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Modelling spherical joints in multibody systems 

Mariana R. Silva, Filipe Marques, Miguel T. Silva, Paulo Flores 

Abstract. Spherical joints are commonly utilized in many real-world scenarios. 

From the more simplistic to the more complex perspectives, spherical joints might 

be modelled considering different cases. Thus, the aim of this study is to analyze 

and compare the influence of different spherical joint modelling approaches, 

namely the ideal, dry, lubricated, and bushing models, on the dynamic response of 

multibody systems. Initially, the kinematic and dynamic aspects of the spherical 

joint models are comprehensively reviewed. In this process, several approaches 

are explored and studied considering the normal, tangential, lubrication and bush-

ing forces experienced by the multibody systems in such cases of spherical joints. 

The application of the spherical joint models in the dynamic modeling and simula-

tion of the spatial four bar mechanism is investigated. From the results obtained, it 

can be stated that the choice of the spherical joint model can significantly affect 

the dynamic response of mechanical multibody systems. 
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1 Introduction  

Considering the type of applications in which they are designed to operate, spherical 

joints may be characterized using different models. The simplest approach is to con-

sider the spherical joint as an ideal joint, that is, with no clearance between the sock-

et and the ball. However, in many applications there is clearance between these 

components. In this case, the dynamics of the joint is controlled by contact-impact 

forces that develop on the ball and socket and that result from their collision. In 

multibody systems, instead of dealing with kinematic constraints as in the ideal 

joint, the spherical clearance joint deals with force constraints. The contact-impact 

forces developed can significantly affect the dynamic response of the system [3]. 

One of the most commonly utilized solutions to avoid or reduce the contact with-

in dry clearance joints and to minimize the energy dissipation, is to add a lubricant 

fluid in the space between the socket and the ball, that is, in the clearance space. The 

high pressures that develop in this fluid act to keep the ball and the socket apart, 

preventing the contact between these two components [4, 5]. In other applications, 

bushing elements may be utilized. These are usually composed of elastomeric mate-

rials and are used to absorb shocks and vibrations, handle misalignments, reduce 

noise and wear, and decrease the transmissibility of irregularities to the system [1]. 

With this knowledge in perspective, the aim of this study is to analyze and 

compare the influence of different spherical joint models on the dynamic response 

of multibody systems. For this purpose, the kinematic and dynamic aspects of the 

ideal, dry, lubricated, and bushing models are presented. In the aftermath of this 

process, the spatial four bar mechanism is considered as a demonstrative example of 

application. This study provides a simple and direct comparison between different 

methodologies that can be applied to mechanical systems with spherical joints, al-

lowing a better choice of the model to adopt for specific applications. 

2 Kinematics of Spherical Joints 

This section includes a description of the formulations utilized in multibody sys-

tems to model the kinematic aspects of spherical joints. Several cases are present-

ed, namely the ideal, dry, lubricated, and bushing joint models. 

Ideal spherical joints allow the relative rotations between two adjacent bodies i 

and j, constraining three relative translations. Consequently, the center of the ideal 

spherical joint has constant coordinates with respect to any of the local coordinate 

systems of the connected bodies. This means that point Pi on body i is coincident 

with point Pj on body j. Points Pi and Pj represent the center of the socket and ball, 

respectively [2]. The condition of the coincidence of points Pi and Pj is as follows: 

 ( ,3)
r r r s r s 0

s P P P P

j i j j i i − = + − − =  (1) 

where r
P

k
 represents the global position vector of point P located on body k, rk de-

notes the position vector of the center of mass of body k described in global coor-
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dinates and s
P

k
 is the global position vector of point P located on body k with re-

spect to local coordinates. 

The velocity constraint equations for an ideal spherical joint are obtained by 

taking the first time derivative of Eq. (1), and can be expressed as [2]: 

 
( ,3)

r s r s 0
s P P

j j i i= + − − =  (2) 

in which the dot represents the derivative with respect to time. 

Considering the following condition: 
 s s s= = −   (3) 

where the symbol ~ represents the skew symmetric matrix and  is the angular ve-

locity, then Eq. (2) can be rewritten as follows [2]. 

 
( ,3)

r s r s 0
s P P

j j j i i i= − − + =    (4) 

In this sense, the time derivative of Eq. (4) yields the acceleration constraint 

equations of the ideal spherical joint as follows [2]: 

 
( ,3)

r s s r s s 0
s P P P P

j j j j j i i i i i= − − − + + =      (5) 

The multibody formulation for the case of ideal spherical joints was presented. 

However, in real-world application scenarios spherical joints present some level of 

clearance between the socket and the ball. The condition of coincidence between 

point Pi and point Pj assumed for the ideal joint case is disregarded in the case of 

the spherical clearance joint. Thus, the three kinematic constraints shown in Eq. 

(1) are removed and the two bodies are separated and free to move relative to one 

another. Contrary to the ideal joint case, the spherical clearance joint does not 

constrain any degree of freedom from the system [4, 5]. 

In a spherical clearance joint, a spherical part of body j, the ball, resides inside 

a spherical part of body i, the socket. The radii of the socket and the ball are Ri and 

Rj, respectively, and the difference between these parameters defines the size of 

the radial clearance as [4, 5]: 

 i jc R R= −  (6) 

The vector connecting point Pi to point Pj is defined as the eccentricity vector, 

e, which is obtained as : 

 e r r
P P

j i= −  (7) 

The magnitude of the eccentricity vector is given by: 

 T
e ee =  (8) 

and the time rate of change of the eccentricity in the radial direction, that is, in the 

direction of the line of centers of the socket and the ball, is written as follows: 

 
T

e e
e

e
=  (9) 

In spherical clearance joints, the situation in which the socket and the ball are 

contacting with each other is identified by a relative pseudo-penetration . The 

geometric condition for contact between the socket and the ball is defined as: 
 -e c =  (10) 

and the relative normal contact velocity,  , is given by: 

 ( )
T e

r r
Q Q

j i
e

 = −
 

(11) 

where Qi and Qj are the contact points on bodies i and j. 
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When the clearance joints are considered dry, normal and friction forces are 

the only effects present when physical contact is detected between the surfaces. 

However, in most mechanisms and machines, the joints are designed to operate 

with some lubricant fluid with the purpose of ensuring better performance of the 

mechanical systems by reducing friction and wear, providing load-carrying ca-

pacity, and adding damping to dissipate undesirable vibrations [4, 5]. In the case 

of a spherical joint with lubrication, the space between the ball and the socket is 

filled with a lubricant. Under applied load, the ball center is displaced from the 

socket center and the lubricant is forced into the clearance space, provoking a 

buildup of pressure. The high pressures generated in this lubricant film act to keep 

the bodies apart. Lubricated joints are designed so that, even when the maximal 

load is applied, the socket and the ball do not come in contact [5]. 

Bushing elements are utilized in many mechanical systems to absorb shocks 

and vibrations, handle misalignments and decrease the transmissibility of irregu-

larities to the system [1]. The formulation utilized in this study closely follows the 

methodology presented by Ambrósio and Veríssimo [1], in which the bushing el-

ement is modelled in the multibody code as a nonlinear restrain that relates the 

relative displacements between the bodies connected with the joint reaction forces. 

The kinematic aspects of spherical clearance joints with lubrication and with 

bushing elements are similar to those of the dry spherical joint. 

3 Dynamics of Spherical Joints 

This section includes a description of the formulations utilized in multibody sys-

tems to model the dynamics of spherical joints. The normal, tangential, lubrication 

and bushing force models are presented. These forces are introduced in the equa-

tions of motion of a multibody system as external generalized forces. 

In the case of the dry spherical clearance model, the dynamics of the joint is 

controlled by contact-impact forces arising from the collision between the con-

nected bodies. This type of joint can, thus, be referred to as force joint, since it 

deals with force effects rather than kinematic constraints [4, 5]. 

Within the scope of this study, the model developed by Lankarani and 

Nikravesh [6] is analyzed. The authors proposed a continuous contact force model 

for the contact-impact analysis of multibody systems using the general trend of 

Hertz contact law incorporated with a hysteresis damping factor to include energy 

dissipation in terms of internal damping. The contact force model is expressed as: 

 

2

r
n ( )

3(1 )
1

4

n c
f K




 −

 −
= + 

 

 
(12) 

where K denotes the generalized stiffness parameter,  is calculated by Eq. (10), n 

represents the nonlinear exponent factor, cr is the restitution coefficient, ( ) −  de-

notes the initial contact velocity and   is obtained from Eq. (11). 

In real-world applications of mechanical systems involving contacting surfaces 

with relative motion, friction forces of complex nature might arise. Thus, a rigor-
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ous evaluation of these forces is warranted to obtain an accurate modelling of the 

dynamic response of the system. In the model proposed by Threlfall [7], the fric-

tion force and velocity are related by an exponential function whose purpose is to 

address the numerical difficulties associated with the discontinuity in Coulomb’s 

law. The model was the basis for other friction force models, such as the continu-

ous function expressed as: 

 
t t

t c

1 t

tanh
v

f
v

f
v v

 
=  

 

 
(13) 

where vt is the tangential velocity of the contact point, vt denotes the magnitude of 

the tangential velocity, v1 represents the tolerance for the velocity and fc is the 

magnitude of the Coulomb friction represented as follows: 

 c k nf f=  (14) 

in which k is the kinetic coefficient of friction and fn is the normal contact force. 

Concerning lubricated spherical joints, the squeeze-film and the wedge-film 

actions comprise the two main groups in which these joints can be categorized in-

to. The squeeze-film action is associated with situations in which the ball does not 

rotate significantly about is center, but instead it moves along some path inside the 

socket boundaries. The wedge-film action refers to situations in which the ball has 

significant rotation, which this is usually observed in high-speed rotating machin-

ery [5]. In this study, the squeeze-film action is considered. 

The lubrication force due to squeeze-film action developed between the socket 

and the ball when there is lubricant fluid between these two components can be 

modelled using a law developed by Flores and Lankarani [2] as follows: 

 3 3 2

6 1 1 1
ln(1 )

(c / ) (1 ) 2

i
l

i

eR
f

R




   

 
= − + − 

− 

 
(15) 

where  represents the dynamic lubricant viscosity, e  is given by Eq. (9), and  

denotes the eccentricity ratio given by: 

 
e

c
 =  

(16) 

where c and e are given by Eqs. (6) and (8), respectively. 

For nonideal spherical joints, vector e given by Eq. (7) can be characterized as 

the gap between the ball and the socket. However, this vector can be defined as 

the deformation of the elastomer in a spherical joint with a bushing element [1]. 

Considering this statement, the force due to the bushing deformation adopted in 

this study is based on the formulation developed by Ambrósio and Veríssimo [1], 

and it is represented by the following condition: 

 ( )b

e
f k b

e
  = +

 
 

(17) 

where k is the stiffness of the bushing element,  denotes the bushing deformation 

and b represents the stiffness proportional damping parameter. 

As previously determined, the length of vector e is given by Eq. (8). Assuming 

that no gap exists between the bushing element and the ball, then e= and, thus, 

the time derivative of  is given by Eq. (9).  
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4 Demonstrative Example of Application 

The objective of this section is to examine the influence of the different cases for 

modelling spherical joints on the dynamic response and behavior of multibody 

systems. To this end, a spatial four-bar mechanism is utilized. 

The spatial four-bar mechanism is composed by four rigid bodies, namely the 

ground, crank, coupler, and rocker. The numbers of each body and their corre-

sponding local coordinate systems are shown in Fig. 1. 

h1 h2

z2z1



Rocker

Ground

Coupler

Crank

0.085

0.040

x

y

z

0.020

x2

x3

x4

z4

h4

h3

z3

x1





 
Fig. 1 Schematic representation of the spatial four-bar mechanism 

The bodies of the spatial four bar mechanism are kinematically connected to 

each other by means of two revolute joints, connecting the ground to the crank and 

the ground to the rocker, and two spherical joints, connecting the crank to the cou-

pler and the coupler to the rocker. Clearance and bushing are introduced in the 

spherical joint connecting the coupler and the rocker to analyze the dry, lubricated, 

and bushing models. The remaining joints are considered ideal. 

The initial configuration of the spatial four-bar mechanism is presented in Fig. 

1 and the corresponding initial values are presented in Table 1. The system is re-

leased from the initial position with null velocities and under the action of gravita-

tional force, acting on the negative z-direction. For the nonideal joint models, ini-

tially the ball and the socket of the spherical clearance joint are concentric. 

Table 1  Initial configuration of the spatial four-bar mechanism 

Body Nr. x [m] y [m] z [m] e0 e1 e2 e3 

2  0.00000  0.00000 0.00000 1.0000  0.0000  0.0000  0.0000 

3 -0.03746 -0.04250 0.04262 0.9186 -0.1764  0.06747 -0.3472 

4 -0.05746 -0.08500 0.03262 0.3634 -0.6066 -0.6066  0.3634 

The dimensions and inertial properties of each body of the spatial four bar 

mechanism are presented in Table 2. 

Table 2  Dimensions and inertial properties of the spatial four-bar mechanism 

Body Nr. Length [m] Mass [kg] 
Moment of inertia [kgm2] 

Ixx Ihh Izz 

2 0.020 0.0196 0.0000392 0.0000197 0.0000197 

3 0.122 0.1416 0.0017743 0.0000351 0.0017743 

4 0.074 0.0316 0.0001456 0.0000029 0.0001456 
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The simulation parameters used in all dynamic simulations and in the numeri-

cal methods required to solve the dynamics of the system are displayed in Table 3. 

Table 3  Common and specific simulation parameters for the four-bar mechanism 

Common 

Baumgarte coefficient,  5 Reporting time step 0.00001s 

Baumgarte coefficient,  5 Integration tolerance 10-10 

Integrator algorithm ode15s Simulation time 2 s 

Dry Model 

Young’s modulus, E 207 GPa Velocity tolerance, v1 0.0010 

m/s Poisson’s ratio, v 0.3 Kinetic coefficient of friction, μk 0.1 

Nonlinear exponent, n 1.5 Socket radius, Ri 10 mm 

Restitution Coefficient, cr 0.9 Ball radius, Rj 9.9 mm 

Lubricated Model 

Dynamic lubricant viscosity,   – 400 cP 

Bushing Model 

Bushing stiffness, k - 2.146×107 N/m Stiffness proportional damping, b - 0.01 

The results obtained for the spherical joint models studied are shown in Fig. 2. 

  
a) b) 

  
c) d) 

Fig. 2 Influence of the spherical joint model on the response of the spatial four-bar mechanism. 

a) Position, b) velocity, c) acceleration of the rocker and d) mechanical energy of the system. 

It can be observed that the dynamic performance of the four-bar mechanism is 

significantly affected by the model chosen to characterize the spherical joint. In 

general, the frictionless joint model, exhibits more oscillations and produces sig-

nificantly larger velocities and accelerations than the other models, suggesting that 
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the response of the system becomes chaotic. In fact, the addition of friction to the 

dry spherical clearance joint tends to smooth the behavior of the system, leading to 

a less chaotic behavior. The observation of Fig. 2 (c) also indicates that the spatial 

four-bar mechanism produces significantly lower accelerations with the ideal joint 

model when compared to the other models. Concerning the variation of the me-

chanical energy, the model with friction presents higher energy dissipation, fol-

lowed by the frictionless and lubricated models, as observed in Fig. 2 (d). As ex-

pected, the bushing model produces positions, velocities and accelerations close to 

the ideal joint case, which means that the bushing element is, in fact, decreasing 

the noise associated with clearance and stabilizing the system, making it less cha-

otic. This model dissipates the least amount of energy comparing to the others. 

5 Conclusions 

The dynamic modeling and analysis of spatial mechanisms with different models 

for spherical joints has been presented in this work. The main kinematic and dy-

namic aspects related to these models were described under the framework of 

multibody systems methodologies. A classic spatial four bar mechanism was con-

sidered as a demonstrative application example to study the effect of the joint 

modeling approaches. Overall, the joint models strongly affect the performance of 

the system, essentially visible in terms of accelerations and mechanical energy.  
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