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A B S T R A C T

Modern society is relying more and more on electronic devices, most of which are em-

bedded systems and are sometimes responsible for performing safety-critical tasks. As

the complexity of such systems increases due to concurrency concerns and real-time con-

straints, their design is more prone to errors which can lead to catastrophic outcomes.

In order to reduce the risk of such outcomes, a model-based methodology is commonly

used. The model describes the behaviour of the system and is subject to verification tech-

niques such as simulation and model checking in order to verify it behaves according to

the requirements. Common problems that arise with this methodology is the ambiguity of

requirements written in natural language and the translation of a requirement to a property

that can be verified along with the model.

This thesis proposes a tool that, after the translation of the requirements to temporal

formalism, allows the automatic generation of monitors in order to verify the model. Our

target platform is Simulink, which is widely used in this domain to model, simulate and

analyze dynamic systems.

Keywords: formal methods, runtime monitoring, temporal logics, SALT, SpeAR
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R E S U M O

A sociedade de hoje depende cada vez mais de dispositivos eletrónicos, a maioria dos quais

são sistemas embebidos e, por vezes, responsáveis pela realização de tarefas crı́ticas. À

medida que a complexidade destes sistemas aumenta devido a problemas de concorrência

ou restrições de tempo real, o design torna-se mais suscetı́vel a erros que podem levar a

resultados catastróficos. A fim de reduzir estes riscos, recorre-se a uma metodologia de

desenvolvimento baseada em modelos. O modelo descreve o comportamento do sistema e

pode ser sujeito a técnicas de verificação, tais como simulação ou model checking, a fim de

verificar que este exibe o comportamento descrito nos requisitos. Problemas comuns que

surgem com esta metodologia devem-se à ambiguidade dos requisitos, tipicamente escritos

em linguagem natural, e à tradução destes para uma propriedade que pode ser verificada

em conjunto com o modelo.

Esta dissertação propõe uma ferramenta que, após a tradução dos requisitos para uma

linguagem de especificação formal, permite a geração automática de monitores para veri-

ficar o modelo. A plataforma para a qual os monitores são gerados é o Simulink, que é

tipicamente utilizado neste domı́nio para modelar, simular e analisar sistemas dinâmicos.

Palavras-chave: métodos formais, lógicas temporais, runtime monitoring, SALT, SpeAR
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1
I N T R O D U C T I O N

Today’s society relies more and more on electronics devices and software systems. In this

thesis, we are specially concerned with the category of embedded systems. An embedded

system has a very specialised role, limited resources, and is frequently bounded by real-

time constraints. They are present in almost every aspect of our daily life, impacting the

way we communicate, the way we travel and the way we handle our money.

Traditionally, the waterfall model was the reference methodology in systems engineering

to develop such devices. This model describes the development of a product as a set of

sequential steps where the results of each step serves as the foundations for the next step.

Although multiple variations of the waterfall model exist in the literature, some phases are

common across most of the variations. These are the requirements elicitation, the system

design, the system implementation, testing and finally, the system maintenance. The water-

fall model is based on the fact that careful thinking should go into the requirements and the

system design since errors in this early steps are propagated to the next phases of develop-

ment. As such, the later these errors are discovered, the more steps need to be reverted and

hence, the more expensive it is to fix them.

Embedded systems engineering presently faces a big challenge, due to the fact that the

complexity of embedded systems is continually increasing. These devices need, for instance,

to interact with many other systems, which brings to the design concurrency concerns that

are hard to reason about. With such complex systems, the assumption that the design

engineer is able to take into account all possible scenarios without testing the system is

unreasonable. During the implementation or the testing steps some design errors may be

revealed forcing the reiteration of the previous steps. The inflexibility of the waterfall model,

in which the implementation is the first trial the design must pass, makes it unsuitable for

the development of such systems. It may be the case that errors remain undetected dur-

ing the entire development phase and cause a system failure once the system is deployed.

The failure of safety-critical systems such as medical devices, nuclear reactors or avionics,

however, can be catastrophic and lead to the loss of both human lives and huge amounts of

money.
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To avoid these situations, safety-critical systems must be delivered with a high level of

confidence. The early detection of errors in both the system requirements and the system

design is therefore of the utmost importance.

1.0.1 Motivation

Nowadays, the reference methodology for the design of safety-critical systems is model-based

design. This methodology consists of creating a model of the desired system, allowing the

engineer to explore and test its design before starting the implementation. A model is a

high-level abstraction of the system in which some details, such as implementation details,

are discarded and thus not considered for analysis. This way, we end with a simpler version

of our system which is tractable for computer analysis techniques such as model checking

and simulation. These techniques can be used to explore the validity of the model early in

the project and can detect subtle errors in the design. This has a huge impact in industries

such as aerospace, nuclear energy research or medical devices where fully implementing

and testing a product has a high cost or can be extremely dangerous.

The common approach to check if the system model is exhibiting the expected behaviour

is through unit testing. However, in this dissertation, we make use of a more powerful tech-

nique to verify the system behaviour, runtime monitoring. While unit testing analysis the

relation between the system inputs and outputs, runtime monitoring consists in the anal-

ysis of state information present in the simulation traces to determine if a given property

holds. Our particular interest resides in online monitoring in which the state information

is extracted from a running simulation and both the simulation and the monitors are ex-

ecuted in parallel. Furthermore, the monitors themselves can be automatically generated

from requirements as long as they are written in a formal specification language, thus also

checking the compliance of the design with the requirements.

System requirements, however, are commonly expressed using natural language instead.

Natural language provides multiple obstacles for computer analysis and, for the purpose of

automatic monitor generation, it is therefore necessary to encode the requirements in one

of the specification languages supported by the methodology being used.

1.0.2 Objectives

The tool we propose in this dissertation intends to assist the engineer throughout the pro-

cess of formalising system requirements, allowing the automatic generation of runtime

monitors. The first problem we handle is the extraction of requirements from a docu-

ment. To perform this initial task we provide a DSL to build regular expression patterns in

a readable and reusable manner. The engineer should then be able to select the subset of
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requirements he intends to formalise. The tool supports properties written in either Linear

Temporal Logic (LTL) or Past Linear Temporal Logic (PLTL). Although these specification

languages serve as the foundation for many of the tools used in formal verification, they

can make the task of translating the requirements quite challenging, due to the amount of

expertise they usually require. Thus, since our tool is directed at requirements engineers,

we chose to also support high-level specification languages like Specification and Analysis

of Requirements (SpeAR) (A. Fifarek, 2017) and Structured Assertion Language for Tem-

poral Logic (SALT) (Streit, 2006) that have a more natural syntax and provide support for

specification patterns. Specification patterns aim to reduce the complexity of writing formal

properties by reusing known solutions to common requirements. It is an approach similar

to the design patterns approach that is so widely used in the programming world.

With the chosen requirements formalised, the tool is able to automatically generate a

runtime monitor for each property. Due to its wide usage for modelling and simulating auto-

matic control systems and digital signal processing, we chose to target Simulink, developed

by Mathworks for our monitor generator.

In Chapter 2 we present some key concepts such as requirements elicitation and require-

ments specification in Section 2.1. We follow up with Section 2.2 where we discuss the

design methodology upon which we lay our work. Section 2.3 and Section 2.3.3 expose the

current approaches to formalise requirements so that they become suitable for computable

analysis. We finish this chapter with an overview of the Simulink features we make use of

in Section 2.4.

Chapter 3 describes the solution we propose, going through the features we provide in

Section 3.1. Chapter 4 exposes the inner works of the tool, describing how we process the

requirements the engineer provides us until we are able to generate runtime monitors. We

finish with Chapter 5 where we discuss the results we obtained and the aspects that we can

still improve.
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B A C K G R O U N D

2.1 system requirements

Requirements elicitation is the first step of development and establishes the groundwork for

the future stages. It is the step in which the problem is stated and the solution is justified.

The purpose of system requirements is to state boundary conditions that will leave room

for different possible designs, each with their respective trade-offs. They should frame the

problem, gathering everything from functional to performance and security requirements,

while avoiding describing how the system is to be implemented, as that is the purpose of

the design. When defining requirements it is important to consider the context in which the

context of the project is inserted as well as the existing processes that might be replaced by

the system. By understanding how the system affects this context, we are able to integrate

it seamlessly into its environment.

A well formed requirements document should explain what problem is being solved,

what functions the system will have in order to solve that problem, as well as design con-

straints that specify how the system is to be built. The document is a way for the stakehold-

ers to understand and agree on what is supposed to be developed. It should identify all

the involved parts in the project, from consumers to developers, clients, sponsors, market-

ing and legal experts. It should comprise the expectations that all these parties have from

the system and state all the assumptions and relevant facts that are necessary to provide

background information for the specification readers. This way, a complete requirements

document can serve as an agreement between all the stakeholders.

Requirements are usually divided into functional requirements and non-functional require-

ments. Functional requirements describe the behaviours the system should exhibit, detail-

ing how the data it handles is transformed across the system and how the interactions

with its environment are expected to take place. Non-functional is a broad term for all

the other types of requirements such as performance requirements, security requirements,

legal requirements, architecture requirements, etc. They include boundary conditions such

as the maximum weight of the system or what type of assumptions can be made about the

communication channels.

4



2.2. Model based engineering 5

It is important to note that requirement elicitation is a complex process in which the cap-

tured requirements can have inconsistencies i.e. requirements that contradict each other. It

may also be the case that the system is underspecified leaving room for ambiguities, or even

overspecified in which case there is no possible design that meets all the requirements. It

is already well known that the cost to fix errors increases as the project matures, which mo-

tivates the need for an early analysis of the design and its requirements. The requirements

serve as a baseline for verification and validation of the system.

2.1.1 Specifying requirements

Requirements documents are typically written in natural language. This is not a surprise if

we consider that requirements intend to serve as an agreement between all the stakeholders

and natural language is the most common way of communicating ideas. Natural languages,

however, are unstructured and have no underlying semantics. As such, they are too hard

to analyse and are subject to ambiguities.

Formal languages, on the other hand, have well defined semantics with a mathematical

background which, along their simple grammar, makes them suitable for computer analysis.

Due to its ability to reason about the evolution of a system over time, temporal logic is the

formal language of choice that is typically used to write requirements. A common obstacle

for the adoption of temporal logic, however, is the high degree of expertise that is required

to understand it. As a contrast to natural languages, formal languages can rapidly become

hard to read and even harder to write.

Another approach to the writing of requirements are the structured natural languages

which are obtained by restricting the grammar and vocabulary of a natural language in

order to eliminate ambiguity and complexity. Some of these structured languages have a

formal background and can be mapped to a formal language, enabling all the analysis that

is possible with that formal language while keeping the readability of a natural language.

For the purpose of this thesis we consider that requirement documents are written in

natural language and thus, to enable the generation of monitors from requirements, a pre-

liminary step in which they are translated to a formal language is required.

2.2 model based engineering

In traditional systems engineering, a design engineer writes the specification of the system

and hands it to the software developers for them to implement the system. The specification

document, however, may not convey correctly the design engineer’s ideas or be misinter-

preted, leading to undesired implementations. Such differences are only detected when the

implementation is subject to a testing bench, in which errors in either the design or the im-
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plementation are revealed. This leads to another design-implementation cycle, increasing

the overall cost of the project.

In recent years, model based design is the preferred methodology for the design of em-

bedded systems across multiple industries. The model describes the system at a high-level

of abstraction and is not concerned with implementation details, allowing for an efficient

analysis of the details with which we are concerned. In order for the model to be for-

mally analysable, its semantics should be well defined and have no ambiguities. As such,

modelling languages intended to be used for formal analysis should provide a rigorous

underlying formal semantics.

There are multiple ways to represent a model, as well as multiple types of models de-

pending on the characteristics of the system we want to analyse and the ones we want to

abstract away.

Functional models are usually concerned with the dynamics of the system, the flow of

data and the transformations it is subject to. Simulink, a block diagramming tool developed

by Mathworks, is widely used for modelling dynamic systems. It allows engineers to

simulate the behaviour of the model or formally verify that it does not violate some desired

properties. By having an executable specification, the engineer can easily tweak the model

and observe how the changes affect the behaviour of the system.

On the other hand, architecture models deal with properties of the physical system and

the interactions between its components. Through an architecture model it is possible to ver-

ify that an embedded system does not surpass a certain physical weight or that the latency

in flow of data is in an expected band. By modelling our system we have the possibility to

better explore our design and detect design errors even before starting the implementation.

Tools such as Simulink and AADL even allow for automatic code generation based on the

model built. Both the early detection of errors and automatic code generation are character-

istics of model-based design which have a great impact on the time to market of the product

at hand. In this thesis we dedicate ourselves to automatic generation of runtime monitors,

and as such we are concerned with functional models and functional requirements. Due to

its wide adoption, we chose to target Simulink.

2.2.1 Runtime monitoring

Simulations allow the engineers to predict and explore the behaviour of a system, allowing

them to understand it as well as detect potential failures even before starting to implement

it. This is especially useful in areas like aerospace or medical equipment where building

the real system can be too expensive or when an undetected defect can cause a potential

hazard.
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When a simulation is running, it is possible to extract information from it and check if

certain properties are violated or hold, a technique known as runtime monitoring. Offline

monitoring expects monitors to check formulas against simulation traces, while in online

monitoring the monitor is running in parallel with the simulation. We classify the monitor

as active if it also affects the simulation inputs and classify it as passive otherwise. Online

monitoring increases the overall time of the running simulation but it can be used to stop

a faulty simulation once a property is violated or, in real systems, can be used to prevent

dangerous behaviour from happening.

The usual approach for runtime monitoring is to synthesise requirement models, i.e.

monitors, and couple them to the system model in order to be able to query the execution

state. Once the simulation is running the system is verified by the monitors which produce

a verdict regarding weather the properties are satisfied or not. To synthesise such monitors,

engineers write the properties in a formal specification which can then be automatically

translated into the intended monitor.

Figure 1: Comparison between testing and runtime monitoring.

The most common approach to detect errors during simulations is unit testing. By provid-

ing pairs of input/output it is possible to check if for a given input the simulation produces

the expected output. For complex systems, however, it is not trivial to discover the corre-

spondent output to a given input and thus this task would not be easily automated. Hence

why we rely on runtime monitors instead which, by encoding the behaviour the system is

expected to exhibit, is able to produce a verdict for all inputs.

2.2.2 Transition System

There are several approaches to modelling systems, depending on the properties of the sys-

tem that we want to document or analyse. In the context of formal verification, systems are

typically modelled with transition systems. A transition system is a graph that represents

the behaviour of a system. Formally, it is defined by TS = (S, Act,→, I, AP, L) where

• S is the set of states,

• Act is the set of actions through which the system can evolve,
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• →⊆ S × Act × S is the transition relation that evolves the system by transitioning to

the next state through an action,

• I ⊆ S is the set of initial states,

• AP is the set of atomic propositions,

• L : S → 2AP is the labelling function that describes which atomic propositions are

satisfied at a given state.

The transition system starts in one of the initial states I. Given a state s, if there is an

action a that allows the system to evolve to another state s′, such action can be taken through

the transition relation s
a
−→ s′. L(s) is the set of atomic propositions that are satisfied in state

S.

A path π is a state sequence that starts in an initial state and is either infinite or ends in a

terminal state, i.e. a state with no successors. The set of atomic propositions that are valid

along the execution is given by trace(π).

π = s0s1s2s3..sn

trace(π) = L(s0)L(s1)L(s3)..L(sn)

Temporal logics typically consider only infinite transition systems, i.e. transition systems

without terminal states. A finite TS can be transformed into an infinite TS by introducing

a new transition from the terminal state to a trap state. Trap states have a self-loop and do

not satisfy any atomic propositions.

a
s1

{p, q} 
c

a

s2
{t}

s3
{p, q}

s4

b

Figure 2: Transition System

In Figure 2 the TS starts in the initial state s1, where {p, q} ⊆ AP evaluates to true. From

s1, the system can only evolve to s2 through s1
a
−→ s2. Once the system reaches s2, it can

evolve either to the terminal state s3 or s4. It is possible for the system to stay forever in the
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loop s2
c
−→ s4

b
−→ s2. The action taken is chosen in a non-deterministic way. Some possible

paths and the respective traces for this TS are

π1 = s1s2s4s2s3 trace(π1) = {p, q}{t}∅{t}{p, q}

π2 = s1s2s4s2s4s2 . . . trace(π2) = {p, q}{t}∅{t}∅{t} . . .

The temporal logics approached in this document abstract away from actions. They are

considered state-based, making only use of the atomic propositions of the states to specify

system properties.

2.3 temporal logics

Temporal logics are extensions of propositional logic that include modal operators to reason

about time. In propositional logic, a statement is either true or false and its truth value is

constant in time. The truth value of temporal logic statements, however, can vary with time.

Temporal logic is widely used in formal verification to describe the evolution of a system

over time. For formal analysis to be possible, functional requirements must be expressed

as temporal logic formulae. Once the requirements are expressed in temporal logic, the

engineer can check if the behaviour exhibited by the model complies with the one described

by the specified properties.

Properties can be classified in two different categories. Safety-properties state that some-

thing bad should never happen and thus are properties that, once they are not satisfied, are

considered to have been violated. A property such as ”no two processes can be on a critical

section at the same time” is an example of a safety property.

Liveness-properties state that something good will eventually happen. Since liveness prop-

erties always require that something in the future must hold, such properties cannot be

verified on finite traces and therefore are not suitable for runtime monitoring. This con-

trasts with safety properties in which by observing a finite trace it is always possible to

check if they hold or not. An example of a liveness property is ”after the button is pressed,

the engine will eventually start”.

Different temporal logics consider different properties when reasoning about time. Linear

Time Logic (LTL) considers time to be discrete and linear, while Computation Tree Logic

(CTL) considers time to be discrete and branching. Metric Temporal Logic (MTL) has a

linear and continuous view of time. Let us briefly explain these different notions of time:

1. Discrete: Discrete time is viewed as set of points (or moments) that are equally distant.

This is the case of digital clocks that have a fixed clock rating.
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2. Continuous: In continuous time the distance between two points of time is arbitrary

and between any two points, there is an infinite amount of other points. This is

typically used when trying to model dynamic systems.

3. Linear: In linear time, for a formula to hold at a given state, it must hold for all

possible paths that arise from that state. There is an implicit universal quantification

over all the possible computations.

4. Branching: Contrary to a linear view of time, a branching view takes into considera-

tion that a state can have different computations leading to different states and thus

different futures. As such, instead of a notion of time based on paths, it considers

that for each state there is a tree, rooted in that state, that represents the different

computations that can occur.

Although several properties can be expressed both in linear and or branching logics, their

expressiveness is incomparable and there are properties that can only be expressed in one

of them. An instance of a property that can be expressed with a branching view of time

but not with a linear one is the property that states that the system should always be able to

return to one of its initial states. On the other hand, the property that states eventually, q will

hold forever is expressible in a linear view of time but not in a branching one.

Temporal logics that consider a discrete view of time such as LTL or CTL are considered

qualitative temporal logics and deal mainly with the ordering of events, while logics with a

continuous view of time such as MTL are considered quantitative and deal both with the

ordering of events and the distance between them (Koymans, 1990). Real time systems

require the expression of properties such as ϕ must hold within three miliseconds of property ψ,

which can only be expressed with quantitative timing.

Furthermore, some temporal logics are designed to refer only to the future (Linear Tem-

poral Logic) while others are designed to refer only to the past (Past Linear Temporal Logic).

LTL and Past LTL have the same expressive power, i.e they are able to express the same

properties. However, some properties can be expressed exponentially more succinctly in a

way than the other. This is important not only to ease the job of engineers that are writing

properties, but also because the verification time of a property depends on the size of the

formula.

The temporal logics that will approached in the next sections are LTL and Past LTL.

After that, we will also present two specification languages that are intended to leverage

the difficulty of writing formal properties by providing a more natural syntax and pattern

support, SpeAR and SALT.
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2.3.1 Linear Temporal Logic

Through LTL (Pnueli, 1977) it is possible to specify linear time properties that specify the

traces the system should exhibit. LTL is considered linear due to the fact that, for each

moment in time, the future is already predetermined and there is only a single successor

state.

The following grammar describes the syntactic rules that allow the construction of LTL

formulae.

ϕ := true | α | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2

where a ∈ AP.

The formulae are composed of atomic propositions α ∈ AP; the boolean connectives ¬

and ∨ which are enough to obtain the missing boolean connectives such as ∧ or →, hence

obtaining the full power of propositional logic; the temporal modalities Next (© or X) and

Until (U). As in propositional logic, we are able to derive the missing operators Finally (♦

or F) and Globally (� or G).

♦ α := true U α

� α := ¬♦¬α

Informally, the meaning of the presented temporal modalities can be described in the

following manner.

• © φ — the formula φ must hold in the next state.

• φ U ψ — the formula φ must hold until ψ is satisfied.

• ♦ φ — the formula φ must eventually hold in the future.

• � φ — the formula φ must always hold in the future.

LTL properties operate over paths and their respective traces. For a path π, the satisfac-

tion relation (|=path) is defined through the behaviour exhibited by its trace. In turn, for a

trace to satisfy (|=trace) a property it must include the behaviour described by the property

at hand.

π |= ϕ iff trace(π) |= ϕ

A state satisfies (|=state) a property if, and only if, all the paths starting in that state satisfy

the said property.

s |= ϕ iff ∀π ∈ Paths(s) . π |= ϕ
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Finally, a system satisfies (|=TS) a given LTL formula if, and only if, all of its initial states

satisfy that property.

TS |= ϕ iff ∀s0 ∈ I . s0 |= ϕ

The LTL semantics for infinite words over 2AP are defined as follows.

σ |= true

σ |= α iff α ∈ A0 (i.e. A0 |= α)

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= © ϕ iff σ[1 . . . ] = A1A2A3 . . . |= ϕ

σ |= ϕ1 U ϕ2 iff ∃j ≥ 0 . σ[j . . . ] |= ϕ2 and σ[i . . . ] |= ϕ1, for all 0 ≤ i < j

And for the derived operators ♦ and �.

σ |= ♦ϕ iff ∃j ≥ 0 . σ[j . . . ] |= ϕ

σ |= �ϕ iff ∀j ≥ 0 . σ[j . . . ] |= ϕ

Let us consider a system with two concurrent processes that share a critical section and

require mutual exclusion. The safety property No two processes can be in the critical section

at the same time is easily expressible with LTL by resorting to the set of atomic propositions

critn that stand for Process n is in the critical section

�¬(crit1 ∧ crit2)

and the liveness property that guarantees that at least one of the processes is capable of

continuously reaching the critical section.

�♦crit1 ∨�♦crit2

Unless we guarantee that the system behaves fairly, it is not possible to specify that both

processes can reach the critical section infinitely often.

2.3.2 Past LTL

According to Barringer et al. (1996) past-time modalities do not add expressiveness power

to pure future temporal logics which led to languages dropping such modalities in linear

time temporal logic for the sake of simplicity. More recent research (Markey, 2003) shows,

however, that although no expressive power is lost, there are classes of properties that can
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be expressed exponentially more succinctly with past operators. Succinct formulas, besides

being more intuitive for engineers, produce smaller automatas.

The following grammar describes the syntactic rules that allow the construction of Past

LTL formulae.

ϕ := true | α | ¬ϕ | ϕ1 ∨ ϕ2 | Y ϕ | ϕ1 S ϕ2

where a ∈ AP.

The grammar is similar to that of LTL with temporal modalities Next and Until are

replaced by the temporal modalities Previous (Y) and Since (S). As in LTL, we are able to

derive the missing operators Previously (P) and Historically (H).

Informally, the presented temporal modalities can be described in the following manner.

• Y φ — the formula φ must have been satisfied in the previous state.

• φ S ψ — the formula φ must hold since the moment ψ was satisfied.

• P φ — the formula φ must have been satisfied sometime in the past.

• H φ — the formula φ must have been satisfied in all the previous states.

The formal semantics of the Past LTL operators for finite traces are defined as follows.

σ |= true

σ |= α iff α ∈ A0 (i.e. A0 |= α)

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= Y ϕ iff σ′ |= ϕ, where σ′ = σn−1 if n > 1 and σ′ = σ if n = 1

σ |= ϕ1 S ϕ2 iff σj |= ϕ2 for some 1 ≤ j ≤ n and σi |= ϕ1 for all j < i ≤ n

σ |= P ϕ iff ∃j . 1 ≤ j ≤ n . σj |= ϕ

σ |= H ϕ iff ∀j . 1 ≤ j ≤ n . σj |= ϕ

An important observation that has an impact on monitoring algorithms is that the above

semantics can also be defined recursively. If the satisfaction relation for a formula and a

trace is calculated along its execution, this allows us to calculate the satisfaction relation for

the next step by only looking to the previous step.

σ |= ϕ1 S ϕ2 iff σ |= ϕ2 or (n > 1 and σ |= ϕ1 and σn−1 |= ϕ1 S ϕ2)

σ |= P ϕ iff σ |= ϕ or (n > 1 and σn−1 |= P ϕ)

σ |= H ϕ iff σ |= ϕ and (n > 1 implies σn−1 |= H ϕ)
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2.3.3 Property Patterns

Formal verification techniques are still not widely adopted. A common obstacle that is

slowing down adoption is the required expertise necessary to write properties. Further-

more, the resulting formulae are often hard to read and even harder to write. To make

matters worse, a person entering the field for the first time is usually faced with a lack of

both good training materials and good tool support.

The introduction of a pattern system created by expert system designers aims to reduce

the background experience required for new users. Design languages, as well as program-

ming languages, are usually very expressive, allowing for a wide-variety of solutions to a

problem,with their respective pros and cons that need to be evaluated. Most of the times,

however, users prefer guidance over expressiveness. With that in mind and based on the

design patterns solution which is widely used in the programming world, pattern systems

for specifications that match common requirements into specification templates were cre-

ated. These systems comprise a collection of high-level abstractions over specifications that

can be mapped to many different formalisms such as LTL or CTL.

A pattern captures a solution that appears repeatedly when solving design problems.

It seeks to gather information around both the problem and the solution, documenting

the context in which it appears, the requirements it addresses, how it solves the problem,

and when the pattern should be used. The patterns are formalism-agnostic and can be

parameterised by individual states or even nested formulae in order to obtain a concrete

specification. It is important to note that even though a pattern can be expressed in multiple

formalisms, the resulting formulae are not necessarily equivalent due to the differences in

the semantic models of each formalism.

Pattern system by Dwyer

The pattern system described in Dwyer et al. (1999) is a collection of simple patterns defined

with the intention of easing the use of formal methods in practice. The patterns are divided

according to their nature into two categories dealing with either the occurrence of states or

the ordering of states. In the first category, dealing with occurrence, we have:

• Absence — The state formula does not occur within the scope.

• Existence — The state formula must occur within the scope.

• Bounded existence — The state formula must occur k times within the scope. Variants

of this pattern specify at most k occurrences and at least k occurrences.

• Universality — The state formula occurs throughout the scope.

In the second category, dealing with ordering, we have:
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• Precedence — A state P must always be preceded by a state Q within the scope.

• Response — A state P must always be followed by a state Q within the scope.

• Chain precedence — A sequence of states P1, .., Pn must always be preceded by a

sequence of states Q1, .., Qn. This pattern is a generalisation of the precedence pattern.

• Chain response — A sequence of states P1, .., Pn must always be followed by a se-

quence of states Q1, .., Qn. This pattern is a generalisation of the response pattern.

Each pattern has a scope which can be the entire program or just a fragment and is

defined by a starting state and/or an ending state. The scopes described in Dwyer et al.

(1999) are the following: global (over the entire program), before (the execution up to a given

state), after (the execution starting at a given state), between (the execution between two

states), and after-until (similar to the between scope but the ending state is not guaranteed

to occur).

Figure 3: Patterns scopes. Figure reproduced from Dwyer et al. (1999).

A pattern is composed by several fields such as its intent and the problem it addresses,

mappings to multiple formalisms such as LTL and CTL, as well as examples and concrete

situations in which they were used. Additionally, some patterns describe their relation to

other patterns, for instance, the absence pattern is the dual of the existence pattern and the

chain response is a generalisation of the response pattern. Dwyer provides some notes on

property specification using the pattern system he developed. In these notes he explains

how to adapt the existing patterns to better express the desired property by addressing

topics such as the combination of patterns, variations in the scopes and pattern parameter-

isation.

Out of the 555 examples of property specifications Dwyer collected to evaluate his pattern

system, 92% were considered to be an instance of one of the provided patterns.

The patterns developed by Dwyer et al. (1999) inspired many other works such as a

modified version of the pattern system that extends it to support real-time properties by
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Konrad and Cheng (2005) or instantiations of the patterns into timed observer automata by

Gruhn and Laue (2006).

Specification

Quantitative

Duration Periodic
Real-Time

Order

Minimum 

Duration

Maximum

Duration 

Bounded 

Recurrence
Bounded 

Response

Bounded 

Invariance

Qualitative

Order

Response Precedence

Chain  

Response

Chain  

Precedence

Occurrence

Universality Existence

Absence
Bounded

Existence

Pattern

Category

Type

Figure 4: Patterns hierarchy that includes real-time patterns. Figure based on Konrad and Cheng
(2005).

This work also contributed to the emergence of high-level specification languages that

include both patterns and scopes in its features. Next, we present two examples of such

languages, SpeAR and SALT, which provide a grammar close to a structured natural lan-

guage to improve readability and intuitiveness when reading and writing properties.

2.3.4 SpeAR

SpeAR (Specification and Analysis of Requirements) is an open-source tool for capturing

and analysing requirements stated in a language that is formal, yet designed to read like

natural language (A. Fifarek, 2017).

The SpeAR specification language has the formal semantics of Past LTL and supports

basic arithmetic, logical, and relational operators. The SpeAR developers sought to provide

a specification language as natural as possible so that engineers could express themselves

more naturally. Hence, SpeAR provides english aliases for most logical operators. The

following is an example of a requirement written using the SpeAR specification language.

if signal greater than threshold then output equal to ON

Spear documents have a well-defined structure that promotes the grouping of require-

ments to enable modularity and reuse. A SpeAR document distinguishes inputs, outputs,

state, assumptions, requirements and properties.

• Inputs, Output, State: These parts of the document describe the data that is handled

throughout the system. Inputs represent monitored or observed data from the envi-

ronment as well as inputs from other components. Outputs represent data sent to
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the environment or other components. State represents data that is not visible to the

environment or other components.

• Assumptions: Assumptions identify necessary constraints on inputs from the envi-

ronment and other components.

• Requirements: Requirements identify constraints that the component must guarantee

through its implementation.

• Properties: Properties represent constraints that the system should satisfy when op-

erating in its intended environment.

In addition to capturing requirements formally, SpeAR enables multiple analysis ap-

proaches such as logical entailment and logical consistency.

Logical entailment allows engineers to prove that stated properties are consequences of

the captured assumptions and requirements. Formally, SpeAR proves that a given set of

Assumptions (A) and Requirements (R) entails each property (P).

A1 ∧ A2 ∧ . . . ∧ An ∧ R1 ∧ R2 ∧ . . . ∧ Rm ⊢ Pi

This feature provides early insight into the correctness and completeness of the captured

requirements and prove that the captured requirements and assumptions satisfy all of the

stated properties.

Logic entailment, however, is only useful when the assumptions and requirements are

consistent with each other. In the case of a contradiction, the logical conjunction of the con-

straints is false and thus the logical entailment is a vacuous proof (i.e. false → true). SpeAR

provides a logical consistency check for such cases in which it searches for a counterexam-

ple to the assertion that the conjunction of the assumptions and requirements cannot be

true for N consecutive steps.

¬((A1 ∧ A2 ∧ . . . ∧ An ∧ R1 ∧ R2 ∧ . . . ∧ Rm) ∧ (StepCount ≥ N))

In case the requirements are proven inconsistent for the user-selected N steps, SpeAR

identifies the set of constraints in conflict. However, in case SpeAR declares the constraints

are consistent it does not mean they are consistent at N + 1. To prove consistency for all

possible N, SpeAR would need to provide a stronger guarantee known as realisability check,

which verifies for all steps and inputs that satisfy the assumptions that the system remains

responsive and only performs valid transitions (Gacek et al., 2015).



2.3. Temporal Logics 18

2.3.5 SALT

SALT (Structured Assertion Language for Temporal Logic) is a high-level specification lan-

guage designed for the comfortable writing of concise and readable specifications to use in

model checking or runtime verification. Unlike many specification languages, SALT does

not target a particular domain (Streit, 2006).

The SALT language consists of three layers, and the generated formulas change according

to which layers are used. The propositional layer deals with boolean propositions and boolean

operators. The temporal layer encapsulates the main features of the SALT language that

reason about temporal behaviour and is divided into a future fragment and a symmetrical

past fragment. The timed layer adds real-time constraints to the language and is divided

into a future and a past fragment as well.

If only propositional layer is used, the resulting formula will only have propositional op-

erators. If the temporal layer or timed layer are used, the resulting formula will be a LTL or

Timed LTL formula, respectively. Similarly, if only the future fragment is used, the gener-

ated formulae will be pure future LTL or Timed LTL. In the cases where the past fragment

is used, the formulae will contain past operators.

Besides the common temporal operators, SALT provides several high-level features that

improve the easiness with which the engineers can express themselves.

• Exception operators: Exception operators define exception conditions for a formula

ϕ. The evaluation of the formula stops when the condition occurs and is either ac-

cepted or rejected depending on the exception operator used. If the condition is never

satisfied, the operator is ignored.

• Regular expressions: Simplified regular expressions (SRE) allow the expression of

complex patterns of conditions in a very concise way. Since regular expressions cannot

be translated into LTL, SRE have some limitations.

• Counting quantifiers: Counting quantifiers allow brief and intuitive statements about

conditions that have to hold a certain number of times. Such class of properties are

usually very verbose when specified using LTL.

• Scopes: The scope operators bring to SALT the scope concept introduced in Dwyer

et al. (1999) allowing developers to specify that an expression has to hold before, after

or in between some events.

• Macros: Parametariseble macros enable user-defined patterns that can be used in a

similar way as SALT default operators. This allows users to easily reuse solutions that

appear frequently in their requirements.
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• Iteration Operators: Iteration operators intend to ease the handling of specifications

where an expression is repeated several times with only a few parameters exchanged.

All these features are translated into LTL or Timed LTL accordingly. The SALT compiler

performs several optimisations on the generated formulae. This compilation step allows

SALT to be used as a frontend to existing verification tools.

The SALT compiler can be extended via a plugin mechanism in the form of Haskell

modules. Two types of plugins are supported. Proposition parsing plugins allow to per-

form checks or transformations on the atomic propositions that are used within a SALT

specification. Printing function plugins allow to define custom output syntax for the LTL

formulae.

2.4 simulink

Simulink is a tool developed by Mathworks that allows engineers to perform multidomain

modeling, simulation, analysis as well as code generation. In Simulink, the modelling is

done using a graphical block diagramming tool with blocks provided by libraries. MAT-

LAB and Simulink are tightly coupled and it is possible to interact with a Simulink environ-

ment through MATLAB, which allow us to build our Simulink monitors through MATLAB

scripts generated by our tool.

Stateflow extends Simulink with the ability to model reactive systems using state ma-

chines. This enables engineers to model control logic through a block that can be connected

to other Simulink blocks for inputs and produces a verdict as output. While Stateflow pro-

vides many features, our monitors only rely on Stateflow.States and Stateflow.Transition to

build the transition system, as well as Stateflow.Data to model the inputs, the output and

internal variables.

Next, we present the Simulink blocks that we use to build our monitors.

Figure 5: Outport blocks (top) link signals from a system to a destination
outside of the system. They can connect signals flowing from a subsystem
to other parts of the model. They can also supply external outputs at the
top level of a model hierarchy.

Inport blocks (bottom) link signals from outside a system into the system.
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Figure 6: The Goto block (top) passes its input to all the matching From
blocks. The input can be a signal or vector of any data type. The From
block (bottom) accepts a signal from a corresponding Goto block, then
passes it as output.

Goto blocks and From blocks are matched by the use of Goto tags.

Figure 7: The Delay block outputs the input of the block after a delay. The block
determines the delay time based on the value of the Delay length parameter.

Figure 8: With a MATLAB Function block, you can write a MATLAB function for
use in a Simulink model.

Figure 9: A Stateflow chart is a graphical representation of a finite state machine.
States and transitions form the basic elements of the system.
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In this thesis we develop a proof of concept tool to support to the model based engineering

workflow. The purpose of the tool is to increase the confidence we have in our model by

improving a practice that is already widely used in the design of critical systems, i.e. sim-

ulation. For that, we provide a workflow that allows the automatic generation of runtime

monitors. Such monitors can be plugged into the system model and run in parallel with

the simulation, guaranteeing that the property it models is not violated for that simulation

run.

The supported specification languages, SpeAR and SALT, were selected because they pro-

vide high-level constructs that enable engineers to write formal specifications with a syntax

close to that of natural language. This greatly reduces the amount of expertise required

in the formal methods domain and makes it easier for requirements engineers to express

themselves since they typically already write requirements in either natural language or a

structured version of it.

These languages also provide the ability to specify properties either regarding the future

or the past. As explained before, while their expressive power is equivalent, some proper-

ties can be more easily expressed in one than the other. This is a factor that is as important

to the engineer, who is able to write properties in a more intuitive way, as it is important

for the verification algorithms, whose execution times grow with the size of the formulas.

Once the requirements are formalised, the engineer can trigger the generation process.

The tool generates MATLAB scripts which, once executed, build Simulink models from

scratch that represent the respective monitors and can be plugged into the system model.

The Simulink platform was chosen as the target due to its wide use in dynamical systems

modelling.

We also provide a feature to help with the task of extracting the requirements from a doc-

ument so that they can be imported into the tool. Text extraction is usually done by relying

on the regular expressions. Regular expressions, however, are hard to read and write, not

composable, and targeted at developers. We try to make it easier for requirements engineers

to perform requirement extraction by providing a DSL that addresses these issues.

21
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3.1 tool overview - requirement formalisation

It is possible to either add requirements manually or use the extraction feature we provide

to load requirements from a document. In order to generate monitors for the listed require-

ments, the engineer needs to provide a formal specification for the intended requirements

with one of the supported specification languages.

The tool is able to infer which of the specification languages is being used to formalise the

requirement, avoiding the need to manually specify it. If the monitor generation process is

triggered and there are requirements that were not formalised, they will be safely ignored.

This allows the engineer to skip non-functional requirements as well as to formalise the

requirements incrementally, which is useful in case they have been automatically extracted

from a document.

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_1: When the system is in state_1 and signal_3 + signal_2 > 100, the system shall

keywordstylekeywordstyletransition to state state_3.

keywordstylekeywordstylePattern: historically if previously state equal to STATE_1 and signal_3 + signal_2 >

keywordstylekeywordstyle100 then state equal to STATE_3

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_2: Once the system is in state_3 occurs, then the system will be in state_4

keywordstylekeywordstylesomewhere in the future.

keywordstylekeywordstylePattern: assert always (if "state == STATE_3" then eventually "state == STATE_4")

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_3: The system should be able to handle a load of 2mb/s

keywordstylekeywordstylePattern: None

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_4: When the system is in state state_3, signal_3 shall be calculated as signal_5

keywordstylekeywordstyle* 8 / 10.

keywordstylekeywordstylePattern: assert always (if "state == STATE_3" then "signal_3 == signal_5 * 8 / 10")

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_5: Every time signal_5 is between 5 and the previous value of signal_3, the

keywordstylekeywordstylesystem is in state_5.

keywordstylekeywordstylePattern: historically if signal_5 > 5 and signal_5 < previous signal_3 then state

keywordstylekeywordstyleequal to STATE_5

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_6: Every time signal_10 > 20, the system should keep itself in state_5 until

keywordstylekeywordstylesignal_10 < 10

keywordstylekeywordstylePattern: after signal_10 > 20 until signal_10 < 10 always state equal to STATE_5
keywordstylekeywordstyle

Listing 3.1: Example of requirements and their respective specification.
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In the example portrayed in 3.1 there are six different requirements. Each requirement

has an id, a description and its respective specification. REQ 1 and REQ 5 were specified

as SpeAR formulas. REQ 6 was specified as a SpeAR pattern. REQ 2 and REQ 4 were

specified as SALT formulas. REQ 3 is a performance requirement and thus was ignored.

3.2 tool overview - requirement extraction

Requirements are usually written in a natural language and archived in digital formats that

focus on readability instead of structure. Hence, requirement documents are rarely suited

for analysis and computations and thus there is a necessity to extract requirements into a

more treatable form from such documents.

Regular expressions are the common solution to extract segments from a text document.

By defining a search pattern that describes the data we seek, regular expressions allow us

to find all the substrings of the document that match such pattern. However, we do not

consider this technique a good solution for requirement engineers. Regular expressions

require some expertise to write, are hard to compose and, due to their succinct syntax, are

difficult to read. Thus, we developed a simple DSL that addresses the described issues.

keywordstylekeywordstyle

keywordstylekeywordstyleidentifier = "REQ_"

keywordstylekeywordstyle followed_by one_or_more digit

keywordstylekeywordstyle

keywordstylekeywordstyletext = one_or_more any_char

keywordstylekeywordstyle

keywordstylekeywordstylerequirement = capture identifier

keywordstylekeywordstyle followed_by ":"

keywordstylekeywordstyle followed_by zero_or_more whitespace

keywordstylekeywordstyle capture text

keywordstylekeywordstyle followed_by new_line
keywordstylekeywordstyle

Listing 3.2: Example of an extractor using the developed DSL.

The extractor in Example 3.2 is compiled to (REQ [0 − 9]+) : \s ∗ (.+)\n{2}, which is

the regular expression we would use underneath to extract the requirements listed in 3.3.

Each expression denotes an extractor. The tool expects a final extractor that captures an

identifier for the requirement as well as the requirement text.

In this example, the requirement extractor starts by capturing the identifier, relying on

identifier extractor that was previously defined, which expects the keyword REQ followed

by one or more digits. In order to match a requirement, the identifier should be followed
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by a colon and optional whitespace. All characters are then considered to be part of the

requirement text, as defined in the text extractor until a new line is met.

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_1: When the system is in state_1 and signal_3 + signal_2 > 100, the system shall

keywordstylekeywordstyletransition to state state_3.

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_2: Once the system is in state_3 occurs, then the system will be in state_4

keywordstylekeywordstylesomewhere in the future.
keywordstylekeywordstyle

Listing 3.3: Excerpt of a fake requirements document that is extractable with the extractors defined

in the Listing 3.2.

3.3 tool overview - monitor example

It is important to note that while SpeAR translates to Past LTL, SALT can translate to

either Past LTL or LTL depending on what features were used in the specification. While

Past LTL based monitors and LTL based monitors are similar in structure, the underlying

verification algorithm is different. Past LTL also requires an extra layer to deal with the

previous operator Y, which looks to the value of an expression in the previous state. More

details on the verification algorithms are given in Section 4.1.

Figure 10 shows the structure of the generated monitors. In the following paragraphs

the purpose of each component is explained.

• Signal extraction (orange) - The needed signals are extracted from the model and

linked into Goto blocks so that they can be accessed through From blocks in the rest of

the monitor. This intends to reduce the number of transitions as well as the reducing

the coupling of the monitor to the model by extracting all the required data from the

model only once and in a single place.

• Previous layer (purple) - In the case of Past LTL it is possible for expressions to refer

to previous values of a signal. Therefore we need an extra layer that links the original

signal into a Delay block to obtain the values from previous states. As in the Signal

extraction layer, these blocks are linked into From and Goto blocks to reduce transitions

throughout the monitor.

• Mathematical expressions (green) - Math expressions need to be computed into boolean

values before passing them to the runtime monitoring algorithm. For each math ex-

pression we add a MATLAB Function block that gets their parameters through From

blocks and outputs a boolean value with the result of the expression. The constants

used inside the expressions are defined in the MATLAB script generated by the tool.
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Figure 10: Example of a generated monitor with its different components highlighted.

• Stateflow (red) - The Stateflow block encapsulates the runtime verification algorithm

and it is where the main difference between LTL and Past LTL monitors lies. The

algorithms are described later in Section 4.1. The Stateflow outputs the monitor

verdict for that point in time.

• Output (blue) - The output layer simply exposes the monitor verdict to other systems

in the model.

3.4 design decisions

While developing the tool we made some design choices that affect the way requirements

can be written. We will now elaborate on these.

1. SpeAR and SALT do not offer the same features. We do not intend to introduce the

lacking features since the purpose of supporting multiple languages is for them to
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cover for each other. However, mathematical expressions are an example of something

we want to have support for in all the languages we support.

2. Since the purpose of the tool is to generate runtime monitors, it is important to inter-

operate with the Simulink model. Thus, when writing the specification the engineer

should take care to name the variables present in the specifications with the same

names as the equivalent Simulink signals.

3. For simplicity, every specification is handled individually and there is no notion of

a SpeAR document or SALT document. This makes it impossible for the engineer

to use some of the features SpeAR and SALT provide, such as user-defined patterns.

Section 4.2 provides more details on why this decision was necessary.

Temporal logics usually support only boolean values and boolean operators. However,

it is common for functional requirements to rely on arithmetic operations to express be-

haviour. While SpeAR supports such operators, SALT does not. SALT provides, however,

quoted boolean propositions whose interpretation can be customised. We make use of such

propositions to handle mathematical expressions.

keywordstylekeywordstyle

keywordstylekeywordstyleassert always (if ’state == STATE_3’ then eventually ’state == STATE_4’)
keywordstylekeywordstyle

Listing 3.4: SALT specification with quoted boolean expressions and named constants.

keywordstylekeywordstyle

keywordstylekeywordstylehistorically if previously state equal to STATE_1 and signal_3 + signal_2 > 100 then

keywordstylekeywordstylestate equal to STATE_3
keywordstylekeywordstyle

Listing 3.5: SpeAR specification with built-in math operators.

It is also common for engineers to use named constants in their requirements to express

the set of values a signal can be evaluated to. In order to differentiate constant names from

signal names, signal names are expected to be lower case identifiers while named constants

are expected to be upper case identifiers.
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The MonGe architecture is divided in two different packages: an extraction package and a

backend package.

Figure 11: Tool architecture

The extraction package is a simple one. It defines the grammar and the translation from

the DSL to regex patterns.

The backend, on the other hand, needs to provide two different abstractions for the ver-

ification algorithm: one based on deterministic finite automatons (DFA) and another based

on the recursive semantics of past LTL. These algorithms are built on top of a monitor ab-

straction that contains all the data obtained by parsing the formula. Based on this data, the

monitor abstraction is able to render the MATLAB script that builds the runtime monitor

for the formula. The rendering of the Stateflow block is left outside the scope of this abstrac-

tion, allowing for other abstractions to be built on top of this one, implementing different

verification algorithms. This is the case of the PastFormula abstraction, that implements

the rendering of the Stateflow block for the recursive semantics of Past LTL and the DFA

abstraction that does the same for the algorithm based on deterministic finite machines.

27
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Furthermore, the backend module contains two inner packages, one for each of the spec-

ification languages supported.

SpeAR always relies on past semantics, however it is possible to write SpeAR specifica-

tions by either using their grammar or by using the builtin patterns they provide. The spear

package provides the necessary modules to parse the grammar (SpearLexer and SpearParser)

and extract the necessary data required by PastFormula (SpearFormula and SpearDocument).

For SpeAR patterns, which have a well know translation into DFAs and thus rely on the

DFA based verification algorithm, there is an abstraction (SpearPattern) that handles the

same data extraction. The patterns package contains the translation from every pattern into

a DFA.

A SALT formula can rely either on future or past semantics. The formula is fed to the

SALT compiler and then, depending on the semantics used, the next steps may differ. In the

case of future semantics, the SALT compiler outputs LTL that is then handled by Spot – a

tool that is able to output a DFA in the Hanoi Omega Automata (HOA) format from an LTL

expression. Such output is then parsed and converted into a state machine for Simulink.

In the case of past semantics, the SALT compiler outputs the formula in an intermediate

format which is then subject to a process similar to the one that SpeAR formulas go through.

Finally, the backend provides a requirement module that integrates the entire backend,

being able to generate a monitor from a text specification that can be either SALT or SpeAR.

4.1 runtime verification with monitors

In this section we will dive again into the monitoring and understand how data flows from

the system model into the Stateflow block that encapsulates the verification algorithm. These

algorithms are responsible for checking, based on the data obtained from the previous

layers, if the property holds or not. Thus, this is the part of the monitor that actually encodes

the behaviour we expect the system to exhibit, as described in the temporal formula.

As mentioned before, data is extracted from the system model using From blocks with the

signal names that appear in the formula. In Past LTL it is possible to refer to values of

signals from previous states. In such cases, the signals go through a Delay block that delays

the value as many steps as necessary.

With this, we have all the values we need to evaluate the mathematical expressions that

appear in the formula. By evaluating the mathematical expressions we eliminate all arith-

metic expressions, ending up with just boolean values which are the only data type that

our verification algorithms can reason about.

The monitor abstraction provides a way to describe a runtime monitor and generate a

MATLAB script that builds the Simulink model for that monitor. As expected, most of the

parameters match the various layers that exist in the model:
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1. the set of signals that need to be extracted from the system model;

2. the set of signals that need to be delayed due to the semantics of the Past LTL PRE

operator;

3. the mathematical expressions that need to be evaluated and their respective inputs;

4. the constants that appear in the temporal formula and need to be defined as a MAT-

LAB value.

This abstraction however is just a building block that must be extended for each verifica-

tion algorithm we use by providing the logic to render the respective Stateflow chart that is

encapsulated in the Stateflow block. The following is a template of the generated script that

is instantiated with the data extracted from the specifications. Note that there are several

parts that just deal with the positioning of elements in the chart.

keywordstylekeywordstyle

keywordstylekeywordstylesfnew;

keywordstylekeywordstylert = sfroot;

keywordstylekeywordstylemodel = rt.find(’-isa’, ’Simulink.BlockDiagram’);

keywordstylekeywordstylech = model.find(’-isa’, ’Stateflow.Chart’);

keywordstylekeywordstyleset_param(’untitled/Chart’, ’position’, [1000, 500, 1150, 650]);

keywordstylekeywordstyle

keywordstylekeywordstyle{% for arg in args %}

keywordstylekeywordstyleadd_block(’simulink/Sources/In1’, ’untitled/{{ arg }}’);

keywordstylekeywordstyleadd_block(’simulink/Signal Routing/Goto’, ’untitled/GOTO_{{ arg }}’)

keywordstylekeywordstyleadd_line(’untitled’, ’{{ arg }}/1’, ’GOTO_{{ arg }}/1’);

keywordstylekeywordstyle

keywordstylekeywordstyleset_param(’untitled/{{ arg }}’, ’position’, [{{ 300 * loop.index }}, 50, {{ 300 *

keywordstylekeywordstyleloop.index + 20 }}, 70]);

keywordstylekeywordstyleset_param(’untitled/GOTO_{{ arg }}’, ’position’, [{{ 300 * loop.index + 100 }}, 40,

keywordstylekeywordstyle{{ 300 * loop.index + 140 }}, 80]);

keywordstylekeywordstyleset_param(’untitled/GOTO_{{ arg }}’, ’GotoTag’, ’{{ arg }}’)

keywordstylekeywordstyle{% endfor %}
keywordstylekeywordstyle

It starts by creating a new Simulink model with an empty Stateflow block and defines

some variables. Next, it goes through all the signals (args) that are needed from the system

model and creates a pair of Input block and Goto block for each one, setting the necessary

parameters and connecting them. With this we are able to access all signals throughout the

rest of the model while avoiding cluttering the model with connections.

keywordstylekeywordstyle

keywordstylekeywordstyle{% for p in previous %}

keywordstylekeywordstyleadd_block(’simulink/Signal Routing/From’, ’untitled/FROM_{{ loop.index }}’)

keywordstylekeywordstyleadd_block(’simulink/Commonly Used Blocks/Delay’, ’untitled/DELAY_{{ p.0 }}’)
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keywordstylekeywordstyleadd_block(’simulink/Signal Routing/Goto’, ’untitled/GOTO_PRE_{{ p.0 }}’)

keywordstylekeywordstyle

keywordstylekeywordstyleadd_line(’untitled’, ’FROM_{{ loop.index }}/1’, ’DELAY_{{ p.0 }}/1’);

keywordstylekeywordstyleadd_line(’untitled’, ’DELAY_{{ p.0 }}/1’, ’GOTO_PRE_{{ p.0 }}/1’);

keywordstylekeywordstyle

keywordstylekeywordstyleset_param(’untitled/FROM_{{ loop.index }}’, ’position’, [{{ 200 + 400 * loop.index0

keywordstylekeywordstyle}}, 140, {{ 200 + 400 * loop.index0 + 40 }}, 180]);

keywordstylekeywordstyleset_param(’untitled/DELAY_{{ p.0 }}’, ’position’, [{{ 200 + 400 * loop.index0 + 140

keywordstylekeywordstyle}}, 140, {{ 200 + 400 * loop.index0 + 180 }}, 180]);

keywordstylekeywordstyleset_param(’untitled/GOTO_PRE_{{ p.0 }}’, ’position’, [{{ 200 + 400 * loop.index0 +

keywordstylekeywordstyle280 }}, 140, {{ 200 + 400 * loop.index0 + 320 }}, 180]);

keywordstylekeywordstyle

keywordstylekeywordstyleset_param(’untitled/FROM_{{ loop.index }}’, ’GotoTag’, ’{{ p.0 }}’)

keywordstylekeywordstyleset_param(’untitled/GOTO_PRE_{{ p.0 }}’, ’GotoTag’, ’PRE_{{ p.0 }}’)

keywordstylekeywordstyle{% endfor %}
keywordstylekeywordstyle

We now proceed to build the previous layer of the monitor. This layer has a set of blocks

for each signal that refer to previous states of the system. Each set of blocks consists of

a From block to obtain the signal value from the previous layer, a Delay block to delay this

value a parameterised number of states, and a Goto block to make it accessible throughout

the rest of the model as in the previous layer.

keywordstylekeywordstyle

keywordstylekeywordstyle{% for id, expr in exprs.items() %}

keywordstylekeywordstyleprop = Stateflow.Data(ch);

keywordstylekeywordstyleprop.Name = ’{{ id }}’;

keywordstylekeywordstyleprop.DataType = ’boolean’;

keywordstylekeywordstyleprop.Scope = ’Input’;

keywordstylekeywordstyle

keywordstylekeywordstyle{% set outer_loop = loop %}

keywordstylekeywordstyle

keywordstylekeywordstyleadd_block(’simulink/User-Defined Functions/MATLAB Function’, ’untitled/{{ id }}’);

keywordstylekeywordstyleset_param(’untitled/{{ id }}’, ’position’, [800, {{ 450 + 100 * loop.index0 }}, 900,

keywordstylekeywordstyle{{ 450 + 100 * loop.index0 + 50 }}]);

keywordstylekeywordstyleadd_line(’untitled’, ’{{ id }}/1’, ’Chart/{{ loop.index }}’);

keywordstylekeywordstyle

keywordstylekeywordstylefHandle = rt.find(’-isa’, ’Stateflow.EMChart’, ’Path’, ’untitled/{{ id }}’);

keywordstylekeywordstylefHandle.Script = sprintf([’function {{ id }} = fcn({{ expr.2 }})\n’, ’{{ id }} = {{

keywordstylekeywordstyleexpr.0 }};’]);

keywordstylekeywordstyle

keywordstylekeywordstyle{% for arg in expr.1 %}
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keywordstylekeywordstyle{% set index = outer_loop.index0 + loop.index0 %}

keywordstylekeywordstyle

keywordstylekeywordstyleadd_block(’simulink/Signal Routing/From’, ’untitled/FROM_{{ id }}_{{ loop.index }}’)

keywordstylekeywordstyleset_param(’untitled/FROM_{{ id }}_{{ loop.index }}’, ’position’, [600, {{ 450 + 100

keywordstylekeywordstyle* index }}, 650, {{ 450 + 100 * index + 50 }}]);

keywordstylekeywordstyleset_param(’untitled/FROM_{{ id }}_{{ loop.index }}’, ’GotoTag’, ’{{ arg }}’)

keywordstylekeywordstyleadd_line(’untitled’, ’FROM_{{ id }}_{{ loop.index }}/1’, ’{{ id }}/{{ loop.index }}’

keywordstylekeywordstyle);

keywordstylekeywordstyle{% endfor %}

keywordstylekeywordstyle

keywordstylekeywordstyle{% endfor %}
keywordstylekeywordstyle

The next layer being built is the mathematical layer. It consists of two loops: the first

generates a MATLAB function for each mathematical expression that appears in the spec-

ification so that it can be evaluated; the inner loop goes through the function inputs and

generate From blocks to access the respective signal value that corresponds to each input.

All functions output boolean values that are connected to the Stateflow block. These values

are interpreted as the propositional variables of the formulas.

keywordstylekeywordstyle

keywordstylekeywordstyle{% for const in constants %}

keywordstylekeywordstyle{{ const }} = {{ loop.index }};

keywordstylekeywordstyle{% endfor %}

keywordstylekeywordstyle

keywordstylekeywordstyle{{ stateflow }}

keywordstylekeywordstyle

keywordstylekeywordstylesfsave(’untitled’, ’{{ new_name }}’);
keywordstylekeywordstyle

Finally, we define the necessary constants that were used in the formula. We render

the Stateflow block, which was generated by a subclass of this abstraction according to the

verification algorithm it encodes. The chart is saved with the given name.

4.1.1 Deterministic Finite Automaton

A deterministic state automaton (DFA) is a transition system equipped with a set of accept-

ing states. By providing a string of input symbols and checking if the last input symbol
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leads into an accepting state, we verify that the string is a valid computation for that transi-

tion system.

Figure 12: Example of a deterministic finite automaton.

Figure 12 demonstrates an example of a DFA for the property Every time p holds, q holds

in the next step. The DFA has an initial state 1 and an accepting state 3. If the execution

trace leads the DFA into the accepting state, the system will be trapped in that state and

the property will be considered violated.

An example of a trace that violates this property is {p}, {p, q}, {}. In the first input symbol

p holds and therefore q must hold in the next input symbol, which leads the system into

transitioning to state 2. State 2 expects q to hold, otherwise it transitions to state 3, meaning

that the property was violated. In the next input symbol, q holds and so does p, so the

system will wait again for q to happen and thus remain in state 2. Finally, in the last input

symbol, q does not hold and the system evolves into state 3. The system remains trapped

in state 3 and the monitor reports that the property was violated.

Stateflow is the feature provided by Simulink to introduce deterministic finite automatons

in a Simulink model. If we know how to transform the formula into a DFA, checking if

the accepting state is reachable within a DFA is the default algorithm we use. That is

the case for formulas with LTL semantics and SpeAR patterns which, while having Past

LTL semantics, have a fixed and well known translation into a DFA. In the case of SpeAR

formulas we rely on the recursive semantics of Past LTL to verify the validity of a property.

The DFA module is a simple one that extends the monitor abstraction with the data

required to describe a DFA, and takes on the task of generating a Stateflow block that de-

scribes the respective DFA. The following is a template of the MATLAB script that renders

a deterministic finite automaton in Simulink.

keywordstylekeywordstyle

keywordstylekeywordstyle{% for s in states|sort %}

keywordstylekeywordstyleq_{{ s }} = Stateflow.State(ch);

keywordstylekeywordstyleq_{{ s }}.Name = ’q_{{ s }}’;

keywordstylekeywordstyle{% endfor %}

keywordstylekeywordstyle

keywordstylekeywordstyleentry = Stateflow.Transition(ch);

keywordstylekeywordstyleentry.Destination = q_{{ initial_state }};



4.1. Runtime verification with monitors 33

keywordstylekeywordstyleentry.DestinationOClock = 0;

keywordstylekeywordstyle

keywordstylekeywordstyle{% for s in accept_states|sort %}

keywordstylekeywordstyleq_{{ s }}.HasOutputData = 1;

keywordstylekeywordstyle{% endfor %}

keywordstylekeywordstyle

keywordstylekeywordstyleadd_block(’simulink/Sinks/Out1’, ’untitled/out’);

keywordstylekeywordstyleset_param(’untitled/out’, ’position’, [1300, 575, 1320, 595]);

keywordstylekeywordstyleadd_line(’untitled’, ’Chart/1’, ’out/1’);

keywordstylekeywordstyle

keywordstylekeywordstyle{% for (s1, prop), s2 in transitions.items() %}

keywordstylekeywordstyletr = Stateflow.Transition(ch);

keywordstylekeywordstyletr.Source = q_{{ s1 }};

keywordstylekeywordstyletr.Destination = q_{{ s2 }};

keywordstylekeywordstyletr.LabelString = ’{{ prop }}’;

keywordstylekeywordstyle{% endfor %}
keywordstylekeywordstyle

It starts by defining the set of states, while declaring the initial state and all the accept

states. After that it defines the transition relation over the set of states defined previously,

determining the set of actions through which the system can evolve.

4.1.2 Monitoring with Past Formulas

The process of translating a formula expressed in Past LTL to a deterministic finite au-

tomaton is not straightforward and thus we decided to rely on a different algorithm for

properties that reason about the past.

This algorithm is based on the recursive semantics of Past LTL, allowing us to evaluate a

Past LTL property just by looking at the current and previous states. This is an important

improvement over the commonly used semantics which, at every state, require a lookup of

every past state. Thus, while the commonly used semantics give us a worst case scenario

of O(N), where N is the number of we saw so far, the recursive semantics give us a worst

case scenario of O(1).

p !p p p p

Figure 13: Past LTL semantics for formula H p.
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In Figure 13, in order to discover if H p holds in the current state, the algorithm needs

to iteratively look into all the previous states and check if p does not hold in any of those

states. As the can see in the figure, the property does not hold for the current state, because

p did not hold in the past in the past.

p p

No knowledge needed about
these states

Figure 14: Recursive Past LTL semantics for formula H p.

The case is different in Figure 14 which illustrates the recursive semantics. Even though

the p holds in the current and previous state, we have information that it did not hold

sometime in the past, which is enough to conclude that H p does not hold in the current

state.

In order to generate a Stateflow block that can encode these semantics, we must first extract

all the subformulas from the temporal formula being verified. So, if we are verifying the

property if p holds, q held in previous step, and the same is true for every step in the past, denoted

as H (p → Y q), after the first step of the algorithm we end with the results shown in the

Listing 4.1.

keywordstylekeywordstyle

keywordstylekeywordstylesf5: q

keywordstylekeywordstylesf4: true

keywordstylekeywordstylesf3: p

keywordstylekeywordstylesf2: ¬pre(sf3) ∨ pre(sf4)

keywordstylekeywordstylesf1: pre(sf2)
keywordstylekeywordstyle

Listing 4.1: Subformulas of H (p → Y q).

We should note that it is important to list the most inner formulas first so that they are

according to their evaluation order. The verification algorithm relies on two sets of values.

1. the previous set – it holds the values of the subformulas that were evaluated for the

previous state.

2. the now set – it holds the values that are being evaluated for the current state by

relying on the previous set and the signal’s values in the current state.

Once the now set is completely evaluated, we proceed to the evaluation of the next state

evaluation, replacing the old previous set with the current now set. While this loop is the

main aspect of the algorithm, there is also an initialisation step for the first state, since it

has no previous set to rely on and thus must be evaluated differently.
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keywordstylekeywordstyle

keywordstylekeywordstyleINITIALIZATION:

keywordstylekeywordstylepre(5) = q;

keywordstylekeywordstylepre(4) = true

keywordstylekeywordstylepre(3) = p;

keywordstylekeywordstylepre(2) = ¬pre(3) ∨ pre(4);

keywordstylekeywordstylepre(1) = pre(2)

keywordstylekeywordstyle

keywordstylekeywordstyleLOOP:

keywordstylekeywordstylenow(5) = q;

keywordstylekeywordstylenow(4) = pre(4);

keywordstylekeywordstylenow(3) = p;

keywordstylekeywordstylenow(2) = ¬now(3) ∨ now(4);

keywordstylekeywordstylenow(1) = now(2) ∧ pre(1);

keywordstylekeywordstylepre(1) = now(1);

keywordstylekeywordstylepre(2) = now(2);

keywordstylekeywordstylepre(3) = now(3);

keywordstylekeywordstylepre(4) = now(4);

keywordstylekeywordstylepre(5) = now(5);

keywordstylekeywordstyleout = now(1);
keywordstylekeywordstyle

Listing 4.2: Example of the algorithm for H (p → Y q).

The last line states that the output of the Stateflow block matches the value evaluated for

the complete formula in the current state. The code presented in Listing 4.2 is actually the

MATLAB code that appears inside the Stateflow block. The Stateflow block for this algorithm

is composed by two states, one for the initialisation and the other for the loop as one can

see in the following excerpt.

keywordstylekeywordstyle

keywordstylekeywordstyleinitialState = Stateflow.State(ch);

keywordstylekeywordstyleinitialState.Position = [200, 200, 350, 500];

keywordstylekeywordstyleinitialState.LabelString = sprintf({{ initial }});

keywordstylekeywordstyle

keywordstylekeywordstylemainState = Stateflow.State(ch);

keywordstylekeywordstylemainState.Position = [600, 200, 350, 500];

keywordstylekeywordstylemainState.LabelString = sprintf({{ main }});
keywordstylekeywordstyle

This is followed by the definition of the only three transitions in this chart: the first

transition that leads into the initial state, the transition from the initial state to the main

state, and the self loop transition in the main state.
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keywordstylekeywordstyle

keywordstylekeywordstyleentry = Stateflow.Transition(ch);

keywordstylekeywordstyleentry.Destination = initialState;

keywordstylekeywordstyleentry.DestinationOClock = 0;

keywordstylekeywordstyle

keywordstylekeywordstyletr = Stateflow.Transition(ch);

keywordstylekeywordstyletr.Source = initialState;

keywordstylekeywordstyletr.Destination = mainState;

keywordstylekeywordstyletr.SourceOClock = 3;

keywordstylekeywordstyletr.DestinationOClock = 9;

keywordstylekeywordstyle

keywordstylekeywordstyleselfLoop = Stateflow.Transition(ch);

keywordstylekeywordstyleselfLoop.Source = mainState;

keywordstylekeywordstyleselfLoop.Destination = mainState;

keywordstylekeywordstyleselfLoop.SourceOClock = 12;

keywordstylekeywordstyleselfLoop.DestinationOClock = 3;
keywordstylekeywordstyle

Finally, the pre and now sets are defined, based on the number of subformulas, as well as

the output of the Simulink chart.

keywordstylekeywordstyle

keywordstylekeywordstylepre_arr = Stateflow.Data(ch);

keywordstylekeywordstylepre_arr.Name = ’pre’;

keywordstylekeywordstylepre_arr.DataType = ’boolean’;

keywordstylekeywordstylepre_arr.Props.Array.Size = ’{{ subformulas|count }}’;

keywordstylekeywordstyle

keywordstylekeywordstylenow_arr = Stateflow.Data(ch);

keywordstylekeywordstylenow_arr.Name = ’now’;

keywordstylekeywordstylenow_arr.DataType = ’boolean’;

keywordstylekeywordstylenow_arr.Props.Array.Size = ’{{ subformulas|count }}’;

keywordstylekeywordstyle

keywordstylekeywordstyleout = Stateflow.Data(ch);

keywordstylekeywordstyleout.Name = ’out’;

keywordstylekeywordstyleout.DataType = ’boolean’;

keywordstylekeywordstyleout.Scope = ’Output’;

keywordstylekeywordstyleadd_block(’simulink/Sinks/Out1’, ’untitled/out’);

keywordstylekeywordstyleset_param(’untitled/out’, ’position’, [1300, 575, 1320, 595]);

keywordstylekeywordstyleadd_line(’untitled’, ’Chart/1’, ’out/1’);
keywordstylekeywordstyle
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This behaviour is encoded in the PastFormula module that extends the monitor abstrac-

tion. The subformulas are extracted while rendering the MATLAB script to build the mon-

itor while both the the initialisation and the loop run in the Stateflow block with the rest of

the monitor. This

4.2 from a specification language to a monitor

After analysing the extracted requirements and formalising all the formal specifications we

intend to check, we are ready to trigger the monitor generation process. This process goes

through each of the specifications and identifies if they are either SpeAR or SALT formulas.

When a SpeAR formula is identified, it is immediately converted into a monitor through a

series of transformations. On the other hand, SALT formulas are first collected and only

then processed in simultaneous. This is because the first step of this process relies on the

SALT compiler which has a big initialisation overhead and thus we want to avoid calling it

multiple times. Once the compiler completes, we handle its output and transform it until

we are able to generate a runtime monitor.

The parsing process for SALT and SpeAR, while different, end both in the monitor ab-

straction and thus have many similarities. Figure 15 is a rough process of the process that

formal specifications go through. In reality, there are other transformations involved in the

process, but the core solution involves parsing the formal specification into an intermediate

representation, usually a temporal formula, and then extract the necessary data to build

the monitor, namely signal names and mathematical expressions.

Formal specification

Parsing

Temporal formula Signal names

Data extraction

Mathematical
expression

Rendering

Runtime monitor

Figure 15: Rough example of the process that formal specifications go through.
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This data extraction step heavily depends on the specification we are analysing and thus

we have an unique module for each one. The following sections will give more details about

how, for each language, we transform the specification into a temporal formula, collect the

signal names they refer to, and remove the mathematical expressions from the formulas.

4.2.1 SpeAR

The process of transforming SpeAR specifications into monitors starts with a parsing stage.

In order to perform this task we had to modify the ANTLR4 grammar provided with SpeAR.

This modifications were necessary because:

1. the grammar was too loose and allowed for semantically incorrect specifications.simplifications.

2. we only support a subset of the language and thus we excluded some operators.

3. we are only interested in parsing constraints and not the entire SpeAR documents.

We chose not to focus on a complete document because it is divided in several parts and

we did not to deal with the complexity of adding a layer to our tool that would abstract

this concepts to the different specification languages: proposition variables are divided in

inputs, outputs and state (internal variables) while constraints are divided in assumptions,

requirements and properties. While this allows for interesting features such as verifying

logical entailment and logical consistency, it would require the end user to handle these

concepts manually which would be a cumbersome task when dealing with large require-

ment’s documents..

The parser begins by checking if the constraint is a pattern since those are handled in a

completely different manner. They have different data extraction logic and they rely on a

deterministic finite automaton for verification in rather than the recursive semantics of past

LTL.

For constraints that are not patterns, we start by changing them to prefix notation, fol-

lowing by the normalisation of operators that can be written through multiple tokens such

as the historically operator which can also be written as H.

keywordstylekeywordstyle

keywordstylekeywordstylea) H (if p > 2 then previously q)

keywordstylekeywordstyle

keywordstylekeywordstyleb) [H [if [> p 2] then [Y q]]]

keywordstylekeywordstyle

keywordstylekeywordstylec) [H [-> [> p 2] [Y q]]]
keywordstylekeywordstyle

Listing 4.3: a) Normal SpeAR specification b) Constraint after changing to prefix notation and

normalisation c) Constraint after desugaring
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if param1 then param2 param1 → param2

if param1 then param2 else param3 param1 → param2 ∧ ¬param1 → param3

while param1 then param2 param1 → param2

before param1 ¬(once param1)
never param1 historically ¬param1

param1 equivalent to param2 param1 → param2 ∧ param2 → param1

Table 1: Examples of desugaring complex SpeAR constructs.

Once the pattern is normalised, we proceed to desugar complex constructs such as while

and never operators into a set of simpler operators. Figure 4.3 demonstrates the initial

transformations the specification described in a) goes through. It is converted to prefix

form in b) and in c the previously operator is normalised while the more complex if operator

is desugared into a logical consequence.

Now that the formulas are in their simplest version, we are able to starting analysing

them in order to extract all the necessary data required by the PastFormula abstraction

which will render the entire monitor, including the verification logic associated with the

recursive semantics of past LTL. The core of this step is the analysis we do on the math-

ematical expressions, gathering metadata such as the constants, variables, references to

values on previous states, and the mathematical expressions themselves. Once this analysis

is complete, we replace the mathematical expressions, which are evaluated separately, by

propositional variables that assume the value of the evaluated mathematical expression in

the current state.

This analysis step is recursive over the mathematical expression, descending gradually

sub expressions tree. To identify variables and constants we rely on regular expressions,

once we reached the roots of the sub expressions tree, and use the convention we specified

earlier: variables are lower case, while constants are upper case. For each match we find,

we add it either to the variables set or the constants set.

If any of the sub expressions includes a previous operator, which is the only temporal

operator that can appear inside a mathematical expression, we replace such expression by

a new identifier of type PRE signal name. These identifiers are added both to the set of

variables and the set of previous values. The math expressions themselves are transformed

back into the form, so that they are ready to be evaluated as a MATLAB expression. For

every relational expression, we generate an unique identifier and add the expression to the

mathematical expressions set. Inside the temporal formula, the expression is replaced by

its identifier, assuming the purpose of propositional variable.

All this analysis logic is done by the SpearFormula module, which is an extension of

PastFormula abstraction. With this analysis we obtain all the necessary metadata to build

the Simulink monitor.
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Listing 4.4 demonstrates the results of applying the processes described above to a SpeAR

specification. The if condition was transformed into a logic consequence and the mathemat-

ical expression no longer appears in the temporal formula, which is now in prefix notation.

All the metadata necessary to build the monitor was also collected successfully.

keywordstylekeywordstyle

keywordstylekeywordstyleOriginal SpeAR specification:

keywordstylekeywordstyle- H (if p > MAX_VOLTAGE then previously q)

keywordstylekeywordstyle

keywordstylekeywordstyleTemporal formula after analysis:

keywordstylekeywordstyle- H [-> m1 PRE_q]

keywordstylekeywordstyle

keywordstylekeywordstyleMetadata collected:

keywordstylekeywordstyle- Variables: {p, q, PRE_q}

keywordstylekeywordstyle- Previous: {PRE_q}

keywordstylekeywordstyle- Constants: {MAX_VOLTAGE}

keywordstylekeywordstyle- Mathematical expressions: {m1: p > MAX_VOLTAGE, m2: PRE_q}
keywordstylekeywordstyle

Listing 4.4: Example of the analysis of a SpeAR specification and the transformations it is subject to.

That said, patterns are handled in a different manner. If we identify that abstract syn-

tax tree of a SpeAR constraints corresponds to a pattern, it goes through the same process

of metadata extracting. However, each pattern has a well known transformation into a

deterministic finite automaton, so SpeAR patterns rely on a DFA instead of the recursive se-

mantics of past LTL. Different instantiations of the same pattern vary only on the metadata:

the variables set, the previous set and the mathematical set.

From this step onward, all the formulas (either free formulas or patterns) are an extension

of the monitor abstraction and thus the MATLAB scripts can be rendered.

4.2.2 SALT

SALT provides a compiler and thus it is not necessary for us to handle the parsing logic

by ourselves. The compiler supports multiple options for its output syntax, such as SMV

syntax or SPIN syntax – both well known LTL model checkers. Although none of its options

suit us, it still provides us the option to extend the compiler with our own plugins, which

allows us to customise its output. SALT can output formulas either in LTL or Past LTL

depending on the operators that were used in the SALT formal specification. While we

need the resulting LTL formulas in their canonical form, our backend for Past LTL expects

formulas in a prefix notation, which is an issue that is simpler to approach while we still

have knowledge about the AST of the formula. Thus, we chose to write a plugin for SALT

instead of building another parser and transforming the formulas on our backend.
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In short, the SALT compiler receives SALT specifications as input and will output either

canonical LTL, or Past LTL in prefix form. Our tool distinguishes the format being out-

putted by first trying to interpret the past formulas and, if this fails, handles it as a future

formula.

When our backend successfully parses a Past Formula from the SALT compiler it instan-

tiates it as PSaltFormula, an extension over the PastFormula abstraction. Similarly to the

SpearFormula, this mainly deals with the extraction of metadata, and replacement of math-

ematical expressions by propositional variables. Remember that mathematical expressions

are built upon the quoted propositions that allow for arbitrary text inside a formula. Thus,

we can not rely on the abstract syntax tree as we did for SpeAR.

Instead, we gradually consume the text while looking for specific patterns: variables, con-

stants, the previous operator, mathematical operators and number literals. We build a new

expression by appending every match exactly as it was found on the original expression,

except for the previous operator in which case we generate a new identifier and add it in

place of the original match. This new expression is added to the set of mathematical expres-

sions that forms the metadata as well as all the variables, constants and previous operators

that we were able to match.

In the case of LTL formulas we need to transform them into its equivalent DFA. For

this task we rely on a project, named Spot (Duret-Lutz et al., 2016), that provides a tool

to translate LTL formulas into their respective DFA representation. This tool outputs the

DFA as a Hanoi Omega Automata which we parse and then convert into a FSaltFormula, the

extension of the DFA abstraction for SALT.

keywordstylekeywordstyle

keywordstylekeywordstyleHOA: v1

keywordstylekeywordstylename: "G(!a | Fb)"

keywordstylekeywordstyleStates: 2

keywordstylekeywordstyleStart: 0

keywordstylekeywordstyleAP: 2 "a" "b"

keywordstylekeywordstyleacc-name: Buchi

keywordstylekeywordstyleAcceptance: 1 Inf(0)

keywordstylekeywordstyleproperties: trans-labels explicit-labels state-acc complete

keywordstylekeywordstyleproperties: deterministic stutter-invariant

keywordstylekeywordstyle--BODY--

keywordstylekeywordstyleState: 0 {0}

keywordstylekeywordstyle[!0 | 1] 0

keywordstylekeywordstyle[0&!1] 1

keywordstylekeywordstyleState: 1

keywordstylekeywordstyle[1] 0

keywordstylekeywordstyle[!1] 1

keywordstylekeywordstyle--END--
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keywordstylekeywordstyle

Listing 4.5: Example of a DFA in the Hanoi Omega Automata representation.

Listing 4.5 shows the output of the tool for the temporal formula G (a → F b). The HOA

representation starts by stating some metadata about the DFA such as:

1. the initial state 0 in the field Start.

2. the number of atomic propositions and their respective identifiers in the field AP.

3. the number of acceptance states, their respective id and some other properties in the

field Acceptance.

The metadata is followed by the DFA itself, by stating all states and all transitions as well

as the conditions that enable such transitions.

In our case, all atomic propositions correspond to mathematical expressions from which

we need to follow the usual procedure of metadata extraction, and then replacing them by

simple propositional variables that map into their evaluation at runtime.

From this step onward both future and past formal constraints are an extension of the

monitor abstraction, and thus we are ready to render their respective MATLAB scripts that

generate the equivalent monitor.

4.3 extraction dsl

The extraction DSL is based on parser combinators, high-level functions that receive parsers

as arguments and return a new parser, allowing us to define more complex parsers by

combining simpler parsers. The modifiable pattern, for instance, builds upon the modifier and

pattern parsers.

modi f iable pattern = optional(modi f ier), pattern

Each parser encodes a regex construction and this allow us to parse the DSL into a proper

regex that can be used to extract requirements. The supported regex features are described

below.

• Capture groups, which are essential to extract specific pieces of data from the text.

• Character classes like digit, lowercase, any char, and many others.

• Placement match such as start with, end with

• Pattern quantifiers such as zero or more, one or more and optional or numbered patterns.
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• Range quantifiers such as between, up to and at least.

• Sequences of possible patterns that can be matched, encoded as one of.

• pattern negation, start of string and end of string expressions.

• Support for actual regex patterns and custom extractors that can be reused as patterns.

While Table 2 shows simple translation rules that are performed by the parsers, there

are more complex translation rules such as the modifiable pattern. This parser starts by

compiling the pattern and, if there is a modifier, applies the modifier to the result. The

compilation process is aware of its environment so that the user can rely on previously

defined extractors to build new ones on top of them.

followed by expr expr

starts with expr êxpr

ends with expr expr$

Table 2: Translation rules performed by parsers.

4.4 final results

In this section we intend to do an overview of our workflow, this time focusing on the

transformations the formal specifications go through instead of how they are performed.

Consider the extractor described in Listing 3.2 that compiles down to

(REQ [0 − 9]+) : \s ∗ (.+)\n{2}

and with which we are able extract the requirements we saw previously in Listing 3.1. From

these requirements, we are interested in the first two:

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_1: When the system is in state_1 and signal_3 + signal_2 > 100, the system shall

keywordstylekeywordstyletransition to state state_3.

keywordstylekeywordstyleREQ_2: Once the system is in state_3 occurs, then the system will be in state_4

keywordstylekeywordstylesomewhere in the future.
keywordstylekeywordstyle

We formalise REQ 1 using SALT and REQ 2 using SpeAR as previously shown in Listing

3.4 and Listing 3.5, respectively. With both formulas formalised, we can trigger the monitor

generation process.

keywordstylekeywordstyle

keywordstylekeywordstyleREQ_1: assert always (if ’state == STATE_3’ then eventually ’state == STATE_4’)
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keywordstylekeywordstyleREQ_2: historically if previously state equal to STATE_1 and signal_3 + signal_2 >

keywordstylekeywordstyle100 then state equal to STATE_3
keywordstylekeywordstyle

For REQ 1 this process starts by invoking the SALT compiler. Since REQ 1 is a future

formula, the compiler output will be pure LTL which will then be processed by Spot. Fi-

nally, we analyse the mathematical expressions to extract all the necessary metadata. The

replacement of mathematical expressions by boolean propositions was already handled by

Spot, and it is only necessary to readjust the name of boolean proposition to match the

identifier we give to the math expressions. Listing 4.6 shows the DFA outputted by Spot

after adjusting the propositional variables’ names.

keywordstylekeywordstyle

keywordstylekeywordstyleState: 0 {0}

keywordstylekeywordstyle[!expr0 | expr1] 0

keywordstylekeywordstyle[expr0&!expr1] 1

keywordstylekeywordstyleState: 1

keywordstylekeywordstyle[1] 0

keywordstylekeywordstyle[!1] 1
keywordstylekeywordstyle

Listing 4.6: Excerpt of Spot output for REQ 1.

For REQ 2 this means changing it into prefix form, followed by normalising and desug-

aring its operators, resulting in a temporal formula with just the operators from Past LTL

semantics. To finish the processing this formal specification goes through, we extract the

mathematical expressions while simultaneously collecting the metadata. Listing 4.7 de-

scribes the final result.

keywordstylekeywordstyle

keywordstylekeywordstyleTemporal formula:

keywordstylekeywordstyle- H [-> [&& m0 m1] m2]

keywordstylekeywordstyle

keywordstylekeywordstyleMetadata collected:

keywordstylekeywordstyle- Variables: {PRE_state, signal_3, signal_2}

keywordstylekeywordstyle- Previous: {PRE_state}

keywordstylekeywordstyle- Constants: {STATE_1, STATE_3}

keywordstylekeywordstyle- Mathematical expressions: {m0: PRE_state == STATE_1, m1: signal_3 + signal_2 >

keywordstylekeywordstyle100, m2: state == STATE_3
keywordstylekeywordstyle

Listing 4.7: Resulting data after processing REQ 2.

With both requirements processed, we are able to automatically build the runtime moni-

tors. These monitors can then be plugged into the system model and run in parallel with
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it during simulations. By observing the monitor output, the engineer is able to detect if

the any of the properties did not hold and act accordingly by either fixing the design or

checking the consistency of the requirements.



5
C O N C L U S I O N

Critical systems require a high level of confidence in their correctness before they can be

deployed. Today, the industry already relies on model-based engineering and simulations

to improve the confidence in their designs by doing an early exploration of the behaviour

their solution exhibits. The proof of concept described in this dissertation builds upon

these processes and, in order to verify the system behaviour, it relies on runtime monitoring

instead of typical unit testing. As such, instead of verifying the system by relating pairs

of input/output, we focus on verifying its correctness over execution traces, allowing us to

state properties that the system must satisfy. Since we automatically generate the monitors

from the formalised requirements, the runtime monitors we generate are also checking the

design compliance with the elicited requirements.

Our workflow is also heavily focused on reducing the obstacles that requirements engi-

neers face when using tools based on formal methods. To achieve this, we chose to support

high-level specification languages with a syntax as close to that of natural language as pos-

sible. Thus, both SALT and SpeAR specification languages provide expressive operators

while not requiring strong formal methods foundations. Furthermore, we do not expect

requirements engineers to be versed in writing regular expressions and thus provided a

DSL to ease the extraction of requirements.

In the end, we were able to successfully generate runtime monitors for the Simulink

environment based on SALT and SpeAR specifications.

5.1 future work

Currently, our tool limits the flexibility provided by SpeAR and SALT by not supporting the

definition of user-defined operators. There are several ways in which we could overcome

this limitation, for instance, by supporting a library with operators that the users could

contribute to.

We also wish to add support for the SALT operators whose semantics are based on Timed

LTL. This would allow our tool to support yet another class of properties, i.e. properties

with real time constraints.

46
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It would also be interesting to explore the concept of code generation by inspecting the

system model and the associated runtime monitors and generating both the application and

the executable equivalent of the monitors. Such task would be a challenging one since the

monitors would require a low execution overhead in order to keep it from impacting the

system. Another problem that would require attention in this approach would be the con-

currency between the application and the monitors, which could not impact the correctness

of the requirements. This approach would also be interesting to monitor non-functional re-

quirements such as memory consumption or energy available. Such requirements could be

follow a similar methodology to the one described in this dissertation but targeting AADL

instead of Simulink.
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