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Abstract—This extended abstract reports on on-going research
on quantum algorithmic approaches to the problem of gener-
alised tree search that may exhibit effective quantum speedup,
even in the presence of non-constant branching factors. Two
strategies are briefly summarised and current work outlined.

Index Terms—Quantum Tree Search, Quantum Speedup

I. PROBLEM STATEMENT

Knowledge representation has long been a cornerstone in

Artificial Intelligence. Goal-based agents use atomic repre-

sentations to further reason about what actions and states to

consider, given a goal. When the agent deals with known and

deterministic environments, the process of reaching the goal

can be formalised as a tree search problem [1]. Grover’s Al-

gorithm [2], can perform better than any classical uninformed
tree search algorithm [3], even in an iterative deepening

strategy [4]. However, all possible quantum speed-ups work

under the weak assumption of a constant branching factor

problem-solving agent. When we relax the assumption for

non-constant branching factor problems, then, as proved in [3],

quantum algorithms no longer guarantee superior performance

compared to classical tree search algorithms in all cases. This

is due to the fact that in these cases, for classical algorithms

the effective branching factor converges to the average one.

However, in the quantum setting one must always use the

maximum branching factor to encode superpositions. This

limiting factor results in certain cases in a slowdown compared

to the classical counterpart. Real-world world problems, for

example, route-finding problems, typically have large, and

most importantly, non-constant branching factors.

Uninformed strategies are only of interest when dealing with

small problems. In Artificial Intelligence, the search space

typically shows exponential growth, so it becomes intractable

to perform an exhaustive search as in uninformed tree search

algorithms. In most of the real-world problems it is still

possible, by reasoning over the natural problem formulation,

to assign values to particular states. Empowering informed
strategies i.e designing heuristic functions, enable the search

to be focused on promising nodes rather than uniformly ex-

panding the search tree. An agent reaches a solution typically

in less time and consuming less memory. Classical informed

ERDF and FCT

strategies can overcome the quadratic speed-up employed by

Grover’s algorithm. It is of great importance the study of quan-

tum heuristics and their potential to scale quantum tree search

algorithms. This abstract reports on-going work on two novel

strategies for performing tree search in the quantum setting:

(1) generalisation of quantum tree search for both constant

and non-constant transition models and (2) development of a

novel informed quantum tree search algorithm.

II. RESEARCH DIRECTIONS

A. Generalising for non-constant branching

In [3] the authors proposed a quantum algorithm for per-

forming tree search. However, for non-constant branching

factors, the quantum algorithm still needs to use the maximum

branching factor, often leading to a slowdown compared to

the classical counterpart. We aim to generalise the algorithm

to deal with arbitrary non-constant branching factors. Rather

than considering only the Hilbert space represented by the

superposition of the actions at each level of the tree, consider

having separate basis states representing actions, a, and states,

s, in which the agent is, i.e. a node in the tree. Suppose that the

search tree has action space A. For a depth d, even with a non-

constant branching factor b, there will be at most |A|d leaves.

So, a node can be encoded in a quantum state with log2|A|d
qubits. Also represent an action initially in the ground state

and a node that will be initially the root of the tree as the

tensor product of both basis states:

|s〉 = |0〉⊗log2|A|d , |a〉 = |0〉⊗log2|A|

|ψ0〉 = |s〉 ⊗ |a〉 (1)

An unitary operator A may now be specified that prepares

the superposition of the actions controlled by the state of

the node. The superposition of admissible actions at a given

node,As

A : |s〉 ⊗ |0〉⊗log2|A| �→ |s〉 ⊗ 1√
|As|

∑
i∈|As|

|ai〉 (2)

The unitary operator A can be realised because zero amplitude

can be maintained on the superposition terms that don’t

represent an admissible action [5]. Another unitary operator
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T needs to be specified to handle state transitions, i.e. the

evolution operator dealing with the traversal of the tree.

T : |s〉 ⊗ |a〉 �→ |s′〉 ⊗ |a〉 (3)

These two unitary operators will be interleaved for a prede-

fined depth d, at each iteration extending the initial Hilbert

space with new basis states for representing a new action

corresponding to the level of the tree. To reduce the complexity

associated with the application of these operators, only neigh-

bouring states might be considered (only new states reachable

at each level of tree) . Applying the operators d times can be

interpreted as computing the tree in superposition for a depth

d, Figure 1.

Fig. 1. Superposition tree with arbitrary branching factor

At this point a Grover oracle O, needs to be constructed,

that reckons an arbitrary state as a goal state, inverting the

associated phase:

O|ψ〉 =
{
−|s〉|a0a1...ad〉 if |s〉 �→ goalstate
|s〉|a0a1...ad〉 otherwise

Now, the Grover iterate will amplify the correct sequence of

actions that lead to the goal state as intended. Interestingly

enough, the Grover oracle in this case has a peculiar meaning.

Indeed, the oracle inverts the phase of the sequence of actions

that lead to the goal state. This means that the oracle reckons

only the final state as the goal state, which is known. Previous

works use oracles that reckons the correct sequence of actions.

Therefore the oracle is viewed as an entity that already knows

the correct sequence of actions to a given problem. This

formulation ended up consuming more memory, due to the

binary representation of the node. However, providing that the

unitary operators A and T have an efficient representation, i.e.

can be constructed in polynomial time, then the complexity

of the algorithm will be dominated by the dimension of

the search space. Thus Grover’s algorithm will guarantee a

quadratic speedup. This approach provides a way of dealing

with arbitrary search trees with non-constant branching factors

because Grover’s algorithm will always have the correct search

space associated. This algorithm can also work as an iterative

deepening version of [4].

B. Informed Quantum Tree Search

Traditionally, heuristics are employed to choose among

possible tree paths, ideally producing an optimal sequence of

actions resulting from a non-uniform expanded search tree.

At first sight such an operation seems impossible to perform

quantum mechanically. However, combining Amplitude Am-

plification [6] with some performance metric makes it possible

to amplify terms in a general superposition state that respects

some threshold value, or even perform pruning. The latter

case can be pictured by the rather trivial example of a 2-qubit

uniform superposition state. In this case, if one marks a single

superposition term then it is known that a single amplitude

amplification iteration results in the marked state with certainty

[7]. If instead of measuring the state, one keeps evolving

it according to some operator, then it can be interpreted as

pruning branches of a tree and empowering a greedy best-first

strategy.

III. CURRENT WORK

The current work is being developed in both research

directions discussed above. For (1) we seek a formal proof

of the quadratic enhancement for non-constant trees. The

algorithm is also being tested in various goal-based agents,

and simulated in IBM’s quantum platform [8]. For (2) the

quantum pruning strategy is being applied in the context of

informed tree search for an arbitrary number of qubits scheme.

Moreover, a quantum greedy best-first algorithm that uses

amplitude amplification and exponential search as subroutines

is being developed.

IV. DATA AVAILABILITY

This document discusses a research direction and reports

work in a very preliminary stage. Therefore no data has yet

been produced to support the ideas just proposed.
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