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c Centre for Textile Science and Technology, School of Engineering, University of Minho, Guimarães, Portugal   
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A B S T R A C T   

In this study, the geotechnical and piezoresistivity properties of a sustainable self-sensing cementitious stabilised 
sand reinforced with recycled fibres (self-sensing cementitious geocomposite, SCG) were extensively investi-
gated. In this route, different concentrations of recycled glass, polypropylene, and ultra-high-molecular-weight 
polyethylene (GF, PP, and UHMWPE) fibres were incorporated into the conductive stabilised sand with 10% 
cement composed of 0.17% hybrid (1:1) carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The 
specimens were fabricated using the standard Proctor compaction method at optimum water content, and their 
mechanical, hydraulic, microstructural, durability, and piezoresistivity properties were investigated after 28 
days of hydration using different laboratory test methods. The test results indicate that the maximum dry 
densities of all SCGs were obtained with a degree of saturation of approximately 85%. For these moisture 
conditions, there are well-defined relationships between the maximum dry density and strength, permeability, 
and ultrasonic pulse velocity for SCGs. The GF and UHMWPE fibres exhibited the best performances in terms of 
strength, durability in climatic cycles, as well as a reduction in permeability. A unique relationship between the 
ratio of tangent modulus and strength with the strain was defined for all the SCGs that can be of practical use in 
geocomposite. Furthermore, the piezoresistivity and sensitivity of the SCGs were also increased by reinforcing 
the geocomposites with fibres, due to increasing their ductility. In summary, we believe that this novel approach 
contributes to a new era of smart geocomposite materials in sustainable intelligent transport infrastructures.   

1. Introduction 

Cemented stabilised sand has been widely used in different infra-
structure constructions such as roads, aircraft runways, railways, and 
tunnels [1–4]. However, the low ductility and weakness of cemented 
sand against cracking is still an important issue for sustainable appli-
cation of such geocomposites [5–7]. At the microstructure level, 
cemented sand exhibits some inherent drawbacks and numerous nano-
scale cracks. Cracks are formed during the construction process or in the 
service life [8]. Nanocracks join and propagate, forming microcracks 
over time with the ageing of materials, aggressive environmental con-
ditions, prolonged usage, and overloading, which can contribute to the 
formation of macrocracks and failure of the structure [9,10]. However, 
early detection of such damages and proper maintenance can greatly 
enhance the infrastructure service life, and prevent sudden collapse [9]. 
Stress, strain, deformation, and damage state monitoring in civil 

engineering structures is commonly known as structural health moni-
toring (SHM) [11,12]. Despite recent progress, most SHM methods 
include several sensors distributed in a large area of infrastructure and 
may not be, in some cases, the best solution for infrastructure moni-
toring [9]. Amongst all SHM methods, self-sensing composites provide a 
more integrated, real-time, and practical solution for infrastructure 
damage detection, considering geomaterial properties and nature [9, 
10]. Self-sensing composites with intrinsic sensing capabilities are based 
on the piezoresistivity arising from the dispersion of conductive phases 
within a non-conductive phase [13,14]. During loading, the random 
conductive paths formed by conductive fillers are disturbed by strain 
and stress, leading to a change in the electrical resistivity of the com-
posite [15–17]. Although different fibrous and nanomaterials have been 
used as the conductive phase, recent studies indicate that hybrid carbon 
nanotubes (CNTs) and graphene nanoplatelets (GNPs) can significantly 
increase percolation and quantum tunnelling effects, reducing the 

* Corresponding author. 
E-mail address: agc@civil.uminho.pt (A. Gomes Correia).  

Contents lists available at ScienceDirect 

Transportation Engineering 

journal homepage: www.sciencedirect.com/journal/transportation-engineering 

https://doi.org/10.1016/j.treng.2021.100096 
Received 28 August 2021; Received in revised form 2 November 2021; Accepted 11 November 2021   

mailto:agc@civil.uminho.pt
www.sciencedirect.com/science/journal/2666691X
https://www.sciencedirect.com/journal/transportation-engineering
https://doi.org/10.1016/j.treng.2021.100096
https://doi.org/10.1016/j.treng.2021.100096
https://doi.org/10.1016/j.treng.2021.100096
http://crossmark.crossref.org/dialog/?doi=10.1016/j.treng.2021.100096&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transportation Engineering 6 (2021) 100096

2

percolation threshold. The synergistic effects of CNT/GNP increase 
sensitivity and reduce the cost of production and the likelihood of 
porosity. However, to produce a sustainable self-sensing cementitious 
geocomposite (SCG) for field application, the low ductility behaviour 
must be addressed. Recent studies have indicated that incorporating 
fibres significantly improves the ductility and flexural behaviour of 
cementitious geocomposites [18–20]. Amongst various fibres used in 
cementitious composites, recycled glass and polypropylene fibres (GF 
and PP) have attracted substantial attention in different applications, 
mostly for their light weight, cost-effectiveness, and relative mechanical 
performance in terms of flexural and tensile moduli, and flexibility 
during processing and biodegradation [21–24]. Recently, a sustainable 
SCG was developed by the authors of this paper using hybrid CNT/GNP 
with the standard compaction method at optimum water content [25]. 
The effects of different concentrations of GF, PP, and 
ultra-high-molecular-weight polyethylene (UHMWPE) on microstruc-
tural and electrical performances of the composite were deeply inves-
tigated. Besides, the interfacial performance of the fibres-matrix such as 
bond strength, frictional bond strength, and chemical debonding energy 
was evaluated by various types of the test which indicates a different 
behaviour of these composites. Hence in the present study by knowing 
the reasons and origins of these differences, the geotechnical properties 
of the composite have been investigated and quantified. 

Indeed in present study, in addition to the published research results 
by the authors in this subject [9,10,25–27], the effects of different 
concentrations of GF, PP, and ultra-high-molecular-weight polyethylene 
(UHMWPE) fibres on the mechanical, microstructural, durability, and 
piezoresistivity properties of SCGs are explored, more orientated toward 
geotechnical transport infrastructure applications. Due to the novelty of 
these composites, the relationships between the physical and 

hydro-mechanical properties of the reinforced composite were also 
studied to pave the design path of such composite in field application. 

The outcomes of this study are intended to contribute to the new era 
of smart infrastructures, including applications to rammed earth, ground 
improvement, and particularly in structural layers in transportation 
infrastructures, especially in critical zones such as transition zones. This 
self-sensing cementitious geocomposite can detect material damage, 
anticipate maintenance needs, and prevent structural failures. 

2. Materials and methods 

2.1. Raw materials 

In this study, a multilayer GNP and multiwall CNT (MWCNT) were 
used as conductive fillers. The specifications of these carbon nano-
materials (CNMs) are presented in Table 1 [9,10]. The morphology of 
the hybrid GNPs/CNTs in the dry mixed state is depicted in Fig. 1. 

A compatible noncovalent surfactant, Pluronic F-127, and tributyl 
phosphate (TBP, 97%) was used to disperse CNMs. In this study, CEN 
standard sand (ISO 679: 2009 and EN 196-1) and ordinary Portland 
cement type I (CEM I, 42.5R) were used for SCG fabrication. The 
physical properties of the sand are summarized in Table 2. Additional 
material specifications can be found in the literature [9,10,25–27]. 

A split film polypropylene (PP), alkali-resistant glass fibres (AR–GF), 
and an UHMWPE fibre called Dyneema with an average length of 12 mm 
were used for SCG reinforcement. The physical properties of the fibres 
are presented in Table 3. In this study, hydrofluoric acid (40%) and 
sulfuric acid (97%) were used for surface treatment of the fibres. 

2.2. Specimen preparation 

Although the hybrid combination of CNT/GNP can induce superior 
properties, the effective transfer of these characteristics to the geo-
composite is strongly dependent on their dispersion status [28–32]. In 
this study, a compatible and effective method for hybrid CNT/GNP 
dispersion in aqueous suspension was used with 10% PF-127 (by weight 
of CNMs), with the addition of 50% TBP (by weight of surfactant) via 3 h 
of sonication (80 W output power and 45 kHz frequency) at 40 ◦C [9,10, 
26,27]. To improve the surface condition, interaction, and adhesion 
with the cementitious matrix as well as their dispersion, the fibres were 
treated using a chemical method [33–37]. In this study, the GF were 

Table 1 
Characteristics of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) [9,10].  

GNP 
Surface area 
(m2 g–1) 

Density (g/ 
cm3) 

Carbon 
content (%) 

Tensile modulus 
(GPa) 

pH value (30 
◦C) 

Tensile strength 
(GPa) 

Layers Dimension Form Part 
number 

120–150 0.6 > 99.5 1000 7–7.65 5 10 < n <
60 

Thickness Diameter Grey 
Powder 

TGN201 
4–20 nm 5–10 µm  

MWCNT 
Surface area (m2 g–1) Density (g/cm3) Colour Outside diameter (nm) Length (µm) Ash (wt.%) Carbon content (%) Part number 

350 0.27 Black < 8 30–10 < 1.5 > 98 GCM327  

Fig. 1. Morphology of CNTs and GNPs in dry mixed state.  

Table 2 
Sand particle size distribution [9, 10].  

Mesh size (mm) 0.08 0.16 0.5 1 1.6 2 

Cumulative 
retained (%) 

99±1 87±5 67±5 33±5 7 ± 5 0 

Specific gravity 
(Gs) 

2.67 Cua 7.5 Ccb 1.8 

Roundness (R) 0.45 Sphericity 
(S) 

0.68 Regularity 
(ρ) 

0.57  

a Uniformity coefficient. 
b Curvature coefficient. 
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modified by immersion in 40% hydrofluoric acid for 18 h at 40 ◦C. The 
surfaces of the UHMWPE and PP fibres were treated with sulfuric acid 
and sodium dichromate solution for 24 h at 50 ◦C. The fibres were 
subsequently washed with water and dried at room temperature. This 
modification can lead to asperity on the fibre surface and likely cause a 
chemical reaction between the fibres and cement hydration products. 
Besides, the formation of functional groups on the surface of the fibres 
prevents them from agglomeration and improves their dispersion during 
the mixing process [25,38]. 

In soil stabilisation, the cement content usually varies by approxi-
mately 10% owing to the target strength of the sand–cement [39,40]. In 
this study, 10% cement (by weight of dry sand) was also utilized for SCG 
fabrication. The concentrations of the fibres were 0.5%, 1.0%, and 1.5% 
by weight of dry sand. First, the treated fibres and sand were added to a 
steel bowl and blended with a stainless-steel blade at a rotational speed 
of 140 rpm for 3.5 min. Then, cement was poured into the mixer and 
blended for 2 min at the same speed. Subsequently, CNM suspensions 
comprising 0.17% CNT/GNP (by weight of the sand and equal portions, 
1:1), prepared with the ωopt (for each fibre concentration), were sprayed 
into the mixture and blended at a speed of 285 rpm for 2.5 min. 

All specimens in this study were prepared in 101.6 mm × 116.4 mm 
cylindrical moulds using the standard Proctor compaction method at 
optimum water content following ASTM D698. For specimens used in 
piezoresistivity tests, four square meshes of copper with dimensions of 
50 mm × 50 mm were embedded as electrodes at distances of 38.8 mm 
and 19.4 mm from the middle of the specimen [9,10]. The specimens 
were identified by the variation in fibre type and dosage, as shown in 
Table 4. 

2.3. Mechanical, microstructural, and durability characterization 

An unconfined compressive strength test was performed following 
the ASTM/D2166M standard to evaluate the mechanical characteristics 
of the cylindrical SCG specimens. The results were obtained using the 
mean of at least three specimens. Because the modulus of deformation 
for stabilised sand is typically expressed as the modulus at 50% of the 
peak stress (E(50%)) [41–44], the tangent moduli of reinforced SCGs with 
different fibre percentages were calculated to be 50% of the maximum 
compression stress. The effects of different fibre dosages on the 
maximum dry density and ωopt were investigated according to the ASTM 
D698 standard. Thermal analysis was conducted to evaluate the effects 
of the fibres on the cement hydration process [27]. The fracture surfaces 
of the specimens were investigated using scanning electron microscopy 
(SEM) and energy-dispersive x-ray spectroscopy (EDX) [26,27]. An ul-
trasonic non-destructive test was performed for microstructural inves-
tigation following the BS EN 12,504–4 standard using two probes along 
the longitudinal axis. The weight loss percentage of the SCG specimens 
was measured as a criterion of cementitious geocomposite durability in 
freeze–thaw cycles. In this route, saturated specimens with similar di-
mensions were tested from 20 ◦C to 30 ◦C after 28 days of curing [9]. In 
addition, the relative dynamic modulus of elasticity was calculated for 
SCG specimens after climatic cycles [9,45]. The permeability of the SCG 
specimens was evaluated according to ASTM D2434–68. 

2.4. Piezoresistivity measurement 

A four-probe method was used to investigate the piezoresistivity of 
SCG specimens under cyclic compression loading with a direct current 
(DC) source [9,10]. The specimens with embedded electrodes were 
dried at 70 ◦C for 72 h after 28 days of hydration to ensure no moisture 
effects on electrical conductivity values. The variation in the gauge 

Table 3 
Physical properties of glass, UHMWPE, and polypropylene fibres.  

Alkali-resistant glass fibre (AR–GF) 

Tensile strength (GPa) Linear mass density of fibres (g/Km) Density (kg/m3) Elastic modulus (GPa) Elongation at break (%) Length (mm) Diameter (µm) 
3.2 9600 2700 73.1 4.4 12 31  

Ultra-high-molecular-weight polyethylene (UHMWPE) (Dyneema) 

Tensile strength (GPa) Linear mass density of fibres (dtex) Elastic modulus (GPa) Elongation at break (%) Length (mm) Diameter (µm) 
3 440 10.3 5.6 12 14.5  

Polypropylene (split film) 

Tensile strength (MPa) Density (kg/m3) Elastic modulus (GPa) Elongation at break (%) Length (mm) Section dimensions (µm) 
54 910 4.31 15 12 36 ˟ 640  

Table 4 
Mix proportions of different self-sensing cementitious geocomposites.  

Sample ID 
* 

CNM 
(%)** 

Glass fibre 
(%) 

PP fibre 
(%) 

UHMWPE fibre 
(%) 

Cement 
(%) 

SCG 0.17 – – – 10 
SCGG 

(0.5%) 
0.17 0.5 – – 10 

SCGG 
(1.0%) 

0.17 1 – – 10 

SCGG 
(1.5%) 

0.17 1.5 – – 10 

SCGP 
(0.5%) 

0.17 – 0.5 – 10 

SCGP 
(1.0%) 

0.17 – 1 – 10 

SCGP 
(1.5%) 

0.17 – 1.5 – 10 

SCGU 
(0.5%) 

0.17 – – 0.5 10 

SCGU 
(1.0%) 

0.17 – – 1 10 

SCGU 
(1.5%) 

0.17 – – 1.5 10  

* All concentrations are represented by the weight of the dry sand. 
** By equal proportion (1:1). 

Fig. 2. Protocol for cyclic compression loading.  
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factors and fractional changes in electrical resistivity were calculated as 
the mean of at least four measurements. The protocol for cyclic 
compression loading is illustrated in Fig. 2. 

3. Results 

3.1. Compaction results and relevant microstructural investigations 

3.1.1. Standard proctor compaction 
The results of standard Proctor compaction tests on SCG and rein-

forced SCGs with different fibres are illustrated in Fig. 3. As shown in 
this Figure, despite all the different geocomposites, the maximum dry 
densities were obtained for approximately the same degree of saturation 
(Sr ≈ 85%), confirming the findings reported in a previous study [45]. 

Furthermore, the maximum dry density (γd(max)) was observed for the 
SCG with 1.0% UHMWPE fibres. This seems to be the optimal filling of 
particle voids, ensuring the best interlocking of particles. Excessive in-
crease in the percentage produces a less dense material even more, 
significant than the specimen composed of 0.5% UHMWPE. 

A similar trend was observed in the reinforced SCG specimens with 
GF; incorporating 1.0% GF as the optimum concentration of this fibre 
increased γd more than specimens SCGG (0.5%) and SCGG (1.5%). For 
PP-reinforced SCGs, incorporation of PP fibre into the specimens 
generally reduced γd. One of the main reasons for these trends may be 
the aspect ratio and section geometry of the fibres. The smaller di-
mensions of the UHMWPE fibres increased their performance in filling 
gaps between the sand grains. However, the rectangular shape of the PP 
cross-section produced an increase in the porosity and gaps between the 

Fig. 3. Results of standard compaction Proctor tests for different SCGs.  

Fig. 4. Relationship between γd/γd(max) and Sr–Sr(opt).  
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Fig. 5. a) Crack bridging (UHMWPE fibre); b) extruded fibre (PP fibre).  

Fig. 6. Morphology of fibre surface: a) UHMWPE fibre; b) glass fibre; c) PP fibre (the marked areas in the SEM images indicate the areas selected for EDX analysis).  
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sand grains, particularly at high dosages, which reduced γd and 
increased the optimum water content (ωOpt). Increasing the gaps be-
tween the sand grains leads to a reduction in the degree of saturation, 
although the optimum degree of saturation (Sr)opt (defined as Sr ob-
tained for γd(max)) is approximately the same as for the other soil types. 

These interesting outcomes can also be represented by γd/γd(max) vs. 
Sr–(Sr)opt, which are more self-explanatory (Fig. 4). This unique rela-
tionship is consistent with recent studies [46,47], and is rather insen-
sitive to variations in soil type. Consequently, it is more useful for 
practical earthworks applications, which is a major factor supporting the 
use of these novel materials in practice, mainly in the compacted layers 
of railroad foundations. 

3.1.2. Microstructural investigations 
The weakness in the physical properties of the composites can affect 

the mechanical and durability performance of the specimens. However, 
in the mechanical behaviour of fibre-reinforced composites, the bonding 
conditions of the fibre and matrix also play a crucial role. Indeed, in 
fibre-reinforced cementitious composites, the applied stresses are 
mobilised as frictional stresses on the surface of the fibres, preventing 
the formation and propagation of microcracks by a mechanism known as 
crack bridging (Fig. 5(a)). By increasing the load, frictional stresses also 
increase to reach the maximum friction bond strength of the fibres and 
cement matrix and/or tensile strength of the fibre. 

In the case of weak interfacial properties, the fibres are incapable of 
restraining and harnessing the cracks. The fibres can be further extruded 
or pulled out from the cement matrix, increasing the crack opening and 
propagation (Fig. 5(b)). The interfacial properties of the fibres in 
cementitious composites are generally expressed by the frictional bond 
strength (τfr) and the chemical debonding energy (Gd), which depend on 
the physical and chemical conditions of the fibre surfaces, respectively. 

From the literature [48–52], in addition to improving the frictional 

strength of the fibre/cement matrix by generating or deepening the 
surface roughness of the fibres, chemical treatment of the fibres can 
produce chemical functional groups, particularly oxygen groups, on the 
surface of the fibres. These functional groups participate in chemical 
reactions with cement hydration products and increase the chemical 
bonding energy of the fibre and cement matrix. The number and type of 
generated functional groups depend heavily on the chemical structure 
and composition of the fibre, the treatment agents, and methods. 
Generally, by evaluating the fibre morphologies and their interface with 
the cement matrix (Fig. 6), it is observed that the surfaces of the 
UHMWPE fibres and GF establish a more appropriate bond with hy-
dration products and are surrounded by them. The surfaces of UHMWPE 
fibres have bumps and lesions with different textures that are properly 
bonded to them. The results of the chemical composition analysis of the 
fibre surfaces are summarised in Table 5. The results show that the 
chemical composition of the lesions is similar to that of CH and C-S-H 
[27,53], which contain high amounts of O, Ca, and Si. However, the PP 
fibre surfaces are free of such lesions and chemical compounds. 

3.2. Effects of fibres on cement hydration process 

To investigate the potential effects of fibres on the cement hydration 
process, thermogravimetric analysis (TGA) was conducted for SCGs 
reinforced by optimum concentrations of fibres; the results are pre-
sented in Fig. 7. The differential scanning calorimetry (DSC) results are 
presented in Fig. 7(b) for better observation of the temperature range 
associated with each weight decay. Generally, TGA is an analytical 
technique utilized to determine the fraction of volatile components by 
monitoring the weight change that occurs when a sample is heated at a 
constant rate. 

In the TGA spectra, the first weight decay was from 0 ◦C to 105 ◦C, 
relative to the free water evaporation of the sample. The second weight 

Table 5 
Element analysis of extracted fibre surface.  

Position Elements (%) 
C O Fe Ca Al Si S Mg Au Mn K 

Fig. 6(a1) 7.94 35.47 0.91 28.12 1.14 23.36 0.51 0.94 0.79 1.1 0.68 
Fig. 6(b1) 6.49 29.95 0.88 31.57 1.11 27.34 0.34 0.81 0.69 0.58 0.72 
Fig. 6(c1) 43.74 12.96 1.24 15.38 1.92 17.58 2.19 2.27 0.83 0.49 1.16  

Fig. 7. Thermal analysis of different SCGs: a) Thermogravimetric analysis (TGA) spectra; b) Differential scanning calorimetry (DSC) curves.  
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decay occurred from 105 ◦C to 400 ◦C, and was caused by dehydration of 
chemically bound water in cement hydration products such as C-S-H, 
Aft, C-A-S-H, and carbo-aluminates. The third weight decay was 
observed between 400 ◦C and 550 ◦C, and was related to the 

dihydroxylation of CH. The last weight decay occurred between 600 ◦C 
and 800 ◦C, and was attributed to carbonation of the clinker and calcium 
carbonate [54,55]. The TGA thermograms indicate that the incorpora-
tion of PP fibre generally did not have an effect on the amount of cement 
hydration product. However, using GF and UHMWPE fibres in the SCG 
produced a slight change in the amount of CH and C-S-H, which may be 
due to the functional groups formed on the surface of the fibres in 
chemical treatment. The presence of such functional groups, particularly 
oxygen groups, encourages and regulates the formation of cement hy-
dration products on the fibre surfaces [27,53]. 

3.3. Mechanical and hydraulic performance 

Unconfined compressive strength (UCS) tests were conducted to 
measure the mechanical properties of the different fibre-reinforced SCGs 
and compare them with the plain case. Although this test is not repre-
sentative of stress paths in pavement structural layers, it is useful in soil 
improvement practice. The UCS results after 28 days of hydration are 
shown in Fig. 8. As expected from the physical properties, reinforcing 
SCG with fibres results in different UCS performances, depending on the 
type of fibres and their concentration in the composite. 

As can be observed, the incorporating 0.5% PP fibres into the SCG 
produced an increase in the UCS of approximately 19%. However, 
excessive increases in the PP fibre dosage up to 1.0% and 1.5% reduced 

Fig. 8. Unconfined compressive strength (UCS) of different reinforced SCGs.  

Fig. 9. The relationship between fibre concentration and: a) Failure strain; b) E(50%); c) Permeability coefficient.  

M. Abedi et al.                                                                                                                                                                                                                                  



Transportation Engineering 6 (2021) 100096

8

the UCS by approximately 12% and 31%, respectively. 
In the case of GF, the incorporating 0.5% and 1.0% GF into the SCG 

improved the UCS by approximately 9% and 25%, respectively. 
Increasing the dosage of GF by more than 1.0% led to a reduction in UCS 
by around 4%. Conversely, the incorporation of UHMWPE fibres into the 
SCG in all percentages in the range of 0.5% to 1.5% caused a UCS 
enhancement by around 35%, 82%, and 38% respectively. 

Fig. 9 shows the influence of fibre type and concentration on the 
axial strain at failure (maximum stress), the tangent modulus at 50% of 
the peak stress (E(50%)), and the permeability coefficient of the speci-
mens. Reinforcing SCG with 0.5%, 1.0%, and 1.5% PP fibres increased 
the failure strain by approximately 25%, 31%, and 40%, respectively. 
For GF, the increases were approximately 27%, 52%, and 60%; for 
UHMWPE fibres, the increases were 79%, 106%, and 117%, 
respectively. 

For the moduli, reinforcing SCG with 0.5%, 1.0%, and 1.5% dosages 
of PP fibres reduced the E(50%) by approximately 6%, 28%, and 44%, 
respectively. For these dosages of GF and UHMWPE fibres, the re-
ductions were 8%, 12%, and 15%, and 33%, 36%, and 46%, 
respectively. 

As shown in Fig. 9, the permeability coefficients of specimens con-
taining 0.5%, 1.0%, and 1.5% PP fibres increased by approximately two, 

three, and four times, respectively, compared to the specimen composed 
of only CNMs. However, incorporation of the same UHMWPE fibre 
concentrations into SCG specimens reduced the permeability coefficient 
by approximately 62%, 57%, and 28%, respectively. For GF, specimens 
reinforced with 0.5% and 1.0% fibre showed a reduction in permeability 
coefficient of approximately 42% and 14%, respectively; while 
increasing the GF concentration to 1.5% increased the permeability 
coefficient by around 15%. 

Fig. 10 presented some relationships between mechanical and hy-
draulic properties for the compaction tested conditions. To explain the 
different hydro-mechanical performances of the specimens, the re-
lationships with the physical properties were studied, mainly related to 
compaction conditions (Fig. 11). The ultrasonic pulse velocity (UPV) 
results were also analysed because they correlate strongly with the UCS 
and dry density (Fig. 10 and Fig. 11). The relationship between the UPV, 
UCS, and γd(max) is almost linear. However, as shown in Fig. 10(a), the 
slopes of the curves of specimens reinforced with UHMWPE are greater 
than those reinforced with GF and PP. For E(50%) tang, a similar behaviour 
was observed for the GF- and UHMWPE-reinforced composites. A 
reduction in the modulus was not consistently associated with a 
reduction in the UPV in the specimen. However, as shown in Fig. 10(c), 
increasing the permeability coefficient of the composite produced an 

Fig. 10. Relationship between ultrasonic pulse velocity (UPV) and a) UCS; b) E (50%)tang; c) permeability coefficient.  
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increase in the UPV. 
As all tests were conducted at approximately the same optimal de-

gree of saturation for each material, it is expected that the mechanical 
and hydraulic properties are strongly influenced by the dry density and 
type of fibre reinforcement, as shown in Fig. 11. For the quasi constant 
degree of saturation, there is a good correlation (unique trend) of 
strength (UCS), UPV and permeability coefficient with the maximum dry 
density, corroborating the finding in a previous study [9,45]. However, 
the geometric shape, mechanical properties, and interfacial properties of 
the fibre matrix seems to have a significant effect on the tangent 
deformability modulus [25], that may justify why a unique trend be-
tween (γd(max)/γw) and E(50%) tang was not observed. It should be noted 
that based on the literature [56,57], irrespective of compaction energy 
level and composite type, in general the strength exhibits a sharp peak 
when the degree of saturation is slightly lower than the optimum degree 
of saturation. Consequently, the degree of saturation and its changes 
must be taken into account on the hydraulic behaviour, strength and 
stiffness, as well as on the piezoresistivity of cementitious geocomposites 
[10]. This aspect is out of the scope of this paper. 

For design purposes in soil improvement, UCS and E(50%)tang are 

required properties. The relationship between E (50%) tang normalised by 
UCS and physical properties can be useful [58]. Fig. 12(a) and (b) show a 
well-defined correlation between the failure strain and elastic strain 
threshold (obtained from the stress–strain curves of UCS tests) and the 
ratio E (50%) tang /UCS for 28 days. In line with the findings in [58] these 
relationships can be of very practical use in design. Indeed, a design 
engineer can easily predict the E(50%) tang and elastic strain threshold for 
the design strain level based on conventional uniaxial compressive 
strength test results, particularly in the elastic region to reduce crack 
formation during the infrastructure service life. Fig. 13 shows the 
important role of the fibre matrix and its concentration in the geo-
composite material in the serviceability limit state of the structure. 

3.4. Durability of SCG 

Generally, the durability of cementitious composites against envi-
ronmentally aggressive agents, especially climatic cycles, is a most 
important consideration when developing a new composite [59,60]. To 
evaluate the durability and resistance of the specimen to climatic cycles, 
the weight loss percentage and relative dynamic modulus of elasticity 

Fig. 11. Relationship between (γd(max)/γw) and a) UCS; b) E (50%) tang; c) UPV; d) permeability coefficient.  
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for duplicate specimens were measured after 220 freeze–thaw cycles; 
the results are presented in Fig. 14. As expected, the smallest weight loss 
and greatest relative dynamic modulus were obtained for specimens 
reinforced with 1.0% UHMWPE, approximately 70% less than and 55% 
greater than that of plain SCG, respectively. 

In the case of GF reinforcement, specimen SCGG (1.0%) showed a 
31% reduction in weight loss and a 29% increase in relative dynamic 
modulus compared to plain SCG. However, incorporating PP fibres in 
increasing concentrations generally increased the weight loss of the 
specimen and reduced its relative dynamic modulus. The hydraulic 
conductivity of the composite, an important factor affecting the long- 
term performance of fibre-reinforced geomaterials, was investigated. 

3.5. Electrical properties and piezoresistivity behaviour 

3.5.1. Electrical conductivity 
The electrical resistivity of the SCG specimens reinforced with 

different types and percentages of fibres was measured after 28 days and 

90 days of hydration. It should be noted that all specimens were oven- 
dried at 70 ◦C for 72 h. The electrical resistivity results are shown in 
Fig. 15. 

It is clear that incorporating non-conductive fibres into a conductive 
composite and increasing its concentration generally increases the 
electrical resistance. The fibres cut the random conductive paths formed 
by the CNMs and reduce the electrical conductivity of the composite. 
They can also potentially reduce quantum tunnelling effects and transfer 
electrons between the CNMs and existing ions, and in some cases, can 
change the percolation threshold. Incorporating 0.5%, 1.0%, and 1.5% 
PP fibres into SCGs increased the electrical resistivity by approximately 
23%, 40%, and 115%, respectively. For GF reinforcement, the increases 
were approximately 14%, 49%, and 92%, respectively. For UHMWPE 
fibres, the electrical resistivity of the specimen with 0.5% fibre did not 
show a significant difference; the electrical resistivity of specimens 
containing 1.0% and 1.5% UHMWPE fibres increased by approximately 
10% and 33%, respectively. The further increase in electrical resistance 
with PP fibres can be attributed to their larger dimensions and rectan-
gular cross-section. As expected, the electrical conductivity of the 
specimens was reduced in the long term. Generally, by increasing the 
hydration period, the cement hydration products increase and spread in 
the pores, cutting off conductive paths. Cement hydration products in 
dry cases are often nonconductive and increase the electrical resistance. 
Increasing the density of hydration products produces a further reduc-
tion in the electrical conductivity of the composite over time. 

As shown in Fig. 15, the electrical resistivity of the plain SCG after 90 
days of curing was increased by approximately 173% compared with 
after 28 days. In SCG specimens reinforced with 0.5%, 1.0%, and 1.5% 
PP fibres, the electrical resistivity increased by approximately 196%, 
191%, and 162% after 90 days, respectively, compared with after 28 
days. For GF and UHMWPE fibres, the increases were approximately 
186%, 167%, and 169%, and 248%, 177%, and 224%, respectively. 

3.5.2. Piezoresistivity behaviour 
The piezoresistivity behaviour of SCG specimens reinforced with 

different types and percentages of fibres under cyclic compression 
loading after 28 days is illustrated in Fig. 16. Negative values are 
observed for the fractional changes in electrical resistivity (FCR), which 
is consistent with previous studies [9,10,61–63]. Generally, the random 
conductive paths formed by CNMs become closer under compression 
loading. The electrical resistance of the specimen is reduced by reducing 

Fig. 12. Relationship between E(50%) tang /UCS and a) failure strain; b) elastic strain threshold.  

Fig. 13. Elastic strain threshold vs. fibre concentration.  
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the distance between the conductive paths. The electron quantum 
tunnelling effects are also improved under compression loads, leading to 
increased electrical conductivity. Reducing the electrical resistivity 
relative to the initial values produces negative FCR values [64,65]. 

By increasing the load and strain in each cycle, the FCR was reduced; 
conversely, the FCR increased with decreasing load. Generally, rein-
forcing the specimen with fibre and increasing its concentration pro-
duced changes in the electrical resistivity and increased the FCR ranges 
due to the increasing deformation of the specimens. Increasing the 
deformation caused more strain under compression load and conse-
quently produced changes in the shape and distance between random 
conductive paths that led to further changes in electrical resistance. 
However, an increase in deformation from excessive fibre produced 
large residual strain and residual FCR at the end of each cycle. The re-
sidual strain indicates the formation of nanoscale cracks in the micro-
structure of the composite. These cracks propagate over time with 
increasing loading cycles and cause microcracks, reducing the service 

life of the composite. As shown experimentally, incorporating an opti-
mum dosage of fibre into the composite can increase its ductility. 

To better interpret the relationship between FCR and axial strain, the 
correlation between FCR and strain for different reinforced SCGs is 
presented in Fig. 17. As can be observed, the power functions were found 
to better express the relation between these parameters. The slope of the 
UHMWPE fibre curve is steeper than that of the other specimens, indi-
cating a higher sensitivity to axial strain. The curve of the GF-reinforced 
specimen had a lower slope, indicating a lower sensitivity. 

3.5.3. Gauge factors 
The gauge factor is calculated by dividing the FCR by the strain [9, 

10,66]. The gauge factor represents the sensitivity of the composite to 
strain. The gauge factors for different reinforced SCGs are shown in 
Fig. 18. The gauge factor of the plain SCG containing 0.17% CNMs was 
approximately 45. The maximum gauge factors were observed in the 
UHMWPE fibre-reinforced specimens; 0.5%, 1.0%, and 1.5% dosages in 
the plain SCG produced gauge factors of 52, 61, and 68, respectively. For 
PP- and GF-reinforced specimens, reinforcing SCG with 0.5%, 1.0%, and 
1.5% fibres produced gauge factors of 44, 49, and 39, and 47, 42, and 41, 
respectively. 

4. Conclusions 

In this study, an emphasis in the geotechnical and piezoresistivity 
properties of a novel self-sensing cementitious geocomposite (SCG) with 
a hybrid CNT/GNP was put on throughout an extensive laboratory 
experimental program. The effects of different recycled fibres (PP, GF, 
and UHMWPE) on the microstructural, physical, mechanical, hydraulic, 
durability, and piezoresistivity performances of SCG were evaluated. 
Different concentrations of fibres were incorporated into the stabilised 
sand with 10% cement containing 0.17% CNT/GNP (by weight of the 
dry sand, 1:1). The specimens were fabricated using the standard 
Proctor compaction method at the optimum water content (degree of 
saturation 80–90%); the effects were investigated after 28 days of hy-
dration using different test methods. The following conclusions can be 
drawn. 

Fig. 14. Weight loss percentage and relative dynamic modulus of elasticity for duplicate specimens after 220 climatic cycles.  

Fig. 15. Electrical resistivity of different reinforced specimens after 28 d and 
90 d of hydration. 
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• The microstructural investigations indicated a better interaction 
between the cement matrix and UHMWPE fibres than with GF and PP 
fibres.  

• Incorporating 1.0% GF and UHMWPE as optimum concentrations 
into the SCG compacted at optimum Standard Proctor conditions, 
increased the UCS by approximately 25% and 82%, respectively.  

• Well-defined correlations between the mechanical, physical, and 
hydraulic properties of the fibre-reinforced composite were obtained 
experimentally that can be of practical interest to establish key 
geotechnical design parameters. Indeed, the quasi-unique relation-
ship between the failure strain or the elastic strain threshold and the 
ratio E (50%) tang /UCS for 28 days can be of very practical use in 
design.  

• Reinforcing SCG with fibres increased its ductility; specimens with 
optimum concentrations of GF and UHMWPE showed E(50%) tang 
values reduced by approximately 12% and 36%, respectively, as well 
as an increase of elastic strain threshold and failure strain, compared 
to the plain specimen.  

• The geometric shape, mechanical characteristics and interfacial 
properties of the fibre matrix have a significant effect on the tangent 
deformability modulus, which may justify why a unique trend be-
tween (γd(max)/γw) and E(50%) tang was not observed.  

• Reinforcing SCG with optimum percentages of GF and UHMWPE 
fibres also increased the durability of the composite in climatic cycles 
and reduced the permeability. The smallest weight loss and a greater 
relative dynamic modulus were observed in the specimen reinforced 
with 1.0% UHMWPE, approximately 70% less than and 55% greater 
than that of plain SCG, respectively.  

• The fibre-reinforced specimens showed proper piezoresistive 
behaviour under cyclic compression loading, indicating the high 
efficiency of this sustainable composite in infrastructure monitoring 
applications.  

• Specimens with 0.5%, 1.0%, and 1.5% UHMWPE fibres had gauge 
factors of 52, 61, and 68, respectively; the gauge factor of the plain 
SCG containing 0.17% CNMs was approximately 45. For PP- and GF- 
reinforced composites, incorporating 0.5%, 1.0%, and 1.5% fibres 

Fig. 16. FCR vs. strain for different SCG-reinforced specimens: a) reinforced with PP fibre; b) reinforced with GF; c) reinforced with UHMWPE fibre.  
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into the SCG produced gauge factors of 44, 49, and 39, and 47, 42, 
and 41, respectively. 

In summary, we believe that these research findings contribute to the 
new era of smart geocomposite materials in sustainable intelligent 
transport infrastructures. Indeed, this is part of a laboratory work sup-
porting a future railway track foundation demonstrator to be built on a 
Portuguese railway line in the framework of the project IN2TRACK3 
under Shift2Rail Joint Undertaking. 
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