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Abstract

Cardiovascular diseases (CVDs) are disorders of the heart and blood vessels and are a major cause of disability and
premature death worldwide. Individuals at higher risk of developing CVD must be noticed at an early stage to prevent
premature deaths. Advances in the field of computational intelligence, together with the vast amount of data produced daily
in clinical settings, have made it possible to create recognition systems capable of identifying hidden patterns and useful
information. This paper focuses on the application of Data Mining Techniques (DMTs) to clinical data collected during
the medical examination in an attempt to predict whether or not an individual has a CVD. To this end, the CRossIndustry
Standard Process for Data Mining (CRISP-DM) methodology was followed, in which five classifiers were applied, namely
DT, Optimized DT, RI, RF, and DL. The models were mainly developed using the RapidMiner software with the assist
of the WEKA tool and were analyzed based on accuracy, precision, sensitivity, and specificity. The results obtained were
considered promising on the basis of the research for effective means of diagnosing CVD, with the best model being
Optimized DT, which achieved the highest values for all the evaluation metrics, 73.54%, 75.82%, 68.89%, 78.16% and 0.788
for accuracy, precision, sensitivity, specificity, and AUC, respectively.

Keywords Cardiovascular disease - Health information systems - Decision support systems - Data mining - CRISP-DM -
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Introduction medication, treatment, among others. Hence, the urgency to
deal with the rapidly growing volumes of digital data [5].
Health Information Systems (HIS) are crucial since they
provide powerful information for decision making [8]. It is
therefore essential that there is no loss or misinformation
at any time affecting decisions taken on the basis of the
data provided [3]. Thus, Data Mining comes in handy for
discovering patterns in large datasets, involving methods
that are at the intersection of machine learning, statistics,
and database systems [7].

The aim of this work is to satisfy the urgent need to
extract useful knowledge hidden in clinical data, particu-
larly to develop a solution able to predict the presence/

Every time a patient attends a hospital, data are collected
on demographic data, clinical history, symptoms, diagnosis,
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absence of CVDs through Data Mining. Consequently,
the process time between the patient admission and the
diagnosis will be reduced and an immediate and adequate
treatment can be given to the patient.

According to the World Health Organization (WHO),
CVDs are the number one cause of death worldwide, taking
an estimated 17.9 million lives each year [1]. CVDs are a
group of disorders of the heart and blood vessels and include
coronary heart diseases, cerebrovascular disease, rheumatic
disease, and other conditions [2]. Patients at risk of CVD
may demonstrate raised blood pressure, glucose, and lipids
as well as overweight and obesity. Most CVDs can be
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prevented by addressing behavioural risk factors such as
tobacco use, unhealthy diet, physical inactivity and harmful
use of alcohol [9]. Identifying those at highest risk of CVD
and ensuring that they receive appropriate treatment can
prevent premature deaths [1].

This disease is a development issue in low-and middle-
income countries due to the fact that these countries often
do not benefit from integrated primary health care, early
detection and treatment programs for people with risk
factors. To a better understanding of how this disease in
handled in European Union (EU), Fig. 1 schematises the
distribution costs of CVDs in EU member countries by
percentage of primary care, outpatient care, Accident &
Emergency (A&E), inpatient care, medications, production
losses due to mortality, production losses due the morbidity
and, lastly, informal care [10].

The paper is organized as follows: Section “Methodology”
presents the CRISP-DM methodology and its stages, Section
“Discussion” presents the discussion of the results and
lastly, Section “Conclusions and future work” concludes the
study and outlines the future work.

Methodology

The CRISP-DM methodology was the one used in this
study because it enables the replication of Data Mining
projects and assists in their planning and management,
being user-friendly and revealing the maturity of the Data
Mining [6].

Business understanding

This stage strives to understand the intentions and require-
ments of the project from the business perspective and
converts this knowledge into a Data Mining problem defini-
tion [4].

Given the high number of CVD-related deaths, it has
become essential to detect and understand its main risk fac-
tors to try to mitigate this worldwide problem. Thus, the ob-
jective is to develop a solution able to predict the presence/

patient. This is a classification problem, in which softwares
as Weka and RapidMiner will be used in the next steps.

Data understanding

The dataset used in this study was retrieved from the Kaggle
data repository and is related with the detection of CVD
cases, including 70000 registers of patients and 12 attributes
considered relevant for identifying the disease [11].

All attributes were collected during the patient’s medical
examination and grouped into 3 categories:

Objective data - factual information;
Examination data - results from medical exams;
Subjective data - information given by the patient.

Table 1 presents a description of each attribute.
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Table 1 Characteristics of the

attributes Attribute Description Type
id Patient’s unique identifier Objective
age Patient’s age in days Objective
height Patient’s height in cm Objective
weight Patient’s weight in kg Objective
gender Patient’s gender' Objective
ap_hi Systolic blood pressure Examination
ap_lo Diastolic blood pressure Examination
cholesterol Patient’s cholesterol? Examination
gluc Patient’s glucose Examination
smoke Whether the patient smokes or not® Subjective
alco Whether the patient consumes alcohol or not? Subjective
active Whether the patient is physically active or not? Subjective
cardio Presence of CVD? Target

! Values: 1 = male, 2 = female

2 Values: 1 = normal, 2 = above normal, 3 = well above normal

3 Values: 0 = false, 1 = true

The target of the study is the cardio attribute, which
gives information about the existence or absence of CVD.
If cardio is “0” the patient is healthy, in contrast, if it is “1”
the patient has CVD.

It was then necessary to analyze whether there was any
class disparity that could influence the way algorithms
would learn. Figure 2 shows the balanced data distribution
for the target attribute with 50.2% of type “yes” (34820
registers) and 49.8% of type “no” (34605 registers).

Data preparation

At first, data was integrated and the data-cleaning pro-
cess was applied. In more detail, it was analysed the
existence of duplicated data, missing values, outliers, and

CARDIO CLASS DISTRIBUTION
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Fig.2 Class distribution of the target variable cardio

inconsistencies. It was found that there were no duplicated
data, missing values or inconsistencies. The outliers were
removed with the filters InterquartileRange and Remove-
WithValues of WEKA, in which the first detects outliers and
extreme values based on the interquartile ranges and the
other one removes instances according to a certain value.

Afterwards, it was time to proceed to the data transfor-
mation. Since the attribute age was measured in days, it
was converted into years with the expression “age/365”.
By default, most attributes were imported as Integer, how-
ever attributes active, alco, cardio and smoke correspond to
the binominal type and cholesterol to the polynominal type.
Hence, these attributes were transformed accordingly.

Finally, the feature weights were evaluated using diffe-
rent criteria, such as Weight by Correlation, which provides
a correlation with the label attribute (cardio) in which very
high correlation values could be damaging to the results.
Since none of the attributes were highly correlated, they
were all kept to proceed to the next phase. Other weight
measurements, such as Gini Index, Information Gain and
Information Gain Ratio, have allowed the definition of
certain thresholds for which different scenarios have been
created to be used in the Modeling stage. Table 2 presents
the weight values of the attributes.

Modeling

This stage consists in selecting the modeling technique,
generating the test design, building the model and, lastly,
assessing its performance [6].

Primarily, the modeling techniques were selected based
on the operator Compare ROCs that calculates the
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Table2 Weights’ distribution

Feature weight

Correlation Gini index Information gain Information gain ratio

age_years 0.239 ap_hi 0.095 ap-hi 0.142 ap-hi 0.160
weight 0.181 ap_lo 0.062 ap-lo 0.094 ap_lo 0.107
cholesterol 0.164 cholesterol 0.024 cholesterol 0.037 age_years 0.067
gluc 0.089 age_years 0.020 age_years 0.028 height 0.061
ap_lo 0.065 weight 0.012 weight 0.017 weight 0.057
ap-hi 0.054 gluc 0.004 gluc 0.006 cholesterol 0.034
active 0.036 active 0.001 active 0.001 gluc 0.010
smoke 0.016 height 0.000 height 0.000 active 0.001
height 0.012 smoke 0.000 smoke 0.000 smoke 0.000
alco 0.007 alco 0.000 alco 0.000 alco 0.000
gender 0.007 gender 0.000 gender 0.000 gender 0.000

Receiver Operating Characteristic (ROC) curves. This curve
represents in the X axis the True Positive Rate (number
of positive instances correctly classified / total of positive
instances) and in the Y axis the False Positive Rate
(number of negative instances incorrectly classified / total
of negative instances). Figure 3 shows the output of this

operator using Cross Validation. The DMTs that were
compared correspond to k Nearest Neighbour(k-NN), Naive
Bayes (NB), Decision Tree (DT), Random Forest (RF),
Gradient Boosted Tree (GBT), Rule Induction (RI), Deep
Learning (DL), Generalized Linear Model (GLM) and,
lastly, Logistic Regression (LR). Comparing the ten curves,
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Fig.3 ROC curves using cross validation
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DT had the best performance and, in contrast, k-NN and
NB had an aleatory behaviour corresponding to the least
effective classifiers. Thus, only DT, RI, RF and DL were
used for the next steps. Since DT was the technique with
the best results, in order to obtain higher results, some
parameters, namely (criterion, maximal_depth, confidence
and minimal_leaf_size), were optimized using the Optimized
Parameters operator, which is a nested operator that
executes the subprocess for all the combinations of values
of the parameters and then delivers the optimal parameter
values.

For each DMT, two sampling methods were tested: Cross
Validation using 10 folds, where all data is used for testing
and for training, and Split Validation with a split ratio of
70%, which only splits the data into one training and one
test set. Since the dataset was balanced, there was no need
to apply sampling techniques, so the Data Approach (DA)
used was the one without sampling techniques. In order to
evaluate which attributes were the most relevant to predict
the existence of CVD, several scenarios were created:

— S1: All attributes
{All attributes}

—  S2: Excluding attributes with weights of 0.000
{age_years, height, weight, gender, ap_hi, ap_lo, choles-
terol, gluc}

— S3: Including attributes with weights above 0.010
{age_years, weight, ap_hi, ap_lo, cholesterol}.

As mentioned before, there was only one target variable
named cardio.

In short, a Data Mining Model (DMM) can be described
as belonging to an Approach (A), being composed by a
Scenario (S), a Data Mining Technique (DMT), a Sampling
Method (SM), a Data Approach (DA) and a Target (T).

DMM ={A,S,DMT,SM, DA, T}

Specifically in this work, A = {Classification}; S ={S1,
S2, §3}; DMT = {DT, DT optimized, RI, REF, DL}; SM
= {Cross Validation, Split Validation}; DA = {Without
Undersampling and Oversampling}; T = {cardio}.

Evaluation

In this stage, the performance of each DMM was assessed
through some metrics to assure the evaluation of the quality
of the models, guaranteeing the reliability of the results.
These metrics are numerical measures, obtained from the
confusion matrix, that quantify the performance of a given
classifier. This matrix presents the number of True Positives
(TP), False Positives (FP), True Negatives (TN) and False

Negatives (FN) [4]. In this project, the following evaluation
metrics were used:

— Accuracy - correctly TP classified instances (1)

| TP+TN 0
ccuracy =
YT TPYTNLFP+FN

—  Precision - measure of a classifier’s exactness (2)

o TP
Precision = ——— (2)
TP+ FP

—  Specificity - correctly TN classified instances (3)

TN
Specificity = m (3)

—  Sensitivity - measure of a classifier’s completeness (4)

o re
Sensitivity = ———— @)
TP+ FN
To understand the metrics’ meaning in this context, they
can be answered to the following questions:

® Accuracy: How many people were correctly labeled out
of all the people?

®  Precision: How many of those labeled has having CVD
had actually CVD?

e Specificity: Of all the people who are healthy, how many
of those were correctly predicted?

o  Sensitivity: Of all people who have CVD, how many of
those were correctly predicted?

In addition, the Area Under the ROC Curve (AUC) has also
been included, which represents the degree of separability
of the model, ranging from O to 1, the higher the AUC, the
better the model is at distinguishing between classes.

Tables 3 and 4 present the models that achieved the best
results of accuracy, precision, sensitivity and specificity.

Overall, it can be noticed that the best values of
accuracy, precision, sensitivity and specificity correspond
to 73.54%, 80.80%, 72.09% and 86.73%, respectively. In
order to choose the most suitable model, a threshold was
introduced, which combines the four metrics: accuracy >
71%, precision > 75%, sensitivity > 68% and, finally,
specificity > 77%. The threshold values were defined to find
a balance between all the metrics according to the results
obtained.

Table 5 exhibits the models that achieved the threshold
previously defined and Fig. 4 displays the corresponding
confusion matrices.
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Table 3 Best results obtained

by DMT using cross validation Cross validation

DMT Accuracy Precision Sensitivity Specificity

DT S3 72.55% S1; S2 73.55% S3 70.77% S1; S2 75.24%
DT optimized S1 73.14% S1 75.35% S3 69.22% S1 77.63%
RI S1 72.98% S3 71.32% S1 68.87% S3 81.82%
RF S1 71.95% S2 80.11% S3 61.39% S2 85.75%
DL S2 71.46% S2 67.86% S2 81.33% S2 61.66%

Discussion

The analysis of the obtained results allows to understand
which of the SMs presented the highest performance scores.
Generally, Split Validation showed better results than Cross
Validation. These two SM are similar, being Split Validation
identical to one iteration of the Cross Validation. However,
they are usually used with different intents. Cross validation
is commonly used when it is wanted a more thoroughly
tested models, impacting the computation of the process
when data is very large - which is the case of this particular
study - but being a suitable validation in the case of life-
or-death. In contrast, Split Validation is adequate for very
large data and very complex preprocessing processes, due
to the fact that it can accept some uncertainty about the
robustness of the model. Therefore, this last SM probably
showed better scores since it could have neglected some
valuable information when computing information.

After assessing the scenarios applied on the models, it
can be noticed some variation among them. Comparing S1
to S2, depending on the DMT, performance values have
worsened in almost every situation - with the exception of
the DT algorithm, where the performance values remained
the same in both SM, and the DL algorithm, where the
values improved. Thus, removing attributes such as smoke,
alco and gender, even though they had weight values of 0, as
the dataset only has 13 attributes, could affect the prediction
negatively. Proceeding to the same comparison between S2

and S3, in most cases the results don’t improve, except in
DT and in some metrics of RF. Finally, comparing S1 with
S3 - the two most contrasting scenarios - it is verified a
similar behaviour of S1-S2 comparison: DT metric values
have improved and in the other algorithms some values have
improved and others have worsened. Therefore, making
assumptions among DMTs is quite challenging when values
vary in such an uncertain way.

Table 5 shows that the DMT that performed best was DT,
as expected, given the results presented by DT in Fig. 3.
In order to obtain higher results, some parameters were
optimized, and once again, the expected was obtained, i.e,
the results improved for all the evaluation metrics. Yet, the
values did not enhance significantly. Other parameters may
have more impact when improving the process, but due to
the large number of instances, the time of computing these
optimizations would increase exponentially. In addition, S1
was the scenario that stood out among the three, although
S2 and S3 also made it to the best results table. Finally,
the SM that performed best was the Split Validation,
which is consistent with the conclusions outlined above.
Regarding the evaluation metrics, it was obtained values of
approximately 0.7 for Accuracy and Sensitivity and values
of approximately 0.8 for Precision, Specificity and AUC.
Figure 4 shows that, although satisfactory, the results
obtained are not ideal and are not sufficient to be implemen-
ted in clinical settings where excellent performance is
required given the considerable number of FN and FP.

Table 4 Best results obtained

by DMT using split validation Split validation
DMT Accuracy Precision Sensitivity Specificity
DT S3 73.02% S1; 82 76.18% S3 68.24% S1; 82 80.40%
DT optimized S1 73.54% S1 75.82% S3 72.09% S1 78.16%
RI S1 73.22% S3 76.67% S1 70.77% S3 80.37%
RF S1 71.91% S2 80.80% S1 57.38% S2 86.73%
DL S2 71.94% S3 68.85% S1 81.85% S2 64.18%
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Table 5 Best models achieving

the defined threshold DMT S SM Accuracy Precision Sensitivity Specificity AUC
DT S3 SV 73.02% 75.31% 68.24% 77.77% 0.757
DT opt S1 Ccv 73.14% 75.30% 68.61% 77.63% 0.782
DT opt S1 SV 73.54% 75.82% 68.89% 78.16% 0.788
DT opt S2 SV 73.51% 75.711% 68.97% 78.01% 0.789

For this particular study, the metrics used to compare the
performance of the models don’t have the same importance.
Realizing if a person was correctly diagnosed as having
CVD (precision) and how many of the diseased people
were correctly predicted (sensitivity) are more relevant
than knowing how many, of all the people, were correctly
labeled (accuracy) and how many of the healthy people were
predicted as being healthy (specificity). In other words, the
most relevant criteria to choose the most suitable models
correspond to precision and sensitivity. The reason behind
this consideration is the fact that, in this particular case, it is
preferable to diagnose a person with CVD when that is not
true (FP) than to predict that a person don’t have CVD when,
in fact, it has (TN). Thus, and due to the critical nature of
this problem, FN must be avoided at all costs and models
that can best identify TP, and consequently can achieve
better sensitivity results, should be prioritized. Hence, a
threshold was defined to filter the models that could ensure
better results.

In the end, it was possible to conclude that the most
suitable model, out of the 30 models created, was DMM =
{Classification, S1, DT optimized, Split Validation, Without
Under and Oversampling, cardio}. This DMM achieved the
highest values of Precision (75.82%), Accuracy (73.54%)
and Specificity (78.16%) and the second highest values of
Sensitivity (68.89%) and AUC (0.788).

Predicted Predicted
n=20 827 No Yes
Actual
No 8124 2322
Actual
Yes 3297 7084
a
Predicted Predicted
n =20 827 No Yes
Actual
No 8165 2281
Actual
Yes 3230 7151
C

Conclusions and future work

In conclusion, this project proved that by using real data
from Electronic Health Records (EHR), it is viable to use
DMMs to predict the existence or not of CVDs. For some
of the constructed DMMs, it was possible to achieve scores
over 70%, which is considered as being satisfactory. The
best induced method corresponded to the first scenario of
attributes, with the DT optimized technique and using the
Split Validation method. Results could be more indicative
of CVDs if more attributes were added, improving the
variability and density of information.

In this particular case, the number of false positives
must be minimized as much as possible. So, although
the results obtained were satisfactory, there is still some
future work to be done before implementing a decision-
making support system based on one of the models induced
during this work in a hospital environment, such as applying
more robust algorithms, like neural networks, to boost
the performance of the model. This technique presents a
considerable manipulation range given the parametrization
that can be applied.

In addition, it could be suggested to include datasets with
more diverse data and from different hospital facilities of
various regions to identify patterns in the data at national
level and thus verify the generalization of the model.

Predicted Predicted
n=:69425 No Yes
Actual
No 27030 7790
Actual
Yes 10861 23744
b
Predicted Predicted
n =20 827 No Yes
Actual
No 8149 2297
Actual
Yes 3221 7160
d

Fig.4 Confusion matrices for the best models achieving the defined threshold
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Additionally, more experiments could be done on using
different parameters and DMTs.
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