
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Manuel Gouveia Carneiro de Sousa

Applying Attribute Grammars to teach Linguistic
Rules

June 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Manuel Gouveia Carneiro de Sousa

Applying Attribute Grammars to teach Linguistic
Rules

Master Dissertation
Integrated Master in Informatics Engineering

Dissertation Supervised By
Ph.D Pedro M. Rangel S. Henriques
Ph.D Maria João T. Varanda Pereira

June 2021

AU T H O R C O P Y R I G H T S A N D T E R M S O F U S A G E B Y T H I R D PA RT I E S

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

i

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Manuel Sousa

A C K N O W L E D G M E N T S

Todo o trabalho desenvolvido não seria possível sem o apoio de um grupo muito especial
de pessoas. Dessa forma, gostaria de aproveitar este momento para dedicar algumas palavras
àqueles que acompanharam de perto este percurso.

Em primeiro lugar, um agradecimento aos meus pais, Noémia e Vitor, aos meus avós,
Olinda e Manuel, e aos meus tios, Adília e Cândido, que me tornaram o que sou hoje, que
me acompanharam durante toda a minha vida, ajudando-me sempre a superar as diversas
dificuldades e desafios que foram surgindo. Pela forma de como me educaram e cuidaram
de mim, estando sempre ao meu lado.

A ti, Beatriz, pela constante força, apoio e carinho, em todos os momentos. Por nunca me
teres deixado desistir ou deixar de acreditar, mostrando-me sempre que consigo concretizar
os meus objetivos.

Ao meu amigo de sempre, Diogo, pela constante compreensão e paciência para ouvir as
minhas preocupações. Por todos os momentos e por estar sempre presente.

Ao meu amigo Lázaro, por toda a sua motivação, dedicação e energia positiva. Pela sua
constante preocupação com o meu percurso e por todas as oportunidades que me deu.

A todos os meus colegas que me acompanharam durante todo o percurso académico, cuja
ajuda foi fulcral em todos os momentos.

Por último, aos meus orientadores, Professor Pedro Rangel Henriques e Professora Maria
João Pereira, por todo o apoio, assistência e disponibilidade durante todo o processo e pela
magnífica oportunidade que me foi dada, a minha especial gratidão.

A B S T R A C T

This document presents the topic “Applying Attribute Grammars to teach Linguistic
Rules”, at Universidade do Minho in Braga, Portugal. This thesis is focused on using the
formalisms of attribute grammars in order to create a tool to help linguistic students learn
the different rules of a natural language. The system developed, named Lyntax, consists
in a processor for a domain specific language which intends to enable the user to specify
different kinds of sentence structures, and afterwards, test various phrases against said
structures. The processor validates and evaluates the input given, generating a grammar
which is specific to a previously chosen sentence. Lastly, using ANTLR, a parser is generated
for that specific grammar referred above. The processor built by ANTLR also creates a
syntax tree that is presented to the user for analysis purposes.

An interface that supports the specification of the language (written in Lyntax DSL) was
built, also allowing the use of the processor and the generation of the specific grammar,
exempting the user from knowing the details of the process.

Within this document, the focus will be primarly dedicated to the analysis of the system
and how each block was built. Different examples of the processor in action will be shown
and explained.

Keywords: Linguistic, Natural Language Processing, Attribute Grammar

ii

R E S U M O

Este documento refere-se a uma dissertação sobre o tópico “Aplicar Gramáticas de Atribu-
tos no ensino de Regras de Linguística”, e será concluída na Universidade do Minho em
Braga, Portugal. Esta dissertação pretende focar-se no uso dos formalismos das gramáticas
de atributos de maneira a criar uma ferramenta que ajude os alunos de linguística a aprender
as diversas regras da língua natural.

O sistema desenvolvido, denominado de Lyntax, consiste em um processor para uma
linguagem de domínio específico cujo objetivo é o de permitir ao seu utilizador a possibili-
dade de especificar diversas estruturas de frases, e posteriormente, testar frases contra essas
mesmas estruturas. O processador valida e avalia o input recebido, gerando uma gramática
específica à frase previamente escolhida. Por fim, usando uma ferramenta como o ANTLR,
um parser é gerado para a gramática específica acima referida. O processador construído
pelo ANTLR também gera a árvore de syntax que é apresentada ao utilizador com o intuito
de ser analisada.

Foi também criada uma interface que suporta a especificação da linguagem, permitindo
também o uso do processador e a geração da gramática específica, abstraindo assim o
utilizador de quaisquer tipo de cálculos.

Neste documento, o focus primário será dedicado à análise do sistema e como cada bloco
foi construído. Diferentes exemplos de uso do processador serão apresentados e explicados.

Palavras-chave: Linguística, Processamento de Língua Natural, Gramáticas de Atributo

C O N T E N T S

1 introduction 1

1.1 Context 1

1.2 Objective 2

1.3 Methodology 2

1.4 Document Structure 2

2 state of the art 4

2.1 Context-free Grammar 4

2.2 Attribute Grammars 4

2.3 Domain Specific Languages 5

2.4 PAG (Prototyping with Attribute Grammars) 6

2.5 CONSTRUCTOR 6

2.6 VisualLISA (A Visual Programming Environment for Attribute Grammars) 8

2.7 Chapter Summary 10

3 lyntax : proposal 11

3.1 System Architecture 11

3.2 Meta-Language 12

3.2.1 Domain Specific Meta-Grammar 13

3.3 Chapter Summary 17

4 lyntax : development 18

4.1 Meta-Grammar 18

4.2 Meta-Language Processor 22

4.3 Specific Sentence Grammar Generator 23

4.4 Sentence Validator 23

4.5 Lyntax: Interface 24

4.6 Lyntax: Website 26

4.7 Chapter Summary 28

5 case studies 30

5.1 Attribute Validation 30

5.2 Missing components & Warnings 32

5.3 Arbitrary Structure 34

5.4 Further examples and structures 37

5.5 Chapter Summary 42

6 conclusion 43

iii

contents iv

6.1 Future Work 43

a context-free grammar 46

b example of lyntax’s generated grammar 49

b.1 Teacher’s STRUCTURE + ERRORS 49

b.2 Student’s INPUT 50

b.3 Lyntax’s Generated Grammar 50

L I S T O F F I G U R E S

Figure 1 Example of structured input sentences for CONSTRUCTOR. 7

Figure 2 Example of a metalevel description of CONSTRUCTOR. 8

Figure 3 VisualLISA set of icons. 9

Figure 4 VisualLISA main window. 9

Figure 5 Students textual grammar. 10

Figure 6 Students graphical grammar. 10

Figure 7 System architecture. 12

Figure 8 Excerpt of the system architecture - Meta Processor. 22

Figure 9 Excerpt of the system architecture - Sentence Validator. 24

Figure 10 Example of a generated syntax tree within TestRig. 24

Figure 11 Lyntax user interface. 25

Figure 12 Grammar generation success message. 26

Figure 13 Example of an error message. 26

Figure 14 Lyntax Website Homepage. 26

Figure 15 Lyntax Website Download options. 27

Figure 16 Lyntax Website Information. 27

Figure 17 Lyntax Website DSL page. 28

v

L I S T O F L I S T I N G S

3.1 Processor production . 13

3.2 DSL structure/part/element productions . 13

3.3 DSL attributes/subparts productions . 13

3.4 DSL errors/expression productions . 14

3.5 DSL condition production . 14

3.6 DSL input production . 14

3.7 DSL parts/component/content productions 15

3.8 DSL slice/attrs/evaluations/eval productions 15

3.9 Example of a possible sentence structure . 16

3.10 Example of the students parsing . 16

4.1 Processor rule from the meta-grammar . 19

4.2 Component class . 19

4.3 Graph class . 20

4.4 RoseTree class . 21

5.1 Example of a specific generated grammar. 31

5.2 Example of the students parsing with missing component 32

5.3 Example error message of missing component 32

5.4 Example of the students parsing with missing attribute 33

5.5 Example error message of missing attributes 33

5.6 Example of the students parsing with the same attribute in a single component 33

5.7 Example warning message of same attribute in a single component 33

5.8 Example of an arbitrary sentence structure . 34

5.9 Example of an arbitrary sentence input . 35

5.10 Example of another specific generated grammar. 35

5.11 Example of an arbitrary sentence structure with rules 36

5.12 Different conditions from RULES block . 37

5.13 Example of a sentence structure . 38

5.14 Example of a sentence input . 38

5.15 Example of a sentence structure . 39

5.16 Example of a sentence input . 39

5.17 Example of a sentence structure . 40

5.18 Example of a sentence input . 40

5.19 Example of a more complex structure . 40

vi

list of listings vii

5.20 Example of a more complex sentence input . 41

5.21 Example of a another more complex structure 41

5.22 Example of another more complex sentence input 42

6.1 Example of a possible use for the iterative operator. 43

A.1 Lyntax’s Context-free grammar . 46

B.1 Teacher’s STRUCTURE + ERRORS blocks . 49

B.2 Student’s INPUT . 50

B.3 Lyntax’s Generated Grammar . 50

A C R O N Y M S

AG Attribute Grammar.

ANTLR Another Tool for Language Recognition.

CFG Context-free Grammar.

DSL Domain Specific Language.

viii

1

I N T R O D U C T I O N

1.1 context

Attribute Grammars are a way of specifying syntax and semantics to describe formal
languages [1] and were first developed by the computer scientist Donald Knuth in order
to formalize the semantics of a context-free language [2]. They were created and are still
used for language developing, compiler generation, algorithm design, etc [3]. One other
application would be the teaching of linguistic rules through the usage of formalisms
presented in attribute grammars [4]. Using attribute grammars, it is possible to specify the
way sentences are correctly written. By making use of “synthesized attributes”, it would
be possible to represent the gender of an adjective, while “inherited attributes” would be
translated into the meaning of a preposition, depending on the context of the sentence [5].
There are an array of linguistic rules to be represented within an attribute grammar, and
when a sentence is provided, it is possible to validate the syntax, adverting for any errors
that may be encountered [6].

Applying attribute grammars to model all the different syntax and semantic behaviour of
natural languages is a technique that has already been practiced, but it demands knowledge
in programming syntax in order to translate natural languages rules to attribute grammar
rules [1]. In spite of the existing tools, they are not so easily available and straightforward
for those who do not have programming and computation proficiency - in this specific case,
linguists. There are tools available that use languages which closely resembles logic, and
use logic components, but it is easier to rapidly grasp the concepts of a domain specific
language, that only does a list of tasks, than to use a language that is not created with a
main purpose.

So, the main proposal is to define a new DSL (Domain Specific Language) with a much
simpler notation, making it easy to learn and to rapidly understand. The main focus is to
keep the syntax as simple and concise as possible, avoiding complex (or not so common)
symbols. This allows the specification of rules to be done in a much natural manner. Also, it
is desired to create a visually appealing user interface, granting the user the possibility of
analysing the generated syntax-tree.

1

1.2. Objective 2

1.2 objective

The main objective of this master thesis is to produce a pedagogical tool to support
teaching linguistics. The detailed objetives are the following:

• Definition of simple and concise DSL, suitable for common users, to specify linguistic
rules based in an attribute grammar.

• Construction of a tool that will have a friendly user interface and converts the DSL
programs into attribute grammars using ANTLR (ANother Tool for Language Recog-
nition) 1. ANTLR will also be used in a second phase in order to take the generated
attribute grammars and create the natural language sentence processor that will be
used by the student.

1.3 methodology

The research work will be performed at different stages. The methodology that will be
followed to achieve this master project will focus on literature revision, solution proposal,
implementation and testing. The following steps realise this methodology:

• Do a comprehensive research about attribute grammars in linguistics: what has been
done, how has it been done, and ways to improve the previous work.

• Design a DSL that allows a straightforward specification of an array of rules.

• Develop a language translator that can translate programs written in the new language
to ANTLR using ANTLR.

• Create a processor (using the generated attribute grammars of the last step) that will
allow to receive sentences and check its correctness.

• Create an user interface that allows for a visual analysis of the generated syntax-tree.

• Experiment with some case studies, and test the tool with real linguistic students.

1.4 document structure

The document starts by introducing the problem, and, in Chapter 1, a context, objectives
and methodology are presented. In Chapter 2 the main concepts are briefly explained,
followed by the presentation and explanation of current existing solutions that may help

1 https://www.antlr.org/

1.4. Document Structure 3

solving the given problem. Chapter 3 explains the proposal for solving the stated problem,
documenting the system architecture. Chapter 4 reports the development of the system,
the paths taken to reach several solutions. Chapter 5 discusses a set of case studies to
demonstrate and validate Lyntax functionality. Chapter 6 closes the document with the
overview of the work that was done, opinions on what was done, as well as suggestions on
future work as a way of enhancing the solutions produced and presented.

2

S TAT E O F T H E A RT

In this chapter is of the utmost importance to define some concepts that were used as a
basis for this thesis. In addition, it will be discussed possible tools that already answer some
of the questions that this thesis is trying to answer, and for that matter are important to be
studied and referenced.

2.1 context-free grammar

A Grammar can be defined by the study and learning of the way sentences of a language
are assembled. The word “grammar” is extracted from the Greek Tékhnē grammatikē), which
has the meaning of “art of letters” [7]. This can be interpreted has the art of combining letters
in order to produce a system which determines the correct way of constructing phrases. A
grammar does not assign any meaning for these phrases (semantic), it only structures their
form.

A Context-free Grammar (CFG) is defined by a tuple of 4 elements [8]

G = (T, N, S, P)

where T is the set of terminal symbols of a language; N is the set of non-terminal symbols;
S is the start symbol of the grammar; P is the set of productions that compose this grammar.
The productions within the grammar are rules of form

N → (N ∪ T)∗

where the left side, composed of a non-terminal symbol, may derive in a set of non-terminal
and terminal symbols.

2.2 attribute grammars

Attribute Grammars were proposed by Donald Knuth in order to specify static and
dynamic semantics of a programming language in a syntax-directed manner [3]. The process

4

2.3. Domain Specific Languages 5

consists in constructing the syntax tree and then computing the values of attributes by
visiting every single node. For each attribute it is possible to associate a domain of values,
such as integers, strings or even complex structures.
Formally an attribute grammar (AG) is a tuple [9]

AG = (CFG, A, CR, CC, TR)

composed by a context-free grammar (CFG), which has been extended to provide context
by using a set of attributes; The set of attributes (A), which exist in each production of
a grammar, are divided into two groups, Synthezized Attributes, which allow values to be
passed from one node to its parent, and Inherited Attributes, which allow values to be passed
from the current node to a child [2]; rules for calculating attributes (CR) in all productions
of the grammar; a set of contextual conditions (CC); and the transformation rules (TR) in all
productions of the grammar.

2.3 domain specific languages

A domain specific language is an “executable specification language, through appropriate
notations and abstractions”, usually restricted to a particular problem domain. Its objective
is to improve productivity, and to allow solutions to be expressed in a more intuitive
way and at the level of abstraction of the problem domain [10]. These types of languages
provide a natural vocabulary for concepts that are fundamental to the problem scope [11],
something that may lack when using a general-purpose language. DSLs are usually small
and declarative, with very specific goals [10]. Refered as “little languages” [12], they are
intended to solve problems within a specific domain, and not outside it.

One of the disadvantages of building a new DSL is the cost of their development, as it
requires both domain and language development expertise [13], so the commitment of using
DSLs as a solution for a software problem if often postponed or not even comtemplated.
Nevertheless, as DSLs trade generality, they gain expressiveness (in a limited domain) - this
results in the ease of repetitive tasks and smoother data description [14] and representation.

As discussed in [15], usability should be embedded in the DSL development process itself,
and considered from the beginning of its development. The new created DSL needs to
identify the problems within the domain, trying to overcome them while maintaining the
expected expressivity.

2.4. PAG (Prototyping with Attribute Grammars) 6

2.4 pag (prototyping with attribute grammars)

PAG is a tool that was created with the purpose of helping two distinct groups of students
from Universidad Complutense de Madrid. One of those groups, involving computer science
students, that attended a class which teached compiler contructions, and other group
involving linguistic students, from a class on computacional linguistics. Teachers from
both classes used the same methodology to teach their classes, and noticed that it wasn’t
good enough for the students to master all the concepts: On one hand, they would have
computer science skilled students, with great apititude to produce solutions, but leaving
aside the respective specifications, which lead to poor and innacurate formal specifications,
but on the other hand, linguistic students produced good formal specifications, as they are
proficient with the natural language, but lack computer science skills to well transpose all
the knowledge into computacional models [16].

The result was an environment based in attribute grammars that allows the specification of
those same grammars using a language close to Prolog. The main goal was to embed Prolog
into the language and maintain all the familiar basic notation, the reason being both groups
of students were already familiar with the Prolog and attribute grammar syntax and notation.
Through rapid prototyping, which PAG makes use of, it is possible to obtain a functional
processor at a embryonic state of the problem [16]. With this, computer science students
can obtain results quite early, allowing them to apply more time into formal specifications.
Moreoever, as the complexity of the syntax is reduced, this allows for a better and easier
learning experience for students which have less aptitude for the solution codification or
programming in general, which is the case for linguistic students.

Overall, PAG solved the problem that was purposed in an effective way. Despite that, and
giving the respective credit to the those who built the tool, the fact is that Prolog can still be
quite difficult to grasp for some people, and a challenge when it comes to learn it. The usage
of a specification language that closely resembles the natural one, could be a great addition.

2.5 constructor

CONSTRUCTOR [17] is a Natural Langugage Interface that accepts and processes English
sentences, using them as instructions for plane geometry constructing. Those instructions
are then transformed into the respective graphical representation. The idea is that these
sentences are issued as commands which represent steps for the creation of a geometrical
construction. CONSTRUCTOR analyses the issued input, translates it into a semantic
representation and, based on that semantic representation, builds a visual construction.
Furthermore, CONSTRUCTOR keeps track of the sequence of inputs issued by the user,

2.5. CONSTRUCTOR 7

which results in a more controlled construction process, while giving the user feedback
within each step.
CONSTRUCTOR is composed by the following parts:

• Lexical Analyser - consists in a machine dictionary of more than 300 items that are
usually necessary for issuing commands. It also stores synonyms of the various items,
as different people (based on age or level of training) may use different (but similar)
words. This module is also extended by a morphological analyser, which analyses
words that are not present in the dictionary, extracting its canonical lexeme an then
perform an evaluation.

• Syntactic Parser - a string of tokens and terminals is used as input for the syntactic
parser. This string is then processed into a sentence (or list of) with some structure
assigned to it. All sentences must only describe one step and one step only, but nested
sentences are possible. Below there is a table, extracted for the article ([17]) that shows
various sentences examples.

Figure 1: Example of structured input sentences for CONSTRUCTOR.

• Attribute Evaluation - computes the basic features of grammatical structures, such
as synthesized attributes. This computation will mostly involve synthesized attribute
evaluation.

2.6. VisualLISA (A Visual Programming Environment for Attribute Grammars) 8

• Semmantic Interpretation - the semantic interpreter takes the results of all evaluations
done before as input. The goal is to transform the English sentences into a metalevel
description intended for building complex noun phrases.

Figure 2: Example of a metalevel description of CONSTRUCTOR.

• Construction Creator - final component which takes a formal specification of an object,
defining all the procedures to be executed. The results is a drawn geometric figure.

The purpose of exploring a tool of this type is not directly related to linguistics nor
linguistic rules training. The relevance of this reference is related to the use of attribute
grammars with natural language processing, which techniques could be helpful when
tacking a specific problem of this kind.

2.6 visuallisa (a visual programming environment for attribute gram-
mars)

VisualLISA is a visual programming environment created by Nuno Oliveira in the year of
2009 [18] for the specification of attribute grammars. Classified as a “Domain Specific Visual
Language”, its main goal was to enhance the front-end of one other tool named LISA 1, a
compiler generator based in AG’s that creates different visual tools based on the textual
specification of the grammars.

1 https://labraj.feri.um.si/lisa/

2.6. VisualLISA (A Visual Programming Environment for Attribute Grammars) 9

The aim of this tool was to decrease the difficulty which is involved with specifying
attribute grammars, not only for the LISA environment, but also regarding other types of
systems, making specifications more visual and graphical.

Specifying grammars in a visual manner can be done using a set of icons (Figure 3) that
must be combined to obtain the wanted result. Each icon or symbol has a unique function,
and it is the users task to make the connections in a correct way.

Figure 3: VisualLISA set of icons.

The environment (Figure 4) consists in 4 windows, each one with an individual task:
declare the productions of the grammar in a textual manner; declare functions, data-
types, etc.; draw the grammar productions; specify computation rules that were previously
declared.

Figure 4: VisualLISA main window.

As an example, it was included a textual specification (Figure 5) and the respective
graphical specification (Figure 6), extracted from [18].

2.7. Chapter Summary 10

Figure 5: Students textual grammar.

Figure 6: Students graphical grammar.

The main effect of the tool is not directly related to the problem that is trying to be solved,
as the target users (linguists) may not be familiar with attribute grammars concepts such as
terminal or non-terminal. This can cause some confusion when working with all the icons
provided by the platform in order to create the intended atttribute grammar. Nevertheless,
all the visual components that are associated could give some insights of interesting visual
components to include/build when creating the proposed user interface to interact with the
system.

2.7 chapter summary

In the previous sections, some tools were presented and major concepts discussed. Some
of the tools may not have a direct impact on the proposal of this thesis, but their research
and inclusion on this document were crucial. Each of the sections, despite their various
differences, share the use of attribute grammars as a basis for a particular system, or even to
simplify their use through various techniques.

The solution proposed is an approach that, despite using attribute grammars, is based
on a new textual DSL using ANTLR and the automated generation of processors in order
to validate sentences. In the next chapter, the proposal for this particular system will be
discussed further.

3

LY N TA X : P R O P O S A L

The main purpose of this proposal is the definition of a DSL that allows the specification of
all different kinds of sentences (done by the linguistic teacher), and afterwards, the possibility
of the student to test his own sentences and check if they are written accordingly to the rules
also previously specified by the linguistic teacher. One obstacle that was encountered was
how to extract the lexical part of the sentence, and in what way would each component be
classified. In fact, this task is quite subjective, as different components may have various
definitions in one context. Having known this, the decision was made that the student
would beforehand identify the lexical part of the sentence.

3.1 system architecture

In order to specify all kinds of sentences/rules possible, the idea of creating a “meta-
language” emerged. This “meta-language” will be used by the teacher to specify the rules
for sentence construction. These rules will be written (in a single file) according to the
following structure, that is divided into three main categories:

1. STRUCTURE - the block where the teacher will write how is the sentence supposed
to be written, and what components will it have.

2. ERRORS/RULES - list of conditions that the teacher could write in order to be analysed
afterwards, for example, certain values for different attributes. In the case of using
ERRORS, if the conditions are matched, an error will appear. On the other hand, using
RULES, the conditions need to be matched in order to have a valid input.

3. INPUT - this block corresponds to the “parsing” of the sentence (the lexical part) that
the student wants to test. This will be written by the student and then automatically
joined with the teachers information.

This file will then be processed by an ANTLR processor that will work on the information
that was written, and then generate a grammar (also specified in ANTLR). This grammar

11

3.2. Meta-Language 12

Figure 7: System architecture.

corresponds to the translation of the “meta-language” into ANTLR instructions. Afterwards,
the generated grammar will be used to create a validator of sentences, where the student
can write his sentence/sentences and obtain results. A new processor will be generated for
each sentence the student wants to test. The results would be the validation of the given
sentence/sentences and a tree for a better visualization of the input structure.

3.2 meta-language

As it was stated in the beginning of this document, the main goal was to create a DSL
that should be easy to learn and to rapidly understand and grasp. With this in mind, the
structure mencioned before on the first section of this chapter was followed: Three main
parts, where two of them would be constructed by the teacher, and the third one was
intended to be written by the student and later concatenated in a single file.

3.2. Meta-Language 13

3.2.1 Domain Specific Meta-Grammar

The main intention of this language is to preprocess the information written by the teacher
+ student and then generate a validator for a particular structure. With simplicity in mind, a
first version of the DSL was created, and it will be explained next.

processor : s t r u c t u r e e r r o r s input
;

Listing 3.1: Processor production

Firstly, the teacher specification will be discussed - meaning the structure and errors blocks.
The structure block is divided into parts, or main parts. These main parts correspond to the
main components of the sentence. Each of these parts have an element within, containing
the information about a certain component.

s t r u c t u r e : 'STRUCTURE: ' (par t) + ;

par t : ' par t ' ' [' element '] ' ;

element : ' (' WORD (' | ' WORD) * (' , ' a t t r i b u t e s) ?
(' , ' subparts) ? ') ' (' ? ') ? ;

Listing 3.2: DSL structure/part/element productions

The element is composed by the name of the component, a possible set of attributes and
possible subparts.

a t t r i b u t e s : ' a t t r i b u t e s ' ' { ' WORD (' , ' WORD) * ' } '
;

subparts : ' subparts ' ' [' element (' , ' element) '] '
;

Listing 3.3: DSL attributes/subparts productions

The subparts production intends to be the path for “injecting” more elements inside a
single component. One component may be composed by several other components. As
shown in the example above, the subparts production is a list of one or more elements.

Secondly, the teacher can define a list of restrictions to be applied to each attribute defined
in the previous structure. A sentence will be valid if it follows the specified structure and if
it obeys to the specified conditions.

3.2. Meta-Language 14

e r r o r s : ('RULES ' | 'ERRORS ') ' : ' (condi t ion ' ; ') +
;

condi t ion : assignment (('AND' | 'OR ') assignment) *
;

Listing 3.4: DSL errors/expression productions

The errors production will have two meanings: if the keyword use is ’RULES’, then the
conditions defined by the teacher need to be checked in order for a sentence to be correct; on
the other hand, if the keyword is ’ERRORS’, then if the conditions are matched, the sentence
is not considered correct within that structure. The condition production is composed by
a set of assignments that can be joined using the logical operators ’AND’ and ’OR’. Each
condition intends to create logical evaluations for the various attributes defined. Conditions
are composed by assignments, which are composed by expressions.

assignment
: express ion (' = ' | ' != ') express ion
| express ion (' = ' ! ' != ') ' " ' WORD ' " '

;

express ion : WORD (' . ' WORD) * ' −> ' WORD
;

Listing 3.5: DSL condition production

The assignment production assigns an expression, which is composed by the path to a
certain attribute, to a value or to other expression. If, for instance, the teacher says that an
attribute is equal to some value, then the student can not use other value to that attribute -
this would result in an error.

Thirdly, and finally, the input block, which corresponds to the students section. This was
treated as a different and separate DSL, as its main purpose was to identify the lexical parts
of the sentence written by the student, allowing for a correct and non-subjective parsing of
each word in the sentence.

input : ' INPUT : ' phrase
;

phrase : (' − ' p a r t s) +
;

Listing 3.6: DSL input production

3.2. Meta-Language 15

The sketch starts within a section named phrase, which corresponds to one sentence in
particular. This production is composed by one or more parts, each of them holding various
blocks, where all the information is stored. Inside, the name of the components and their
required attributes must be specified. It is also important to notice that a correct path must
be specified by the student. If the student specifies a component that is not declared in the
structure defined previously by the teacher, then an error should be thrown.

p ar t s : ' (' block (' , ' block) * ') '
;

block : WORD content
;

content : (s l i c e) ? (a t t r s) ? (pa r t s) ?
;

Listing 3.7: DSL parts/component/content productions

The student can specify the slice of the sentence that corresponds to the component that
is being declared, and a set of attributes (attrs) that composes said component. Furthermore,
it is possible to continue to define more parts within one part, just like the teacher’s DSL
subparts.

s l i c e : ' : ' ' " ' (WORD) + ' " '
;

a t t r s : ' [' eva lua t ions '] '
;

eva lua t ions : eval (' , ' eval) *
;

eval : WORD ' = ' ' " ' WORD ' " '
;

Listing 3.8: DSL slice/attrs/evaluations/eval
productions

Inside the slice production, a list of words can be written. These are the words that will
then be used to build the lexical part of the generated grammar. Also, when specifying
attributes, the student must assign a value for each attribute that will then be used to validate
each component of the sentence.

3.2. Meta-Language 16

For a better understanding of the three main categories (structure, errors and input), bellow
there is an example that is based on the first case study, and shows what the specification of
the teacher should look like.

STRUCTURE:
part [(

S u j e i t o ,
a t t r i b u t e s { t i p o } ,
subparts [

(Determinante) ? ,
(Nome)

]
)]

par t [(
Predicado ,
subparts [

(Verbo , a t t r i b u t e s { t i p o }) ,
(Complemento_Direto , subparts [(Determinante) ? , (Nome)]) ,

]
)]

ERRORS :
S u j e i t o −>t i p o = " animado " AND Predicado . Verbo−>t i p o = " inanimado " ;
S u j e i t o −>t i p o = " inanimado " AND Predicado . Verbo−>t i p o = " animado " ;

Listing 3.9: Example of a possible sentence structure

In the case of the student, this is the specification that should be used and one of the many
examples that fit into the defined structured.

INPUT :
− (S u j e i t o : "O Carlos " [t i p o = " animado "]

(Determinante : "O" , Nome: " Carlos "))
− (Predicado : " teme a s incer idade "

(Verbo : " teme " [t i p o = " animado "] ,
Complemento_Direto : " a s incer idade "

(Determinante : " a " , Nome: " s incer idade ")))

Listing 3.10: Example of the students parsing

3.3. Chapter Summary 17

3.3 chapter summary

In this chapter, it was discussed the different components of the proposed system architec-
ture and what the output of a system like this should be. The principle is to create a new
Domain Specific (Meta) Language that allows for the specification of sentence structures as
well as proper input. Within this system, a processor for this Meta-Language is created by
using ANTLR, which evaluates the specification written and is tasked with the generation
of a specific natural language grammar. Combining the newly generated grammar with
ANTLR, the result is a student’s sentence validator that when given a sentence as input,
performs all the necessary validations and, if correct, presents the user the respective syntax
tree.

Lyntax, the word that combines the terms “Linguistics" and “Syntax", was the name
chosen for a system that combines both the meta-language processor and the user interface
that makes use of such processor. The implementation of this system will be discussed in
the next section.

4

LY N TA X : D E V E L O P M E N T

This chapter will present the development and workflow of the system. As previously
mentioned, the next step was to expand the defined DSL, and to use attributes as a form of
calculation. Most of the productions were expanded, allowing for certain evaluations to be
injected over the tree.

It is important to identify the tools used to develop this system, as well as their respective
versions. Firstly, Java was the language in which the system is based on. OpenJDK (Open
Java Development Kit) is a free implementation of the Java platform, and a dependency for
all the auxiliar tools. Within the development phase, version 11.0.9.1 of OpenJDK was used.
Secondly, in order to process, execute or translate structured text (such as the DSL written),
ANTLR was used for generating a parser from a previously written grammar. The system
used version 4.8 of ANTLR. Lastly, using the Apache NetBeans 1 (version 10) IDE (Integrated
Development Environment), it was possible to build the user interface that composes the
system.

4.1 meta-grammar

With the grammar divided into 3 main parts (STRUCTURE, ERRORS, INPUT), different
types of calculations occur at different sections. The STRUCTURE and ERRORS blocks are
written in a single file (by the teacher) which is then joined with the INPUT block (written
by the student). The process starts with searching for the teacher and student specification,
and then compiling the program using a meta-grammar based processor. A new processor
is generated to be used by the student to verify if his sentences are correctly following the
structure defined by the teacher. Within the grammar itself, the first rule,

1 https://netbeans.apache.org/

18

4.1. Meta-Grammar 19

processor
@ i n i t {

/ * Main d a t a s t r u c t u r e . * /
Lis t <RoseTree > s t r u c t = new ArrayList < >() ;

(. . .)
}

: s t r u c t u r e [s t r u c t]
e r r o r s [s t r u c t]
input [s t r u c t]

{
(. . .)

}

Listing 4.1: Processor rule from the meta-grammar

starts by initializing the main data structure. This structure is responsible for storing all the
information that is being parsed from the file given as input (the meta-language file).

When choosing the correct structure to store all the important data, the first approach
taken was to store all components in a single Map, with each name of a component matching
their respective value. The problem with this approach, which was identified right away,
was that is possible to exist two or more components with the same exact name, causing a
conflict within the Map. Furthermore, components have different information associated,
like attributes, and it would be better if it is all in the same place - this created the need for a
Component class.

The Component class would store the name of the component, a possible value and a
Map that associated each attribute with some value. The components would all be stored
within a List.

@members {
c l a s s Component {

S t r i n g name ;
S t r i n g l e x i c a l _ p a r t ;
Map<Str ing , Str ing > a t t r i b u t e s ;

}

/ * Main d a t a s t r u c t u r e . * /
Lis t <Component> s t r u c t ;

}

Listing 4.2: Component class

4.1. Meta-Grammar 20

The problem with this solution is that it does not follow any particular order (in this
case, the STRUCTURE order), which can be very useful when validating the students.
The sequence of components stored within a List would not be equal to the sequence of
components that were defined in the structure previously defined.

The structure of the sentence takes a form of a tree, so that would be the correct way to
store the information and maintain order. As each node could have less or more than two
children, a binary tree was not the way to go. The idea was to build a Graph structure that
used a mapped each node to a list of nodes.

@members {
c l a s s Graph
{

Map<Component , L i s t <Component>> map ;
}

}

Listing 4.3: Graph class

Although this could maintaing the order, the initial problem remainded. We could have
components with the same exact properties, and this would cause conflict between edges,
and not create a new node when it was supposed to.

The principle of having a tree as the main data structure falls into the need of maintaining
a valid path. For example, if the teacher says that the structure will have a component A,
and this component has two children, B and C, then the paths A→B and A→C should be
stored. In this particular problem, it is required to have a tree that within each node has a
list of children with an arbitrary size of N.

Some backtracking was made to come up with an ideal solution. The prerequisites were
that order needed to be maintained and each node (component) had an arbitrary number
of N children. The previously created Component class would store all its values and a
list of new components (children), creating a path between the parent component and said
children. This type of structure is denominated as Rose Tree, which is a prevelant structure
within the functional programming community. It is a multi-way tree, with an unbounded
number of branches per node. This way, all the prerequisites would be matched, and all the
information correctly stored.

4.1. Meta-Grammar 21

c l a s s RoseTree {
S t r i n g chosenValue ;
S t r i n g path ;
boolean v i s i t e d ;
boolean required ;
Map<Str ing , Str ing > a t t r i b u t e s ;
Set <Str ing > optionValues ;
L i s t <Str ing > l e x i c a l _ p a r t ;
L i s t <RoseTree > ch i ldren ;

(. . .)
}

Listing 4.4: RoseTree class

When in the main production (processor), a list of Rose Trees is initialized, with each tree of
the list corresponding to the main components of the sentence. This structure would travel
along the parsing tree, to first be populated with information and then serving as the main
source of validation and checking.

On the first block (STRUCTURE) there are not many calculations happening within the
productions. The main task is to simply validate the syntax and extract data to be stored in
the Rose Tree. For each node, it is stored the name of the component, if it is required to be
declared or not, a group of attributes (could be non-existent), a lexical part (if it is the case),
and finally a list of nodes, referred as the children.

After the parsing of the structure, there are a list of conditions named ERRORS that need
to be validated and converted into Java syntax - this conversion would then be injected on the
main rule of the generated grammar. These logical expressions are based on the attributes of
each component and their relations. For example, if the teacher says that a component A has
an attribute named a, and this attribute is required to have value x, if the student assigns it
a value of z, then an error should appear. All these conditions can be combined with the
logical operands “AND” or “OR”. The way that is parsed is based on the path specified by
the teacher when accessing the attribute. Using the example before, a component A with a
child B, with B having a attribute x, in order to access it, the syntax should be

A.B− > x

as the full path is required. This is done in order to calculate the correct path and avoid
ambiguity between attributes. While parsing these rules, the path is being validated, and in
case of any error, the user is notified.

Finally, the last block corresponds to the input that was written by the student. The goal
is to validate the components that were defined, and match them with the structure created

4.2. Meta-Language Processor 22

by the teacher. Again, the RoseTree was used as a way to check if the student’s components
and paths were valid. The task of the student was to “parse” his sentence and divide it by
components, identifying the lexical segments and storing them within a node of the Rose
Tree. At last, the main rule of the Meta-Grammar makes use of a generator to generate all
the rules for the Specific Natural Language Grammar. Within this generator, the various
Rose Tree’s are passed as an argument and then traversed recursively.

4.2 meta-language processor

In order to simplify the usage of the Meta-Grammar, and as the grammar itself made use
of auxiliar Java classes, all of that was combined into a JAR file. Having this type of package
would allow for a more flexible integration with any component. The Meta-Language
Processor, which was created by providing the Meta-Grammar file to ANTLR, could now be
used with the JAR file, providing as input the Meta-Language Specification.

Figure 8: Excerpt of the system architecture - Meta Processor.

Using the command line, the instruction:

java -jar lib/MetaGrammar.jar input/meta-lang

tries to generate the Specific Natural Language Grammar, based on the input provided. In
case of any error, the grammar would not be generated.

4.3. Specific Sentence Grammar Generator 23

4.3 specific sentence grammar generator

As previously mencioned, the role of this generator is to produce the grammar that intends
to recognize the students input. This grammar is specific to the sentence, and contains the
conditions previously defined by the teacher ready to be evaluated. The generator is an
auxiliar Java class, which contains the methods necessary to traverse the RoseTree given as
argument, and create the strings of text for the grammar, which will then be appended to a
file.

The principle of this generator is to create the independent strings first, and then recur-
sively traverse the tree in order to create the productions themselves. This task was done
using an auxiliar data structure,

Map<String, StringBuilder> productions = LinkedHashMap<>();

with each key representing the name of a production, and each value representing the
various words that composed the rule of said production. The chosen structure would be
a Linked Hash Map, as the insertion order was important to maintain. While traversing the
tree, the information would be processed and also stored within the auxiliar Map. Lastly, all
strings containing the productions, and also a lexer, are printed into a file of type “.g4". This
is the file containing the grammar which will then be use to create the sentence validator.

4.4 sentence validator

If no errors occur in the previous step, we should now have a file named “Grammar.g4"
that corresponds to the Specific Natural Language Grammar. This grammar contains all
the tokens extracted from the Meta-Language specification, and combining it with ANTLR,
we create a new specific Sentence Validator. When providing the student’s sentence to the
Sentence Validator, and if all goes well, a Syntax Tree should be generated using a tool called
TestRig. Using the command line once again, and providing a specific flag to the tool (-gui),
we obtain the final syntax tree for the sentence provided:

java -cp "lib/antlr-4.8-complete.jar:$CLASSPATH" \

org.antlr.v4.gui.TestRig Grammar main input/sentence -gui

4.5. Lyntax: Interface 24

Figure 9: Excerpt of the system architecture - Sentence Validator.

As an example, using Listing 3.9 and Listing 3.10, the generated syntax tree would be:

Figure 10: Example of a generated syntax tree within TestRig.

4.5 lyntax : interface

As stated in the introduction of this document, after the creation of a system capable of
testing various sentences, the goal was to build an user interface that allowed for a more
easy and simple use of said system, without the need of directly using the command line

4.5. Lyntax: Interface 25

for providing inputs or manual runtime compilations. The interface was built using Swing,
a GUI widget toolkit for Java. Swing has a lot of sophisticated GUI components available
for use, allowing the developer to focus on pure functionality. Furthermore, using the
Apache NetBeans IDE for Java, it was possible to use a GUI builder for manipulating Swing
components, by dragging and dropping them to a canvas - this would generate the specific
Java code for each component.

Objectively, the front-end part of the system would consist on a single window composed
by two main text areas, corresponding to the rules and input blocks, one button to generate
the specific sentence validator and one last button to inject the sentence into the validator
and giving the user their sentence syntax tree. The window would also have a top menu bar
that would allow the user of opening text files if desired. In any case, the user could write
the STRUCTURE, ERRORS/RULES and INPUT blocks directly into the respective text areas
without opening any file.

Figure 11: Lyntax user interface.

After the specification of the rules (in the left side) and input (in the right side), the user
can generate the Specific Natural Language Grammar to be able to create the Sentence
Validator, using the “Generator" button. The text within the two text boxes is concatenated,
and given as input for the MetaGrammar processor. All these operations are done in
background, following the same order as the instructions showed above. If all goes well, the
user should have prompted a message saying that the Grammar was successfully generated
- it is now possible to test the sentence.

4.6. Lyntax: Website 26

Figure 12: Grammar generation success message.

At last, by clicking the “Run" button, the validator is created, and the sentence passed as
input. If no errors occur during this process, the user should see the sentence syntax tree as
the one used in Figure 10. On the other hand, if errors or warnings occur, they are displayed
textually for the user in a small window.

Figure 13: Example of an error message.

4.6 lyntax : website

In order to better spread some of the concepts discussed in this document, a website was
created. This allows for the distribution of the system, and to also share the sources for the
processor, the meta-grammar and other auxiliar files.

Figure 14: Lyntax Website Homepage.

4.6. Lyntax: Website 27

Figure 15: Lyntax Website Download options.

The website includes a tab which explains the purpose of the tool and how it works in the
background. The dependencies of the software are also mencioned.

Figure 16: Lyntax Website Information.

It was also included a tab for the visualization of the DSL created, for an easy access and
analysis, and another tab for possible feedback of the tool.

4.7. Chapter Summary 28

Figure 17: Lyntax Website DSL page.

4.7 chapter summary

At this stage, the development of the system is concluded. The result was, firstly, a DSL
that allows for the specification of sentence structures and rules, as well as a respective input
for the structures provided. Secondly, the core system which processes the Meta-Language
specification, generates a specific grammar, and then uses that grammar to create a validator
for the analysis and evaluation of a specified sentence. At last, and as a way of hiding the
complexity of the core system, the front-end provides a more flexible and straight forward
use of the tool, allowing the user to focus on the description of the rules and testing of
sentences.

The main challenges faced over the development period were, firstly, to choose the most
appropriate data structure which would then be used to manipulate and process input data.
As previously discussed, this structure demanded for a set of specified requirements to be
met in order to produce correct results, so this task took quite a few tries and experiments
to get right and accurate. Lastly, the error handling of the tool may cause some confusion at
first, as it is handled and processed within the Meta-Grammar processor. This error message
is then passed onto the specific natural language grammar, and printed to the user into
a formatted window to ease the process. Nevertheless, the errors are precise and easy to
understand.

4.7. Chapter Summary 29

Within the next chapter, some case studies will be explored in order to prove the correct
functioning of the system.

5

C A S E S T U D I E S

In order to better explain the architecture proposed in this Masters’ work, some concrete
examples will be discussed in this section. The main idea is to show the specifications used
by the teacher and by the student and how the generator processor verifies the correcteness
of the student sentences. The DSL specification consists in slicing the sentence into parts,
and each part can have subparts.

The case studies chosen to be presented in this chapter are also relevant as an example for
a possible pedagogical scenario by using the system in a classroom context. The purpose
of this chapter is to also demonstrate some of the process in which both the Teacher and
Student will be involved, and to exhibit some common structures and inputs as well as their
results.

5.1 attribute validation

This case study intends to demonstrate the validation on sentence components based
on their attributes. The example showed in the previous chapter (Listing 3.9) contains a
structure that is composed of two main parts: a subject (Sujeito) and a predicate (Predicado).
The subject is then subdivided into a possible determiner (Determinante) and a noun
(Nome), which are then matched with a word (the lexical part identified by the student).
The predicate is composed by a verb and a complement that is directly related to the
verb. This complement (Complemento_Direto) is then composed by a possible determiner
(Determinante) and a mandatory noun (Nome).

In this particular example, both the subject and the verb from the predicate have an
attribute named ‘tipo’ which purpose is to check if each of the components are animated or
inanimated. By analysing the logic in the ERRORS block (Listing 3.9), we can see that if the
value of the attribute ‘tipo’ is different between the two components, than an error should
be pointed. In this case, the sentence parsed by the student is

“O Carlos teme a sinceridade.”
which is in fact a valid sentence, as the name “Carlos” and the verb “teme” are both
animated.

30

5.1. Attribute Validation 31

When running the example above (Listing 3.9 plus Listing 3.10) in the Meta Grammar
processor, and if no errors occur, a specific grammar (in ANTLR) in then generated. For this
specific case, this is the generated grammar.

grammar Grammar ;

@members {
f i n a l S t r i n g Sujei to__TIPO = " animado " ;
f i n a l S t r i n g Predicado__Verbo__TIPO = " animado " ;

}

main : s u j e i t o predicado
{

i f (Sujei to__TIPO . equals (" animado ") &&
Predicado__Verbo__TIPO . equals (" inanimado "))

{ System . out . p r i n t l n ("ERROR! ") ; }

i f (Sujei to__TIPO . equals (" inanimado ") &&
Predicado__Verbo__TIPO . equals (" animado "))

{ System . out . p r i n t l n ("ERROR! ") ; }
}
;

s u j e i t o : (determinante) ? nome ;

determinante : 'O ' | ' a ' ;

nome : ' Carlos ' | ' s incer idade ' ;

predicado : verbo complemento_direto ;

complemento_direto : (determinante) ? nome ;

verbo : ' teme ' ;

/ * LEXER * /
(. . .)

Listing 5.1: Example of a specific generated grammar.

5.2. Missing components & Warnings 32

Within the ‘main’ production, we can see the logical conditions that should be evaluated
when running this grammar. As the conditions are false, no errors should occur, allowing
for the visualization of the syntax tree.

5.2 missing components & warnings

Still based on the previous defined structure (Listing 3.9), the student’s specification can
still be missing some components that are mandatory. This case study just intends to show
the way that errors or warnings are notified to the user.

In order to demonstrate this, the input block defined above (Listing 3.10) is going to suffer
some modifications in order to trigger errors or warnings.

INPUT :
− (S u j e i t o : "O Carlos " [t i p o = " animado "]

(Determinante : "O"))
− (Predicado : " teme a s incer idade "

(Verbo : " teme " [t i p o = " animado "] ,
Complemento_Direto : " a s incer idade "

(Determinante : " a " , Nome: " s incer idade ")))

Listing 5.2: Example of the students parsing with missing component

In this example, we can see that within the subject component (Sujeito), the noun com-
ponent (Nome) is not defined. This particular case would cause an error as the noun
component is mandatory (based on the previous structure Listing 3.9). The error message
identifies the missing component.

ERROR: (INPUT)
− The mandatory component 'Nome ' has not been defined .

Listing 5.3: Example error message of missing component

Another possible error would be to not define attributes, and to not give those attributes
values. In this case, if we remove the attribute ‘tipo’ from the subject component (Sujeito),

5.2. Missing components & Warnings 33

INPUT :
− (S u j e i t o : "O Carlos "

(Determinante : "O" , Nome: " Carlos "))
− (Predicado : " teme a s incer idade "

(Verbo : " teme " [t i p o = " animado "] ,
Complemento_Direto : " a s incer idade "

(Determinante : " a " , Nome: " s incer idade ")))

Listing 5.4: Example of the students parsing with missing attribute

the error should notify the user that the subject component is missing attributes, as attributes
are always mandatory (if the component related to them is also mandatory).

ERROR: (INPUT)
− There are a t t r i b u t e s r e l a t e d to the component ' S u j e i t o ' t h a t

were not defined .

Listing 5.5: Example error message of missing attributes

When it comes to warnings, there is only one case that raises them. This happens when
the user defines the same attribute multiple times, warning that only the last value will be
considered for the final evaluation. If, for example, we use the same attribute twice on the
subject component,

INPUT :
− (S u j e i t o : "O Carlos "

[t i p o = " animado " , t i p o = " inanimado "]
(Determinante : "O" , Nome: " Carlos "))

− (Predicado : " teme a s incer idade "
(Verbo : " teme " [t i p o = " animado "] ,

Complemento_Direto : " a s incer idade "
(Determinante : " a " , Nome: " s incer idade ")))

Listing 5.6: Example of the students parsing with the same attribute in a single
component

a warning is raised to notify the user that only the last value was considered as final (tipo =
"inanimado”).

WARNING: (INPUT)
− The a t t r i b u t e ' t i p o ' has already been declared ! Using the l a s t

value found .

Listing 5.7: Example warning message of same attribute in a single component

5.3. Arbitrary Structure 34

5.3 arbitrary structure

This last case study has the intention to demonstrate that is possible to define any arbitrary
sentence structure, without obeying to any specific linguistic rules. If, for instance, the main
goal of the teacher is to test different attributes despite of the components of a sentence, a
simple structure can be defined for that same purpose. The following structure and rules
intend to test the gender between two components, and this can be done with very simple
sentences.

STRUCTURE:
part (

Frase ,
subparts [

(Determinante , a t t r i b u t e s { genero }) ,
(Nome, a t t r i b u t e s { genero }) ,
(Verbo)

]
)

ERRORS :
Frase . Determinante −>genero = " masculino "

AND
Frase .Nome−>genero = " feminino " ;

Frase . Determinante −>genero = " feminino "
AND
Frase .Nome−>genero = " masculino " ;

Frase . Determinante −>genero != " masculino "
AND
Frase . Determinante −>genero != " feminino " ;

Frase .Nome−>genero != " masculino "
AND
Frase .Nome−>genero != " feminino " ;

Listing 5.8: Example of an arbitrary sentence structure

Based on the rules written, we can see that the gender must be equal, or the sentence
is invalid. Furthermore, the rules ensure that the gender can only be male or female
(“masculino” and “feminino” respectively) in order to be a valid sentence.

5.3. Arbitrary Structure 35

INPUT :
− (Frase : "A Olinda come"

(Determinante : "A" [genero = " feminino "] ,
Nome: " Olinda " [genero = " feminino "] ,
Verbo : " come"))

Listing 5.9: Example of an arbitrary sentence input

Combining all the information in the processor, we generate a specific grammar for this
arbitrary structure.

grammar Grammar ;
@members {

f i n a l S t r i n g Frase__Determinante__GENERO = " feminino " ;
f i n a l S t r i n g Frase__Nome__GENERO = " feminino " ;

}

main : f r a s e {
i f (Frase__Determinante__GENERO . equals (" masculino ") &&

Frase__Nome__GENERO . equals (" feminino "))
{ System . out . p r i n t l n ("ERROR! ") ; }

i f (Frase__Determinante__GENERO . equals (" feminino ") &&
Frase__Nome__GENERO . equals (" masculino "))

{ System . out . p r i n t l n ("ERROR! ") ; }

i f (! Frase__Determinante__GENERO . equals (" masculino ") &&
! Frase__Determinante__GENERO . equals (" feminino "))

{ System . out . p r i n t l n ("ERROR! ") ; }

i f (! Frase__Nome__GENERO . equals (" masculino ") &&
! Frase__Nome__GENERO . equals (" feminino "))

{ System . out . p r i n t l n ("ERROR! ") ; }
} ;

f r a s e : determinante nome verbo ;
determinante : 'A ' ;
nome : ' Olinda ' ;
verbo : ' come ' ;

/ * LEXER * / (. . .)

Listing 5.10: Example of another specific generated grammar.

5.3. Arbitrary Structure 36

As an example, we can also write the previous rules (Listing 5.8) using the keyword
‘RULES’ instead of ‘ERRORS’. Using this keyword, the conditions would be interpreted in a
different manner - all of them need to be true in order to considered the input as valid.

STRUCTURE:
part (

Frase ,
subparts [

(Determinante , a t t r i b u t e s { genero }) ,
(Nome, a t t r i b u t e s { genero }) ,
(Verbo)

]
)

RULES :
Frase . Determinante −>genero = " masculino "

AND
Frase .Nome−>genero = " feminino " ;

Frase . Determinante −>genero = " feminino "
AND
Frase .Nome−>genero = " masculino " ;

Frase . Determinante −>genero != " masculino "
AND
Frase . Determinante −>genero != " feminino " ;

Frase .Nome−>genero != " masculino "
AND
Frase .Nome−>genero != " feminino " ;

Listing 5.11: Example of an arbitrary sentence structure with rules

Changing the keyword would result in a slightly different specific generated grammar,
because the conditions within the ‘main’ production need to be evaluated differently. When
generating the grammar, if ‘RULES’ was the keyword chosen, we negate all conditions - if
the condition is not true, it should cause an error, as the conditions, this time, need to be
obeyed.

5.4. Further examples and structures 37

(. . .)

main : f r a s e
{

i f (! (Frase__Determinante__GENERO . equals (" masculino ") &&
Frase__Nome__GENERO . equals (" feminino ")))

{ System . out . p r i n t l n ("ERROR! ") ; }

i f (! (Frase__Determinante__GENERO . equals (" feminino ") &&
Frase__Nome__GENERO . equals (" masculino ")))

{ System . out . p r i n t l n ("ERROR! ") ; }

i f (! (! Frase__Determinante__GENERO . equals (" masculino ") &&
! Frase__Determinante__GENERO . equals (" feminino ")))

{ System . out . p r i n t l n ("ERROR! ") ; }

i f (! (! Frase__Nome__GENERO . equals (" masculino ") &&
! Frase__Nome__GENERO . equals (" feminino ")))

{ System . out . p r i n t l n ("ERROR! ") ; }
}
;

(. . .)

Listing 5.12: Different conditions from RULES block

This example shows that the meta-language created is flexible to the point of writing
arbitrary sentences or rules, augmenting the possibilities of syntactic structures.

5.4 further examples and structures

In order to demonstrate even further the capabilities of the tool, some more examples
of sentences with growing complexity will be included. Some of the previous examples
had the intent of demonstrating validations and/or trigger errors and warnings. These next
examples intend to explore structures with a bit more complexity.

This first example is, again, composed by a Subject - Predicate structure, with some
caracteristics to the Predicate itself. Within this Predicate, we defined a Direct Complement
(Complemento_Direto) and a Predicative to this Complement. This Predicative (Predica-
tivo_Complemento_Direto) intends to give a specific caracteristic to the Complement itself.

5.4. Further examples and structures 38

STRUCTURE:
part [(S u j e i t o)]
par t [(

Predicado ,
subparts [

(Verbo) ,
(Complemento_Direto) ,
(Predicativo_Complemento_Direto) ?

]
)]

Listing 5.13: Example of a sentence structure

INPUT :
− (S u j e i t o : "O rapaz ")

− (Predicado (
Verbo : " viu " ,
Complemento_Direto : " o homem" ,
Predicativo_Complemento_Direto : "com o t e l e s c o p i o "

))

Listing 5.14: Example of a sentence input

The next example uses an attribute to limit the domain of a component (Complemento_Circunstancial).
The attribute intends to enhance the meaning of the component by giving it a type (tipo). In
this particular case, within the ‘ERRORS’ block, the attribute needs to have the value “lugar",
in order to represent a certain place, and to augment the context of the sentence.

5.4. Further examples and structures 39

STRUCTURE:
part [(

Frase , subparts [
(Modificador) ,
(S u j e i t o) ,
(Predicado , subparts [

(Verbo) ,
(Complemento_Direto) ,
(Complemento_Circunstancial , a t t r i b u t e s { t i p o })

])
]

)]

ERRORS :
Frase . Predicado . Complemento_Circunstancial −>t i p o != " lugar " ;

Listing 5.15: Example of a sentence structure

INPUT :
− (Frase (

Modificador : " Hoje " ,
S u j e i t o : " eu " ,
Predicado (

Verbo : " comi " ,
Complemento_Direto : "uma pizza " ,
Complemento_Circunstancial :

" na p i z z a r i a abaixo " [t i p o = " lugar "]
)

))

Listing 5.16: Example of a sentence input

We can also use an | (or) operator within the structure rules, giving the student the
possibility of defining one or other component, but maintaing the main structure of the
sentence. Using an operator with this capability, we prevent the need of creating two separate
structures only for a single change.

5.4. Further examples and structures 40

STRUCTURE:
part [(

Frase , subparts [
(S u j e i t o) ? ,
(Predicado , subparts [

(Verbo) ,
(Complemento_Circunstancial_Modo |

Complemento_Circunstancial_Lugar)
])

]
)]

Listing 5.17: Example of a sentence structure

INPUT :
− (Frase (

S u j e i t o : "Eu" ,
Predicado (

Verbo : " e s t i v e " ,
Complemento_Circunstancial_Lugar : " no Porto "

)
))

Listing 5.18: Example of a sentence input

Below is an example of a structure which supports more content within a sentence. In
this particular case we are using two predicates (Predicado), both joined by a conjunction
(Conjuncao). This example intends to demonstrate the capability of the tool when it comes to
even larger structures. The principal remains the same, it all depends on the rules defined
by the teacher.

STRUCTURE:
part [(

Frase , subparts [
(S u j e i t o) ,
(Predicado1 , subparts [(Verbo) , (Complemento_Indireto)]) ,
(Conjuncao) ,
(Predicado2 , subparts [(Verbo) , (Modificador_Verbal)])

]
)]

Listing 5.19: Example of a more complex structure

5.4. Further examples and structures 41

INPUT :
− (Frase (

S u j e i t o : " Los soldados " ,

Predicado1 (
Verbo : " dispararon " ,
Complemento_Indireto : " a l o s sentenc iados "

) ,

Conjuncao : " y " ,

Predicado2 (
Verbo : " cayeron " ,
Modificador_Verbal : " muertos "

)
))

Listing 5.20: Example of a more complex sentence input

As an example, it it also possible to have two identical structures, which both support the
same kind of sentences, joined by a connector to create some kind of meaning as can be seen
in Listing 5.21 and Listing 5.22.

STRUCTURE:
part [(

Frase , subparts [
(S u j e i t o 1) ,
(Predicado1 , subparts [

(Verbo) ,
(Complemento_Circunstancial_Lugar)

]) ,
(Conjuncao) ,
(S u j e i t o 2) ,
(Predicado2 , subparts [

(Verbo) ,
(Complemento_Circunstancial_Lugar)

])
]

)]

Listing 5.21: Example of a another more complex structure

5.5. Chapter Summary 42

INPUT :
− (Frase (

S u j e i t o 1 : " Juan " ,

Predicado1 (
Verbo : " vive " ,
Complemento_Indireto : " en e l e d i f i c i o blanco "

) ,

Conjuncao : " y " ,

S u j e i t o 2 : " Maria " ,

Predicado2 (
Verbo : " t r a b a j a " ,
Modificador_Verbal : " aqui "

)
))

Listing 5.22: Example of another more complex sentence input

5.5 chapter summary

The intent of this chapter was to validate the system developed and to demonstrate the
capabilities of the tool. Through various examples and use cases, it was possible to exhibit
how the tool handles certain input and how it responds to the user.

The most relevant aspect of the case studies are how they ilustrate the different scenarios
in which they will be used. The target user are both the teacher, who is responsible for
creating and implementing structures in which he/she would like to use for testing within
a classroom context; the student, whose task is to create sentences that match with the
rules defined, therefore practicing different linguistic aspects. The system as a whole can be
considered functional for the use cases that intends to deal with.

6

C O N C L U S I O N

Following the objectives mencioned at the beginning of the document, it is possible to
understand that all of them were reached and addressed. Despite different challenges along
the path, each of the bullet points have their respective solution and approach documented.

The definition of a new well-rounded DSL was done in order to allow a linguistic teacher
to define various kinds of sentence structures and rules. Using AG’s, the processing and
recognition of said DSL enabled for various types of calculations to occur. Using ANTLR, it
is possible to generate a parser for this DSL that would perform many validations of the
input and generate a specific grammar for the sentence to be tested. Once again, using
ANTLR, it is possible to generate a parser from the previously mentioned grammar, allowing
for the verification of the sentence and the visualization and analysis of the syntax tree.

The tool designed to support these functionalities was named Lyntax. Lyntax is the name
of the tool that merges the Meta-Language processor and validator with an user interface
that allows for the specification of the language, such as an editor. This interface grants
the user the possibility of generating the specific grammar and their respective parser at a
high-level, with just the click of a button. The abstraction of complexity behind the interface
allows the user to focus only on the main part, which is the definition and testing of linguistic
rules.

During the development of the tool, one of the main challenges faced was the validation
of the input for a specific structure (discussed in Chapter 4). More than validating the
components, the processor needed to analyse the order of said components to verify the
compliance with the structure. This trial and error process was based on trying different
types of data structures to store the information and their respective traversals. The solution
implemented was a multi-way tree, or rose tree, that is composed by an unbounded number
of branches per node. This way, we would preserve order to help with the evaluation, but
also support multiple components per node. The process for the validation of the input
relies significantly in the traversal and comparision of the components in the rose tree, which
contains the teacher’s pre-defined structure.

43

Additionally, a scientific article was developed side by side with this document. This was
accepted by the 10th Symposium on Languages, Applications and Technologies (SLATE 2021) and
soon to be published [19].

6.1 future work

It is with no surprise that the COVID-19 pandemic would affect some aspects of the work
that was supposed to be done, and of course delay some of the activities planned. One very
important task that is still to be done is the conduction of tests with the final users - this
could be both students from secondary schools or university. The main objective would be
to see how the students would react and embrace the tool and its functionalities, as well as
the analysis of their user experience. Lastly, the users would be given a survey with various
questions to collect their experience, but also query them about the usefulness of the tool
and how it could help or enhance their study process within the classroom.

From a more technical point of view, an enhancement that should be implemented
is the iterative operator that allows to express the repetition of components within the
specification of the language. What it means is the possibility of the teacher to define 1 or
more occurrences of a component without the need of recursion, for example:

part [
(S u j e i t o) +

]

Listing 6.1: Example of a possible use for the
iterative operator.

The specification in Listing 6.1 means that the component “Sujeito" could be defined
multiple times. At the moment, such functionality is not available due to the fact that the
way the students input is validated depends on the paths within the tree data structure. As
a result of adding a component with an arbitrary number of occurences, the paths would
not match up.

B I B L I O G R A P H Y

[1] Rahmatullah Hafiz. Executable attribute grammars for modular and efficient natural language
processing. PhD thesis, University of Windsor, Canada, 2011.

[2] Kenneth Slonneger and Barry L Kurtz. Formal syntax and semantics of programming
languages, volume 340. Addison-Wesley Reading, 1995.

[3] Krishnaprasad Thirunarayan. Attribute grammars and their applications. In P. Deransart
and M. Jourdan, editors, Attribute Grammars and their Applications, Berlin, Heidelberg,
1990. Springer Berlin Heidelberg.

[4] Petra Horáková and Juan Pedro Cabanilles Gomar. La concordancia nominal de género
en las oraciones atributivas del español: una descripción formal con gramáticas de
atributos. Entrepalavras, 4(1):118–136, 2014.

[5] Donald E. Knuth. The genesis of attribute grammars. In P. Deransart and M. Jourdan,
editors, Attribute Grammars and their Applications, pages 1–12, Berlin, Heidelberg, 1990.
Springer Berlin Heidelberg.

[6] Patrícia Amorim Barros, Maria João Varanda Pereira, and Pedro Rangel Henriques.
Applying attribute grammars to teach linguistic rules. In 6th Symposium on Languages,
Applications and Technologies (SLATE 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[7] Encyclopaedia Britannica. Grammar. 02 2020. Accessed on 2020-12-21.

[8] Pedro Rangel Henriques. Brincando às linguagens com rigor: Engenharia gramatical.
2011. Habilitation in Computer Science (Technical Report), Dep. de Informática, Escola
de Engenharia da Universidade do Minho, habilitation monography presented and
discussed in a public session held in April 2012 at UM/Braga.

[9] Maria João Varanda Pereira, João Fonseca, and Pedro Rangel Henriques. Ontological
approach for dsl development. Computer Languages, Systems & Structures, 45:35–52, 2016.

[10] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An anno-
tated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[11] David Bruce. What makes a good domain-specific language? apostle, and its approach
to parallel discrete event simulation. pages 17–35, 1997.

44

bibliography 45

[12] Jon Bentley. Programming pearls: Little languages. Commun. ACM, 29(8):711–721, 1986.

[13] Tomaž Kosar, Pablo E Martı, Pablo A Barrientos, Marjan Mernik, et al. A preliminary
study on various implementation approaches of domain-specific language. Information
and software technology, 50(5):390–405, 2008.

[14] Marjan Mernik, Jan Heering, and Anthony Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37:316–, 12 2005.

[15] Ankica Barisic, Vasco Amaral, Miguel Goulão, and Bruno Barroca. How to reach a
usable dsl? moving toward a systematic evaluation. Electronic Communications of the
EASST, 50, 01 2012.

[16] José Luis Sierra and Alfredo Fernández-Valmayor. A prolog framework for the rapid
prototyping of language processors with attribute grammars. Electronic Notes in Theoret-
ical Computer Science, 164(2):19–36, 2006.

[17] Zoltán Alexin. Constructor : a natural language interface based on attribute grammar.
Acta Cybernetica, 9(3):247–255, Jan. 1990.

[18] Nuno Oliveira, Maria João Varanda Pereira, Pedro Rangel Henriques, Daniela da Cruz,
and Bastian Cramer. Visuallisa: A visual environment to develop attribute grammars.
2009.

[19] Manuel Sousa, Maria João Varanda Pereira, and Pedro Rangel Henriques. Lyntax - A
grammar-based tool for Linguistics. In Ricardo Queirós, Mário Pinto, Alberto Simões,
Filipe Portela, and Maria João Pereira, editors, 10th Symposium on Languages, Applications
and Technologies (SLATE 2021), OpenAccess Series in Informatics (OASIcs), pages 3:1–
3:14, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
(accepted, to be published soon.).

A
C O N T E X T- F R E E G R A M M A R

grammar MetaGrammar;

processor : structure errors input

;

/* ** */

/* ************************* STRUCTURE ************************ */

/* ** */

structure : 'STRUCTURE:' (part)+

;

part : 'part' '[' element ']'

;

element : '(' WORD ('|' WORD)* (',' attributes)? (',' subparts)? ')' ('?')?

;

attributes : 'attributes' '{' WORD (',' a2=WORD)* '}'

;

subparts : 'subparts' '[' element (',' element)* ']'

;

/* ** */

/* ************************** ERRORS ************************** */

/* ** */

errors : (('RULES'|'ERRORS') ':' (condition ';')+)?

;

condition : assignment (('AND'|'OR') assignment)*

;

46

47

assignment

: expression ('='|'!=') expression

| expression ('='|'!=') '"' val=WORD '"'

;

expression : WORD ('.' WORD)* '->' WORD

;

/* ** */

/* ************************** INPUT *************************** */

/* ** */

input : 'INPUT:' phrase

;

phrase : ('-' parts)+

;

parts : '(' block (',' block)* ')'

;

block : WORD content

;

content : (slice)? (attrs)? (parts)?

;

slice : ':' '"' WORD (WORD)* '"'

;

attrs : '[' evaluations ']'

;

evaluations : eval (',' eval)*

;

eval : WORD '=' '"' WORD '"'

;

/* LEXER */

WORD : (CHAR)+

;

48

WS : ([\t\r\n]|COMMENT) -> skip

;

fragment CHAR : [a-zA-ZáéíóúÁÉÍÓÚâêîôûÂÊÎÔÛãõÃÕàèìòùÀÉÌÒÙçÇ_1234567890]

;

fragment COMMENT

: '/*'.*?'*/' /* Multiple line comments. */

| '//'~('\r'|'\n')* /* Single line comment. */

;

Listing A.1: Lyntax’s Context-free grammar

B
E X A M P L E O F LY N TA X ’ S G E N E R AT E D G R A M M A R

b.1 teacher’s structure + errors

STRUCTURE:

part[(

Sujeito,

attributes{tipo},

subparts[

(Determinante)?,

(Nome)

]

)]

part[(

Predicado,

subparts[

(Verbo, attributes{tipo}),

(Complemento_Direto, subparts[(Determinante)?, (Nome)]),

]

)]

ERRORS:

Sujeito->tipo = "animado" AND Predicado.Verbo->tipo = "inanimado";

Sujeito->tipo = "inanimado" AND Predicado.Verbo->tipo = "animado";

Listing B.1: Teacher’s STRUCTURE + ERRORS blocks

49

B.2. Student’s INPUT 50

b.2 student’s input

INPUT:

- (Sujeito: "O Carlos" [tipo = "animado"]

(Determinante: "O", Nome: "Carlos"))

- (Predicado: "teme a sinceridade"

(Verbo: "teme" [tipo = "animado"],

Complemento_Direto: "a sinceridade"

(Determinante: "a", Nome: "sinceridade")))

Listing B.2: Student’s INPUT

b.3 lyntax’s generated grammar

grammar Grammar;

@members {

final String Sujeito__TIPO = "animado";

final String Predicado__Verbo__TIPO = "animado";

}

main : sujeito predicado

{

if (Sujeito__TIPO.equals("animado") &&

Predicado__Verbo__TIPO.equals("inanimado"))

{ System.out.println("ERROR!"); }

if (Sujeito__TIPO.equals("inanimado") &&

Predicado__Verbo__TIPO.equals("animado"))

{ System.out.println("ERROR!"); }

}

;

sujeito : (determinante)? nome

;

determinante : 'O' | 'a'

;

nome : 'Carlos' | 'sinceridade'

;

predicado : verbo complemento_direto

;

B.3. Lyntax’s Generated Grammar 51

complemento_direto : (determinante)? nome

;

verbo : 'teme'

;

/* LEXER */

WORD : (CHAR)+

;

WS : ([\t\r\n]|COMMENT) -> skip

;

fragment CHAR : [a-zA-ZáéíóúÁÉÍÓÚâêîôûÂÊÎÔÛãõÃÕàèìòùÀÉÌÒÙçÇ_1234567890]

;

fragment COMMENT

: '/*'.*?'*/' /* Multiple line comments. */

| '//'~('\r'|'\n')* /* Single line comment. */

;

Listing B.3: Lyntax’s Generated Grammar

	1 Introduction
	1.1 Context
	1.2 Objective
	1.3 Methodology
	1.4 Document Structure

	2 State of the Art
	2.1 Context-free Grammar
	2.2 Attribute Grammars
	2.3 Domain Specific Languages
	2.4 PAG (Prototyping with Attribute Grammars)
	2.5 CONSTRUCTOR
	2.6 VisualLISA (A Visual Programming Environment for Attribute Grammars)
	2.7 Chapter Summary

	3 Lyntax: Proposal
	3.1 System Architecture
	3.2 Meta-Language
	3.2.1 Domain Specific Meta-Grammar

	3.3 Chapter Summary

	4 Lyntax: Development
	4.1 Meta-Grammar
	4.2 Meta-Language Processor
	4.3 Specific Sentence Grammar Generator
	4.4 Sentence Validator
	4.5 Lyntax: Interface
	4.6 Lyntax: Website
	4.7 Chapter Summary

	5 Case Studies
	5.1 Attribute Validation
	5.2 Missing components & Warnings
	5.3 Arbitrary Structure
	5.4 Further examples and structures
	5.5 Chapter Summary

	6 Conclusion
	6.1 Future Work

	A Context-free Grammar
	B Example of Lyntax's generated grammar
	B.1 Teacher's STRUCTURE + ERRORS
	B.2 Student's INPUT
	B.3 Lyntax's Generated Grammar

