explanatory variables. GAM has been widely used as an effective
technique for conducting nonlinear regression analysis in various fields such as economics, finance, the
environment, medicine, and biology. In a wide range of these applications, problems can be observed
which it might be useful to compare two or more regression curves. This often occurs when it is nec-
essary to check if the effect of a continuous covariate on the response varies across groups defined by
levels of a categorical variable. Testing the hypothesis of equality of the regression functions is a topic
of statistical inference that has been widely researched in the literature. One important review on this
topic may be found in [4] (see their Section 7). Examples of methods for clustering regression curves
using L2 distance and other metrics are in [5–7]. For nonparametric models, most approaches rely
on smoothing techniques, such as splines or Nadaraya-Watson [8], in the construction of the nonpara-
metric estimators of regression functions. The general idea is to use these nonparametric estimators
directly, either by contrasting all individual estimators with the pooled estimator, or by performing
pairwise comparisons. Other authors considered the use of empirical processes to avoid the necessity
of selecting a smoothing parameter required in the construction of the nonparametric estimators of
regression functions [9–14]. The idea behind these tests is to use the distribution of the residuals and
to compare them via Kolmogorov-Smirnov or Cramér-von Mises type statistics. ANOVA-type test
statistics have also been used to compare regression functions (see for example [15] and [16]). Ref-
erence [17] illustrates how the SiZer exploratory tool is capable of comparing multiple curves based
on the residuals. In [18] a kernel-based nonparametric approach is considered while [19] proposed a
testing procedure for single index models.

A second, though related question is how to determine groups among a series of regression curves
when the null hypothesis of equality of the regression functions is rejected. Though the aforementioned
methods can be used to compare regression curves, to the best of our knowledge, those methods cannot
be used to determine groups among a series of regression curves, for example, among groups defined
by the levels of a categorical variable. Some of them are not recommended when confronted with a
considerable number of curves. If the null hypothesis of equality of curves is rejected, then this leads
to the clear conclusion that at least one regression curve is different. However, these methods cannot be
used to ascertain whether individuals can be grouped into a reduced number of classes whose members
all share the same regression function or if all the regression curves are different from each other. One
naı̈ve approach would be to perform pairwise comparisons. However, this approach would lead to a
large number of comparisons (e.g., 7 groups would lead to 21 pairwise comparisons). This could be
done but without the possibility of determining groups with similar regression curves.

A statistical procedure to estimate the unknown group structure was proposed in [20] and later
in [21]. The first paper of these authors was about financial time series whereas the second deals
with environmental statistics. More recently, the comparison of survival curves was addressed [22].
Similarly, in this paper, we propose an approach that allows determining groups that share the same
regression function with an automatic selection of their number. The proposed method can be used,
for instance, to establish groups with similar monotonic trends in the regression curves (e.g., over the
levels of categorical variables). The proposed methodology will be shown in the framework of the
generalized additive model with a binary outcome and a logit link function. The generalization of the
proposed methods to other link functions is possible.

The remainder of the paper is organized as follows: The following section provides the notation
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and the methodological background. Then, the performance of the proposed methods is investigated
through simulations, and their usage is illustrated through the analysis of a real data set from neuronal
activity in the prefrontal cortex of monkeys during a discrimination task. Finally, the last section
contains a discussion and the main conclusions of the work.

2. Materials and methods

2.1. Mathematical model

Let Y denote the binary (0/1) target response and X = (X1, . . . , Xp) a set of p continuous covariates.
In this regression context, the logistic generalized additive model expresses the conditional probability
P(X) = P(Y = 1|X) as

log
P(X)

1 − P(X)
= α +

p∑
j=1

f j(X j) (2.1)

where α is a constant and each partial function f j represents the effect of the covariate X j. These
unknown smooth partial functions are modeled from the data without specifying in advance any para-
metric structure. Therefore, the GAM in (2.1) combines flexibility with interpretability, in which each
of the additive components describes the influence of each covariate separately.

In practice, the effect of a continuous covariate X j can vary across the levels 1, . . . ,K of a categorical
factor F. For simplicity of notation, here we consider that only the effect of the last covariate, Xp,
depends on the levels of F, so the pure GAM in (2.1) can incorporate this type of factor-by-curve
relationship as follows:

logit(F,X) = log
P(Y = 1|F,X)

1 − P(Y = 1|F,X)
= α +

p−1∑
j=1

f j(X j)+
g1(Xp) if F = 1
g2(Xp) if F = 2
...

...
...

gK(Xp) if F = K

(2.2)

where g1, . . . , gK represent the specific effect of Xp for each of the possible K levels established by the
factor F.

2.2. Estimating partitions

The study of the partial functions g1, . . . , gK can be useful in the comparison of two or more groups,
which is an important problem associated with statistical inference. Interest centers on the null hypoth-
esis H0 : g1 = . . . = gK , namely, that the effect of Xp does not depend on the levels of the factor F.
When the equality of the K curves is rejected, leading to the clear conclusion that at least one curve
is different, it can be interesting to ascertain whether groups can be performed or, by contrast, that all
these curves are different from each other. More clearly, if H0 is rejected, it could be interesting to de-
termine: a) if any pair of curves are different from each other, that is gi , g j, for all i , j ∈ {1, . . . ,K},
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or b) if the indices in {1, . . . ,K} can be grouped in a partition of J(J < K) groups I = (I1, . . . , IJ) with
J < K, so that gi = g j for each i, j ∈ Ik, for some k. Note that I must be a partition of {1, . . . ,K} and,
therefore, must satisfy I1 ∪ . . . ∪ IJ = {1, . . . ,K} and Ii ∩ I j = ∅ for all i , j ∈ I.

In some situations, the possible partition I = (I1, . . . , IJ), can be established in advance, and the
interest is to validate such partition by testing the null model

logit(F,X) = α +

p−1∑
j=1

f j(X j) +


g1(Xp) if F ∈ I1

g2(Xp) if F ∈ I2
...

...
...

gK(Xp) if F ∈ IJ

(2.3)

versus the general model given in (2.2). However, in general, the partitions are unknown and will have
to be estimated from the data.

Before explaining the procedure for determining the groups, let us introduce some notation. Given
a partition I = (I1, . . . IJ), we define a function GI : {1, . . . ,K} → {1, . . . , J} so GI(k) = j if k ∈ I j.
Now, given a sample {Fi,Xi,Yi}

n
i=1 and using the estimates ĝk (k = 1, . . . ,K) of the model in (2.2), the

estimated partition Î = (Î1, . . . ÎJ) can be obtained by minimizing the following Cramér-von Mises type
distance

min
I=(I1,...,IJ)

K∑
k=1

∫
x

(
ĝk(x) − ĈGI(k)(x)

)2
dx (2.4)

Alternatively, the estimated partition can be obtained using the Kolmogorov-Smirnov type distance

min
I=(I1,...,IJ)

K∑
k=1

∫
x

∣∣∣ĝk(x) − ĈGI(k)(x)
∣∣∣ dx (2.5)

In both cases the estimated centroids for j = 1, . . . , J are defined as

Ĉ j(x) =

∑K
k=1 ĝk(x) · I{GI(k) = j}∑K

k=1 I{GI(k) = j}
(2.6)

The above minimization problems can have a high computational cost for large values of K, because
they require the evaluation of all the different combinations of the K curves into J groups. To solve the
quadratic minimization problem in (2.4) and L1-norm minimization problem in (2.5) we propose the
use of the k-means or k-medians algorithms. In both cases, the partial functions have to be estimated
in a common grid of Xp, x•1 < . . . < x•N , of size N, leading to a matrix

ĝ1(x•1) . . . ĝK(x•1)
...

...

ĝ1(x•N) . . . ĝK(x•N)


N×K

This matrix will be the input of both heuristic methods, k-means and k-medians, and from these, the
estimated partition Î = (Î1, . . . , ÎJ) is obtained.
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2.3. Determining the number of groups

The procedure to obtain the estimation partition Î = (Î1, . . . , ÎJ) for a given J (J < K) has been
explained in the previous section. This section focuses on determining the number of groups for the
regression functions. With this goal in mind, one possible approach consists in fitting the model in
(2.3) for each value of j = 1, . . . , J, and selecting the number of groups K that minimizes the Bayesian
Information Criterion (BIC). BIC is one of the most widely used tools in statistical model selection. Its
popularity is derived from its computational simplicity and effective performance in many modeling
approaches. Our simulations on curve clustering demonstrate that the BIC criterion can be considered
a valid option, performing quite satisfactorily choosing the correct number of clusters in simulation
scenarios with a large number of curves and complex data sets. Another possibility would be to test,
for a given J, the null hypothesis H0(J) that at least one partition I of length J exists, so that the model
in (2.3) is fulfilled, against the alternative that for any J-partition at least a group I j exists in which
gm , gn for some m, n ∈ I j. In order to test H0(J), for a given sample {Fi,Xi,Yi}

n
i=1, we consider the

following two statistics

DCM =

K∑
k=1

n∑
i=1

(
ĝk(Xip) − ĝ◦GÎ(k)(Xip)

)2
(2.7)

DKS =

K∑
k=1

n∑
i=1

∣∣∣∣ĝk(Xip) − ĝ◦GÎ(k)(Xip)
∣∣∣∣ (2.8)

where the estimated partition Î = (Î1, . . . , ÎJ) is obtained by solving the minimization problems in (2.4)
or (2.5), and ĝ◦j functions are obtained from model (2.3) using the same partition. Alternatively, we
can use the deviance as an appropriate measure of discrepancy between observed and fitted values and
consider the following likelihood ratio test

DLR =

∑n
i=1 Devi(Yi, P̂i) −

∑n
i=1 Devi(Yi, P̂◦i )∑n

i=1 Devi(Yi, P̂i)
(2.9)

which compares the deviance of the null model (2.3) with the deviance of the general model in (2.2),
where P̂◦i and P̂i are the estimates values of the true probabilities Pi = P(Yi = 1|Fi,Xi) under the
null and general model, respectively. The individual deviance Devi(Yi, P̂i) is defined as Devi(Yi, P̂i) =

−2
(
Yi log P̂i + (1 − Yi) log(1 − P̂i)

)
.

Note that if H0(J) is verified, the value of the test statistic D should be close to zero. The decision
rule based on each of the three statistics, D, consists in rejecting the null hypothesis if D is greater than
(1 − α)-percentile obtained under the null hypothesis. Nevertheless, the theory for determining such
percentiles is not closed. To approximate the distributions of the test statistics, resampling methods
such as the bootstrap method can be applied [23–26]. The binary bootstrap used in our paper is a
particular case of the bootstrap techniques suggested by [27] and [28] for inference in nonparametric
models with response belonging to the binary family. The binary bootstrap involves the following
steps:
Step 1. Using the original sample data {Fi,Xi,Yi}

n
i=1, compute the test statistics D as explained above.

Then, obtain for i = 1, . . . , n the estimated P̂◦i of the true probabilities Pi = P(Yi = 1|Fi,Xi) obtained
from the null model in (2.3).
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Step 2. For b = 1, . . . , B, generate the bootstrap sample {Fi,Xi,Y•i }
n
i=1, with Y•i ∈ Bernoulli(P̂◦i ), and

compute the bootstrap statistics D•,b. Note that the estimation of the partition is required in this Step.
Finally, the decision rule, based on each test statistic D, consists in rejecting the null hypothesis if

D > D̂1−α, where D̂1−α is the empirical (1−α)-percentile of the values D•1, . . . ,D•B obtained previously.
The bootstrap-based test introduced here can be very useful to automatically determine the number

of groups J. Specifically, the rule proposed is as follows: the procedure begins by testing H0(1). If this
hypothesis is true, we decide that J = 1 (all regression curves are equal). When the previous hypothesis
is rejected, it will be necessary to test H0(2). If this new hypothesis is not rejected, we decide that J = 2.
When H0(2) is rejected, it will be required to test H0(3) and so on until a certain H0(J) is not rejected.
Finally, note that we are aware that this approach could deal with the problem of multiple hypothesis
testing where a set of J p-values corresponding to the J null hypotheses, H0(1),H0(2), . . . ,H0(J), are
given. Even though several methods have been proposed to deal with this problem (see e.g. [29] for an
introduction to this area), there is still a challenge because there is no information about the minimum
number of tests needed to apply these techniques. Accordingly, and considering that our rule finishes
with a low number of them, we have not considered this problem.

2.4. Simulation study

This section reports the results of a simulation study conducted to evaluate the practical performance
of the proposed methodology. The response Y was generated under model (2.3) with

log
P(Y = 1|F, X)

1 − P(Y = 1|F, X)
=



g1(X) = 1.5X if F ∈ I1 = {1, 2, 3}
g2(X) = 2X2 − 3 if F ∈ I2 = {4, 5}
g3(X) = 2 sin(2X) − 2 if F ∈ I3 = {6, 7}
g4(X) = 2 cos(2X) if F ∈ I4 = {8, 9}
g5(X) = 2 cos(2X) + a exp(0.5X) if F ∈ I5 = {10, 11, 12, 13}
g6(X) = 4 − 2X if F ∈ I6 = {14, 15}

(2.10)
The categorical covariate X was drawn from an uniform distribution U[−2, 2], and its factors, F, were
generated by taking a random value in {1, . . . , 15} with associated probabilities p = (p1, . . . , p15) =

n/
∑

nk, k = 1, . . . , 15, where:

n = (n1, . . . , n15) = (1.0, 2.0, 1.0, 1.5, 1.0, 2.0, 1.5, 2.0, 2.0, 1.0, 1.0, 1.0, 1.5, 1.5, 1.0)

In this way, and as can be seen in Table 1, we have considered unequal sample sizes for each (k =

1, . . . , 15) curve.
We explore the validity of the proposed tests assuming that we aim to test if the K = 15 regression

curves can be grouped in five (J = 5) groups. To study the size and power of the proposed tests,
different values were considered for a, ranging from 0 to 2. It should be noted that g5(X) = g4(X) +

a exp(0.5X), so a value of a = 0 corresponds to a null hypothesis of five groups, while a value of a > 0
corresponds to a null hypothesis of six groups.

2.5. Application to neural activity in the prefrontal cortex during a discrimination task

The data analyzed in this section come from laboratory experiments of the extra-cellular single unit
activity in the prefrontal cortex of a monkey. These experiments were conducted in the Laboratory of
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Table 1. Sample size nk for each regression curve k (k = 1, . . . , 15) for different total sample
sizes n =

∑
nk.

n n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15

300 14 28 14 21 14 28 21 28 28 14 14 14 21 21 14
500 23 47 23 35 23 47 35 47 47 23 23 23 35 35 23
1000 47 95 47 71 47 95 71 95 95 47 47 47 71 71 47
2000 95 190 95 142 95 190 142 190 190 95 95 95 142 142 95
4000 190 380 190 285 190 380 285 380 380 190 190 190 285 285 190

Neurophysiology of the University of Vigo (Spain). The monkey was trained to discriminate between
different stimuli. The stimuli consisted of stationary bright line segments presented on a monitor screen
in front of the monkey that changed their orientation over time.

A trial was initiated when the monkey pressed a lever key with its right hand and then two stimuli
(reference and test), each of 500 ms duration, were presented in sequence with a fixed inter-stimulus
interval (ISI: 1000 ms). At the end of the second stimulus, the subject released the key in a 1200 ms
time window and pressed one of the two switches (left or right), indicating whether the orientation of
the second stimulus was clockwise (right) or counter-clockwise (left) to the reference stimulus. While
the monkey worked on the task, its extracellular unit activity was recorded. The monkey was rewarded
for correct discrimination.

To gather enough data and to account for the cell response variability, the neuron was recorded
over a number of T = 80 trials. For each of the trials, we consider the angle (trial specific), TA,
corresponding to the test stimulus. The reference angle is 90◦. The following TAs were considered in
the experiment:

• T A ∈ {78◦, 102◦}: test stimuli more separated from the reference, and therefore very easy to
discriminate
• T A ∈ {81◦, 99◦}: test stimuli is easy to discriminate
• T A ∈ {84◦, 96◦}: test stimuli is difficult to discriminate
• T A ∈ {87◦, 93◦}: test stimuli closest to the reference, therefore more difficult to discriminate

In this experiment, the outcome of interest is the neuronal activity in the interval t ∈ [tmin, tmax] =

[−500, 3000] in ms. At each instant t and trial j = 1, . . . ,T , this outcome may then be represented by
a temporal binary sequence, Y j

t , where Y j
t =1 if there is a spike in [t, t + 1) ms and 0 otherwise. The

explanatory variables are the time t when a spike was detected and the interval of time ∆t since the last
spike. The last one is an adjustment variable that takes into account that the neuron might fire more
easily if it has been fired recently. Accordingly, for each trial, the data set consists of the following
information

{T A, (t,∆t) ,Yt}
tmax
t=tmin

We use generalized additive modeling to assess whether the association between neural activity and
decision-making depends on the difficulty of the discrimination task related to the angle of the test
stimulus. We consider the following GAM:
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log
(

P(T A, t,∆t)
1 − P(T A, t,∆t)

)
= α + f (∆t) +



g1(t) if T A = 78◦

g2(t) if T A = 102◦

g3(t) if T A = 81◦

g4(t) if T A = 99◦

g5(t) if T A = 84◦

g6(t) if T A = 96◦

g7(t) if T A = 87◦

g8(t) if T A = 93◦

(2.11)

where P(T A, t,∆t) = P(Yt = 1|F, t,∆t), α is a fixed parameter, and gk for k = 1, . . . , 8 are the specific
time functions associated to each of the test angles considered in the study.

3. Results

3.1. Results on simulation data set

Type I error rates and power values of the proposed tests as a function of a are shown in Figure 1.
They were calculated from 1000 simulation runs using B = 400 bootstrap samples at each repetition.
We compare the results of the three test statistics under sample sizes n = 1000 and 2000, at the
significance levels of 0.05 and 0.10. As can be seen in Figure 1, the three curves show the expected
behavior pattern, with an increase in the power as a increases, and an improvement in it as the sample
size grows.
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Figure 1. Rejection probabilities (power of the hypothesis test) of the proposed test statistics
as a function of a, for sample size n = 1000 and n = 2000 (upper and lower panels, respec-
tively) at a 0.05 and 0.10 (left and right panels, respectively) significant levels (red line).
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The test statistic based on the likelihood ratio test (labeled as DLR) is that with the highest values of
power for n = 1000, but the differences between the three test statistics are minimal for n = 2000. The
Cramér-von Mises–type statistic test (labeled as DCM) revealed a poorer behavior with lower rejection
probabilities for a sample size of 1000. Values for type I error, for the three test statistics and for
different significance levels and different sample sizes (n = 1000, 2000, and 3000), are reported in
Table 2. The three test statistics work satisfactorily according to the type I error, coming quite close to
the nominal level regardless of the sample size.

Table 2. Estimated type I error (in %) and nominal level percentages (1, 5, 10, 15, and 20)
for different sample sizes.

level DCM DKS DLR

n = 1000

1 1.4 1.3 1.0
5 5.5 5.3 5.6
10 9.7 9.8 11.5
15 14.5 15.3 16.5
20 18.7 20.0 21.1

n = 2000

1 0.9 0.7 0.8
5 4.2 3.8 5.7
10 8.4 8.0 9.4
15 12.8 12.4 15.6
20 16.5 18.0 21.8

n = 3000

1 0.9 0.7 1.2
5 4.2 4.0 6.5
10 8.8 7.6 11.1
15 13.0 12.1 16.2
20 16.2 17.0 22.3

In Table 3, we report results that can be used to evaluate the accuracy of the bootstrap-based al-
gorithm introduced in Section 2.3. Again, different values of a were considered, ranging from 0 to 2.
Recall that the value a = 0 corresponds to the null hypothesis, which assumes that the fifteen regression
functions can be classified into five groups, while, when a , 0, the number of groups is six. Note that
to select the correct number J of groups of regression functions, the bootstrap-based algorithm must
first reject the first null hypothesis, H0(1), then reject the second hypothesis, H0(2), and so on until it
accepts H0(5) if a = 0, or until H0(6) when a > 0. Results shown in Table 3 for the three test statistics,
using a nominal level of 5%, display the number of times that the procedure selects the number of
groups J. Results in bold denote the correct classifications according to model (2.3), revealing the high
accuracy of the proposed bootstrap-based algorithm for a = 0, showing the correct number of groups
in percentages quite close to the nominal level. As the value of a increases, so does the percentage of
cases in which the proposed method suggests six groups. When comparing the three test statistics, it
can be observed that all have a similar performance with a small advantage for the test statistic based
on the likelihood ratio test (labeled as DLR).
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Table 3. Percentage of simulations (over 1000 repetitions) that the bootstrap-based algorithm
estimated the number of groups J. Results for the three test statistics were obtained for sample
size n = 2000 and different values of a, with a nominal level of 5%.

DCM DKS DLR

a J = 5 J = 6 J = 7 J = 5 J = 6 J = 7 J = 5 J = 6 J = 7
0.0 95.8 3.1 1.2 96.2 2.5 1.3 94.3 3.4 2.3
0.2 95.5 3.2 1.3 94.7 3.8 1.6 94.2 3.2 2.6
0.4 91.1 6.1 2.8 89.5 7.6 2.9 87.6 7.9 4.5
0.6 79.3 17.6 3.1 75 21.2 3.8 72.4 22.2 5.4
0.8 53.9 42.2 3.9 49.2 46.7 4.1 40.7 53.9 5.4
1.0 12.3 83 4.7 17.6 78.5 3.8 10.2 84.5 5.3
1.2 1 94.5 4.5 4 91.8 4.2 1.4 93.6 4.9
1.4 0.1 95.3 4.6 1.3 95.2 3.5 0.2 94.6 5.2
1.6 0.1 96.1 3.8 0.7 95.4 3.9 0.2 94.8 5.1
1.8 0.1 95.7 4.2 1.2 94.7 4.1 0.3 94.9 4.8
2.0 0.1 96.5 3.4 1 95.4 3.7 0.2 94.6 5.2

According to our simulation scenario, the K = 15 regression curves should be grouped into five
groups if a = 0 and six groups otherwise. In addition to this, the assignment of each curve should follow
model (2.3). Results reported in Table 4 can be used to check if the proposed algorithm is performing
well by assigning each of the fifteen regression curves to the correct group. Specifically, the results
correspond to a value of a = 0.7, for different sample sizes. The entries in the first column specify
the number of regression curves with an incorrect classification, whereas the remaining columns show
the corresponding percentages for different sample sizes. Therefore, the results reported in the first
line correspond to the ideal situation in which none of the fifteen curves has an incorrect classification.
As we can see, the percentages in this line increase with an increase in the sample size, up to rates of
success of around 95%, coming quite close to that established. In addition, we can also see that the
number of incorrect classifications decreases with an increase in the sample size. For n = 2000, for
example, the percentages of incorrect classifications have a sharp decrease whereas for n = 4000 only
1 or 2 curves have incorrect classifications with low percentage values of 4.9 and 0.6%, respectively.

To measure how well the procedure assigns each of the k = 1, ..., 15 to their correct group I1, ..., I6,
we report in Table 4 the percentage of incorrect classifications for each regression curve, for different
sample sizes, considering a = 0.7. While it can be seen that the procedure performs quite well for large
sample sizes, it also reveals some difficulties in the case of small samples.

Note that, according to Table 1, for a sample size of n = 300 the number of observations in each
group is between 14 and 28. This can explain the high misclassification rates for this sample size, in
particular in the case of regression curves with fewer observations. As the sample size increases, the
percentage of incorrect classifications for each regression curve decreases.

In Table 5 we show which group each of the k = 1, . . . , 15 regression curves is assigned to. Results
reported in this table were obtained for a = 0.7 and four sample sizes. The numbers in bold denote
the correct classifications according to model (2.3). The results are in agreement with the previous
findings, revealing the accuracy of the proposed method for higher sample sizes. We can also see that
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for all the samples, the assignment is, in most cases, correct. As expected, higher misclassification
rates can be observed for those regression curves (k = 10, 11, 12, 13) that belong to group I5 but were
classified in group I4. Results not reported here show that this misclassification is less evident as the
value of a increases.

Table 4. Percentages of misclassifications over the total of the 15 regression curves. Scenario
with a = 0.7 for different sample sizes.

n.misclass n = 300 n = 500 n = 1000 n = 2000 n = 4000
0 0.3 0.9 20.4 67.3 94.6
1 2.7 6.1 26.4 22.7 4.9
2 5.1 12.0 15.0 4.3 0.6
3 12.9 32.9 26.4 4.9 0.0
4 15.4 16.0 2.6 0.1 0.0
5 18.1 14.0 4.1 0.3 0.0
6 17.0 8.1 3.1 0.1 0.0
7 10.4 4.9 0.6 0.0 0.0
8 8.9 3.6 1.1 0.3 0.0
9 5.6 1.0 0.1 0.0 0.0
10 2.3 0.4 0.0 0.0 0.0
11 1.1 0.1 0.0 0.0 0.0
12 0.1 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0

The success of the proposed methods depends on recovering the true functional forms of the corre-
sponding six curves ĝk, k = 1, . . . , 6, introduced in model (2.3). In this regard, we present in Figure 2
the estimated curves with the corresponding 95% confidence limits for a sample size of n = 2000. This
figure reveals that the resulting estimates recover the functional form of the corresponding true curves
very successfully.

As mentioned above, the Bayesian Information Criterion (BIC) can be used to select the number of
groups J. This is a method of computational simplicity that consists of choosing the model (2.3) that
minimizes the BIC statistics. Table 6 can be used to compare the performance of the BIC against the
results reported in Table 3, based on the bootstrap method introduced in Section 3. Both tables report
the percentage of simulations (over 1000 repetitions) that the BIC procedure and the bootstrap-based
algorithm estimated to have a number of groups J for different values of a. BIC is able to identify
the correct number of groups (five when a = 0 and six otherwise) for sample sizes n ≥ 1000 (correct
classifications represented in bold). Even though the results shown in the two tables indicate good
agreement between the two procedures, one can see that the BIC procedure is more conservative in
detecting important differences between the regression curves, whereas, the bootstrap method is more
effective in detecting less important differences. Since the BIC procedure has obvious computational
advantages, we suggest that it should be used to contrast and thoroughly examine conclusions obtained
by applying the proposed bootstrap method. We should not consider the BIC procedure as merely an
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alternative to the bootstrap but rather as a supplement that offers additional information. In this sense,
BIC could be used to obtain an initial approximation to the number of groups, then our bootstrapping
method will be used to tune this value.

Table 5. Assignment of curves to groups. The entries in the table specify the percentage of
times that curve K (k = 1, . . . , 15) is classified in cluster I j ( j = 1, . . . , 6). Results for four
different sample sizes n with a = 0.7.

n = 500 n = 1000
K I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6

1 80.9 1.8 5.2 4.1 7.6 0.3 95.3 0.0 1.0 0.8 2.9 0.0
2 82.4 1.0 4.0 4.2 8.4 0.0 94.6 0.0 0.4 1.0 4.1 0.0
3 79.7 3.5 4.8 4.5 7.1 0.3 94.5 0.2 0.7 1.0 3.6 0.0
4 2.0 89.9 5.8 1.4 0.8 0.0 0.5 97.0 0.5 0.7 1.3 0.0
5 1.6 89.2 5.8 2.3 0.7 0.4 0.6 97.8 0.7 0.6 0.2 0.0
6 3.4 1.8 89.8 3.4 1.6 0.0 0.2 0.1 97.7 1.4 0.5 0.0
7 3.0 2.3 89.9 2.8 2.0 0.0 0.0 0.1 97.7 1.6 0.6 0.0
8 0.3 0.3 4.1 66.9 28.5 0.0 0.0 0.0 0.0 83.5 16.5 0.0
9 0.4 0.1 1.8 70.3 27.3 0.0 0.0 0.0 0.1 84.4 15.5 0.0

10 12.6 0.4 0.7 35.1 46.0 5.1 2.6 0.0 0.1 32.6 64.1 0.5
11 10.9 0.1 1.6 38.8 43.2 5.4 2.4 0.0 0.0 34.4 62.8 0.4
12 10.8 0.4 2.0 37.7 44.8 4.4 3.0 0.0 0.0 32.0 64.7 0.2
13 9.1 0.1 0.4 41.9 44.9 3.5 0.8 0.0 0.0 35.4 63.8 0.0
14 0.3 0.1 0.0 0.8 2.1 96.6 0.0 0.0 0.0 0.0 0.4 99.6
15 0.1 0.1 0.0 0.6 2.1 97.0 0.0 0.0 0.0 0.1 0.5 99.4

n = 2000 n = 4000
K I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6

1 99.6 0.0 0.1 0.1 0.1 0.0 100.0 0.0 0.0 0.0 0.0 0.0
2 99.5 0.0 0.1 0.1 0.3 0.0 100.0 0.0 0.0 0.0 0.0 0.0
3 99.5 0.1 0.1 0.1 0.1 0.0 100.0 0.0 0.0 0.0 0.0 0.0
4 0.1 99.7 0.0 0.0 0.1 0.0 0.0 100.0 0.0 0.0 0.0 0.0
5 0.1 99.7 0.0 0.0 0.1 0.0 0.0 100.0 0.0 0.0 0.0 0.0
6 0.0 0.0 99.9 0.1 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
7 0.0 0.0 99.9 0.1 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
8 0.0 0.0 0.0 98.2 1.8 0.0 0.0 0.0 0.0 100.0 0.0 0.0
9 0.0 0.0 0.0 98.1 1.9 0.0 0.0 0.0 0.0 100.0 0.0 0.0

10 0.0 0.0 0.0 12.0 88.0 0.0 0.0 0.0 0.0 1.3 98.7 0.0
11 0.3 0.0 0.0 10.4 89.4 0.0 0.0 0.0 0.0 1.7 98.3 0.0
12 0.4 0.0 0.0 12.1 87.4 0.1 0.0 0.0 0.0 1.9 98.1 0.0
13 0.0 0.0 0.0 10.2 89.8 0.0 0.0 0.0 0.0 1.1 98.9 0.0
14 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0
15 0.0 0.0 0.0 0.0 0.1 99.9 0.0 0.0 0.0 0.0 0.0 100.0
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Figure 2. Estimated centroids g j ( j = 1, . . . , 6) for the six clusters with the 95% confidence
limits. Results obtained from n = 2000 and a = 0.7.

3.2. Results on real data set

Figure 3 shows the effects of both explanatory variables, t and ∆t, on the response variable, applying
model 2.11 to the experimental data.
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Figure 3. Effect of each explanatory variable on the probability of spike.
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Table 6. Percentage of simulations (over 1000 repetitions) that the BIC procedure estimated
the number of groups J. Results for different values of a.

Number of selected groups
a J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J > 7

n = 500

0.0 0.0 0.0 3.4 33.3 59.1 4.2 0.0 0.0
0.2 0.0 0.0 3.9 28.8 62.1 4.8 0.3 0.1
0.4 0.0 0.1 4.7 28.7 61.2 5.1 0.2 0.0
0.6 0.0 0.1 5.0 28.8 58.5 7.4 0.2 0.0
0.8 0.0 0.3 7.9 31.4 50.8 8.8 0.7 0.1
1.0 0.0 0.3 9.0 30.1 45.0 13.7 1.8 0.1
1.2 0.0 0.5 8.0 31.9 39.1 18.2 2.1 0.2
1.4 0.0 0.6 9.6 27.0 34.8 24.8 2.8 0.4
1.6 0.0 0.2 7.8 24.8 35.2 28.0 3.6 0.4
1.8 0.0 0.4 6.8 24.0 35.8 29.2 3.2 0.6
2.0 0.0 0.8 4.8 21.6 36.8 32.4 3.6 0.0

n = 1000

0.0 0.0 0.0 0.0 1.9 97.3 0.7 0.1 0.0
0.2 0.0 0.0 0.0 1.8 97.3 0.9 0.0 0.0
0.4 0.0 0.0 0.0 1.3 97.2 1.5 0.0 0.0
0.6 0.0 0.0 0.0 1.2 94.8 3.8 0.2 0.0
0.8 0.0 0.0 0.0 2.1 84.0 13.5 0.4 0.0
1.0 0.0 0.0 0.0 1.2 60.4 37.4 1.0 0.0
1.2 0.0 0.0 0.0 1.7 29.0 67.9 1.4 0.0
1.4 0.0 0.0 0.0 1.4 16.4 79.8 2.4 0.0
1.6 0.0 0.0 0.1 0.7 10.4 85.3 3.4 0.1
1.8 0.0 0.0 0.0 0.2 11.0 85.3 3.2 0.3
2.0 0.0 0.0 0.0 0.6 10.3 85.2 3.4 0.5

n = 4000

0.0 0.0 0.0 0.0 0.0 99.9 0.1 0.0 0.0
0.2 0.0 0.0 0.0 0.0 99.7 0.3 0.0 0.0
0.4 0.0 0.0 0.0 0.0 99.3 0.7 0.0 0.0
0.6 0.0 0.0 0.0 0.0 80.2 19.8 0.0 0.0
0.8 0.0 0.0 0.0 0.0 13.9 86.1 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.2 99.8 0.0 0.0
1.2 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
1.4 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
1.6 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
1.8 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
2.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

As can be appreciated, the neuron activation decreases with the time interval ∆t. The activation
time t, for its part, tends to increase during the period when the angle of the rod is changed, reaching
a maximum at about 2200 ms and then decreasing. This means that it takes time for the neuron to fire
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from the moment the monkey sees the rod.
Figure 4 shows the raster plot of the response of the neuron recorded in the prefrontal cortex of a

monkey while it is carrying out the visual discrimination task. Each row represents one of the total of
80 trials, and each tick represents a potential action (spike). The spontaneous cell activity, i.e., in the
absence of any stimuli, is very irregular, as can be seen in the interval from -500 to 0 ms, where there
was no stimulus for the neuron.
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Figure 4. Response of a neuron during the performance of the discrimination task. The ob-
served spikes foreach of the 80 trials are on separate lines. The shaded regions correspond to
reference stimulus (from 0 to 500 ms) and to the interval to test the response(1600–2100 ms).

The panel on the left of Figure 5 shows the data pooled across trials represented as counts of spikes
within 10 ms intervals. Units of mean firing rate are the number of spikes per trial per second. The
fitted curve, obtained using a generalized additive model, is shown in the panel on the right. As can be
seen in both plots, the temporal evolution of the cell firing rate during the task indicates that there is an
increase in the firing rate between 1750 and 2750 ms, which corresponds to the presentation of the test
stimulus and the reaction time, before the monkey motor response. Therefore, we restricted the data to
the time interval between 1500 and 3000 ms. One hundred milliseconds before the test stimuli were
taken as control because there were no stimuli present and the firing rate variability from trial to trial
was very low. Accordingly, for each trial, 1500 measurements of the neuron activity were made.

Figure 6 shows the estimated regression curves of the firing rate (spikes) for the eight different
experimental conditions, i.e., for each of the eight levels of the trial angle (TA) as defined in the model
(2.11). Two groups stand out, particularly those with a trial angle below 90◦, with higher firing rates
per second in the time interval between 1900 and 2700 ms, and those with a trial angle above 90◦, with
lower firing rate per second. Although it may appear strange, higher neuron firing rates for angles less
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than 90◦ (clockwise rotation) were previously reported in a study [26].

Time(ms)

F
iri

ng
 r

at
e 

(s
pi

ke
s/

s)

−500 0 500 1000 1500 2000 2500 3000

0
5

10
15

20
25

30

Time (ms)

F
iri

ng
 r

at
e 

(s
pi

ke
s/

s)

TestReference ISI

−500 0 500 1000 1500 2000 2500 3000

10
15

20
25

30
35

Figure 5. Representation of neural activity over time. Observed spikes pool counts of spikes
within 10 ms intervals (left) and the corresponding smoothing version (right plot).
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Figure 6. Fitted regression curves for the eight different experimental conditions.

Results for the bootstrap method using the three test statistics defined in Section 3 are shown in
Table 7. As can be seen, the three test statistics indicate that there are two groups. DKD, and slightly
less so DCM, are close to tipping the balance in favor of three groups.

We have also applied the BIC criterion to determine the number of groups. The results of this cluster
solution also lead to the same conclusion, namely, J = 2 groups. These findings are in agreement with
those reported in our simulations that indicate that BIC is more conservative, but capable of detecting
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important differences.

Table 7. Probability values for testing the null hypothesis H0(J). Results based on the
bootstrap method with different test statistics.

J DCM DKS DLR

1 < 0.001 < 0.001 < 0.001
2 < 0.06 < 0.05 < 0.29
3 < 0.19 < 0.13 < 0.53
4 < 0.09 < 0.76 < 0.48

Clusters for a fixed number of groups between J = 2 and J = 5 are shown in Figure 7 to facilitate the
comprehension of the problem, although the results obtained indicate that there are only two groups.
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Figure 7. Estimated regression curves according to the groups to which they belong. The
curves assigned into two (J = 2), until five groups (J = 5) are represented in each of the four
panels. The statistics used to estimate the number of groups found only two.

4. Conclusions

In this work we propose a bootstrap-based method to determine the number of groups in generalized
additive models when the effect of a continuous covariate on the response varies across groups defined
by levels of a categorical variable. The simulation analysis confirms the capacity of the three proposed
statistical tests to reproduce the theoretical values of type I and type II errors, even in the presence of a

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6435–6454.



6452

large number of curves. However, the power turned out to be higher for the test based on the likelihood
test ratio. As expected, the percentage of misclassifications decreases with the sample size, n, being
almost null for n = 4000.

The simulated data were also used to compare our method with BIC, a well-known approach that has
been largely used previously in clustering analysis to estimate the number of clusters in an artificial
data set. The number of detected groups was the same for both methods, but the simulation study
showed that BIC has a lower statistical power than the bootstrap method, although they are close for
larger sample sizes. Accordingly, BIC could be used to obtain an initial estimation of the number of
clusters that could be tuned using our method.

The application of the proposed method to an experiment to determine the activity of a neuron of
a monkey subject to visual stimuli led to the same conclusions when we compared our approach with
BIC. In both cases the neuron only reacts to two of the eight stimuli, corresponding to the most evident
differences with respect to a reference state. Regarding the three statistics tested, they provide the same
result, although the evidence for two clusters is stronger for the statistic based on the likelihood ratio
test.

Finally, it can be said that although the proposed method was designed to detect groups of regres-
sion curves in generalized additive models with a binary response, it can be extended without much
difficulty to determine groups in models with another kind of response.
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