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Escherichia coli is a problematic pathogen that causes life-threatening diseases, being

a frequent causative agent of several nosocomial infections such as urinary tract

and bloodstream infections. Proper and rapid bacterial identification is critical for

allowing prompt and targeted antimicrobial therapy. (Bacterio)phage receptor-binding

proteins (RBPs) display high specificity for bacterial surface epitopes and, therefore, are

particularly attractive as biorecognition elements, potentially conferring high sensitivity

and specificity in bacterial detection. In this study, we elucidated, for the first time,

the potential of a recombinant RBP (Gp17) to recognize E. coli at different viability

states, such as viable but not culturable cells, which are not detected by conventional

techniques. Moreover, by using a diagnostic method in which we combined magnetic

and spectrofluorimetric approaches, we demonstrated the ability of Gp17 to specifically

detect E. coli in various human specimens (e.g., whole blood, feces, urine, and saliva) in

about 1.5 h, without requiring complex sample processing.

Keywords: healthcare-associated infections, cell viability states, diagnostic method, human biological samples,

receptor-binding proteins, Escherichia coli

INTRODUCTION

Bacterial infections are among the primary causes of death worldwide, and bacterial agents
are mainly responsible for healthcare-associated infections (HCAI) that are acquired in hospital
environments or other healthcare facilities (World Health Organization, 2011; Haque et al., 2018).
These infections arise more than 48 h after hospital admission or within 30 days after receiving
medical treatment and have been a worrisome issue (World Health Organization, 2011; Cassini
et al., 2016). Escherichia coli is an important pathogen responsible for several life-threatening
diseases such as pneumonia, meningitis, sepsis, enteric/diarrheal diseases, and urinary tract
infections (UTIs) (Kaper et al., 2004). It is the most frequent Gram-negative bacterium isolated
from bloodstream infections (BSIs) and the principal causative agent of UTIs (ECDC, 2019).

For effectively controlling these diseases and avoiding the subsequent serious complications, the
early diagnosis is of great importance, and it also contributes to the prompt targeted antimicrobial
therapy, helps decrease the medical and financial burden, and prevents the spread of antimicrobial
resistance (Bereket et al., 2012). The gold standard methods for detecting bacteria are mainly based
on culture and colony counting and biochemical tests for the identification of microorganisms
(Laupland and Valiquette, 2013; Abayasekara et al., 2017). However, these methodologies are
laborious, can be affected by non-microbial material, and require lengthy enrichment steps as a
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GRAPHICAL ABSTRACT | Overview of the experimental studies. The RBP mCherry-Gp17 was tested against E. coli at different viability states and used as a

recognition molecule for the detection of E. coli in human specimens.

result of the minimal concentration of pathogens in samples
and their fastidious growth (Váradi et al., 2017; Rajapaksha
et al., 2019). Moreover, bacteria are reported to enter a state,
known as viable but non-culturable (VBNC), where they remain
metabolically active, keeping their virulence, but cannot grow
in standard solid culture media. This compromised state has
been described for several pathogenic bacteria and arises due to
the influence of different physiological stress conditions (Oliver,
2005, 2010). The appearance of VBNC bacteria may represent
a serious threat to public health (Oliver, 2005; Castellani et al.,
2013; Pienaar et al., 2016; Zhao et al., 2017) since these cells are
present in samples from clinical environments, water distribution
systems, and the food industry, but they cannot be detected
by conventional culturing detection methods. Moreover, since
antibiotics can act as inducers for the VBNC state (Mason et al.,
1995; Rivers and Steck, 2001; Ayrapetyan et al., 2015), these
cells can remain present and resistant to these compounds, but
when the treatment is stopped, they can resuscitate and regain
their virulence and thus lead to chronic recurring infections in
patients who were considered cured (Rivers and Steck, 2001;
Pasquaroli et al., 2013; Ayrapetyan et al., 2018). Additionally,
Wilks et al. (2021) reported the appearance of VBNC E. coli in
urinary catheters resulting from the biofilm development.

In an effort to overcome the disadvantages of the gold
standard methods, other technologies like the enzyme-linked
immunosorbent assay (ELISA) (Verma et al., 2013), nucleic
acid hybridization (McLoughlin, 2011; Frickmann et al., 2017),
matrix-assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF-MS) (Singhal et al., 2015), and
polymerase chain reaction (PCR) (Mothershed and Whitney,
2006) have emerged. Nonetheless, these methods tend to
be expensive, involve several steps, suffer from amplification
inhibition or infidelity issues, and require prior knowledge of
the target DNA sequence or mass spectrometry profile (Ferreira
et al., 2011; Marder et al., 2017; Rajapaksha et al., 2019). Another
important concern is the fact that these techniques exhibit some
issues when applied to complex matrices (Stevens and Jaykus,

2004). Human biological samples, in particular, fecal specimens
or whole blood, are among the most complex samples to analyze
and detect bacteria due to the presence of numerous inhibitory
compounds that interfere in the analysis, especially in the case
of amplification- or immunology-based methods (Holland et al.,
2000; Stevens and Jaykus, 2004; Opota et al., 2015), making these
approaches not attractive for a real monitoring application.

Magnetic trapping (MT) has been widely used for several years
as a sample preparation method due to its attractive features
(Cudjoe et al., 1995; Kretzer et al., 2007; Qiu et al., 2009; Yang
et al., 2013; Lopes et al., 2016). The basic principle is the use
of magnetic nanoparticles (MNPs) functionalized with affinity
molecules for the target bacterial cells, such as antibodies, to
provide a specific capture and isolation of intact cells directly
from a complex sample without the need for centrifugation or
chromatography methodologies, which are laborious or require
specific equipment (Cudjoe et al., 1995; Stevens and Jaykus,
2004). MT presents advantages over other methods, including
the effective separation of target bacteria from competitive
microflora, the removal of matrix components and potential
inhibitors, and the reduction of the sample volume (Stevens and
Jaykus, 2004).

The choice of the biorecognition molecule in a diagnostic
assay is of great importance to the specificity and robustness of
the method (Stevens and Jaykus, 2004; Singh et al., 2012). Several
recognition elements for bacteria have been described, such
as antibodies, enzymes, aptamers, proteins, or (bacterio)phages
(Singh et al., 2013). Receptor-binding proteins (RBPs) from
phages, which are responsible for the binding of the phage
to the bacterial surface receptors in the initial step of the
phage infection (Singh et al., 2010; Schmelcher and Loessner,
2014), have been appointed as great candidates to replace the
traditional recognition elements. RBPs are involved in phage
adsorption by specifically binding to receptors on the bacterial
surfaces, such as proteins, polysaccharides, lipopolysaccharides
(LPS), and carbohydrate moieties, dictating the phage infection
spectrum (Leiman et al., 2003; Rakhuba et al., 2010). While
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common receptors for phages infecting Gram-negative bacteria
are LPS, capsular polysaccharides (CPS), or bacterial surface
proteins (porins and transport proteins), the most frequent in
Gram-positive bacteria are the peptidoglycan, teichoic acids,
or exposed polysaccharides (Rakhuba et al., 2010; Latka et al.,
2017; Dowah and Clokie, 2018). RBPs offer several benefits over
other recognition elements like antibodies, such as comparable or
higher specificity, high sensitivity, ease of genetic modification,
enabling its fusion with fluorescent reporter tags, low production
costs, small size, and high chemical and physical resistance
(Barbirz et al., 2009; Singh et al., 2010, 2012; Simpson et al., 2015).
Therefore, in the past few years, several successful applications
of the RBPs for bacterial detection have been reported in the
literature, particularly when combined with biosensors (Tay et al.,
2012; Shin and Lim, 2018), spectrophotometry (Kunstmann et al.,
2018; Santos et al., 2020), ELISA (Denyes et al., 2017; Górska
et al., 2018), or lab-on-chip systems (Cunha et al., 2021).

In this study, we unveiled the potential of a recombinant RBP
(Gp17) derived from the T7-like polyvalent phage 285p (Xu et al.,
2014) as a recognition probe for E. coli cells at different viability
states (viable, compromised, dead) by using flow cytometry and
fluorescence microscopy. Some studies reported the detection
of all these cell states by whole phages but are contradictory
(Krueger, 1931; Watanabe, 1976; Oda et al., 2004; Awais et al.,
2006; Hu et al., 2012; Tlili et al., 2013; Fernandes et al., 2014).
Therefore, it was important to assess the binding capacity of
a recombinant RBP to these cells, which, to the best of our
knowledge, has never been completely elucidated. In this study,
we also leveraged the capacity of Gp17 to specifically recognize
and detect E. coli in complex human biological samples. For this,
we combined the benefits of the MT and spectrofluorometry
techniques, enabling the separation and detection of E. coli in
1.5 h directly from saliva, urine, feces, and whole blood, without
requiring complex sample processing.

MATERIALS AND METHODS

Bacteria and Cultivation Procedures
The clinical strains used to test the binding spectrum
(Supplementary Table S1) including the E. coli HB104 (used as
the target bacteria) and Staphylococcus aureus HB22 (used as
the negative control) were provided by the Hospital of Braga
(Portugal). E. coli CECT 515 was acquired from the Spanish
Type Culture Collection, University of Valencia. The strains
were routinely grown overnight in Tryptic Soy Broth (TSB)
(Liofilchem) and Luria Bertani (LB) (Liofilchem) at 37◦C under
agitation (120 rpm) or in solid plates, obtained by adding 12 g/L
of agar (Liofilchem).

Bioinformatic Analysis
The gp17 was identified as a gene encoding for a tail fiber protein
(Gp17) derived from the 285p T7-like polyvalent bacteriophage
belonging to the PYO97_8 phage cocktail (Georgian Eliava
Institute of Bacteriophage, Microbiology and Virology) (Xu
et al., 2014; Villarroel et al., 2017). The protein sequence
was analyzed using the Basic Local Alignment Search Tool
Protein (BLASTp) non-redundant protein sequence database and

expected functional domains were found through Pfam (Finn
et al., 2014) and InterProScan (Jones et al., 2014) using the default
parameters of the programs. To determine the molecular weight
and isoelectric point, the Compute pI/Mw program ExPASy
(Artimo et al., 2012) was employed.

Synthesis, Expression, and Purification of
RBP Gp17
The gene gp17 encoding a potential RBP was synthesized,
fused with the mCherry gene derived from Discosoma sp. at
the N-terminus, and cloned into the expression vector pHTP1
(NZYTech) containing a poly-histidine (6xHis) sequence tag at
N-terminus. The vector containing the red fluorescent protein
mCherry-Gp17 was chemically transformed into E. coli BL21
(DE3) cells (Invitrogen). Expression of the fusion protein was
carried out as previously described (Costa et al., 2020). In brief, E.
coli BL21 cells carrying the recombinant plasmid were cultivated
at 37◦C in an LB medium, adding 50 µg/µl of kanamycin
until an optical density (OD) at 600 nm (OD600 nm) of 0.6 was
reached. The induction of protein overexpression was achieved
by adding 1mM isopropyl-β-D-thiogalactopyranoside (Sigma-
Aldrich) and subsequent overnight incubation at 16◦C, 120
rpm. Afterward, to lyse the cells, centrifugation was performed
(9,000 × g, 10min, 4◦C), phosphate lysis buffer (20mM sodium
dihydrogen phosphate, 500mM sodium chloride, pH 7.4) was
used for cell resuspension, and three freeze-thaw cycles and
sonication at 12% amplitude (Disintegrator Ultrasonic Mod. 450,
Branson) for 15min (10 s ON and 10 s OFF) were conducted.
Then centrifugation (9,000 × g, 15min, 4◦C) was carried out to
collect the supernatant enriched with soluble proteins, and the
protein was purified using a nickel-nitrilotriacetic acid (Ni-NTA)
column (Thermo Fisher Scientific). After the washing steps, the
elution of proteins was completed with 300mM imidazole, and
fractions were analyzed with SDS-PAGE (12% (w/v) acrylamide)
after Blue Safe staining (NZYTech). The protein dialysis and
concentration were performed with 0.1M phosphate buffer
pH 7.2 (PB) by using centrifugal filters (Amicon Ultra, 0.5ml
MWCO 10 KDa, Merck Millipore) and proteins were stored
at 4◦C. The BCA Protein Assay Kit (Thermo Fisher Scientific)
assisted in the protein concentration assessment.

Functional Analysis of mCherry-Gp17 by
Fluorescence Microscopy
To assess the ability of the mCherry-Gp17 to bind E. coli cells,
fluorescence microscopy assays were conducted against E. coli
HB104, Klebsiella pneumoniae HB11, and S. aureus HB22 as the
negative controls, following the procedure previously described
with minor modifications (Costa et al., 2020). In brief, overnight
bacterial cells grown in TSB at 37◦C were centrifuged (6,000× g,
10min) and the OD600 nm adjusted to 0.5. Then 400µl of cultures
were centrifuged at 9,000 × g for 5min and resuspended in 40
µl of PB. Then, 20 µl of mCherry-Gp17 at a final concentration
of 20µM was added and incubated at room temperature (RT)
for 30min. Cells were centrifuged at equal conditions, and two
washes were done with PB to remove unbound protein and
resuspended in 10 µl of PB. Samples were observed at the
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confocal microscope LSM780 (Zeiss) equipped with a 5 mW
488–645 nm light source in brightfield or under a laser source
at 561 nm (DPSS 561-10) for mCherry excitation and setting a
bandpass filter (604–735 nm) in the Zeiss ZEN 2010 software
for visualization of the protein emission. Control samples of
bacterial cells without the addition of the recombinant protein
were prepared simultaneously. mCherry alone was used as a
negative control.

Spectrofluorimetric Analysis
Suspensions of clinical strains, which are listed in
Supplementary Table S1, were prepared as described in
the previous section. The spectrofluorimetric analysis was
accomplished according to the protocol described elsewhere
(Santos et al., 2020). Suspensions of bacteria (400 µl) were
centrifuged at 9,000 × g for 5min and resuspended in 40 µl
of PB. Then, 20 µl of mCherry-Gp17 at a final concentration
of 5µM was added and incubated at RT for 30min. Cells
were washed twice by centrifugation (9,000 × g for 5min)
using PB to eliminate protein debris and resuspended in 100
µl of PB. The samples were transferred to a black 96-well
microplate and examined at a BioTekTM Synergy H1 Hybrid
Multi-Mode Microplate Reader with the BioTek Gen5 software.
Excitation/emission wavelengths were defined as 570/610 nm
(gain 100), and the fluorescence intensity was displayed in
arbitrary units (a.u.).

Flow-Cytometry Assays
Optimization of the Protocol to Induce E. coli Cells to

Different Viability States
Bacterial suspensions of E. coli HB104 (used as the target) and
of the negative control bacteria were prepared as described in
the functional analysis section. Bacterial cells were subjected
to different concentrations of sodium hypochlorite (commercial
bleach with a stock concentration of 5%) to induce the cells to
enter a compromised state (Liu et al., 2009; Fernandes et al., 2014;
Ye et al., 2020). Dead cells were prepared by incubation with 5%
of bleach (Aranke et al., 2021).

Bacterial suspensions (1ml) were centrifuged at 7,000 × g
for 10min and resuspended in 1ml of each of the several
concentrations of commercial bleach used, which were prepared
in PB: 0.000, 0.006, 0.007, 0.020, 0.030, 0.050, and 5.000% (v/v).
Samples were incubated for 10min, then centrifuged at 7,000× g
for 10min at 4◦C and washed twice with PB. The culturable cells
were quantified after each treatment through colony forming
units (CFU) counting.

Assessment of Cell Viability
The viability of the cells was estimated after subjecting bacteria
to the aforementioned bleach concentrations and staining the
cells with the LIVE/DEAD BacLight Bacterial Viability and
Counting Kit (Molecular Probes) according to themanufacturer’s
instructions (Berney et al., 2007; Singh et al., 2012). Later, cells
were examined either by confocal microscopy (Zeiss LSM780)
or by flow cytometry (Bio-Rad S3e Cell Sorter). In the flow
cytometry analysis, the gating strategy was defined according to
the LIVE/DEAD BacLight kit (Berney et al., 2007). Microspheres

of 6µm diameter were used as the standard for absolute cell
quantification. The results obtained in flow cytometry were
analyzed using the FlowJo software (Tree Star, Ashland, OR).

Labeling of Cells With mCherry-Gp17 and Flow

Cytometry Analysis
The labeling of cells in different viability states with
mCherry-Gp17 was carried out as described above for the
spectrofluorimetric analysis. The samples were analyzed by flow
cytometry using a Bio-Rad S3e Cell Sorter equipped with a dual
laser (488/561 nm) and a 615/25 nm filter, allowing the mCherry
fluorescence to be detected on the FL3 channel. According to our
previous work (Costa et al., 2020), a total of 45,000 events were
acquired with a sample flow rate of 10 µl/min. Data analysis was
performed using FLOWJO-Single Cell Analysis Software v10
(BD, New Jersey, USA).

Spectrofluorimetric Magnetic Sandwich
Assay
The spectrofluorimetric magnetic sandwich assay was set up
starting with the incubation of cells with the mCherry-Gp17
for 30min and then magnetically labeled with antibody-
functionalized MNPs.

Preparation of the Functionalized MNPs
To prepare the MNPs, 50 µl of commercial 250 nm streptavidin-
coated MNPs (Nanomag-D, Micromod, 4.9 × 1011 particles/ml)
were rinsed twice with 500 µl of 0.1M PB Tween 20
(0.05%, v/v) by removing the supernatant with a magnetic
concentrator (Dynal-Biotech). Then, 500 µl of the biotinylated
E. coli polyclonal antibody [LSBio (LifeSpan) Cat# LS-C56164-
1, RRID:AB_1509874] at a final concentration of 50µg/ml were
mixed with the MNPs and left on an orbital shaker at 500 rpm,
20◦C for 2 h of incubation. Following functionalization, the same
process was employed to withdraw the supernatant containing
the unbound antibody. The MNPs blocking was carried out by
adding 500 µl of bovine serum albumin (BSA) at 5% (w/v) in PB
and incubating for 1 h under equal conditions. After supernatant
removal, the antibody-conjugated MNPs were washed with PB
Tween, resuspended in 50 µl, and kept at 4◦C as stock.

Magnetic Sandwich Assay
The magnetic sandwich assay was first performed in buffer and
in defibrinated horse blood (Probiológica), with cultures of E.
coli HB104 (used as the target) and S. aureus HB22 (used as
the negative control) that were prepared as aforementioned.
Control samples without any bacteria added were prepared at
the same time and submitted to the same process. The bacterial
suspensions (400 µl) in PB or horse blood were centrifuged at
9,000 × g for 5min and resuspended in 40 µl of PB. Then,
20 µl of mCherry-Gp17 at a final concentration of 5µM was
added and incubated at RT for 30min. Then, 4 µl of the
antibody-conjugated MNPs stock was added to the samples,
completing the volume to 400µl with PB. TheMNPs and bacteria
were incubated for 1 h in an orbital shaker at 500 rpm, 20◦C.
After, the supernatants were gently removed using the magnetic
concentrator, and the MNPs were washed twice with 400 µl of
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PB Tween. Both supernatants and washes were stored for CFUs
assessment. Finally, the MNPs were resuspended in 100 µl of PB
and immediately analyzed on the spectrofluorometer according
to the settings described above. The bacterial capture efficiency
was calculated using the following equation:

Bacterial capture efficiency (%)

=
CFUs I − (CFUs S+ CFUs W)

CFUs I
× 100 (1)

Here, CFUs I represent the CFUs initially added, and the CFUs
S and CFUs W represent the CFUs from supernatants and
washes, respectively.

Detection of Bacteria in Different Human Biological

Specimens
All human biological samples used in this study were collected
from healthy adult volunteers upon written informed consent.
The same type of biological samples were mixed and thus
processed de-identified in this study, being the data and samples
fully anonymized. Samples of saliva, feces, and urine were
collected using a plastic tube. Whole blood was collected using
EDTA blood collection tubes (BD Vacutainer). After collection,
fecal samples were filtered. Bacterial suspensions (E. coli HB104
as target and S. aureus HB22 as negative control) were prepared
as described before, and 1ml of each suspension was centrifuged
(9,000 × g, 5min) and resuspended in 1ml of each human
specimen. Then, the magnetic sandwich assay was performed as
described in the previous section. Bacteria in buffer and control
samples without any bacteria added were prepared at the same
time and submitted to the same process.

Statistical Analysis
All data are represented as mean ± SD (standard deviation).
For Figures 4, 5, multiple comparisons of means were performed
using two-way ANOVA followed by Sidak’s multiple comparison
test (p-value < 0.0001) and Dunnett’s multiple comparison test
(p-value < 0.0001), respectively.

RESULTS

Bioinformatics Analysis
Phage RBPs are regularly related to tail fiber proteins, tail spikes,
or spike proteins (Simpson et al., 2016). The gene gp17 was
identified as encoding a tail fiber protein in the E. coli phage 285p
from a pyophage (PYO) cocktail (Xu et al., 2014; Villarroel et al.,
2017). To further confirm, the sequence of the encoded protein
(Gp17) was compared in terms of homology with other phage
tail proteins deposited at the National Center for Biotechnology
Information (NCBI) database. The results indicate that Gp17
has homology with tail fiber proteins from other E. coli phages
such as phage BA14 (72% homology), phage PhiV-1 (71%), or
phage P483 (60%). Also, the Gp17 has homology with tails from
phages infecting Enterobacter (Enterobacter phage PZJ0206 tail,
95%), Salmonella (Salmonella phage BSP161 tail, 88%), Yersinia
(Yersinia phage PYPS50 tail, 87%), and Erwinia (Erwinia phage
FE44 tail, 73%). The search for domains and families found hits
with the phage_T7_tail_fiber family at N-terminus.

Functional Analysis of mCherry-Gp17
After the identification of the Gp17 as a potential RBP, the protein
was synthesized, expressed in E. coli, and purified using Ni-NTA
columns (Supplementary Figure S1). The functional analysis of
this protein was performed to confirm its recognition binding
ability to the target bacteria and other bacterial species. This
was assessed by fluorescencemicroscopy through the observation
of cells emitting red fluorescence since Gp17 was fused with
the reporter protein, mCherry (mCherry-Gp17). As shown in
Figure 1, this protein can effectively bind to E. coli HB104 cells
(Figure 1A) and not to the non-target bacteria K. pneumoniae
HB11 (Figure 1B) or S. aureusHB22 (Figure 1C).

In order to evaluate the binding spectrum of mCherry-Gp17
against a panel of strains of E. coli and from other genera,
spectrofluorimetric analysis was carried out after incubation
of cells with mCherry-Gp17. The results are represented in
Supplementary Table S1 and indicate that mCherry-Gp17 was
able to bind to 59% of the E. coli strains tested without
showing unspecific binding to strains belonging to other
genera (such as S. aureus, Enterobacter aerogenes, Pseudomonas
aeruginosa, or K. pneumoniae). Most of these strains presented
a fluorescent signal ratio of 0.4–0.6, thus the clinical isolate
E. coli HB104 was selected as the representative strain for
further assays.

Assessment of the Binding Ability of
mCherry-Gp17 to Bacterial Cells in
Different Viability States
To assess if the protein mCherry-Gp17 could recognize different
cell viability states, an assay was first developed and optimized
to induce the cells to enter these states (e.g., live, compromised,
dead) by using different concentrations of sodium hypochlorite
(commercial bleach) (see Supplementary Figure S2). The
cell viability was determined through flow cytometry and
fluorescence microscopy after incubation of cells with the
viability dyes SYTO9 and propidium iodide (PI), together with
the CFU validation. These assays permitted to conclude that
the treatment with 0.03% and 5% of bleach was the best to
induce most of the cells into the compromised and dead states,
respectively (Supplementary Figure S2).

Figures 2A–C depicts the representative dot plots showing the
percentage of cells in each quadrant, defined according to the
gating strategy (Supplementary Material) and for the different
treatments that were submitted: 0% of bleach (Figure 2A),
0.03% (Figure 2B), and 5% (Figure 2C). These cells were
observed by fluorescencemicroscopy, and the results corroborate
the flow cytometry assays. The cells that were not subjected
to any treatment appeared green (Figure 2D), and most of
the cells (≈92%, Figure 2A) were considered viable. Also,
after bleach treatment, some cells appeared double-labeled
(≈90%, Figure 2B), showing intermediate colors from yellow to
orange by microscopy (Figure 2E), indicating the presence of
compromised cells which on CFU counting revealed to be unable
to grow on standard solid media (Supplementary Figure S2),
implying that these cells are in the VBNC state (Stiefel et al.,
2015; Truchado et al., 2020). Moreover, cells submitted to 5% of
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FIGURE 1 | Functional analysis of the RBP mCherry-Gp17. Fluorescence microscopy images after incubation of mCherry-Gp17 with bacterial cells of the target E.

coli HB104 (A) and the non-target K. pneumoniae HB11 (B) and S. aureus HB22 (C). The scale bar represents 10µm.

bleach appeared as dead bacteria cells by flow cytometry (≈99%,
Figure 2C), emitting red fluorescence (Figure 2F).

After optimizing the procedure for converting the cells
into compromised (such as VBNC) and dead cells, the ability
of the RBP mCherry-Gp17 to recognize and bind to cells
at different viability states was studied (Figures 2G–I, 3).
The results revealed that the protein was able to recognize
viable (Figures 2G, 3A), compromised (Figures 2H, 3B), and
dead cells (Figures 2I, 3C). The percentage of positive events
was similar between the different types of samples (≈90%)
(Figures 3A–C), suggesting that the RBPs recognized the cells
at different viability states in the same manner. In the case
of the negative control, which corresponds to S. aureus
HB22 cells labeled with mCherry-Gp17 (non-target bacteria,
Figure 3D), just a neglected number of cells were recorded as
positive (0.37%).

Spectrofluorimetric Magnetic Sandwich
Assay for E. coli Detection in Spiked
Human Specimens
Since HCAIs can be presented in different sites of the body
(Haque et al., 2018), it is important to assess the ability of the
RBP to detect pathogens in different types of human biological

specimens. After obtaining the promising results from the
preliminary experiments performed in buffer and horse blood
(Supplementary Figure S3), samples of urine, blood, feces, and
saliva provided by healthy volunteers were spiked with E. coli
HB104 cells or with S. aureusHB22 as the negative control.

The samples were first incubated with mCherry-Gp17

and then cells were magnetically separated using MNPs

functionalized with an anti-E. coli antibody, and the resulting

fluorescent signals were measured on the spectrofluorometer.

After magnetic enrichment, supernatants and washes were

analyzed by CFU counting, and the bacterial capture efficiencies
are displayed in Figure 4. The results demonstrated high bacterial

capture efficiency (more than 87%) for E. coli HB104 present
in different human biological samples, proving the efficacy of

this methodology to recover bacterial cells from complex sample
matrices. Moreover, although some unspecific capture occurred
for the negative control with S. aureus, especially in whole

blood (30% of capture efficiency), these results were significantly

different (p-value < 0.0001) from the values obtained for E. coli.

The spectrofluorimetric results, which correspond to the
fluorescence signals derived from the conjugated mCherry-
Gp17-bacteria-MNPs that remained after the washing
steps, are shown in Figure 5. It was possible to observe a
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FIGURE 2 | Assessment of the binding ability of mCherry-Gp17 to E. coli cells in different viability states. (A–C) Representative flow cytometry plots showing the

percentage of the dead (Q1), compromised (Q2), and viable (Q3) cells present after treatment with bleach at different concentrations. Cells were labeled with SYTO 9

(green) and PI (red). (D–F) Fluorescence microscopy images of E. coli cells treated with 0% bleach (viable), 0.03% bleach (compromised), and 5% bleach (dead)

stained with SYTO 9 (green) and PI (red). (G–I) Fluorescence microscopy images of cells treated with 0% bleach (viable), 0.03% bleach (compromised), and 5%

bleach (dead) after incubation with mCherry-GP17.

statistically significant difference (p-value < 0.0001) between the
fluorescence signals acquired for E. coli HB104 in the different
human biological samples (fluorescent signals over 900 a.u.)
and the negative controls, namely the non-target S. aureus
HB22 and the samples without bacteria that were subjected

to the same process (means of fluorescence less than 300 a.u.)
(Figure 5). Also, in the fluorescence microscopy analysis of
conjugated mCherry-Gp17-bacteria-MNPs obtained in an assay
performed in the blood (Supplementary Figure S4), it was not
possible to see any fluorescence signal for the negative control
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FIGURE 3 | Assessment of the binding ability of mCherry-Gp17 to cells in different viability states by flow cytometry. Representative histograms were obtained from

the analysis of viable (A), compromised (B), and dead (C) E. coli HB104 cells and viable S. aureus HB22 (D) (negative control) after incubation with mCherry-Gp17.

bacteria S. aureus HB22, which is visible in the case of E. coli
HB104 cells.

DISCUSSION

Considering that E. coli is among the most common
microorganisms isolated from HCAIs, particularly being an
important pathogen responsible for BSIs and UTIs (ECDC,
2019), we have assessed the potential of a phage RBP as a
recognition probe for E. coli detection in different human

biological samples. Accordingly, after identifying Gp17 as a
potential RBP, this protein was synthesized and fused with
mCherry as a reporter protein. The binding ability of this
protein was tested first by fluorescence microscopy and then by
spectrofluorometry against a larger panel of clinically isolated
strains, derived from blood, urine, and skin exudates, among
others. The results revealed that Gp17 successfully recognize
60% of E. coli strains and did not show affinity against other
bacterial species that are also prevalent causative agents of
HCAIs (Bassetti et al., 2017; Lee et al., 2018; ECDC, 2019).
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FIGURE 4 | Bacterial capture efficiencies (in percentage) obtained in the magnetic sandwich assay performed in the different types of human specimens for E. coli

HB104 (target bacteria) and S. aureus HB22 (non-target bacteria), assessed by CFU counting. Errors bars represent the standard deviation of the average of three

independent experiments (n = 3). *Statistical analysis was performed comparing the percentage of bacterial capture obtained for the target bacteria E. coli and the

negative control S. aureus in each of the human specimens. Multiple comparisons were done using the two-way ANOVA with Sidak’s multiple comparison test

(p-value < 0.0001).

FIGURE 5 | Spectrofluorimetric results of the magnetic sandwich assay performed in the different types of human specimens for E. coli HB104 (used as target

bacteria), S. aureus HB22 (used as non-target bacteria), and for the control without bacteria added. Errors bars represent the standard deviation of the average of

three measurements in the three independent assays (n = 3). *Statistical analysis was done comparing the signals in each of the human specimens obtained for S.

aureus and control (without bacteria) with the signal of E. coli (target bacteria), defined as “positive” control, in the same samples. Multiple comparisons were done

using the two-way ANOVA test (p-value < 0.0001) followed by Dunnett’s multiple comparison test (p-value < 0.0001). a.u. stands for arbitrary units.
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Besides the affinity for viable cells, which has been extensively
studied for RBPs (Fujinami et al., 2007; Javed et al., 2013; Denyes
et al., 2017; He et al., 2018; Santos et al., 2020), we have tested
the binding capacity of the recombinant Gp17 against other cell
viability states, namely dead and compromised cells, which to the
best of our knowledge have never been completely addressed. The
results demonstrated that Gp17 can recognize cells in all these cell
states, whichmay indicate that the receptors involved in the RBP’s
cell recognition and binding remained available independently of
the cell viability. T-even phage adsorption ismediated by long-tail
fibers, which target and bind to host physiological receptors such
as LPS and outer membrane proteins (Drexler et al., 1989; Yoichi
et al., 2005; González-García et al., 2015a,b; Lupo et al., 2015),
commonly known as the receptors of RBPs (Rakhuba et al., 2010).
According to some studies that have focused on the use of whole
phages against VBNC and dead cells, this thematic seems to be
controversial once some authors have shown that phages attach
to dead cells (Krueger, 1931; Watanabe, 1976; Oda et al., 2004;
Awais et al., 2006; Hu et al., 2012), in contrast with others (Tlili
et al., 2013; Fernandes et al., 2014). The only consensus was the
ability of the phages to adsorb to VBNC cells (Oda et al., 2004;
Awais et al., 2006; Fernandes et al., 2014). Akusobi et al. (2018)
reported that E. coli phage PP01 was able to effectively adsorb
to dead cells, and this effect was enhanced through natural point
mutations occurring on its long tail fiber (gp38). This protein was
previously described as responsible for the reversible binding of
the phage PP01 to the outer membrane protein C (OmpC) on E.
coli O157:H7’s cell surface (Yoichi et al., 2005).

The ability of Gp17 to detect viable and compromised cells can
be considered an advantage for real-time monitoring of bacterial
infections. Particularly, the recognition of compromised cells like
VBNC is of extreme importance since these cells, which were
not detected by the standard culture methods, can “resuscitate”
when in favorable conditions and cause diseases (Du et al., 2007;
Li et al., 2014). Nonetheless, the use of Gp17 as a recognition
molecule should be thoroughly considered once a bacterial pre-
enrichment step may be required to overcome the possibility of
detection of dead cells, potentially causing false positives (Denyes
et al., 2017).

The application of phage RBPs as recognition elements for
bacterial detection in human specimens is limited, with only a
few studies reporting their use in urine (He et al., 2018; Shi et al.,
2021). Therefore, it was important to prove the applicability of
Gp17 for the detection of E. coli in biological samples and thus
evaluate whether these elements can bind bacterial cells even in
the presence of many other irrelevant components, known as
having interferent or inhibitory activity in other methodologies,
such as in PCR-based and immunology techniques (Holland
et al., 2000; Stevens and Jaykus, 2004; Opota et al., 2015). To
achieve this goal, we used the Gp17 as a probe and combined
it with the advantages of MT and spectrofluorometry techniques
for bacterial capture and detection, respectively. The use ofMT as
a sample preparation approach assisted in the efficient isolation
of the target bacterial cells (more than 87%) from the human
specimens, allowing the cleaning of the interfering components
in a fast and simple way, without the need for laborious
centrifugation steps. MT has been shown as a promising sample

preparation approach in diverse systems (Favrin et al., 2001;
Schmelcher et al., 2010; Wang and Alocilja, 2015; Ngamsom
et al., 2016; Chen et al., 2020), including some using RBPs to
functionalize the MNPs (Kretzer et al., 2007; Denyes et al., 2017;
Cunha et al., 2021). The results from the MT also revealed some
capture for the non-target bacteria S. aureus. This cross-reactivity
was expected since MNPs were functionalized with a polyclonal
antibody, which is commonly associated with cross-reactivity
issues (Frank, 2002). This broad capture was not a problem in
the further spectrofluorimetric assays, because the Gp17 only
recognized E. coli, guaranteeing the specificity of the detection
assay. Indeed, the results obtained from these measurements
revealed distinguishable signals derived from the detection of E.
coli (around 1,000 a.u.) in several human biological specimens
compared to the signals obtained in the controls (about 300 a.u.).
This background signal can be the result of some residual binding
occurring between the sample components and the Gp17, or
due to remaining components that were not fully washed and
that can have auto-fluorescence, such as the red blood cells
(Azevedo et al., 2011; Skvarc et al., 2013). Nonetheless, the
fluorescence microscopy analysis of the conjugated mCherry-
Gp17-bacteria-MNPs revealed no fluorescence for the negative
control bacteria S. aureus HB22, which is visible in the case
of E. coli HB104 cells. This suggests that the residual signal
obtained in the spectrofluorimetric measurements was not due
to the non-specificity of the Gp17 but rather to the sensitivity of
the methodology.

Overall, the RBP-based methodology enabled the specific
detection of E. coli in about 1.5 h directly in human specimens,
without the need for complex sample processing steps that
are laborious and time-consuming. Although the inherent
detection limit of the equipment restricted the application of the
methodology in lower bacterial contents (less than ≈ 107 CFU),
this can be overcome by using more sensitive analytical methods,
like optical sensors (Jin et al., 2017).

The developed method can be adapted for the detection
of other bacterial species. The broad capture achieved by the
functionalized MNPs may be advantageous once there is no need
for another antibody targeting other bacterial species, possibly
decreasing the costs associated with the detection assay. Thus,
it can be a benefit for multiplex bacterial detection, once other
phage proteins, providing the high specificity, can be used to
target other bacterial species that may be present at the same time
in these human biological samples. Also, since this methodology
detects and identifies the specific causative agents without
compromising their viability, it enables their use for subsequent
antibiotic susceptibility tests. This is an important feature of the
designed assay since these tests are not possible to be conducted
with many other techniques, for instance, nucleic acid-based,
that can cause cell degradation or death. This is essential for
choosing the most appropriate antimicrobial treatment and
to support an efficient therapy, thereby reducing the overuse
and misuse of antibiotics and associated adverse outcomes
(Afshari et al., 2012).

Further evaluation of our assay in bacteria in biofilm growth
mode (Wilks et al., 2021) and mixed bacterial populations,
preferentially in combination with different probes specific to
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other pathogens, would greatly contribute to a more precise
assessment of the feasibility of this method. Moreover, it would
be interesting to test the RBP against bacteria submitted to other
conditions that affect their viability (Liu et al., 2008; Zhao et al.,
2013; Wei and Zhao, 2018) or cells under different physiological
states, namely, induced by prolonged substrate limitation (Hadas
et al., 1997; Nabergoj et al., 2018).

CONCLUSION

In this study, we provided further insights into the ability
of an RBP to recognize with high specificity E. coli strains
at different viability states. Also, when this protein was
combined with the outstanding benefits of spectrophotometry
and magnetic approaches, it enabled the detection of E. coli
in different human biological matrices, proving the feasibility
of the use of RBPs as exceptional probing elements in
biosensing technologies.
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