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Abstract

The treatment of gait impairments has increasingly relied on rehabilitation therapies which benefit

from the use of smart walkers. These walkers still lack advanced and seamless Human-Robot Interaction,

which intuitively understands the intentions of human motion, empowering the user’s recovery state and

autonomy, while reducing the physician’s effort.

This dissertation proposes the development of a deep learning solution to tackle the human motion

decoding problematic in smart walkers, using only lower body vision information from a camera stream,

mounted on the WALKit Smart Walker, a smart walker prototype for rehabilitation purposes.

Different deep learning frameworks were designed for early human motion recognition and detec-

tion. A custom acquisition method, including a smart walker’s automatic driving algorithm and labelling

procedure, was also designed to enable further training and evaluation of the proposed frameworks.

Facing a 4-class (stop, walk, turn right/left) classification problem, a deep learning convolutional model

with an attention mechanism achieved the best results: an offline f1-score of 99.61%, an online calibrated

instantaneous precision higher than 97% and a human-centred focus slightly higher than 30%.

Promising results were attained for early human motion detection, with enhancements in the focus

of the proposed architectures. However, further improvements are still needed to achieve a more reliable

solution for integration in a smart walker’s control strategy, based in the human motion intentions.

Keywords: Computer vision, deep learning, early action detection, early action recognition, human

motion decoding, Human-Robot Interaction, smart walkers

v



Resumo

O tratamento de distúrbios da marcha tem apostado cada vez mais em terapias de reabilitação que

beneficiam do uso de andarilhos inteligentes. Estes ainda carecem de uma Interação Humano-Robô

avançada e eficaz, capaz de entender, intuitivamente, as intenções do movimento humano, fortalecendo

a recuperação autónoma do paciente e reduzindo o esforço médico.

Esta dissertação propõe o desenvolvimento de uma solução de aprendizagem para o problema de

descodificação de movimento humano em andarilhos inteligentes, usando apenas vídeos recolhidos pelo

WALKit Smart Walker, um protótipo de andarilho inteligente usado para reabilitação.

Foram desenvolvidos algoritmos de aprendizagem para o reconhecimento e detecção precoces de

movimento humano. Um método de aquisição personalizado, incluindo um algoritmo de condução e

labelização automatizados, foi projetado para permitir o conseguinte treino e avaliação dos algoritmos

propostos.

Perante a classificação de 4 ações (parar, andar, virar à direita/esquerda), um modelo convolucional

com um mecanismo de atenção alcançou os melhores resultados: f1-score offline de 99,61%, precisão

instantânea calibrada online de superior a 97 % e um foco centrado no ser humano ligeiramente superior

a 30%.

Com esta dissertação alcançaram-se resultados promissores para a detecção precoce de movimento

humano, com aprimoramentos no foco dos algoritmos propostos. No entanto, ainda são necessárias

melhorias adicionais para alcançar uma solução mais robusta para a integração na estratégia de controlo

de um andarilho inteligente, com base nas intenções de movimento do utilizador.

Palavras-Chave: Andarilhos inteligentes, aprendizagem profunda, descodificação de movimento

humano, deteção precoce da ação, Interação Humano-Robô, reconhecimento precoce de ação, visão

computador
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Chapter 1

Introduction

This dissertation presents the work carried out over the past year, integrated in the scope of the

Master’s Degree in Biomedical Engineering at the Biomedical Robotic Devices Lab (BIRDLAB) included

in the Center for MicroElectroMechanical Systems (CMEMS), a research center of the Department of

Industrial Electronics (DEI) of University of Minho. This project was developed in colaboration with the

Vision Robotics Artificial Intelligence (VRAI) laboratory, in the Università Politecnica delle Marche.

This project main goal was to deploy an algorithm capable of inferring the human walking intentions,

such as stop, walking straight and turning right or left, from RGB streams recorded with camera embedded

in the WALKit Smart Walker (SW), pointed to the legs and feet, used in patient rehabilitation in hospital

environments. The approach aims to be integrated in a future control strategy able to drive the device,

according to the human intents, and so fostering a seamless Human-Robot Interaction (HRI).

This project was divided in three main phases: i) elaboration of data acquisition procedures, along

with their execution, to create a dataset for human motion decoding; ii) research and development of

several vision-based DL approaches to early detect distinct walking events, using the collected data, and

to enhance the extraction of relevant features; iii) offline evaluation of these approaches, as well as further

selection of the most suitable algorithm for real-time applications in a WALKit Smart Walker control strategy,

including real-time simulations to evaluate the latter’s performance.

1.1 Motivation

Disability is a prominent part of human condition. According to the World Health Organisation, in the

year of 2018, over a billion people, about 15% of the world’s population, were estimated to live with some
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form of disability [1]. This number is still rising, due, not only to the ageing population, but also to an

increase in chronic health conditions [1]. Across Europe, for example, the dysfunctional gait is seen as

the most frequent form of disability, where 5 million citizens are estimated to depend on a wheelchair [2].

Gait and posture impairments are present in almost all neurodegenerative disorders, such as tumours,

aneurysms, cerebellar ataxia, cerebral palsy, strokes, Parkinson’s disease and others, and can have severe

repercussions [2]–[5]. This kind of pathology can trigger permanent changes in strength, sensation and

movement, as well as other body functions, leading to lack of stability and increased risk of falls and fall-

related morbidity [2] [6]. Consequently, the patients suffer from a reduced independence and quality

of life, with associated social-economic consequences due to the increased institutionalisation and

dependence on others [5]–[7]. Disabilities imply several economic and social costs to individuals,

families, communities and nations [8]. For instance, in 2010, it was estimated an European total annual

cost of 64 billion for stroke and 14 billion for Parkinson’s disease [7]. Therefore, there is an emerging

need for developing mobility assistive methods and technologies that can support and contribute

to the rehabilitation of the elderly and other impaired populations.

Rehabilitation therapies already revealed promising results tackling these impairments [9]. However,

they imply a high burden of care to clinicians [2] and a dependency over clinicians’ experience [8]. Gait

rehabilitation requires long periods of intense physical exercise, presenting challenges for physiothera-

pists, due to the high demand of physical effort, plus the intra- and inter- clinician and patients variability,

which turns this kind of therapy into a more time consuming one and prone to errors [2]. In order to

overcome these obstacles, assistive technologies have emerged as effective means to increase subject’s

independence and participation in their rehabilitation therapies [8]. Recent technological advances have

culminated in a new type of intelligent assistive mobility devices, the so-called “smart walkers” (SW),

“robotic walkers” or “robotic rollators”. Such robotic systems are intended to be used by or with humans,

implying the understanding, designing and evaluation of the device towards a safe and efficient robot-

human interaction. Therefore, current assistive devices no longer serve as just a conventional physical

supporter, but comprehend now other intelligent functionalities that target the development of a robust

HRI. The deployed functionalities have been focusing on gait assistance, obstacle avoidance, navigation

assistance, sit-to-stand transfer, body weight support or fall prevention [10] [11]. Nonetheless, further

enhancements and interaction goals still need to be tackled, in order to develop and integrate a more

advanced HRI, capable of empowering the user’s recovery state. For instance, the SW should be able

to, not only provide aid and analyse multi-sensory signals related to gait and posture features, but also

understand human actions, intentions and needs. Particularly, a method for natural and intuitive
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adaptation to the user’s needs, with minimal interference, is essential for seamless HRI. A device

capable of predicting human walking intentions as a driving control strategy would enable a more natural

and anticipated assistance, encouraging the patient to take an active role in his own rehabilitation exer-

cises or therapy sessions [12]. Such interaction should result from the device’s built-in sensors, in order to

maximise intuitiveness and technology acceptance. Inspired by humans, who can unconsciously predict

how other people move around them, only by observation, research has been done, in the Artificial Intelli-

gence (AI) field, aiming to mimic this ability of using visual stimuli to forecast the human motion

(e.g. [13], [14]). This is still a developing area which is expected to be promising in human-in-the-loop

control approaches for SW [15].

1.2 Problem Statement

Human intention detection in SW prototypes has already been explored to provide commands to

control the robot’s velocity and position. Usually, human intention detection is achieved through the use

of wearable sensors, such as Inertial Measurement Unit (IMU) [16], or embedded ones, like force sensors

[17] [18] on the SW’s handles or forearms support, Hall sensors [19], infrared (IR) sensors [20] or even

lasers [12] [16] [21] [22].

Nevertheless, the usage of these sensory techniques presents some limitations and disadvantages,

such as: increased number of sensors, whenever resorting to currently non-embedded sensors; demand-

ing of set ups on the user’s body (IMU), which increases the duration of the rehabilitation sessions

and adds an extra task for the physiotherapist to perform; additional cognitive effort to correctly

control the walker (force and hall sensors); signal corruption by realistic light conditions (IR sensors)

or even by the electromagnetic interference of the walker’s motors (IMU), which may imply filtering

processes.

Some of the recently developed SWs incorporate cameras to attain multiple functionalities, but few

exploit their potential for action recognition and human Motion Intention (MI) decoding. With this scope,

traditional Computer Vision (CV) (e.g. [23] [24]) and DL algorithms (e.g. [25] [26]) have already been im-

plemented, aiming a more intuitive, advanced and autonomous way to follow the user’s intentions, without

complex set ups of multiple sensors. However, there are still some open questions, specially considering

the detection of the motion intention for control purposes [24]. Moreover, the studies presented so far still

reveal premature results, not tested with a considerable sized samples of subjects and, most of the time,

not really focused on walking directions (i.e., walk straight, turn left, turn right or stop), but on a more
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divergent and wider spectrum of actions (e.g., sit, stand, walk, among others).

WALKit SW [27] is the robotic platform used throughout the development of this dissertation. This

assistive device was specially designed to provide a personalised and user-oriented therapy, acting as

a rehabilitation tool, while fostering HRI with active user participation. Currently, WALKit SW has a HRI

solution implemented to decode the user’s MI based on a specially designed handlebar embedded with

an IMU. The HRI solution interprets the intention commands through heuristic rules, in order to classify

the signals and control the motors’ speed [27]. The user manipulates the handlebar to encode his/hers

intentions and consequently drive the SW. This strategy could act as a dual-task therapy for patients

already capable of performing manual control. Although it may be beneficial, the entailed manipulation

could also translate into increased cognitive effort and perhaps divert the user’s attention in therapy. For

patients in early stages of rehabilitation, the walker can also be driven by remote control, removing these

additional burden and/or distractions. However, the latter takes away the user’s autonomy and control

over his/hers rehabilitation. Therefore, it becomes important to create a more intuitive, simple and

technological advanced solution to detect intentions and enable motor control to follow the human

motion. This solution should be able to support the rehabilitation process and allow an active human

involvement, while automatically adjusting the SWs direction and, in future, its velocity. This functionality

would be suitable for later stages of rehabilitation, providing numerous advantages, namely: i) prompting

the user’s autonomy and complete focus on gait performance, by removing excessive aids or distractions

(e.g. being driven/driving the walker); ii) tackling more specific rehabilitation aspects, in order to improve

more complex tasks, like torso posture and foot positioning; and iii) reduce the clinician’s effort, favouring

the task of gait analysis, correction and assistance.

This dissertation aimed to address this challenge by proposing a DL-based strategy to decode human

movement. This strategy used only the lower camera of WALKit SW, pointing at the legs and feet, which

we hypothesise to be relevant to decode human movement and later control the device. The challenges

are manifold since the deployment of this system implies a large amount of data to train the models and

the ultimate model should be robust enough to deal with realistic environments, where challenging light

conditions and feet occlusions may occur, compromising the input images. Once this is accomplished,

this strategy shall be combined with an autonomous driving mode in order to provide more safety for

patients, thus leading to a shared control strategy.
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1.3 Goals

The ultimate goal of this dissertation was to develop an efficient non-invasive DL-based method able

to directly decode human motion from RGB inputs. The developed solution has to be suitable for real-

time performance, towards an human-in-the-loop control strategy. This work demanded dealing with the

existent hardware, code development to control the SW prototype for data acquisition, as well as protocol

designing, model training and testing in real-time simulations.

To reach this main objective, the following step-goals need to be achieved:

• Goal 1: To gather knowledge on the strategies implemented by SWs for human motion decoding

through literature reviews, with special attention to the recent ones applying AI methods, and on the

DL techniques used for video analysis, mainly aiming action recognition or future action prediction.

A brief summary of these reviews will be presented on Sections 2.1 and 2.3, respectively.

• Goal 2: Devise a custom acquisitionmethod, that enables the acquisition of multi-modal temporally

synchronised data, for motion decoding purposes. This mimics realistic utilisation conditions and

walking trajectories, as well as natural gaits and motion intentions, while providing automatic labels.

All the executed procedures that enabled the process of data acquisition will be resumed in Section

3.2.

• Goal 3: Create a custom dataset with data acquired from multiple healthy subjects using the

WALKit Smart Walker, in order to train and evaluate the different DL frameworks. This dataset can

be used to create a balanced datasets of frames, as described in Section 3.3.

• Goal 4: Exploit DL frameworks, including tailored inputs design and post-processing techniques.

The explored approaches should lead to, at least, 95% of accuracy for early recognition of human

motions, whilst the majority of features have to be extracted within the human body region (with

a minimum Mean Dice of 55%). The approaches that have been implemented, along with the

post-processing and models’ architectures, will be described in Chapter 4 and further details about

input computation will be given in Section 3.4.1. Chapter 5 will reveal the obtained results.

• Goal 5: Evaluate the best framework in real-time simulations, mimicking, as much as possible, the

conditions of its purposed future application. The model should be able to early detect the actions,

with a minimum average of instantaneous accuracy (IA) and instantaneous precision (IP) of 95%

and a maximum delay below 0.64s, which corresponds to the medium duration of one healthy
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step, while walking at the fastest velocity assumed by the WALKit SW (1m/s) 1. The evaluation

results are shown in Section 5.3 and the key-performance indicators explained in Section 4.5.3.

1.4 Research Questions

Considering the ultimate goal of this dissertation and the step-goals presented, relevant research

questions were identified, as follows:

• RQ 1: How to acquire data with the SW, without significantly disturbing the subject’s gait and with

a sufficiently accurate automatic labelling procedure? This question relates to Goal 2 and it is

answered in Section 3.2.

• RQ 2: Which inputs can be applied to the DL models that entail a low computational load, while

encoding the human motion? This question relates to Goal 4 and the answers will be found

throughout Section 5.1.1.

• RQ 3: How can one improve the model’s focus, leading it to mainly extract relevant features from

the input’s human body region? This question relates to Goal 4 and the answers will be found in

Sections 5.1.1, 5.1.2 and 5.2.

• RQ 4: Which DL model produces best results on early detecting the human motion considering a

small window of the action? This question relates to Goals 4 and 5 and is answered throughout

Chapter 5.

• RQ 5: How effective and robust is the proposed DL solution for real-time applications towards a

future human-in-the-loop control strategy? This final query is associated with Goal 5 and answered

in Section 5.3.

1.5 Solution Overview

Inspired on [14], which attempts to exploit action-aware features, this project proposes the use of

visual information from the lower RGB-D camera embedded on the WALKit SW (Section 3.1) to generate

different forms of input that encode human motion. This work was developed towards the final aimed

solution, illustrated in Figure 1.1, aspiring the future integration of the devised DL solution in a human-in-

the-loop control strategy.

1This step time was determined in laboratory experiments and it is in accordance with [28]
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Figure 1.1: Overview of the proposed solution and final scope.

For that, a multi-modal dataset of multiple healthy subjects walking with the robotic device in real-

world environments was acquired, considering an algorithm that allowed the generation of automatic

trajectories. A sliding window was applied over the recorded videos at 30Hz, with a length of 4 and a

stride of 2 frames. The resulting 4-frame sequences were converted to custom single-frame RGB inputs

which, compared to the traditional temporal RGB sequences used in video analysis [14][29][30], demand

less complex architectures. Different DL frameworks were trained and tested for early action recognition,

while constantly evaluating and aiming to improve the relevance of the extracted features, so their focus

would be mainly directed towards human legs and feet. These were considered here the action-aware

features inherent to the target actions: STOP, WALK, TR and TL. Given the cyclic movement of walking,

transfer-learning techniques were implemented in resemblance to [29], namely the use of pre-trained

convolutional models, to prevent the model’s overfitting to the acquired data.

To evaluate the model’s performance, standard metrics of literature were used [29][14], namely ac-

curacy, precision, recall and f1-score. Regarding the model’s focus, this was evaluated through generated

grad-CAMs [31], quantitatively compared with computed masks that segment the human body and whose

algorithm was optimised in this dissertation.

Considering the classification results and the quality of the obtained grad-CAMs, a final model was
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chosen and evaluated in real-time simulations, resorting to state-of-the-art online metrics (IA, instantaneous

weighted accuracy (wIA), IP and instantaneous calibrated precision (cIP)) [32]. Post-processing techniques

were also studied and implemented, to handle the model’s uncertainty and improve the consistency of its

output. The inference time of the whole approach, as well as the prediction delays, were determined to

assess the applicability of this strategy in real-time control of the SW.

The process behind this solution is described in Figure 1.2, where the complete work progress is

summarised.

Figure 1.2: Road map of the developed work.

1.6 Contributions

The main contributions of this dissertation to knowledge are:

• Reviews on MI decoding methods currently deployed in smart walkers, as well as on recent DL

models used for video analysis, with the purpose of action classification, detection or forecasting.

• A multi-modal dataset suitable for human motion decoding, but also for other tasks outside the

scope of this dissertation (for example, gait analysis and human pose estimation).

• Tailored input forms to encode motion information in one single RGB frame, decreasing the required

model’s complexity.

• Robust devised approaches, from input design to models’ architectures, aiming human action

prediction and enhancement of the algorithm’s focus.
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• A method to quantitatively assess the models’ human-centred focus, along with an optimised

method to compute and correct the required GT masks of the lower human body.

• A DL framework capable of early detecting the different human motions during walking trajectory

(stop, walk and turn right/left), only resorting to RGB images from the subject’s lower body.

The developed work led to the elaboration of a journal paper entitled ”Deep learning-based solution

for real-time human motion decoding in a robotic walker” (under revision).

1.7 Dissertation Outline

This dissertation is organised in 7 chapters, as follows.

Chapter 2 presents a survey of MI decoding task on SWs, followed by a deep review on vision-based DL

approaches for video analysis, with special attention to the fields of action classification and forecasting.

The Chapter finishes with a summary of the findings.

Chapter 3 introduces the target SW and the solution requirements implied by it. It also describes

procedures and other equipment for data acquisition, processing and dataset creation, along with the

proposed custom inputs.

Chapter 4 clarifies the complete DL frameworks, model architectures and devised approaches. This

serves as a guide to better comprehend the obtained results. Implementation details for actually training

and evaluation of these approaches, along with the equipment used to train the inherent DL models are

also described in this chapter.

Chapter 5 presents the results obtained with the performed approaches. Along the chapter, an ap-

proach will be highlighted according to its results and chosen to perform final assessments about its

inference time and performance in real-time simulations.

Chapter 6 critically discusses the results obtained, presenting their limitations and possible explana-

tions, along with research suggestions and improvements.

Chapter 7 concludes the dissertation, while providing a brief analysis of the project and its results,

along with future research insights.
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Chapter 2

Literature Review

The development of a novel HRI strategy targeting the humanMI decoding can promote a more person-

alised and intuitive control over the SW’s motion. Nonetheless, such an approach entails several obstacles

that need to be overcome. Therefore, it is fundamental to first understand the state of development of

these systems and conclude about their limitations and challenges, as well as innovations that can still

be performed. Thus, the following chapter presents and analyses the related literature on the subsequent

topics:

1. A brief introduction of human MI decoding solutions currently applied in smart walkers and their

control systems, describing the sensors and techniques used, with special attention to AI algorithms

(Section 2.1);

2. Introduction and clarification of relevant concepts for action classification and forecasting, in the

areas of CV and AI (Section 2.2);

3. An overview of the general DL architectures used for human-centred video analysis, from the vision-

based input to the deployed model (Section 2.3);

4. Summary of the findings encountered (Section 2.4).

2.1 Human Motion Intention in Smart Walkers

In rehabilitation robotics, HRI is essential to achieve effectiveness in the rehabilitation process, by

tackling the challenges of interfacing robot and human in a natural intuitive manner [33]. Detecting the

user’s MI and using it to improve and adapt the robot’s motion is one of these challenges.

An electronic search was conducted on Scopus database, searching for articles that performed human
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motion decoding in smart walkers. For that purpose, keywords such as “human motion prediction”,

“human motion recognition”, ”motion intention”, ”human-robot interaction”, ”human-robot interface”,

”smart walker”, ”robotic assistant”, “robotic companion”, ”rehabilitation”, ”gait”, ”walk” and “intention”

were used. Moreover, since the use of cameras is a key aspect of this dissertation, keywords as “vision”,

“cameras”, “video” were also used. Logic operators, as “AND” and “OR” were used to combine the

keywords. The search was limited to the articles’ title, abstract, and keywords. A manual search was also

conducted considering the references of the selected articles.

2.1.1 Sensors and human-in-the-loop control frameworks

The task of decoding human MI has been approached differently among the existent SW prototypes

manily die to the type of used sensors. For this reason, it is possible to group these assistive devices

according to the used sensors for this task. Table 2.1 resumes the work presented on the literature about

this topic.

Table 2.1: Summary of the hardware and approaches presented in the literature regarding decoding of the user’s

motion intentions, during smart walkers’ assistance

Study and Year Sensory Type Sensor Position Sensing Purpose R/P Intention to Decode Approach

[23]

(2020)
3D Camera Walker Upper body RGB-D image R N.M Camera’s data was used to create a 3D point cloud of the user’s upper

body, computing the human position and heading direction relative to the

walker, which is then controlled with a PID controller and sway suppression

algorithm.

[12]

(2020)
LIDAR and IR

thermometer

Walker Legs positions (LIDAR) and orientations

(IR thermometer)

R MF, TR, TL (for

each leg)

Tracks the user to provide close-proximity walking safety support and turn

according to the user’s intention, through the detection and classification

of lower limb gait

[34]

(2020)
Multi-channel

proximity sensors

Walker left and right legs’ distance and speed P user’s walking in-

tention speed at the

next moment

Predict the user’s walking intention speed to obtain the desired movement

speed of the robot

[26]

(i-Walk)(2020)
RGB-D sensor Walker Full body RGB-D image R 14 different actions

(e.g.: stand up, sit

down, walk,…)

Recognise activities and gestures to perform human intention recognition,

through estimated 3D human pose features

[19]

(2019)
Hall Sensors Walker (Han-

dles)

Handlebar motion manipulation R MF, MB, TR, TL Classify walking intentions through the detection of specific hand move-

ments recorded by the Hall sensors’ signals

[25]

(2019)
LRF and RGB-D

sensor

Walker Step length and human’s CoM position

and velocity

P Human trajectory

over a time horizon

Unified method for continuous monitoring of each user and adaptation of

the robotic platform’s motion accordingly (front-following human-robot cou-

pled motion)

[18]

(AGoRA

walker)

(2018)

Tri-axial load cells Walker (Han-

dles)

Force and torque applied on the SW R N.M. Computes linear and angular walker’s velocity, through two admittance

controllers that use the force and torque applied on the SW

[16]

(2018)
LiDAR and IMU Walker and IMU

on the foot

Directional angle and speed of move-

ment

R MF, TR, TL LIDAR sensor determines the walking direction by detecting the knees.

IMUs are used to obtain the angular rate of gait.

[15]

(ISR-Walker)

(2017)

Leap motion (2 IR

cameras and 3 IR

LED)

Walker (below

the handles)

Position of several hand points relative

to the sensor’s reference

R MF, TR, TL A fuzzy logic is used to get the user’s commands, through the sensor’s

signals, and control the walker using a PID controller.

[17]

(2017)
Pressure sensors Walker (Handle) Voltage corresponding to the applied

pressure

R MF and standing Use the applied pressure as the input of an AdaBoost Classifier to detect

user’s intention.

[35]

(2015)
Depth camera Walker Feet depth image R MF, TR, TL Fast feet position and orientation detection algorithm for smart walker

R / P = Recognition / Prediction; N.A. = Not applicable; N.M. = Not mentioned; MF = Moving forward; MB = Moving Backward; TR = Turning Right; TL = Turning Left

As one can see, a wide range of hardware has been employed to achieve the purpose of MI detection:

i) force/pressure/load sensors, ii) Hall sensors, iii) IR sensors/cameras, iv) lasers (LRF or LIDAR), v)

IMU and vi) depth and/or RGB cameras.
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The traditional way to decode the user’s MI corresponds to the use of force sensors. Cheng et al.

[17] uses three pressure sensors on each robot’s handles to measure the force applied by the user, in

order to classify two stages (moving forward or stop), while the AGoRA walker [36] uses two tri-axial load

cells incorporated in the walker’s mechanical structure. From the linear force signal and the torque signal,

the AGoRA’s admittance controllers compute the linear and angular velocities to be applied to the robot’s

motors. Other famous SWs, like COOL Aide [37], GUIDO [38], PAAM [39] and UFES [40] also resort to

these kinds of sensors to measure the force and/or torque that the user is applying, on the handles. In

the case of UFES SW, these sensors are built into the forearms’ structures, so it can take advantage of its

body-weight support. Despite this, some studies argue about the long-term effectiveness of these force-

sensing technologies, since they quickly degrade with time [15]. In fact, to replace this traditional force

sensing technique, the ISR-AIWALKER [15] defends the implementation of a totally vision-based approach,

using IR cameras and Light Emitting Diodes (LED), which improves the interaction with the user, while

also allowing complementary safety measures to be applied.

Other smart assistive devices rely on different sensors, like IR sensors, lasers, IMU or cameras. Weon

et al. [16] for instance, uses a LIDAR sensor, to detect the lower limbs, combined with IMU, to mea-

sure the feet orientation over time. However, this approach presented a large error, compared to Kinect

measurements, that still needs to be reduced. Zhao et al. [12] combines a LIDAR sensor with an IR

temperature sensor instead, to access each foot orientation. With this information, the system is able to

learn the user’s intention and compute a target position for the walker from it, always ensuring a close

distance and parallel orientation between the robot and the human’s foot. In contrast to other works, the

Neural Network (NN) model used here classifies the collected data, not in the overall walking direction, but

in the movement and orientation performed by each foot, at each step. It also incorporates voice control,

for when the walker and the patient are at different locations. Despite the success of the latter approach,

it demands human-robot close-proximity, preventing the user from choosing and adjusting himself to a

comfortable position relative to the walker. Also, computing a different position at each step, instead of

the overall walking direction, seems more computational expensive and time consuming.

There are other interesting works, resorting to depth camera [35] for the detection of feet position

and orientation, Hall sensors [19] to discriminate between specific hand movements and multi-channel

proximity sensors [34] which aim to measure the distance and velocity of each leg and use this to predict

the user’s walking intention of speed. However, the latter still lacks the ability to perceive the turning

feature, a feature that, as shown by Page et al. [35], can be extracted from the feet kinematics. Park et

al., however, requires specific hand motions to encode each type of walking direction [19]. Even being
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intuitive and easy-learned hand movements, it still implies a certain cognitive effort level. As for the use

of depth cameras [35], the respective images can be corrupted by the light conditions of many real-world

environments.

Recently, some researches have been exploring the use of RGB cameras or sensors for this purpose.

As they are already commonly embedded in SWs to perform other functionalities (e.g. gait analysis or

segmentation), one could seize these to decode the human MI, removing the need for additional sen-

sors. Shen et al. [23] uses a RGB-Depth camera to perceive the intended walking direction. An hybrid

Proportional, Integral and Derivative (PID) controller with integrated digital practical differentiator is then

implemented to calculate the desired wheel rotation angles, being able to track the subject in forward and

turning movements, although the use of upper body information entails a disadvantage: the upper body

swaying [23]. Chalvatzaki et al. [25] complements this type of data (RGB-D) with 2D laser data, in order to

perform real-time gait analysis, as well as to track the user’s Center-of-Mass (COM) position and velocity.

This assembled with the desired human-related robot coupling parameters becomes the input used to

forecast the human motion and the evolution of these parameters. Additionally, a novel framework for

intelligence assistance, the i-Walk system [26], also points out the potential of using RGB-D cameras, in

particular coupled with DL models, to attain an effective activity, gesture and human intentions recognition

(Table 2.1).

Despite advances in this field, it is noteworthy that most literature studies validate their algorithms with

only a few number of healthy subjects. Therefore, it is still required to extend these studies to a bigger

and more diverged population.

2.1.2 Artificial Intelligence-based strategies

Table 2.2 emphasises the intelligent mobility assistance devices which resort to AI techniques to

process the captured user’s intentions.

Up to the author’s knowledge, only 3 works implemented vision-based AI algorithms. Shen et al. [23],

for example, opts for traditional CV methods. First, it locates the upper body inside a predefined bounding

box, then implements an histogram-based filtering scheme to remove noise and extract the human torso,

with a region growing method, and finally it computes the human pose parameters, through a quadratic

curve fitting. In addition, to address the noise and oscillation from the upper body swaying, an additional

orientation signal preprocessing module had to be included, which required the tuning of a suppression

width parameter, highly dependent on the subject and turning features.
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Table 2.2: Summary of the results achieved, as well as the artificial intelligence protocols used (if applicable), in

the literature review of decoding the user’s motion intentions, during smart walkers’ assistance

Study and Year AI method Input Evaluation Participants Metrics
Results/Discussion/

Conclusions

[23]

(2020)
N.A. N.A. N.A. 1 (healthy) Tracking error The human-robot position error yielded a maximum of 3cm and an average of 1cm;

robot was able to respond to the step inputs rapidly with no visible overshoot; sway

suppression reduced the robot sway by over 50%.

[12]

(2020)
k-means algorithm; NN model:

two 512-unit hidden layers with

ReLU

Legs positions and orientations N.M. 1 (N.M.) Error in º Average orientation error of 5.5º. Walker can change direction according to the user’s

expected angle. Model’s performance not reported.

[34]

(2020)
LSTM + FC layer left and right legs’ distance and

speed

Train/test

split

N.M. RMSE The proposed model produced a RMSE of 0.445 cm/s at constant speed and 0.695

cm/s at varying speed.

[26]

(i-Walk)(2020)
FC + 2 LSTM layers + FC + soft-

max

sequence of human pose fea-

tures in a temporal window of

length T

Train/test

split

13 (patholog-

ical) and 20

(healthy)

Confusion Matrix The best accuracy for healthy patients was 95.20%. TurnStanding and Walking activi-

ties achieved TP=32.6% and TP=88.5%, respectively. Middle fusion with max-pooling

improved the results, as it can detect the most discriminative part of the video clip and

ignore the other parts, recognising better highly confusing activity classes.

[19]

(2019)
SVM with a RBF kernel Hall sensors’ data 10-fold cross

validation

3 (healthy) Accuracy, Preci-

sion, Recall and

F1-score

Accuracy and recall surpassed 90% for all classes. Two SVMmodels: the first achieved

98.9% of accuracy, recall>0.9 and F1-score=0.99; the second one yielded an accuracy

of 95.2% and recall of 0.96.

[25]

(2019)
2 FC Layer + 2 LSTM Position and velocity along the

x- y-axis and human-related robot

coupling parameters (separation

distance and bearing)

Train/test

split

14 (patholog-

ical)

MSE loss MSE training loss was 4x10-4, while the testing loss was 2�x10-3, meaning that the

model efficiently forecasts motion intention.

[18]

(AGoRA

walker)

(2018)

N.A. N.A. N.A. 1 (healthy) Graphics The user’s commands and subsequent walker trajectory were in accordance with the

ideal path, although higher differences were found at the trajectory corners. The 90-

degree turns were more difficult to accomplish.

[16]

(2018)
N.A. N.A. N.A. 1 (N.M.) Graphic results Walker correctly follows the subject in a straight path, but, in the turning movement,

the angle of the detected direction is larger than that of the user’s movement.

[15]

(ISR-Walker)

(2017)

N.A. N.A. N.A. 5 (healthy) Graphic results Walker’s motion was in sync with the user’s intent, offering no perceptible resis-

tance.The commands were smooth and stable and no significant delay was reported

(<200ms). User’s found it intuitive and easy to manoeuvre.

[17]

(2017)
AdaBoost Classifier 600 labelled input vectors of

pressure output

2-fold cross

validation

N.M Accuracy and error

rate

AdaBoost Classifier is set to 20 weak classifiers, but 5 was considered ideal. Best

model achieved an accuracy of 98%.

[35]

(2015)
N.A. N.A. N.A. 3 (healthy) RMSD Less precision than methods using markers, but it’s still faster than using 3D models,

robust against clothing variations and continuously detect the feet orientations. Error

in orientation is about 20% (approximately, 7º).

N.A. = Not applicable; N.M. = Not mentioned; LSTM = Long short-term memory; FC = Fully Connected; SVM = Support Vector Machine; RBF = Radial Basis Function; MF = Moving forward;

MB = Moving Backward; TR = Turning Right; TL = Turning Left; NN = Neural Network; RMSD = Root Mean Square Deviation; RMSE = Root Mean Square Error; TP = True Positives

Both Chalvatzaki et al. [25] and the i-Walk platform [26] perform 3D human pose estimation first,

using a RGB-D sensor, and then use the pose features as the input of DL models. The former, relies only

on the upper body pose, extracting from this the COM motion. Then, two separated 2-layer Long Short-

Term Memory (LSTM) models are used to predict the future human COM states, over a time horizon T,

and the next time step human-robot coupling parameters (separation distance and bearing), respectively.

This work innovates by also implementing a Reinforcement learning (RL) strategy, where they use the

previous computed information, associated with the estimated stride length provided by gait analysis, to

train a policy in charge of proposing control actions to the walker. However, this is a very complex and

expensive approach, also because it implies expensive sensory systems, for instance, to train the policy

(VICON system). As for the latter, the best results were obtained by exploring the 3D features with body

normalisation scheme (BNORM) as input of a 2-layer LSTM network, without Fully Connected (FC) layers.

The addition of 3D velocities also boosted the model’s performance. Within this approach, a temporal

fusion mechanism was also implemented, in particular, the aggregation of the LSTM hidden states with

the max-pooling function. Despite the simplest algorithm, the action recognition results still need to be

improved. Furthermore, this technique was designed for activity and gesture recognition, not specifically

to drive the walker according to the human motions.
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Therefore, machine vision inputs and algorithms offer a promising and intuitive way to decode the

user’s MI, as it is enhanced in Table 2.2. Nevertheless, they still present a lot of challenges. Until now,

most of the approaches rely on pose estimation, which implies complex and obtrusive markers setups on

the user’s body [25][26]. It also requires, normally, two computational tasks, first the pose estimation

and then its interpretation or classification as walking intentions, which it is more expensive and prompt to

error propagation. As for the algorithms used, the DL methods have grown as an attractive and powerful

solution for the MI decoding problem, as they have a superior generalisation capability, without relying on

the tuning of subject-dependent parameters, nor on complex filtering techniques [17][19][34].

2.2 Action Recognition and Anticipation

Humans have the capacity of unconsciously predict how other people move around them, by observa-

tion. This ability to perceive the environment and recognise patterns helps them anticipate other people’s

actions or movements and make better decisions based on this interpretation. This functionality would be

a refinement of HRI, allowing smart machines to anticipate or at least detect human actions/motions at

their early stages and act accordingly [41].

With the progress of AI over the years, there has been substantial research and improvement in the

field of HAR [42] or even, more recently, HAP [43] using sensor data. While the former tackles the

issue of current action recognition or detection, the latter intends to anticipate the action’s ending or even

beginning, taking a defiant step towards forecasting. As one can see in Section 2.1, there are several

robotic assistant prototypes already attempting to solve similar problems, through the classification of

signals from a variety of sensors: force, lasers, cameras, among others. Nevertheless, thanks to its

relevant and wide range of applications, HAR and HAP have become a specifically important topic in CV.

Recognising, detecting or forecasting actions or motions through videos has an important role in video

surveillance, video analysis (in sports, for example), HRI and healthcare [43].

2.2.1 Human Action Recognition

As it can be seen in Figure 2.1, the task of action recognition can be divided into two categories: i)

action classification, which aims to classify segmented videos, each one containing only a single action

and ii) action detection, comprising the spatial and temporal action localisation. Performing this last sub-

task offline includes the detection of start and end times of each action in the video [44], while Online

Action Detection (OAD) focus on the problem of localising actions in untrimmed videos as soon as they
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happen [32].

Research on the topic of HAR has been resorting to several methods, in terms of data type and

algorithms. The most common methods are based on colour (RGB) data [29], on a combination of colour

and depth (RGB-D) data [45], or on skeleton data [46]. Until recently, the traditional hand-crafted features

with machine learning methods was the basis for action recognition. However, this type of approach is

quite vulnerable to camera movement, complex scenes and occlusions, deteriorating the hand-crafted

features’ quality [44]. For this reason, DL-based methods have become very attractive in the field of CV,

as they can automatically learn image features from a variety of data (single-mode or multimodal fusion

data), with higher recognition performance than hand-crafted features [44].

Regarding the action detection problematic, this can be addressed offline or online, depending on

whether the full video is known before-hand or if it is provided in a real-time manner. The latter is a more

challenging and less addressed task. [32]

Figure 2.1: Schematic representation of the action recognition field of research.

2.2.2 Human Action Prediction

Action prediction represents a similar problematic to the aforementioned (Section 2.2.1), however a

more recently approached and defying one, where action labels are inferred from incomplete observations

of the action itself [43]. This task comprises i) action anticipation, which aims to anticipate the immediate

future, without any observation of that future action; ii) early action recognition, which recognises the

action’s label from a partial observation of that action and iii) early action detection that aims to detect an

action as early as possible, before its end, from untrimmed videos [43] [47]. The resemblance between

the latter and OAD is evident, but early action detection can also include offline performances, assuming

various possible observation ratios to classify the action, as long as they comprise its beginning. OAD

makes no assumption on the video and must detect the start of an action as soon as it happens. A
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schematic of HAP sub-tasks can be seen in Figure 2.2.

The research work developed on this topic mainly uses the same inputs as for HAR (RGB, RGB-D and

skeleton data), as these constitute very similar problems. Both tasks could be simplified in two stages:

action representation (including, feature representation and extraction) and action classification. To have

an efficient model for HAP, this same model has to first perform well at the action recognition task (HAR)

[41].

With future prediction arises a new issue: the model’s uncertainty. Since the model only gets access

to part or none of the observations of the action to predict, one cannot be completely certain about the

correct class, as the future comprises multiple possible outputs [48]. For example, following an walking

straight, a person as four different possibilities: turn right, turn left, stop or keep walking. Therefore, it

becomes necessary, for real-time applications, approaches capable of dealing with this uncertainty.

Figure 2.2: Schematic representation of the action prediction field of research.

2.3 Deep Learningmethods for Human-centred Video Analysis

Although widely used in many applications, accurate and efficient video analysis, including HAR and

HAP, remains a defying area of research in the field of CV, specially online or real-time analysis. Over the

years, the use of deep learning methods in this area has increased, as these have the capacity to perform

well while automatically learning robust feature representations from raw data (end-to-end algorithms).

An electronic search was conducted on Scopus database, searching for articles that performed hu-

man action recognition or anticipation, through vision-based DL algorithms. For that purpose, keywords

such as ”action detection”, ”action prediction”, ”action forecasting”, ”artificial intelligence”, ”deep learn-

ing”, ”computer vision”, ”human actions”, ”fine-grained”, ”video”, ”RGB”, ”classification”, ”detection”,

”prediction”, ”CNN” and ”attention” were used. Moreover, as the final aim of this dissertation consisted

on motion decong, keywords such as “human motion”, ”motion intention”, ”motion decoding”, ”motion
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intention recognition” and “walk” were also used. Logic operators, as “AND” and “OR” were used to

combine the keywords. The search was limited to articles’ title, abstract, and keywords. A manual search

was also conducted considering the references of the selected articles.

2.3.1 Vision-based Inputs

In order to fully explore the whole video content for action recognition or anticipation, different types

of input have been used. As mentioned in section 2.2, the most common methods rely on colour (RGB)

data, depth data or on skeleton data and combinations between these three.

Depth data appears as an interesting alternative, since it is stable with respect to environment or

background changes and also allows the object segmentation, according to depth. However, depth sensors

are easily affected by light, outputting large errors and low precision in outdoor non-controlled environments

[44]. Laser scanners constitute other option to measure depth, however these sensors are expensive,

which would imply an expensive solution.

Skeleton data, on the other hand, has been intensively studied for HAR and has been increasingly at-

tracting more attention. This intrinsic high level representation has been suggested as valuable information

for recognising human actions [49]. Also, when compared to RGB-D videos, this type of representation is

robust to lighting changes and clustered background [50]. Nevertheless, acquiring skeleton data involves

either complex or/and expensive set ups of sensors, such as Xsens, Microsoft Kinect cameras or Vicon,

or heavy deep learning models, still in development [51] [52]. In any of these situations, there is always

an error associated that will then propagate to the task of action classification. Moreover, this type of input

may also not be suitable for recognising fine-grained actions with marginal differences [46].

As for RGB data, these images alone encode static appearance at a specific time instant, but lack

the temporal context information provided by the neighbouring frames [53]. Also, they may contain back-

ground information not relevant for the targeted action itself. For these reasons, these type of information

is normally stacked in windows of RGB frames or combined with other input forms, such as depth frames

or skeleton information. In addition, RGB information can be seized to generate complementary forms of

input, which describe appearance change and salient the motion between images. One common example

is the Optical Flow (OF).

Optical Flow

From the ordinal RGB frames, it is possible to compute other forms of images that can encode/rep-

resent the motion between frames, such as dynamic images [54] or OF [55]. These are commonly used
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as a complement input of RGB frames, for instance, in two-stream Convolutional Neural Network (CNN)s

architectures [55].

The OF exhibits capture motion information and its estimation has suffered impressive developments

in recent years, shifting the research paradigm from traditional approaches to deep learning models,

namely CNNs [56]. Nevertheless, this field of computer vision still presents many challenges to be over-

come, since traditional methods are too computational expensive, making them unsuitable for real-time

and mobile applications, while DL techniques require a large amount of data, as well as parameters, which

results in huge memory print and may cause overfitting [56].

An alternative suggested to overcome these problems corresponds to the computation of RGB differ-

ence [53] between consecutive frames. The resulting image is still capable of describing the appearance

change, without the time consumption of traditional OF methods or the DL models’ limitations. Despite

having an inferior performance when compared to OF, Wang et al. [53] presented this alternative as a

”low quality, high-speed alternative for motion representations”.

2.3.2 CNNs as Feature Extractors

CNNs are widely used in CV, as they are good for natural signals that come in the form of multidimen-

sional arrays, such as RGB-D images. CNNs are now considered highly successful in feature extraction

from high dimensional data, constituting the base building block for most architectures in CV tasks, such

as image classification.

Simonyan et al. [57] proposed a new CNN architecture, namely VGG16, being used in a wide range of

tasks and datasets, such as action detection and classification [29]. This model uses very small receptive

fields (3x3) throughout the whole network, convolved with the input at every pixel (with stride 1). This

allowed the steady increase of the network’s depth, through the addition of more convolutional layers. The

result was significantly more accurate CNN architectures (at the time), with less parameters, confirming

the importance of depth in visual representations.

Inspired by this structure, He et al. [58] introduced a deep residual learning framework (ResNets)

[58] which learn residual features added then to the input through summation skip connection. The

resulting model has less filters and lower complexity than VGG nets, while showing easier optimisation

and accuracy gains with greatly increasing the network’s depth, allowing the training of deeper and higher

complexity models. This boosted in new derived architectures that made use of residual connections,

such as Inception-Resnets [59], Densenets [60], among others.

While this architecture evolution enabled superior performance, CNN models remained black boxes,
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meaning they are incapable of being decomposed into individually intuitive components, making them hard

to interpret. Thus, in order to build trust in these intelligent systems and improve them, it is necessary to

explain why they predict what they predict, understanding their flaws, failures and successes. Therefore,

a class-discriminative localisation technique capable of generating visual explanations for any CNN-based

network without requiring architectural changes or re-training was introduced. This technique, named

Grad-CAM, produces ”visual explanations” for CNN decisions, making these models more transparent

and explainable. [31]

2.3.3 Deep Learning approaches

Table 2.3 presents a summary of the state-of-the-art DL approaches for HAR and HAP, including the

methods, experimental protocol and most relevant results that allow the comparison between algorithms.

Table 2.3: Summary of the DL approaches, presented in the literature, for HAR and HAP. The studies were

organised according to the inverse alphabetic order of the task they are tackling.

Study and Year Task Input Method Loss Output Evaluation Dataset Metrics OR (%) AT (s) Results

[29]

(2020)
R Stacks of 7

RGB consec-

utive frames

VGG16 + Bi-LSTM+softmax Categorical Crossentropy Sequence’s class

(fall, not fall)

5-fold cross valida-

tion

Fall Detec-

tion

AUC and

Confusion

Matrix

N.A. N.A. Mean Recall of 91.6 and

86.0 for the fall and not fall

class, respectively

[46]

(2016)
OAD Framewise

3D stream-

ing skeleton

data

3 LSTM layers + 3 non-linear FC lay-

ers + Classification (FC+Softmax) and

Regression (FC+SoftSelector+FC) Net-

works

Cross-entropy loss (classi-

fication) and Squared Loss

(regression)

Frame’s class and

start and end confi-

dence coeficients

Train/Test split Online Action

Detection

(OAD)

F1-Score,

SL-score,

EL-score;

PrecisionRe-

call Curve

N.A. N.A. Maximum average F1-

score of 65.5% and, for

the forecasting of action’s

start and end points, low

precision and recall (less

than 40%)

[61]

(2018)
OAD Framewise

RGB data

CNN model (two-stream CNN, VGG-net)

+ LSTM layer (1st stream)+LSTM w/

feedback loop (2nd stream)+combina-

tion unit (+ optional extra LSTM layer)+

FC layer

N.M. frames’s class N.M. Breakfast

Dataset (BD)

Accuracy

over all

frames; mAP

and cAP

N.A. N.A. Accuracy of 32.55%, supe-

rior to the use of pose fea-

tures

[30]

(2018)
EAD RBG se-

quence

CNN + Feature Mapping LSTM w/

RBF Kernel Mapping + 2-layer MLP ap-

pended w/ a RBF kernel layer

Combination of L2 and

adversarial loss (regres-

sion) and Cross-entropy

loss (classification)

Future feature

maps and respec-

tive class

Dataset’s

Train/Test split

UCF-101 Accuracy 50 N.A. Accuracy of 98%

[14]

(2017)
EAD RGB se-

quence

VGG-16 + context and action-aware sub-

models + multi-stage LSTM + softmax

Novel designed loss Sequence’s class Dataset’s

Train/Test split

UCF-101 Accuracy 1 N.A. 80.50%

[41]

(2020)
EAD Sequence of

upper body

and object

2D points

2 Deterministic/Stochastic LSTM layers

+ softmax + decision making criterion

N.M. Sequence’s class Train/Test split

and 10-fold cross-

validation

Acticipate

dataset

Accuracy
19;

25
N.A. Accuracy of 95.42% for de-

terministic LSTM with na

OR=19% and of 98.75% for

stochastic LSTM with na

OR=25%

[62]

(2019)
EAD Sequence of

RGB frames

Two-stream CNN (Teacher) + 3 Convo-

lutional layers (student) + average pool-

ing layer, dropout layer and FC layer

(Classifier)

Novel weighted loss func-

tion

Sequence’s class Dataset’s

Train/Test split

UCF-101 Accuracy 10 N.A. 92.59%

[63]

(2016)
A Framewise

RGB data

CNN (AlexNet) + 2 FC layers + K * (3 FC

layers) + SVM

Euclidean loss (regres-

sion) and N.M.

K future visual rep-

resentations + class

distribution for each

one

Dataset’s

Train/Test split

with 25-fold cross

validation

THUMOS Accuracy N.A. 1 Highest achieved accu-

racy = 43.6±4.8%.

[64]

(2017)
A 6 consec-

utive RGB

frames

CNN + LSTM-based Encoder-Decoder +

2 FC (classifier) + RL Module

Squared loss (regression)

and Cross-entropy loss

(classification)

Sequence of future

visual representa-

tions + sequence’s

class

Train/Test split THUMOS Accuracy,

per-frame

mAP and

cAP

N.A. 1 Accuracy of 50.2%.

[47]

(2019)
A 16 RGB

frames

I3D CNN network + multi-scale tempo-

ral convolutions + attention mechanism

Sum of cross-entropy

losses for each recog-

nition and anticipation

predictions

Future class 5-fold cross-

validation

50Salads Accuracy - 1 Accuracy below 70%

R = Recognition; OAD = Online Action Detection; EAD = Early Actio Detection; A = Anticipation; OR = Observation Ratio; AT = Anticipation Time; N.A. = Not applicable;

N.M. = Not mentioned; CNN = Convolutional Neural Network; LSTM = Long short-term memory; FC = Fully Connected; MLP = Multi-Layer Perceptron; SVM = Support Vector Machine;

K = integer number; RBF = Radial Basis Function; mAP = Mean average precision; cAP = Calibrated average precision; SL-score = Start Localisation score; EL-score = End Localisation score

As it can be seen, most of the state-of-the-art approaches exploit the power of CNN as features ex-

tractors, as well as the Recurrent Neural Network (RNN)’s ability to model temporal dynamics. Therefore,
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the main commonly used network structures for human action recognition, detection or anticipation cor-

respond to two-stream 2D convolutional networks [61][62], 3D convolutional networks [47] and LSTM.

Human Action Recognition

The task of action recognition can be considered as the basis for action forecasting. Thus, to have a

good model for action anticipation, this one should first perform well in recognising actions [41].

Berardini et al. [29] applied a DL solution to automatically recognise falls in stacks of 7 RGB frames.

The model architecture consisted on a CNN model as feature extractor, namely the VGG16, and a Bidi-

rectional LSTM (Bi-LSTM) as feature classifier. As for the training procedure, to overcome the lack of large

and annotated publicly available datasets for certain actions (e.g.: turning and falling), transfer learning

techniques were implemented, using VGG16 pretrained on the ImageNet dataset and Bi-LSTM pretrained

on the UCF-101 action recognition dataset, followed by fine-tunning the Bi-LSTM on a custom-built fall

dataset. The approach shows potential, but there’s still room for improvements, such as: i) exploiting

different frame sequence lengths as input and different model architectures, including the use of differ-

ent NNs and forms of input (like depth images, optical flow, human RGB masks, among others); and ii)

increasing the size of the fall dataset to help the learning process.

Moving from specially offline action recognition to the OAD task, Li et al. [46] tackled this challenge by

implementing a LSTM model. Based on skeleton information, a frame-wise action (and background) clas-

sification was performed, while simultaneously estimating the start and end frames of the current action,

based on the definition Gaussian-like curves for each action. The algorithm consisted on 3 stacked LSTM

layers and 3 non-linear FC layers as the feature classifier, feeding its output to two different branches:

a classification and a regression network. This achieved a maximum average F1-score of 65.5%, for the

OAD task. Performing also the forecasting task of predicting if an action will start or end soon, within

an expected time prior to its occurrence, this approach revealed some difficulties associated with future

prediction, since actions can have similar poses before they start (e.g., eating and drinking). The authors

reported low forecast precision and recall (less than 40%). For these reasons, including appearance fea-

tures, such as RGB-data, could lead to improvements, as these inputs would give more context information

to help differentiating similar positions.

Still concerning the OAD task, Geest et al. [61] proposed an approach to model long term dependen-

cies between actions, since human actions sometimes imply a certain order (like standing, after being

sited). They used a state-of-the-art CNN model (such as VGG) and then fed its high-dimensional repre-

sentation into a two-stream LSTM feedback network, where one stream models the CNN’s output and the
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other models the temporal relations. Here, the use of CNN features is defended over Pose features, as

they obtained better performance. Nevertheless, the model overfits for datasets that do not present any

dependencies between actions. Thus, it is not suitable when there are no restrictions in the action’s order

of occurrence. Such is the case for walking trajectories.

Human Action Prediction

Contrarily to the widely studied action recognition problem, the HAP literature focuses on two types

of approach: i) directly predicting the future frames’ class or the current one, before the action ends

(classification) [14][41][47][62] or i)) generating future visual representations that are further classified

(regression followed by classification) [30][63][64]. Moreover, a common focus of these studies is to

develop novel loss functions that can reduce the predictive generalisation error [14][30][64].

Vondrick et al. [63] is one of the authors who resort to visual representations as promising prediction

targets, encoding images at a higher semantic level than pixels and without supervision. Hence, unlabelled

video is used to learn to predict these future visual representations. The proposed model follows a state-

of-the-art CNN architecture (AlexNet), implementing five convolutional layers followed by five FC layers,

with ReLu activations throughout the algorithm. To deal with the model’s uncertainty, the last three FC

present K networks, so each frame results in K future visual representations, one for each plausible future.

These representations were then used to train and test standard recognition algorithms, forecasting the

future action one second into the future, given only a single frame. The results show the importance

of modelling multiple outputs during learning and inference, as well as a gain of 19% over baselines,

suggesting the benefits of training deep models to predict future representations with unlabelled videos in

the action forecasting task. Still, the higher classification accuracy achieved was 43.6%, much lower than

the evaluated forecasting performance of humans, which was around 71.7% for a single subject.

Approaches like Vondrick et al. [63] anticipate only a representation of a fixed future time, based on

a single past frame’s representation, dismissing the history and temporal trend. Gao et al. [64] proposed

instead a Reinforced Encoder-Decoder (RED) network which takes multiple history representations as

input and learns to anticipate a sequence of future ones. The video is segmented into chunks of 6

frames, each of which processed by a CNN model (a state-of-the-art two stream CNN or a VGG16 network)

to extract a chunk representation. This is then fed to an LSTM-based Encoder-Decoder, outputting a

prediction of the future video chunks’ representations, in a supervised manner. The classification of

these future representations is handled by two fully connected layers. A distinctive aspect of this work

is the use of a reinforcement learning module, whose reward function aims to encourage the system to
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make correct predictions as early as possible. RED is jointly optimised by the cross-entropy loss, squared

loss and the reward function via a two-stage training process. The Encoder-decoder network allows for

sequence anticipation and it outperformed other baselines, such as [63], proving the anticipation power

of encoding multiple history representations and anticipating future ones, step-by-step. The strength of

CNN extracted features also affects the algorithm’s accuracy, that is why using a two-stream CNN (with

appearance features and optical flow as inputs) yielded better results than VGG16. For example, when the

anticipation time is about 1s, the accuracy achieved for anticipating human interaction action was about

50.2%, surpassing the [63] algorithm by 6.8%.

Such as Gao [64] and Vondrick et al. [63], Shi et al. [30] also focuses on improving the generalisation

capacity of future content, by introducing a novel RNN architecture based on LSTM cells. Aiming to improve

the temporal dynamics modulation, the CNN output is segmented into equal size sub-vectors, sharing

parameters not only across temporal domain, but also across feature space. Radial Basis Functions

(RBF) kernels are used, to capture more complicated dynamics more efficiently. The LSTM cells produce

the predictions of each feature element in a future frame, which are then concatenated all back together

into a high-level feature vector, classified at the end by a 2-layer Multi Layer Perceptron (MLP) appended

with a RBF kernel layer. This model achieved 98% of accuracy, for UCF-101 dataset, although it requires

seeing half of the video sequence plus the future representations generated by the RNN to classify each

class.

Despite all the research and developments, generating future representations is still defying, as well

as time-consuming and prompt for error accumulation [47]. Facing problems like the lack of datasets

with accurate labels, being able to train these regression models with a large amount of unlabelled data

constitutes an advantage. Nonetheless, generating visual representations is still more computational ex-

pensive and, sometimes, the learned representation may not be related to the action itself, as it can be

influenced by background or other variables [14]. For these reasons, others have tried to simplify the

problem, exploiting different types of features and/or tailored losses to directly predict future classes.

Aliakbarian et al. [14] attempts to explore context-aware and action-aware features to attain action

anticipation. Additionally, in order to encourage the model to predict the correct class as early as possible,

a novel loss is designed to highly penalise False Negatives (FN), while reducing the False Positives (FP)

penalisation in the sequence’s beginning, prompting sensibility. This approach resorts to the VGG16

model, which connects to two different branches, one to compute context-aware features, encoding global

information about the scene, and another to compute action-aware features. These features are then

sequentially introduced in a multi-stage LSTM: the first stage classifies only the context input, while the
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second one finally classifies the action input merged with the output of the first stage. This yielded an

accuracy of 80.5%, while only seeing the first 2 frames of each UCF-101 sequence, and 84%, while

seeing the first 50 of UT-Interaction dataset. Despite this algorithm outperformed other state-of-the-art

approaches, even when exploiting less frames, there are still a few aspects that must be considered.

Regarding the utilised features, the extraction of action-aware features relies on Class Activation Maps

(CAMs) [65], which indicate the regions in the input frame that most contributed to the class prediction.

Although interesting, this approach leads to some inconsistencies: i) first, resorting to these CAMs to

enhance the feature maps’ relevant regions implied scores obtained by the softmax’s weights. Therefore,

the CNN models must be trained first and then used to extract the feature maps, in an offline mode, which

will then be introduced in the multi-stage LSTM. This is not only inefficient, because it requires classifying

each frame before proceeding to the multi-frame classification stage, but also not adequate to online

applications; ii) secondly, CAMs can be good indicators of CNN focus [65], but that does not guarantee

these maps always focus on the action’s relevant elements. For example, similar human activities may

drive the model to extract features from the surroundings (background movement, due to camera motion,

objects, among others), as it is difficult to distinguish the human fine-grained movements. In this approach,

CAMs improvement is not taken into consideration during training. Hence, the model’s weights are not

learned in a way that will enhance action-centred feature extraction and improve the model’s focus, but

only in a way that promotes accurate classification. Moreover, the novel loss implemented here requires

the previous knowledge of the total length of each action, as the time instant that is being classified. Thus,

this may constitute an obstacle when tackling early detection in untrimmed videos.

Despite not directly using RGB inputs, Canuto et al. [41] presents another interesting work in action

anticipation, proposing methods to deal with the model’s prediction uncertainty and achieving very high

average accuracy (98.75%), using an average of 25% of observations. Here, a small dataset of upper body

actions, such as picking/placing or receiving/giving a ball in different directions (left, right, front), is used.

These actions can be very similar, especially in their early stages, so body motion may not be enough

to correctly anticipate them. As these are movements that imply looking into specific directions and the

camera is in a fixed position, gaze or head orientation may encode relevant information to anticipate actions

more efficiently and rapidly, as proven in [66] for walking events (walking straight and turning left/right).

Therefore, the 2D upper body joint points are extracted from raw RGB frames, including the head joints

to provide head direction and gaze information. Object information is also embedded to form the final

input, which is fed to a 2-layer LSTM model, followed by a softmax layer. Additionally, two principles

are proposed to implement a decision-making criteria for model’s predictions: i) establish a softmax
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probability threshold, which can be combined with a pre-defined minimum number of predictions. So, if

the predicted class remains for the next Z observations, with a probability above the threshold, the model

can be more confident that is the correct class. The setback relies on setting this hyperparameter, as

an inaccurate choice of Z may postpone the anticipation of actions that have no ambiguity problem or

even not be enough for those with more ambiguities; ii) use and run a stochastic model (e.g.: Bayesian

LSTM) s times over the same input sequence, computing its uncertainty about the class prediction for

the respective observation, which is then compared to an established uncertainty threshold. This new

threshold avoided the disadvantage mentioned before and lead to improvements in action anticipation.

Nevertheless, both seem reliable inference approaches and perhaps more suitable for untrimmed videos

than the one applied in [14], where a frame is classified by leveraging the predictions of all the frames up

to its time instant. The latter can thus benefit actions actions which are temporally longer, when classifying

online untrimmed videos.

A new line of approaches is also emerging in computer vision and video classification, namely the use

of transformers [67] [68] and attention mechanisms [47] [69] [70]. Commonly for fine-grained action

recognition, the frame or sequence of frames incorporates irrelevant or redundant information, with no

discriminatory property. So, these algorithms guide the model to use attentional regions, instead of the

whole frame, enhance local features and attain selectively feature fusion. For example, Wu et al. [70]

implemented channel-wise and spatial attention mechanisms, along with baseline CNNs (VGG16 and

ResNet-50) and LSTM. Using dynamic image sequence as input, this approach reached accuracy values

over 98%. When comparing to LSTM, transformers can be a lighter and maybe more suitable alternative

for real-time [71]. Nonetheless, the study of these algorithms for action recognition in videos is still not

fully developed.

2.4 Summary

This section summarises the main conclusions drawn from the literature review presented. Regarding

MI decoding deployed on SW, this is mostly implemented in a direct mode, which requires some degree

of physical intervention from the user. Such is the case for specially designed handlebars, with force

[37]–[40], pressure [17], load [36], IR [15] or hall sensors [19] to decode the user’s intents. Few are the

studies that aim to implement an indirect mode, in which the walker becomes responsible for analysing the

end-user’s movement and inferring from this the MI of walking forward, TR, TL, and stopping. In this latter

mode, some studies use wearable sensors (e.g. IMU) [16] which may be susceptible to electromagnetic
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interference and cause long-term discomfort, while minimising technology acceptance. Others resort to

human pose information (position and orientation), requiring complex obtrusive markers/sensors set ups

or more computational demands, if one wants to infer them from RGB videos. Additionally, this can also

lead to error propagation when feeding the computed poses to a motion decoding algorithm. Therefore,

the advances on the fields of CV and DL have not yet been applied to this purpose, resorting to RGB

cameras to reduce the need for extra sensors and computation, while enabling a seamless and intuitive

HRI.

Additionally, the literature review on human MI decoding, during SW’s assistance, also reveals another

important conclusion: the encountered studies that resort to an indirect way of decoding human MI focus

on lower body information [12][16][34][35]. In fact, since these robotic devices are usually front-following

the subject who is grabbing/leaning on its handles, trunk and head positions, as well as orientations, may

not provide significant variations to distinguish between walking directions and stop. Also, rehabilitation

SW usually requires lower angular velocities, with turns being divided in more smaller steps, which makes

it even harder to differentiate between turn left, right or walk straight. Hence, lower body information is

the most relevant for this task.

Concerning to HAR and specially HAP from RGB videos, these are defying areas explored in CV and

have recently experienced improvements by the implementation of DL algorithms. Nevertheless, it is still

an emerging area, where further improvements are necessary to overcome some aspects of realistic en-

vironments, such as variety of background, light conditions and objects, subject’s occlusions and camera

motion. Deploying a system like this in a SW prototype implies dealing, not only with all the aforemen-

tioned issues, but also with its computational constraints. Another defying trait is the model’s execution

in real-time.

With this in mind, selecting DL algorithms should take in consideration the processing constraints

available, which greatly reduces the pool of methods that can be applied on the walker, while reaching

for the lowest detection errors and the fastest action detection/forecast. Nonetheless, the literature pro-

vides important insights on human action classification/anticipation, through RGB-based DL algorithms:

i) CNN models, optionally combined with LSTM, are widely used and attain good performances; ii) actions

which imply fine-grained movements, such as human walking motion, have their discriminative informa-

tion concentrated in certain areas, not in the whole frame. So the search for mechanisms or types of input

capable of enhancing the relevant features and/or attenuate the redundant information is essential; and

iii) anticipating an action before it happens or ends requires modelling the algorithm’s ambiguities and

uncertainty, through the design of novel losses or the implementation of decision-making criteria.
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Materials and Methods

This next chapter specifies the material and methods used to acquire and process all the data required

for this dissertation. This includes i) an introduction to the target device in this dissertation, along with

the implied requisites (Section 3.1); ii) the procedures and experimental protocol for data acquisition,

which will be detailed in Section 3.2; and iii) the data preparation and preprocessing methods, to create

a usable dataset and obtain the samples to train and evaluate DL models, detailed in Sections 3.3 and

3.4.

3.1 WALKit Smart Walker

This project, as well as all its algorithmic solutions, were designed to target the WALKit SW prototype

used in rehabilitation [72].

3.1.1 System Overview

Figure 3.1 shows the SW prototype used in this project and its components. WALKit is a four wheeled

walker device, with two motorised rear wheels (Figure 3.1D) coupled with an encoder, as well as two

passive (caster-wheels) on the front. This allows the SW to move according to the desired direction. This

direction is defined by controlling each motor independently, with a specific architecture explained in

Section 3.1.2.

The robot can be driven in a passive way or in an active way. The latter integrates three different

driving modes: i) manual guidance, through an handlebar that aims to directly decode the patient’s

intention (Figure 3.1I); ii) the remote control, where the direction can be defined by the physiotherapist,
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for example; and iii) the autonomous mode, through environment assessment. The device is fed with two

12 VDC rechargeable batteries.

Aiming to become a mobile gait assessment and evaluation tool, the SW integrates multiple sensors,

such as two Orbbec Astra (Orbbec 3D Technology International Inc., USA) RGB+D cameras (Figure 3.1A

and C), a laser range finder sensor (Figure 3.1F), ultrasonic sensors (Figure 3.1G) and an external IMU

(Figure 3.1K). The cameras record at a rate of 30Hz and provide complementary fields of view (A points

to the torso and C to the legs and feet).

Figure 3.1: Hardware on the WALKit smart walker:

All the data provided by these sensors, as well as the functionalities related to them, can be accessed

by both the patient and the clinician, through the use of a dedicated touch screen (Figure 3.1H), that runs

a user-friendly graphical user interface (GUI). Additionally, the GUI also allows the therapy setting (by in-

serting the patient’s metadata, activating/deactivating sensors, selecting gait speed and curvature, among

others), as well as the activation of other functionalities, for instance, multitasking games or biofeedback

strategies.

3.1.2 System Architecture and Functionalities

The software architecture is divided into high- and low-level controls, following a modular and hierar-

chical architecture. It is of easy interpretation, as well as actualisation, meaning that new functionalities

and/or operating modes are easily added.

The low-level control runs a real-time operating system (RTOS) on an STM32F4 Discovery. It is used

to operate and read the walker’s low-level sensors, such as the load cell (Figure 3.1B), the emergency
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button (Figure 3.1J), the IMU embedded on the handlebar (Figure 3.1I), the infrared sensor (not shown

in the image), the ultrasonic sensors (Figure 3.1G) and the encoders of each rear wheel (Figure 3.1D).

Moreover, this low-level is also responsible for controlling the device’s linear and angular speeds through

the user’s commands, as illustrated in Figure 3.2, by activating/deactivating its motors according a PID

controller’s response. This controller is expected to adequately produce a response over the computed

deviation between the device’s measured speed, estimated through the encoders of each wheel, and the

reference speed selected on the GUI.

In contrast, the high-level control is responsible for establishing the bridge between humans and

the machine (low-level). WALKit SW is equipped with an Intel NUC-6i7KYK (Intel Corporation, USA) mini-

computer, running an Ubuntu 18.04 OS with the Robot Operating System (ROS) Melodic Morenia software

on top and it is considered the SW’s central control unit, since attains the responsibility over all the high-

level algorithms and GUI. Only three sensors are connected directly to this level: one laser range finder and

two RGB-D cameras. The high-level control communicates with these sensors, under the ROS messaging

interface, allowing the assessment of the external environment and the execution of CV-based and DL-

based algorithms for gait and posture monitoring.

Figure 3.2: Diagram of the human-in-the-loop control strategy currently implemented on the WALKit Smart Walker.

Therefore, the WALKit SW has numerous functionalities, such as: i) navigation assistance, with mul-

tiple driving modes; ii) gait and posture analysis during walker-assisted gait; and iii) real-time interaction
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applications, such as visual biofeedback and multitasking games. These are important and needed func-

tionalities to follow a human-centred design, where the end-user is mainly involved in the control process,

as well as to attain HRI. This helps to deliver a customised therapy, where the patient is encouraged to

actively participate in his/her therapy, while his/her residual motor skills are enhanced.

3.1.3 Motion Decoding Requirements

Currently, WALKit SW fosters human motion decoding through an IMU embedded in the handlebar, as

show in Figure 3.2. Its outputs are processed and interpreted by heuristic rules to allow the classification

and control of the SW’s speeds [27]. This approach requires upper-limb coordination and a higher cognitive

load, due to the specific hand movements that have to be performed. Besides, it also can present some

noise, which can lead to rough motions by the SW.

This robotic assistant also contains two RGB-D cameras, used for gait and posture monitorisation [27],

but these functionalities were still not explored towards action/motion recognition or control purposes.

Despite the high variability of ataxic gait, these sensors could be a more intuitive and challenging alternative

for the patient, since it removes the cognitive and physical burden enforced by the handlebar, while

promoting autonomy, as well as more attention to the body’s position, orientation and posture. Patients

in more advanced stages of rehabilitation therapy could benefit from this approach.

In order to deploy a control strategy through a vision-based human motion decoding solution, sev-

eral requirements needed to be considered. These were pondered throughout the development of such

solution, described in Section 1.5.

During rehabilitation sessions, the SW’s high-level computer is tasked with running multiple processes

concurrently, which makes it responsible at all times for their correct functioning and patient safety. More-

over, it does not contain hardware accelerators (e.g GPU), normally used to speed up NNs execution.

Therefore, these are relevant limitations to be taken into consideration when developing algorithmic solu-

tions for the WALKit SW, as they impose constraints on memory and solution’s complexity.

Furthermore, the inference time of the proposed solution, from the input computation and prepro-

cessing until the post-processed output class obtained from the best model, should be ideally inferior than

0.067s (time to record one frame at 15Hz). In this way, the walker’s controller would be able to actuate

on each prediction in time, before moving forward to the next one.
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3.2 Data Acquisition

Several public datasets for action recognition and/or anticipation were considered, like UCF101 [73],

MAD [74] and UWA3D Multiview [75]. Nevertheless, these never presented all the features needed to

accomplish the aim of this dissertation, since most of them do not include walking or turnings as different

actions, nor mobile cameras that follow the subject and always maintain a front-view perspective. There-

fore, a custom dataset was created. Data acquisition was conducted under the ethical procedures of the

Ethics Committee in Life and Health Sciences (CEICVS 147/2021), following the Helsinki Declaration and

the Oviedo Convention. All participants gave their informed consent to be part of the study. Data were

collected at the School of Engineering of University of Minho.

3.2.1 Participants

Fifteen healthy participants (nine males and four females) were recruited and accepted to participate

in this data collection. A list of inclusion criteria was outlined to conduct the experimental data collection.

Participants were recruited if they had: i) 18 or more years old; ii) body mass within 45 and 90 kg; iii)

height within 150 and 185 cm; and iv) healthy locomotion. Table 3.1 presents the participants’ detailed

anthropometric data.

Table 3.1: Metadata of the participants included in the acquired dataset with the WALKit Smart Walker

Participant ID Gender (M/F) Age (years) Body height (cm) Body mass (kg)

01 M 24 170 74

02 M 31 174 68

03 F 22 159 56

04 F 29 157 53

05 M 24 170 78

06 F 24 159 48,2

07 M 26 181 71

08 M 26 175 61

09 M 26 175 61

10 F 24 170 62

11 M 27 175 83

12 F 28 159 68

13 M 23 174 64

14 M 22 169 72

15 F 23 160 58

Mean and STD - 25.27 (±2.54) 168.47 (±7.42) 65.15 (±9.22)
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3.2.2 Mobile Acquisition Setup

Data acquisition was performed outside a controlled laboratory space, using a mobile setup [76].

This allowed the recording of data in realistic scenarios, with non-ideal light conditions and dynamic back-

grounds.

This setup is composed by: i) WALKit prototype, responsible for recording the visual information from

its two embedded RGB+D cameras, at a frame rate of 30 Hz, and for sending start/stop triggers to external

recordings; and ii) the Xsens MTw Awinda (Xsens Technologies B.V., The Netherlands), which recorded

data at 60 Hz. This latter device included a base station connected to a laptop running the MVN software

from Xsens.

3.2.3 Instrumentation

Figure 3.3 illustrates a random participant with the Xsens MTw Awinda sensors and the respective

mobile setup.

Figure 3.3: Mobile acquisition setup, where a laptop running the Xsens MVN software and its acquisition base are

placed over the smart walker, moving along with the robotic device. The user is equipped with the Xsens sensors,

hidden bellow a layer of clothing.

The participants were instructed to comfortable clothes and standard shoes to accommodate the

on body sensors. Each participant was instrumented with seventeen IMUs from Xsens MTw Awinda.
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They were placed on the head, shoulders, chest, arms, forearms, wrist, waist, thighs, shanks, and feet,

according to the manufacturer’s guidelines1. The participants were, then, instructed to wear long clothes

covering the sensors to not produce a bias effect while training the models.

3.2.4 Acquisition Protocol

Considering the aim of decoding the human MI while walking straight, turning right, turning left and

stopping, it would be ideal to record these natural movements, during a non-predefined circuit. Neverthe-

less, the final application consists on controlling a SW device, which has a specific turning strategy and

restrains the user’s gait. So, it would be preferable to use this walker in a passive mode. However, consid-

ering the size and weight of the device, it was considered that users would not walk normally when driving

the device themselves, causing abnormalities in the participant’s gait. For these reasons, an automatic

driving mode capable of following given trajectories was necessary, so the SW could be used only as a

recording device, that follows the user. This driving mode enables to create velocity commands for each

wheel according to the desired linear and angular velocity of the robot and considering the turning radius.

This is further explained in 3.2.6.

The participants were instructed to walk with WALKit SW performing 4 circuits, according to the di-

rection (right or left) and curvature’s degree (wide and tight). As illustrated in Figure 3.4, the following

sequence was performed for each circuit:

1. 10s standing;

2. 3-meter walking;

3. one turn equivalent to ¼ of circumference, with its direction and radius implied by the circuit:

right/left, wide (R=1.5m)/tight(R=0.7m);

4. 3-meter walking;

5. 10s standing.

The floor was marked with tape and signalised, during the records, with chairs and staff people, so the

participants could see and react to the circuit’s morphology. Different light conditions were held for each

trial. This helps increasing the environment and movement variability (backgrounds, lighting, velocities,

turn features, etc), while improving the statistical significance of the data. In total, 8 sequences were

drawn (2 different trials x 4 circuits).

1https://bit.ly/31iUaA8
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(a) Circuit 1 - Wide TR.

(b) Circuit 2 - Tight TR.

(c) Circuit 3 - Wide TL.

(d) Circuit 4 - Tight TL.

Figure 3.4: Designed 4 circuits, distinguished by the turn direction and curvature radius.

The sequence’s content remained unknown to the participants until the beginning of the trial, when

a brief explanation of the circuit was given. Also, the respective marked spots were positioned in a way

that remained invisible to the SW’s cameras, during the performance of each respective trial. This was

valid for every sequence, avoiding a biased training where the input data would contain marks for each

turning point. Additionally, the overall circuit and trial’s order was randomised for each subject before the

beginning of the acquisition.

3.2.5 Data acquisition

Each participant performed 2 valid trials per circuit, considering three gait speeds: 0.5 m/s, 0.7 m/s,

and 1 m/s. These speeds were selected according to the walker’s most commonly used velocity range,

as well as considering the typical self-selected slow, normal and fast walking speeds for healthy subjects

[77]. In the end, each subject performed 24 trials, taking no more than 1 minute per trial.

Each trial was conducted as follows: i) the walker was placed on the starting position of the respective

trial; ii) the user was instructed to stand in front of the robotic device, in the N-Pose position, to reset

the Xsens internal referentials; iii) the subject grabbed both of the SW’s handles; iv) a remote controller

started the rehabilitation session, as well as the cameras’ recording and the Xsens MVN software, through

an hardware trigger; and v) the participants started the trial acquisition. At the end of the trial, the SW
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was positioned at the beginning of the next trial, repeating the process.

The participants were instructed not to just follow the robotic walker, but to interact with it, along the

designed circuit, in order to capture their intention as naturally as possible. Some familiarisation trials

were performed before the real recording procedure, encouraging the HRI.

3.2.6 Automatic trajectory mode

The automatic trajectory mode was implemented in C++ language, within ROS architecture. Since

WALKit SW is a differential drive robot, its movement is controlled by providing independent velocity to

each wheel. Considering the differential drive kinematics [78], the velocity of each wheel is calculated as:

 Vleft

Vright

 =

1 −(l/2)

1 (l/2)

×

 v

w

 (3.1)

In equation (3.1), w and v represent the robot’s angular and linear velocities, respectively, l represents

the total distance between the two wheels and Vleft, Vright the linear velocities each wheel needs to take

to accomplish the stipulated values of w and v and, therefore, control the walker’s trajectory.

Several experiments to define the most natural turning strategy in an human perspective were consid-

ered. A rotation around an instantaneous centre of curvature (ICC), as illustrated in Figure 3.5, was then

selected for the SW to perform. In this way, the curves are more intuitive for humans, plus it is possible

to define different radius of curvature, allowing to build trajectories with wider and/or tighter curves.

Figure 3.5: Differential drive kinematics. Retrieved from [78].

Since v = wR, the system of equations in (3.1) can be rewritten as follows:

 Vleft

Vright

 =

w(R− (l/2))

w(R + (l/2))

 (3.2)
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Through this algorithm, turn area, direction, angle (90º) and strategy were controlled, to fulfil the

SW’s control purpose and also due to the space limitations encountered during the circuits designing and

performance.

3.2.7 Labelling

The labelling process was executed in real-time, along the data acquisition, in two different ways: i)

with joystick commands and ii) with velocity commands. The former relies on an external person who uses

the joystick’s digital buttons, similar to [79], to mark transitional moments between actions, according to

his/her observation of clear feet movements. When the variations in the subject’s gait were not clear for

the naked eye, the transitional moments were marked at most when the participant reached the local

of transition defined previously in the circuit’s trajectory. This method produced labels responsible for

denoting the subject’s interaction and intention (JOY labels). The latter represents the device’s actions,

generating labels mainly for action recognition, when the background is already changing accordingly to

the performed movements (VEL labels).

Nevertheless, both of these labels present some disadvantages. The JOY labels are biased by the

third person’s perception, while the VEL labels are always a bit earlier than the SW’s actual movement,

since they correspond to the PID’s reference and not to the actual wheel’s velocities. Also, the walker’s

accelerations/decelerations, as well as some delays inherent to the hardware, may cause some small

inconsistencies between these labels and the actual robotic movement.

Facing these disadvantages, foot contacts obtained with Xsens MTw Awinda were used to better posi-

tion these labels. This helped to determine gait events, such as Heel-Strike (HS) and Toe-off (TO), which

were used to identify the beginning of a walk, stop or turn class. The first walk and the last stop events

were marked by the first hell-off and last HS of the trial, respectively. As for the turn event, literature

considers that the direction of a step is determined and becomes unchangeable at the TO, so including

data from this moment on increases the changes of correctly predicting this direction [13]. Thus, to as-

sure the inclusion of this gait event, this type of labels (Xsens labels) delimit turns on the HS moments

immediately preceding the corresponding JOY labels. Although promisingly more accurate, these labels

presented failures, due to the Xsens system instabilities, that caused significant perturbations on several

trials’ recorded foot contacts.
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3.3 Dataset

3.3.1 Data Preparation

The generated labels and data obtained from the Xsens are temporally synchronised with the camera

streams. This procedure is executed offline, through the timestamps saved during data recording for each

one of the modalities and for the hardware trigger sent by the walker to the Xsens base, marking the data

acquisition’s start. Moreover, this process sub-samples the Xsens skeleton data to 30Hz to match the

samples from the camera streams.

All the data was manually and briefly inspected, checking the quality of the visual information and the

temporal correlation between these and the respective labels.

As expected, the depth images were corrupted by high infrared exposures from sunlight and only subtle

changes were revealed by the user’s torso, when walking with the WALKit SW. Therefore, the selected raw

data to create the final inputs corresponds to the RGB image from the SW’s lower camera, capturing only

the legs and feet.

3.3.2 Dataset of Frames

Considering this project’s ambition of directly decoding human motion from visual information, the

datasets to train and evaluate the different DL frameworks were built with only lower body RGB labelled

frames.

Due to space limitations, the duration of turn events in the performed circuits (Section 3.2.4) is always

inferior to the other events, leading to an unbalanced dataset. To tackle this problem, a balanced dataset

of frames was created, where, for each trial, a sequence of frames per class is extracted. The number

of samples was limited to the lower number of frames present in the turn events. To cover more time

of action with a lower number of similar samples, given the little additional motion information added by

those, the dataset was down-sampled to 15 Hz. This was performed since it was found that the principal

walking frequency is no higher than 2 Hz for gait speeds above 1 m/s [80].

Therefore, sequences of 40 consecutive frames were extracted after the down-sampling. Moreover,

due to the presence of bias during the labelling procedure (Section 3.2.7), this extraction was performed

avoiding the action’s boundaries, in order to prevent the risk of catching frames from the previous/following

class. For this reason, the start of each class was marked with the latest of the two labels (JOY and VEL)

and a threshold of frames at these boundaries was used, when possible. Considering these constrains,
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a balanced dataset containing a total of 28800 RGB-D frames from the SW’s lower camera was created,

without including transitional frames. Note that the depth images are only included for human masks

computation purposes, which will be described in Section 3.4.3.

To further simulate real-time scenarios, a test dataset was created including data of 3 participants

with non-corrupted data. This dataset contains the complete trials of frames and is not separated into

40-frame class sequences. Thus, it has 72 untrimmed RGB video trials, labelled with the Xsens labels to

more accurately mark the transitions.

3.4 Data preprocessing

After data preparation, followed by the creation of a balanced dataset of labelled RGB frames, the

images are preprocessed, in order to form the final input that will be fed into the model. This process is

documented below.

3.4.1 Input Frames

As the proposed task is to distinguish actions in videos focusing the subjects’ legs and feet, the main

feature to attain this goal would be, not the presence of objects, their shapes or the pixels’ intensities,

but the motion and the different body orientations along the recorded frames. Thus, it seems only natural

to focus on these particular aspects, so the model can accurately classify distinct walking actions, while

focusing on the right and most relevant features.

Literature reveals the use of windows of images as input [29] or other forms of images, usually as

complement to the original RGB frames, as it is the case of the OF [55]. Considering this, two different

types of inputs were proposed: i) the difference between the last RGB image and the first one, considering

a sliding window approach (DIF input); and ii) the sum of all the RGB images in a chosen window,

also considering a sliding window approach (ADD input). Through experimentation and visualisation, the

window length was defined as 4, considering the down-sampled dataset, since it incorporates significant

motion across all gait speeds, while never containing information from more than 1 different step. These

kinds of input attain a single-frame classification approach and the respective computation process is

illustrated in Figure 3.6.
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Figure 3.6: Schematic representation of the input computation.

The sum of frames appears here as an original idea to represent the motion along the video, without

the computational expense of using a window of frames and heavier models (such as 3D-CNN or a RNN).

The difference between frames was already proposed by Wang et al. [53] as a lighter and faster alternative

to the OF. In fact, running experiments on a Google Colab instance (see section 4.5.2) with the created

dataset confirmed that OF computation, using the PWC-Net model from [81], requires 275x more time

than subtracting two images and almost 17x the time of the whole pipeline, described in Figure 3.9.

Comparing with the ADD input, this difference is about 60x and almost 11x, for its computation and the

whole pipeline respectively.2

Examples of these kinds of inputs are shown in Figures 3.7 and 3.8, where the latter helps to bet-

ter understand the correlation between the original frames and the resultant DIF/ADD. For visualisation

purposes, the input images were normalised between 0 and 255, after their computation (Figure 3.6).

As it can be seen, the subject centralisation and front-view perspective, typical of these SW’s recorded

videos, allowed the generation of these inputs, where it is visible the change in position and orientation of

both feet and legs, from the third past frame to the present one. As for the DIF images, the two different

body positions that correspond to two different time steps (the present and the first past frame, in the

depicted window) stand out, while, in the ADD images, the temporal drag of the human position is notice-

able in a single frame. Due to camera motion and the pavement characteristics, background movement

is perceived too. This is true except for the STOP class, where, as expected, no substantial movement is

recorded. However, there are still some light variations and residual human motions which may provoke

some low intensity noise, more visible when in a scaled DIF image.

2The pipeline here does not include the augmentation and normalisation steps, as these are performed on the fly
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(a) (b) (c) (d)

Figure 3.7: Examples of computed a) DIF, b) ADD, c) cropped DIF and d) cropped ADD images for each class

(STOP, WALK, TR, TL, from top to bottom), from the same subject (window length=4). Each row contains images

from the same class, trial and time instant.

Figure 3.8: A turn right sequence extracted from the created dataset of frames, temporally ordered from left to

right and followed by the computed DIF and ADD images, for a window length of 4.
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3.4.2 Preprocessing

The preprocessing pipeline is shown in Figure 3.9 and includes resizing, data augmentation and

normalisation. These preprocessing techniques are common procedures shared by every type of input

used. Before that, the computed DIF and ADD inputs may pass by a process of cropping.

Figure 3.9: Schematic representation of the preprocessing pipeline.

Cropping

The cropping procedure is optional and intends to diminish the input’s background area, in an at-

tempt for the model to direct its focus to the user and his/hers fine-grained movements, extracting more

meaningfully features. The images are thus manually cropped, according to a predefined Region of Inter-

est (ROI), easily designed, since the user is normally in a central position, in the middle of the walker’s
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handles.

Resizing

Frames are resized from a resolution of 480x480 pixels, to a resolution of 224x224, preserving the

images’ aspect ratio. This also happens for images that have been cropped, although the crop procedure

decreases the original values of resolution and aspect ratio. So, in this case, the resizing process still

preserves the aspect ratio, as best as possible, but there are extra pixels that are set to 0, while the image

is centred, as one can see in the last two columns of Figure 3.7.

This resolution of 224x224 was chosen to match the input dimensions of CNN models pre-trained on

the ImageNet dataset (see Section 4.5.2). Additionally, this reduction leads to a decrease in computations

and, consequently, in inference time, increasing, at the same time, the percentage of the image covered

in the model’s Effective Receptive Field (ERF), without requiring a deeper model. The loss of fine details

should not be significant to the point of compromising the performance, since the participant is expected

to stand close to the camera, at all times, while using the SW.

Augmentation

Image augmentation is here used in order to avoid overfitting, as well as improve the model’s focus on

the subject’s body, despite its global position in the images. Spatial augmentation is also very important,

when the images are cropped. Changing the position of the back surrounding pixels reduces the chances

of these pixels affecting the learning procedure and, subsequently, the model’s performance.

This procedure occurs on the fly through the use of ImageDataGenerator class from Keras. Random

alterations were applied to the image brightness and contrast, as well as spatial augmentations, such as

height and width shifts and zoom. Since directions are an important feature to distinguish between turn

right, left and straight walking, rotations were avoided. Moreover, random Gaussian blur was also added.

Normalisation

A stable training of NN requires normalisation of the input. Here, normalisation was preferred over

standardisation, preserving the data distribution. Additionally, DIF images can have very low intensities

and thus dividing them by the standard deviation could lead to excessively high values, causing a great

discrepancy between pixels’ intensities that could difficult the training procedure. The images where thus

normalised between 0 and 1. Examples of augmented and normalised input images can be visualised in

Figure 3.10.
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(a) (b) (c) (d)

Figure 3.10: Examples of augmented and normalised DIF and ADD inputs: a) with height and width shifts, b)

with added zoom, c) with brightness variations too and, finally, d) with contrast variations and Gaussian noise.

3.4.3 Human Masks

To detect the walking directions (straight, left, right) and standing/stopping events, before the user

transits to another action, it is necessary to distinguish human fine-grained movements. Therefore, the

human body should be the main focus of the deployed model, extracting, for example, relevant features

from feet position and orientation.

Therefore, human masks were computed through a classic vision algorithm, illustrated in Figure 3.11.

This algorithm involves geometric and threshold operations that remove the background, as well as the

floor plane, to isolate the user. The floor plane is computed from a background image, captured by the

walker’s lower camera, and a floor depth tolerance (FDT) is initially set to 0.05. This value is used to

eliminate noise, such as the walker’s legs or some floor portions that do not possess the same depth

levels. For this reason, an adaptive threshold is implemented at the end, over the whole computed mask:

if the percentage of foreground is higher than 15% of the whole image, the mask will be re-computed with a

higher FDT (the higher this value, higher the number of pixels recognised as floor, reducing the unwanted

noise).
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Figure 3.11: Algorithm’s flowchart for mask computation.

Using the aforementioned algorithm, all the masks are first computed from the dataset’s depth images.

Considering that these depth frames could be corrupted by the high exposure from sunlight, another

foreground threshold was included to previously discard RGB frames and the respective corrupted masks

from the dataset. This threshold is calculated relatively to a designed ROI, both pre-defined by empirical

experiments. After these procedures, a final dataset of masks is created and used in a process similar to

the RGB input computation (Figure 3.6). A sliding window of length 4 is applied and the relevant masks

are selected: the first and last one for DIF and all the N frames in the window for ADD generation. Despite

the implemented thresholds, these masks can still present some minor corruptions (e.g.: incomplete

feet) or even some extra noise (e.g.: SW’s wheels), which need to be corrected. Thus, a classic vision
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algorithm was designed (Figure 3.12), where i) the ROI is firstly extracted from the original mask, in order

to remove possible walker’s legs or side noise; ii) then, an opening operation is performed to remove

points of noise; iii) following this, a closing operation is used to restore mask boundaries; iv) a binary

hole filling is executed to close possible holes on the human’s feet; and, finally, v) a second opening

process is performed to reduce subsequent dilated boundaries.

Figure 3.12: Algorithm’s flowchart for mask correction.

Finally, the selected and corrected masks are summed and then cropped, according to the input’s

preprocessing (Figure 3.9), in order to form the final corresponding masks. The complete process of

masks extraction is presented in Figure 3.13.

Figure 3.13: Pipeline of the procedure for mask extraction and respective dataset creation.

Examples of the obtained masks are given in Figures 3.14 and 3.15.
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(a) Frame -3. (b) Frame 0. (c) DIF.

Figure 3.14: Examples of individually non-corrupted masks (second row), along with their corresponding RGB

inputs (first row), for a window length of 4 frames. The presented masks are already processed, as depicted above.

(a) Frame -3. (b) Frame 0. (c) DIF.

Figure 3.15: Examples of individually corrupted masks (second row), along with their corresponding RGB inputs

(first row), for a window length of 4 frames. The presented masks are already processed, as depicted above.

46



Chapter 4

Deep Learning Frameworks

This chapter describes the five DL architectures proposed in this dissertation, along with a description

of the three devised approaches (Section 4.1) and the two complete frameworks used for this purpose

(Sections 4.2 and 4.3). It also describes the post-processing implemented for online evaluation (Section

4.4), along with the details to train and validate these approaches (Section 4.5).

Considering the designed inputs, which encode information from a pre-defined window of frames into

a single RGB image, the architectures proposed in this Chapter attain the final purpose of single-frame

classification. As each model will be classified based only on partial observations of each action, this

falls over the category of HAP (see Section 2.2), more specifically tackling early action recognition and

detection.

4.1 Approaches

Tackling human motion decoding, through raw RGB data from a SW’s moving camera, is a challeng-

ing new problem. Therefore, different model architectures and frameworks should be first explored and

compared, in order to effectively infer the best way to solve it or at least the direction to follow towards

improvements.

The devised approaches are clarified in Figure 4.1, which integrated different model architectures,

each one fed with all the computed forms of input. Brief summaries of these approaches are presented

below:

• Approach 1: The different computed inputs were fed into the baseline CNN classification models

and their performances evaluated, aiming the perception of the most suitable CNN architecture for
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this task. Details about the framework and model architectures used in this approach are depicted

in Section 4.2.

• Approach 2: An attention mechanism was added to the selected CNN architecture and then

trained and evaluated on each one of the input forms. Details of this approach, including the

attentionmechanism’s architecture, are also described in Section 4.2, as these two first approaches

share the same overall framework.

• Approach 3: All the input forms were also tested in a segmentation-classification framework,

described in Section 4.3.

Figure 4.1: Overall flowchart of the work developed, depicting all the different approaches.

The evaluation results are addressed in Chapter 5, following this architectures’ order.
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4.2 Single-frame Classification Framework

The framework illustrated in Figure 4.2 was implemented to perform the first two previously depicted

approaches. Here, the final inputs are generated from raw RGB data, following the preprocessing proce-

dures explained in Section 3.4.2. Then, the models are trained and tested for the classification of each

form of input, generating a final output vector of length 4 (matching the number of target classes).

Figure 4.2: Schematic of the single-frame classification framework.

According to Figure 4.1, the models used in this framework correspond to: approach 1) the baseline

CNNmodels (VGG16 and ResNet-50) and approach 2) the chosen baseline with an attentionmechanism.

These models’ architectures are described in the following subsections.

4.2.1 Baseline Architectures

The first model employed was VGG16 [57], also recently used in [29] for HAR. As in [29], here the

VGG16 model was used without its top layers. Instead, the extracted feature maps are fed to a Global

Average Pooling (GAP) layer, followed by a softmax layer with four units, as illustrated in Figure 4.3.

Additionally, two more alterations were introduced: i) the activation function of the last convolutional

layer was changed from Rectified Linear Unit (ReLU) to tanh function, to decrease the clipping of final

feature maps’ values and avoid possible vanishing gradients, when using units; ii) BatchNorm layers were

added, to improve the optimisation and generalisation performance, after the activation layer. This differs

from the most common practice, where BatchNorm layers are added before the activation.Nonetheless,

the difference in these layers’ positions should not imply significant changes in the results. Also, some

researches defend the architecture used here [82].
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Figure 4.3: Diagram of the implemented VGG16 architecture.

The second CNN model was ResNet-50 [58], also followed by a GAP and softmax (Figure 4.4).

Figure 4.4: Schematic of the implemented ResNet-50 model: (Left) Model architecture (MP stands for MaxPool-

ing). (Middle) Architecture of the convolution block which changes the dimension of the input. (Right) Architecture

of the identity block which will not change the dimension of the input. This image was retrieved from [83].

4.2.2 Attention Mechanism

It has been defended that the different channels of CNN convolutional features correspond to differ-

ent feature detectors and thus ignoring their distinct learning abilities may lead to a decrease in CNN
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performance. Therefore, inspired by [70], an attention mechanism was attached to the chosen baseline

model (selected in Chapter 5), aiming to automatically learn these channel-wise features, while adap-

tively enhancing the informative channels by assigning different weights to each channel. This attention

mechanism, whose architecture can be seen in Figure 4.5, follows the CNN model’s last convolutional

block. Its outputted feature maps are used by the Channel Attention Module to compute weights for each

output channel, forming a channel descriptor vector. A multiplication is then performed between each

feature map and the corresponding weight of the computed vector, generating the final Channel-attention

Weighted Feature Maps. Finally, these are fed to the GAP layer of the selected baseline CNN model. The

selection of this baseline architecture will be detailed along Chapter 5.

Figure 4.5: Diagram of the implemented channel-wise attention mechanism, retrieved from [70]. Here, the feature

maps correspond to the last convolutional feature maps of the ResNet-50 model.

4.3 Segmentation-Classification Framework

After evaluating the model’s focus and relevance of the extracted features, a novel framework was

designed as an attempt to drive the model’s focus to the relevant areas of the RGB input, mainly the

human body. Based on studies that treat segmentation and classification as inter-dependent tasks [84], a

two-stage framework was developed, targeting the execution of approach 3: Stage 1) a segmentation

model is trained with the preprocessed RGB frames and the corresponding computed masks; Stage 2)

the same type of input is fed into a classification network, pre-trained with the learned weights from Stage

1.

A visualisation of this framework is shown in Figure 4.6, where the referred GT masks are pre-

computed through an algorithm described in Section 3.4.3.
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Figure 4.6: Schematic of the segmentation-classification framework.

The implemented DL architectures are detailed in Section 4.3.1, as follows.

4.3.1 Segmentation-Classification Architectures

The model chosen to segment single RGB preprocessed images was the UNET model [85], with

additional BatchNorm layers, as previously described in the VGG16 architecture. Figure 4.7 illustrates the

respective architecture. The input frames have dimension of 224x224, so the lowest resolution achieved

is 14x14. The last convolutional layer (1x1) uses sigmoid activation and outputs a 224x224 segmentation

map.

From this segmentation architecture, an adapted UNET model for classification was designed, inte-

grating the UNET’s encoder followed by two convolutional blocks, as shown in Figure 4.8. BatchNorm

layers were also added to the UNET encoder.
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Figure 4.7: Schematic of U-net architecture, where each blue box corresponds to a multi-channel feature map,

with its number of channels annotated on its top, the white boxes represent copied feature maps and different

operations are denoted by arrows. Retrieved from [85].

Figure 4.8: Schematic of the adapted UNET model for single-frame classification (MP stands for MaxPooling).
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4.4 Real-Time Simulation

After running the three approaches in Figure 4.1, all the obtained results were compared. The best

framework and model architecture were selected and evaluated in real-time simulations, assessing the

performance in OAD and early action detection tasks.

4.4.1 Post-processing

As the future purpose of this dissertation will be the model deployment on a SW prototype, a post-

processing technique was developed in order to optimise the performance in a real-time environment.

Its scope consisted on dealing with the model’s uncertainty, while reducing possible on-off noise, without

introducing significant delays in the decision process.

This post-processing technique sets a minimum action duration (2s) and applies it to the previous

predicted class, meaning that it only allows for a transition to happen, if the previous predicted action

lasted at least 2s. Additionally, it also reduces the spectrum of possible transitions by not allowing a turn

right/left to happen right after a turn left/right, respectively. These conditions help avoiding prediction

errors and are consistent with rehabilitation therapy sessions.

4.5 Experimental Protocol

All the implementation details involved in the dataset partition (Section 4.5.1), as well as the actual

training (Section 4.5.2) and evaluation (Section 4.5.3) of the proposed models are described in the fol-

lowing sections. Additionally, it details the training hardware used throughout the development of this

dissertation.

4.5.1 Dataset Split

Due to limitations of time and computational resources, the models were evaluated not through cross-

validation, but through a default and constant dataset splitting. More specifically, 20% was used for

testing (3 subjects) and 80% for training (12 subjects), where one subject was left to the validation set

[41]. Random subjects were chosen, as they are all adults with healthy gait patterns. It was divided by

subjects to guarantee a good distribution and no overfitting. Table 4.1 describes each of these splits,

already considering the inputs computed through a sliding window of length 4 (Section 3.4.1) over the

created balanced dataset of frames (Section 3.3.2). For the tasks involving masks (segmentation and
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grad-CAMs evaluation), the dataset used was smaller, since some sequences were removed for mask

corruption reasons. More precisely: 171 sequences in the train set (32%), 13 in the validation set (27%)

and 16 in the test set (11%). These numbers correspond to the dataset used for offline training and

evaluation.

The test dataset used for real-time simulations (Section 5.3) is composed by the same subjects present

in the depicted test split (Table 4.1). Although, this dataset is composed by the whole trials, instead of

being divided into 40-frame sequences.

Table 4.1: Constitution of each dataset split, containing the inputs computed from a sliding window of 4 frames

Split Subjects IDs
Number of images

Classification Segmentation

Train [1,15[ \{5, 8, 11} 19536 13209

Validation 5 1776 1295

Test 8, 11, 15 5328 4736

4.5.2 Implementation Details

All the models used in this project were developed offline, with the collected data, using the Tensorflow

and Keras DL library on a Python environment. The DL models were trained, in most of this work, on a free

Google Colab instance 1 with the following hardware specifications: GPU: 1x Nvidia Tesla T4 (16GB VRAM);

CPU: Xeon Processor @2.3GHz (1 core, 2 threads); RAM: 12.6 GB; Disk: 33 GB; This instance is also

limited to 8H of continuous use, time after which it gets recycled. In the final stages, final experiments

and approaches were trained in a computer with the following hardware specifications: GPU: 1x Nvidia

GeForce RTX 3080 Ti/PCle/SSE2; CPU: Intel(R) Core(TM) i9-10940X @3.3GHz (14 core, 28 threads);

RAM: 65,5 GB.

Reasonable hyperparameters were extracted from literature that tackles similar tasks andmodels ([14]

for single-frame classification and [85] for segmentation). The following tables denote the hyperparameters

used for segmentation (Table 4.2) and single-frame classification (Table 4.3). The initial learning rate is

decayed by 50% until a minimum of 1e−4, if the training loss does not improve within 4 epochs. At the end

of the training, the best model was selected according to the validation f1-score or loss, for classification

and segmentation, respectively. Additionally, the training finishes earlier if these metrics stop improving,

after 30 epochs.

1https://colab.research.google.com/
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Table 4.2: Hyperparameters defined for the developed single-frame segmentation algorithms

Parameters

Window Length 4 frames

Loss Function Binary Cross-Entropy

Optimiser Adam

Batch size 16

Epochs (shuffled) 100

Initialiaser He normal

Learning rate 1e−4

Data Augmentation None

Callbacks Checkpoint and Early Stopping (metric = val_loss)

Table 4.3: Hyperparameters defined for the developed single-frame classification algorithms

Parameters

Window Length 4 frames

Loss Function Categorical Cross-Entropy

Optimiser Mini Batch Gradient Descent with Nesterov momen-

tum

Batch size 64

Epochs (shuffled) 100

Number of frozen layers* 16

Learning rate - Momentum 0.001 - 0.9

Data Augmentation Width and Height shifts = 15, Zoom = 0.2, Brightness

= [0.75,1.25], Contrast = [0.75,1.25], Gaussian Blur

= [(3,3), (5,5)]

Callbacks Checkpoint, Reduce LR on Plateau and Early Stop-

ping (metric = val_f1_score)

* only applicable in the segmentation-classification approach

Table 4.4 presents a brief summary of the number of parameters for each one of the proposed and

trained models.
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Table 4.4: Number of parameters for each trained model

Model Total Parameters Trainable Parameters Non-trainable Parameters

VGG16 14 731 588 14 724 164 7 424

ResNet-50 23 595 908 23 542 788 53 120

ResNet50 + attention 25 695 620 25 642 500 53 120

UNET 31 060 237 31 046 537 13 700

Adapted UNET 6 465 092 5 313 540 1 151 552

Transfer Learning

Facing small-sized training dataset problems, and specially its low variability caused by the cyclical

nature of the gait, transfer learning techniques were implemented, in order to improve performance.

As [29], the backbone weights of VGG16 and ResNet-50 classification models (see Section 4.2) were ini-

tialised to the weights of these same state-of-the-art networks pre-trained on the general object classification

benchmark, ImageNet [86], towards accuracy maximisation, while using large amounts of computational

resources, which trains the models to detect and produce general features.

In the segmentation-classification approach, the UNET encoder’s weights of the classification model

were initialised with the ones learned in the previous training of the UNET model for segmentation. The

classifier’s convolutional layers were here initialised with the He normal function.

4.5.3 Key-Performance Indicators

Classification

According to the literature, the models were evaluated using commonmetrics for classification, namely

Accuracy, Precision, Recall and F1-score [29] [14]. These metrics are defined in the equations below,

including True Positives (TP), True Negatives (TN), FP, FN and n, which stands for the total number of

classes (in this case, 4).

Macro Accuracy =
n∑

i=1

TPi + TNi

TPi + TNi + FPi + FNi

(4.1)

Macro Precision =
1

n

n∑
i=1

TPi

TPi + FPi

(4.2)

Macro Recall =
1

n

n∑
i=1

TPi

TPi + FNi

(4.3)
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Macro F1-score =
2 ∗MacroPrecision×MacroRecall

MacroPrecision+MacroRecall
(4.4)

Segmentation and Grad-CAMs evaluation

For segmentation and grad-CAMs quantitative evaluation, the metrics were computed between each

segmented image or grad-CAM heatmap (generated through the algorithm described in [31]) and the

respective GT mask. Mean Intersection over Union and Dice are common evaluation metrics for semantic

image segmentation and the respective formulas are shown below, where n here equals to 2 classes, one

for the background and another for the foreground.

Mean IoU =
1

n

n∑
i=1

TPi

TPi + FPi + FNi

(4.5)

Mean Dice =
1

n

n∑
i=1

2× TPi

(TPi + FPi) + (TPi + FNi)
(4.6)

Note that the grad-CAMs are computed over the model’s last convolutional layer, following [31], and

their evaluation algorithm computes the mean metrics over all the inputs of the dataset. This evaluation

is performed only on the validation and test sets.

Real-time (Online) simulations

Inspired by [32], OAD metrics were developed to better evaluate the performance of the real-time

simulations, such as IA, IP, wIA and cIP. These evaluate the model’s performance as the frames are

acquired, without having to wait to an unknown end. Additionally, wIA and glscIP conditions the value of

a true observation (TP and TN) to the total negatives vs. total positives ratio (w), which is dynamic and

always based only on the seen portion of the video. These are represented in the following equations,

were t corresponds to the time instant, NC to the number of classes and TP, TN, FP and FN refer to the

seen true/false positive/negative observations overall classes.

IA =
t∑

j=1

TPj + TNj

t×NC
(4.7)

IP =

∑t
j=1 TPj∑t

j=1 TPj + FPj

(4.8)

wIA =
w ×

∑t
j=1 TPj +

1
w
×

∑t
j=1 TNj

t×NC

(4.9)

cIP =
w ×

∑t
j=1 TPj

w ×
∑t

j=1 TPj +
∑t

j=1 FPj

(4.10)
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Results

The proposed approaches are evaluated in the following sections, starting from approach 1: baseline

CNN models (Section 5.1.1) and approach 2: the attention mechanism (Section 5.1.2) for single-frame

classification; to approach 3: the segmentation-classification framework (Section 5.2). The influence of

various types of input is studied and the classification models evaluated in two aspects: i) the accuracy

of the predicted labels; ii) the grad-CAMs’ heatmaps similarity with the GT masks. Although the common

practice dictates that test results should not be considered in the choice of the best approach, in this work

the validation set has less variability and samples than the test set and so, to build up a more consistent

opinion, both datasets were considered in the following evaluations of each model.

5.1 Single-frame Classification Framework

5.1.1 Baseline Models

Training VGG16 and ResNet-50 architectures (Section 4.2.1) with each developed input, computed

from the acquired dataset, resulted in the training curves presented in Figure 5.1. As one can see, the

overall curves are stable and with no signs of overfitting, reaching good results. It is noticeable that

ResNet-50 learned faster and provided some gains in loss and accuracy.
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(a) VGG16. (b) ResNet-50.

Figure 5.1: Accuracy and loss training curves for VGG16 and ResNet-50 models.
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Table 5.1 presents the validation results, as well as the training time, of the VGG16 (Figure 4.3) and

ResNet-50 (Figure 4.4) classification models for each type of input (i) DIF, ii) cropped DIF, iii) ADD and iv)

cropped ADD). All the models were trained in 100 epochs.

Table 5.1: Validation results of the VGG16 and ResNet-50, as well as the training time for 100 epochs

Input Type Crop ACC (%) Loss F1-score (%) Precision (%) Recall (%) Training Time (h)

VGG16

DIF False 97.02 0.13 96.80 97.38 96.23 4.45

DIF True 94.76 0.16 95.02 95.66 94.37 4.47

ADD False 95.50 0.14 96.28 97.79 94.82 4.44

ADD True 94.48 0.18 94.53 94.99 94.03 4.54

ResNet-50

DIF False 98.42 0.08 98.27 98.52 98.03 4.45

DIF True 94.37 0.16 94.34 95.24 93.47 4.47

ADD False 96.34 0.12 96.26 96.65 95.83 4.44

ADD True 94.87 0.14 95.76 97.05 94.48 4.46

Concerning the classification task, it is evident that the ResNet-50 model outperforms the VGG16, ex-

cept for the cropped DIF input. Cropping the images interferes with the model’s outcomes, increasing the

loss and the training time, while decreasing the remaining metrics. The DIF revealed here a better perfor-

mance, followed by the ADD input, which was only worst by an overall maximum margin of approximately

2%.

The test results are illustrated by the confusion matrices shown in Figures 5.2 and 5.3. Table 5.2

reveals the percentage of wrongly classified test frames.

Table 5.2: Percentage of wrongly classified frames in the test set, by the VGG16 and ResNet-50 models

Input Type Crop VGG16 ResNet-50

DIF False 3.79% 2.06%

DIF True 6.31% 4.97%

ADD False 2.49% 1.16%

ADD True 4.34% 3.57%
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Figure 5.2: Confusion matrices for the VGG16 model over the four types of input.

According to Table 5.2, the higher ability for correctly classifying the test set images was registered by

the ResNet-50 model and the ADD input was easier to classify for both models (2.49% and 1.16% of wrongly

classified ADD test images, for VGG16 and ResNet-50, respectively). Once again, the cropped inputs

showed worse performances, which can also be inferred by the comparison of the confusion matrices.

Nonetheless, these matrices show very good results, overall classes and inputs.
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Figure 5.3: Confusion matrices for the ResNet-50 model over the four types of input.

When evaluating the grad-CAMs focus, for the validation and test subsets, the following results were

obtained (Table 5.3).

Table 5.3: Quantitative evaluation results of the validation and test grad-CAMs, when predicting with the VGG16

and ResNet-50 models

Validation Test

Input VGG16 ResNet-50 VGG16 ResNet-50

Type Crop
Mean

Dice (%)

Mean

IoU (%)

Mean

Dice (%)

Mean

IoU (%)

Mean

Dice (%)

Mean

IoU (%)

Mean

Dice (%)

Mean

IoU (%)

DIF False 16.16 9.10 29.06 17.70 17.18 9.64 26.01 15.84

DIF True 22.57 13.44 32.09 19.67 26.39 15.91 28.38 17.21

ADD False 20.19 11.4 22.09 13.36 20.99 11.94 16.93 9.95

ADD True 28.34 16.84 32.13 19.89 28.62 17.18 29.37 17.86

Contrarily to the quantitative classification results, here the cropped inputs present better focus, mean-
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ing a higher similarity between the model’s grad-CAMs and the GT human body masks. In average, crop-

ping part of the background from the inputs increased these Mean Dice and Mean IoU metrics by 5.26%

and 2.50%, for the DIF input, and by 9.57% and 6.28%, for the ADD input, respectively. The cropped

ADD input revealed better grad-CAMs focus, achieving its best results with the ResNet-50 model. This

model showed an overall average boost of 17.82% in Mean Dice and 13.02% in Mean IoU metric, when

compared to the VGG16.

5.1.2 Attention Mechanism

Taking into consideration the superior results obtained by the ResNet-50 model (5.1.1), a channel-wise

attention mechanism was added to this model, according to approach 2 (Figure 4.5), and its influence

is evaluated in this Section. Figure 5.4 shows the obtained training curves.

Figure 5.4: Accuracy and loss training curves for ResNet-50 model with an attention mechanism.

Table 5.4 presents the results achieved by this model, when evaluated in the validation set, as well

as the training time and number of epochs.
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Table 5.4: Validation results of the ResNet-50 model with a channel-wise attention mechanism, as well as the

training time and number of epochs

Input Type Crop ACC (%) Loss F1-Score Precision (%) Recall (%)
Number

of epochs
Training Time (h)

DIF False 99.04 0.03 99.03 99.04 99.04 71 2.93

DIF True 98.31 0.05 98.32 98.37 98.25 67 2.76

ADD False 99.38 0.03 99.39 99.38 99.38 94 3.86

ADD True 99.61 0.03 99.61 99.61 99.61 100 4.17

It can be seen that these results show a significant improvement compared to the baseline ResNet-50

model (Table 5.1), specially for the cropped inputs and even when training with less epochs. Adding the

channel-wise attention mechanism increased the f1-score by 3.98% and 3.85%, for the cropped DIF and

ADD inputs, respectively. Note that the different number of epochs presented in Table 5.4 (from 67 to

100 epochs) is due to the early stop of the training, when the validation f1-score stopped improving.

Comparing Table 5.5 with Table 5.2, it is also noticeable that this model enhanced the classification

performance over the unseen test set. With attention, the percentage of wrong predictions by the ResNet-

50 model decreased from 3.57% to 0.64%, for the cropped ADD input. Once again, the ADD input type

stood out, not only in the test results (0.71% and 0.64%), but in validation as well (f1-score of 99.39% and

99.61%, for non-cropped and cropped inputs, respectively).

Table 5.5: Percentage of wrongly classified frames in the test set, by the ResNet-50 model with an attention

mechanism

Input Type Crop Wrong predictions (%)

DIF False 0.68

DIF True 2.38

ADD False 0.71

ADD True 0.64

Figure 5.5 presents the confusion matrices obtained for the test set. These matrices reveal excellent

results, specially for the STOP and TL classes, where the TP rate was never lower than 0.99. The cropped

DIF was the least favoured input by this architecture, with the lowest TP rate for the WALK class (0.93).
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Figure 5.5: Confusion matrices for the ResNet-50 model with attention, over the four types of input.

Table 5.6 reveals the results obtained from the evaluation of this model’s focus. When comparing them

with the baseline model’s results (Table 5.3), it is noticeable that the attention mechanism improves, even

if just for a little margin (< 5.3%), the focus of the ResNet-50 for every input. The greatest improvement was

recorded by the non-cropped ADD, corresponding to 4.21% and 5.21% in Mean Dice values, for validation

and test, respectively. However, this one still lead to lower metrics than the non-cropped DIF input, as the

latter achieved Mean Dice values higher by 4.07% (validation) and 7.83% (test) than the non-cropped ADD.

Contrarily to previous results, cropped DIF attained the higher similarity between their GT masks and the

grad-CAMs obtained from the ResNet-50 model with attention. Nonetheless, the difference relative to the

cropped ADD is not significant (not higher than 1.11% in Mean Dice).
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Table 5.6: Quantitative evaluation results of the validation and test grad-CAMs, when predicting with the ResNet-50

model with an attention mechanism

Input Validation Test

Type Crop Mean Dice (%) Mean IoU (%) Mean Dice (%) Mean IoU (%)

DIF False 30.37 18.59 29.97 18.50

DIF True 32.90 20.04 32.38 19.76

ADD False 26.30 15.99 22.14 13.07

ADD True 31.79 19.21 32.30 19.60

5.2 Segmentation-Classification Framework

5.2.1 Segmentation

UNET model’s segmentation power over the different forms of input proved itself sufficiently good for

its purpose in this dissertation, which is initialising the weights of its encoder for a classification task, in

order to study if this could lead to more human-centred extracted features. The results confirming this

statement are shown in Table 5.7, where the presented values of Mean IoU are in line with the ones found

in the literature [84].

Using weights pre-trained with the acquired WALKit dataset to train the classification model can already

induce a lower power of generalisation. As shown in Figure 5.6, the training was shortened to 30 epochs,

for every input, since the segmentation revealed itself as an easy task, prompt to a little overfitting in a

longer training, which could compromise even more the generalisation ability of the following classification

model (Section 5.2.2).

Table 5.7: Validation results of the UNET model, as well as the training time for 30 epochs

Input Type Crop ACC (%) Loss Mean IoU (%) Mean Dice (%) Training Time (h)

DIF False 98.80 0.02 44.74 95.17 1.37

DIF True 98.36 0.03 42.03 95.51 1.37

ADD False 98.94 0.02 86.39 96.23 1.38

ADD True 98.57 0.03 41.83 96.18 1.37
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Figure 5.6: Accuracy and loss training curves for segmentation.

To help visualise this model’s segmentation ability, Figures 5.7, 5.8, 5.9 and 5.10 show the best and

worst cases of segmented test images, for each type of input, based on computed similarity values between

the GT mask and the respective segmented image. Note that, for the cropped ADD, the segmentation of

the human body was very satisfactory, even in the worst case, although including some noise. Contrarily to

this, the other inputs revealed occlusions as the apparent main factor behind a worse segmentation. The

quantitative test results shown in Table 5.8 indicate that the cropped ADD images were better segmented

by this model, followed by the non-cropped ADD, cropped DIF and, finally, non-cropped DIF images.

Table 5.8: Evaluation results of the UNET segmentation model over the test set

Input Type Crop Mean IoU (%) Mean Dice (%)

DIF False 88.43 93.74

DIF True 89.95 94.65

ADD False 90.83 95.09

ADD True 92.15 95.88
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(a) RGB input. (b) GT mask. (c) Segmented image.

Figure 5.7: Examples of the best (upper) and worst (lower row) cases of segmented images, along with the

respective non-cropped DIF inputs and labels.

(a) RGB input. (b) GT mask. (c) Segmented image.

Figure 5.8: Examples of the best (upper) and worst (lower row) cases of segmented images, along with the

respective cropped DIF inputs and labels.
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(a) RGB input. (b) GT mask. (c) Segmented image.

Figure 5.9: Examples of the best (upper) and worst (lower row) cases of segmented images, along with the

respective non-cropped ADD inputs and labels.

(a) RGB input. (b) GT mask. (c) Segmented image.

Figure 5.10: Examples of the best (upper) and worst (lower row) cases of segmented images, along with the

respective cropped ADD inputs and labels.

5.2.2 Single-frame classification

Training the adapted UNET for classification (Figure 4.8), initialised with the best weights obtained

from the segmentation training and freezing 16 layers of the pre-trained UNET encoder, led to significant

gaps between training and validation losses (Figure 5.11). This gap was lower for the DIF input type,

specially the non-cropped one.
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Figure 5.11: Accuracy and loss training curves for the adapted UNET model for classification.

Table 5.10 presents the validation results, as well as the training time for 100 epochs, for every input.

The number of epochs was kept constant across all the classification models trained in this dissertation.

Table 5.9: Validation results of the adapted UNET classification model, following the segmentation task, as well as

the training time for 100 epochs

Input Type Crop ACC (%) Loss F1-Score Precision (%) Recall (%) Training Time (h)

DIF False 94.09 0.16 94.14 94.29 93.92 4.48

DIF True 93.47 0.17 93.36 93.70 93.02 4.53

ADD False 90.82 0.24 91.08 92.07 90.23 4.49

ADD True 92.79 0.27 92.69 93.08 92.34 4.43

In the validation, the DIF input attained the best results, with f1-score values of 94.14% and 93.36%

for non-cropped and cropped, respectively.

Details on the evaluation of this model in the test set can be seen in Table 5.10 and Figure 5.12.
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Table 5.10: Percentage of wrongly classified frames in the test set, by the adapted UNET classification model,

following the segmentation task

Input Type Crop Wrong predictions (%)

DIF False 4.71

DIF True 7.94

ADD False 3.19

ADD True 3.98

Figure 5.12: Confusion matrices for the adapted UNET classification model, following the segmentation task, over

the four types of input.

Contrarily to validation results, Table 5.10 shows a lower percentage of error for the ADD input, when

classifying the test images (3.19% and 3.98% for non-cropped and cropped, respectively). Moreover, when

observing Figure 5.12, it is perceptible that cropped ADD input achieved higher or at least equal TP rates
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than the other inputs, except for the WALK class (0.83), which was often confused with the STOP and TR

classes. It is important to remember that the test dataset comprises more data and subjects than the

validation one.

The quantitative evaluation of this model’s focus is presented in Table 5.11, where, once again, the

best results were achieved with the cropped ADD input (Mean Dice values higher than 27.89%).

Table 5.11: Quantitative evaluation results of the validation and test grad-CAMs, when predicting with the adapted

UNET model for classification

Input Validation Test

Type Crop Mean Dice (%) Mean IoU (%) Mean Dice (%) Mean IoU (%)

DIF False 19.48 11.01 16.94 9.43

DIF True 26.99 15.91 26.21 15.56

ADD False 21.21 12.08 21.68 12.57

ADD True 28.17 16.75 27.89 16.61

5.3 Real-Time Simulation

Comparing and analysing the exhibited results on the previous sections, one can infer that the best

classification performance, as well as the most relevant and human-centred focus, was achieved by the

ResNet-50 model with a channel-wise attention mechanism, fed with cropped ADD images (Section 5.1.2).

Therefore, this was the approach tested in real-time simulations, along with the post-processing technique

depicted in Section 4.4.1. Two examples are presented in this Section, corresponding to trials from

different test subjects, with different circuits and velocities: trial A) subject 11 performs a turn left at

0.5m/s (lowest gait speed); trial B) subject 15 performs a turn right at 1m/s (fastest gait speed). These

two trials also intend to represent two different levels of noise/uncertainty in the predictions.

Figures 5.13 allows the comparison, at each instant, between the online predictions (with and without

post-processing) and the GT classes, while Figure 5.14 shows the temporal evolution of the online metrics

described in Section 4.5.3. Table 5.12 shows the average values for these metrics, for each trial. Note

that these metrics were computed considering the final predicted classes (after post-processing).
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(a) Trial A. (b) Trial B.

Figure 5.13: Plot of the GT, predicted and post-processed predicted labels (Class IDs: 0=STOP, 1=WALK, 2=TR,

3=TL).

(a) Trial A. (b) Trial B.

Figure 5.14: Plot of the values of the online metrics described in Section 4.5.3

.

Table 5.12: Average of the online metrics, overall trial

Trial IA (%) wIA (%) IP (%) cIP (%)

A 95.86 93.10 91.72 97.08

B 97.92 96.39 96.04 98.65

Table 5.13 shows, respecting the trials’ temporal order, the delays between the post-processed label

and the GT one, for each action transition. Negative values represent classes predicted earlier than their

actual start.
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Table 5.13: Delays of the final predicted labels in relation to the respective GT labels, computed for each transition

of the circuit

Time delay (s)

Trial Walk Turn Walk Stop

A 1.80 0.80 0.00 -0.67

B 0.20 -0.20 0.27 0.27

5.3.1 Grad-CAMs visualisation

To better understand the model’s decisions and if these are based in human-centred features, the

grad-CAMs were computed for the ResNet-50 with attention. These can be visualised, in this section, for

the transitions in each of the trials in Figure 5.13.

Figure 5.15 presents the grad-CAMs visualisation for trial A, where the model’s predicted labels

correspond exactly to the post-processed ones. For the beginning of each class, the visualisation starts at

the first frame of that action (for delayed predictions) or at the first correct prediction (for early predictions,

as it is the case of the STOP class, in this trial) and ends at the first right prediction or first GT frame,

respectively. Note that these are not necessarily consecutive frames on the dataset, that depends on

the class’s delay registered in Table 5.13. Nonetheless, they serve as a good representation of the focus

evolution between the GT and its respective correct prediction (or vice-versa) and, for the delayed predicted

labels, it always include 2 immediately preceding frames.

The same applies to Figure 5.16, representing trial B. However, this trial presents more on-off noise in

themodel’s outcomes, specially in the transition fromwalk to turn (Figure 5.13b). Hence, these predictions

do not always correspond to the post-processed labels, so the latter was the one used to mark the start or

end frame of these visualisations. Moreover, in the two first presented classes, a frame immediately after

the correct post-processed prediction/GT label was added for purposes of focus evolution assessment.
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Figure 5.15: Grad-CAMs visualisation, temporally ordered, for each one of the transitions in the slow trial (trial A).

The green and blue labels correspond to the first prediction and GT label, respectively, of the action that is beginning

(P=predicted class).
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Figure 5.16: Grad-CAMs visualisation, temporally ordered, for each one of the transitions in the fast trial (trial

B). The green and blue labels correspond to the first prediction and GT label, respectively, of the action that is

beginning (P=predicted class). The orange ones correspond to the perturbations in the model’s predictions that

don’t correspond to the post-processed predicted class.

5.3.2 Inference time

The total inference time, using the chosen ResNet-50 with an attention mechanism and cropped ADD

input, was computed and averaged on a Google Colab instance (Section 4.5.2). The results are exhibited

in Table 5.14, where the preprocessing pipeline corresponds to the one in Figure 3.9 (Section 3.4.2),
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excluding the augmentation step, and the predicting time includes the model inference, followed by the

post-processing. It is noteworthy that the input computation corresponds to the addition of all the 4 frames,

being this procedure already included in the preprocessing pipeline.

Table 5.14: Average time to perform each task involved in inference, as well as the total average

ADD

Computation

Preprocessing

Pipeline
Predicting Total

Average time

per frame (ms)
5 35 26 61
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Discussion

Throughout this dissertation, several DL frameworks and architectures were proposed for early recog-

nising and detecting human motions from RGB camera streams. These were evaluated for the accuracy

of their predictions and the ability to focus the most relevant features of human legs and feet. Along the

Chapter 5, a ResNet-50 model with an attention mechanism was highlighted, due to its promising results

and thus its performance in real-time simulations, along with the inherent capacity of anticipating human

motions, was tested.

In the following sections, the obtained results will be discussed, as well as some limitations and

insights for possible improvements of the solutions presented in the previous chapters. The discussion

was divided into 5 sections, with the following addressed topics: i) data and acquired dataset (Section

6.1); ii) inputs attributes and their influence on the models’ performances (Section 6.2); iii) analysis and

comparison of models/approaches and the obtained results (Section 6.3); iv) adaptability of the best

approach in real-time scenarios (Section 6.4); v) general study considerations, as well as suggestions for

future research (Section 6.5).

6.1 Dataset

The acquisition method has some limitations, as described in Section 3.2. Firstly, the labels are not

completely accurate, due to the difficulty of marking consecutive walking events in real time, as well as the

bias introduced by the subject responsible for this procedure. For this reason, the model was not trained

with transitions, avoiding the risk of having mislabelled samples deceiving it. Secondly, although the use of

the smart walker in active mode avoids the unnatural gait pattern provoked by pulling the passive device,
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it also implies that a part of the transition step can be recorded while the walker is already performing

the next action. This is most critical in turning events and higher gait speeds, where, despite the user’s

interaction with the robot and the marked circuit, the visible changes that indicate the beginning of a turn

(variation in legs or feet orientations and positions) may be (partially) seen by the walker, when this one is

already turning. Hence, the resultant camera’s point-of-view and distance to the subject may be different

from the ones expected to be found in the real-time application, where the smart walker is still moving

straight until it is able to detect the turn. This also adds some background motion to the transition events,

which could influence the model, misleading it to look to this background movement.

Therefore, a more accurate labelling strategy is needed, capable of consistently marking the actions

in the correspondent toe-off and heal-strike events. A possible solution would be the use of Force Sensitive

Resistor (FSR) sensors in the user’s shoes, to register the foot contacts without failures (as occurred with

the Xsens). This would allow not only the inclusion of transitions in the offline training, but also the study of

the step(s) before the transitions to assess if there’s any information that would help anticipate the action.

The recording environment, although realistic, provided very few and identical scenarios, always pre-

senting a floor with stripes, which enhances the presence of background motion in the inputs and the

chances of this influencing the model’s focus. These factors led the model to focus more on background,

where relevant features were found. Furthermore, the uncontrolled light conditions lead to corruptions

in some depth images and thus in the GT masks used for segmentation and grad-CAMs evaluation, de-

creasing the dataset size for these tasks. This reduction is also enlarged by the impossibility of setting a

constant threshold value to only exclude the corrupted masks (Section 3.4.3), since clothes and heights

vary across the participants, leading to the removal of perfectly fine masks. Hence, a more controlled ac-

quisition environment, with a non-marked floor or too bright conditions, could attenuate these constraints,

as well as the use of typical and tighter clothes for rehabilitation during the acquisition.

Besides the lower size of the segmentation/grad-CAMs evaluation dataset, the masks may not be

perfectly computed, due to the depth corruption issue mentioned before. Even with the mask correction

algorithm (Figure 3.12), the user’s legs and feet outlines may not be completely correct, which can slightly

affect the segmentation and grad-CAMs evaluation outcomes.

It is also important to note that turning with the SW, specially for impaired subjects, is a slower

process, segmented in more and smaller steps. This increases the difficulty of turn detection, specially

when using only front-view vision-based inputs. Moreover, the steps or starting foot were not controlled,

which increases turns variability, but can include more subtle changes, for example, when the turn is

started with the ”inner foot” instead of the ”outer” one.
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Collecting data with the subjects always grabbing the device’s handles decreased the movement and

pose variability available for analysis, but it was consistent with its use in later stage rehabilitation sessions,

for balance and stability purposes.

6.2 RGB Input forms

Analysing the obtained results can help to better understand the properties and influence that the

different inputs inflict on the models’ focus and performances. In Table 5.3, one can see that cropping

the images helps to direct the focus to the ROI, as it excludes a significant portion of background. A

greater improvement was registered when cropping the ADD input, which confirms that this kind of input

includes more information about the background motion. This is also confirmed, by the fact that the

highest improvement rate in focus was achieved with approach 2, a ResNet-50 model with an attention

mechanism, with the non-cropped ADD input (Table 5.6).

In general, the cropped ADD input was the one which presented higher similarities between grad-CAMs

and GT masks, across models and evaluation datasets, raising the belief that ADD images also encode

more human body motion information.

In the presence of a model with attention, which aims to better learn the different discriminative powers

among features, both cropped inputs lead to higher and very similar grad-CAMs evaluation results (Table

5.6), showing that also DIF has a similar potential of guiding the model’s focus, when background motions

are duly mitigated and the algorithm properly models the different features importance.

The ResNet-50 model (with and without attention) verified a less relevant focus, when using non-

cropped ADD frames instead of an input with less encoded human motion (DIF). Also, the only time this

model attained a worse grad-CAMs evaluation than VGG16, was when their inputs were non-cropped ADDs

from the test set (Table 5.3), despite the lower rate of incorrect predictions (Table 5.2). Therefore, better

classification performances achieved by this input form are not so reliable.

From these comparisons, one can infer three aspects: i) backgroundmotionmay contain more evident

features, easier to extract, that can help the offline classification task. However, this should not be the

main focus of the model, as these features are not reliable for transitions, real-time applications or even

generalisations to other datasets, where the background is static; ii) dealing with inputs that encode more

overall motion information (non-cropped ADD), can deviate the model’s attention, which was the case

for the ResNet-50 model (with and without attention). So, a carefully performance evaluation is needed,

as better classification results can be associated with non-ideal feature extractions and overfitting to the
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background; and iii) despite not being a commonly used approach, cropping the inputs was a feasible

way to enhance the model’s focus and thus increased the reliability of the respective classification results.

Nevertheless, the higher registered improvement was not higher than 10%, although this can be related

to the floor characteristics discussed in Section 6.1.

One could argue that using depth data to preprocess the RGB frames, removing the background and,

therefore, isolating the user, should have also been considered and experimented. However, besides the

extra computation that this would require, depth images can be corrupted in non-controlled environments,

leading to corrupted masks (case in point for Figure 3.15). Introducing these failure cases would decrease

the model’s robustness and/or the size of the dataset.

Performing a comparison with the literature, state-of-the-art articles for action recognition/forecasting

(Table 2.3) normally use multiple RGB frames to provide the sense of temporal motion, while the proposed

inputs were able to provide (a significant part of) this information in one single frame. With a larger

background variability in the dataset, while carefully avoiding pavement marks during the acquisitions,

these tailored RGB inputs, with only one frame each, could become a more reliable method to induce

action-aware feature extraction.

6.2.1 Grad-CAMs evaluation algorithm

The developed grad-CAMs evaluation algorithm establishes a good comparison term between models

evaluated in the same dataset, as it used the same GT masks and inputs. It then computes the similarity

metrics between these binary masks and the respective grad-CAMs’ heatmaps, followed by the mean

computation overall frames. Nonetheless, there is an aspect about this method that can decrease the

overall metrics: GT masks present the highest score (1) for all the human area, but this region is never

equally important to the motion decoding. For example, feet and knees may present more orientation and

position variations which indicate the step’s direction, so it would be correct for the model to give higher

focus to these particular regions. For this reason, comparing heatmaps to these masks may be correctly

penalising FP, but it is also counting with smaller differences between TP that do not hold the highest

score in the heatmap, while this could not be entirely wrong. So the model can be focusing on human

pixels and still being a little penalised for it, in the final evaluation. Or it can be rightly and exclusively

extracting features from the feet, while still being penalised by not focusing on the rest of the legs, wrongly

considering these heatmap’s pixels as FN. The masks are already computed in the tightest ROI possible

to attenuate this effect, but it does not completely solve it.

A possible solution to overcome this limitation would be to convert the heatmap into a binary matrix,
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so the TP would never be penalised. However, this would still not be evaluating if the model is focusing

on the human areas with higher motion, while also attributing no penalisation to possible human motion

relevant regions with a heatmap score significantly lower than 1. It would also imply that the model should

focus on the whole foreground, which is not true. Therefore, a more reliable solution would be to change

the GT masks pixel values, according to the input images. Thus, as the higher pixel intensities in the

input correspond to motions with larger amplitudes, while the lower correspond to more static areas,

this information could be used to scale the scores equal to 1 in the GT masks, creating a sort of human

motion masks. An even more accurate form of information to scale these masks according to the body’s

amplitude of motion, would be the human poses, from the Xsens data, for example. Nevertheless, this

last option would unduly increase the computational expense and complexity of this algorithm.

Nonetheless, the most important is to not focus on the background, as perhaps it would be safer

to leave the foreground prioritisation criteria for the model to decide. So one could just evaluate the

percentage of FP. As part of future research, these two last suggestions could be experimented at the

same time to evaluate the model’s focus, while assessing the changes in the reliability of this evaluation

method.

6.3 Models performances

Baseline CNN models

Based on the results presented in Section 5.1.1, it is possible to infer that ResNet-50 performed better

than VGG16, achieving f1-score values between 94.34% and 98.27%. Hence, this problem benefited from

residual features, skip connections and deeper networks duly initialised or pre-trained. Nevertheless, the

difference between both performances was not that high (lower than 1.47% in f1-score), meaning that the

task of early recognising human walking motions from the WALKit SW dataset may also be approached

by less deep models. Not only this would reduce the number of parameters to train, but it could perhaps

extract more general features from images, improving the generalisation power, when increasing the

dataset’s variability [29].

ResNet-50 also presented better focus (maximum Mean Dice of 32.13%), when compared to the

VGG16. However, there was an exception: when dealing with a bigger evaluation set (test set) and with

non-cropped ADD inputs, this model extracted lesser human-centred features, achieving a Mean Dice of

16.93%, while VGG16 attained 20.99% (Table 5.3). As discussed in Section 6.2, the ADD corresponds

to the input form that encodes more motion information, from both background and foreground. So,
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this shows the tendency of the model to rely on background features, when these are more evident and

available. It also shows that sometimes better classification rates may be deceiving, as the model can be

supporting its decisions on the less relevant information.

Nonetheless, ResNet-50 achieved better classification and focus results, over the majority of the inputs

and evaluation sets, and was thus the chosen model to be tested with an attention mechanism (Section

5.1.2).

Channel-wise attention mechanism

The addition of the channel-wise attention mechanism enhanced, not only the classification metrics,

improving the f1-score by an average of 2.93%, but also the similarity between grad-CAMs and GT masks,

with improvements until 5.21% in Mean Dice, across all inputs. Only in the validation set, the model’s

focus associated with the cropped ADD input was slightly worse than the ones registered with the ResNet-

50 baseline model (see Tables 5.3 and 5.6). But, since this is the smallest evaluation dataset and the

difference is not significant (0.34% and 0.68% in Mean Dice and Mean IoU, respectively), these could be

due to small variations and, thus, were not considered as a relevant fact.

These results proved the importance of dealing and modelling the distinct learning abilities of the

different convolutional channels, not only to increase CNN performance, but also to improve the relevance

of the features extracted. However, the values presented in Table 5.6 are not that higher than the ones in

Table 5.3, specially for the cropped inputs, proving that: i) cropping inputs is effective when it comes to

decrease focus deviations, achieving improvements up to 9.57% in Mean Dice, for the baseline models;

ii) this channel-wise attention mechanism, although unequivocally beneficial to the classification task, still

does not completely correct its main focus, as the maximum value of Mean Dice was still 22.70% lower

than 55%.

Facing these facts, future research could integrate the design of a spatial attention mechanism to

tackle this problem, guiding the model to use intentional regions, instead of the whole frame. As in [70],

also enhancing local features by combining this with the channel-wise mechanism, could lead to better

performances and, in this case, more properly focused solutions. The spatial attention maps could even

be compared with the suggested human motion masks (Section 6.2.1) for focus evaluation or, in a more

bold experiment, as part of the model’s loss.

Nonetheless, this model stood out as the most promising one, while still preserving low complexity

traits, when compared to the literature on this topic (DL solutions for human action recognition or future

action prediction, see Table 2.3). While the state-of-the-art models commonly resort to LSTM layers or

84



Chapter 6. Discussion

3D-CNN, here the classification is performed with only one 2D-CNN model. When facing the need to

further reduce the model’s complexity, one could also add this attention mechanism to the VGG16 model,

without excessively compromising the final performance. Although the obtained results can be considered

as being in agreement with those presented in the literature, this is not a fair quantitative comparison,

since different evaluation protocols, including datasets, were used. Therefore, benchmark studies should

be performed in order to allow a more reliable comparison with these state-of-the-art approaches.

Segmentation-Classification approach

Looking at the segmentation training curves (Figure 5.6), one can see that, as the epochs advance,

there is a slightly growing tendency for overfitting. Although apparently small, this can propagate to the

following pre-trained classification model and induce bad generalisation abilities or even worse cases of

overfitting. That’s why the segmentation training was shorten to 30 epochs and the weights were chosen

considering the minimal validation loss.

As for the examples of segmented images (Figures 5.7, 5.8, 5.9 and 5.10), it is visible that the worst

case always corresponds to the same subject who was wearing very large pants, when compared to the

best segmented cases. This confirms the disadvantages of not controlling the wardrobe, during data

acquisitions.

Despite the training reduction, the adapted UNET still revealed problems of bad generalisation (Figure

5.11). The severest cases of unrepresentative training datasets and consequent generalisation issues

were verified by the ADD input type and these cases are associated with lower validation performances,

namely 92.69% (cropped) and 91.08% (non-cropped form) of f1-score (Table 5.9). Nevertheless, when

observing the test results (Table 5.10 and Figure 5.12), these inputs attained and even surpassed the DIF

ones. This points out to the need of implementing cross-validation in future assessments, as the validation

set may not be representative enough.

When connecting the segmentation (Tables 5.7 and 5.8) and classification results, the ADD input

type appears as the easiest to segment, showing the highest values of Mean IoU and Mean Dice, for

both validation (86.39% and 96.23%, with the non-cropped form) and test sets (92.15% and 95.88%, with

the cropped form). However, it also appears to have led to worst cases of weak generalisation (Figure

5.11). Contrarily, the non-cropped DIF images achieved the worst segmentation Mean Dice, across the

two evaluation datasets (95.17% and 93.74% for validation and test, respectively), which lead to a smaller

gap between loss curves (Figure 5.11). So, it seems to exist an inverse relation between segmentation

power and the classification’s generalisation ability. This may mean that this cascade approach is leading
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the model to focus on input traits that are not representative of the whole dataset, following the overfitting

problems during segmentation.

Nevertheless and as mentioned before, for one to be completely sure about this last statement, cross-

validation should be performed, in order to avoid low representative validation datasets. Still, the focus

on particular traits may be associated with the fact that, despite the final aim of human motion decoding,

the GT masks used are leading to the segmentation of the whole body, including large clothes and static

human areas. Therefore, using the mentioned human motion masks as labels (see Section 6.2.1 for

details) would decrease the chances of overfitting, while pursuing the differential segmentation of the

human body, according to its motion. This could enhance the weights used to pre-train the classification

model. Other options to help overcoming the overfitting problem consist on experimenting other simpler

segmentation models or even include spatial data augmentation. Moreover, the number of frozen layers

should also be studied and tuned.

Once again, a fair comparison with state-of-the-art classification models cannot be established. It

can only be inferred that this adapted UNET model has a few less parameters than the Y-Net [84], while

the latter presents residual convolution blocks and is jointly trained for both tasks. Hence, as pointed

out before for segmentation, overall less complex architectures could be tested, in an attempt to reduce

overfitting and increase the reliability of the classification results.

In agreement with the training curves (Figure 5.11), the classification metrics were worse than the

ones achieved by previous evaluated models, as the maximum f1-score was of 94.14% (Table 5.9), which

is lower than the minimum registered for the previous models (94.34%, for the baseline ResNet-50, shown

in Table 5.1). Nevertheless, these metrics were still above 90%. As for the grad-CAMs evaluation (Table

5.11), this approach was not able to significantly increase their similarity with the human masks, as its

results were not so different from the ones obtained by VGG16 (Table 5.3). Moreover, it attained even

worse results than ResNet-50 mode, without (Table 5.3) and with attention (Table 5.6). The only exception

was the non-cropped ADD input in the baseline ResNet-50 model, which lead to worse focuses than in

VGG16 and in this adapted UNET. This may raise the possibility of these simpler classification models

being able to ignore a little more the excess of background motion information (for example, the small

stripes movements). Nonetheless, it does not provide evidences that this segmentation is helping to guide

the classification model’s focus, since this difference between results seems to be mainly influenced by

the input properties, for their lower values and resemblance to the VGG16 ones. Therefore, it is safe to

say that the segmentation-classification approach was not the most effective approach when attaining its

main goal: improving the extraction of human-centred features to distinguish between actions.
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6.4 Real-Time Simulation

The ResNet-50 model with a channel wise attention mechanism was the best model in both aspects:

classification rates and focus relevance, specially when fed with the cropped ADD input. Testing this

approach in real-time simulations lead to good performances, with the model being capable of identifying

the different consecutive walking events. In some trials, such as trial B (Figure 5.13b), the model’s

outputs revealed its uncertainty in the form of on-off noise. This was shown to be easily corrected by post-

processing. Besides not adding significant computations, the implemented post-processing technique

(Section 4.4.1) matched the action beginnings marked by the predicted labels, not increasing the delay

inherent to the model’s decision making process, which is the usual disadvantage of post-processing

implementation.

Every trial starts with online metrics of 100%, since the model can easily detect the STOP class.

Nonetheless, as the trial proceeds, these values drop, specially in transition frames, due to the delays

registered between the predictions and the GT classes. These metrics recover during the action, achieving

averages higher than 90% (see Figure 5.14 and Table 5.12). Despite not presenting any noise, due to its

higher delays, trial A achieved lower metric values (average IA and IP of 95.86% and 91.72%, respectively),

when compared to the post-processed predicted labels in trial B (average IA of 97.92% and IP 96.04%).

The beginning of each class is normally predicted later than the actual GT, but the registered delays

were not that high ([0.0, 1.8]s). For the trial performed at 1m/s, the delays are at least 0.37s lower than

the average step time for this gait speed (0.64s) 1. Considering the inference time of 61ms (Table 5.14),

the complete procedure to early detect an action, since the raw input until the first correct post-processed

prediction, ends before that class’s initial step is complete. However, this should be tested on WALKit SW,

since the inference time on its computer can be higher, given its computational resources (Section 4.5.2).

The delays were higher for slower gait speeds (0.5m/s), as one can see in Table 5.13. Turning with

the SW is already more subtle, as the described curve is wider. For lower velocities, the variations are

even less evident, as the turn is segmented in more smaller steps. Hence, it was expected that the delays

would increase with the decrease of gait speed, specially since this model was not trained with transitions

(see Section 3.3.2). The average step time for walking at 0.7m/s with the WALKit SW corresponds to

0.77s (approximately), so the time lags were lower than the expected time step for 0.5m/s, except for the

first WALK action (delay of 1.8s). For the TL action, the delay of 0.80s is at least equal to this time step.

Overall, the results prove that the chosen approach is suitable for early action recognition, achieving

1Determined in laboratory experiments
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average online metrics between 91.72% and 98.65%. However, this still needs improvements before being

applied for early action detection, as it can be seen by the model’s performances at the transition inputs.

Nevertheless, the time lags were not so critical, ranging from -0.67 to 1.80s, so perhaps with a proper

training procedure that includes transitions in the dataset, this performance could be enhanced.

6.4.1 Grad-CAMs visualisation

The displayed grad-CAMs showed that the model focus is not too deviated from the human region,

but it still considers some background information, specially the visible motion of the floor stripes.

For example, in Figure 5.16 (last row), the stop detection was delayed, as the walker kept moving

after the subject stopped. So the model must have considered the stripes and the large clothes motions,

instead of the human’s steadier positions. As the device decelerates, this background motion became

less evident and the model started to focus on the user’s feet. In the slow trial, this deceleration phase

is shorter and slower, so the background motion stopped appearing in the RGB inputs before the human

movement did, allowing the model to better perceive the feet becoming more steady and closer to each

other (last row of Figure 5.15). This situation is similar to the beginning of the first walking event at low

gait speed (first row), where the walker starts to slowly accelerate, so the background appears static, and

the feet move slowly and closer to each other, leading to a confusion between STOP and WALK classes.

The turning event was anticipated in trial B, which seemed like a good achievement of MI decoding.

Nonetheless, looking at the respective grad-CAMs (second row, in Figure 5.16), one can see that this class

was first predicted based on the vertical misalignment between the floor stripes. This helps to visualise

and understand the confusion and model’s uncertainty between these two classes (WALK and TR/TL).

Likewise the trial A (second row, Figure 5.15), the model’s turn predicted label only stabilised closer to

the end of this event’s first step, which is not ideal for a SW’s control purposes.

Another critical prediction, when controlling a SW, will be the walking straight event after a turn. If

this label is delayed, specially when moving at faster velocities, the walker will keep turning, leading to

undesired and non-controlled trajectories. In the slow trial, this class was early detected in time (relatively

to the GT label), but in the faster one, where this issue is more critical, it was only detected at the end of

the first step of the walking action (third rows, Figures 5.15 and 5.16, respectively). However, in the latter

case, the right foot appears to be pointing right, which can be deceiving even for humans. People with

feet rotational disorders can thus mislead the model.

Although the chosen trials are representative of the test set, corresponding to different conditions and

extreme cases, one could perform more simulations with other trials and subjects to better evaluate the
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general focus and time delays inherent to the model’s performance. These visualisations showed that

the model’s focus still needs to be improved in transitions, in order to be implemented as a real-time

control mechanism. In that situation, the subject will be giving the motion intention before the walker

starts to perform the respective action, so the background motion, specially the stripes movement, will

not be present at that time, since this is a consequence of the SW’s movement.

6.5 General Considerations and Future Research Suggestions

Instead of using only train/test split, cross-validation should be implemented during the training phase,

to assure more certainty about the model’s performance and better sustain the choice of the most suitable

approach, using the test set only for final evaluation purposes.

Observing the confusion matrices and the real-time simulations plots, one can perceive than the STOP

class is perfectly distinguished from the other ones. Walking straight is though confused with turn events,

as they both present background motion and similar leg and feet positions, since the turnings present more

subtle human body variations, when executed with a walker and visualised only in a front-view perspective.

Thus, this algorithm would be perfectly suited for a two-class application, distinguishing between STOP

and WALK.

Inspired by [14], this dissertation also attempted to explore action-aware features, but instead of

deploying more complex models (two CNN branches and 2-stage LSTM), here different forms of RGB

input were designed, as well as approaches to orient the model’s focus to the human body region, while

the grad-CAMs were only used for focus evaluation purposes. All of these solutions were developed,

aiming less complex architectures, lower computational times and the ability to be implemented in online

applications. It is common to find in the literature special designed losses to enhance the early action

detection or action anticipation tasks (Section 2.3.3). Although the scope of this dissertation was directed

to tailored inputs and mechanisms to enhance a human-centred feature extraction, tailored losses could

also be tested in the future, specially if these methods still leave room for time delays reduction and thus

improvement of the model’s early detection ability.

Although encoding relevant motion information, the DIF and ADD inputs share a common disadvantage

with the optical flow (OF): in realistic videos, where there is usually camera motion, these forms of input

can also encode background movement and may not concentrate on the human action. This may help

identifying ongoing actions, but deceives the model with non-relevant features, when predicting transitions

or future actions.
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Despite all the tests and designed approaches, a mainly action-aware feature extraction was still not

achieved. Therefore, to improve the features relevance, self-supervised learning techniques (for example,

the contrastive embedding method [87][88]) could be explored, in order to learn good representations

of the input that could be then used in a supervised learning task. Nevertheless, these architectures are

more complex, requiring large amounts of data (specially, a large number of negative samples) and more

computational resources. Moreover, self-supervised learning is still being explored on the continuous world

(for images, videos, among others), so this would require a literature review on this topic, along with the

collection of more data.
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Conclusion

In this work, a novel vision-based DL solution was developed to tackle two problems at the same time:

human motion decoding and early action detection. It was able to understand the walking event tacking

place, by only seeing small windows (length of 4 frames, with stride of 2) of lower body RGB streams

recorded by the WALKit SW. The solution is adaptable to real-time scenarios and thus capable of, with

further improvements, integrate a human-in-the-loop control strategy to drive the SW. The developed work

was based and inspired in an extensive literature review on MI decoding algorithms in SWs, as well as

action recognition and forecasting with vision-based DL models. This helped to understand the so far

implemented techniques and inherent limitations, providing insights about the promising approaches that

could be implemented and the areas more prompt to innovation and enhancement.

Custom modules for acquisition, including protocols, an automatic trajectory mode to automatically

drive the walker and a real-time automatic labelling procedure, were devised to collect data in realistic

scenarios and circuits, without modifying people’s natural gait and while promoting their interaction with

the front-following robot and the defined trajectories. A dataset of 15 healthy adults was then acquired,

with 24 trials per subject, each one containing three of the target classes (STOP, WALK, TR/TL). From this,

a balanced dataset of frames was created to finally train, evaluate and compare the proposed approaches,

with a total of 28800 RGB images.

A novel method to quantitatively evaluate the model’s focus was designed, where the model’s grad-

CAMs, for each input, are computed and compared with the respective GT masks. Since this dissertation

aims to recognise the user’s motion intent from RGB frames, assessment of the model’s ability to enhance

and use mainly local relevant features, i.e. from human motion, is of high importance.

Multiple approaches, including designed motion-encoding RGB input forms and several model archi-
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tectures, were trained and evaluated in the WALKit SW acquired dataset, achieving, in general, good

classification performances (with accuracy and f1-score higher than 90%). The best results were obtained

by a ResNet-50 model with a channel-wise attention mechanism, fed with cropped ADD images, reaching

a f1-score and accuracy of 99.61% and over 30% of Mean Dice between the model’s grad-CAMs and the

GT human masks. This was the input form that lead to the best results, as it is capable of encoding more

motion information, while the cropping procedure removes the extra undesired background features.

This final model was tested in real-time simulations, achieving good performances as well, with mostly

small delays in the predictions and high online metrics (average wIA > 93% and average cIP > 97%).

This performance was possible through the implementation of a post-processing technique able to reduce

the model’s uncertainty, while not introducing time lags in the decision process. Therefore, the registered

delays are completely inherent to the model’s performance and focus, both consequences of the learning

procedures and dataset details.

Promising results were obtained to early detect human motions. However, a more accurate labelling

procedure and a higher control over the acquisition environment (specially, the absence of floor marks)

is essential to train the model with accurately marked transitions, as well as learning weights that do not

overfit to the background motion. This would enable a more reliable evaluation of the model’s performance

and its focus during transitions, while prompting the extraction of more human-centred features. With these

enhancements, the final solution could be further assessed, improved (if necessary) and integrated in the

WALKit SW.

The presented work allowed to obtain answers for the addressed Research Question (RQs):

RQ 1: How to acquire data with the SW, without significantly disturbing the subject’s

gait and with a sufficiently accurate automatic labelling procedure?

An automatic trajectory mode to automatically drive the SW was proposed, removing the need for the

subject to pull the device and thus promoting more natural gait patterns and motion intentions. This active

mode allowed to use the walker’s velocity information, as well as the joystick signals to create real-time

labels focused on the walker’s motion and the user’s motion, respectively. The Xsens MTw Awinda system

also contributed to these labels correction.

RQ 2: Which inputs can be applied to the DLmodels that entail a low computational load,

while encoding the human motion?

Thanks to the front-following action performed by the WALKit SW, the camera moves along with the

subject who is grabbing the device’s handles, assuming a stable centred region in the camera’s field of

view. This allowed the creation of perceptible RGB single-frame inputs, encoding the motion information
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along a window of frames. By adding and subtracting the present and past images, one can see the

evolution of feet and legs positions and orientations in only one frame, discarding the use of RNN. Moreover,

results suggest that the ADD input encodes more motion information.

RQ 3: How can one improve the model’s focus, leading it to mainly extract relevant

features from the input’s human body region?

Cropping most part of the background surrounding the image’s ROI proved to have a major impact on

the model’s focus, directing it to the human region of motion. Adding an attention mechanism to the model

proved effective as well, so the combination of both lead to the extraction of more human-centred features.

This can be assessed during the evaluation process, through grad-CAMs computation and their comparison

with the respective GT human masks. Nevertheless, the maximum Mean Dice between grad-CAMs and

GT masks was only 32.30%, meaning that the designed approaches were still not enough to raise the

human-centred focus percentage over 50%, at least. Part of these results is assumed to be derived from

dataset conditions, such as the constant presence of floor stripes, enhancing the background motion and

consequent overfitting, but also from the grad-CAMs evaluation algorithm limitations (see Section 6.2.1).

RQ 4: Which DL framework produces best results on early detecting the human motion

considering a small window of the action?

A ResNet-50 model with a channel-wise attention mechanism, fed with cropped ADD inputs computed

from a sliding window approach of length 4, attained the most promising results (offline accuracy and

f1-score higher than 95%). Nevertheless, the model’s focus is still being deceived by the background

motion derived from the walker’s active mode, when acquiring the dataset (Mean Dice lower than 33%).

This is critical when early detecting the motion’s beginnings and it was also prompted by the lack of

reliable action transition frames in the training dataset. To have more certainty on the reliability of these

results, the model’s focus needs to be further improved, avoiding these background extracted features

that compromise its real-time performance, when transitioning between actions.

RQ5: How effective and robust is the proposed DL solution for real-time applications

towards a future human-in-the-loop control strategy?

Themodel’s focus still requires enhancements, to increase the solution’s reliability and possibly reduce

time lags inherent to a correct early detection, promoting a better real-time performance. The established

goals were fulfilled for fastest velocities, where online metrics surpassed 95% and time lags were much

smaller than the respective step time (< 0.64s at 1m/s). This confirms the greater challenge implied by

early detecting slower and more subtle motion changes. Contrarily, the model’s uncertainty revealed a

greater prominence at higher gait speeds, but these perturbations were easily smoothed by the proposed
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post-processing technique, without increasing time delays in the correct predictions.

Considering now the used stride of 2 over camera streams recorded at 30Hz, the inference time should

not be superior than the inter-frame temporal distance (67ms). This time was averaged as 61ms, using

a Google CoLab instance, but conclusions about this performance in the WALKit SW cannot be extracted.

One the one hand, the walker’s computer has fewer computational resources. On the other, there are

changes that can be implemented in real-time to reduce the computed inference time. For example,

gradually adding the frames and saving them while they are being recorded, so the ADD computation is

practically done by the time the present frame is recorded.

7.1 Future Work

Several suggestions for future research and improvements were raised during this work, but the most

imminent to achieved the required performance for real-time applications in a SW are the following:

• Improve the labelling procedure accuracy, for example, with the use of force sensors, to allow the

inclusion of transitions, without mislabelled samples.

• Enhance the quality of the acquired data, recording in a more controlled environment, without

marked floors or too bright conditions, avoiding the model’s overfiting to the background, as well

as the depth, and consequently, human masks corruption.

• Improve the model’s focus evaluation algorithm, at least by analysing the total FP. Human motion

masks could also be deployed, instead of only binary masks marking the human body region.

• If one is still not able to increase the grad-CAMs evaluation metrics over 55%, experiment other

model architectures, such as spatial attention mechanism, self-supervised learning techniques,

among others.

• Perform benchmark and ablation studies.

• Determine the real inference time, in the WALKit SW, to verify if, along with the model’s delays, an

early action detection is enough, even for the most critical transitions, or if an action anticipation

should be forcefully implemented.

• When unable to decrease the inference time below 67ms, one could discard the sliding window ap-

proach, introducing a time interval between input computations that is compatible with the normal
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minimum duration of human motions performed by impaired subjects (as it was implemented in

the designed post-processing technique). Another possible idea would be to combine this with a

gait analysis model to only perform the action detection in decisive gait events, such as the toe-off

[13].

7.1.1 Human-in-the-loop Control Strategy Proposal

Integrating this classification approach in a driving control strategy could be deployed by implementing

a Finite State Machine (FSM) that would relate the predicted classes with the wheels’ linear velocities, with

respect to the overall linear velocity that is normally defined at the beginning of each trial. In the turns

predictions, the wheels’ velocities would be computed by the system of equations (3.1) (Section 3.2.6).

The FSM would then send these as velocity commands to the respective PID controllers, adjusting the

reference velocity for each wheel. Figure 7.1 illustrates this proposal, where the Human Motion Decoding

Module corresponds to the developed DL solution, including the preprocessing of RGB raw data into the

final normalised input, the model and the post-processing technique.

Figure 7.1: Diagram of the proposed human-in-the-loop control strategy, integrating the DL solution for human

motion decoding.

Despite being in accordance with the SW functionalities for rehabilitation therapy, a classification

solution like this does not allow the automatic control of the walker’s velocity, as well. Another idea for a
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future deployment could be the development of a regression model, capable of inferring the angular and

linear velocities from the camera streams. Inertial data from Xsens MTw Awinda or the walker’s velocities

recorded when using the automatic trajectory mode for data acquisition would serve as labels to predict

the gait linear and angular speeds that encode the intended movements. This control strategy would be

similar to the one displayed in Figure 7.1, but without requiring a FSM. The velocities predicted from the

Human Motion Decoding Module would be used in the system of equations (3.1) to calculate the velocity

commands for each PID controller.
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