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Abstract. In the present paper, we propose an iterative clustering ap-
proach that sequentially applies five processes, namely: the assign, delete,
split, delete and optimization. It is based on the fitness probability scores
of the cluster centers to identify the least fitted centers to undergo an
optimization process, aiming to improve the centers from one iteration
to another. Moreover, the parameters of the algorithm for the delete,
split and optimization processes are dynamically tuned as problem de-
pendent functions. The presented clustering algorithm is evaluated using
four data sets, two randomly generated and two well-known sets. The ob-
tained clustering algorithm is compared with other clustering algorithms
through the visualization of the clustering, the value of a validity mea-
sure and the value of the objective function of the optimization process.
The comparison of results shows that the proposed clustering algorithm
is effective and robust.

Keywords: Clustering Analysis · Fitness Probability Score · Differential
Evolution

1 Introduction

Clustering is an unsupervised machine learning task and consists of grouping a
set of data points in a way that similarity of the elements in a group – also called
cluster – is maximized, whereas similarity of elements in two different groups, is
minimized. Clustering methods can be categorized as partitioning, hierarchical,
fuzzy, density-based or model-based methods. The most popular are the par-
titioning and hierarchical clustering. There are different types of partitioning

? This work has been supported by FCT – Fundação para a Ciência e Tecnologia
within the R&D Units Project Scope: UIDB/00013/2020 and UIDP/00013/2020 of
CMAT-UM.



clustering methods being the K-means clustering the most popular [1]. These
methods subdivide the data set into K clusters, where K should be specified
a priori. Each cluster is represented by the centroid (mean) of the data points
belonging to that cluster. Hierarchical methods do not require the a priori spec-
ification of the number of clusters and the result of the clustering can be easily
visualized in a tree-based representation of the data, known as a dendrogram.
Partitioning and hierarchical clustering are suitable to find spherical-shaped clus-
ters or convex clusters, i.e., they work rather well when clusters are compact and
separated. On the other hand, when non-convex clusters and outliers (or noises)
are present in the data set, they inaccurately identify clusters. Density-based
clustering algorithms are the most appropriate for this type of data. DBSCAN
is a popular density-based clustering technique that was introduced in [2]. It can
find out clusters of different shapes and sizes from data containing noise and
outliers. Alternatively, with clustering algorithms that cannot separate clusters
that are non-linearly separable in the input space, the use of a kernel function
tackles the problem. The idea is concerned with (before clustering) mapping the
points to a higher-dimensional feature space (the kernel space) using a nonlinear
function. Then, the kernel-based clustering method partitions the data points
that are linearly separable in the new space [3].

Applications of clustering are varied and emerge in the field of data mining
[4], in bioinformatics [5], pattern recognition [6], image processing, to name a
few.

Since clustering can be seen as an optimization problem, well-known opti-
mization algorithms, in particular metaheuristics, may be applied in clustering
analysis. Varied contributions have been made in this area [7,8,9,10,11,12,13]. In
general, metaheuristics have been combined with the K-means clustering, e.g.,
[9,11,14] However, contrary to the K-means, and other K-means combinations
with metaheuristics, that require knowledge of the number of clusters in advance,
it is possible to design an algorithm that dynamically adds, deletes and merges
clusters based on a fitness function to evaluate the goodness of the clustering
result.

The clustering algorithm presented in this paper resorts to this type of mech-
anisms to try to find the optimal (or near-optimal) clustering. Thus, the main
contributions of this article include the definition of the algorithm parameters
that are dynamically computed and depend on the characteristics of the data set.
Furthermore, at each iteration of the algorithm, not all cluster centers but only
a few of them are identified as the least fitted centers, and undergo an optimiza-
tion process. The proposed clustering algorithm has mechanisms to merge two
nearby clusters, delete the smallest cluster, split the largest cluster, and optimize
specifically selected cluster centers iteratively. Although these mechanisms are
similar to others in the literature, this article greatly contributes to this field
of cluster analysis by proposing the definition of the parameter values - target
values and thresholds - that are problem dependent and dynamically computed.

The paper is organized as follows. Section 2 describes the proposed clustering
algorithm and shows details concerning the problem dependent parameters. In



Sect. 3, the results relative to two sets of data points with two attributes and
two sets with four and thirteen attributes respectively are shown. Finally, Sect. 4
contains the conclusions of this work.

2 Clustering Algorithm

Let a set of n patterns or data points, each with a attributes, be given. These
patterns can also be represented by a data matrix X with n vectors of di-
mension a. Each element Xij corresponds to the jth attribute of the ith pat-
tern/point. Thus, given X, a partitioning clustering algorithm tries to find a
partition C = {C1, C2, . . . , CK} of K clusters (or groups), in a way that similar-
ity of the patterns in the same cluster is maximum and patterns from different
clusters differ as much as possible. The partition must satisfy three properties:

1. each cluster should have at least one point, i.e., |Ck| 6= 0, k = 1, . . . ,K;
2. a point should not belong to two different clusters, i.e., Ci

⋂
Cj = ∅, for

i, j = 1, . . . ,K, i 6= j;
3. each point should belong to a cluster, i.e.,

∑K
k=1 |Ck| = n;

where |Ck| is the number of points in cluster Ck. Since there are a number of ways
to partition the patterns and maintain these properties, a fitness function should
be provided so that the adequacy of the partitioning is evaluated. Therefore, the
clustering problem could be stated as finding an optimal solution, i.e., partition
C∗, that gives the optimal (or near-optimal) adequacy, when compared to all the
other feasible solutions.

2.1 Clustering Algorithm with Centers Optimization

The partitioning clustering algorithm herein proposed does not require a priori
specification of the number of clusters. Although for the initialization, a number
of clusters must be specified, K, and the corresponding centers (that represent
the clusters), m1,m2, . . . ,mK randomly selected (or generated), the algorithm
iteratively adds, merges and deletes centers (removing the correspondent clus-
ters) according to some problem dependent rules that vary dynamically as the
iterative process progresses.

In Algorithm 1, the five main steps of the proposed clustering algorithm are
shown - from line 6 to line 10. This is an iterative process that automatically
finds the optimal clustering.

Briefly, after a set of cluster centers being randomly generated in the region
of the data points, each point is assigned to a cluster based on the minimum
distance of that point to all the centers. Then, clusters may be merged and
deleted if the smallest distance between the cluster centers is below a threshold
and the number of points in a cluster is considered very small relatively to
the number of data points in the set. Furthermore, the cluster with maximum
hypervolume may be split into two new clusters if its hypervolume exceeds a
target value. The algorithm checks again if clusters may be merged or deleted.



Finally, a set of the current cluster centers are identified as the least fitted
centers, according to their fitness probability scores - further ahead described -
and undergo an optimization process.

Algorithm 1 Clustering Algorithm

Require: a number of attributes, n number of data points, X = (Xi,j) , i =
1, . . . , n, j = 1, . . . , a data set; Itmax

1: Set K = max{2, d0.01ne}; Nmin = max{2, d0.05ne}; It = 1
2: Compute Xj = mini=1,...,nXi,j and Xj = maxi=1,...,nXi,j for j = 1, . . . , a;

3: Compute Amin = minj=1,...,a(Xj −Xj);
4: Randomly generate a set of cluster centers mk, k = 1, . . . ,K using

mk,j = Xj + rand(Xj −Xj) for j = 1, . . . , a

where rand is a uniformly distributed number in [0, 1].
5: repeat
6: Assign points to current cluster centers mk, k = 1, . . . ,K using Algorithm 2
7: Merge clusters that have the two closest centers and remove the cluster with

fewer points, using Algorithm 3, ηD = 1
K
Amin and Nmin

8: Add one cluster by splitting the cluster with maximum hypervolume using Al-
gorithm 4

9: Merge clusters that have the two closest centers and remove the cluster with
fewer points, using Algorithm 3, ηD = 2

K
Amin and Nmin

10: Compute improved positions for the least fitted cluster centers (maintaining the
fitter ones as constant) by optimizing the fitness function (WCD in (6)), using
Algorithm 5

11: Set It = It+ 1
12: until It > Itmax or cluster centers do not move
13: return K∗, mk, k = 1, . . . ,K∗ and C∗ = {C∗1 , . . . , C∗K}.

To find which cluster to assign a point Xi (i = 1, . . . , n), the simplest idea is
to find the closest distance from that point to a center mk (k = 1, . . . ,K), i.e.,
if the index of the closest center is ki, then

di,ki
= min

k=1,...,K
‖Xi −mk‖2. (1)

Algorithm 2 presents the main steps of this idea. If no points have been assigned
to a cluster, the center will be deleted.

During the iterative process, the two closest clusters to each other, measured
by the distance between their centers, may be merged if the distance between
their centers is below a threshold, herein denoted as ηD. This parameter value
is dynamically defined as a function of the search region of the data points and
also depends on the current number of clusters. Furthermore, if the cluster with
the lowest number of points is considered very small relatively to the number
of data points in the set, i.e., if |Cki

| < Nmin where |Cki
| = mink |Ck| and



Nmin = max{2, d0.05ne} is the threshold, the points are coined as ‘noise’, the
cluster is removed and the center is deleted, see Algorithm 3.

Algorithm 2 Assigning Algorithm

Require: K, cluster centers mk, k = 1, . . . ,K and the data set X
1: Set Ck = ∅, k = 1, . . . ,K
2: Compute di,k = ‖Xi −mk‖2 from a data point Xi, i = 1, . . . , n to cluster center
mk, k = 1, . . . ,K

3: for i = 1 to n do
4: Identify mink di,k and the index ki ∈ {1, 2, . . . ,K} of closest center
5: Assign point Xi to cluster Cki

6: end for
7: for k = 1 to K do
8: if |Ck| = 0 then
9: Delete mk (and remove Ck)

10: end if
11: end for
12: Update K
13: return mk and Ck, k = 1, . . . ,K

Algorithm 3 Deleting Algorithm

Require: K, mk, Ck for k = 1, . . . ,K, ηD > 0, Nmin

1: Compute Di,j = ‖mi −mj‖2, i = 1, . . . ,K − 1, j = i+ 1, . . . ,K
2: Identify Dim,jm = mini,j Di,j (indices im, jm ∈ {1, 2, . . . ,K})
3: if Dim,jm ≤ ηD then
4: Replace center mim by 1

|Cim |+|Cjm |
(|Cim |mim + |Cjm |mjm)

5: Assign points in Cjm to cluster Cim

6: Delete mjm (and remove Cjm)
7: Update K
8: end if
9: Identify |Cki | = mink |Ck| (index ki ∈ {1, 2, . . . ,K})

10: if |Cki | < Nmin then
11: Define all points in Cki as ‘noise/outlier’
12: Delete mki (and remove Cki)
13: Update K
14: end if
15: return mk and Ck, k = 1, . . . ,K.

One cluster may be added (one at a time) by splitting the cluster with max-
imum hypervolume Vk [7], where

Vk =

(
det

(
1

|Ck|
∑

Xi∈Ck

(Xi −mk)(Xi −mk)T

))1/2

. (2)



However, our strategy is to allow the cluster with maximum volume to be split
only if its volume is not smaller than a target value ηV . The value of this pa-
rameter is found to be problem dependent and is given by

ηV =
1

|Ck|

(
K∑

k=1

Vk +
a

a− 1

K∑
k=1

Zk

)
with Zk =

1

a

a∑
j=1

σ2
k,j (3)

and the vector σk ∈ Ra contains the deviations of the vectors directed from
mk to every point Xi ∈ Ck. These deviations are computed componentwise as
follows [15]:

σk,j =
1

|Ck|

( ∑
Xi∈Ck

(Xi,j −mk,j)
2

)1/2

for j = 1, . . . , a. (4)

After the cluster to be split has been identified, e.g. the cluster Cki
, center

mki
is modified and a new center, mK+1, is created out of mki

. Let σki,jM be
the largest component of the vector σki in (4). The only component modified
in the center mki is jM ; similarly, the component of the new center mK+1 that
differs from mki

is mK+1,jM :

mki,jM = mki,jM + 1.5σki,jM and mK+1,jM = mki,jM − 1.5σki,jM .

Algorithm 4 describes the main steps of the splitting process.

Algorithm 4 Splitting Algorithm

Require: K, mk, Ck, for k = 1, . . . ,K
1: for k = 1 to K do
2: Compute Vk using (2)
3: Compute the vector σk using (4)
4: end for
5: Compute ηV using (3)
6: Identify the cluster, Cki , with maximum volume Vki , (index ki ∈ {1, 2, . . . ,K})
7: if Vki ≥ ηV then
8: Modify center mki and create the new center mK+1 as previously described
9: Assign the points in cluster Cki to the new centers mki and mK+1 using Algo-

rithm 2
10: Update K;
11: end if
12: return mk and Ck, k = 1, . . . ,K.

2.2 Fitness Probability Scores

In line 10 of Algorithm 1, improved cluster centers are obtained using an op-
timization method. Evolutionary algorithms and metaheuristics have been sug-
gested for similar purposes. Unlike other proposals [7,13,16], among others, our



algorithm does not optimize all the current cluster centers. Only a few are se-
lected for optimization. This way a reduction in computational effort is notable.

To choose the centers to be optimized, a fitness probability score (‘FPscore’)
of the center is used. This ‘FPscore’ is a measurement of the cluster vicinity
and fitness relative to the data points that have been assigned to that cluster.
Thus, clusters with lower ‘FPscore’ are considered to have least fitted centers
and undergo an optimization process; whereas the clusters with higher ‘FPscore’
have fitter centers and need not to be optimized. The ‘FPscore’ are computed
as follows. Based on the current K cluster centers m1,m2, . . . ,mK , the fitness
function

Fk =
1

|Ck|
∑

Xi∈Ck

‖Xi −mk‖2 with S =

K∑
k=1

Fk

is used to define the ‘FPscore’, as follows:

FPscorek =
1

K − 1

S −Fk

S
. (5)

We note that

– the sum of the FPscore of the cluster centers is equal to one;
– a cluster center with a lower fitness Fk value is awarded a higher FPscore;

thus allocating to a fitter cluster a higher probability of selection to be main-
tained to the next iteration;

– a cluster center with a larger Fk value is awarded a lower FPscore; thus
allocating to a least fitted cluster center a smaller probability of selection so
that the center position (relative to the data points that have been assigned
to it) should be improved during optimization.

The idea is to maintain for the next iteration cluster centers that have a
FPscore higher than pFP , set as the average of the FPscore of the current
cluster centers, and optimize the remaining cluster centers using an optimiza-
tion method, e.g., the differential evolution (DE) algorithm, using the objective
function known as ’sum of within-cluster distances’

WCD =

n∑
i=1

di,ki (6)

where the index ki represents the index of cluster center closest to data point
Xi, as described in (1). This optimization process is described in Algorithm 5.

2.3 Problem dependent parameters

In this subsection, we summarize the paper contributions concerning with the
definition of problem dependent parameters for the proposed clustering algo-
rithm:

– number of centers for initialization, K = max{2, d0.01ne};



– minimum number of points in a cluster, Nmin = max{2, d0.05ne} (for Algo-
rithm 3);

– a threshold value for the smallest distance between centers, ηD - minimum
amplitude (relative to the attributes) divided by current number of clusters
(for Algorithm 3);

– a target value for the cluster with maximum hypervolume, ηV , as defined in
(3) (for Algorithm 4);

– pFP - average value of the FPscore of the current cluster centers - defined
in (5) (for Algorithm 5).

Algorithm 5 Optimization Algorithm

Require: mk, Ck for k = 1, . . . ,K;
1: Compute Fk and FPscorek for k = 1, . . . ,K using (5)
2: Compute pFP = 1

K

∑K
k=1 FPscorek

3: Select the fitter cluster centers by checking if FPscorek ≥ pFP , k = 1, . . . ,K and
save the indices in K

4: Compute new cluster centers m∗k, k = 1, . . . ,K, k /∈ K, using the centers mk, k ∈ K
as constant values,

min
mk,k=1,...,K, k/∈K

WCD

5: Set mk ← m∗k
6: return mk, k = 1, . . . ,K.

3 Computational Results

In this preliminary study, the algorithms are coded in MATLAB R©. Two sets of
data points with two attributes (see Subsect. 3.1 below), one set with four at-
tributes (known as ‘Iris’) and one set with thirteen attributes (known as ‘Wine’)
are used to compute and visualize the partitioning clustering.

In line 10 of Algorithm 5, the DE algorithm is used. This algorithm is run
for 5 iterations and the size of population is 20 (and 50 for ‘Iris’ and ‘Wine’
problems). The other DE parameters are βm = 0.2, βM = 0.8 (bounds of the
scaling factor), pCR = 0.2 (crossover probability).

Some comparisons are included to evaluate the goodness of our clustering.
The DBSCAN clustering algorithm [2] as well as the K-means clustering are used.
DBSCAN is a density-based spatial clustering algorithm and depends on two pa-
rameters: ε (a numeric scalar that defines a neighborhood search radius around
each point) and MinPts (a positive integer the gives the minimum number of
neighbors required for a core point). The code3 has been used in our compar-
isons [17]. Our experience solving a large variety of data sets seem to show that

3 https://www.mathworks.com/matlabcentral/fileexchange/52905-dbscan-clustering-
algorithm



DBSCAN clustering is very sensitive to variations on the parameters, in partic-
ular ε. The code that implements the K-means clustering [18] is also used for
comparative purposes, although with K-means the number of clusters K had to
be specified in advance. The performances of the tested clustering algorithms are
measured in terms of a cluster validity measure, the Davies-Bouldin (DB) index
[19]. The DB index aims to evaluate intra-cluster similarity and inter-cluster
differences by computing

DB =
1

K

K∑
i=1

max
j=1,...,K, j 6=i

{
Si + Sj

di,j

}
(7)

where Si (resp. Sj) represents the average of all the distances between the center
mi (resp. mj) and the points in cluster Ci (resp. Cj) and di,j is the distance
between mi and mj . The smallest DB index indicates a valid optimal partition.
We note that when the number of clusters is one, the DB index is 0.

3.1 Data Sets

The first two problems have data randomly generated from particular distribu-
tions, have two attributes and have been drawn from MATLAB online manual.
The last two problems are well-known in the literature.

Problem 1. 600 data points with a = 2.

mu1 = [2 2]; sigma1 = [0.9 -0.0255; -0.0255 0.9]; mu2 = [5 5];

sigma2 = [0.5 0 ; 0 0.3]; mu3 = [-2, -2]; sigma3 = [1 0 ; 0 0.9];

X = [mvnrnd(mu1,sigma1,200); mvnrnd(mu2,sigma2,200);

mvnrnd(mu3,sigma3,200)];

Problem 2. 2000 data points with a = 2.

mu1 = [1 2]; Sigma1 = [2 0; 0 0.5]; mu2 = [-3 -5]; Sigma2 = [1 0; 0 1];

X = [mvnrnd(mu1,Sigma1,1000); mvnrnd(mu2,Sigma2,1000)];

Problem 3. ‘Iris’ with 150 data points. It contains three categories (types of iris
plant) with 4 attributes (sepal length, sepal width, petal length and petal width)
[20].

Problem 4. ‘Wine’ with 178 data points. It contains chemical analysis of 178
wines derived from 3 different regions, with 13 attributes [20].

3.2 Results

Plots to visualize the clustering are included in Figs. 1 - 2. The results for
Problems 3 and 4 are shown in Tables 1 and 2.

We show in Fig. 1 six plots. The first 3 plots correspond to the clustering
that is obtained with our algorithm. Case (a) shows the clustering obtained



after the assign, delete, split and delete processes on the initial centers randomly
generated. Case (b) shows the centers obtained by the first call to DE, where
only the center of cluster 2 (green in the plot) has been optimized (thus, it is the
least fitted cluster center among the three). From iteration 2 to iteration 3, only
the cluster center of cluster 1 (red in the plot) is optimized - the other two are
then considered as having a good fitter according to the corresponding clusters.
Plots (d) and (e) display the clustering obtained by DBSCAN using ε = 0.5 and
ε = 0.75 respectively. As it can be seen, DBSCAN with ε = 0.5 considers a large
number of points in the data set as ‘noise’. Finally, plot (f) shows the clustering
obtained with K-means when K = 3 is provided to the algorithm.

The six plots in Fig. 2 correspond to the clustering process applied to Prob-
lem 2. The visualized 3 centers in plot (a) have been randomly generated in the
space of the points (during initialization) and were the only ones preserved after
the assign, delete, split and delete processes. Comparing plots (a) and (b), it
is possible to conclude that the 3 centers were selected to be optimized by the
optimization algorithm. Based on their new positions, and the processes assign,
delete, split and delete, one of the centers has been deleted. The iterative pro-
cess ended at the 6th iteration with two cluster, and comparing with plot (b),
the center of cluster 2 (the light blue one) has not been moved. For comparative
purposes, we include plots (d) and (e) with the clustering obtained by DBSCAN,
for ε = 0.5 and ε = 1 respectively. We note that clustering in (d) contains a large
number of points coined as ‘noise’ which makes the DB index to be reduced.
The plot (f) contains the result of K-means clustering when K = 2 is provided.

The results of our clustering algorithm, when solving Problems 3 and 4, are
compared with those of [10] (that uses a particle swarm optimization (PSO)
approach to the clustering) and [12] (an enhanced genetic algorithm (EGA)),
see Table 1. To compare the performance, our algorithm was run 30 times for
each data set. When solving the ‘Iris’ problem, our algorithm finds the 3 cluster
in 100% of the runs (30 successful runs out of 30). When solving the problem
‘Wine’, 22 out of 30 runs identified 3 clusters. In the table, we show the optimal
objective function value WCD (the best, the average (avg.) and the worst values
over the successful runs). Although our values of WCD are slightly higher than
those registered in [10] and [12], the WCD of the best runs are of the same order
of magnitude than their competitors. We also note that the variation between
the best, avg. and worst WCD values is larger than the variations reported in the
papers in comparison. Since the basic DE algorithm is applied to optimize the
cluster centers during the iterative automatic clustering, whereas the PSO and
EGA algorithms (in [10] and [12]) have been specifically designed and modified
to integrate the clustering process (with assign, remove and split processes) into
the heuristic algorithm, explains the differences in objective function variations.

Unlike the PSO approach in [10], our clustering methodology does not seem
to be affected by the dimension of the data set X as far as computational time is
concerned (see ‘time’ - in seconds - in Table 1). Table 2 shows the cluster centers
obtained in our best clustering.
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From the reported experiments, we may conclude that the clustering strat-
egy herein proposed presents satisfactory results, very similar to those in com-
parison, is effective and robust. In most of the tested runs, the number of ex-
pected/optimal clusters is found after a steady number of iterations and time.

Table 1. Clustering results for Problems 3 and 4

Algorithm 1 results in [10] results in [12]
problem WCD It time suc. WCD time WCD

‘Iris’ best 97.4149 4 1.107 97.22 0.343 97.1170
avg. 98.0501 4.2 1.252 100% 97.22 0.359 97.0395

worst 99.3268 6 1.758 97.22 0.375 97.3259
‘Wine’ best 16540.69 5 1.063 16530.54 2.922 16499.32

avg. 17013.92 8.0 1.941 73% 16530.54 2.944 16527.50
worst 17998.60 10 2.752 16530.54 3.000 16555.68

Table 2. Centers of best clustering obtained by Algorithm 1, for Problems 3 and 4

‘Iris’ ‘Wine’
Center 1 Center 2 Center 3 Center 1 Center 2 Center 3

6.70740e+00 4.97307e+00 5.90988e+00 1.37146e+01 1.34037e+01 1.25181e+01
3.05717e+00 3.40055e+00 2.88684e+00 4.22842e+00 2.72431e+00 1.59380e+00
5.62126e+00 1.43060e+00 4.32993e+00 2.39641e+00 1.36000e+00 2.73048e+00
2.12030e+00 2.57315e-01 1.36495e+00 1.55840e+01 2.07645e+01 1.74152e+01

7.97346e+01 1.07011e+02 1.08444e+02
1.08178e+00 1.90686e+00 9.80000e-01
2.55062e+00 2.27351e+00 2.64061e+00
6.07698e-01 3.08006e-01 4.28489e-01
8.66250e-01 2.13267e+00 8.28290e-01

1.07218e+01 7.35849e+00 7.65873e+00
1.46198e+00 1.28529e+00 9.60483e-01
1.43378e+00 2.10639e+00 2.55457e+00
4.54128e+02 6.85721e+02 1.14131e+03

4 Conclusions

The preliminary experiments, carried out with the proposed methodology to
the clustering process of a set of given patterns, show that the clustering algo-
rithm based on the fitness probability scores to select the cluster centers that
should undergo an optimization process is effective and robust. The clustering
methodology is an iterative process and relies on five sequentially applied main



processes, namely: i) assign points of the data set to the current cluster centers;
ii) delete a cluster center if the number of points of the correspondent cluster is
very small and merge two clusters if their distance is below a threshold; iii) split
the cluster with maximum hypervolume if its value exceeds a target; iv) delete
a center and merge two clusters if it appropriate; and v) optimize a specifically
selected set of the cluster centers using an optimization algorithm, e.g., the DE
algorithm.

The tested problems have compact and well separated clusters, except two of
the clusters in the ‘Wine’ problem, but in the future, patterns with non-convex
clusters, clusters with different shapes and sizes will be addressed. Our proposal
is to integrate a kernel function into our clustering approach.

We aim to further investigate the dependence of the parameter values of the
algorithm on the number of attributes, in particular, when highly dimensional
data sets should be partitioned. The set of tested problems will also be enlarged
to include patterns with larger number of clusters than those in analysis, patterns
with a large number of attributes, and patterns of different shapes and non-
convex.
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