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A B S T R A C T

In Wireless Sensor Networks (WSNs), typically composed of nodes with resource con-
straints, leveraging efficient processes is crucial to enhance the network longevity and
consequently the sustainability in ultra-dense and heterogeneous environments, such as
smart cities. Epidemic algorithms are usually efficient in delivering packets to a sink or
to all it’s peers but have poor energy efficiency due to the amount of packet redundancy.
Directional algorithms, such as Minimum Cost Forward Algorithm (MCFA) or Directed
Diffusion, yield high energy efficiency but fail to handle mobile environments, and have
poor network coverage.

This work proposes a new epidemic algorithm that uses the current energy state of the
network to create a topology that is cyclically updated, fault tolerant, whilst being able
to handle the challenges of a static or mobile heterogeneous network. Depending on the
application, tuning in the protocol settings can be made to prioritise desired characteristics.
The proposed protocol has a small computational footprint and the required memory is
proportional not to the size of the network, but to the number of neighbours of a node,
enabling high scalability.

The proposed protocol was tested, using a ESP8266 as an energy model reference, in a
simulated environment with ad-hoc wireless nodes. It was implemented at the application
level with UDP sockets, and resulted in a highly energy efficient protocol, capable of lever-
aging extended network longevity with different static or mobile topologies, with results
comparable to a static directional algorithm in delivery efficiency.

Keywords—energy-aware, epidemic, IoT , routing, WSN
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R E S U M O

Em Redes de Sensores sem Fios (RSF), tipicamente compostas por nós com recursos lim-
itados, alavancar processos eficientes é crucial para aumentar o tempo de vida da rede
e consequentemente a sustentabilidade em ambientes heterogêneos e ultra densos, como
cidades inteligentes por exemplo. Algoritmos epidêmicos são geralmente eficientes em en-
tregar pacotes para um sink ou para todos os nós da rede, no entanto têm baixa eficiência
energética devido a alta taxa de duplicação de pacotes. Algoritmos direcionais, como o
MCFA ou de Difusão Direta, rendem alta eficiência energética mas não conseguem lidar com
ambientes móveis, e alcançam baixa cobertura da rede.

Este trabalho propõe um novo protocolo epidêmico que faz uso do estado energético
atual da rede para criar uma topologia que por sua vez atualizada ciclicamente, tolerante
a falhas, ao mesmo tempo que é capaz de lidar com os desafios de uma rede heterogênea
estática ou móvel. A depender da aplicação, ajustes podem ser feitos às configurações do
protocolo para que o mesmo priorize determinadas caracterı́sticas. O protocolo proposto
tem um pequeno impacto computacional e a memória requerida é proporcional somente
à quantidade de vizinhos do nó, não ao tamanho da rede inteira, permitindo assim alta
escalabilidade.

O algoritmo proposto foi testado fazendo uso do modelo energético de uma ESP8266,
em um ambiente simulado com uma rede sem fios ad-hoc. Foi implementado à nı́vel
aplicacional com sockets UDP, e resultou em um protocol energeticamente eficiente, capaz
de disponibilizar alta longevidade da rede mesmo com diferentes topologias estáticas ou
móveis com resultados comparáveis à um protocolo direcional em termos de eficiência na
entrega de pacotes.

Palavras chave—energy-aware, epidêmico, IoT, RSF, roteamento
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1

I N T R O D U C T I O N

Wireless Sensor Networks (WSN) are composed of several nodes that have a specific pur-
pose of monitoring and measuring diverse types of systems and physical phenomena. Each
member of a WSN, called node, is usually very small and low cost equipment designed to
run on limited energy source [Anastasi et al., 2009]. These nodes usually should not need
maintenance for years, making it very important to find optimal ways to lower the required
power to sense, store and forward the data to a central entity like a Base Station (BS). Con-
necting each node directly to the BS would add high energy cost to the network design, so,
WSN are usually configured to relay data from one node to another until it reaches the final
destination. The naı̈ve way to solve this problem is to set each node to broadcast packets
to each of its neighbours, and as a result each node would eventually receive all packets
created by every node. That however would result in each node receiving the same packet
several times coming from different paths. Many routing protocols have been designed to
find ways of relaying packets without the need to sending all packets to every node, and
thus saving resources. When energy resources are saved, the lifetime of the whole network
is prolonged.

Several routing protocols for WSN have been designed and an encompassing taxonomy
of them is described in [Al-Karaki and Kamal, 2004], which, regarding network structured-
based protocols, is mainly divided in three groups: flat-based routing, hierarchical-based rout-
ing and location-based routing. In the flat-based routing scheme [Schurgers and Srivastava,
2001; Braginsky and Estrin, 2002; Al-Karaki and Kamal, 2004], each node has the same
function whilst in the hierarchical-based routing [Intanagonwiwat et al., 2000; Al-Karaki and
Kamal, 2004] some nodes acquire the role of cluster head and concentrate data before for-
warding to another node and eventually the base station. Location-based protocols [Al-Karaki
and Kamal, 2004; Kumar et al., 2017] use the sensor’s geographical position to choose their
role in the routing scheme. In some routing protocols, the nodes can assume a static role
after being defined during a topology discovery stage. As a consequence, this might lead
to energy depletion in specific nodes before others, creating an energy unbalance in the
network, and even in some extreme cases completely isolating part of the network. Having
this in mind, another approach should be also considered, adaptive protocols that take in
consideration the current state of the network and automatically update the node’s role.

1



1.1. Objective 2

Routing protocols can also be divided regarding the data traffic model. In the continuous
delivery flow model, the sensor nodes report newly sensed data to a sink periodically. In
the event-driven model, the sensing nodes only report the occurrence of pre-defined events,
and if the sink node is interested in data related to the event they issue a query. The
query-based model is used when the sink node requests data from a previously known
node, independently of an event. The definition of the model depends ultimately of the
application and not every protocol is suitable for all situations.

When controlling the node’s behaviour in the network is required, it is important that the
state of all nodes are taken in consideration, requiring a high delivery rate of messages. In
such cases, epidemic1 approaches usually yield positive results [Al-Karaki and Kamal, 2004;
Leitao, 2007]. An epidemic protocol can create a big communication overhead when nodes
receive repeated messages, which makes them less energy efficient. So, for applications
that require a specific direction for the data flow, epidemic protocols might not be the best
option. Many different routing protocols have been studied to enhance WSN schemes,
each one prioritising a required characteristic, like high throughput, high delivery rate or
low latency[Al-Karaki and Kamal, 2004]. Also, to increase network energy conservation,
different approaches can be considered: duty cycling, data-driven schemes or mobility-
based schemes [Anastasi et al., 2009].

The main motivation for this work is to design a continuous delivery epidemic routing
protocol that solves the issue with data redundancy while still keeping a high delivery rate
and good network coverage. It shall aim at not only prolonging the lifetime of a WSN by
using energy more efficiently, but also by exploiting the remaining energy level as a factor
for the topology definition. Another important aspect is that this protocol shall enable
the network to reconfigure automatically in case of topology changes without the need of
intervention.

1.1 objective

The objective of this dissertation is to design an energy-aware communication protocol
capable of reducing and balancing energy consumption in WSNs. The main purpose of the
proposed protocol is to create a new way of reducing traffic in an epidemic distribution
with the following goals:

1. Lifetime of the network - Increasing the lifetime of the network is a main goal of the
protocol, and since nodes in a WSN both create and forward sensed data, the algo-
rithm complexity has direct impact in the computational and communication energy
used by the nodes. The proposed protocol shall introduce a routing technique that

1 Also called gossip routing



1.2. Methodology 3

can comply with all the goals while keeping computational complexity to a minimum
in order to ensure the longevity of the network.

2. Delivery rate of packets - The proposed protocol must be able to ensure high delivery
rate of packets. A trade-off between delivery rate and energy efficiency is acceptable
as long as it is an application design choice. Other negative Quality of Service (QoS)
aspects that are acceptable in order to ensure the lifetime of the network are high jitter
and high latency.

3. Data redundancy - Duplication of delivered packets is an expected side effect of high
coverage support, but it can have a negative impact in the network lifetime since
nodes will eventually be relaying unnecessary duplicated data. The protocol shall
implement features that can reduce data redundancy without affecting the delivery
rate.

4. Fault tolerance - Nodes in a WSN can be deployed in a completely flexible and incon-
sistent distribution. Furthermore the nodes, even the sink, can also be mobile, and
have the geographical position changed constantly. The protocol must ensure that
this has no affect in the functionality, even if some nodes fail and stop participating
in the network.

5. Data traffic - The time-driven continuous delivery data model shall be considered
for this protocol. Meaning that nodes’ sensors are cyclically reading new data and
relaying to the network.

6. Scalability - The network performance and longevity should not be affected by the
scale of the network. Hence, the protocol shall avoid the maintenance of complex and
long tables, buffers and lists unless when used for keeping a list of neighbours.

1.2 methodology

In order to fulfil the objectives of this proposal, this work is divided in two main stages:
study and experimentation. The study phase covers the existing literature about routing
protocols for WSN, identifying the diverse aspects and characteristics of some of them con-
cerning energy consumption and efficiency. Also, since there are many different network
simulators available, some will be tested and one chosen for the experimentation stage.

During the experimentation stage, the chosen simulators are used to implement the de-
signed protocol and collect metrics about its behaviour, and later the best solutions are
benchmarked. The protocols are tested in different scenarios and different topologies to
explore characteristics under different well established conditions as described in details in
Chapter 5. The main steps of them work are sumarized as:



1.3. Summary 4

• Study the existing routing protocols for WSN;

• Study the existing simulation tools available for WSN and choose one or more to be
used throughout the development and evaluation phases;

• Define the main performance and efficiency metrics that will be chased as primary
targets;

• Fine tune the routing protocol parameters to deliver best results for the chosen met-
rics;

• Measure and benchmark the protocol comparing to well established protocols de-
scribed in literature.

1.3 summary

This chapter briefly introduced the problem this work aims to solve, the objectives and
methodology to be adopted.

1.3.1 Dissertation Outline

For the next chapters, Chapter 2 presents presented basic concepts about wireless sensor
and WSNs and related work in routing protocols for WSN, showing some of the protocols
that are classified similarly to the proposed protocol. Chapter 3 describes the proposed
protocol, presenting the design goals and constrains considered. Chapter 4 introduces the
possible platforms for testing the implementation of the protocol while Chapter 5 presents
the methodology that shall be used for testing. Chapter 6 presents the results obtained
from testings and the considerations about the results. Finally, Chapter 7 presents the final
conclusions stemming from this work and possible future work related to this dissertation.



2

R E L AT E D W O R K

This section will introduce related work in WSN routing protocols. An overall introduction
about some protocols is presented and some aspects related to this work are highlighted.
Since the number of existing protocols is too big, only the few that are more directly related
to this work will be introduced. Other works have been made with the goal of classifying all
the protocols and extensive lists and classifications can be found in [Al-Karaki and Kamal,
2004; Anastasi et al., 2009].

Routing protocols are vital to WSNs due to its distributed nature. Data created in one
node need to be disseminated in the network to reach its final destination and the way this
routing is implemented varies depending on specific applications and requirements. Some
protocols are reactive, waiting for a data request in order to calculate the route towards
the destination, others are proactive and maintain routing tables which are calculated in
advance. The existing routing protocols for WSN are usually classified regarding their
architecture as flat-based, hierarchical-based and location-based routing as introduced in [Al-
Karaki and Kamal, 2004] and shown in Figure 2.1. Location-based protocols are usually also
classified as flat or hierarchical and therefore, examples of such protocols will be presented
inside those classifications.

Figure 2.1.: WSN Routing Protocols Taxonomy

5



2.1. Theoretical Background 6

2.1 theoretical background

Before discussing related work regarding existing routing protocols, an introduction about
the wireless sensors and WSN is presented in this section.

2.1.1 Wireless Sensors

Wireless sensors are a special type of sensor that does not require to be physically connected
to any other device in order to transfer the data it has acquired. It is usually comprised of a
compute, a sensing (usually associated with an analogue to digital converter), a memory and a
communication (radio) units as shown in Figure 2.2. Since these sensors are not connected to
any other device and are often deployed in remote areas, the sensor’s design often include
energy harvesting from the environment, such as heat, solar, wind or vibration [Shaikh and
Zeadally, 2016]. These sources of energy are usually intermittent, so it is important to equip
the sensor with an energy buffer unit, such as a battery.

Figure 2.2.: Typical Wireless Sensor

• Battery Unit - The battery unit is usually the main power source for wireless sensors.
It is commonly comprised of a battery, mainly Lithium Polymer batteries in the most
modern devices, a protection circuit and a battery charger. The function of the battery
charger is to provide a stable voltage and a controlled current for charging it, since
exceeding current could lead to a temperature increase and possibly a fire. Each type
of battery has a required safe charging voltage and current;

• Compute unit - The compute unit is where the main logic for controlling the other em-
bedded hardware is located. It can be a micro-controller, a System on a Module (SoM)
or a System on a Chip (SoC) for instance, but there are many other definitions some-
times created by manufacturers for marketing purposes. One important aspect when
choosing the compute unit is to get enough computing power needed for the appli-
cation, using as least power as possible [Malewski et al., 2018]. Hence, the system
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should always aim to get just enough performance as it is needed, typically without
any spare computing power, therefore saving more energy;

– Micro-controllers are a category of small factor computers usually composed of
a 8 or 16 bit microprocessor and sometimes equipped with some accessories, like
Random Access Memory (RAM), Read-Only Memory (ROM),
Universal Asynchronous Receiver/Transmitter (UART),
Serial Peripheral Interface (SPI) or Inter-Integrated Circuit (I2C) interfaces. The
modern versions of micro-controller are very energy efficient and depending of
the manufacturer they can be equipped with wireless interfaces such as IEEE802.
11 [802.11, 2016], IEEE802.15.4 [802.15.4, 2015] or Bluetooth [BluetoothCore, 2019];

– System on a Chip are devices that can concentrate all the required modules
to build a computer inside a chip. So the processor, RAM, ROM, and all the
peripherals required for communication are housed in the same silicon chip;

– System on a Module devices are small footprint systems that can fit on a module
that shall or not be connected to a carrier board that make more IO ports available
to the user. So, the SoM are one step ahead of the SoC since they install a SoC
on a small board with some extra hardware, usually USB ports, video outputs,
buttons and LEDs. These devices are more commonly used for prototyping.

• Sensing Unit - The sensing unit is responsible for reading a physical phenomena and
transforming into an eletrical signal that can be read by the computing unit. Most
of the devices have built-in an analog to digital converter that can read the electrical
signal and transform into a digital signal that the processor can understand. It is
also possible that the sensing unit also has a embedded computer that can read the
electrical signal, and provide the digital value to the computer via a communication
protocol such as UART, SPI or I2C.

• Memory Unit - The memory unit is a temporary or permanent storage where the
sensor can store its measurements before they are routed out to the base station. This
memory can be volatile RAM or non-volatile EEPROM1 for applications that require
permanent storage of data even after the measurements have been delivered.

• Communication Unit - The communication unit contains the radio which is used for
sending data to other nodes. This unit has one or more radios available for commu-
nication via modulation in pre-defined frequencies. Using the same radio, different
protocols can be implemented in the MAC/PHY layer [Al-Sarawi et al., 2017] and,
since some protocols share the same frequency, some devices, such as the nRF52840

2

1 Electronically Erasable Read Only Memory (EEPROM)
2 https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
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for example, implement different protocols using the same radio simultaneously by
using multiplexing.

2.1.2 Wireless Sensors Networks

Wireless sensors networks are made of nodes of wireless sensors distributed across an area
and exchanging information. These nodes usually cannot reach a cloud or central server,
so the data they collect is routed to a sink (or base station) on a multi-hop scheme. The sink
on the other hand acts as border router and can be both in the WSN and in other network,
being able to upload data collected by the sensing nodes to an external entity. Figure 2.3
shows a typical representation of a WSN.

Figure 2.3.: Typical Wireless Sensor Network

It is possible that a cluster of nodes cannot reach a sink but there is a particular node
that can reach both an isolated cluster and the cluster where the sink is located. This bridge
node therefore routes the data between the clusters enabling the data to reach the sink. A
node that serves as a bridge will mostly always consume more energy than its surrounding
counterparts, and if it gets depleted of energy before the isolated cluster, the whole cluster
ends up losing connectivity with the sink. This serves as an example of the importance of
energy-awareness when designing routing protocols for a WSN.
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2.1.3 Energy Consumption in WSN

As previously mentioned, since wireless sensors are deployed on remote locations, it is
imperative that they consume the least possible energy in order to prolong the network’s
longevity. There are different ways that energy is consumed in a WSN. The sensor needs to
read new data, which has to be processed and stored in memory and further transmitted.
So basically, the main energy consumption topics are circuit power (sensing, computation
and memory units), and radiated power (communication unit) [Niyazi, 2017].

The way each sensor consumes energy depends on each node itself, as the sensing sub-
system for instance, depends much on the type of measurement it samples. Some types
of sensing devices require more energy than others, not only depending on the physical
phenomena being measured (some require pre-heating of elements before sensing, such as
gas sensors for example) but also because some applications require more frequent sens-
ing than others. Typically, the communication on a wireless sensor consumes more energy
than the computation part [Anastasi et al., 2009], but if a sensor reading demands filtering
or other computation intensive processing, that could change the scenario. It could also
happen that routing protocols can consume too much computation energy if they make use
of a complex algorithm, or if they need to keep looping through routing tables in memory.

The communication sub-system consumes power either when it is transmitting or receiv-
ing data. Most of the sensor nodes however have the ability to put the radio in sleep mode,
reducing drastically the energy consumption and this option should be used as much as
possible [Anastasi et al., 2009]. Since the communication in a WSN works mostly using a
multi hop scheme, if one sensor node that is placed in a strategic position, as the bridge
node in Figure 2.3, and for instance connect two local clusters runs out of battery, the whole
network suffers a loss due to the loss of connection between the local clusters. A network
that relies on a specific node for maintaining connectivity of a local cluster cannot afford
the loss of such node.

2.1.4 Energy Conservation in WSN

In order to conserve energy, different techniques can be used depending on the application
and design goals. As identified in Section 2.1.3, there are three main subsystems that
consume energy, and different approaches can be used to reduce the power consumed
in each subsystem or even in all of them simultaneously. As highlighted in [Anastasi
et al., 2009], the main focus areas for power reduction in the communication sub-system
are topology management, duty cycling, medium access control and data driven management.
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Topology Management

In order to keep full connectivity in the network some nodes can be assigned different
duties. Finding out which node is more suitable for each activity in the network is referred
as topology management, and that usually can only be achieved when network redundancy
is available. In order to enable proper topology management, sensor nodes need to be
aware of the current topology, available paths, state and path redundancy. The problem of
discovering the surroundings can become very complex in epidemic WSN and is generally
referred as topology discovery [Anastasi et al., 2009; Hao et al., 2018]. With the topology
management, a sensor can change its role, by either reacting to an updated condition in the
network or by means of an external command. The conditions that trigger updates in the
topology configuration varies depending on the routing protocol in use.

Duty Cycling

The idea of duty cycling or sleep cycle management is to reduce the energy consumed by
the communication sub-system by turning the radio ON and OFF in pre-defined amount of
times [Lazarescu, 2013].

Duty cycling power control consists in controlling the power ON and OFF, or toggling
between different energy modes of the compute unit, such as sleep/awake during a pre-
defined amount of time of a complete cycle as represented in Figure 2.4. Considering the
full cycle as the time between transmissions, the system should sleep for an amount of time
and be awake for the rest of the time. The awake time depends on how much work it is
required for the protocol. The higher percentage of sleeping time, the more energy efficient
the system is, and the awake time is commonly called duty cycle. This is applicable for
every component of the node and even for the whole node itself.

Figure 2.4.: Representation of a Duty Cycle

Duty cycling on the radio unit is usually performed by Medium Access Control (MAC)
protocols, as used for instance by the ContikiMAC protocol [Dunkels, 2011]. Nowadays,
there are several hardware designed specifically with the Internet of the Things (IoT) mar-
ket as target. They introduce different ways of implementing low power consumption by
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switching OFF one or more components of the system in order to save energy. The sleeping
time of a system can be severely increased when all nodes are synchronised, since in this
case all nodes can be put in a deep sleep state, and only wake up when is time to work.
When the nodes cannot be synchronised, they must be put in a light sleep state, in which
the radio can still listen the medium and wake up the node via interrupt signal to execute
some tasks. The problem of synchronising the nodes can become difficult when there is no
Global Positioning System (GPS) global clock or similar available.

Medium Access Control

As any other type of network, WSN needs a medium in order to propagate data. Since
WSN do not use wires, they need to use electromagnetic radio waves as medium, and the
MAC controls the way the nodes access this Radio Frequency (RF) medium. Many MAC
protocols exist today such as the IEEE 802.11 family, IEEE 802.15.4 and Zigbee [Al-Sarawi
et al., 2017], but they are usually not directly applicable to WSN due to the aspect of energy
constrain present on nodes [Schaefer et al., 2013]. A MAC protocol that is specialised in
WSN needs to take in consideration and aim for:

• Reduced overhead - Protocols aim at reducing the most possible the amount of over-
head added by the protocol;

• Deep sleep when idle - The nodes benefit of being able to stay in deep sleep state
when not transmitting, saving energy for not being listening all the time;

• Auto reconfiguration - The protocol needs to enable the auto-reconfiguration of the
network without direct intervention.

Data Driven Management

The focus on the data driven approaches is to reduce the energy consumption by changing
the way the node treats data. The reduction takes place in different forms:

• Data reduction

– Data compression - Nodes can compress the data before sending to a cluster
head, or the data can be compressed by a cluster head before forwarding. The
data needs then to be uncompressed or decoded at the sink node or final desti-
nation;

– Data processing - Nodes can also aggregate or discard redundant data in the net-
work before forward, avoiding unnecessary data redundancy at the destination;

– Data prediction - By using statistics can also be predicted, avoiding unnecessary
sensing.
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• Data acquisition optimisation

– Adaptive sensing - Different applications require different sensing frequency, but
it does not need necessarily to be deterministic. The sensing frequency can be
changed during execution based on how data is changing and application pa-
rameters [Silva et al., 2017];

– Hierarchical sensing - Nodes that are cluster heads can take decision on the
sensing rate of the other nodes and establish thresholds values to define when
nodes will transmit new values after sensing [Manjeshwar and Agrawal, 2001];

– Model driven sensing - Uses models based in probability to define how often the
sensing will take place [DESHPANDE et al., 2004].

2.2 flat-based routing

Multihop flat-based routing is a type of protocol in which every node or mote perform the
same or similar role in the network. Considering that, and the large number of nodes in the
network, all nodes cooperate with similar roles in order to achieve proper data distribution.
Flat-based routing protocols can be proactive and constantly have the updated state of the
network and in some cases routing tables, and in other cases they can be reactive, trying
to discover the state and/or routes only when needed. The latter helps in saving energy
but can increase the latency in the network, specially in large topologies due to the time
spent calculating routes before the node can respond the request. Some of the flat-based
routing protocols are now presented. A comprehensive list and the respective classification
is presented in [Al-Karaki and Kamal, 2004].

2.2.1 Gossip / Epidemic Routing

Gossip or epidemic routing [Kuosmanen, 2000] uses a one to many forwarding behaviour
where each node simply relays a received packet to its neighbours. This creates an expo-
nential growth in the number of messages traversing network similar to the way a disease
spreads, hence the name epidemic routing. On a naı̈ve implementation of the gossip pro-
tocol, each node immediately forwards all messages received to all the neighbours in sight.
Usually a gossip protocol randomly selected set of neighbours to whom packets will be re-
layed by using a fan-out3. As consequence, all nodes are expected to sooner or later receive
all the packets being disseminated in the network [Carvalho et al., 2007]. However, they are
also expected to receive several copies of the same packet, leading to implosion4. In order to

3 Fan-out is a technique of choosing only part of the neighbours to receive a packet.
4 A node receiving several copies of the same packet.
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stop the message spreading, the protocol could either record the IDs of the latest packets
shared and iterate through it for every received packet, or implement a Time-to-Live (TTL)
for each packet. The former is more effective in reducing the entropy in the network, but
requires more processing and the implementation of an additional buffer management al-
gorithm [Leitao, 2007], while the latter requires a way of finding the optimal TTL to achieve
maximum coverage with less forwarding rounds.

This type of algorithm is indicated to applications in which all nodes are required to
receive all packets (full network coverage) and when high delivery efficiency is desirable.
Both design goals require tuning on the TTL and fan-out in order to be achieved and these
goals usually have a side effect of requiring more energy due to the high packet redundancy
yielded [Al-Karaki and Kamal, 2004; Carvalho et al., 2007]. Due to the excessive number
of packets exchanged in the network, it is expected that this protocol will result in rapid
depletion of the node’s energy store when applied to WSN.

2.2.2 Sensor Protocols for Information via Negotiation

The Sensor Protocols for Information via Negotiation (SPIN) protocol introduced in [Heinzel-
man et al., 1999] can be considered more as a set or a family of protocols than a protocol it-
self. In this family of reactive negotiation-based protocols, defined originally by Heinzelman
[Al-Karaki and Kamal, 2004], the nodes disseminate data between their peers assuming
originally that every node is a potential sink. As a consequence, the information is virally
distributed to a large number of nodes, increasing the probability of a hit when a request
for data is sent to any random node.

SPIN works as an epidemic protocol, but tries to address common issues by using nego-
tiation and resource adaptation. Instead of disseminating all data, it spreads information
with meta-data. Furthermore, another issue is sending data to areas that do not require it
in the first place. In order to address these issues, SPIN introduced the concept of a three
stage meta-data negotiation protocol with three types of messages:

• ADV - Used by a node to advertise new data;

• REQ - Used by the receiving node to request the advertised data;

• DATA - The actual data message.

When a node advertises its data with ADV, it sends meta-data information. So, con-
sidering the received meta-data, the neighbour can decide based in predefined parameters
if it is interested. If so, it can request it with a REQ message, and receive it via DATA
messages. The process is repeated in every node by advertising to its neighbours. Even-
tually, the whole area will be able to receive all the data they are interested in. While
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this process helps in reducing the data amount traversing the network when dealing with
large payloads, it adds an unnecessary overhead when dealing with small payloads. The
SPIN family consists of the following set of protocols as presented in [Al-Karaki and Kamal,
2004]:

• SPIN 1 - Works with the aforementioned 3 stage protocol;

• SPIN 2 - Introduces an energy-aware threshold. The node only participates in the
three stages diffusion when it can finish the whole process without depleting stored
energy below its predefined threshold. Defining a correct threshold value is there
challenging, since reaching it in too many nodes will eventually block the network;

• SPIN-BC - Broadcast version;

• SPIN-PP - Point-to-point version;

• SPIN-EC - Similar to PP but with energy heuristic;

• SPIN-RL - Designed to solve issues with lossy communication channels.

Besides the overhead, another disadvantage of having a multi stage communication is
that it increases the probability of failure in the since all three messages need to be delivered
in order to exchange one data unit. SPIN-RL was created to solve this issue in networks
where the probability of packet loss is higher.

2.2.3 Directed Diffusion

The event-driven directed diffusion algorithm [Intanagonwiwat et al., 2000] is characterised
by being data-centric, in such way that data is aggregated and named according to attribute
value pairs. The idea behind is to eliminate redundancy and save energy by aggregating
data that have the same destination, and reinforcing lower cost paths. An example of a
interest is given below, where the sink request sights of an animal in a specific area.

1 {

2 instance: leopard

3 rectangle: [0, 400, 0, 400]

4 duration: 3600s

5 interval: 5s

6 }

In this reactive protocol, the sink requests data based on its interest at the time, and by
broadcasting this interest, the sink is dictating the network behaviour. When a sink needs
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specific information, it requests interest from a location by broadcasting a packet with the
duration and the frequency that data should be sent back (initially set to a low value).
Each node receiving the request, sets up a gradient containing the desired attribute and the
direction back to the source. When a node that can answer the interest receives the packet,
it sends data back to the nodes from which it received the request obeying the previously
set gradient. The interest will follow different paths back to the sink as seen in Figure 2.5,
and from all the possible paths the best (the one that arrived before at the sink) it reinforced.
The reinforcement is made by reissuing the same interest with increased frequency only to
the nodes in the best path.

Figure 2.5.: Direct Diffusion [Al-Karaki and Kamal, 2004]

The steps of the direct diffusion protocol are listed below.

• A - Broadcasting or Interest Propagation: The sink broadcasts the interest from a
specific location, flooding the network and establishing a state. Each node has a
interest cache where it keeps interests and directions.

• B - Gradient Setting - Sets up the connection between the interests and the direction
of the data towards the sink.

• C - Best Path - When the gradient has been set and all possible paths are known, the
best path can finally be chosen between the requested location and the sink. The sink
sends a new interest packet with a low interval setting to reinforce the path.

2.2.4 Rumour Routing

Rumour routing [Braginsky and Estrin, 2002] is an event-driven protocol designed for ex-
changing data in very large networks where the interest is usually not in a specific node,
but on an area covered by several nodes. Those nodes observe an event that occurs in that
specific area, and the sink node express interest in events. It works in a similar way to
directed diffusion, but in directed diffusion the sink node express an interest in a specif
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geographical area, while in rumour routing the interest is expressed in terms of the event.
In this particular situation the queries have to be injected in the entire network in a flooding
manner. In addition, when the number of measuring events is small compared to the num-
ber of queries, the latter can be directed to particular nodes that have observed such events
before, instead of flooding the whole network. To flood such events throughout the network
the algorithm create agents, that are propagated in to other nodes and contain information
about new local events to the far located nodes as seen in 2.6(a). Agents are special packets
that have a high TTL when should cover the entire network. When a the agent reaches a
node, this can update a table that relate events to routes towards them. In rumour routing
the query packets follow a random walk through the network until it reaches a node that
has that event in its event table as seen in Figure 2.6(b), it knows the exact route towards
that event, reducing communication cost.

(a) Agent Advertises Event (b) Node Request Event

Figure 2.6.: Rumour Routing

By reducing communication costs, this protocol can yield good energy saving results, but
only when the number of events is small. When the number of events is large, the cost of
maintaining large events and agents tables has a negative impact. This protocol require
evenly distributed symmetrical topologies since its delivery efficiency relies on query pack-
ets finding nodes that have the been visited by the event’s agent. If it is required high
delivery, the events would need to issue many agents with high TTL to flood the network,
which would increase the energy use.

2.2.5 Minimum Cost Forwarding Algorithm

The Minimum Cost Forwarding Algorithm (MCFA) is a protocol that creates a flat topol-
ogy by calculating the minimum cost path from each node to the sink or base station [Ye
et al., 2001]. The protocol has two distinctive stages, the topology discovery and the run-
ning. When sending a message to the next hop, the receiving node tests if the message is
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following the minimum cost route. If so, it forwards the message to its neighbours and the
process is repeated until the message reaches the destination via the lowest cost path, since
each node knows the shortest approximated path towards the sink.

During the topology discovery stage, in order to estimate the shortest path, the sink
starts as an advertiser and sends a broadcast message to all nodes and set the cost to zero,
which is incremented at every hop. The nodes, on the other hand, start as listeners and
set their current cost towards the sink to infinity. So, when a node receives the broadcast
messages from the sink, it compares with its current estimation. If the new cost is smaller,
the current cost is updated. All the nodes that received the message from the sink repeat the
same process by becoming advertisers and sending a similar message to their neighbouring
nodes. It can happen that each node has neighbours with different costs, so in order to
avoid calculating its cost by using not the shortest path to the sink, a back-off timer is
implemented. Every time the node receives a packet during the topology discovery phase,
it resets a timer and waits for a possible other packet with smaller cost. When the timer
expires, meaning that all the neighbours have sent their setup packet, the node can finally
pass to the running stage.

During the running stage, every new message is configured with the weigh5 of the node
which is creating the message, and a initial cost is set to zero. For every hop, the receiver
adds the cost between the nodes to the initial cost and compares to its own weigh. If it is
equal or smaller it means that the message is following the minimum cost path and it is
forwarded, otherwise the message is dropped.

The MCFA is energy efficient since it does not require maintenance of routing tables and
adds small overhead for each message. One disadvantage is the lack of adaptability in
case of topology change in the network due to mobile nodes or if the node assigned as
sink changes, and the impossibility to self healing in case a node along the minimum cost
path dies before the others. One possible solution for that would be to force the network
to return to the topology discovery stage periodically, which would increase the energy
consumption.

2.2.6 Push-lazy-push Multicast Tree

The Push-lazy-push Multicast Tree (PLUMTREE) Leitao [2007] protocol is a bi-modal pro-
tocol that makes use of the simplicity of a tree-based protocol but introduces an epidemic
overlay to increase the resilience of the network. In this protocol the epidemic broadcast
is performed in two different modes, eager push or lazy push. The tree-based dissemi-
nation is performed by the eager nodes, while the remaining nodes perform a lazy push
broadcast, that serves as a backup purely gossip dissemination, useful in face of failures in

5 The number of hops multiplied by the communication cost between the nodes.
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the broadcast tree and that guarantees high delivery rate and tree healing in case of node
failure. In this protocol is assumed that nodes can keep a log of distributed packets, so that
in case of repetition, those packets are dropped. To build the broadcast tree, the protocol
needs a partial view of the neighbouring network, and in order to keep a partial view of
the network, this protocol uses a membership service based in Peer Sampling Service. The
main functions of the PLUMTREE are:

• Tree Construction - module responsible to select the neighbouring nodes that will
construct a link which will perform the eager pushes. The subset of nodes chosen for
the eager pushes function in a similar way as pure gossip with fan-out. The remaining
nodes will than operate using lazy pushes.

• Tree Repair - module responsible to ensure that even on the occurrence of failure in
some nodes, all nodes remain reachable by the spanning tree.

In order for the protocol to ensure low latency in the network, it selects as eager nodes
the peers from whom they receive the first messages. On a first moment the lazy nodes
list is empty, and as the receiving node starts to received repeated messages, those nodes
are moved to the lazy list. As soon as the network has lazy nodes, they start broadcasting
digest messages with the list of available message IDs they have. If the eager broadcast
tree fails, and a node has interest in a message received via the lazy push digest, it sends
a crafted message requesting the desired message via the eager tree. This special message
both broadcasts the interest in the message, but also heals the tree. The main goals of this
protocol are therefore to ensure high delivery rate, network coverage and low latency.

2.3 hierarchical and location based routing

Hierarchical or cluster based routing stands for a set of techniques where different nodes
perform different tasks based in predefined characteristics. In hierarchical routing, a two
layer scheme is introduced, in which one layer takes care of controlling how each node will
behave and the other to actually perform data routing. The idea behind these protocols is to
divide the network in clusters and define cluster heads that are responsible for the routing
whilst the other nodes are responsible for sensing events.

By performing data fusion and aggregation, hierarchical routing can reduce the energy
burden within the clusters by reducing the overall number of messages to the sink. Most
of the techniques in this category are more about how to choose the roles of each node
and controlling adaptive features instead of routing itself [Al-Karaki and Kamal, 2004].
Some hierarchical protocols use location to build the hierarchical topology, hence, are also
classified as location-based protocols.
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2.3.1 Low Energy Adaptive Clustering Hierarchy

Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical-based protocol, in
which a cluster head is randomly selected between the nodes. The protocol has two tempo-
ral stages: the first one deals with the topology discovery and control, and the second is the
stead state. On the topology control stage, the cluster head is selected randomly based on
a equation described in [Heinzelman et al., 2000]. During the stead state stage, nodes actu-
ally exchange data. Since it is a cluster based protocol, data can be aggregated, processed
and compressed in the cluster before being forwarded towards the sink. Such processing
is made by the current cluster head, that during this time will spend more energy than the
other nodes. This action leads to energy unbalances, but since the cluster heads are chosen
stochastically, given enough time it is expected that the unbalance disappears.

2.3.2 Power-Efficient Gathering in Sensor Information Systems

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) is a chain-based pro-
tocol [Lindsey and Raghavendra, 2002] developed as an enhancement of the LEACH proto-
col. The protocol works in a way that each node only needs to talk to its closest neighbours
and in order to equalise power drain, in each round one node takes the role of talking to
the BS, restarting when all nodes have taken this role.

PEGASIS uses signal strength to find closest neighbours and also adjust it so that each
neighbour can talk to only one node, thus avoiding the creation of clusters like in LEACH.
Since this protocol uses the location in order to build the topology, it is also classified as a
location-based protocol. It has the requirement that all nodes need to have enough radio
range to reach the BS and that all nodes are capable of adjusting the radio power during
run-time.

2.3.3 Threshold-Sensitive Energy Efficient Sensor Network Protocol

Threshold-Sensitive Energy Efficient Sensor Network Protocol (TEEN) is a hierarchical pro-
tocol introduced in [Manjeshwar and Agrawal, 2001], where the node that is selected as
cluster head with the same random criteria as LEACH, send two threshold values to the
other nodes:

• Hard threshold - Which is a range of values that govern when the sensor is allowed
to transmit. Only when the sensed value is within the defined range, the node will
transmit;
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• Soft threshold - Which is a percentage value, stating how much the new value should
change compared to the previously measured value to justify a new transmission.

Those threshold values are calculated based in a equation described in [Manjeshwar and
Agrawal, 2001]. A node configured with the TEEN protocol has the transmission radio
always off, but is always listening to the medium, in order to receive new threshold values
transmitted by the cluster head or by a newly attributed cluster head. Since the nodes never
transmit anything unless the two threshold values are reached, the network saves energy.
A possible negative effect is the possibility of never listening to the two threshold values,
which would cause the nodes to never transmit, or to be too conservative in those values,
which could harm the measurements accuracy. To find optimal values for the thresholds is
therefore the same as finding the balance between accuracy and energy efficiency. Another
negative side of TEEN is having the receiving radio always on, and consequently the micro-
controller never in deep sleep. Other protocols have been created based on TEEN aiming for
different enhancements depending on the application:

• MODTEEN - Similar to TEEN but with a modified equation for calculating the thresh-
old values [Pundir et al., 2018];

• APTEEN - Similar to TEEN but can issue warnings for critical value changes which
can bypass the thresholds, enabling the protocol to be used in time critical applications
[Manjeshwar and Agrawal, 2002];

• DAPTEEN - Makes use of geographical parameters to try to reduce data redundancy
[Anjali et al., 2016], so the protocol can also be classified as location-based.

2.3.4 Minimum Energy Communication Network

Minimum Energy Communication Network (MECN) is a routing protocol introduced in
[Rodoplu and Meng, 1999] that uses geographical data to build a hierarchical topology,
and so can also be classified as location-based. The rational behind this protocol is to
create local cluster or relay groups where nodes exchange data. A node, by knowing its
surroundings, tune the transmission power to talk only to nodes closer to it by using low
power GPS data. Which requires a hardware capable of doing so during run-time.

The protocol also has the capability of self-configuring, so it can heal the topology if the
network changes. A negative side of this protocol is that it always assume that all nodes can
talk to each other, which is not always true since physical barriers can be between nodes
even though they are geographically close. To solve this issue, an extension was added to
the protocol called SMECN, where the letter S stands for small.
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2.4 overview

Table 2.1 presents an overview of the protocols introduced in this chapter. Two contin-
uous delivery flat protocols were introduced and will later be used for comparison with
the proposed protocol during the simulations. The naı̈ve gossip with and without fan-out
have as main characteristic the delivery efficiency and network coverage, with the disad-
vantage of wasting too much energy with packet duplication. The proposed protocol aims
at keeping the same delivery efficiency whilst reducing the duplication, thus increasing the
energy efficiency. The MCFA on the other hand, is very efficient when delivery messages
to a sink, guarantying high delivery efficiency but with low network coverage. Also, the
proposed protocol can handle mobile nodes by definition, mobile sink nodes and multiple
sink nodes. While the PLUMTREE protocol has similar goals as the proposed protocol,
meaning high delivery rate and good network coverage, it focus on low latency. Due to
added complexity in the PLUMTREE algorithm, and the additional requirement of relying
on other algorithms, it is expected that this adds an computational and energy footprint. It
also has capacity of performing a slow tree healing, which enables limited mobility to the
protocol.

The query-based flat protocol SPIN has the advantage of saving energy with large pay-
loads, since initially the nodes only advertise new metadata, and sends data only upon
request. But, when the payload is small, the overhead of needing three packets for each
data unit instead of one makes this protocol inefficient. Directed diffusion and rumour
routing have a negative impact in energy efficiency during the initial moments of the net-
work, when no gradient has been created in the directed diffusion and no agent has been
issued in the rumour routing. After some time, all nodes will eventually have tables with
gradients and routes to events, but keeping those add a negative footprint in computational
cost for the protocols, cost that is limited in the proposed protocol.

Table 2.1.: Protocols Summary
Protocol Classification Data Model Routing Mobility
Gossip Flat Continuous Delivery Reactive Yes
PLUMTREE Flat Continuous Delivery Proactive Limited
SPIN Flat Query Based Reactive Yes
Directed Diffusion Flat Query Based Proactive Limited
Rumour Flat Event Based Proactive Limited
MCFA Flat Continuous Delivery Proactive No
EAGP6 Flat Continuous Delivery Reactive Yes
LEACH Hierarchical Continuous Delivery Proactive Fixed sink
PEGASIS Hierarchical / Location Continuous Delivery Proactive Fixed sink
TEEN Hierarchical / Location7 Event Based Proactive Fixed sink
MECN Hierarchical / Location Continuous Delivery Proactive No
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The main problem with the hierarchical protocol LEACH, the energy unbalance, is solved
by the PEGASIS protocol with the cluster head rotation. PEGASIS however, has a require-
ment that nodes need to be able to change radio power properties during run-time and
need to have a fixed sink. The TEEN family of protocols are energy efficient in the way that
nodes create less packets, since they only transmit new data when the threshold values are
satisfied. That however, reduces the flexibility of the applications since only values within
a range are reported. The protocol proposed in this work, shall render flexibility for the
application and the problem with excess sensing could be solved by an adaptive sensing
protocol. Finally, the MECN has high energy efficiency since it uses less power to transmit
data, but requires the nodes to be equipped with GPS radios and to be able to change radio
power during run-time. Also, it has a disadvantage of not compensating for the nodes’
surroundings, relying solely on distances to set radio range.

2.5 summary

This chapter introduced different protocols covering the main elements of the WSN routing
protocols taxonomy, which are the flat-based, the hierarchical-based and location-based pro-
tocols. Since each has positive and negative aspects depending on the situation, choosing
one depends much of the application where it will be used. As this work will later compare
the proposed protocol to others by means of experimentation, some protocols were chosen
to be simulated. It is important that the simulations’ results are comparable between pro-
tocols, so it was decided that all need be implementable following the same traffic model.
Hence, it has been considered that they must follow the continuous delivery model, where
the sensor data is updated constantly and propagated towards the sink immediately. There-
fore, the gossip protocol will be implemented as a naı̈ve baseline with both a simple version
and a version with fan-out. Another protocol that can be implemented using the contin-
uous delivery model is the MCFA, and since is not an epidemic protocol, will be a good
comparison in terms energy efficiency and adaptability. None of the selected protocols is
reactive, so they will also be comparable regarding the latency.

6 Protocol introduced by this work
7 DAPTEEN
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E N E R G Y- AWA R E G O S S I P P R O T O C O L

This chapter will introduce the Energy Aware Gossip Protocol (EAGP), which is the novel
routing protocol proposed by this work, and its main goals, detailing the requirements and
decisions considered for its design and implementation. The main goal of this protocol is to
enable the extension of the lifetime of a WSN, ensure highly efficiency in data distribution
whilst reducing data duplication.

3.1 design goals

As discussed in Chapter 2, different communication protocols forward data by emitting a
broadcast packet to all its neighbours or choosing a fan-out to reduce traffic and the prob-
ability of data duplication. In this way, the information is disseminated on an exponential
rate, enabling quick and effective propagation of the information to all nodes. The side
effect is the amount of duplicated packets which can lead to fast energy depletion due to
excessive use of the radio as exemplified in Figure 3.1.

Figure 3.1.: Epidemic Packet Diffusion

Some protocols use an epidemic multicast or broadcast as a single stage on a multi-stage
protocol. The rumour routing for instance, in order to reduce the amount of data during
storms of epidemic dissemination, sends only meta-data about the events observed by the
node. If the sink or another node is interested in such information, the node will receive

23
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a request and will answer using a different routing mechanism, using a directional route
for example. That makes sense on a network where each node has a big amount of data
to be transmitted, but usually in a WSN, where the data collected by each sensing event
might be just a few bytes, that is less efficient. Hence, depending on the amount of data
to be disseminated, the cost of sending meta-data and later the actual data might add an
overhead and affect the QoS, that cannot be afforded by a resource constrained network.

The rational behind the proposed algorithm is to remain as an epidemic protocol, but
also slow down the forwarding of the packets in some nodes proportionally to their current
energy level. So, the idea is that nodes with high energy level will relay packets without
delay, while the nodes with low energy level will hold the information longer, and relay data
as a back-up path to ensure delivery efficiency. Details about the calculation of the timers
will be presented in Section 3.2.3. Table 3.1 illustrates the new terminology introduced by
the protocol and some other terminology that will be used in this document. More details
will be further given.

Table 3.1.: EAGP Terminology
Lazy A node behaviour in which it schedules the relay of packets with TMAX
Eager A node behaviour in which it schedules the relay of packets with TNEXT
TMAX The maximum time a node can wait to forward each packet in its buffer
TNEXT The time an eager node waits to forward each packet in its buffer

Node Each sensor in the network made of a radio, sensor, computation
and battery modules

Sink The node that can forward the disseminated information to another network,
usually a border router

Neighbour Node that is within radio reach
Latency Time difference between packet creation and delivery at the sink node
Storm High number of packet dissemination from different nodes simultaneously

Implosion Delivery of several copies of the same packet simultaneously or not from
different nodes

3.2 protocol implementation directives

In order to define the protocol implementation, the Protocol Data Unit (PDU) and a pseudo
algorithm are presented in this section. The algorithm was divided in two rounds: data
creation and data propagation.
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3.2.1 Algorithm

Data creation round

Every time a node wakes up from sleep mode, a callback function is called that changes the
state of the node and perform a few steps. To reduce excessive computations, the first two
steps are performed only if there is a variation in the node’s own battery level.

1. Maintain the list of neighbours, removing nodes that are no longer visible;

2. After maintaining the neighbours list, each node can decide which mode it will as-
sume thereafter, eager or lazy;

3. The node can now read a sensor for updated values and forward the information
via multicast to all the neighbouring nodes, sending its own energy level, so that the
others can refresh their list of neighbours.

The data creation round is executed less frequently than the data propagation round. So,
the update in node behaviour and the maintenance of the list of neighbours is performed in
this step to reduce the protocol’s computational footprint. Figure 3.2 illustrates each step
of this round.

Figure 3.2.: Data Creation Round

Data propagation round

This round is composed of the following stages:

1. The node receives a packet and verifies if the packet is an echo of its own sent packet.
If so discards it;

2. Check if the sender is already in the neighbours list. If so, refresh battery level, if not
add;

3. Verify the TTL value. If expired, discards the packet;

4. Check if the node id of the previous hop was the current receiving node. If so, the
packet is discarded. This avoids local looping between two nodes;
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5. If the node is in eager mode, it adds the packet to the sender scheduler with the
timer set to the latest TNEXT value according to Equation 2, which is calculated every
time there is a change in the neighbours list. If the packet with same ID was already
scheduled to be forwarded, the new packet is discarded and the current scheduled
packet removed;

6. If the node is in lazy mode, it adds the packet to the sender scheduler with the
timer set to the TMAX value. If the packet with same ID was already scheduled to be
forwarded, the packet is discarded;

7. When each timer expires, the packet is broadcast with current energy level of the
node.

The reason to discard the packets in stages 5 and 6 is to reduce the number of duplicated
packets in the network. When a packet is already scheduled to be forwarded, it is already
flowing thought a faster path. This stage can be represented as an algorithm.

Algorithm 1: Data propagation
Result: Packet is forwarded

1 message received();
2 if (sender id and prev id) 6= my id then
3 if sender id /∈ visible list then
4 visible list← sender;
5 end
6 if pkt ttl > 0 then
7 if mode = eager then
8 if pkt id /∈ sched then
9 sched← pkt

10 else
11 sched −→ pkt
12 end

13 end
14 else if mode = lazy then
15 if pkt id /∈ sched then
16 sched← pkt
17 end

18 end

19 end

20 end
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3.2.2 Protocol Data Unit

For the protocol it would be sufficient only one PDU, as presented in Figure 3.3.

Figure 3.3.: Protocol Data Unit

The enumerated fields are the minimum required for an implementation of the protocol.

1. Frame type - For EAGP only one type of frame is currently required, but for the
implementation of the a version with digest that will be discussed in 3.2.5, 4 bits are
required.

2. Packet ID - Unique packet ID used for scheduling packets. It is enough to use CRC
with 32 bits to avoid ID collision, but this could be an application design choice.

3. Node ID - ID of the node originating the packet transmission. Depending of the
network stack used in the implementation, for the protocol it should be sufficient to
use another type of identification for each node, such as MAC address or IP address.
The need of a unique node ID might depend on the application.

4. Previous Node ID - ID of the node sending the packet in previous hop. Used to avoid
local looping between two nodes.

5. Energy Level - The current battery level from 0 to 100 percent of the current node
sending the packet. For a representation of 0 to 100, 8 bits are enough.

6. TTL - TTL set during packet creation. This TTL is used by the protocol and is in-
dependent of other TTL values used by the network stack. The choice of TTL is an
application design choice. Setting to a value equal to the sink radius1 ensures high
delivery ratio towards the sink, but depending on the topology could lead to low net-
work coverage when the goal is to deliver packets to all nodes. Reserving 8 bits for
the TTL allows to a maximum of 128 hops. Since this is application dependent, the
reserved size dependes ultimatelly on the scale of the network.

7. Payload - The data to be sent. The size of the payload is independent of the MTU
used by the network stack.

1 Hop count from the sink to the farthest node.
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Packet segmentation and reordering were not considered in this work, since it depends
much on the implementation constrains and the other protocols in the network stack.

3.2.3 Timers Calculation

Every node in the network shall have a neighbours list, and with it, each node can decide
which behaviour it will assume thereafter, eager or lazy. These behaviours are based on
their current battery level comparing to the average level of the local neighbourhood. If
each node’s battery level is equal or greater than the average, it assumes an eager behaviour,
otherwise it assumes a becomes lazy behaviour. Eager nodes will schedule packets to
forward using TNEXT, while lazy nodes will schedule packets with TMAX. Making the TNEXT

proportional to the battery level, as shown in Equation 1, has however a problem illustrated
by Figure 3.4. The lower the battery level, TNEXT grows exponentially and no node would
assume an eager behaviour.

Tnext =
Tmax

Btnode
(1)

Figure 3.4.: TNEXT for TMAX = 2000ms

To solve this problem, the energy level of not only the node calculating TNEXT, but also
the energy levels from its neighbours should be considered. A node that has higher level
than its neighbours assumes an eager behaviour to forward the packets faster following
the expiration of a TNEXT timer, whilst its lower energy peers assume a lazy behaviour and
hold the information until a TMAX timer expires. If all nodes remain in lazy mode, it is
expected that the latency grows proportionally to the number of hops between the sender
and the sink by a factor of approximately TMAX times the number of hops. Hence, in order
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to achieve a lower latency without unbalancing the network, some of the nodes — the ones
with more energy — should assume a eager behaviour. As a consequence, eager nodes will
spend more energy and might eventually equalise to its neighbours, creating a tendency in
the whole network to always equalise. An expected side effect is high jitter, which should
be taken in account during the application design. Equation 2 governs the calculation of
the TNEXT timer. Considering the number of neighbouring nodes greater than zero,

TNEXT = TMAX − (TMAX ∗
Btnode −min(Btneighbours)

max(Btneighbours)−min(Btneighbours)
) (2)

Where,
Btnode= Energy level of the node in %
Btneighbours = List with the energy levels of a node’s neighbours
min = Function that returns the minimum battery level of the neighbourhood
max = Function that returns the maximum battery level of the neighbourhood

The rational behind the formula is to scale the visible nodes in a value from 0 to 1 using
the feature scaling min/max equalisation technique.

x′ =
x−min(x)

max(x)−min(x)
(3)

Since the x’ value will be always between 0 and 1, the nodes that have lower energy in the
local neighbourhood will score closer to 0, and the ones with higher energy will score closer
to 1. This value is than multiplied by TMAX, and TNEXT will be TMAX - TMAX*x’. So high
energy nodes will get lower TNEXT values and low energy nodes will get TNEXT values closer
to TMAX, solving the issue illustrated in Figure 3.4. It is possible to observe in this equation
that when maximum and minimum values of the energy levels of the neighbours are the
same, the equation yields a division by zero, which is not acceptable. So a verification must
be made in the code before the calculation. Some constrains were defined to the protocol
in order to ensure the main goals are achieved.

3.2.4 Design Constrains

With the main directives of the protocol defined, the design constrains were defined. The
constrains listed here shall be considered during the implementation in order for the proto-
col to achieve the main goals previously defined.

• The protocol should behave in an epidemic manner;

• Each node in the network must know the energy state of all its neighbours and this
information should be updated every round;
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• Only the energy state of nodes currently in neighbouring reach should be considered;

• Packets are created with a TTL that is decremented for each hop. When TTL is zero,
the packet is discarded;

• Each exchanged packet must have a unique identifier;

• The protocol shall not require persistent storage for historic data (list of routes, list of
past packets and etc.), if a node reboots or a new node is added, the behaviour of the
protocol is not affected.

3.2.5 Digest Variation

For testing purposes, a variation of the EAGP protocol is defined. In this variation, when a
lazy node receives a packet that it has scheduled to send, it drops it and removes from the
scheduler. All dropped messages are added in a circular buffer and a periodic digest of this
buffer is sent to all nodes. The digest has its own independent scheduler, with periodicity
set to ten times the TMAX to avoid saturation of the network.

The digest PDU is similar to a regular EAGP PDU, but it sends an ADV packet containing
an array with the packet IDs it has in buffer. A sink when receives this ADV packet, checks
in its delivery log if any packet is new. If so, it creates a new type of packet using a
REQ PDU. This request PDU is also very similar to a regular EAGP PDU with a different
identifier, but instead of sending a regular message it sends an array with the desired
message IDs. This special PDU is disseminated among all nodes and whoever has one
or more of the packets buffered send it as a regular packet with TTL reset again to the
maximum usual value and the message is than removed from the buffer. Therefore, the
protocol behaves for the lazy nodes, similar to the SPIN protocol mentioned in Section
2.2.2.

Since the TTL is reset to increase delivery rate, the hop count is expected to increase
above the usual TTL, and also the entropy in the network is expected to increase due to the
introduction of two new types of PDUs and as consequence more packets being dissemi-
nated. The complexity of the algorithm and the use of computation power to process more
lists also increase. Therefore, this idea was not taken forward for the protocol definition
but was kept for testing and benchmarking purpose.

3.3 summary

The EAGP introduces a deterministic way of deciding which nodes will relay the packets
faster based in remaining energy level, and tries to solve the problem of lower efficiency in
packet delivery by using the lazy nodes as a backup path to deliver packets to remaining
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nodes. It is also expected that some nodes will receive the messages almost immediately
and others delayed by TMAX. Hence, this protocol is applicable when epidemic coverage
is needed, but higher average latency is tolerable. Since the information about the nodes
energy level is transmitted together with every packet, the nodes can recreate the topol-
ogy every round of data propagation, enabling a very effective protocol in self-healing for
mobile nodes.



4

S I M U L AT O R S A N D T E S T I N G E N V I R O N M E N T S

This chapter covers some of the available simulators, emulators, hardware, operating sys-
tems and test beds that can be used to research and prototype with WSN. The proposed
protocol is further implemented based on one of the simulators presented here.

4.1 wireless networks simulation and emulation

Implementing a routing protocol using a simulator enables the possibility of analysing
behaviour and collecting metrics before a possible implementation in hardware. A few free
network simulators are available [Helkey et al., 2016; Bhattacharya, 2011] and some of them
are introduced in this section.

4.1.1 Mininet-Wifi

Mininet-Wifi is a fork of a well know network simulator called Mininet. The Mininet simula-
tor was created with the goal of studying Software Defined Networks (SDN), so its original
version focuses only in wired networks. Mininet-Wifi was than forked from Mininet to add
support to wireless networks. The program itself is a bundle of scripts programmed in
Python allowing the creation of network topologies where each device can be accessed via
its own virtual terminal [Fontes et al., 2015]. These topologies can be created manually via
command line or can also be created via Python scripts to run different scenarios. The fact
that the topology can be created and manipulated via Python scripts opens a large number
of possibilities for simulations, since the script can be created with logics and automations
to change the topology during execution. Mininet-Wifi also includes the possibility of chang-
ing the nodes position in three dimensions and the behaviour of the medium with different
ways to simulating the wireless signal attenuation.

Since users have access to a virtual Linux terminal running its own network devices, they
can create applications in any programming language that is able to run in the chosen host
operating system. Also, any application compatible with the host Operating System (OS)

32
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can run seamlessly, being possible to run tools useful for this research such as Wire-
shark. The network interfaces created in each virtual node use the Linux kernel driver
mac80211 hwsim to create a virtual wireless network interface [Rethfeldt et al., 2016]. This
network interface emulate the behaviour of an interface with perfect radio, therefore all
packets created in one node will arrive in the destination node as long as it is in range.
This behaviour is usually not desired for most of the simulations, so another software simu-
lates the wireless medium between the virtual nodes. The wmediumd project was originally
created by a company called CozyBit1 to work on top of mac80211 hwsim implementing a
probabilistic model that was originally statically configured during run-time via a configu-
ration file [Silvano et al., 2017]. The final architecture when using wmediumd is presented in
Figure 4.1.

Figure 4.1.: Wmediumd Architecture

The user would need to create beforehand a matrix with all the nodes and the probabil-
ity that packets in each channel and each bandwidth would fail to be delivered. Therefore,
mobility, obstacles, shadowing and other aspects of wireless communications were not con-
sidered in the original project. Since the project is open source, several additions were made
by subsequent forks of the project, and the following propagation and mobility models 2

were added:

• Propagation Models

– Free Space

– Log-Distance

1 The company is currently out of business but the project is open source.
2 https://github.com/ramonfontes/wmediumd/blob/mininet-wifi/wmediumd/config.c
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– Log-Normal Shadowing

– International Telecommunication Union (ITU)

– Tow-Ray Ground

• Mobility

– Random Walk

– Truncated-Levy Walk

– Random Direction

– Random Waypoint

– Gauss-Markov

– Reference Point

– GPS Route

Even though Mininet-Wifi has the possibility of simulating software defined network com-
ponents [Fontes et al., 2017], this feature will not be considered for this project since there
will not be a need of switches in the topologies created for testing the protocol. It should
be also taken into consideration that since it uses Linux drivers to emulate real network
cards, and wmediumd also runs most of its software in kernel space, Mininet-Wifi is utterly
dependent of the Linux scheduler and simulated applications that run in user space might
have the performance affected by that.

4.1.2 CORE

CORE3 stands for Common Open Research Emulator and is, in fact, an emulator, not a simula-
tor. CORE works in a very similar manner as Mininet-Wifi, being a set of tools enabling the
user to setup an emulated environment. When running a simulation on CORE, applications
running on each node act as real network application. It is open source and was originally
created by Boeing and released with BSD license.

CORE has two main components, core-daemon and core-gui. The daemon is responsible for
creating the virtual environments for each node by using Linux network namespaces (same
as used by Mininet-Wifi). When spawning a node using namespaces, each node has its own
network stack and acts as a lightweight virtual machine where all nodes share the same
resources and the same kernel. Each node can therefore create its own network interface
that communicates to the host via network bridges. Wireless networks are emulated with
ebtables rules and the medium does not take in account simulated losses caused by signal
attenuation or obstacles. Likewise Mininet, core-daemon is written mainly in Python, making

3 Available at: https://github.com/coreemu/core
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it easy to create scenarios with Python scripts as shown in Annex C.1. As an alternative
to create scenarios, core-gui can be used. The overall architecture of CORE is presented in
Figure 4.2 as seen on CORE’s documentation4.

Figure 4.2.: CORE Architecture

Core-gui is made in TCL/TK and has an intuitive interface, making it easy to configure
scenarios. It is however not very practical for simulations that require open terminals in
each node. CORE’s Python API enables the user to export a running scenario created in
Python as XML file that can be open in core-gui, but not all configurations are exported.
Figure 4.3 exemplifies the interface with one simulation imported from a XML file which
was exported from a previous simulation created with Python scripts.

Figure 4.3.: CORE Gui

4 http://coreemu.github.io/core/architecture.html
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When running different radio or propagation models is required, EMANE can be used
with CORE. EMANE (Extendable Mobile Ad-hoc Network Emulator)5 is a MANET(Mobile
Ad-Hoc Network) emulator that can be used together with CORE to emulate the MAC/-
PHY layers [Ahrenholz et al., 2011]. It enables higher fidelity for layers 1 and 2 when
required. It relates to CORE the same way mac80211 hwsim and wmedium relate to Mininet-
Wifi. EMANE offers different radio models to be used:

• RFPipe

• IEEE 802.11 a/b/g

• TDMA

• LTE

• Bypass

EMANE is open source and originally created by the US Navy. Both CORE and EMANE
can be deployed in a distributed network to enhance the computing power for the scenario,
thus enabling extensive scalability that is limited only by the available number of servers.

4.1.3 CupCarbon

CupCarbon [Bounceur et al., 2018; Mehdi et al., 2014; Lounis et al., 2017] is a smart city
and IoT WSN simulator, open source and written in Java that has a user friendly interface.
It allows the simulation of different types of nodes and protocols [Mehdi et al., 2014]. For
the radio, the user can choose between 801.15.4 (ZigBee or 6LoWPan), WiFi and LoRa radio
protocols.

In CupCarbon, the user has the option to create a route for the sensor node and save it as
file with GPS coordinates. This file can be associated with one or more nodes and also be
used in different simulations. The user has the option to use Open Street Maps (OSM) or
Google Maps as background as shown in the Figure 4.4, so the GPS file with the route can
be seen as an overlay layer on a real map representation.

5 Available at: https://www.nrl.navy.mil/itd/ncs/products/emane
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Figure 4.4.: CupCarbon Main Window with OSM as background

It is also possible to use energy models of the sensors in order to follow how the stored
energy decay along simulations, providing graphics and reports. However it is not possible
to emulate and control the different energy modes that each specific hardware can achieve,
such as radio sleep or deep sleep. CupCarbon is a simulator that aims at simulating the
behaviour of mobile nodes in a wireless environment but it does not give access for the user
to different network layers, hampering the desig and test of routing protocols. In order
to allow the user to simulate nodes different actions, CupCarbon has its own scripting
language called SenScript. A script can be created to control how the nodes interact with
each other by using a simple set of commands. Finally, one extra feature of CupCarbon that
can be useful for prototyping is the possibility of exporting the script associated with the
nodes as Arduino6 compatible C++ code, allowing uploads to real WSN nodes and testing
of algorithms. This scripting language is adequate to simulate simple node’s behaviour and
access some variables, but it might however come short for prototyping different routing
algorithms running at application level.

4.1.4 Cooja

Cooja is an open-source wireless network simulator usually bundled together with Con-
tikiOS [Roussel et al., 2016]. It has a graphical interface somewhat similar but more simple

6 https://www.arduino.cc/
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than CupCarbon, as seen in Figure 4.5. It also provides the possibility of changing the
simulation speed, making it easier to simulate long lasting scenarios. It has also a packet
dissector, where the developer can see the whole sequence of packet exchange. One feature
is the ability of running simulations of binary code compiled with other OS than Contiki
as long as the hardware is compatible with the platforms supported by Cooja. It is possible
for example, to run binary code compiled with TinyOS and RiotOS [Roussel et al., 2016].

Figure 4.5.: Cooja Main Screen

Cooja also provides extra modules that can be added to the simulations, being one of
them an energy monitoring module. This module however is only usable if the code being
simulated was bundled with Contiki OS and compiled with support to energy metering.
Unfortunately, like ContikiOS, the project has not been very active lately.

4.1.5 NS-3

The NS-3 [Kodali and Sarma, 2017] simulator was created as a successor to the NS-2 simula-
tor, which is a simulator that has been extensively used in both private sector and academic
world. This software is a modular simulator, so when building a simulation script, the user
instantiates objects with specific functions according to the application need. It has many
features, specially for reporting and generating traces and debug data. It is written in C++,
and the simulation scripts can be run both in C++ or Python.
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Figure 4.6.: NetAnim Interface

There is also a tool called NetAnim for the NS-3 that allows the user to have a Qt based
graphical interface to visualise the simulation architecture. The interface of NetAnim is
presented in the Figure 4.6 from the NS-3 website7. Besides being able to simulate WSN
energy models [Wu et al., 2011], is also capable of handling large scale simulations with
good performance [Weingartner et al., 2009]. Even though NS-3 has an energy model
included , this model is focused mainly in wireless network interfaces, and not in WSN
nodes with different energy operating modes.

4.2 testing plantforms

Nowadays, as presented in Section 4.1, there are many platforms that can be used to im-
plement nodes for WSN. Another possibility is to simulate routing protocols for testing is
to use test beds. Test beds are real hardware platforms that can be programmed directly
with bare metal software, or with the help of an operating system depending on how much
program memory is available and the software complexity. Some companies can also rent
test beds for end users, and those can be remotely programmed. Choosing the platform
depends mainly on the requirements of the project and its constrains such as connectivity,
energy density and physical dimensions.

7 https://www.nsnam.org/wiki/File:Properties panel.png/
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4.2.1 Devices Programming

For programming sensor nodes, depending on the platform, there can be a few different
software available when the goal is to generate bare-metal8 binaries. Some manufacturers
distribute IDEs together with compilers for their platforms and others toolchains to be used
on Linux. The most common programming language for uControllers for example is C/C++
and Assembly, but for some of them Python9 can also be used. Some of the manufactures
sometimes also release libraries in order to reduce the development costs. Another way of
programming the nodes is by using special OS designed for embedded systems.

RiotOS

The RiotOS is an open-source operating system with focus in wireless sensor networks
created based on a previous OS called FeuerWhere [Rasool et al., 2017; Roussel et al., 2015].
The system has as main focus delivering real-time capabilities, low energy consumption and
prioritise modern wireless networks. Those characteristics makes the RiotOS a promising
platform for wireless sensor networks.

RiotOS is written in C and C++ and so are the applications intended to run on it, but a
proper toolchain is required for each specific processor. It can use regular building tools
such as gcc and gdb making it accessible to a bigger developer community. It is also com-
patible with a large hardware base, being compatible with 8, 16 and 32bit processors. The
overview of Riot is presented in Figure 4.7 from the RiotOS website10.

Figure 4.7.: RiotOS Overview

One significant advantage of RiotOS is that when building an application, since the OS
is modular, only the necessary modules for such application to function will be compiled

8 Nodes executing instructions directly on logic hardware without an intervening operating system.
9 https://micropython.org/

10 https://riot-os.org/api/
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and loaded making it resource and energy efficient. The developer is allowed to deploy as
many threads as needed, being limited by the RAM memory and thread stack sizes [Baccelli
et al., 2013]. RiotOS, like most of the real-time operating systems, has its software based
in events which are triggered by timers or other interrupts. Since it is designed with focus
on constrained wireless devices, it gives priority to supporting energy efficient technologies.

RiotOS allows the user to compile the same code to different target platforms as long as
it is compatible with the resources available in the hardware. It also allows compiling the
software using the host compiler, enabling part of the code to be tested and debugged in
the host computer. In order to compile the code to different hardware, the user must before
install the necessary cross-compiler. However, to make the development faster, a Docker11

container was created with the cross-compiler for every supported platform pre-installed.

TinyOS

The TinyOS operating system is also an open-sourced OS designed for small wireless de-
vices [Gao et al., 2011]. Unlike the RiotOS, the project is currently not very active, and not
so many devices are having support being added. TinyOS is written in nesC, a dialect of C
written exclusively to be used with TinyOS and to comply with its execution model.

The application software is structured around tasks, and each task can be fired based on
events such as interrupts or timers. TinyOS applications can be compiled for a guest device
on a host machine using a cross-compiler and simulated using a bundled simulator called
TOSSIM, which is configured and set by means of a Python script.

As many of the open-source simulators, TOSSIM has been forked to create variations.
One is the PowerTOSSIM, which was a fork aimed to add the capability of measuring
with high accuracy the energy consumption of a TelosB board during the simulation [Perla
et al., 2008]. PowerTOSSIM, has a very accurate energy estimation model, but unfortunately
cannot be found anymore for download.

FreeRTOS

Another real-time operating system that aim the embedded systems market is the FreeR-
TOS. FreeRTOS12 is a mature project which unlike the previously described ones, does not
necessarily aim WSN devices. This project has the support of a lot of big companies with
implementations made by Amazon and Espressif for example. Applications are written in
C and are also based in tasks that can be fired based on interrupts or timers. FreeRTOS is a
full real-time OS and programmers can implement complex scheduling schemes if needed.

11 Available at: https://www.docker.com/
12 Available at: https://www.freertos.org/
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On Table 4.1, an overview about the main characteristics of discussed operating systems
is presented.

Table 4.1.: OSes Overview
License Main language Simulator RT MT IP4/IP6

RIOT OS LGLP 2.1 C/C++ - yes PT Both
TinyOS BSD 2 nesC TOSSIM yes no Both
FreeRTOS MIT C/C++ - yes yes IPv4

RT - Real-Time, PT - Proto Threads, MT - Multi Threads

4.2.2 Hardware

In order to implement routing algorithms and to perform tests with actual devices, several
cheap hardware implementations are available.

ESP

The ESP is a family of embedded hardware manufactured by a company called Espressif.
It is a SoC containing a programmable micro-controller and a Wifi controller [Thaker, 2016].
The basic features that the ESP8266 offer are listed in Table 4.2:

Table 4.2.: ESP 8266

Processor: L106 32-bit RISC
Frequency: 80MHz

Memory:

32 kB instruction RAM
32 kB instruction cache RAM
80 kB user data RAM
16 kB ETS system data RAM

Wifi IEEE 802.11 b/g/n

IO:

16 GPIO Pins
SPI
I2C
UART

This hardware is found in different formats and be also found as a System on a Board (SoB).
The ESP8266 has different power modes with distinct characteristics. Figure 4.8, extracted
from a brochure13, shows the different operating modes and the expected current drawn in
each of these modes.

13 https://www.espressif.com/sites/default/files/9b-esp8266-low power solutions en 0.pdf
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Figure 4.8.: ESP 8266 Power modes

According to Figure 4.8, when the goal is to run this board for years, it should utilise
the maximum as possible the deep sleep mode. When in deep sleep, the board can only
be awaken via external interrupt or an internal interrupt connected directly to an external
interrupt port, which is fired by a Real Time Clock (RTC) timer. There are several different
boards sold with the ESP8266, each of them with distinct characteristics. Figure 4.9 shows
the block diagram for the ESP8266 extracted from the datasheet14.

Figure 4.9.: ESP 8266 Block diagram

TelosB

As the ESP family, the TelosB is a hardware designed for WSN motes. It is equipped
with a low power processor and has built in several additional hardware that can be used
for sensor data acquisition. It has a IEEE 802.15.4 compliant wireless radio and is fully
supported by TinyOS. In Figure 4.10 extraceted from the datasheet15, a block diagram of
the board is presented.

14 https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex datasheet en.pdf
15 http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb datasheet.pdf
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Figure 4.10.: TelosB TPR2400 Block diagram

The basic features are listed on Table 4.3:

Table 4.3.: TelosB TPR2400

Processor: TI MSP430 16-bit RISC
Frequency: 8MHz

Memory:

10 kB RAM
16 kB Configuration ROM
48 kB Program Flash Memory
1 MB external flash

Wireless radio IEEE 802.15.4 b/g/n

IO:

8 channel 12 bit ADC
2 channel 12 bit DAC
Digital I/O
SPI
I2C
UART

TelosB’s clock can also be used in lower frequencies such as 1 or 4 MHz for increased
energy savings, and furthermore, it has different special sequential power saving modes,
where in each of them embedded devices are turned ON or OFF so that the higher the level
goes, more devices are disabled to save energy [Prayati et al., 2010] as presented in Table
4.4:
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Table 4.4.: TelosB Power Modes
Mode Description
LPM0 All hardware is activated
LPM1 The CPU is disabled
LPM2 The loop control for the fast clock is disabled
LPM3 The fast clock is disabled
LPM4 The DCO oscillator and its DC generator are disabled
LPM5 The crystal oscillator is disabled

MicaZ

MicaZ [Ali et al., 2011] is a SoB made by the company Crossbow and like TelosB is compli-
ant with IEEE 802.15.4. It is equiped with an Atmel micro-controller that became popular
with the Arduino platform. In Figure 4.11, a block diagram extracted from the datasheet16

is presented.

Figure 4.11.: MicaZ MPR2400 Block diagram

The micro-controller is energy efficient and runs in a low frequency. From all the hard-
ware platforms presented, this is the one that has less available memory for the user. More
details about the board are presented in Table 4.5.

16 http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz datasheet-t.pdf
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Table 4.5.: MicaZ MPR2400

Processor: Atmel AVR ATmega128L 8bit
Frequency: 8MHz

Memory:
4 kB Data RAM
4 kB Data ROM
128 kB Program Flash Memory

Wireless radio IEEE 802.15.4

IO:

8 channel 10 bit ADC
Digital I/O
SPI
I2C
UART

Unfortunately due the diversity and heterogeneity of the available hardware for WSN,
none of the operating systems at the moment of the writing of this document, are compati-
ble with all technologies, processors and protocols. Table 4.6 gives an overall compatibility
matrix.

Table 4.6.: OSes compatibility
ZigBee 6LoWPan 802.11 TelosB MicaZ ESP8266 ESP32

RIOT OS Yes yes no yes yes yes yes
TinyOS yes yes no yes yes no no
FreeRTOS no no yes no no yes yes

4.2.3 IoT Lab

Another approach for testing all things related to WSN and IoT is to use test beds available
to rent such as IoT Lab17. In this type of platform real hardware is deployed in a controlled
environment and sometimes even mobility is available with sensors mounted on moving
robots that can be remotely controlled as the one shown in Figure 4.12

17 https://www.iot-lab.info/
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Figure 4.12.: Test bed Robot from IoT Lab

They usually have available different hardware platform, saving research institutions the
trouble of procurement and maintenance.

4.3 summary

Since this work will include different simulation scenarios, five simulators were researched
and tested, Mininet-Wifi, CORE, CupCarbon, Cooja and NS-3. From the simulators, Mininet-
Wifi and CORE were considered the ideal choices for prototyping, since they allow the cre-
ation of native applications for the host operating system and also enable more freedom in
metric collection and energy modelling. Those were the main reasons why those simulators
were chosen for this work’s test stage. There are other operating systems that are aimed
at embedded wireless devices like Contiki OS, for example, but those mentioned are the
most currently active and with more contributors. With some preliminary tests, RiotOS has
shown to be a very complete and easy to use OS, since it has a very active community and
new devices are added constantly to the supported list.

Another important aspect is that RiotOS and TinyOS generate smaller binaries to be
downloaded to the devices, which indicated that only the necessary modules of the OS are
included, while FreeRTOS creates large binaries that possibly will consume more energy.
In the specif case of the ESP18 devices, the compilation added drivers for devices from the
board that were not used in code. More tests however are required to have precise mea-
surements of energy consumption with different operating systems and same devices and
algorithms. This dissertation however only focused on simulations, leaving the implemen-
tation in hardware as future work.

18 https://www.espressif.com/en/products/software/esp-sdk/overview
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T E S T I N G M E T H O D O L O G Y

In order to test the proposed protocol and gather results data for analysis, it was imple-
mented to run on Mininet-Wif i and CORE simulators. The analysis was made comparing
EAGP to other well-established protocols. All the different protocols chosen for the tests
were implemented independently so that it is easy to switch between them during the
tests. All the software, constraints, models and scenarios described along this chapter were
equally applied to all tested protocols, so the conditions were always the same. More details
about the test software can be found in Annex A.1

5.1 protocols

From the protocols presented in Section 2 some were selected to be implemented and used
as baseline for comparison with the proposed protocol:

• Gossip - Since the proposed protocol is an epidemic protocol, a purely gossip protocol
was implemented and used as the main baseline;

• Gossip with fan-out - The gossip protocols are usually implemented with some sort
of fan-out as an optimisation to reduce the packet duplication in the network, so a
version with configurable fan-out was also implemented;

• MCFA - This protocol was chosen since it can also be implemented with the continu-
ous delivery traffic model and represents a good comparison since it is not a gossip
protocol;

• EAGPD - A different version of the proposed protocol was created based on the
Plumtree protocol that had similar eager / lazy push behaviour described in [Leitao,
2007]. More details about this protocol can be found in Annex 3.2.5.
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5.2 observed metrics

Base on the protocol goals described in Section 3.1, some metrics were considered to be
recorded and analysed during the simulations and used to compare the proposed protocol
with other protocols [Yitayal et al., 2015].

• Network longevity - A WSN that implements an energy efficient protocol to distribute
data is expected to live longer in the sense that it will take longer until the last node
is able to deliver data to a sink. The idea is to record the time when the last packet
was delivered at a sink.

• Delivery rate - Depending on the application, it might be crucial that all packets
created on a node are delivered to all nodes or to the sink. During the simulations,
a node will always be chosen as a sink, and taken as reference for message delivery.
All messages created on a node have a unique random ID, so that in the end of each
simulation it is possible to verify which messages were able to be delivered to the
sink. Furthermore, it will be also recorded the percentage of the packets created by
each node that were delivered in relation to other nodes.

• Data redundancy - Using the gossip dissemination process to send packets induce
them to follow different paths towards the sink. Hence, the same packet might be re-
ceived by the sink more than once. Redundancy can be good to ensure high reliability,
but excess redundancy can lead to energy waste. Comparing the implosion with the
reliability can indicate how efficient a routing algorithm really is.

• Energy efficiency - At the end of each simulation, with all the metrics collected, it is
possible to assess how much energy was used and how many packets were delivered.
It is therefore possible to calculate how much energy was used by the network to
deliver each packet to the sink. The least energy used, more energy efficient the
routing algorithm is to deliver packets.

• Latency - Even though low latency is not a design goal of the proposed algorithm, the
time between the packet creation and delivery at the sink is also calculated to assess
the latency impact of the protocol compared to other protocols.

5.3 test scenarios

In all scenarios described in this section, every node’s software starts and wait from a signal
from the host to start the simulation, ensuring they start simultaneously. Time in the nodes
is calculated based on the host timer, and all tasks are performed by a scheduler that is also
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based on the host timer. By doing so, it is possible to have a global clock for all nodes and
calculate delays between actions.

5.3.1 Steady State Scenario

The steady state scenario aims to view how the algorithms perform during a predefined
slice of time from the network’s total lifetime. That represents how the protocol behave
during the majority of the network’s lifetime, when the all the nodes are participating and
none dies before the end of the simulation. So, it is configured in a way that the nodes have
a large amount of remaining energy available and configured to stop the execution after a
predefined amount of time.

5.3.2 End of Life Scenario

The end of life scenario is the opposite of the steady state. The nodes are configured with a
small amount of remaining energy, so that it is possible to view the difference in longevity
of the network when using exactly the same configurations listed in Section 6.1. Since in
this scenario the nodes have a very small battery, the simulation ends fast and it is possible
to evaluate the behaviour of the protocols in the end of life of the network, when some
nodes start to die before others.

5.3.3 Mobility Scenario

The mobility scenario is configured in the same way as the steady state, however mobility is
added to the nodes to observe how they adapt to topology changes during execution. Since
some algorithms have a start-up phase, the mobility is only introduced after a predefined
amount of time. The mobility used for the tests is a simple random walk model where after
every second, the geographical coordinates of the nodes are changed by random steps.

5.4 topologies

In order to evaluate the proposed protocol in different situations and conditions, different
topologies were created. The main ones from whom results will be presented, are shown
below. In order to speed up the topology creation, a graphical tool was created allowing
the creation of topologies and to export them as a Mininet-Wifi or CORE python script, and
a JavaScript Object Notation (JSON) object file. With the JSON file, the user can reopen the
topology and make adjustments when needed. More information can be found in Annex
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B.1. The number of nodes in each topology was limited according to the capabilities of the
testing environment used.

5.4.1 Symmetrical

The symmetrical topology has a sink node (red node in Figure 5.1) in the middle and
nodes equally distributed around it. This topology is a best case scenario for the proto-
cols to achieve maximum efficiency. All nodes are more or less equidistant, symmetrically
distributed in a perfect square and there is no overlap in signal coverage.

Grid1 # of nodes Radio range
50m 29 90m and 120m2

Figure 5.1.: Symmetric Topology

1 Grid seen in the background to assist the reader in distance assessment.
2 For the mobility scenario, the radius is increased to 120m. Since 90m is a borderline radio range considering the

disposition of the nodes, when the nodes start moving they would immediately lose contact with each other.
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5.4.2 Asymmetrical

This asymmetrical topology has a sink node in the extreme left and nodes distributed to the
right. Some nodes are obvious paths in the way to the sink, like the node mote5 for instance,
and it is expected that the energy depletion in those nodes could isolate the whole network
from the sink.

Grid # of nodes Radio range
50m 19 120m

Figure 5.2.: Asymmetrical Topology
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5.4.3 Random

This random topology was created using the random function of the scenario generator
describe in Section B.2.2 and has a sink node in the middle and nodes randomly distributed
around it. Node mote3 connects a whole cluster on the left side of the map to the sink, so
this node is essential to all nodes in this cluster. This topology is closer to a real case since
was randomly created, and the proposed protocol has as a requirement to perform good in
any topology. It has nodes with different distances and overlapping signal coverage.

Grid # of nodes Radio range
50m 30 154m

Figure 5.3.: Random Topology
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5.5 implementation

For testing purposes, an implementation of the protocols presented in Section 5.1 was cre-
ated in Python, where they could be simulated using Mininet-Wifi or CORE. The idea is
to simulate the routing protocol at the application level, using UDP network sockets as the
network endpoints. For that, two main classes were defined to run the simulation, the main
class and the Node class. Mode details can be found in Annex A.1.

5.5.1 Requirements

For the simulated implementation of the protocol some requirements have been defined:

• SR01 - The user must be able to run the simulation in real time or accelerated;

• SR02 - The user must be able to interact with each node to monitor activities, and
consult status and parameters during the execution of the simulation via command
prompt;

• SR03 - The simulation must have real-time properties available via RESTful API end-
points. The developed API is described in Section B.2.1;

• SR04 - The simulation results must be stored in Comma-separated Values (CSV) files,
so that reports can be generated;

• SR05 - The user must be able to see the topology in real-time via a graphical interface.
The developed API is described in Section B.2.2.

More information about the software can be found in Annex A.1.

5.5.2 Simulations

When running a simulation with Mininet or CORE the topology is set with help of a Python
script. All the virtual wireless network interfaces are configured as ad-hoc, and receive an
IP address corresponding to the node ID. Each spawned main class is than responsible to
simulate each node in the network and each node has an open UDP socket listening the
medium for packets. When a node wants to transmit, it creates a socket, binds to the ad-hoc
network interface, and send data to the broadcast address and listening port. All nodes
in range will receive the packet and the listening socket will handle it. The main classes
overview is illustrated in Figure 5.4.
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Figure 5.4.: Scenario Overview

5.5.3 Energy model

One of the most important aspects in the simulation of an energy-aware protocol is to be
able to simulate the energy depletion of each node during the simulation duration. For
that, a model of the energy consumption was created based on [Shnayder et al., 2005] and
[Zhou et al., 2011] and a battery implemented as a class so that each node can have access
to the battery level during run-time, and a report about the energy use in the end of the
simulation. As mentioned in Section 2.1.3, the energy consumption on a WSN node is
divided in three categories and the total energy is the sum of those as shown in Equation 4.

• Circuit Energy (ECircuit) - Energy consumed by the circuit board and main processor
of a node;

• Radio Energy (ERadio) - Energy consumed by the radio module of the node;

• Sensor Energy (ESensor) - Energy consumed by the sensor installed on the node.

ETotal = ECircuit + ERadio + ESensor, (4)

Circuit Energy

The circuit energy, or processor energy [Zhou et al., 2011] model is defined by the energy
consumed by the processor during all possible cycles the processor can assume. Taking for
instance a ESP8266 board3, which will be later used as reference for the tests, the energy
states the processor can assume is represented in the Figure 5.5.

3 This board is very cheap and accessible with plenty of information available, enabling easy verification
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Figure 5.5.: Possible Energy States on a ESP8266

So when a ESP8266 board is not sleeping (deep or light sleep) but the radios are OFF,
it is considered to be in modem sleep. When a board is receiving or transmitting data, it
will consume the modem sleep current in addition to the current associated to the radio.
Each state consumes the equivalent to the time spent in that state multiplied by the power4

consumed in the state as show in Equations 5, 6 and 7.

ELight = V ∗ ILight ∗ tLight (5)

EDeep = V ∗ IDeep ∗ tDeep (6)

EModem = V ∗ IModem ∗ tModem (7)

So, the total circuit energy is finally:

ECircuit = ELight + EDeep + EModem (8)

Several different types of boards have available a type of deep sleep or hibernation mode.
On the particular case of the ESP8266 board and in most of the others, in this mode even
the processor is de-energised, so there is not retention of data in volatile memory. Since no
internal function is running in the processor, in order to wake up from a deep sleep cycle
it needs an external interrupt. This interrupt can be triggered by a pulse generated by a
RTC or by another hardware [Systems, 2019]. When the board is in this mode, to be able
to communicate with other nodes, they would need to be synchronised and wake up at the
same time, or another external ultra low power receive only radio would need to be added
to the node just to wake up the main board. Hence, this mode was not considered in the
simulations.

4 Voltage (V) multiplied by current (I)
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One important aspect of the circuit energy is that for the same algorithm, different proces-
sors will spend different amounts of energy for computational calculations. The only way
to estimate how much energy would be spent on calculations, would be to cross-compile
the code to machine code for a specific processor and count how many instructions each
section of the code has. Knowing how much energy each instruction consumes, makes it
possible to estimate how much energy in total each section of the code consumes. This
work has been previously done for the TelosB boards [Prayati et al., 2010], and the Power-
TOSSIM simulator would use tracing to make accurate estimations of energy consumption
by the processor. Unfortunately this simulator can no longer be found for download and
has the disadvantage of not simulating a virtual battery. In order to make an approxima-
tion of power consumption during computation, the execution time for each part of the
code is measured and multiplied by a computational constant. The expected result is that
for different host machines where the simulations can be performed, the results will be
different. Hence, they are comparable only when different algorithms simulations are run
in the same machine. So the reason to try to estimate consumption in computational time
is to know how the algorithms compare between each other, and not to have an absolute
estimate of power consumption. An example on how to estimate power consumption with
high accuracy is to use an external hardware that can be connected to the prototype board
during execution as with a Nordic Semi hardware5.

Radio Energy

The radio energy model is defined by the energy spent transmitting or receiving data. For
most applications, the transmission radio can be constantly OFF until there is a need to
transmit data. The receiving radio in the other hand, can be ON or OFF depending on the
application or routing algorithm. In some applications, the radio can be turned ON and
OFF rapidly in order to listen to the medium whilst saving energy, but this is usually taken
care by the MAC protocol. The efficiency of the energy saving is proportional to how long
the radio can be OFF without missing a peer calling. The total RX and TX energy can be
than calculated by:

ETX = V ∗ ITX ∗ tTX (9)

ERX = V ∗ IRX ∗ tRX (10)

As an approximation for the radio energy, the time spent for RX and TX have been set to
a fixed value independent of how much data is being transmitted.

5 http://www.nordicsemi.com/Software-and-Tools/Development-Kits/Power-Profiler-Kit
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Sensor Energy

The sensor energy is the energy spent to supply the required power by a sensor to read
data. For the simulation, a sensor was chosen to be the reference for all simulations based
on the availability and low cost. The DHT22

6 has the characteristics presented in Table 5.1.

Table 5.1.: DHT22 - Electrical data
Item Condition Min Typical Max Unit
Power Supply DC 3.3 5 6 V
Current Measuring 1 - 1.5 mA
Time Collecting - 2 - Seconds

It was considered that the sensor is always OFF, and than turned ON for a reading request
during two seconds to comply with the specification of typical collecting time.

ESensor = V ∗ ISensor ∗ 2 (11)

The total energy consumed during the simulation is than:

ETotal = ECircuit + ERX + ETX + ESensor (12)

The total energy consumed is a sum of all the energy spent during a full cycle of reading
the sensor, multi-casting the information, receiving information and forwarding buffered
messages. Figure 5.6 represents the energy consumption during a full cycle. It must be
noted that during the transition from one state to another, usually there are also transitory
overshoots of energy [Perla et al., 2008] that have not been considered during the simula-
tions.

Figure 5.6.: Energy Cycle

6 https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf



5.6. Summary 59

5.6 summary

Using Python to prototype routing protocols enable accurate behaviour modelling and trac-
ing, but estimating power consumption is a complex problem that require specific tools.
The energy model developed for this work enables a comparison between protocols for
tests run in the same machine, but results from different test beds are not comparable. All
the approximations considered were implemented across all the different protocols simu-
lated. The different topologies and scenarios used for the tests will show different positive
and negative aspects of each protocol under different circumstances, since it is not expected
that a specific protocol will be better or worse than the other under all topologies, constrains
and scenarios.
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R E S U LT S A N D D I S C U S S I O N

In this chapter the results for each scenario and topology are presented. Although both
Mininet-Wifi and CORE were suitable for the tests, and Mininet-Wifi chosen as the preferred
platform, it started to present issues when the number of packets per second in the network
started to increase, and as a consequence the simulated network kernel module would
simply crash. CORE on the other hand, could handle all simulations running with time
being simulated ten times faster, simulations with faster than that would yield inconsistency
results.

6.1 general configurations

All the simulations have a set of fixed configurations and a set of variable configurations.
The fixed configurations are constant throughout all the simulations. They are listed here
so that by using the same software, or creating a different software to implement the same
protocols, similar results should be achieved. The results presented in this section are a
mean of the results of five simulations excluding the higher and lower values (avoiding
outliers).

6.1.1 Test environment

All the results are based on simulations and all the simulations were run in the same
machine which specifications are listed in Table 6.1. Running the same simulations in a
different machine would yield different results for the estimated computational footprint,
as it would even if the protocols were implemented in real sensor nodes.

60



6.1. General Configurations 61

Table 6.1.: Test platform
Processor Manufacturer: AMD
Model: Ryzen 7 1700

Number of cores 8 (16 HW Threads)
Microarchitecture Zen
Cache L1 768KB
Cache L2 4MB
Cache L3 16MB
Memory 16GB DDR4

Operating System Xubuntu 18.04

Simulator CORE 5.3.1

6.1.2 Fixed Configurations

Some initial setup is also made for the simulations. There settings reflect the simulated
sensor node and the wireless channel. All results presented here were run with the setup
listed in Table 6.2:

Table 6.2.: Fixed Configurations
Battery Voltage: 3.7V
Sensor sleep time (s): 15 + random(0 to 35)
TX time (ms) 30

RX time (ms) 40

fan-out 3
1

Energy Model ESP8266

Wireless Model BasicRange
Bandwidth (bps) 54000000

Jitter 0

Delay Between Nodes(us) 5000

Error 0

6.1.3 Energy Model

For the energy model the ESP8266 was chosen as reference since it is an accessible and cheap
wireless board. It has the parameters extracted from the hardware datasheet [Systems, 2019]
presented in Table 6.3. The sensor energy was set to a value very low so that the sensing
energy has a low affect in the final results, since sensing is not in the scope of this work.

1 Value chosen by experimentation
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Table 6.3.: Energy Parameters
Deep sleep current (A): 0.00001

Modem sleep current (A): 0.015

Awake current (A): 0.081

TX current (A): 0.170

RX current (A): 0.056

Computational Constant2
250

Sensor Energy (J): 0.0000000111

6.2 results

6.2.1 Steady State

The results presented here are from simulations configured to run for 10000 seconds in
sensor’s time. The battery capacity for each node is set to 5000 mAh, and each node starts
with different remaining charge to simulate a heterogeneous state. In all simulations, the
initial charge configuration is repeated and the only parameter that is stochastic is the time
the node sleeps between sensing events. The vector below illustrates the initial battery level
of each node, starting from node mote 0.

battery level = [ ’99’, ’89’, ’87’, ’95’, ’99’, ’78’, ’87’, ’94’, ’96’, ’78’, ’86’, ’94’, ’93’, ’96’, ’94’,
’88’, ’84’, ’99’, ’79’, ’82’, ’99’, ’69’, ’89’, ’96’, ’92’, ’95’, ’92’, ’91’, ’96’, ’87’ ]

Symmetrical Topology

This topology, presented in Figure 5.1, has a hop radius of 5, so TTL was initially set
to 5 in all simulations that use it to measure the parameters considering reaching from
the farthest node to the sink as coverage goal. Measuring the hop radius could be made
automatically by using a topology discovery algorithm, or it could also be manually set
during pre-deployment configuration or even be set later via a configuration epidemic
message. An example of topology discovery is made by the MCFA algorithm, as described
in Section 2.2.5, and that is how it was calculated for this work.

The plots in Figure 6.1(a) and Figure 6.1(b) illustrate the run-time of the simulation. The
red points represent the number of packets created during a window of 60 seconds and
the lines are a moving average with period of 240 seconds. The blue points represent
the number of packets delivered at the sink. It is possible to notice that compared to a
gossip protocol with fan-out of 3, value that was chosen by experimentation, when using

2 Constant multiplier explained in Section 5.5.3
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the proposed EAGP protocol the two curves almost overlap. The results for all protocols
are presented in Table 6.5 whose headers are explained in Table 6.4.

(a) Gossip w/ fan-out of 3 Nodes (b) EAGP with TMAX=10s

Figure 6.1.: Network Longevity

Table 6.4.: Results Table’s Headers
GOSSIP: Naı̈ve gossip implementation
GOSSIPFO: Gossip implementation with fan-out
EAGP10: EAGP with TMAX = 10s
EAGP20: EAGP with TMAX = 20s
EAGP50: EAGP with TMAX = 50s
EAGP100: EAGP with TMAX = 100s
EAGP500: EAGP with TMAX = 500s
EAGPD10: EAGPD with TMAX = 10s
MCFA: MCFA implementation

When analysing all measurements for all protocols on Table 6.5 it is possible to see in
the first line, regarding energy consumption3, that the EAGP consumed 10% less energy
than the gossip with fan-out. Furthermore, the energy usage tends to lower when TMAX

increases. As expected, the energy consumption is much lower in the MCFA since there
is no waste of energy sending messages in the wrong direction if the goal is to deliver
packets to a sink node. The second line of the table presents the values of data duplication.
Those are the average number of times each packet (verified by the unique packet ID) was
received. The EAGP with TMAX of 10 seconds had 72% less duplicated packets at the sink
than the pure Gossip protocol, and yielded a reduction of 31% when compared to a Gossip
with fan-out.

3 Presented only communication and computational energy since sensor energy and the energy spent sleeping
is the same.
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The next lines of Table 6.5 show the average maximum and minimum hops needed to
deliver each packet to the sink. The minimum is dictated by the topology, and was closely
the same for all protocols. For the maximum, EAGP achieved a reduction of 6% when
compared to the pure gossip protocol, and when compared to the gossip with fan-out the
reduction was of around 4%. The average maximum number of hops has a direct impact in
the energy reduction of EAGP due to the energy cost that every hop represents.

Table 6.5.: Symmetrical Summary
GOSSIP GSP. FO EAGP 10 EAGP 20 EAGP 50 EAGP 100 EAGP 500 EAGPD 10 MCFA

Energy (J) 23854.59 8978.86 8137.76 8134.75 8101.98 7983.99 7427.65 8904.34 2422.26

Duplication 8.26 3.04 2.29 2.27 2.29 2.26 2.22 2.71 1.88

Max Hops 5.00 4.79 4.69 4.68 4.68 4.66 4.56 5.08 3.79

Min Hops 2.80 2.68 2.80 2.79 2.78 2.78 2.69 2.76 2.79

Latency(s) 0.01 0.01 7.69 15.20 36.16 73.02 347.18 14.97 0.01

Efcy. (%) 99.73 84.96 99.04 98.89 97.98 97.95 91.81 91.00 99.73

Pck. Del. 9828 8372 9760 9745 9655 9652 9047 8968 9626

J / Pck. 2.43 1.07 0.83 0.83 0.83 0.82 0.82 0.99 0.25

The latency on Table 6.5 is the average time measured from when the packet was sent
by the sensing node to when it was delivered. As expected, the EAGP introduces a latency
not present when using the other protocols, since the nodes schedule the forwarding of
the packets with a timer value up to TMAX, while in the other protocols the packets are
forwarded immediately. Increasing TMAX increases the latency proportionally, but in this
topology it grows slower than the TMAX itself as seen in Figure 6.2, where the nominal
curve represents the configured TMAX. After the latency, the tables shows the delivery
efficiency of the protocols, which is the ratio of the created messages that reached the sink,
and the total number of packets delivered.

Figure 6.2.: EAGP Latency

The proposed protocol achieved an efficiency close to the pure gossip protocol, which is
higher than the gossip with fan-out, but using much less energy. A protocol that uses less
energy to deliver each packet is more energy efficient, which is represented in the table by
the Joules per unique packet measurement. Figure 6.3 compares the energy efficiency of all
protocols in relation to the efficiency in delivering packets. The more distant the two curves
are the best, and the MCFA protocol has the best combination.
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Figure 6.3.: Efficiency per Protocol

It is possible to see that both gossip protocols are in the worse position whilst the EAGP
gets closer to the MCFA even tough it is a gossip protocol. In this particular scenario and
topology there was no advantage in the EAGPD, since more packet exchange is added
to the network, and it didn’t increase the efficiency in delivering packets. It also worth
notice that increasing the TMAX in the EAGP, reduces the energy consumption but also the
efficiency, that is because since packets will stay longer scheduled, there is a bigger chance
that the same message will be received as duplicate and dropped. So, besides using less
energy, the EAGP with TMAX of 500 seconds is ultimately less efficient in delivering packets.

Previously the TTL was set to 5 because the results were being evaluated regarding the
delivery to a sink which was in the middle of the topology. When the goal is to cover
packet distribution to the whole network, the value of TTL has to be set to at least 10. It
was therefore measured the average network coverage considering each node as the starting
point as shown in Figure 6.4.

Figure 6.4.: Network Coverage by Node

These results represent the average percentage of the nodes that were reached by each
packet created by the nodes (excluding the sink node). Taking as reference the EAGP with
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TMAX of 10 seconds, when increasing the TTL from 5 to 10 resulted in a network coverage
better than the gossip with fan-out. For example, for the EAGP with TMAX of 10 seconds
and TTL of 5, the packets created by mote25 where able to reach only 20% of the nodes.
Increasing the TTL to 10, the packets created by the same node were able to reach in average
85% of the nodes, but with the gossip with fan-out, and the same TTL configuration, the
packets created by the same node were able to reach only 60% of the nodes. That means
that in order to achieve the same network coverage as the EAGP, the gossip always need
higher TTL value, and as a consequence consume even more energy. The MCFA, since it is
not an epidemic protocol, yielded very poor results in this regards, and packets created in
the border of the topology reached more nodes as expected, which is exactly the opposite of
when a epidemic protocol is used. Increasing TTL increases the coverage, but also increases
packet redundancy and consequently energy consumption. Fine tuning TTL, yields optimal
results for energy efficiency and is related to the application needs.

Designing a routing protocol that is too complex can increase the energy use for general
computation. The gossip protocol with fan-out choose random neighbours to forward the
packets, while in the proposed algorithm there is an additional computational footprint of
maintaining a list of neighbours4, updating the node’s state, calculating TNEXT and main-
taining a scheduler for the message forwarding. It is than expected an addition in energy
not related to communication or sensing.

When plotting the energy profile of the nodes during the simulation, it is noticeable how
similar the pure gossip with fan-out, in Figure 6.5(a), and the EAGP, in Figure 6.5(b), are
regarding the overall energy consumption per node. Although the amount of energy used
by each node is similar, the EAGP has a higher cost in computational energy than the two
other protocols. The MCFA, in Figure 6.5(c), on the other hand has an overall lower cost
and a profile in the shape of a slope, explained by the fact that nodes closer to the sink
forward more packets than the others away from the sink, hence consume more energy.
The MCFA uses more computational resources only during the topology discovery phase.
In the running phase it only adds the node’s weight to the packet and when a packet is
received, compares to its own weight.

4 Also present in the gossip with fan-out.
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(a) Gossip With fan-out of 3 (b) EAGP with TMAX=10s

(c) MCFA

Figure 6.5.: Energy Profile

Asymmetrical

This topology, presented in Figure 5.2, has a hop radius of 9, so TTL was set to 9 in all
simulations that use it.

This asymmetrical topology has a common path before the sink where all packets must
flow before reaching it. It is expected the nodes in this path will create a bottleneck, and
since the TTL is higher than the topology before, more entropy is expected when using the
gossip protocols. The results for this topology are presented in Table 6.6.
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Table 6.6.: Asymmetrical Summary
GOSSIP GSP. FO EAGP 10 EAGP 20 EAGP 50 EAGP 100 EAGP 500 EAGPD 10 MCFA

Energy (J) 771238.78 101212.79 17454.45 17716.52 17329.38 17359.56 15157.16 9297.59 5216.91

Duplication 139.82 11.68 2.33 2.29 1.91 2.03 2.06 1.76 4.35

Max Hops 8.99 8.65 7.22 7.24 6.95 7.07 6.66 6.44 6.06

Min Hops 4.40 4.44 5.08 5.12 5.07 5.13 4.70 4.76 5.06

Latency 0.01 0.01 21.53 42.88 105.00 211.61 920.37 23.28 0.01

Efcy. (%) 86.82 70.61 87.30 87.73 86.89 87.84 77.25 75.30 99.71

Pck. Del. 4771 4276 5431 5458 5406 5465 4806 4685 5954

J / Pck. 161.65 23.66 3.21 3.24 3.20 3.17 3.15 1.98 0.87

The results were similar to the previous topology, but this time the EAGP with the digest
for lazy nodes had higher energy efficiency (lower Joules per delivered packet) than the
base one. The reason is because more repeated packets are dropped from the buffer, and
the expected negative side effect is lower efficiency in delivery. MCFA, for a static scenario,
had again lower energy consumption since the packets flow only in one direction, towards
the sink.

(a) EAGP with TMAX=10s (b) MCFA

Figure 6.6.: Packets Forwarded vs Discarded

When comparing the number of packets forwarded and discarded per node in EAGP in
Figure 6.6(a) and MCFA in Figure 6.6(b), the latter, as expected, had the nodes closer to the
sink more active. The opposite is observed in the EAGP, where nodes closer to the sink,
that is located in the less dense area of the network, handle less packets. It is important to
recall that in a gossip network, the packets flow in a chaotic manner, so there is no way to
induce the direction towards the sink, therefore most of the packets will live bouncing in
the most dense area of the network. In a topology like this, it is expected that when using
a directional protocol like MCFA, the nodes closer to the sink will work more, and as a
consequence use more energy and run out of battery before. If nodes closer to the sink run
out of battery earlier, the whole network will die, since no packets will ever reach the sink
again.

Previously, the TTL was set to 9 because the results were being evaluated regarding the
delivery to a sink, but for the network coverage tests it was set to 18. It was therefore
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measured the average network coverage considering each node as the starting point as
shown in Figure 6.7.

Figure 6.7.: Network Coverage by Node

In this case, the coverage using the EAGP even with a very conservative TTL, had good
results, and increasing the TTL brought the results closer to 100%. The results for EAGP
with TTL of 9 were even better than the gossip with fan-out configured with TTL of 18.

Random

This topology, presented in Figure 5.3, has a hop radius of 11, so TTL was set to 11 in all
simulations that use it. In this topology there is a bottleneck in one node close to the sink
that connects the whole left side of the network.

In this topology the results presented on Table 6.7 were similar to the asymmetric and the
EAGP achieved a high delivery efficiency, but lower energy efficiency than the digest vari-
ation. The average latency also in this topology gets closer to the TMAX value defined. Re-
garding the delivery efficiency however, the Energy Aware Gossip Protocol Digest (EAGPD)
protocol achieved a result similar to the EAGP while having an energy efficiency 46% better.
The results for packet duplication were also in EAGPD close to the MCFA which is good
considering it is an epidemic protocol.
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Table 6.7.: Random Summary
GOSSIP GSP. FO EAGP 10 EAGP 20 EAGP 50 EAGP 100 EAGP 500 EAGPD 10 MCFA

Energy (J) 1437968 186740.43 25209.64 25071.99 25108.65 24506.28 22015.26 12980.53 3971.89

Duplication 308.63 34.27 5.00 4.86 4.90 4.78 4.52 2.48 2.21

Max Hops 9.36 9.92 9.18 9.08 9.08 9.03 8.50 7.18 4.66

Min Hops 3.24 4.47 3.64 3.65 3.64 3.63 3.55 3.67 3.66

Latency 0.05 0.01 12.46 24.56 60.88 120.49 573.53 15.05 0.01

Efcy. (%) 70.66 96.88 94.82 94.83 94.43 94.03 89.88 90.55 99.72

Pck. Del. 6414 10084 9869 9870 9829 9787 9355 9425 10103

J / Pck. 224.19 18.51 2.55 2.54 2.55 2.50 2.35 1.37 0.39

The random topology, as the asymmetric topology, benefited more the EAGPD than the
EAGP when the main goal is the energy efficiency. This topology is denser than the previ-
ous ones, and for that is expected that the gossip without fan-out will struggle more deliver
the packets due to the high entropy in the network. Packets are excessively exchanged in
chaotic directions, and using fan-out to reduce the amount of exchanged packets results in
less packet duplication and consequently higher delivery rate as observed in the results.

The excess in packet exchange in a denser network work can also penalise the EAGP
due to the cancellation of packet scheduling when repeated packets are received, and that
is partially solved by the EAGPD packet digest. This is shown in the results on Table 6.7,
since the EAGPD in this topology resulted in half packet duplication and half energy use
while keeping the delivery efficiency close to EAGP. A possible solution for the duplication
in EAGP would be to implement an optional alternative of introducing an energetic fan-out
for denser networks, where the nodes would choose from it’s neighbours list nodes with
more energy to receive the packets, the ones with less energy would just discard the packets.
This would not only reduce the overall energy use, but also help in balancing the nodes’
energy.

6.2.2 End of Life Scenario

In the end of life scenario the nodes are configured to have a very small battery with 50mAh
of full capacity. The initial state of each node’s battery level is the same described before
for the steady state scenario. The simulation runs until the network is dead, which is when
the sink stops receiving packets.

Symmetrical

In Figure 6.8 results for different protocols are presented. The pure gossip protocol had
shortest lifetime as shown in Figure 6.8(a), in which the network totally collapsed around
3250s, and adding the fan-out as shown in Figure 6.8(b), increased the lifetime significantly
allowing the network to run until around 4600s. The EAGP protocol with TMAX set to
10 seconds shown in Figure 6.8(c), achieved a lifetime similar to the gossip with fan-out
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without being penalised in delivery rate to the sink. For the MCFA, represented in Figure
6.8(d), it is noticeable that the received messages form a sudden drops in steps, that is
because when certain nodes stop working due to battery depletion, a whole path is blocked,
while with the epidemic protocols packets can find other ways around the dead node.

(a) Gossip (b) Gossip with fan-out of 3

(c) EAGP with TMAX=10s (d) MCFA

Figure 6.8.: Network Longevity - Symmetrical

Asymmetrical

The lifetime representation of the nodes configured with the asymmetric topology is shown
in Figure 6.9. Having TTL set to 9 increases the amount of exchanged messaged in the
network when compared to the symmetric topology. For that reason, when configured with
the same initial battery capacity of 50mAh, the gossip protocol in Figure 6.9(a) has a much
shorter lifetime than when compared with the symmetric topology. However, the EAGP
in Figure 6.9(c) protocol does not suffer equally due to ability of cancelling duplicated
messages not present in the purely gossip protocol. With the MCFA in Figure 6.9(d) the
loss of a key node had a big impact in the network as seen after 2500s of simulation.
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(a) Gossip (b) Gossip with fan-out of 3

(c) EAGP with TMAX=10s (d) MCFA

Figure 6.9.: Network Longevity - Asymmetrical

6.2.3 Mobility

For the mobility scenario, the nodes are set to change position every second, ultimately
creating always a random topology. The initial state was the symmetrical topology with TTL
set to 5. Since the radius of 90m is too short for mobility, it was increased to 120m. Figure
6.10 represents a snapshot during the execution of the mobility scenario and symmetric
topology. The nodes represented in green are the nodes that at a specific time were in eager
behaviour, while the blue ones where in lazy behaviour.
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Figure 6.10.: Topology After Mobility Starts

Table 6.8.: Mobility Summary
GOSSIP GSP. FO EAGP 10 EAGP 20 EAGP 50 EAGP 100 EAGPD 10 EAGPD 20 MCFA

Energy (J) 166525.10 23856.12 13592.17 15440.83 13460.21 12230.26 10850.25 10499.09 2120.80

Duplication 102.81 14.94 7.01 7.18 7.41 6.02 4.72 4.87 2.58

Max Hops 4.87 4.91 4.78 4.84 4.80 4.65 5.25 5.31 3.01

Min Hops 2.36 2.38 2.45 2.49 2.50 2.47 2.60 2.64 1.79

Latency 0.01 0.01 6.23 14.14 36.56 74.84 12.31 23.83 0.01

Efcy. (%) 56.40 65.80 67.89 74.76 60.81 63.38 67.93 70.83 46.50

Pck. Del. 5558 6484 6690 7368 5993 6246 6694 6980 4506

J / Pck. 29.96 3.67 2.03 2.09 2.24 1.95 1.62 1.50 0.47

The movement of each node during the mobility scenario is completely random, so one
simulation is never equal or similar to another. The results presented are an average of five
executions of each protocol, and even tough they do not provide an accurate forecast of
how each protocol will behave for each possible random situation, it can provide a perfor-
mance estimation. Most of the results were as expected, with the MCFA losing its previous
outstanding delivery performance as shown in Figure 6.11(b), due to the fact that it doesn’t
recalculate the optimal path during execution like the EAGP that is periodically updating
the neighbours list. It might be even expected that given enough time, the delivery rate
of the MCFA will tend to zero. It could however be implemented a mobility version of
the MCFA that periodically rebuilds the topology, but even building the topology with the
nodes moving could yield bad results, because during the topology rebuilding stage no
packet could be delivered, and when the process would be finished the topology could be
already different. However, for a scenario where the node’s position is static but the sink
is alternated, it could be implemented that every sink rotation, the nodes would restart
the topology discovery. The EAGPD on the other hand, made better use of energy be-
sides having similar delivery rate to the EAGP, as shown in Figure 6.11(a). The EAGP
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had much more repeated messages increasing the energy consumption, and resulting as a
consequence, in lower energy efficiency.

(a) EAGPD TMAX=20s (b) MCFA

Figure 6.11.: Delivery Rate

Figures 6.11(b) and 6.11(a) show typical executions illustrating the difference between the
amount of packets sent and received during a mobility scenario.

6.3 summary

This section presented the simulation results for different protocols, scenarios and topolo-
gies. On a static scenario, where epidemic packet distribution is not required to ensure
high delivery rate, the MCFA protocol is more efficient in both delivery and energy wise.
When epidemic distribution is required, such as in situations with mobile nodes, or when
the sink node changes throughout the network lifetime, or when the distribution of the
packets should aim in covering the whole network and not only towards a sink, the EAGP
protocol performed better than a regular gossip with fan-out and the MCFA. Moreover,
when mobility is required, the EAGP protocol and its digest variation achieved an overall
better result, which was expected considering that the MCFA has a topology discovery step
that is not repeated when the topology changes due to mobility of nodes.



7

C O N C L U S I O N S

This chapter presents the conclusions after the analysis of the results and possible future
work to continue with the investigation in this subject.

7.1 conclusions

This work had the primary goal of designing a routing protocol for WSN that is energy ef-
ficient and compatible with resource constrained devices. Designing a routing protocol for
WSN involve different factors, and a crucial one is to be able to run simulations. Finding a
simulator that would cover all aspects have shown to be a difficult task, specially if the code
running in the simulator is to be reused for other simulators or reused for implementations
in hardware. On the beginning of this work, the Mininet-Wifi simulator was being used,
but the machine in which the tests were being performed could not handle too many nodes
simultaneously and the kernel module used for the simulated network interface would
crash. After running the same tests with the CORE simulator, the results were similar but
the same machine could handle much more nodes, and all the results from this work are
from simulations.

The verification and analysis performed with the EAGP protocol yielded promising re-
sults, and had better performance in almost every aspect when compared to a pure gossip
protocol with fan-out. It achieved in average 10% less packet duplication while achieving
in average 16% higher delivery efficiency. For network coverage, the protocol could achieve
for a symmetrical topology, a coverage around 10% higher. In the asymmetric topology,
the energy efficiency of the EAGP was around 7 times higher than the pure gossip with
fan-out. When compared to a purely gossip protocol the disadvantage comes for time crit-
ical applications, since there is an average latency proportional to the chosen TMAX, while
in a purely gossip protocol the latency is typically low. The fact that some packets will
ultimately follow different paths, with some following a fast path while others a slow path,
could create an issue when segmented packets are being transmitted. One technique that
was created for testing but is not documented in this dissertation and could help in the
application with time critical constrains was the creation of a special fast-track PDU. These

75
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special packets would be forwarded immediately, bypassing the TNEXT calculation and the
ignoring the eager/lazy state of the node.

The proposed protocol has also been shown as more efficient than a common gossip pro-
tocol, requiring less energy from the network for delivering each packet. Meaning that, in
average, the whole network will always consume less and, as a consequence, have longer
lifetime. Moreover, this advantage comes without the cost of a trade-off in delivery effi-
ciency, since this aspect is not penalised. It is also noticeable that when the topology is
unbalanced and there are bottlenecks, the digest variation of the proposed protocol demon-
strates better energy efficiency, and that must be taken into consideration depending on the
application.

When comparing with non-gossip protocols, like MCFA, the results have shown that
it is more efficient in any aspect to establish a route for the packets, since there is no
epidemic dissemination with exponential growth. However, it is not always achievable for
all applications, and specially not applicable when nodes are moving and in which the
topology needs to be updated constantly. The waste of energy in purely gossip protocols
happens because packets can follow ways totally contrary of what is expected, but this
characteristic is desired when the application requires packet delivering to all nodes.

There are many applications that require that a network is capable of delivering packets
to all nodes, even thought, the architecture is based in a nodes to sink or many to one topology.
That epidemic distribution could be used for firmware upgrade for instance, or to update
settings. Another application is where nodes work as state machines and their state or
mode of operation need to be changed externally. On a best case scenario point of view,
nodes that have enough resources could have the ability to change protocols during run-
time. So when there is an application need of epidemic dissemination, the nodes would
change to a gossip protocol, and when there is the need to deliver messages only towards
a sink, change to a directional protocol. In situations where resources in the nodes are
extremely constrained and this is not feasible, the application needs to be carefully studied
so the correct protocol is chosen.

It is possible than to conclude that all the goals of this work were achieved. The protocol,
when compared to a purely gossip implementation, has presented an energy efficiency in
static scenarios around one order of magnitude higher, without adding too much computa-
tional and complexity burden to the nodes. Another outstanding characteristic is the ability
of rebuilding the topology by finding a node’s neighbours, choosing the eager/lazy mode
and calculating TNEXT without the need of extra PDUS or states. For that, only the addition
of the battery level to the packet at each hop was needed, and for the zero to one hundred
representation only 7 bits are required.
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7.2 contributions

Besides the contribution of the implementation and testing of the proposed protocol, this
work also contributed with the creation of tools to help researchers and developers to create
scenarios for testing WSN protocols and applications with CORE and Mininet-Wifi simu-
lators. With the Python code base created, it allowed the implementation of other routing
protocols for testing, to be very fast and easy, requiring only small changes in the code.

7.3 prospect for future work

There is a need for the development of a simulator that can accurately predict energy
use in each aspect of the application and is not limited for a specific hardware platform.
The problem of heterogeneity could be easily solved if every manufacturer would create
emulators for their own products that could calculate energy consumption so end users
could compile their code for specific platforms and analyse with each emulator. By using
operating systems like RiotOS or FreeRTOS, the users could even reuse the same code for
different platforms and compare the results before testing in real hardware. To consolidate
the results, implementing the protocol in real hardware would allow real world case studies
for the protocol.

For the EAGP protocol, more tests could be made with the digest and the fast-track
features, in order to verify the possibility of achieving higher packet delivery and analysing
the applicability to time constrained applications. Also, there is a need to analyse the
behaviour when packet segmentation and reordering are required.

Even though the consumption of the communication radios are still high, the nodes spend
most of the time doing other tasks than transmitting or receiving data. So, implementing
ways to reduce the energy consumption of the nodes when they are not communicating is
crucial. Most of the hardware available in the market today have ultra low power modes
available that enable the nodes to run for years without changing batteries, but this mode
usually cannot be used if the nodes have to stay awake waiting for another node’s trans-
mission. Finding optimal ways to allow the nodes enter these deep sleep modes will help
to increase the lifetime of the networks even further, allowing the design of WSN which
require very low maintenance.
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A
S I M U L AT I O N S O F T WA R E

a.1 simulation software

The simulation, as show in Figure A.1, starts when a scenario python script is run. The
script for Mininet or CORE is very similar, and the other scripts for the rest API, main, and
node are the same independently if Mininet or CORE is being used.

Figure A.1.: Simulation Overview

The scenario script, after starting the simulator, opens a terminal in each node and starts
the main.py script. This script instantiates the Node class and starts a main background
scheduler the governs the whole simulation. Figure A.2 shows the overview of the main.py
script, while Figure A.3 shows the overview of the node.py class.
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Figure A.2.: main.py Overview Figure A.3.: node.py Overview

a.1.1 main.py

The classes instantiated by main.py are described as follow:

• node.py - Main class related to the node itself

• prompt.py - Class that enables the user to have a command prompt

• nodedump.py - Class that dumps information about the nodes during the simulation
that can be used by the rest API

• log.py - Logging and tracing functions

a.1.2 node.py

The classes instantiated by main.py are described as follow:

• battery.py - Class the control the energy model

• networkGossip.py - Class that implements a pure gossip routing protocol

• networkGossipfan-out.py - Class that implements a pure gossip routing protocol with
the option of using fan-out

• networkEAGP.py - Class that implements the proposed protocol

• networkEAGPDigest.py - Class that implements the proposed protocol with the digest
modification
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• networkMCFA.py - Class that implements the MCFA routing protocol

As shown before, some requirements were set for the simulation software:

• SR01 - The user must be able to run the simulation in real time or accelerated

• SR02 - The user must be able to interact with each node to monitor activities and
consult status and parameters during the execution of the simulation via command
prompt

• SR03 - The simulation must have real-time properties available via a RESTapi end-
points

• SR04 - The simulation results must be stored in CSV files

• SR05 - The user must be able to see the topology in real-time via a graphical interface

To comply with requirement SR-01 the user can send via command line argument a time
multiplier value that is used in the scheduler to change the timer configuration. The idea
is that for every second passed in the simulation, the corresponding time in real world will
be 1 second times the value of the multiplier. So for instance if the sleeping time is set to
240 seconds, and the multiplier is set to 0.05, the scheduler will set the timer for the main
cycle to 12 seconds. The same is valid to all temporal tasks, as the tasks triggered by an
interrupt are note changed.

For being able to interact with each node during execution and comply with SR02, a
prompt command was implemented to run in each node with as illustrated in Figure A.4.
For coding organisation the prompt was implemented as a separated class.
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Figure A.4.: Command Prompt for an Agent

In the command prompt the following commands are available:

• help - Print help message

• info - Display general information about the sensor

– Node name

– Node role (mote or sink)

– Sleep time configured

– Simulation elapsed time in virtual simulation time

– Simulation elapsed time in real world time

– Node position

• visible - Display a table with the current visible neighbours

– Neighbour IP address

– Last time it was seen in simulated time

– Neighbour battery level in 0-100%

• monitor - Turns verbosity on displaying the received messages in real time

• clear - Clears the display
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• buffer - Display the buffer scheduler

• battery - Display information about the battery and energy use

• network - Display information about the routing protocol

• quit - Stops the simulation of the node and exits.

In order to make more practical and enable the creation of more advanced graphical in-
terfaces for the simulation, a restful API was implemented to read the current status of each
node and make it available via endpoints assuring that requirement SR03 is fulfilled. The
RESTapi was implemented using the Flask1 Python library.

For complying with SR04, two different types of logs were created. First during execution
every predefined time, a task is run by the scheduler to save the current state of the node in
a CSV file. For coding organisation the log creation is managed by a separate class. Below
is a list of the information logged.

• Simulation seconds - Simulation internal clock counted in seconds starting from 0

• Battery level in %

• Neighbours average battery level in %

• Node mode

• Number of neighbours

• TMAX

• TNEXT

• # of Created messages

• # of Forwarded messages

• # of Delivered messages

• # of Discarded messages

• Energy spent in computation (J)

• Energy spent in communication (J)

• Energy spent in sleep (J)

1 http://flask.pocoo.org/



A.1. Simulation Software 89

• Energy spent in sensor reading (J)

• Node X coordinate

• Node Y coordinate

CORE has a built-in graphical interface to display the nodes in real-time, and that should
be enough to comply with SR05, but when running the simulations via python scripts
that cannot be used. So, a replacement web application was developed using the Vue.JS2

framework. More information about this web application can be found in Annex B.

2 https://vuejs.org/



B
W E B A P P L I C AT I O N

b.1 web application

Both Mininet-Wifi and CORE do not have a good Graphical User Interface (GUI) available
for debug the protocols during simulation. Because of that, there was the need of develop-
ing a GUI with specific aspects for the EAGP protocol. Since both simulators are portable,
and also the implementation of the protocol in Python, it would be desirable that the ap-
plication would also be. Nowadays the fastest way of building a portable application is
to build for WEB. So, it was decided to create a responsive web application that could be
used in any device that can run a modern browser. The application is the counter part soft-
ware for a RESTful API that runs together with the simulations, supplying the information
consumed by the front-end interface.

b.2 architecture

The overview architecture of the application is presented in Figure B.1.

Figure B.1.: WebApp Overview
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b.2.1 RESTful API

Since the RESTful API runs together with the simulator, it was developed in Flask so that
it could be easily integrated with the simulation scripts. The protocol application exchange
data to the API via Unix Domain Sockets and files. The API than has some endpoints
available that are consumed by the front end application.

b.2.2 Front End

The front end application was built using a JavaScript framework know as Vue.JS1. Vue is
similar to React and Angular, allowing extensive code reuse due to the creation of compo-
nents. To enable the application to be responsive, another framework called Bootstrap2 was
used. Finally, to consume the API using promises, Axios3 was used.

Dashboard

The dashboard of the application shows an overview of all nodes in the simulation and
some data about the wireless interface being used. This dashboard shown in Figure B.2,
currently only support Mininet-Wifi simulations.

Figure B.2.: Dashboard Overview

1 https://vuejs.org/
2 https://bootstrap-vue.js.org/
3 https://github.com/axios/axios
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When the user clicks on Protocol Details for a node, some information is show about
that node regarding protocol statistics as show in Figure B.3

Figure B.3.: Protocol Details

Map View

The map view page, allows the user to visualise the distribution of the nodes in the topology
and to know which are in eager (green) or lazy (blue) modes. It also shows the id of each
node as well as it’s current battery level in percentage as seen in Figure B.4.
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Figure B.4.: Map View

When the user clicks on a node, information about the node is displayed as shown in
Figure B.5

Figure B.5.: Node View

And if the user needs to view information about the current neighbours in site, they can
click on the button Neighbours and the information is show as in Figure B.6
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Figure B.6.: Neighbours View

It is also possible to toggle the visibility of a grid, and the size of the grid can also be
changed. To avoid the need of refreshing the page updates, the page updates itself after a
configurable interval if desired.

Scenario Creator

Using python scripts for creating scenarios is very practical, but creating diverse scenarios
for repetitive testing might be time consuming. So, in the page scenario creator the user
has a GUI that makes the process visual and the scripts are created automatically.

Figure B.7.: Scenario Creator

When adding nodes to the scenario, it is possible to choose between manual adding as
in Figure B.8 and adding random nodes as in Figure B.9. For manual adding, the user just
need to choose if it is a sink or mote node as in Figure B.10, and click on the map to add
the node. To remove a node, the user needs to drag and drop the node outside the map
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area. Is is possible at any moment to move a node by just dragging and dropping. After
adding the nodes, the user can change the radius of the radio in meters using the slider as
seen in Figure B.11.

Figure B.8.: Manual Adding
Figure B.9.: Random Adding

The network options can be set in B.12. The selection of a board is needed for the energy
model that will be used for the simulation.

Figure B.10.: Manual / Random Adding Figure B.11.: Radius Setup

The user has the option when exporting the python script, to also export a JSON object
as seen in Figure B.13. The JSON object can be imported later if some adjustment is needed.
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Figure B.12.: Network Config Figure B.13.: Import and Export



C
C O R E Q U I C K G U I D E

c.1 core python scripts basics

Here is a list of basic commands to be able to run a CORE simulation using Python scripts.
There is not so much documentation on how to run CORE from Python scripts, so the best
way is to look on existing examples.

Import of basic libraries:

1 import logging

2 from builtins import range

3 from core import load_logging_config

4 from core.emulator.coreemu import CoreEmu

5 from core.emulator.emudata import IpPrefixes , NodeOptions

6 from core.emulator.enumerations import NodeTypes , EventTypes

7 from core.location.mobility import BasicRangeModel

8 from core import constants

Load initial configuration for the logger library:

1 load_logging_config ()

Set the network ip range:

1 prefixes = IpPrefixes("10.0.0.0/24")

Create emulator instance for creating sessions and utility methods:

1 coreemu = CoreEmu ()

2 session = coreemu.create_session ()
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Must be in configuration state for nodes to start

1 session.set_state(EventTypes.CONFIGURATION_STATE)

Create the wlan node. The settings for the medium can changed here

1 wlan = session.add_node(_type=NodeTypes.WIRELESS_LAN)

2 session.mobility.set_model(wlan , BasicRangeModel ,config ={’range ’:50, ’

bandwidth ’: 54000000 , ’jitter ’:0, ’delay’: 5000, ’error’: 0})

3 session.mobility.get_models(wlan)

Create node options for a node

1 node_opt=append(NodeOptions(name=’mote0 ’))

Add the node to the session.

1 mote=session.add_node(node_options=node_opt))

Create a network interface and connect it to the wlan

1 interface = prefixes.create_interface(mote)

2 session.add_link(mote.id , wlan.id , interface_one=interface)

Instantiate session

1 session.instantiate ()

Opens a terminal in the node, and run commands with attributes

1 sink=session.get_node (2)

2 mote.client.term_cmd("bash","command" ,[’attibutes ’])
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Shutdown simulation

1 coreemu.shutdown ()
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