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A B S T R A C T   

In this work, a new and simple methodology is proposed to identify the cohesive law of composite 
materials submitted to pure mode I and II loading. This methodology combines the experimental 
measured crack opening displacement and corresponding strain energy release rate with nu
merical simulation, using finite element method including cohesive zone modelling. The proposed 
procedure was tested and validated numerically, considering the determination of cohesive laws 
with different shapes for pure mode I and II loading. This was accomplished using the double 
cantilever beam (mode I) and end-notched flexure (mode II) tests. It was verified that the pro
posed methodology points towards the unicity of the identified solution and reproduces well the 
cohesive laws used as input.   

1. Introduction 

The accurate prediction of damage initiation and propagation in structures is becoming a research topic with increasing interest of 
researchers. The classical approaches are based on strength of materials methods using stress or strain failure criteria. However, these 
methodologies are not appropriate in the presence of discontinuities and singularities in the material, such as notches or holes, which 
generate important stress concentration effects. This circumstance leads to mesh dependency in numerical approaches creating sig
nificant difficulties in damage progressive analysis. In alternative, fracture mechanics based analysis can be employed. In this case, the 
presence of an initial material defect must be considered, which is a drawback concerning the simulation of damage onset. In order to 
overcome these difficulties, cohesive zone models (CZM) can be employed with success. These models combine stress-based criteria to 
identify damage onset and fracture mechanics concepts to deal with damage growth, thus overcoming the weaknesses and exploit the 
advantages of those criteria. In fact, using this strategy no initial crack is required to simulate damage initiation and the mesh de
pendency complications during propagation vanish. Moreover, CZM are able to handle non-linear fracture mechanics problems 
characterized by the presence of non-negligible fracture process zones. For these reasons, CZM are becoming popular numerical tools 
to deal with damage prediction in materials [2,12,14,16]. These models are based on a constitutive softening relationship between 
tractions and crack opening displacements, which is commonly known as the cohesive law (CL). Depending on materials fracture 
behavior, the CL can assume different shapes, e.g., bilinear, trilinear, trapezoidal, exponential and others. The definition of the 
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appropriate configuration of the CL for a given material is a fundamental aspect of the model. In the large majority of cases, the authors 
assume that the form of the CL is not so important [1] and adopt a pre-established shape. However, this procedure is not rigorous and 
can become rather inaccurate, mainly in cases where material fracture behavior is totally unknown a priori. In order to solve this 
difficulty, the determination of the CL shape should be performed. In general, two main procedures are employed with this aim: the 
inverse and direct methods. The inverse methods lay on assuming a pre-established law shape and the identification of the corre
sponding cohesive parameters is accomplished employing fitting procedures that use a manual iterative procedure [5], or involve 
automatic optimization strategies ([8;13]. Through the later, the most used process employs an optimization technique aiming to fit 
the numerical load-displacement curve with the experimental one, through minimization of an objective function quantifying the 
difference between those curves [4;8;15,17]. A more complex approach requires the displacement field at the crack tip, measured by 
high-performance optical instruments, which is used as input in the numerical model aiming to simulate the global behavior [11,13]. 
In both cases, several problems can be pointed. In effect, too many iterations are usually necessary until a good reproducibility of the 
experimental curve is achieved. In addition, the usual unevenness observed in the experimental curves can induce difficulties in the 
automatic optimization process. Finally, it is frequently pointed the lack of unicity of the found solution [3,10] that increases with the 
complexity of the CL shape (i.e., the number of the parameters to be identified). 

The direct method lies on experimental determination of the CL [7], which involves the monitoring of the crack tip opening 
displacements (COD) during the test. The CL is obtained by differentiation of the relation between strain energy release rate and COD, 
which requires the fitting of an appropriate function. This method has two main advantages relative to inverse procedures: (i) it does 
not require the pre-definition of CL shape; (ii) the resulting law is obtained based on local measurements, which are better repre
sentative of the fracture phenomenon. However, it has been observed that resulting CL is sensitive to the function adjusted to the strain 
energy release rate versus COD relation [20]. 

The objective of this work is to propose a new and simple methodology to determine the CL. The method combines experimental 
data with numerical simulation using finite element analysis including cohesive zone modelling. The proposed procedure was vali
dated numerically considering the determination of the CL under pure mode I loading using the double cantilever beam (DCB) test and 
under pure mode II loading employing the end-notched flexure (ENF) test. In both cases, several CLs were considered as input and the 
suitability of the model to reproduce them was verified. 

Nomenclature 

Latin 
a Crack length 
a0 Initial crack length 
ae,i Equivalent crack (i = I, II) 
Ci Compliance (i = I, II) 
Ef Elastic modulus in f direction (f = 1,2,3) 
Gi,j Strain energy release rate (i = I, II; j = 2, 3, …, n) 
Gic Critical energy release rate (i = I, II) 
Gfg Shear modulus in fg plane (f ,g = 1,2,3) with f < g 
h Specimen half height 
L Half distance between supports 
Pi Load (i = I, II) 
wi,j Crack opening displacement (i = I, II; j = 2, 3, …, n) 
k interfacial stiffness 
d Damage parameter 

Greek 
σi,j Stress (i = I, II; j = 2, 3, …, n) 
δi Displacement (i = I, II) 
νfg Poisson ratio in fg plane (f , g = 1,2,3) with f < g 
σu,i Ultimate strength (i = I, II) 

ACRONYMS 
CODi Crack Opening Displacement (i = I, II) 
DCB Double Cantilever Beam 
ENF End-Notched Flexure 
CZM Cohesive Zone Models 
CL Cohesive Law  
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2. Cohesive zone model 

The cohesive zone model used in this work is based on piecewise linear softening CL (Fig. 1). A stepwise softening law with several 
branches can be used to replicate with accuracy the fracture behaviour of most materials. Hence, before damage onset, the relation 
between normal or shear traction (σi) and corresponding relative displacement (wi) writes 

σi = kwi ; ( i = I, II) (1)  

where k is the interfacial stiffness. This parameter usually assumes a high value (106-107 N/mm3) to avoid unwanted interpenetrations 
during contact. Therefore, the relative displacement corresponding to damage onset (wi,1) becomes quite small and it was neglected in 
the schematic representation of Fig. 1. After damage onset, the softening relationship is described by 

σi = (1-d)kwi ; ( i = I, II) (2) 

being d the damage parameter, ranging between zero and one. The crack opening displacements and tractions at the transition 
points (j = 2, 3, . . . n) (Fig. 1) are employed to define the cohesive law. 

Equating the critical energy release rate (Gic) to the area of the softening law (Fig. 1) it is possible to determine the ultimate relative 
displacement for j = n in the following equation, provided that the coordinates of the several inflection points (wi,j, σi,j) are previously 
determined following the methodology described in the next section, 

Gic =
∑n

j=2

(σi,j + σi,(j− 1))(wi,j − wi,(j− 1))

2
(3) 

The expression of the damage parameter on the several segments can now be easily obtained equating the corresponding softening 
relation, 

σi =
σi,j − σi,(j− 1)

wi,j − wi,(j− 1)

(
wi − wi,(j− 1)

)
+ σi,(j− 1) for wi,(j− 1) ≤ wi ≤ wi,j (4) 

to Eq. (2), and solving each equation in order to parameter d. This leads to the following relationship, 

d = 1 −
1

kwi

[σi,j
(
wi − wi,(j− 1)

)
+ σi,(j− 1)

(
wi,j − wi

)

wi,j − wi,(j− 1)

]

for wi,(j− 1) ≤ wi ≤ wi,j (5) 

Giving this relation, damage progression is simulated differently according to the successive stages (branches) of damage evolution. 

3. Identification of the cohesive law 

The proposed methodology is based on the ultimate strength (σi,1) and on the relation between the strain energy release rate (Gi), 
and crack opening displacements (CODi). The first step consists in the determination of traction values in the vertices of the softening 
region (σi,j in Fig. 1), as a function of the ultimate strength according to the following equations, 

σi,j =
2
(
Gi,j − Gi,(j− 1)

)

wi,j − wi,(j− 1)
− σi,1 for j = 2  

σi,j =
2
(
Gi,j − Gi,(j− 1)

)

wi,j − wi,(j− 1)
+ ( − 1)j− 1σi,1 − ( − 1)j− 1

∑j− 2

k=1
( − 1)k− 12

(
Gi,(k+1) − Gi,k

)

wi,(k+1) − wi,k
for j > 2 (6) 

Using this information and imposing the following constraints, 

Fig. 1. Piecewise linear cohesive law (Gic =
∑n

j=2Gi,j).  
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σi,j > 0, j = 1, 2, 3,⋯, n  

σi,j > σi,(j+1), j = 1, 2, 3,⋯, n (7) 

the allowable domain for the ultimate strength (σ1,i) is therefore identified, making the seeking strategy a single variable problem. 
Fig. 2 shows a schematic representation of the proposed methodology to identify the ultimate strength (σi,1) search domain bearing in 
mind a softening law with five vertices, i.e., a total of four branches. Considering Eqs. (6), it is possible to plot the linear relations 
between the intermediate components of tractions (σi,j with j = 2, 3, 4) in function of σi,1(Fig. 2). Subsequently, the constraints given 
by Eqs. (7) are imposed, aiming to define the allowable domain for this cohesive parameter (σi,1) (dashed region in Fig. 2). 

It should be noted that the increase of the number of branches, with consequent reduction of tractions range between the selected 
vertices, leads to a reduction of the allowable domain of the ultimate strength. The determination of this value (σi,1) in the allowable 
and limited region (dashed area in Fig. 2) is accomplished by minimization of the difference between the numerical and experimental 
load-displacement curves. This procedure is much less sensitive to lack of uniqueness problems in comparison with the classic inverse 
method relying on the fitting of numerical to experimental load-displacement curves. In fact, the proposed procedure constitutes a 
single variable seeking technique and an accurate solution can be found after some iterations. Fig. 3 presents a flowchart of the 
implemented algorithm revealing the main steps and their sequence of the proposed procedure. 

For the application of the described procedure it is important to determine the evolution of Gi during the mechanical test. The strain 
energy release rate can be obtained by means of an equivalent crack length procedure. In the DCB case ([8]), the specimen compliance 
versus crack length relation can be obtained from the Timoshenko beam theory, 

CI =
8a3

E1Bh3 +
12a

5BhG13
(8)  

where B, h, a stand for specimen dimensions (Fig. 4a and 5a) and E1 and G13 are the material elastic properties (Table 1). An equivalent 
crack length is obtained as a function of the current compliance, ae = f(CI). The solution can be found by the following equation, 

αa3
e + βae + γ = 0 (9)  

where α and β are the coefficients multiplying a3
e and ae, respectively and γ = − CI. Using the Matlab® software and only keeping the 

real solution yields, 

ae =
1

6α A −
2β
A

(10)  

with α, β and A defined as, 

α =
8

Bh3E
; β =

12
5BhG

;A = ((− 108γ + 12

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3(
4β3 + 27γ2α

α

√

))α2)
1
3 (11) 

This equivalent crack length is longer than the actual one since it accounts for root rotation effects and the development of the 
fracture process zone ahead of the crack tip. Combining Eq. (8) with the Irwin-Kies relation, 

GI =
P2

2B
dC
da

(12) 

it leads to 

GI =
6P2

B2h

(
2a2

e

h2E1
+

1
5G13

)

(13) 

This procedure provides the evolution of GI in the course of the test, using only data ensuing from the load-displacement curve. In 
the case of the ENF test [6], the specimen compliance writes, 

Fig. 2. Schematic representation of the resulting domain for σ1,i assuming four vertices (j = 5 in Fig. 1).  
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Fig. 3. Flowchart of the developed algorithm used to obtain the cohesive law.  

(a) 

(b) 

Fig. 4. (a) Schematic representation of the DCB test (dimensions in mm: a0 = 45; h = 2.7,width B = 15) and (b) used finite element mesh.  
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CII =
3a3 + 2L3

8E1Bh3 +
3L

10G13Bh
(14) 

which allows to determine the equivalent crack length 

ae =

[(

CII −
3L

10G13Bh

)
8E1Bh3

3
−

2L3

3

]1/3

(15) 

Combining Eqs. (15) and (12), the mode II strain energy release rate becomes, 

GII =
9P2a2

e

16E1B2h3 (16)  

4. Numerical model 

Finite element analyses of the double cantilever beam (DCB) and end-notched flexure (ENF) tests were performed (Figs. 4 and 5). A 
two-dimensional analysis considering 1800 solid plane strain 8-node elements were used to simulate carbon-epoxy material (Tables 1 
and 2), connected by means of compatible 200 cohesive elements with 6 nodes located at the specimen mid-height, aiming to simulate 
damage initiation and propagation. Non-linear geometrical analyses considering very small increments (0.0005 mm) for the loading 
applied displacement were assumed to simulate a quasi-static loading. The applied displacement was assumed equal to 10 mm to 
guarantee self-similar crack growth in all cases analysed. 

5. Results and discussion 

Different cohesive laws were used as input in the numerical analyses to perform the virtual tests. The crack opening displacement 
(CODi, i = I, II) is measured in the numerical analysis at the pair of homologous points (above and below the crack line) located at the 
crack tip. Experimentally, they can be monitored by means of the digital image correlation [20]. These parameters allow to stablish the 
relations Gi = f(CODi) (Fig. 6), which are essential for the above described procedure. 

A comparison between the cohesive law identification method developed by [18], in the following designated as “old algorithm”, 
and the method proposed in this work, named as “new algorithm”, was made. The “old algorithm” consists of an inverse method based 
on the combination of numerical simulations with an optimization algorithm aiming to minimize the difference between numerical 
and experimental load-displacement curves in each iteration. With this purpose, the pairs traction value (σi,j) and relative displacement 
(wi,j) that define a cohesive law composed by four linear branches are iteratively changed envisaging the best agreement between the 
numerical and experimental load-displacement curves. 

The two algorithms were applied to a DCB test considering a polynomial softening law and both provide a good agreement on load- 
displacement curves (Fig. 7a). Anyway, a detailed analysis of the load-displacement curves close to peak loads reveals that the new 
algorithm, considering j = 5 (Figs. 1 and 2), provides a better reproduction of the reference curve (Fig. 7b). Regarding the cohesive 

Table 1 
Typical elastic properties of carbon-epoxy [8].  

E1 = 109 GPa ν12 = 0.34 G12 = 4315 MPa 
E2 = 8819 MPa ν13 = 0.34 G13 = 4315 MPa 
E3 = 8819 MPa ν23 = 0.38 G23 = 3200 MPa  

(a) 

(b) 

Fig. 5. (a) Schematic representation of the ENF test (dimensions in mm: a0 = 75; h = 2.7,width B = 15; L = 100) and (b) used finite element mesh.  
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laws, the old algorithm identified a softening law considerably different of the reference one. This highlights the difficulty of ensuring a 
unique solution from an adjustment based only on load-displacement curve. Another important issue is the CPU time consuming to 
achieve a solution. Both algorithms can be considered fast, however the new algorithm provides a solution in less than five iterations, 
which represents a decrease around 50% (Fig. 8). 

Four common cohesive laws (CLs) representative of fracture behaviour of different composite materials were analysed to verify the 
model performance: the linear, the bilinear, the trapezoidal and the polynomial. Applying the data reduction methods described by the 
end of section 3. The respective Resistance-curves (R-curves) are presented in Fig. 9. As expected the values given by the plateau regions 
are in close agreement reflecting self-similar crack propagation under constant fracture energies (GIc and GIIc for mode I and mode II, 
respectively). 

The piecewise linear softening law with four branches described in section 2 was employed to reproduce the considered CLs, in 
Figs. 10 and 11 it is possible to visualize the pairs (w,σ) used as input. In the mode I case, the bilinear and polynomial CLs were selected 
and the other ones (i.e., the linear and trapezoidal) were considered for mode II loading. Figs. 10 and 11 illustrate the agreement 
obtained for the referred four CLs. In the mode I case, both methods were considered, and it can be verified that the new algorithm 
captures well the reference law used as input. Instead, the old algorithm propitiates remarkable different softening laws when 
compared with the input ones. 

In order to verify whether the excellent performance of the new algorithm obtained for mode I keeps valid for the mode II loading 
case, the procedure was applied to the linear and trapezoidal softening laws frequently used for this shear loading mode [9,19]. The 
results obtained are plotted in Fig. 11 confirming the excellent performance of the proposed methodology on the evaluation of the 
cohesive laws under pure loading modes. 

6. Conclusions 

In this work, a new and simple methodology allowing the determination of cohesive laws representative of the fracture behaviour 
of composite materials under pure mode I and II loading was developed. The procedure involves experimental data in combination 
with finite element analysis including cohesive zone modelling. The method requires the monitoring of the load-displacement and the 
crack opening displacement (CODi, i = I, II) during the fracture test. From the load-displacement data, the strain energy release rate 
(Gi) in the course of the pure mode fracture tests (DCB and ENF) is obtained employing an equivalent crack length data reduction 
scheme, which allows to establish the Gi = f(CODi) relation. Subsequently, a piecewise linear cohesive law is used in a finite element 
analysis imposing several conditions that restrict the possible domain for the local strength. An optimization algorithm that minimizes 
the difference between the numerical and experimental load-displacement curves performs the final identification of this parameter. 
This inverse procedure englobes a single variable seeking, which means that it shows low sensitivity to lack of unicity of the found 
solution. 

The method was tested considering four typical different cohesive laws, being two applied to pure mode I loading and the other two 
to the pure mode II loading, performing virtual DCB and ENF tests (mimicking experimental data), respectively. The ensuing Gi = f 
(CODi) relations and the respective load-displacement curves were used in the seeking procedure. A piecewise linear softening law 

Table 2 
Cohesive parameters of carbon-epoxy [6].  

Mode I Mode II 

σuI = 50 MPa σuII = 50 MPa 
GIc = 0.3 N/mm GIIc = 0.7 N/mm  

(a) (b) 
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G
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m
)
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Fig. 6. Strain energy release rate as a function of the crack opening displacement: (a) Mode I (GI = f(CODI)); (b) Mode II (GII = f(CODII)).  
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with four branches was used to capture the CLs used in the virtual test simulations. Overall, excellent agreement was obtained between 
the cohesive laws used as input and the ensuing ones resulting from the employed procedure, which makes the presented procedure a 
valuable tool regarding the identification of the cohesive laws representative of materials’ fracture. In fact, the proposed methodology 
can be easily implemented for coherent cohesive law assessment of any material with reduced computational costs owing to the set of 
the imposed restrictions. 
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