
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Hugo Miguel Ferreira Abreu

High Availability Architecture
for Cloud Based Databases

Arquitetura de Elevada Disponibilidade
para Bases de Dados na Cloud

November 2019

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Hugo Miguel Ferreira Abreu

High Availability Architecture
for Cloud Based Databases

Arquitetura de Elevada Disponibilidade
para Bases de Dados na Cloud

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Doutor José Orlando Roque Nascimento Pereira
Doutor Fábio André Castanheira Luís Coelho

November 2019

Despacho RT - 31 /2019 - Anexo 3

Declaração a incluir na Tese de Doutoramento (ou equivalente) ou no trabalho de Mestrado

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-SemDerivações
CC BY-ND

https://creativecommons.org/licenses/by-nd/4.0/

A C K N O W L E D G E M E N T S

It has been a long path since the start of this journey, and yet another chapter is closed.
This dissertation is not only possible by my efforts. First of all, I would like to thank all my
advisors, Prof. José Orlando Pereira whose help and advice were of the greatest importance
towards the final work and results. Without his guidance, this wouldn’t be possible. The
commitment, encouragement, and guidance given by my advisor Prof. Fábio André Coelho
were meaningful and extraordinary, providing is uppermost important supervision every
day. Likewise, to Prof. Ana Nunes Alonso whose critical opinions allowed us to move
forward and achieve the goals desired, by helping in every decision. I would also like
to thank for the opportunity to work with this great team, allowing me to grow not only
academically, professionally, but also as a person.

I would also like to thank my working colleagues who had always been there to help and
give friendly advices. Our understanding and hard work led us to this place. I must thank
you all for your support and sympathy.

I would also like to thank my closest friends. They have always been there, helping me
to distance from the problems when needed, refreshing the ideas and giving new visions,
considering life is not exclusively work.

Finally, I would like to dedicate this work, and life achievement to my parents who al-
ways supported me throughout all my academic and, personal life. They strived to help
me follow my passion and, encouraged me to succeed.

Thank you.

This work was partially funded by FCT - Fundação para a Ciência e a Tecnologia, I.P.,
(Portuguese Foundation for Science and Technology) within project UID/EEA/50014/2019

Despacho RT - 31 /2019 - Anexo 4

Declaração a incluir na Tese de Doutoramento (ou equivalente) ou no trabalho de Mestrado

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

R E S U M O

Com a constante expansão de sistemas informáticos nas diferentes áreas de aplicação, a
quantidade de dados que exigem persistência aumenta exponencialmente. Assim, por
forma a tolerar faltas e garantir a disponibilidade de dados, devem ser implementadas
técnicas de replicação.

Atualmente existem várias abordagens e protocolos, tendo diferentes tipos de aplicações
em vista. Existem duas grandes vertentes de protocolos de replicação, protocolos genéricos,
para qualquer serviço, e protocolos específicos destinados a bases de dados. No que toca
a protocolos de replicação genéricos, as principais técnicas existentes, apesar de completa-
mente desenvolvidas e em utilização, têm algumas limitações, nomeadamente: problemas
de performance relativamente a saturação da réplica primária na replicação passiva e o
determinismo necessário associado à replicação ativa. Algumas destas desvantagens são
mitigadas pelos protocolos específicos de base de dados (e.g., com recurso a multi-master)
mas estes protocolos não permitem efetuar uma separação entre a lógica da replicação e
os respetivos dados. Abordagens mais recentes tendem a basear-se em técnicas de repli-
cação com fundamentos em mecanismos distribuídos de logging. Tais mecanismos propor-
cionam alta disponibilidade de dados e tolerância a faltas, permitindo abordagens inovado-
ras baseadas puramente em logs.

Por forma a atenuar as limitações encontradas não só no mecanismo de replicação ativa
e passiva, mas também nas suas derivações, esta dissertação apresenta uma solução de
replicação híbrida baseada em middleware, o SQLware. A grande vantagem desta abor-
dagem baseia-se na divisão entre a camada de replicação e a camada de dados, utilizando
um log distribuído altamente escalável que oferece tolerância a faltas e alta disponibilidade.
O protótipo desenvolvido foi validado com recurso à execução de testes de desempenho,
sendo avaliado em duas infraestruturas diferentes, nomeadamente, um servidor privado
de média gama e um grupo de servidores de computação de alto desempenho. Durante a
avaliação do protótipo, o standard da indústria TPC-C, tipicamente utilizado para avaliar
sistemas de base de dados transacionais, foi utilizado. Os resultados obtidos demonstram
que o SQLware oferece uma aumento de throughput de 150 vezes, comparativamente ao
mecanismo de replicação nativo da base de dados considerada, o PostgreSQL.

Palavras-chave: middleware, replicação, logs, logs distribuídos, bases de dados, repli-
cação híbrida, replicação ativa, rpelicação passiva, tolerância a faltas, alta disponibilidade.

A B S T R A C T

With the constant expansion of computational systems, the amount of data that requires
durability increases exponentially. All data persistence must be replicated in order to pro-
vide high-availability and fault tolerance according to the surrogate application or use-case.

Currently, there are numerous approaches and replication protocols developed support-
ing different use-cases. There are two prominent variations of replication protocols, generic
protocols, and database specific ones. The two main techniques associated with generic
replication protocols are the active and passive replication. Although generic replication
techniques are fully matured and widely used, there are inherent problems associated with
those protocols, namely: performance issues of the primary replica of passive replication
and the determinism required by the active replication. Some of those disadvantages are
mitigated by specific database replication protocols (e.g., using multi-master) but, those
protocols do not allow a separation between logic and data and they can not be decoupled
from the database engine. Moreover, recent strategies consider highly-scalable and fault-
tolerant distributed logging mechanisms, allowing for newer designs based purely on logs
to power replication.

To mitigate the shortcomings found in both active and passive replication mechanisms,
but also in partial variations of these methods, this dissertation presents a hybrid replica-
tion middleware, SQLware. The cornerstone of the approach lies in the decoupling between
the logical replication layer and the data store, together with the use of a highly scalable dis-
tributed log that provides fault-tolerance and high-availability. We validated the prototype
by conducting a benchmarking campaign to evaluate the overall system’s performance un-
der two distinct infrastructures, namely a private medium class server, and a private high
performance computing cluster. Across the evaluation campaign, we considered the TPC-
C benchmark, a widely used benchmark in the evaluation of Online transaction processing
(OLTP) database systems. Results show that SQLware was able to achieve 150 times more
throughput when compared with the native replication mechanism of the underlying data
store considered as baseline, PostgreSQL.

Keywords: middleware, replication, logs, distributed logs, databases, hybrid replication,
active replication, passive replication, fault tolerance, high availability.

C O N T E N T S

1 introduction 1

1.1 Problem 3

1.2 Objectives 4

1.3 Thesis structure 4

2 background 5

2.1 Replication techniques 5

2.1.1 Active Replication 5

2.1.2 Passive Replication 6

2.1.3 Semi-Active Replication 8

2.1.4 Semi-Passive Replication 9

2.1.5 Hybrid Transactional Replication 11

2.2 Database specific replication protocols 12

2.2.1 Conservative execution 12

2.2.2 Optimistic execution 14

2.2.3 Hybrid execution 15

3 middleware-based replication mechanism 17

3.1 Database Replication Systems 17

3.1.1 PostgreSQL Logical Replication 17

3.1.2 Amazon Aurora 20

3.2 Distributed Logs 21

3.2.1 Architecture 22

3.2.2 Log Writers 23

3.2.3 Log Readers 24

3.2.4 Log Streams Replication 25

3.3 Discussion 26

4 sqlware replication middleware 29

4.1 Middleware 29

4.2 Specification 31

4.2.1 Backlog 33

4.2.2 Assumptions 35

4.2.3 Horizontal partitioning 35

4.2.4 Underlying Database Management System 36

4.2.5 Configuration parameters 36

contents vii

5 system analysis and results 39

5.1 Experimental setting 39

5.2 Configurations 41

5.3 Results 43

5.3.1 Single Replica environment 43

5.3.2 High Performance Computing environment 46

5.4 Discussion 48

6 conclusions and future work 50

6.1 Conclusion 50

6.2 Future Work 51

L I S T O F F I G U R E S

Figure 1 Active replication mechanism. 6

Figure 2 Passive replication mechanism. 7

Figure 3 Semi-Active replication mechanism. 8

Figure 4 Semi-Passive replication mechanism. 10

Figure 5 Hybrid transactional replication mechanism. 12

Figure 6 Database conservative replication. 13

Figure 7 Database optimistic PostgresR replication. 14

Figure 8 Database optimistic DBSM replication. 15

Figure 9 PostgreSQL logical replication slots. 18

Figure 10 PostgreSQL synchronous_commit configuration values. 19

Figure 11 Last Add Confirmed Mechanism. 22

Figure 12 Apache BookKeeper log segment allocation. 25

Figure 13 Protocols comparison within a quadrant. 26

Figure 14 Hybrid middleware based replication: Comprehensive view. 30

Figure 15 Hybrid middleware architecture flow. 31

Figure 16 SQLware active replication. 32

Figure 17 SQLware passive replication. 33

Figure 18 Backlog critical architectural points. 34

Figure 19 Single machine benchmarks comparison. 45

Figure 20 High Performance Computing (HPC) benchmarks comparison. 47

L I S T O F TA B L E S

Table 1 SQLware underlying database configuration parameters. 37

Table 2 SQLware underlying database write-set service parameters 37

Table 3 SQLware DistributedLog API configuration. 38

Table 4 SQLware configuration values for the single machine setup. 42

Table 5 SQLware configuration values for the HPC setup. 43

Table 6 PostgreSQL synchronous replication benchmark values. 43

Table 7 PostgreSQL asynchronous replication benchmark values. 44

Table 8 Middleware replication benchmark values. 44

Table 9 PostgreSQL synchronous replication benchmark values on HPC. 46

Table 10 Hybrid replication benchmark values on HPC. 47

A C R O N Y M S

DIVconsensus Consensus with Deferred Initial Values.

ABCAST Atomic Broadcast.
API Application Programming Interface.

DBSM Database State Machine.
DDL Data Definition Language.
DLSN DistributedLog Sequence Number.
DU Deferred-Update.

HPC High Performance Computing.
HTR Hybrid transactional replication.

IaaS Infrastructure as a Service.

JDBC Java Database Connectivity.

LAC LastAddConfirmed.
LAP LastAddPushed.
LSN Log Sequence Number.

ODBC Open Database Connectivity.
OLTP Online transaction processing.

Pub-Sub Publisher-Subscriber.

SaaS Software as a Service.
SM State-Machine.

URI Uniform Resource Identifier.

V-JDBC Virtual Java Database Connectivity.
VCL Volume Complete LSN.
VSCAST View synchronous multicast.

WAL Write-Ahead Log.
WH Warehouse.

1

I N T R O D U C T I O N

The worldwide expansion of the internet lead to a large growth of web clusters and cloud
services that offer Infrastructure as a Service (IaaS). Deploying databases in an IaaS environ-
ment is a reasonable trade-off, enabling companies to focus on their core business instead
of expending resources on computer infrastructure and maintenance, taking advantage of
the pay-as-you-go model.

Statistics collected by Wordpress show that each month there are 74 million new posts
and around 57 million new comments in this platform [27]. Also, reddit users, in November
2018 produced 117 million comments and 14 million submissions [21]. All this data and
information needs to be available at all times to guarantee a good service. Valuable infor-
mation like bank transactions also requires persistence and high availability. Statistical data
gathered by the European Central Bank, states that around 57 billion transactions were pro-
cessed by retail payment systems [13]. Non-cash payments increased 7.9% compared with
the previous year. Electronic payments require processing, verification, and persistence
based on client data, and if that data becomes inconsistent or unavailable, losses can be
extensive.

From a simple social network user to an international bank, entities rely heavily on their
data, thus the importance of replication when it comes to sensitive information. Although
replicating data is simple, maintaining data consistently across all replicas requires correct
and sophisticated protocols.

Distributed databases require replication mechanisms to guarantee persistence, depend-
ability and availability. Those mechanisms are necessary to maintain a coherent state across
all service replicas. Coherence can be achieved through inter-replica communication, ei-
ther actively broadcasting transactions or by propagating already executed write-sets for
backup copies to apply. This ensures that machines continuously remain in the same state
even when a partial system failure occurs. In the presence of (partial) failures, mechanisms
must react to guarantee that data continues accessible, mitigating possible data losses and
inconveniences by having operational replicas continuing to provide the service with co-
herent data. Even though the main focus of replication mechanisms is to provide system
dependability, those same mechanisms can provide load balancing and increase system
performance.

2

Active replication and Passive replication are the main approaches in what regards repli-
cation protocols. Furthermore, derivations of these techniques are actively developed and
used. All these mechanisms have a well-defined set of implementations and there is no
universal solution, as both mechanisms have their advantages and disadvantages.

Active replication uses a state-machine approach, where every replica starts from the
same state and all replicas execute the same sequence of operations. All replicas can receive
requests in this technique yet those requests require ordering beforehand. Consequently,
replicas have to agree on a total order of operations and at the end of each execution the
resulting state is the same throughout the cluster. This replication protocol relies on a
group communication middleware where all replicas must come to an agreement towards
the total-order of the operations, and after the transaction commits, all replicas reply to the
client. The Active replication mechanism lacks concurrency, hence no concurrent transac-
tions touching common data items can execute, as conflicts could occur.

Passive replication adopts the primary-backup method. In this technique the primary
replica handles the request processing. After processing a request, the primary sends the
updates for backup replicas to commit, with no processing required. This means that the
bottleneck is in the primary replica as it processes all requests and handles all replies to
the client. Issuing all requests to a single replica can cause performance issues and primary
failures become visible to clients. Moreover, the primary replica selection is the protocol’s
responsibility, relying on a group membership primitive for the implementation.

As databases are highly concurrent servers, usually with extreme throughput, strict Ser-
vice level Agreements, and transactional semantics, specialized approaches can be imple-
mented in what regards replication protocols. Those protocols tend to be based on primary-
backup techniques, and the main approaches provide a conservative and optimistic execu-
tion, as both have benefits and limitations. These techniques use a multi-master extension
of the primary-backup technique, increasing performance and allowing all replicas to re-
ceive requests. Requests handled by databases are typically bound by the abstraction of a
transaction. A transaction is a unit that represents a change in the database state and, typi-
cally holds a set of operations, providing isolation, consistency and correctness. Moreover,
the transaction atomicity ensures that all operations within a transaction complete entirely
or have no effect whatsoever.

The two main techniques regarding database replication are the optimistic and conserva-
tive execution. Both techniques operate with different execution models, the optimistic ap-
proach generally executes a transaction as soon as it arrives. Once executed, that transaction
write-set is verified and, if it proves to be conflict free with other concurrent transactions
touching the same data items, the transaction can effectively commit, and the changes are
applied. Furthermore, if one operation of the transaction conflicts, the entire transaction
aborts. Otherwise if no conflicting transactions were executed concurrently, the current

1.1. Problem 3

transaction simply commits in all replicas. With coarse grain conflict classes (labels that
define the objects accessed by a transaction) the optimistic approach can lead to high abort
rates. Considering that coarse grain conflict classes are typically represented by the tables
accessed in a transaction, the probability of conflicts is consequently higher. According
to the conservative approach, before execution, the replica sends the conflict classes of a
transaction to other replicas. After verification, if there are no conflicting transactions, the
current transaction is processed with abort-free guarantees. If there are conflicting trans-
actions, the current transaction is sequentially scheduled according to its conflict classes.
This technique leads to a processing performance cap, executing the majority of operations
sequentially when using coarse grain conflict classes, as transactions often access more than
one table at a time.

Database specific replication protocols are usually deployed in database management sys-
tems, making the code hard to maintain and database dependent. Therefore, database repli-
cation protocols could be controlled by a middleware, accomplishing a separation between
the logic and the replication layers. Middleware replication mechanisms are supported by
generic replication approaches, making those protocols database independent, easily main-
tainable and allowing to implement replication with different database vendors without the
need to access proprietary code.

1.1 problem

On the one hand, active replication depends heavily on a total order of the requests, rely-
ing on a group communication middleware to provide such ordering. All replicas on this
approach are state-machine replicas, allowing them to receive and process requests accord-
ingly. Considering that all replicas are state-machines, operations must be deterministic,
being impractical on multi-threaded servers. On the other hand, in the passive replication
approach, the order and execution of requests is determined by the primary replica alone,
while other replicas act as backups, allowing non-deterministic operations. However, as re-
quest handling is the primary replica’s responsibility, it may become the system bottleneck.

A hybrid replication mechanism may provide a balance between both approaches. It
could allow one replica to coordinate requests, dispatching updates to backup replicas,
similarly to the passive protocol. At the same time, it could allow every replica to receive
requests and process them like active replication, creating distinct sets of primary-backup
relationships on a per-request basis. Likewise, making such shift in the replication mech-
anism from a global configuration to a on-request basis would allow the overall system’s
performance to scale, but would induce several challenges, namely on the required assur-
ance of inter-request determinism and a intra-request conflict free execution.

1.2. Objectives 4

1.2 objectives

This work aims at the development of a hybrid replication middleware that ensures strong
consistency and high-availability of the underlying database management system. More-
over, it does not require the database server to have native replication, since data coherence,
fault-tolerant techniques and data replication are handled by the prototype. Therefore, the
middleware applies the generic concept of the replication protocols, enhanced with the key
features from database specific protocols. As a database specific solution, it extends the
base techniques with database requirements, allowing a straightforward integration with
any relational database system, without relying on proprietary software.

This work implements a prototype, details the design and specification. Besides, this the-
sis evaluates extensively the developed solution, aiming to obtain the maximum through-
put without compromising the availability, and ultimately trying to achieve the protocol‘s
bottlenecks.

Machine replication protocols (e.g., active replication, passive replication, and variations)
are addressed throughout this document, alongside with their benefits and limitations.
Also, database specific protocols are described, covering the various approaches and im-
plementations. Consequently, SQLware‘s design, specification and implementation are dis-
cussed, alongside with the technologies used in the implementation, analysis, and bench-
marking.

1.3 thesis structure

This document structure holds 6 chapters, being the first one an introduction to this dis-
sertation, stating the problem, motivation and objectives. In Chapter 2, background and
related work will be extensively described and explained, providing a solid background to
allow a flexible introduction to the solution proposed.

Chapter 3 enables a deep insight into log based replication software, it also introduces
the Apache DistributedLog tool and it’s architecture, ultimately leading to a rich discussion
about the usage of logs in replication mechanisms.

The core solution and architecture are elaborated in Chapter 4, expressing the different
stages of the development, the final system architecture and corresponding implementation.
Each iteration is thoroughly documented since every decision described is significant to
accomplish this dissertation objective.

The analysis of the overall performance and system bottlenecks is outlined in Chapter 5.
The analysis involves different components of the system, namely, hardware, benchmarks,
and configurations. Chapter 6 details the reflection and final conclusion. It discusses future
work and the lessons learned with this thesis.

2

B A C K G R O U N D

2.1 replication techniques

Nowadays there is a comprehensive number of replication techniques developed, that are
deployed as part of fully matured production systems.

General purpose replication techniques make minimal assumptions about the replicated
service. Specifically, they don’t assume a transactional database workload. Moreover, the
various existing approaches have different limitations and performance implications.

2.1.1 Active Replication

The active replication technique, also known as the state-machine approach [23], is based
on different machines executing the same operations, ensuring data consistency and equal
state in all replicas. Therefore, it is possible to process transactions generating high con-
tention.

Implementing this approach requires a client to address a server group. Therefore, the
client requests need to be propagated using an Atomic Broadcast (ABCAST) mechanism, or-
dering messages and ensuring total order delivery, typically transparent to the client [8] [1]
[17]. Implementing active replication state-machines requires three conditions: replica co-
ordination, agreement and order. Replica Coordination ensures that every replica receives
and process the same set of requests. The agreement condition defines that all operational
replicas receive every request issued. The order condition, guarantees that all replicas in
the system receive and execute requests in the same order.

Using the Atomic Broadcast primitive the client issues requests to a server group. Af-
terwards, replicas need to coordinate ensuring that the request executes in all machines in
the same order. After executing a request, all replicas must reply to the client with the
outcome of the operation. This last requisite of the mechanism can become more relaxed,
requiring solely a majority of equal replies from the group, mitigating byzantine faults (not
addressed in this document, the interested reader is keen to consult Schneider [23, p. 6] for
more details).

2.1. Replication techniques 6

Figure 1 depicts the algorithm described, with three replicas and no failures assumed,
presenting the core aspects of the technique.

Server	1

Server	2

Server	3

Client

Execution

Client
Server

Coordination

Atomic
Multicast

Figure 1: Active replication mechanism.

Failures are fully hidden from the client in this mechanism, as all operating replicas
execute client requests and reply back, even in the presence of a (partial) failure. When a
replica crashes there is no need to reissue the request.

Considering that all replicas execute the same set of transactions in the same order, deter-
ministically, and with no concurrency, it is possible to execute irrevocable operations (e.g.,
system calls). Without these guarantees it would not be possible to execute such operations,
since roll-back is not possible.

The biggest disadvantage of active the replication technique is the determinism required.
Deterministic servers are required to boot with the same initial state and execute the same
operations producing the same output. Nonetheless, multi-threading commonly results
in non-determinism, leading this technique towards sequential execution. High-resource
usage is another problem with this mechanism as requests are redundantly processed by
all machines, with no concurrent transactions executing, bringing the processing bottleneck
to one request at a time. The active replication mechanism has a well-defined set of use
cases, mainly, systems handling high contention, irrevocable operations, and schemes that
need to mask failures from clients (i.e., where reissues are too expensive or time-outs cannot
occur). Otherwise, high consumption of resources and the determinism required by this
mechanism might be counter-productive for the whole system.

2.1.2 Passive Replication

This technique is a primary-backup approach [4], where one replica handles the client‘s re-
quests and replies. The primary replica is the one responsible for the request processing,
while the other replicas act as backups. Therefore, the primary replica has a special role in
comparison to the backup ones since it is the only replica that processes requests.

Passive replication depends on a reliable multicast protocol to send the updates pro-
cessed by the primary replica to all backups in the system (e.g., View synchronous multicast

2.1. Replication techniques 7

(VSCAST)). Since backup replicas solely apply updates and not process them, the determin-
ism constraint is not required by this mechanism. The VSCAST protocol ensures that, when
the primary replica sends an update, it is received by all replicas in the system, and in the
same order. Transaction order is set by the primary replica FIFO processing and respective
communication channels, while the delivery guarantees are granted by VSCAST mecha-
nism, enforcing that either all replicas receive the updates or a new view is implemented.
When the primary replica receives the update sent, this implies that all replicas also re-
ceived the message. Otherwise, if the update is not delivered to one replica, neither one
receives it and a new view gets implemented with the operational replicas present in the
group membership, multicasting the update message again. The communication primitive
VSCAST is inserted within the abstraction of group membership, allowing to apply views
with a well-defined set of operational replicas.

The core function of the algorithm described in Figure 2, assumes no failures. There-
fore, clients issue requests to the primary replica, which executes the operation. After a
successful execution, the updates are transmitted to the backup replicas using VSCAST
mechanisms. Following the application of those updates, all the backup replicas must send
their acknowledgment to the primary, that ultimately replies to the client.

Server	1
Primary

Server	2
Backup

Server	3
Backup

Client

Execution

Client

Apply

Agreement	Coordination

View	Synchronous
Multicast

Figure 2: Passive replication mechanism.

If the primary replica experiences a failure before sending the updates to the backup
replicas, the client will get a time-out and must reissue the request to the new primary
server, after learning its identity. The primary server will then process the request again.
In the event of the primary replica failing after sending the update message, when client
reissues the request, it gets an immediate response back because the new primary typically
already applied the updates related to that request.

The Passive replication algorithm in its core allows non-deterministic servers (i.e., multi-
threaded servers) [26]. This is possible as there is one single replica executing transactions
(i.e., primary replica), while other replicas merely apply deterministic updates. This mecha-
nism requires less processing power compared to active replication, considering that backup
replicas are passive machines that apply updates with possibly low resource consumption,

2.1. Replication techniques 8

while primary replica interacts with clients and processes all requests, requiring a large
amount of processing power and being susceptible to saturation.

However, there are some disadvantages, as a transaction might need reissuing in case
of a failure. A reissue can occur if the primary fails before replying to the client. After
timing-out the client must learn the primary replica’s new identity to reissue the requests,
meaning that failures are not masked.

Moreover, passive replication does not allow replicas to execute irrevocable operations.
That is, operations whose effects cannot roll-back (e.g., local system calls) since some of the
backups can fail to apply the updates and the transaction can abort (Agreement Coordina-
tion Phase, Wiesmann et al. [26, p. 3]).

2.1.3 Semi-Active Replication

Semi-active replication protocols focus in mitigating the non-determinism restriction of the
active replication technique [20], extending the algorithm by allowing non-deterministic
operations to execute.

This protocol introduced the terms leader and follower, related to primary-backup approach
to allow non-deterministic operations to execute in the system.

The mechanism executes operations in a similar way as the active technique, where client
requests are sent towards a server group as opposed to a single replica, and the whole
system executes the transactions, replying to the client accordingly.

Server	1
Primary

Server	2
Backup

Server	3
Backup

Client

Execution

Client

Apply

Agreement	Coordination

View	Synchronous
Multicast

Server	
Coordination

Non-deterministic execution

Figure 3: Semi-Active replication mechanism.

The overall execution of a request in the system is illustrated in Figure 3. The main
replication algorithm is detailed in the image, allowing to understand the similarities with
the active replication. Only the non-deterministic execution differs from the base line algo-
rithm.

The semi-active replication mechanism, is very similar to both Active and Passive replica-
tion. When a client issues mixed operations (i.e., request containing both deterministic and

2.1. Replication techniques 9

non-deterministic operations), this algorithm uses the full potential. If an operation con-
taining both deterministic and non-deterministic transactions arrives, servers coordinate
similarly to active replication and, all replicas execute the deterministic operations, waiting
while the non-deterministic ones are executing in the leader replica. Afterwards, using the
VSCAST primitive the updates are multicasted to all replicas and applied by the followers,
replying to the client after the execution of those updates.

For every non-deterministic transaction, the Execution and Agreement Coordination phases
are reproduced, increasing latency and making it the only drawback of the mechanism.

Although there is a considerable disadvantage to this approach, there are also benefits,
namely: abstracting the client from failures and, having a leader to enable the execution of
non-deterministic operations.

This technique also introduces a lower overhead than passive replication, considering
the size of the update messages forwarded to the followers. Since part of the request was
already executed by the followers alongside with the leader, the updates sent to the slaves
are the ones related to the non-deterministic operations within the request, consequently,
being smaller.

2.1.4 Semi-Passive Replication

The semi-passive replication is a variant of passive replication, without requiring a group
membership to agree on a primary replica. This technique uses, as an alternative, a consen-
sus protocol to achieve the goal of electing a primary replica in each round [10].

Semi-passive replication is based on a rotating coordinator paradigm, also used to solve
the consensus problem [6] to decide on an initial value for a request. This technique relies
on Consensus with Deferred Initial Values (DIVconsensus) to choose the primary replica. That
replica gets selected during each round of consensus. In fact, the primary replica is the
coordinator elected which holds the responsibility to process the request.

Consensus is one of distributed system’s fundamental problems, that requires a set of
processes to agree on a decision (e.g., a leader election or the order of received requests
[6]). A consensus protocol must be fault-tolerant and reliable considering that processes
within the set can fail or become unreliable. Even if there is only a suspicion of failure,
the consensus protocol must be capable of obtaining a single consensus result from all the
processes, obtaining a quorum (i.e., the minimum number of votes to achieve a decision)
from processes.

The rotating coordinator paradigm [6] allows two different timers, one aggressive timer
to rotate the server, allowing a fast reaction to any failure and another conservative timer to
effectively exclude the failing server from the group. This mechanism allows a fast reaction
to failures, without the cost of excluding a server if there is an incorrect suspicion. In

2.1. Replication techniques 10

contrast to the passive replication protocol, this approach does not require the client to
know the identity of the primary replica, since requests are sent to all replicas similarly to
active replication, meaning that the protocol abstracts client crashes, considering that all
the replicas send a reply to the client.

Server	1
Primary

Server	2
Backup

Server	3
Backup

Client

Execution

Client

Apply

DIVconsensus

decide
ack

update

Figure 4: Semi-Passive replication mechanism.

The generic implementation of this technique is illustrated in Figure 4, assuming no
failures. The client must send the request to all servers then, the DIVconsensus is solved
electing a coordinator (i.e., the primary server). The primary server, similarly to the passive
replication has to execute the transaction and send the updates to all backup replicas.

Semi-passive mechanism retains some characteristics from passive replication. As such,
in the absence of a failure, only the primary replica processes the requests meaning that
executions do not need to be deterministic, maintaining those advantages from the passive
technique. Those updates are sent using the consensus algorithm during communication,
multicasting the update messages and waiting for the majority of the acknowledgments.
Afterwards, the coordinator decides and sends the decision to backup replicas. As soon as
the decide message arrives, all servers apply the updates and reply to the client.

If the primary server is ever suspected to have experienced a failure, a new round of the
DIVconsensus gets executed, electing a new coordinator that will be the primary server for
that round. After the election, the primary server waits for an estimate message from the
majority of servers, as these messages can contain the initial value that might be used by
the new primary server to avoid processing the requests again. In the worst case scenario,
the new server needs to repeat the processing and reply to the client.

The semi-passive replication allows non-deterministic servers. Therefore, this technique
fully supports multiple threads, and replica failures are hidden from the client. Semi-
passive protocol combines both advantages of active and passive replication, although hav-
ing limitations when the primary server fails, increasing the response time to the client.

2.1. Replication techniques 11

2.1.5 Hybrid Transactional Replication

The Hybrid transactional replication (HTR) [16] mechanism is a protocol that, implements both
active and passive replication, deploying an oracle to perform decisions on the replication
technique to apply. This oracle decides for each transaction, the replication technique em-
ployed, being either a State Machine (i.e., active replication) method or, a Deferred Update
(i.e., passive replication) using a multi-master approach.

The multi-master approach applied to the passive replication mechanism, allows a client
to issue requests to all machines, as opposed to the single primary in passive replication.
With a multi-master approach, any machine that receives requests, processes the operations
within those requests, as others solely apply the updates, showcasing a dynamic primary
replica. This implementation is common in database specific protocols (e.g., Postgres-R),
described in Section 2.2.

This mechanism uses an oracle to make decisions, being tuned with various inputs,
namely, network saturation, system load or the performance of garbage collection. All
data collected is fed to a machine learning algorithm to tune the oracle, allowing conclu-
sions to be assertive and effectively producing decisions about the replication technique to
use when executing a transaction.

The core of the HTR algorithm is the primary-backup technique, extended with a state-
machine approach. When a transaction arrives at a replica, it is fed to the oracle, deciding
whether that transaction gets executed in the State-Machine (SM) mode or Deferred-Update
(DU) mode. Whenever a transaction gets performed in the DU mode, the receiving thread
is responsible for the processing concerning the transaction, raising the commit and then,
waiting for certification from other replicas. The process is different as the SM mode is
chosen. In this method, the transaction gets broadcasted to all replicas and, it must execute
in the main thread of those replicas. Besides executing SM operations, the main thread
also conducts the certification tests for the DU mode updates. The main thread is vital
to guarantee consistency in this mechanism as it ensures that only one SM transaction
can execute at a time and no certifications are performed concurrently, hence delaying the
certification of DU operations until the main thread ends the SM execution.

2.2. Database specific replication protocols 12

Server	1

Server	2

Server	3

Client	1

Execution

Client	1

CertificationClient	2 Client	2

UpdateOracle

SM

DU

Choice

Figure 5: Hybrid transactional replication mechanism.

In what regards the concurrent execution of DU alongside with SM requests, there are
no guarantees that both commit, as they can execute concurrently. Although DU and SM
operations can execute concurrently in different instances, both DU certifications and SM
transactions get executed sequentially.

Figure 5 depicts an abort-free execution of both a DU and SM transaction that is repli-
cated across both machines. As depicted, the DU operation executes concurrently with
the SM one, but is only certified after the SM execution finishes. Moreover, in this pro-
tocol when a transaction executes irrevocable operations, it is executed in the SM mode
exclusively, guaranteeing an abort-free execution.

Since DU operations can execute concurrently with SM transactions, when both conflict,
if the DU operation is certified after the SM execution, the DU operation is aborted.

2.2 database specific replication protocols

Databases benefit from specific replication techniques that allow high throughput and de-
pendability.

In contrast with the prior techniques, database specific protocols have a special focus
on data, as such, the architecture behind these protocols allows a better insight into the
replicated data and their conflicts, as opposed to the generic approaches. Moreover, both
approaches addressed below support their implementation on multi-master passive repli-
cation mechanism with an update-anywhere approach, enabling flexibility and higher com-
putation performance of requests, as required by database systems.

2.2.1 Conservative execution

Conservative execution in a database system is based on conflict classes of transactions.
Those transactions only commit when all replicas confirm that no concurrent requests con-

2.2. Database specific replication protocols 13

flict with each other. Therefore, this protocol guarantees null abort rates as every operation
passes through a verification before the execution.

The conflict-free execution of the protocol is illustrated in Figure 6, where two requests
execute concurrently and, since the transactions have different conflict classes, after verifi-
cation all replicas install updates concurrently has shown in the illustration. Each replica
multicasts the request to all sites in the group. However, only the master site where the
request is issued executes it and, after completion a message is sent with the updates to be
applied.

Server	1

Server	2

Server	3

Client	1

Execution

Client	1
Atomic
Multicast

Classification
Client	2 Client	2

Update

Figure 6: Database conservative replication.

When conflicting operations are detected, both are executed sequentially. The sequential
execution is allowed considering that each site has a queue for conflict classes. Therefore, if
a transaction touches a combination of conflict classes, every site adds the transaction to the
queue of each class, allowing fairness and, executing conflicting transactions sequentially.
If there are operations that eventually do not conflict, they can be executed concurrently
and are applied as such, similarly to the example discussed.

The conflict classes are a method to identify if two transactions conflict with each other.
Before executing a transaction they are labeled according to their set of conflict classes, since
there are different conflict classes with more or less precision.

A coarse grain conflict class is a less precise category that can be as extensive as a full
table. Differently, a fine grain conflict class is a precise one, and is typically defined as
rows or fields. However, fine grain classes are frequently more difficult to achieve. Al-
though the most suitable conflict class is the fine grain one, it is difficult to achieve such
categorization. Accordingly, conservative execution can be performance-wise expensive to
implement, specially with large queries accessing numerous tables and rows.

Therefore, the number of transactions executed sequentially can be a bottleneck to the
system, since it solely depends on the conflict class categorization. A set of fine grain
conflict classes can lead to a high number of operations executing concurrently. However, a
coarse grain leads to a majority of transactions executing sequentially, as the classification
will detect that they touch the same data.

2.2. Database specific replication protocols 14

2.2.2 Optimistic execution

Considering an optimistic execution, all replicas execute concurrent requests independently.
Only after the execution, the write-set or conflict classes of the transaction are sent to the
other replicas to check for conflicts and, if there is a conflict, the transaction is aborted and
retried. Otherwise, the transaction is committed and, successfully replicated.

Executing requests fully optimistically can lead to a high abort rate and, typically those
aborts increase with the number of requests issued. Both mechanisms described in this
section share some features, as both protocols use a multi-master replication approach,
receiving and executing requests without any prior coordination. After execution, there
are two approaches to certify executed transactions and, both approaches diverge in the
implementation of the termination protocol.

2.2.2.1 Postgres-R

In Postgres-R [15], transaction’s read-set is not sent to other replicas. Consequently, only the
executing replica can certify it. When the replica executing the request receives a commit,
it multicasts the write-set and transaction id. As soon as the executing replica finishes
processing prior transactions, it certifies the current one. After the certification process, the
replica either multicasts the updates to other replicas, or aborts the operation.

This behavior is illustrated in Figure 7, where two requests are executing concurrently,
and it is possible to depict Server 3 waiting for the processing of the first transaction on step
2, before certifying next one and broadcast the updates. Meanwhile the Server 1 certifies
the yellow transaction, as there are no transactions issued before on step 1. Once certified,
the Server 3 broadcasts the updates, as illustrated on step 3, since no conflicts occurred on
both requests.

Server	1

Server	2

Server	3

Client	1

Execution

Client	1

Certification
Client	2 Client	2

Update
1 3

2

Figure 7: Database optimistic PostgresR replication.

An abort-free execution is illustrated in Figure 7, and when a conflict is detected by this
termination mechanism, the transaction is aborted and the updates are not applied.

2.2. Database specific replication protocols 15

2.2.2.2 DBSM

The Database State Machine (DBSM) replication protocol [18] handles the certify process
differently from Postgres-R. In this protocol the read-set is also propagated towards other
replicas, so that every instance can certify transactions.

When a commit is issued by a replica, it multicasts to other replicas the id of the trans-
action, the version of the database where the transaction was executed, the write-set, and
read-set. Once the multicasted message reaches other replicas it is orderly processed. Each
replica certifies the transaction by verifying if there is an intersection between the read-set
and write-set of the current transaction with others that have been committed after the
fixed view (or version) of the database. If there is no intersection, the transaction commits
by applying the write-set to the database version multicasted, otherwise the transaction
aborts.

Figure 8 illustrates the execution of two requests considering a DBSM replication ap-
proach. The issued requests execute concurrently and apply the aforementioned termina-
tion protocol. Since the illustrated transactions do not conflict, both commit and, after the
certification, the updates get applied in all replicas, ultimately maintaining a coherent and
replicated state.

Server	1

Server	2

Server	3

Client	1

Execution

Client	1

Client	2 Client	2
Update

Certification

Figure 8: Database optimistic DBSM replication.

Similar to Postgres-R, this Figure illustrates an abort-free execution and, in this termina-
tion protocol if a conflict is detected, the transaction aborts and the response is transmitted
to the client.

2.2.3 Hybrid execution

The hybrid execution technique was developed in Akara [7], where the replication algo-
rithm has its core on a hybrid solution that sits between the conservative and the optimistic
execution. The core objective of this solution is to offer the best of both prior replication tech-

2.2. Database specific replication protocols 16

niques, enforcing a conservative execution to ensure fairness, efficiently manage resources
by using an optimistic execution, and ultimately provide active replication on demand.

In this technique, issued requests are totally ordered and classified prior to any execu-
tion, similarly to the conservative execution. After ordering and classifying the requests,
they are placed into a queue to be processed. Requests selected from the queue are exe-
cuted optimistically. Therefore, transactions might abort due to conflicts with concurrent
transactions.

To select requests for processing an admission control mechanism is deployed. This mech-
anism implements a policy that ensures the execution of n concurrent requests, attempting
to exploit the idleness of the servers, by reducing the contention of the conservative ex-
ecution. The admission control deployed does not allow executing only non-conflicting
transactions, as that would make this technique fully conservative.

After being picked from the queue and, ultimately executed, if the transaction is ready to
commit, its changes are propagated to all other replicas and the transaction commits. How-
ever, if a conflict is detected, the transaction is re-executed conservatively. The conservative
execution ensures a high priority execution of the transactions over any local executing
transactions. This protocol also allows transactions to run actively, hence making possi-
ble not only to replicate transactions but, also to replicate Data Definition Language (DDL)
statements.

3

M I D D L E WA R E - B A S E D R E P L I C AT I O N M E C H A N I S M

3.1 database replication systems

As different replication protocols and techniques exist to fulfill the needs of the applications,
also different software and services offer such implementations as a product. The replica-
tion software can be embedded as part of an operational database or offered as Software as
a Service (SaaS).

These services are in some aspects related to this dissertation purpose, either relying on
the same basis or by using the same principles of replication.

3.1.1 PostgreSQL Logical Replication

The PostgreSQL logical replication is enabled through the usage of a Write-Ahead Log (WAL),
streaming the changes (i.e., write-sets) through the network to as many replicas as config-
ured in the system. A WAL is a persistent log written before any commit operation to
the database and, is typically used for database recovery. PostgreSQL logical replication
mechanism follows a Publisher-Subscriber (Pub-Sub) paradigm, where the publisher is the
primary replica, and subscribers are backup replicas. Committed transactions are written
in the WAL together with a message published to all subscribers containing the updates to
execute. To receive updates, subscribers must connect to replication slots. Those slots are
created by the master to publish the write-sets of the transactions.

Since logical replication provides fine-grained control over both data replication and secu-
rity, replication slots maintain independent logs to the subscribers. When a backup replica
that is too fast applying updates and, another is too slow, the transactions provided to the
slow replica will not be affected by the fast one, since every replica consumes updates from
a different slot as depicted in Figure 9. These slots have different capabilities and, plug-ins
can manipulate slots allowing to retrieve write-sets without configuring any replication.

3.1. Database Replication Systems 18

Primary Backup	2Backup	1

Publisher Subscriber Subscriber

4 5

4 532

Replication	Slot	1

Replication	Slot	2

Figure 9: PostgreSQL logical replication slots.

There are two main variations of logical replication, namely: the synchronous and asyn-
chronous replication. Although both approaches have advantages and disadvantages, only
the synchronous replication is reliable enough, considering that it is the only alternative
that guarantees that data is safely replicated in more than one replica, ensuring availability.

In the asynchronous replication, when the database receives a transaction, the execution
is identical to the single replica approach, the only core difference is that once in durable
storage (i.e., in disk), the transaction is streamed as a write-set to other replicas. That stream
uses the logical replication slots to send the write-sets, as illustrated in Figure 9. With this
replication technique, there are no guarantees that when the client receives a response, the
transaction is already in two different locations (i.e., two copies). Therefore, in contrast to
the synchronous replication, there is a probability that, if a replica fails, an already executed
transaction is lost.

When implementing PostgreSQL native synchronous replication, it is possible to set the
dependability required. This configuration can offer different guarantees concerning repli-
cation, depending on the value set. There are five possible values to configure the native
replication, namely: on, remote_apply, remote_write, local and off.

3.1. Database Replication Systems 19

COMMIT

WAL

WAL	Sender WAL	Receiver

Master Slave

WAL

Off

Local On

remote_apply

remote_write

Database

Engine Engine

Database

Figure 10: PostgreSQL synchronous_commit configuration values.

As illustrated in Figure 10, different configurations offer different tolerance to failures,
and consequently, different throughput values. The default and, most advantageous value
is on, ensuring that, when the master replica receives a transaction, it will not reply to
the client until the backup replica has safely written that transaction to durable storage.
Therefore, if a failure happens, the transaction will not be lost. However, when the syn-
chronous_commit field is set to off, the master replica will not wait until the transaction
is safely written on WAL, providing no guarantees whatsoever that the slave will receive
the write-sets if a failure happens. Even if the client retrieves a successful response, the
transaction might not be replicated onto the slave replica.

Additionally, transitional values are also available, providing distinct features. The lo-
cal value guarantees that the transaction will be written in the master replica’s WAL (i.e.,
durable storage), but gives no guarantee whatsoever regarding persistency onto the slave
one.

Both remote_apply and remote_write are values that influence operations on the backup
replica. As depicted in Figure 10, the remote_write value will force the master replica to
wait until updates are written to the operating system on the backup replica but, not nec-
essarily in the disk and, the remote_apply value waits for the confirmation that transactions
are effectively applied in the backup database, causing the transaction to be read-ready on
the backup machine. Typically, the remote_apply is the safest value, since when the client
receives a reply it means that the transaction can be observed in the backup replica. How-
ever, those guarantees are not necessary, since the on value already persists the operations
on the backup‘s durable storage.

3.1. Database Replication Systems 20

3.1.2 Amazon Aurora

The Amazon Aurora database is a log-based mechanism allowing high throughput, re-
silience, and scalability [25]. This technological advance in Amazon Aurora began with
the identification of fundamental points that influenced the system bottlenecks. The de-
veloping team concluded that both the caching and logging system of current relational
databases are outdated. Therefore, they focused on both layers, having as a developing
core the MySQL Community Database Engine.

In Amazon Aurora, it is stated that the log is the database, relying on a high-throughput log
to maintain a coherent state between replicas. In contrast to a typical database that writes
full pages to durable storage, Amazon Aurora solely writes redo logs to storage since they
have a smaller size. This approach is effectively a significant and thoughtful improvement
to the current solutions since a typical relational database only requires WAL logs to be
written in durable storage.

The setup of this approach is defined as a primary-backup solution, where the primary
replica only writes the log records to the storage service, alongside with metadata to other
instances. Accordingly, Amazon Aurora relies on the redo-logs written on disk, more specif-
ically the deltas, instead of full pages. This allows to produce a database after-image, using
the before-image by applying those deltas. Consequently, this means that Amazon Aurora
replicas use the redo-log written to durable storage to apply the changes to their buffer
caches, maintaining a coherent state across the cluster.

The redo-log is written to a fleet of storage nodes and, in order to tolerate failures, a
quorum based protocol is used. A quorum is a minimum number of votes that enables
the verification that a majority of replicas have written the redo-log. Moreover, different
quorum configurations can be used, depending on the fault-tolerant guarantees needed
[25].

To guarantee the order in the log, an Log Sequence Number (LSN) is used as a monotonic
value that keeps increasing and, additionally, a Volume Complete LSN (VCL) is also applied,
denoting the highest sequence number to which the database can guarantee availability.
When committing a transaction, a worker thread records the commit LSN. As the VCL
advances, the database identifies the transactions waiting to be committed and uses a dedi-
cated thread to reply to the client. Effectively, when writing the deltas to the volume fleet,
there is the guarantee of a fully distributed write. Giving the same guarantee than the on
parameter used in the PostgreSQL native replication, depending on the setup.

As detailed Amazon Aurora database relies on a log to achieve high throughput and
dependability across different regions. Moreover, in Amazon Aurora, all the replication
stack is based on services offered by Amazon itself. Therefore, this database is offered as a
final production solution and, it is a part of their portfolio, available as a SaaS.

3.2. Distributed Logs 21

3.2 distributed logs

Distributed logs are an efficient and high-performance solution to enable replication and
replica communication. Distributed logs remain spread throughout different machines,
maintaining ordered events and messages, ultimately offering a compelling abstraction of
the whole distribution.

One of the most high-performance tools that manage distributed logs enabling stream
processing, high-availability, strong coherence, and durability is Apache’s DistributedLog
API, supported by their log segment store, Apache BookKeeper.

The Apache DistributedLog is a Application Programming Interface (API) provided by
Apache BookKeper [2], offering distributed logs with replication across different sites. Each
site implements one replica of BookKeeper cluster (i.e., a bookie), offering durability, repli-
cation and strong consistency.

The DistributedLog acts as a high-level API to BookKeeper log stores and, therefore,
BookKeeper is essential to provide the log storage and fault-tolerant mechanisms.

From a top-down point of view, Apache BookKeeper offers log stores (i.e., ledgers) stored
in individual servers called bookies. A bookie is an individual BookKeeper storage server.
Bookie servers maintain fragments of ledgers, not entire ledgers, providing more perfor-
mance, both to reads and writes. When entries are written to a ledger, they are split across
an ensemble (i.e., to a sub-group of bookies) rather than to all bookies.

To guarantee strong consistency, when adding entries to a ledger, BookKeeper relies on
a two-phase commit variation, the LastAddConfirmed (LAC). This mechanism allows writ-
ers to push a batch of entries incrementing a counter designated as LastAddPushed (LAP),
receiving acknowledgments in order when they are effectively committed, increasing the
LAC pointer.

The BookKeepers metadata storage and handling are delegated to Apache ZooKeeper [3],
entrusting the responsibility for storing information related to ledgers such as, availability,
state and location. Apache ZooKeeper is able to maintain correct and updated metadata
regarding the bookie’s availability using ephemeral znodes. The use of these nodes ensures
that they only exist as long as the session that created them is active, allowing availability
tracking. Similar to Apache BookKeeper ledgers, the metadata stored in ZooKeeper is
handled by a quorum of replicated servers, maintaining the metadata available even in the
event of failures.

Overall, Apache BookKeeper and Apache ZooKeeper are designed to be reliable and re-
silient to failures, consequently the DistributedLog API also benefits from those guarantees.

3.2. Distributed Logs 22

3.2.1 Architecture

The DistributedLog core architecture focuses on the implementation of log streams. Those
streams are an ordered and immutable sequence of log records, written into log seg-
ments. Although applications get a continuous sequence of log records from a stream,
those records are physically stored as multiple segments that have the same replication
configuration, being allocated, distributed and stored in a log segment store.

This architecture achieves consistency with the employment of bookkeeper’s LAC proto-
col that is a variation of the two-phase commit. The architecture relies on that protocol to
build its data pipeline. When a writer appends an entry to the log, a LAP pointer is used.
This pointer is the entry id of the last batched entry pushed to the log segment store. Log
entries can be written out of order but, acknowledgments are required to be performed
by the entry id order, indicating that LAC is the entry id of the last record acknowledged.
Both pointers described help guarantee data consistency, similar to the two-phase-commit
protocol, ensuring that solely committed and verified data is visible to readers. Therefore,
to achieve those guarantees, entries between LAC and LAP are not visible to readers, as it
is unacknowledged data. Exclusive data from LAC pointer backward is visible to readers
since it is already verified and committed as illustrated in Figure 11.

Reader

9

Writer

Reader

0 1 2 3 4 10 11 12

ACK
Add	Entry

LastAdd
Confirmed

LastAdd
Pushed

Figure 11: Last Add Confirmed Mechanism.

Although the LAC is a useful mechanism to guarantee consistency across readers, it is
not suitable to guarantee correctness when the writing ownership of a log stream changes.
For that reason, a fencing mechanism is built into bookkeeper to achieve data consistency
across multiple writers when network partitions occur. By fencing data in the log seg-

3.2. Distributed Logs 23

ment store and conditionally updating log segment metadata (using a versioned set) in the
metadata store, network partitions and failures are tolerated. When a log stream changes
ownership, the new client fences the log segment to guarantee that no more records are
pushed, consequently, the unreliable old owner (e.g., network partitioned) no longer can
write to the log. Ultimately, the new log owner reclaims the log segment and continues to
push records to the log, considering that it currently holds the ownership.

Alongside with the fencing mechanism, an ownership tracking is used to manage the log
stream control, opposed to the typical leader election. This ownership tracking guarantees
correctness by using zookeeper’s ephemeral znodes to track the ownership of log streams,
as zookeeper already provides sessions that can be used to track leases for failure detection.

The DistributedLog API uses two roles in its architecture, writers, and readers. These
parts hold the responsibility to push and read records from the log, respectively. The
writers and readers implementations are described in the following sections 3.2.2 and 3.2.3.

3.2.2 Log Writers

The DistributedLog has two implementations of writers. The first alternative is a fat client
that utilizes a direct API to interact with bookkeeper and zookeeper. By using this client,
write locks and streams ownership are handled by the application. Therefore, this method
is recommended to applications that require write-ordering across different replicas and,
applications that already deploy an ownership management system.

The second approach is the use of a thin client, relying on a stateless write-proxy. The
write-proxy allows sequencing writes from many clients, managing the ownership of log
streams, forwarding writes requests to storage and, handling load balancing alongside with
fail-over. However, write-proxies only guarantee read-ordering.

The thin client is the approach used, considering that developing a distributed lock mech-
anism would be too expensive. Therefore, as the development aims to build a multi-master
protocol with high throughput, the thin client and, write-proxies is the most suitable alter-
native.

3.2.2.1 Write-proxies

A write-proxy is a deployed server that accepts fan-in requests from publishers and writes
those requests to the streams. A write-proxy manages streams, redirects requests and,
tracks ownership changes. Typically write-proxies are high-throughput servers that can be
deployed anywhere in the world and, as many as possible. Those write-proxies maintain
a membership system, allowing them to redirect requests and receive notifications when
membership changes. Therefore, a write-proxy can take the ownership of a log stream
when some other fails, using the aforementioned fencing mechanism. Moreover, a deter-

3.2. Distributed Logs 24

ministic routing algorithm allows multiple clients to interact with the other write-proxies
when the current stream owner proxy is unavailable.

The write-proxy membership is maintained by the Apache ZooKeeper, similarly to book-
ies. Consequently, it can provide another layer of fault-tolerance to the whole system de-
sign, maintaining the access to log streams always available considering that the group is
self-managed and handles changes in the ownership when failures and network partitions
occur.

3.2.3 Log Readers

In what concerns the readers implementation in the architecture, considering that they
merely read committed records and act as followers, read-proxies do not have to track
ownership. Moreover, to route readers to the respective read-proxies, a consistent hashing
routing mechanism is deployed.

To be able to read records from the logs, readers have to position a pointer based on
either the DistributedLog Sequence Number (DLSN) or Transaction ID. These pointers are
used by the reader to retrieve records continuously until reaching the end of the log. When
the reader has caught up with the writer, it waits for notifications regarding new records.
Readers can catch up with the writer by reading LAC records.

To read specific entries from the log and, ensuring low latency even in the presence of
failures, a speculative read operation is used. This operation consists of sending a read
request to the first replica and, if the client does not obtain a response within a speculative
time-out (i.e., before experiencing an actual time-out), it sends another read request to the
second replica, promptly waiting for both responses (either the first or the second response).
This process continues until it receives a valid reply. Moreover, if no response is received,
the client raises a time-out.

A combination of both operations allows the reading of the next available entry in the log
segment. In this operation, a client sends a long poll read request along with the next read
entry id. If the log segment store already owns the committed entry, immediately returns
with the latest LAC, alongside with the requested entry. Otherwise, it waits for the LAC to
reach the requested entry id and sends the response back with the requested entry.

The log readers implementation enables the recovery mechanism of the hybrid middle-
ware. When a replica requires recovery from a crash, it can open the log stream at a given
DLSN or Transaction ID, and execute the missing transactions. Moreover, when a (partial)
system failure occurs, operational replicas can re-open the log stream that is the failing
replica‘s responsibility, continuing the execution of transactions. This mechanism is devel-
oped concurrently, being in the scope of the same project but, outside the scope of this
thesis.

3.2. Distributed Logs 25

3.2.4 Log Streams Replication

As previously mentioned, the Apache BookKeeper alongside with the DistributedLog API
provides fault tolerance guarantees, durable storage and, high throughput. Considering
that the developed middleware relies those guarantees, it is imperative to understand how
the replication protocol works.

1

1

Stream
X

Stream
Y

Bookie Bookie Bookie

1 2 3

1 2 3

2

3

1

2

2

3

1

2

3

3

Bookie

1

2

3

Bookie

1

2

3

Figure 12: Apache BookKeeper log segment allocation.

Figure 12 denotes the Apache BookKeeper’s allocation of log segments. It is important to
note that, a log stream is split into various log segments, and these segments are respectively
replicated through different bookies. The streams distribution into multiple log segments
allows an uniform allocation across multiple storage nodes for load balancing. Moreover,
this distribution improves the overall system balancing in both read and write requests.

As depicted in the Figure 12, a five nodes ensemble is adopted to illustrate the load
balancing. With two streams split into three segments, it is conceivable to illustrate the
balancing within the bookie cluster. Expressed above is a three write quorum ensemble
with five replicas, denoting that a segment must be written in three copies. Moreover, the
Apache BookKeeper will employ a judicious placement to improve the throughput, read
performance, and avoid the saturation of bookies. Unmistakably, with three nodes, the
bookie segment allocation is trivial to picture since all segments are written in every node.

Under a more technological specific focus, the replication relies on a rack-aware place-
ment policy. This policy guarantees that all replicas maintaining the same log segment
are allocated in different racks, ensuring network fault-tolerance. Moreover, in addition to
the rack-aware policy, a region-aware placement policy for a global replicated log is also

3.3. Discussion 26

available. This placement policy ensures that the same log segment is allocated in multiple
data-centres. Therefore, it requires acknowledgments of a majority of those data-centres
spread replicas. The acknowledgment in this policy requires a parameter that ensures that
the quorum covers at least a minimum of regions to guarantee that the system is kept
operational without loss of availability.

Ultimately, this policy can be used in conjunction with the rack-aware policy to distribute
data uniformly across regions, within the same region and across different racks, providing
high-availability and resilience.

3.3 discussion

Database replication protocols are moving towards a high level approach in what regards
data replication. Protocols are maturing to have more abstraction and enhance data in-
dependence, without compromising neither availability nor data coherence. Moreover, an
immutable sequence of log messages can help achieve such purpose, offering both perfor-
mance, availability, correctness and high-level abstraction of replication.

Figure 13: Protocols comparison within a quadrant.

Figure 13 enables an insight of where all the protocols and techniques fit into, in a quad-
rant field plot representation. Both axis characterize important features, namely: availabil-

3.3. Discussion 27

ity and server coordination, providing insight into two important properties of replication
protocols. Furthermore, the generic replication techniques are arranged in the quadrants
according to their compliance with the features described in the axis.

As observed, both active and semi-active replication protocols rely heavily on server
coordination to guarantee high availability. With prior server coordination, both protocols
ensure that no service disruption nor time-outs occur in the presence of failures. On the
opposite side of the system, the passive replication protocol is illustrated. This protocol
does not depend on any server coordination but lacks availability. Consequently, when a
failure occurs in the primary replica, the client suffers a time-out and, there is an overhead
to select a new primary replica (i.e., execute a leader election).

Therefore, passive replication can experience performance issues on the primary replica,
and the active replication has the drawback of the determinism required in the whole sys-
tem. Also, semi-active and semi-passive replication have limitations of their own. Some of
those limitations are mitigated by database replication protocols (e.g., using multi-master).
However, database replication protocols do not enable a simple separation between replica-
tion logic and data, denoting a complex implementation and maintenance.

The second quadrant of the system is a perfect position, as there is availability and lim-
ited server coordination to achieve it. As illustrated in Figure 13, there are two protocols
that fulfill both features, offering high-availability with limited server coordination. Semi-
passive replication relies on the consensus protocol to achieve such a position, not requiring
strict server coordination, yet enabling failure abstraction. Moreover, the HTR protocol also
surpasses those limitations with the usage of an oracle and, a multi-master approach.

As depicted, there is space to endeavor high availability without relying on server coordi-
nation since semi-passive replication does not implement a multi-master approach. There-
fore, the aim is to develop a hybrid middleware replication protocol with database-specific
insights, without being tightly merged with the data. Both replication services described
in this chapter have clear limitations. As of PostgreSQL Native Replication, the most strict
limitation is the required usage of the data source. Therefore, the replication service can
only be used within the PostgreSQL database.

Differently, Amazon Aurora is similar to the proposed hybrid middleware solution, as
it allows the integration with different data sources, namely: MySQL and PostgreSQL, but
not both concurrently. However, it is platform dependent, being offered as a SaaS. Besides,
Amazon Aurora can denote complex code maintenance, given that the implementation is
effectively built inside the database code base. Therefore, although it allows the usage of
both MySQL and PostgreSQL, the protocol is tightly merged to those databases code.

The development of a novel hybrid middleware replication protocol can rely heavily on a
distributed log, increasing throughput without compromising availability and correctness.

3.3. Discussion 28

Moreover, the Apache DistributedLog API is a core dependency of such novel algorithm,
enabling replication with a high-level abstraction of data.

A hybrid replication middleware aims to be perceived as a replication protocol while
drawing the benefits of database-specific implementations. The protocol enables replication
through an autonomous protocol that is agnostic of the underlying database. It allows easy
maintenance and configuration, since the purpose is to detach the replication from the data,
yet maintaining the knowledge of write-sets and database transactions.

4

S Q LWA R E R E P L I C AT I O N M I D D L E WA R E

Distributed Logging mechanisms allow the growth of novel replication techniques and
protocols, increasing the overall throughput and availability. Different replication protocols
that rely on logging mechanisms manifest constraints and code complexity.

SQLware surpasses those shortcomings by relying on Apache DistributedLog and its
hybrid middleware design, increasing throughput while maintaining high-availability, data
consistency, and database independence.

The proposed replication system is implemented as a middleware layer, enabling a set of
configurable criteria for tuning purposes. Moreover, in addition to the hybrid replication
mechanism, the configurations provided allow to adjust the SQLware to act as a fully active
or a fully passive replication mechanism.

SQLware provides two implementations, namely: a standard V-JDBC middleware, easy
to use, fully configurable, and a high-performance direct API, for write-intensive tasks that
do not require additional features.

4.1 middleware

The most established forms of database specific middleware interfaces are the Open Database
Connectivity (ODBC) and Java Database Connectivity (JDBC). These interfaces enable develop-
ers to write database agnostic code, and use that code with any underlying data source.
Therefore, when changing the data source of the architecture, it is only necessary to recon-
figure the system regarding the connectivity.

SQLware is developed in Java and it is based on the Virtual Java Database Connectivity
(V-JDBC). This tool is an interface that mimics the JDBC, offering all the core functionalities.
Since the V-JDBC is effectively JDBC compliant, it can replace the default package of the
underlying database, still allowing the usage of all the available functionalities. Moreover,
it is possible to change the code of this tool, considering that it is an open-source code base.

V-JDBC is split into two components, the client, and the servlet that interacts directly
with the database’s default JDBC. Both systems communicate through the network, and
stand in between the client and the underlying database. SQLware aims to offer the same

4.1. Middleware 30

layer of abstraction and, consequently, it incorporates within the V-JDBC code base to offer
a JDBC compliant interface to users.

Apache BookKeeper

Client
Application

Client
Application

Client
Application

Client
Application

MWMW MW MW

MW

DBMS

MW

DBMS

Write

Proxy

Write

Proxy

R
e
q
u
e
s
t
s

R
e
q
u
e
s
t
s

W
r
i
t
e
-
s
e
t
s

W
r
i
t
e
-
s
e
t
s

Log	1

Log	2

Log	

Write-sets

Figure 14: Hybrid middleware based replication: Comprehensive view.

The SQLware‘s V-JDBC prototype offers all core database functionalities, namely, the exe-
cution of generic queries. Therefore, SQLware can be seamlessly integrated into any system
that uses JDBC. Moreover, SQLware V-JDBC‘s bird‘s eye view is depicted in Figure 14, of-
fering a client interface and using a servlet to communicate with the underlying database
default JDBC.

As illustrated in Figure 14, part of the middleware lives side-by-side with the database.
This segment is the middleware’s servlet that communicates directly with the database
JDBC. Accordingly, if the database fails, the middleware service is assumed to fail as well,
since the deploy of the servlet is accomplished alongside with the database. The mid-
dleware servlet is multi-threaded to endeavor high concurrency and solid performance,
striving to avoid being the system bottleneck.

The middleware’s portion of the system that lies on the client is provided as an inter-
face that allows the seamless execution of generic queries. The middleware delegates the
persistency to the write-proxies provided by the Apache DistributedLog. Moreover, the
write-proxies guarantee a distributed write into durable storage, and the servlet is noti-

4.2. Specification 31

fied ensuring the query execution in the underlying relational database, writing back the
write-sets to the durable and fault-tolerant storage.

Furthermore, the middleware assumes all the guarantees given by the Apache Book-
Keeper and DistributedLog API, described in Section 3.2.

4.2 specification

A multi-master scalable prototype is fully developed, improving performance and depend-
ability. SQLware hybrid approach specification relies on a lazy approach, eventually execut-
ing the transactions, guaranteeing high-availability, high-throughput and data consistency.

Server	1

Server	2

Server	3

Apache
DistributedLog

Update

Write

Proxy

Client

Client

Execution

Write

ProxyWrite

Proxy

Write

ProxyWrite

ProxyWrite

Proxy

Figure 15: Hybrid middleware architecture flow.

Figure 15 depicts the multi-master specification. In this specification, all the clients must
contact the Apache BookKeeper cluster through the DistributedLog API, using the deployed
write-proxies, either by the V-JDBC middleware or the high-performance API provided.
Clients contact a set of write-proxies (deploying as many as needed and, scattered through-
out the globe as necessary), whose main features are the provision of fault-tolerance guar-
antees and manage fan-in writes from publishers.

Once the transactions are reliably persisted in durable storage, the write-proxies reply to
the client. When the transaction is in the log stream, it is safe to reply to the client, since
that transaction is available in a dependable storage, as it will be eventually executed by
one of the database replicas.

As depicted in Figure 15, two clients can issue requests with different conflict classes,
denoting the possibility that two replicas may execute those requests concurrently. Like-
wise, considering that both transactions have different conflict classes, their write-sets are
conflict-free, and can be applied concurrently, increasing the overall system performance.

4.2. Specification 32

After the execution of a transaction, the write-sets are obtained using the database API and
sent to another log stream. Other replicas apply those write-sets, maintaining a coherent
state in the whole cluster.

In the event of a failure, the pending executions will be handled by other operating repli-
cas, given that all machines in the system have access to all log streams and, consequently,
no transaction is lost. Moreover, the designed system guarantees that the transaction is
eventually executed as the DistributedLog API provides a read-ahead system, allowing to
catch up with the log stream records. Such guarantees allow a multi-master system where
all transactions are safely written on the log’s durable storage, and executed by one of the
many replicas in the system.

Besides a hybrid replication model, SQLware allows different configurations. Those con-
figurations can shift the core specification to behave as a fully active technique or a fully
passive one.

To accomplish an active replication technique with SQLware, all servlets are configured
to open all available log streams, delegating the delivery and order of operations to the
logging mechanism. The provision of strong consistency required by active replication
requires a totally ordered set of transactions, provided by the logging mechanism and, to
push records into the log stream, a log API is employed, either via the direct API or via
V-JDBC.

Server	1

Server	2

Server	3

Execution

Client

Apache
DistributedLog

Client
Write

ProxyWrite

ProxyWrite

Proxy

Figure 16: SQLware active replication.

Following the write of a new record in the log, all replicas receive a notification with that
same record containing the transactions. Every transaction is assumed to commit as all have
been ordered and execute sequentially. As of this implementation, delivery guarantees are
not considered. Additionally, after completing the operation, the replica where the requests
were delivered must reply to the client, as depicted in Figure 16.

The SQLware‘s passive replication technique deploys a single primary replica that opens
all available logs. Therefore, only one replica processes requests, while backup replicas

4.2. Specification 33

apply updates received through the middleware, those updates are sent through another
log stream that are opened by all backup replicas.

Server	1

Server	2

Server	3

Execution

Client

Apache
DistributedLog

Update

Write

ProxyWrite

ProxyWrite

Proxy

Write

ProxyWrite

ProxyWrite

Proxy

Figure 17: SQLware passive replication.

This mechanism requires the client to issue requests to the log through the middleware.
Operations contained in the request are performed and, after commit, the backup replicas
receive the deterministic updates. The middleware obtains the updates from the write-
set service provided by the operational database. Write-sets are sent through the write-
proxies to the log streams. When the records are persisted, all backup replicas receive a
notification alongside with the record containing the updates to execute, as illustrated in
Figure 17. Moreover, considering that this approach is merely a configurable scenario and,
not the main technique, the primary replica failure is not considered since a leader election
mechanism is not deployed.

4.2.1 Backlog

Backlog typically refers to an amount of work or processing, that is already issued, but not
yet executed. Therefore, backlog and replica lag in this approach is expected, considering
that, write-sets are sent through the network to other replicas. The concept of a backlog
in this situation is associated with the number of transactions present on the log that are
waiting for execution. However, it is also used to describe the number of write-sets waiting
to be applied by other replicas. The first backlog is referred to as the requests backlog
and, the second as write-sets backlog. Both backlogs are depicted in Figure 18, denoting
all the critical points where requests and write-sets backlog can occur, specifically on the
SQLware‘s hybrid configuration.

4.2. Specification 34

Server	1

Server	2

Server	3

Apache
DistributedLog

Update

Write

Proxy
High	throughput

Client

High	throughput

Client

Execution

Write

ProxyWrite

Proxy

Backlog Backlog

Backlog

Backlog

Write

ProxyWrite

ProxyWrite

Proxy

Figure 18: Backlog critical architectural points.

The backlog can get longer following a large batch of executions, as it normally happens
when running benchmarks. The request backlog can get larger when the issued requests
have higher throughput than the database. Considering that the database is concurrently
processing requests, parsing write-sets and, applying write-sets, occasionally this type of
backlog can happen, particularly when the underlying database is overwhelmed or resource
limited.

As of write-sets, there are two ways from which the backlog can grow, either the database
is limited by the WAL parsing performance or, similar to the requests backlog, the database
is limited performance-wise. The first write-set backlog can occur by having too many con-
nections executing concurrently or, if the write-sets are too big, occupy too many resources
applying changes. Therefore, enabling the write-sets to grow on the Log. On the other
hand, the second type of write-set backlog can happen if the database API considered to
obtain write-sets is too slow. Likewise, the backlog can become larger even before being
sent to the log streams, denoting that the write-sets backlog is within the database, and
not in the log streams. Therefore, in this case, the database becomes a bottleneck since it
is too slow performing the parsing, and returning it to the middleware. Accordingly, a
configuration file is available so that users can configure the number of lines read from the
database write-sets, trying to control or avoid this bottleneck.

4.2. Specification 35

4.2.2 Assumptions

The implementation of the middleware is supported by two necessary assumptions, allow-
ing a multi-master approach and enabling a core functionality of the protocol, the write-set
broadcast.

• Data partitions

The first assumption is that the dataset can be partitioned, denoting that conflict
classes can be split and assigned to different replicas. Consequently, transactions
executed in different replicas are performed concurrently, since it is possible to ac-
quire locks for known conflict classes. The partitioning of the dataset is known as
horizontal partitioning and, it is a common practice in highly distributed databases.

It is important to notice that, if such assumption is not possible, this solution can
still be applied since it is possible to configure the middleware to act as a fully ac-
tive or, a fully passive protocol. Moreover, by configuring the SQLware to serve such
techniques, there are performance bottlenecks considering that there is no load bal-
ancing. Although such a shift might slow down the solution, it is still feasible since
the prototype induces a low impact on performance.

• Write-sets retrieval service

The second assumption is necessary to enable the middleware to send and apply
write-sets. It is expected that the underlying database provides one of two services.
Either it provides one service to obtain write-sets in the form of deterministic queries,
allowing to apply them in remote sites effortlessly or, one bundled service to obtain
write-sets, in whatever shape or form, alongside with another to interpret and apply
such updates.

4.2.3 Horizontal partitioning

Horizontal partitioning allows the distribution of data into subsets, allocating those subsets
to different nodes, areas, devices and files. Horizontal partitioning in distributed databases
has been used for years and, the data partitioning feasibility can be defined probabilistically
[5]. Acknowledging that it is mathematically possible to determine the data partition, the
developed solution assumes a dataset distribution, allowing to balance the load through
different replicas, and increasing the system performance overall.

Despite the theoretical base of the horizontal partitioning, the implementation in this
solution relies on sharding only to manage load balancing. Moreover, the system main-
tains all replicas with the complete database, as detailed in the architecture. Accordingly,
the partitioning solely occurs when issuing, and while executing requests. Following the

4.2. Specification 36

execution, databases respectively send the updates to the other machines, maintaining a
coherent state in the whole cluster.

4.2.4 Underlying Database Management System

The middleware is built around a standard interface that enables clients and operational
databases to connect. Therefore, a set of available configurations allow the user to change
the underlying database. Moreover, the integration of the middleware with other databases
depends on a interface, enabling the database development community to apply their so-
lutions. The implementation depends on two main classes, a DBEngine and a Log. Both
interfaces need to be developed for each database, since there is no universal solution to
obtain write-sets from databases, acting as a driver.

Virtually every database has a WAL decoding API, allowing to obtain write-sets. Consid-
ering that those APIs change from one database to another, to enable the implementation
and development of this solution, the PostgreSQL database [19] is chosen for its flexibility,
and write-ahead log decoding features. Although those decoding features exist in differ-
ent databases, PostgreSQL community had already developed plug-ins and open-source
tools to enable different encodings for write-sets, empowering an extensive selection for
write-sets execution and serializing characteristics.

For the implementation of this middleware, the native logical replication is replaced by
a plug-in [9], manipulating the logical replication mechanism to achieve an output mode.
Therefore, instead of having subscribers connected to PostgreSQL replication slots, these
slots are manipulated by the plug-in to return the WAL deterministic queries in a result-
set. Once configured, the plug-in enables the middleware to explicitly request write-sets,
enabling the broadcast of those updates to backups, hence not requiring any native replica-
tion.

4.2.5 Configuration parameters

The most relevant configuration regarding this solution is the underlying database config-
uration. As a middleware solution, the underlying data source can be freely configurable,
from the Driver used, to the number of connections available in the provided connection
pool. That connection pool is used by write-set readers to apply write-sets of other replicas.
Therefore, the more connections, the faster the treatment of those updates.

4.2. Specification 37

Configuration Default Description
db.driver org.postgresql.Driver Database JDBC driver
db.uri jdbc:postgresql://localhost:5432/tpcc Database location
db.user postgres Database username
db.password 123456789 Database password
db.pool 8 Database connection pool
db.engine.class PostgreSQLEngine Path to class of engine
db.log.class PostgreSQLLog Path to class of log

Table 1: SQLware underlying database configuration parameters.

Table 1, depicts the configurable parameters concerning the underlying database con-
nection and log class. It is possible to set up every component of the connection. Both
the parameters db.engine.class and db.log.class are used to load the implementation of those
classes. The provided classes, log, and engine are loaded using the java reflection feature
with dynamic class loading [14]. By default, the PostgreSQL classes are already available,
since it is the database adopted to prototype the solution.

Configuration Default Description
dlog.reader.numThreads 8 Number of thread to apply updates
db.writeset.sharding false Whether it is possible to shard data
db.writeset.nReaders 1 Number of database write-set readers
db.writeset.nTransactions 1000 Number changes obtained from the database log
db.writeset.delay 0 Delay between write-set reads
db.writeset.timeout 30 Time-out when writing write-sets to Log
db.writeset.bulk false Whether to bulk writes for Log

Table 2: SQLware underlying database write-set service parameters

Table 2 depicts the parameters with the highest impact on system’s performance, either
increasing it or restricting it. One of these parameters (dlog.reader.numThreads) allow setting
the number of threads that apply write-sets from other machines. However, thread con-
currency is ultimately bound by the number of connections available in the pool. It is also
possible to configure the partition of write-sets, and how many concurrent threads are used
to obtain those write-sets, ultimately writing them to the log.

Another significant parameter is the number of lines retrieved from the write-set socket
(db.writeset.nTransactions). This parameter can affect performance since by reading too many
lines, a large result-set will have to be processed by the database, delaying the response. If a
small number of lines is configured, there will be saturation in the number of writes in the
log. In conjunction, the write delay parameter (db.writeset.delay) can also be set, allowing a
user to configure what best suits the application.

4.2. Specification 38

Configuration Default Description
dlog.writeproxy.finagle zk!ip:port!/messaging

/hybrid/.write_proxy
Write-Proxy Finagle

dlog.uri distributedlog://ip:port
/messaging/hybrid

DistributedLog URI

dlog.writeset.log wal Log to write write-sets
dlog.readset.logs wal Logs to read write-sets
dlog.logs log-1, log-2, log-3 Requests logs to handle

Table 3: SQLware DistributedLog API configuration.

Table 3 presents all the configurations required for the DistributedLog API setup. The
required parameters are the finagle Uniform Resource Identifier (URI), being a single IP
or an Apache ZooKeeper sustained membership and, the DistributedLog bound URI. In
these configurations the Apache BookKeeper cluster is transparent. Accordingly, solely
the Apache ZooKeeper IP and port, the DistributedLog specific URI and, the write-proxies
finagle definition are configurable.

5

S Y S T E M A N A LY S I S A N D R E S U LT S

SQLware is evaluated with the industry standard TPC-C benchmark [24], specifically, the
Escada TPC-C [12]. The goal is to identify the bottlenecks of the protocol while achieving
the highest performance possible without compromising availability neither correctness.
Consequently, the high-performance API will be used, bypassing the V-JDBC interface and
avoiding the extra latency. By using the direct API, the Apache BookKeeper cluster is
reached directly, abstracting all JDBC functionalities.

5.1 experimental setting

The TPC-C specification models a real-world scenario where a company, comprised of sev-
eral warehouses and districts, processes orders placed by clients. The workload is defined
over 9 tables operated by a transaction mix comprised of five different transactions, namely:
New Order, Payment, Order-Status, Delivery and Stock-Level. Each transaction is com-
posed of several read and update operations, where 92% are update operations, which
characterizes this as a write heavy workload. The benchmark is divided into a load and an
execution stage. During the first stage, the database tables are populated and, during the
second stage, the transaction mix is executed over that dataset. TPC-C defines how these
tables are populated and also defines their size and scaling requirements, which is indexed
to the number of configured warehouses in the system. The outcome of this benchmark is
a metric defined as the maximum qualified throughput of the system, tpmC, or the number
of New Order transactions per minute.

This benchmark scales with the number of warehouses. As long as the number of ware-
houses increases, the total number of clients also increases, as it is bound by the Warehouse
(WH) configuration.

The evaluation was deployed over two setups. The first setup comprises a single replica
machine that allowed to execute the first group of micro-benchmarks to verify the archi-
tecture correctness and determine the comparisons to be performed. The second setup is
based on a two replica composition, on a HPC environment. In both setups, the database
considered was deployed in Docker containers [11], enabling a fast development environ-

5.1. Experimental setting 40

ment by establishing simple and straightforward connections between databases and the
developed middleware. Each container holds a single database instance, and the number
of deployed containers varies according to the setup.

The first batch of benchmarks are performed in the first setup, with the following hard-
ware:

• Intel R© Xeon R© CPU E5-2670 v3 @ 2.30GHz with 48 cores, 99 GB of RAM and a 6 TB
shared volume storage with HDDs.

On this setup two database containers are deployed. This setup is adopted considering the
micro-benchmarks to be run. Taking into account that these benchmarks are executed to
understand the feasibility of the prototype and, set the initial configurations to be used,
considered as baseline.

Both databases are configured to write into a network storage based in HDD‘s and, both
share all the machine’s resources, namely, CPU, RAM and, bandwidth to the storage. More-
over, a three bookie ensemble is simulated with a sandbox, being configured to write to the
machine‘s local disk, also sharing the machine’s resources. However, all distributed writes
are redirected to the same disk, meaning that the bottleneck of this machine is expected to
be reached swiftly as the number of warehouses increases.

In the second setup, tests are executed in an HPC structure with two physical replicas:

• Intel R© Xeon R© Platinum 8153 CPU @ 2.00GHz with 256 CPUS, 3TB of RAM and an
array of 24 HDD disks.

• Intel R© Xeon R© Platinum 8158 CPU @ 3.00GHz with 192 CPUS, 4TB of RAM and an
array of 24 SSD disks.

Both the machines are connected through a 10 GB network, maintaining a low latency
between them.

In this HPC environment a full BookKeeper cluster is set up, in contrast to the single
replica that used the sandbox provided. In this setup a fully deployed cluster is adopted,
considering that enough local disks are available and, as an HPC environment, it is possible
to configure a fully distributed deployment. Therefore, a three bookie ensemble, having
two bookies in one machine and one bookie on the remainder machine are deployed on
this environment. All the bookies are isolated by disk, alongside with their journal logs,
exploiting the I/O parallelism [22]. Moreover, both replicas have a database instance that
also maintains their data in an isolated disk to maximize the parallelism and to adequately
simulate a fully distributed environment.

5.2. Configurations 41

5.2 configurations

While executing the first and second set of benchmarks, different configurations on the mid-
dleware had to be tested, considering that both systems are distinct. When executing with
different configurations, it is possible to acknowledge that the parameters defined induced
an impact on performance. Considering that it is infeasible to experiment every configura-
tion value, achieving the setup that maximizes the performance, a balanced configuration
is established after numerous attempts. The values chosen allowed a steady tpmC in com-
parison with similar solutions, including the native replication of the underlying database.

An important aspect to discuss is the sharding considered in Section 4.2.2. As assumed,
the implemented middleware relies on horizontal partitioning to guarantee the multi-master
architecture and high performance. As such, SQLware leverages the TPC-C‘s dataset, al-
lowing a simple and effective data partition. The sharding of the dataset is performed
per warehouse. By partitioning the dataset per warehouse, it is possible to assign each
warehouse to a replica allowing a balanced workload between replicas and, the use of
multi-master, as the conflict classes are distinguished per each warehouse.

Changing the configuration parameters can affect not only the tpmC, but also the back-
log of the protocol. Some specific adjustments on configurations can affect both metrics,
increasing the tpmC, and reducing the backlog.

In the middleware configuration, a finite amount of specific points needed to be adjusted
to run the benchmarks, in order to reach the best possible throughput, namely:

1. Warehouses per log

This parameter has a significant impact on performance overall, considering that writ-
ing a large number of warehouses on a single log stream can hurt performance. How-
ever, writing a small number of warehouses also harms performance, because there
is the need to handle a wide group of log streams.

2. Write-set writers

This configuration can be tuned to improve throughput and help reduce the replica
lag. Similar to the number of WHs per log, this configuration has the potential to af-
fect performance. The database write-sets can be rather large and, although deploying
a minority of writers make them write large packages ever so often, when deploying
a large number of writers, it will make them write a comprehensive quantity of small
packages, also saturating the log.

3. Number changes obtained from the database log

If this parameter is set, reading write-sets will halt when the number of rows pro-
duced exceeds the specified value, yet, the exact amount of rows can be larger. The

5.2. Configurations 42

limit defined is only verified per transaction, therefore transactions will never be com-
promised.

4. Writing delay

This delay will define the time waited between write-set writings on the log. Once
written a full write-set, the mechanism will wait the specified time to retrieve more
write-sets. This configuration can be useful for small write-sets when there is a need to
get a larger one to reduce the latency of writing on the log, in that case, the mechanism
can wait a few seconds before getting more write-sets, obtaining a larger write-set
rather than a small one, avoiding a constant pooling to the database.

5. Batched writes

This option describes if the write-set records are written in batch. This parameter
enables the middleware to bulk write multiple records using a primitive function pro-
vided in the DistributedLog API. Writing aggregated packages can affect latency and
throughput. Therefore, this configuration depends on the application needs. If this
option is set to off, the records will be written using the normal function, individually.

These are not the only configurable points since components also maintain performance
configuration themselves, from the underlying database to the write-proxies. Those con-
figurations are not outlined in this section since, in what regards the DistributedLog, the
production default configuration is used.

The next section will describe the analysis of the benchmark results using the following
configuration parameters:

Configuration 50w 100w 200w 400w
WHs p / log 25 50 100 200

db.pool 16 16 16 16

dlog.reader.numThreads 32 32 32 32

db.writeset.sharding true true true true
db.writeset.nReaders 2 2 2 2

db.writeset.nTransactions 100.000 100.000 100.000 100.000

Table 4: SQLware configuration values for the single machine setup.

5.3. Results 43

Configuration 100w 1000w 2000w 3000w
WHs p / log 10 50 100 150

db.pool 30 30 30 30

dlog.reader.numThreads 128 128 128 128

db.writeset.sharding true true true true
db.writeset.nReaders 1 4 4 4

db.writeset.nTransactions 0 100.000 100.000 100.000

Table 5: SQLware configuration values for the HPC setup.

The configurations not stated remained in the default values. Other parameters like the
logs are omitted since it is a verbose list of the logs opened. Therefore, only the relevant
values are detailed.

5.3 results

This section discusses the results achieved by running TPC-C benchmark. The analysis per-
formed is focused on the benchmark results and, on the comparison of similar techniques,
discussing the improvements and bottleneck associated with this solution.

5.3.1 Single Replica environment

The first micro-benchmarks are run in a single replica environment, and a diverse number
of benchmarks performed on this machine granted extensive knowledge about the cor-
rect comparison between the techniques. When adjusting different configurations, replica-
tion guarantees and dependability became the crucial aspects to consider. Therefore, from
fsync=off to synchronous_commit=on, a wide range of database configurations are bench-
marked, narrowing down the alternatives.

Considering the wide choice of configurations tested, the most similar ones are the
middleware solution, the PostgreSQL asynchronous replication, and the PostgreSQL syn-
chronous replication with the configuration synchronous_commit=on.

Warehouses Abort rate (%) Avg latency (ms) tpmC
50w 4,3 503,60 1062,59

100w 2,5 633,62 856,33

200w 1,0 836,15 643,78

400w 1,0 1183,80 433,92

Table 6: PostgreSQL synchronous replication benchmark values.

5.3. Results 44

The values displayed in Table 6 are the PostgreSQL synchronous replication benchmark
results. It is possible to observe the correlations between throughput, latency and abort rate.
The throughput of this technique is continuously decreased as the number of warehouses
increases, making the total number of terminals grow. Therefore, the abort rate is smaller
and higher latency is experienced, as expected.

Warehouses Abort rate (%) Avg latency (ms) tpmC
50w 3,9 252,42 2104,32

100w 2,0 264,65 2019,66

200w 1,0 373,48 1433,21

400w 0,6 371,66 1463,29

Table 7: PostgreSQL asynchronous replication benchmark values.

In comparison with the previous protocol, the native asynchronous replication has no-
ticeable improvements in performance as expressed in Table 7. The biggest drawback re-
garding this technique is, in fact, the dependability guarantees. As detailed, this technique
manifests a 2 times increase in the smallest benchmark and nearly a 4 times increase in the
largest, providing this technique a clear advance performance-wise.

Warehouses Abort rate (%) Avg latency (ms) tpmC
50w 0 54,88 5915,08

100w 0 58,80 9067,37

200w 0 58,40 9300,83

400w 0 59,35 9172,23

Table 8: Middleware replication benchmark values.

SQLware results are demonstrated in Table 8, and as expected, the abort rate is null
considering that the TPC-C client uses the high-performance API, interacting directly with
the Apache BookKeeper cluster, bypassing the V-JDBC latency. Besides, since the requests
are sharded by warehouse before being written on the log streams, individual shards are
executed sequentially on the database replicas.

The overall throughput is increased, denoting that the SQLware is 6 times faster than the
underlying database asynchronous replication, and 20 times faster than the synchronous
one. These results are obtained by configuring two logs and, when executing the bench-
mark, the workload is balanced between both logs.

The relevant results obtained by benchmarking the system, besides being represented
in the previous tables, are also represented in a two-axis graph. Figure 19 represents the
tpmC value of each protocol as the amount of warehouses increases, denoting the overall
throughput of the techniques. The fluctuation of values is undoubtedly large. It is possible

5.3. Results 45

to observe both native replication techniques halting behind the hybrid middleware by a
considerable disparity.

	0

	2000

	4000

	6000

	8000

	10000

	50 	100 	150 	200 	250 	300 	350 	400

tp
m

C

Warehouses

PostgreSQL	sync Hybrid	middleware

1062,59 856,33 643,78 433,92

5915,08

9067,37 9300,83 9172,23

PostgreSQL	async

2104,32 2019,66
1433,21 1463,29

Figure 19: Single machine benchmarks comparison.

The biggest bottleneck on this machine lied on the durable storage. Considering that,
the available storage unit is sustained by hard disk drives and, our solution relies heavily
on durable storage, the results will reflect the HDD write speeds. Moreover, when loading
a larger dataset (i.e., the 400 WH dataset), the disk cache occupied all the available RAM.
Consequently, just 300 MB of free memory remained free, requiring the machine to swap
the RAM to an HDD slowing down the entire setup and, heavily increasing the amount of
backlog.

Although the backlog obtained by running the benchmark with the 400 WH is significant,
it is overlooked considering that it represents a side-effect produced by the shortage of RAM.
With this environment, the backlog bottleneck is unmistakably the 400 WH dataset.

Furthermore, with an HPC environment and two distinct replicas, the backlog is small,
even when increasing the dataset to approximately 8 times the current size. Therefore, given
the results obtained in this environment and, after understanding the order of magnitude
regarding the values achieved, there is a shift towards an HPC environment.

5.3. Results 46

5.3.2 High Performance Computing environment

When shifting the setup to the HPC environment, the benchmarks executed are limited
to the PostgreSQL native synchronous replication, and the hybrid middleware replication,
considering that those techniques are the closest and the most relevant to be compared.

Although the synchronous replication of PostgreSQL waits until the slave replica writes
the transaction to disk, in the developed solution this is not a requirement. Within the
developed middleware, transactions are issued to the log and, consequently replicated in
the three bookies, guaranteeing a distributed write. Being the transaction written in a
distributed manner, if a first replica fails, the second one can easily replay transactions
from the log, guaranteeing that transactions are eventually fulfilled. Such guarantees are
not satisfied in the asynchronous replication of PostgreSQL. If a transaction is executed in
the master replica and the client receives a response, in the event of failure after executing
the transactions, there is no guarantee that the slave replica has received that transaction or,
even if it will ever get it.

Consequently, in this section, only the PostgreSQL synchronous replication and, the mid-
dleware solution will be compared. These benchmarks will allow comparing two tech-
niques that guarantee a replicated write (i.e., a guaranteed write in more than one replica).

Although the order of magnitude when shifting to this environment is increased tenfold,
there is a constraint regarding the scalability of the benchmark dataset, since the disks on
both machines have a maximum capacity of 512GB. Therefore, the durable storage does not
support a dataset larger than than 3000 WHs, limiting the comparison. Consequently, there
will be increases of 1000 WHs at a time, starting from the 100 WHs dataset.

Warehouses Abort rate (%) Avg latency (ms) tpmC
100w 2,6 320,95 1.668,46

1000w 0,62 710,84 698,06

2000w 0,62 741,95 679,82

3000w 0,54 761,35 670,38

Table 9: PostgreSQL synchronous replication benchmark values on HPC.

Table 9 depicts the values obtained by the synchronous replication of PostgreSQL. In
terms of comparison, it is possible to understand that, contrary to the single machine setup,
this environment has 2 times more throughput on the 100 WHs benchmark and, it main-
tained the throughput value as the scaling factor increased, sustaining it in the 600 tpmC.

5.3. Results 47

Warehouses Abort rate (%) Avg latency (ms) tpmC
100w 0 4,43 11.870,66

1000w 0 4,92 102.748,15

2000w 0 4,98 103.861,43

3000w 0 5 104.006,84

Table 10: Hybrid replication benchmark values on HPC.

As depicted in Table 10, SQLware in comparison with the synchronous version of Post-
greSQL replication, details a difference of 150 times more throughput. Consequently, the
average latency is also decreased by 150 times, showing the robustness of the designed
protocol.

Moreover, it is possible to establish a comparison with the single machine environment,
showing an increase of 11 times times more throughput and 10 times less latency. Even
though the BookKeeper cluster and PostgreSQL replicas are sharing bandwidth, processing
power and memory, the throughput values remained unwaveringly at the 100.000 tpmC.

	0

	20000

	40000

	60000

	80000

	100000

	120000

	0 	500 	1000 	1500 	2000 	2500 	3000

tp
m

C

Warehouses

PostgreSQL	sync Hybrid	middleware

1668,46 698,06 679,82 670,38

11870,66

102748,15 103861,43 104006,84

Figure 20: HPC benchmarks comparison.

The values detailed on the previous tables are depicted in Figure 20, allowing to represent
the values distinction. It is possible to verify the middleware scaling and stable throughput
when achieving the 1000 WHs.

Alongside with the throughput increase, there is also a registered backlog increase. In the
current environment, the backlog is fluctuating between 5 seconds to 30 seconds, depending

5.4. Discussion 48

on the configuration. However, the calculated average replica lag is 6 seconds, determining
that on average, replicas need 6 seconds to stay consistent with each other. Since a SQLware
replica is concurrently executing requests and applying write-sets from other replicas, there
is replica lag and request latency. On average the latency of the requests never surpassed 5

seconds on the slowest replica. The requests latency and replica lag can be heavily reduced
by introducing more database replicas.

The mentioned replica increase is not deployed since the environment only operated two
physical machines. Although this deployment is only on a two replica cluster, as it is an
HPC environment and, the overall system capacity is not fully occupied, given the I/O
parallelism, amount of CPU power and RAM, the Apache BookKeeper cluster has enough
processing power and throughput to operate as a dedicated environment. Moreover, the
databases also performed as expected, delivering performance without affecting the overall
throughput.

In both scenarios, after the backlog execution, both databases rested on a consistent state
with each other, fulfilling both high-performance, high-availability, and data consistency
goals of this dissertation.

5.4 discussion

As expected, the main bottleneck of the whole system is durable storage. Every transaction
is always persisted in durable storage throughout the Apache BookKeeper cluster. Conse-
quently, with an ack quorum of three bookies in a three replica ensemble, the slowest the
disks the worst the tpmC.

Also, the system RAM is also a clear bottleneck in this approach. If the system RAM
is not enough to hold the entire data-set, a large backlog can occur, decreasing the overall
system performance.

In this PostgreSQL environment, an SQL query based plug-in is used. This plug-in allows
translating the database write-sets into executable queries. One of the parameters possible
to define is the number of rows obtained by the database. If this number is fixed excessively,
the database will throttle in the write-set parsing, since it is synchronous and sustained by
a single-threaded operation. However, if a small amount of lines is defined, a large number
of writes per second can occur in the log, overwhelming the log stream.

The previously mentioned bottlenecks can be surpassed with some techniques, some of
these improvements are addressed and detailed in the following section, while others were
already detailed in the previous configuration section.

Since it is possible to configure the middleware to suit the needs of each application, there
is room for improvements. Although some configurations can improve replica lag and boost
the number of transactions per minute, there are others that can cause a performance decay.

5.4. Discussion 49

One of the improvements implemented in the coded PostgreSQL interface, is the usage
of sharding while obtaining write-sets. Therefore it is possible to issue multiple writes,
making this configuration one of the most important adjustments that can either improve
or deteriorate performance, alongside with the number of write-set transactions obtained
by the database API.

Furthermore, by issuing a large number of write-set writers (since write-sets have typi-
cally, a considerable size), writing extensive updates will decay the number of transactions
for the clients. This effect is rather common, as the cluster is shared by both the requests
and write-sets. Therefore, it is possible to overwhelm the cluster with large write-sets since
the same bookies and disks are being used.

Another possibility to improve the overall system performance is to increase the number
of bookies since Apache BookKeeper implements a policy that improves reads and writes,
by distributing the various log segment across different bookies, as stated in the replication
Section 3.2.4. Accordingly, if the bookies are increased, also the performance is expected
to do so and, the following hypothesis is clearly understandable since the scalability is
horizontal, and the system load is balanced throughout the whole cluster.

Moreover, if the amount of databases is increased horizontally, the write-set API bot-
tleneck is also reduced, since each database will handle a smaller sub-set of transactions,
reducing the overall size of the write-sets per database.

6

C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusion

This thesis is born from the observation that so far, replication protocols such as the active,
passive and even hybrid branches of the former protocols have important limitations. More-
over, Distributed Logging can become an effective source for throughput improvement as it
has been seen in previous work as in Amazon’s Aurora [25]. Therefore, this thesis strived to
develop a middleware solution, providing seamless replication with high-availability, fault-
tolerance guarantees, and high-throughput by considering a hybrid replication protocol
with Distributed Logging as foundation. As a middleware, the proposed solution aimed to
be database agnostic and easily maintainable.

SQLware is based on a three-layer solution, the client middleware, the Apache Book-
Keeper log streams and, finally, the servlet middleware in conjunction with the underlying
database. The prototype is developed with PostgreSQL as the underlying database, leaving
the interfaces open to other data sources. SQLware aims to be used as a JDBC driver, offer-
ing a seamless usage of the replication protocol. The most important layer is effectively the
Apache BookKeeper, offering a highly distributed log store, fault-tolerance and huge write
performance. The lowest tier layer lies on the servlet middleware, aiming to live side-by-
side with the database server, building a bridge between the underlying database and the
rest of the architecture.

The main features offered by SQLware are, a high-availability middleware, able to in-
teract with any underlying data source, offering high-throughput and low latency. Fault-
tolerance guarantees are provided to the end-user, allowing to build a highly scalable sys-
tem, tolerant to system failures and network partitions.

Through analysis and benchmarking using the industry standard TPC-C benchmarking
tool, the prototype confirmed an enormous improvement in comparison to the baseline.
The middleware is compared with the native replication of the underlying data source, the
PostgreSQL native replication.

6.2. Future Work 51

Compiling the results and values, using the TPC-C, the middleware provided up to 150

times more throughput than the native replication offered by the underlying database,
which not only corroborates the thesis, but highlights the positive impact on using dis-
tributed logging as part of the replication mechanism. Moreover, in addition to the per-
formance increase, the middleware does not compromise the availability, and the overall
tolerance to system and network failures.

6.2 future work

There are two essential aspects to guarantee a mature development, and a production-ready
solution. First and foremost, the recovery mechanism, allowing the underlying database
to recover from failures. Secondly, a dynamic configuration system implemented in the
middleware code base.

A recovery mechanism for SQLware is necessary, as it is for any replicated database,
either to allow a database to recover from an inconsistent state or to allow new replicas to
obtain a coherent copy. Since the log streams used are totally ordered, they can be read
using the DistributedLog Sequence Number (DLSN). Therefore, it is possible for one given
replica to continue the work of others when a failure occurs (i.e., fail-over) and, to a new
replica to apply every write-set written from the beginning. Although a straightforward
description is given in this excerpt, more sophistication to the recovery protocol is required
(e.g., full copies and snapshots). Therefore, efforts to build such recovery mechanism are
concurrent with the SQLware development, as both projects are small parts of a whole,
ultimately achieving a full integration.

As discussed, different configurations affected both throughput and backlog in different
ways. Therefore, some trade-offs need to be made and, those decisions depend on each
application and its purposes. Consequently, a dynamic configuration system would allow
configuring numerous replicas without the need to restart the servlet, allowing to take
into account the system load and replica lag. Such a system could be based on Apache
ZooKeeper, given that it is already deployed in the cluster and is identified as core de-
pendency of the architecture. Moreover, a dynamic configuration system is desired since
not every single user has advanced know-how of its own application. Therefore, this sys-
tem can allow an intelligent configuration based on system parameters and, still allowing
advanced users to be able to change those parameters to suit their needs.

Both points addressed will allow SQLware to mature into a production-ready environ-
ment, providing an overall vision of future prospects to implement such protocol.

B I B L I O G R A P H Y

[1] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi. Exploiting
atomic broadcast in replicated databases. In European Conference on Parallel Processing,
pages 496–503. Springer, 1997.

[2] Apache BookKeeper - A scalable, fault-tolerant, and low-latency storage service opti-
mized for real-time workloads, 2018. URL https://bookkeeper.apache.org/.

[3] Apache ZooKeeper, 2018. URL https://zookeeper.apache.org/.

[4] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg. The primary-
backup approach. Distributed systems, 2:199–216, 1993.

[5] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal data partitioning in
database design. In Proceedings of the 1982 ACM SIGMOD international conference on
Management of data, pages 128–136. ACM, 1982.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[7] Alfrânio Correia, José Pereira, and Rui Oliveira. Akara: A flexible clustering protocol
for demanding transactional workloads. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems", pages 691–708. Springer, 2008.

[8] Flaviu Cristian, Houtan Aghili, Raymond Strong, and Danny Dolev. Atomic broadcast:
From simple message diffusion to Byzantine agreement. Citeseer, 1986.

[9] decoder_raw, Output plugin for logical replication, 2018. URL https://github.com/

hugomiguelabreu/pg_plugins.

[10] Xavier Defago, Andre Schiper, and Nicole Sergent. Semi-passive replication. In Reli-
able Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium on, pages 43–50.
IEEE, 1998.

[11] docker, 2018. URL https://www.docker.com/.

[12] Escada TPC-C is an easy to use JDBC benchmark that closely resembles the TPC-C
standard for OLTP. DB’s supported include PostgreSQL, MySQL, and Derby., 2018.
URL https://github.com/rmpvilaca/EscadaTPC-C.

https://bookkeeper.apache.org/
https://zookeeper.apache.org/
https://github.com/hugomiguelabreu/pg_plugins
https://github.com/hugomiguelabreu/pg_plugins
https://www.docker.com/
https://github.com/rmpvilaca/EscadaTPC-C

bibliography 53

[13] European Central Bank, 2017. URL https://www.ecb.europa.eu/press/pr/stats/

paysec/html/ecb.pis2017.en.html.

[14] Ira R Forman, Nate Forman, and John Vlissides Ibm. Java reflection in action. 2004.

[15] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication. In VLDB, pages 134–143, 2000.

[16] Tadeusz Kobus, Maciej Kokocinski, and Pawel T Wojciechowski. Hybrid replica-
tion: State-machine-based and deferred-update replication schemes combined. In Dis-
tributed Computing Systems (ICDCS), 2013 IEEE 33rd International Conference on, pages
286–296. IEEE, 2013.

[17] Fernando Pedone, Rachid Guerraoui, and André Schiper. Exploiting atomic broadcast
in replicated databases. In European Conference on Parallel Processing, pages 513–520.
Springer, 1998.

[18] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database state machine
approach. Distributed and Parallel Databases, 14(1):71–98, 2003.

[19] PostgreSQL, 2018. URL https://www.postgresql.org/.

[20] David Powell, Marc Chérèque, and David Drackley. Fault-tolerance in delta-4. ACM
SIGOPS Operating Systems Review, 25(2):122–125, 1991.

[21] Reddit statistics, 2018. URL https://pushshift.io/.

[22] Peter Scheuermann, Gerhard Weikum, and Peter Zabback. Data partitioning and load
balancing in parallel disk systems. The VLDB Journal—The International Journal on Very
Large Data Bases, 7(1):48–66, 1998.

[23] Fred B Schneider. Replication management using the state-machine approach. Dis-
tributed systems, 2:169–198, 1993.

[24] TPC-C Benchmark - Standard Specification, February 2010. URL http://www.tpc.org/

tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[25] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal
Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,
and Xiaofeng Bao. Amazon aurora: Design considerations for high throughput cloud-
native relational databases. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 1041–1052. ACM, 2017.

[26] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and Gustavo
Alonso. Understanding replication in databases and distributed systems. In Distributed

https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.pis2017.en.html
https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.pis2017.en.html
https://www.postgresql.org/
https://pushshift.io/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

bibliography 54

Computing Systems, 2000. Proceedings. 20th International Conference on, pages 464–474.
IEEE, 2000.

[27] Wordpress, 2018. URL https://wordpress.com/activity/.

https://wordpress.com/activity/

	1 Introduction
	1.1 Problem
	1.2 Objectives
	1.3 Thesis structure

	2 Background
	2.1 Replication techniques
	2.1.1 Active Replication
	2.1.2 Passive Replication
	2.1.3 Semi-Active Replication
	2.1.4 Semi-Passive Replication
	2.1.5 Hybrid Transactional Replication

	2.2 Database specific replication protocols
	2.2.1 Conservative execution
	2.2.2 Optimistic execution
	2.2.3 Hybrid execution

	3 Middleware-Based Replication Mechanism
	3.1 Database Replication Systems
	3.1.1 PostgreSQL Logical Replication
	3.1.2 Amazon Aurora

	3.2 Distributed Logs
	3.2.1 Architecture
	3.2.2 Log Writers
	3.2.3 Log Readers
	3.2.4 Log Streams Replication

	3.3 Discussion

	4 SQLware replication middleware
	4.1 Middleware
	4.2 Specification
	4.2.1 Backlog
	4.2.2 Assumptions
	4.2.3 Horizontal partitioning
	4.2.4 Underlying Database Management System
	4.2.5 Configuration parameters

	5 System analysis and Results
	5.1 Experimental setting
	5.2 Configurations
	5.3 Results
	5.3.1 Single Replica environment
	5.3.2 High Performance Computing environment

	5.4 Discussion

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Future Work

