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Resumo 

Todos os anos, são reportadas cerca de 684,000 quedas fatais e 37.3 milhões de quedas não 

fatais que requerem atenção médica, afetando principalmente a população idosa. Assim, é necessário 

identificar eficientemente indivíduos com alto risco de queda, a partir da população alvo idosa, e prepará-

los para superar perturbações da marcha inesperadas. Uma estratégia de prevenção de queda capaz de 

eficientemente e atempadamente detetar e contrariar os eventos de perdas de equilíbrio (PDE) mais 

frequentes pode reduzir o risco de queda. Como slips foram identificados como a causa mais prevalente 

de quedas, estes eventos devem ser abordados como foco principal da estratégia. No entanto, há falta 

de estratégias de prevenção de quedas por slip. 

Esta dissertação tem como objetivo o design de uma estratégia de prevenção de quedas de slips 

baseada na conceção das etapas de atuação e deteção. A estratégia de atuação foi delineada com base 

na resposta biomecânica humana a slips, onde o joelho da perna perturbada (leading) apresenta um 

papel proeminente para contrariar LOBs induzidas por slips. Quando uma slip é detetada, a estratégia 

destaca uma ortótese de joelho que providencia um torque assisstivo para prevenir a queda. A estratégia 

de deteção considerou as propriedades atrativas dos controladores Central Pattern Generator (CPG) para 

prever parâmetros da marcha. Algoritmos baseados em threshold monitorizam o erro de previsão do 

CPG, que aumenta após uma perturbação inesperada na marcha, para a deteção de slips. O ângulo do 

joelho e a velocidade angular da canela foram selecionados como os parâmetros de monitorização da 

marcha. Um protocolo experimental concebido para provocar perturbações de slip a sujeitos humanos 

permitiu a recolha de dados destas variáveis para posteriormente validar o algoritmo de deteção de 

perturbações. 

Algoritmos CPG foram capazes de produzir aproximações aceitáveis dos sinais de marcha em 

estado estacionário do ângulo do joelho e da velocidade angular da canela com sucesso. Além disso, o 

algoritmo de threshold adaptativo detetou LOBs induzidas por slips eficientemente. A melhor performance 

global foi obtida usando este algoritmo para monitorizar o ângulo do joelho, que detetou quase 80% 

(78.261%) do total de perturbações com um tempo médio de deteção (TMD) de 250 ms. Além disso, 

uma média de 0.652 falsas perturbações foram detetadas por cada perturbação corretamente 

identificada. Estes resultados sugerem uma performance aceitável de deteção de perturbações do 

algoritmo, de acordo com os requisitos especificados para a deteção. 

 

Palavras-Chave: quedas induzidas por slips, biomecânica do slip, prevenção de quedas, 

avaliação do risco de queda, Central Pattern Generators, deteção de perturbações na marcha 
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Abstract 

Every year, an estimated 684,000 fatal falls and 37.3 million non-fatal falls requiring medical 

attention are reported, mostly affecting the older population. Thus, it is necessary to effectively screen 

high fall risk individuals from targeted elderly populations and prepare them to successfully overcome 

unexpected gait perturbations. A fall prevention strategy capable of effectively and timely detect and 

counteract the most frequent loss of balance (LOB) events may reduce the fall risk. Since slips were 

identified as the main contributors to falls, these events should be addressed as a main focus of the 

strategy. Nonetheless, there is a lack of slip-induced fall prevention strategies. 

This dissertation aims the design of a slip-related fall prevention strategy based on the conception 

of an actuation and a detection stage. The actuation strategy was delineated based on the human 

biomechanical reactions to slips, where the perturbed (leading) leg’s knee joint presents a prominent role 

to counteract slip-induced LOBs. Thereby, upon the detection of a slip, this strategy highlighted a knee 

orthotic device that provides an assistive torque to prevent the falls. The detection strategy considered 

the attractive properties of biological-inspired Central Pattern Generator (CPG) controllers to predict gait 

parameters. Threshold-based algorithms monitored the CPG’s prediction error produced, which increases 

upon an unexpected gait perturbation, to perform slip detection. The knee angle and shank angular 

velocity were selected as the monitoring gait parameters. An experimental protocol designed to provoke 

slip perturbations to human subjects allowed to collect data from these variables to further validate the 

perturbation detection algorithm. 

CPG algorithms were able to successfully produce acceptable estimations of the knee angle and 

shank angular velocity signals during steady-state walking. Furthermore, an adaptive threshold algorithm 

effectively detected slip-induced LOBs. The best overall performance was obtained using this algorithm 

to monitor the knee angle from the perturbed leg, which detected almost 80% (78.261%) of the total 

perturbations with a mean detection time (MDT) of 250 ms. In addition, a mean of 0.652 false 

perturbations were detected for each correct perturbation identified. These results suggest an acceptable 

perturbation detection performance of the algorithm implemented in light of the detection requirements 

specified. 

 

Keywords:.slip-induced falls, slip biomechanics, fall prevention, fall risk assessment, Central 

Pattern Generators, gait perturbation detection 
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1. Introduction 

1.1. Motivation and Problem Statement 

Falls are the second main cause of unintentional injury deaths worldwide [1]. It is estimated that 

about 684,000 fatal falls and an estimated 37.3 million non-fatal falls, which require medical attention, 

occur each year. The elderly aged 60 and over entail the highest fall risk due to their increasingly reduced 

cognitive, physical, and sensory status, which arise with the ageing process [1]. Thereby, the quality of 

life of the elderly is constantly threatened by the unpredictability of fall risk events that can take place in 

a wide range of scenarios during the everyday living. Since walking is the most common activity preceding 

fall-related events, there is the need to identify high fall risk individuals and prepare them to successfully 

overcome unexpected gait perturbations [2–4]. 

Successful fall prevention relies on the: i) effective screening of high fall risk individuals; and ii) the 

definition of a comprehensive fall prevention strategy to assist them upon loss of balance (LOB) events. 

The fall risk assessment of targeted aged populations allows to timely identify high fall risk individuals and 

suggest evidence-based treatment interventions to reduce their fall risk by promoting a safer gait. These 

interventions may include a fall prevention strategy designed to assist these individuals upon a LOB 

scenario. This strategy must include the detection of gait perturbations and the supply of the respective 

adequate assistive actuation. An effective fall prevention strategy must address the human biomechanical 

response to counteract the most common LOB events. Considering that previous literature has identified 

slip perturbations during level ground walking as the main contributors to falls, special focus must be 

given towards the prevention of these LOB events [5,6]. 

Furthermore, human motion data while dealing with gait perturbation exposure is required to test 

the effectiveness of the strategy conceived. However, recording real-world fall data emerges as a difficult 

challenge. While these meaningful data are necessary to reliably test gait perturbation detection 

algorithms, some constraints arise from real-world gait perturbation data collection [7]. Although the fall 

incidence in the elderly is higher, the number of falls experienced per year only ranges from 0.3 falls in 

community-dwelling older adults to 3 falls in high fall risk older adults [8]. Hence, this relatively low 

incidence of LOB events combined with the limited data collection periods hinder the real-world fall data 

collection. Klenk et al. [7] even mentioned that to capture 100 real-world falls, an estimated 100,000 

days, i.e., 300 years, of physical activity recordings would be required. Therefore, researchers have 

extensively attempted to provoke artificial perturbations in laboratory conditions that mimic the 
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characteristics of real gait disturbances in order to collect data from individuals during LOB events. Slip- 

[9,10] and trip-like [11,12] perturbations are the most highlighted. 

Bio-inspired controllers have been used to track human motion variables and assist the early 

detection of LOB events [13]. The foundation of the cyclic patterns generated during human locomotion 

is attributed to the functional activity of the neuronal circuits located in the spinal cord, i.e., biological 

Central Pattern Generators (CPG) [14,15]. Thereby, the implementation of a biological-inspired CPG 

controller systems to monitor and control variables of human locomotion becomes attractive [16,17]. 

These controllers are based on adaptive frequency oscillators, each one adapting to one main frequency 

component of a human locomotion signal. The occurrence of an unexpected gait perturbation would 

introduce abnormal variations to the tracking motion variable and lead the oscillators to seek for new 

signal patterns associated with distinct frequencies. This would quickly deviate the actual variable signal 

from the trajectory expected by the CPG. The increase of the CPG prediction error induced by this 

deviation allows even simple threshold-based algorithms to early and effectively detect an unexpected gait 

perturbation [13]. 

Overall, there is a lack of studies that conceived fall prevention strategies based on an extensive 

study of the human biomechanical reactions to slip events. This issue must be tackled in order to 

effectively prevent the most common fall events and enhance elders' quality of life. 

1.2. Goals 

The ultimate goal of this dissertation was to conceive a fall prevention strategy, specifically designed 

to prevent slip-induced falls. The aim of the work herein developed was two-fold: i) conception of the 

actuation and detection strategies to prevent slip-induced falls; and ii) development and validation of a 

perturbation detection algorithm able to timely and effectively identify slip-induced LOB events. 

The fall prevention strategy must include a comprehensive study of the human biomechanical 

responses to slip perturbations in order to define an appropriate actuation profile for a robotic assistive 

device able to help the subject recover balance upon the detection of a slip. Concerning this detection, 

biological-inspired CPG controllers are suitable to track and predict human motion parameters. Upon a 

perturbation, they highlight deviations between the actual and predicted motion signals, which allows 

simple threshold algorithms to perform the perturbation detection. 

To achieve these main goals, it was necessary to attend to the following step-goals:   

• Goal 1: To gather knowledge of the most recent fall risk assessment methods. This state-

of-the-art analysis also aimed to identify the fall risk assessment system's most adopted: 
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i) sensors and their characteristics; ii) tasks performed during the experimental protocol 

for data acquisition; iii) algorithms to classify the fall risk; and iv) validation processes. The 

identification of trends for each fall risk assessment method identified allows to better 

understand standard system's requirements to effectively and accurately screen high fall 

risk individuals. This is addressed in Chapter 2. 

• Goal 2: To gather knowledge of the different methods used in the scientific literature to 

provoke artificial slip and trip perturbations to healthy adults during treadmill and 

overground walking. Although the preliminary focus of the fall prevention strategy was to 

address slip perturbations, further plans to extend the strategy to also prevent trip 

perturbations are planned, according to their relevance. Hence, this state-of-art analysis 

aims to identify the key experimental aspects considered in the scientific literature to 

deliver slip- and trip-like perturbations. This is addressed in Chapter 3. 

• Goal 3: To gather knowledge of the human biomechanical reactions to slip perturbations 

and the slip-related fall prevention systems already implemented. This study allows to 

highlight the most relevant biomechanical reactions to slip events surveyed in the scientific 

literature, acknowledge the already existing slip-related fall prevention systems, and to 

define requirements needed to fulfil towards an accurate fall prevention strategy. This is 

addressed in Chapter 4. 

• Goal 4: To design, develop and propose a new slip-related fall prevention strategy based 

on the literature reviewed. This allows to concept the characteristics of both the actuation 

and the detection stages of the strategy. Moreover, are also defined the timings and 

requirements associated with each stage to timely detect a slip perturbation and effectively 

provide the respective assistive countermeasures. This is addressed in Chapter 4. 

• Goal 5: To design an experimental protocol to collect slip-like perturbation data from 

healthy young participants using a wide range of sensor systems. The conception of this 

protocol allows to: i) mimic real unexpected slip perturbations in laboratory settings; and 

ii) build a dataset with vast and relevant kinematic and biosignal data collected during both 

normal and perturbed walking. The collected data allows to better understand the changes 

that slip perturbations introduce to the human motion. This is addressed in Chapter 5. 

• Goal 6: To develop, implement and validate a threshold-based algorithm towards the 

detection of slip-like perturbation occurrence. The error signal produced between the actual 

motion signal and the motion signal predicted by a CPG controller was used by threshold 
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algorithms to perform the perturbation detection. The validation of the detection process 

must: i) assess the ability of the biological-inspired CPG algorithm to adapt to the motion 

variable's signal during steady-state walking; and ii) evaluate the effectiveness of threshold-

based algorithms to detect slip-like perturbation. Data collected from the slip-like 

perturbation protocol was used to perform these validation steps. This is addressed in 

Chapter 6.  

1.3. Research Questions 

The following Research Questions (RQs) were identified and answered, so as to achieve the main 

goal: 

• RQ1: What are the main fall risk assessment methods implemented in the scientific 

literature? The answer is included in Chapter 2. 

• RQ2: What are the key experimental methods implemented in the scientific literature to 

provoke artificial slip and trip perturbations? The answer is included in Chapter 3. 

• RQ3: Which are the main aspects that a fall prevention strategy should include in terms 

of detection of slip perturbations and actuation upon slip-induced LOB events? The answer 

is included in Chapter 4. 

• RQ4: Are the biological-inspired CPG controllers and the threshold-based algorithms able 

to effectively track human motion variables and timely detect slip perturbation 

occurrences, respectively? The answer is included in Chapter 6. 

1.4. Contribution to Knowledge 

This dissertation had the following main contributions to knowledge:  

• A review of the most adopted fall risk assessment methods in the scientific literature to 

screen high fall risk subjects; 

• A review of the key experimental aspects adopted to provoke artificial slip and trip 

perturbation in the scientific literature; 

• A review of the human biomechanical reactions to counteract slip events and the most 

recent slip-related fall prevention strategies implemented in the scientific literature; 

• A dataset with extensive and relevant kinematic and biosignal information collected during 

normal and perturbed treadmill walking that allows to study the changes to the human 

motion induced by slip-like perturbations. 
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• Evidence highlighting the effectiveness of the CPG controllers to adapt to steady-state 

human locomotion variables; 

• Evidence highlighting the effectiveness of threshold-based algorithms to timely detect the 

occurrence of slip-like perturbations provoked during steady-state human locomotion 

based on the error produced between the real motion signal and the signal predicted by 

the CPG controllers. 

 Publications 

The work developed during this dissertation enabled the publication of the following journal review 

article, which resulted from the work performed in Chapter 2:  

• R. N. Ferreira, N. F. Ribeiro, C. P. Santos, “Fall Risk Assessment Using Wearable Sensors: 

A Narrative Review", Sensors 2022, 22, 984. doi.org/10.3390/s22030984 

Moreover, the work performed during this dissertation also allowed the publication of the following 

conference paper, in which the author of the present dissertation contributed in the discussion of the 

article's structure: 

• R. Durães, N. F. Ribeiro, R. N. Ferreira, E. Seabra and C. P. Santos, "Product Design and 

Mechanical Validation of a Cane-Type Robot for Fall Prevention", 2021 IEEE International 

Conference on Autonomous Robot Systems and Competitions (ICARSC), Santa Maria da Feira, 

Portugal, 28-29 April 2021, pp. 246-251, doi: 10.1109/ICARSC52212.2021.9429810. 

 

Additionally, the literature review work performed in Chapter 3, was submitted as a narrative review 

article to the GeroScience journal. 

1.5. Thesis structure 

This dissertation is organised in the following chapters. 

Chapter 2 presents the state of the art of the fall risk assessment methods performed in the 

scientific literature using wearable sensors. For each identified method, a comprehensive analysis has 

been carried out in order to find trends regarding the most used sensors and its characteristics, activities 

performed in the experimental protocol, and algorithms used to classify the fall risk. It was also verified 

how studies performed the validation process of the developed fall risk assessment systems.  

Furthermore, Chapter 3 surveys the different methods used in the scientific literature to provoke 

slip- and trip-like perturbations to healthy adults during treadmill and overground walking and identify the 
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key experimental aspects to consider in future related research. It was ascertained the methods used to 

maintain the participants' responses to the perturbations unbiased, which limb was generally used to 

provoke the perturbations, which was the participants' walking speed during the trials, and what were the 

most used sensor systems to collect data during perturbation-based protocols. In addition, it was found 

whether there were benefits to apply both slip- and trip-like perturbations within the same experiment and 

if it was preferable to: i) deliver perturbation during treadmill or overground walking; and ii) use a single-

belt or a split-belt treadmill to perturb walking. 

Moreover, Chapter 4 describes the slip-related fall prevention strategy proposed in this dissertation. 

The human biomechanical responses to slip perturbations and the slip-related fall prevention systems 

already implemented are herein investigated. Further, based on the literature evidence collected, this 

Chapter highlights the actuation and detection strategies conceived to provide effective assistive torque 

and timely detect the slip perturbations, respectively. 

In Chapter 5 it is presented the experimental protocol conducted to obtain meaningful data 

regarding the individuals' reactions to slip-like perturbations. Information about the participants enrolled 

and the equipment used is also herein detailed. 

Chapter 6 comprises the results obtained in this dissertation concerning the validation strategy 

proposed for slip-like perturbation detection using the data collected during the experimental protocol. 

Firstly, it was studied the most suitable number of oscillators within the CPG controller to track each 

monitoring variable. Secondly, it is described the Normal Walking Testing, which assesses the ability of 

the CPG controllers to learn and adapt to the signals of each monitoring variable. Lastly, it is reported the 

Perturbed Walking Testing, which evaluates the ability of the monitoring variables to detect the occurrence 

of slip-like perturbations. The performance results obtained are herein provided. 

Finally, Chapter 7 addresses the main conclusions of this dissertation, answers to the RQs specified 

and points out to the future work. 
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2. Fall Risk Assessment Review 

Recently, fall risk assessment has been a main focus in fall-related research. Wearable sensors 

have been used to increase the objectivity of this assessment, building on the traditional use of 

oversimplified questionnaires. However, it is necessary to define standard procedures that will us enable 

to acknowledge the multifactorial causes behind fall events while tackling the heterogeneity of the 

currently developed systems. Thus, it is necessary to identify the different specifications and demands of 

each fall risk assessment method. Hence, this state-of-art analysis provides a review on the fall risk 

assessment methods performed in the scientific literature using wearable sensors. For each identified 

method, a comprehensive analysis has been carried out in order to find trends regarding the most used 

sensors and its characteristics, activities performed in the experimental protocol, and algorithms used to 

classify the fall risk. It also verified how studies performed the validation process of the developed fall risk 

assessment systems. The identification of trends for each fall risk assessment method would help 

researchers in the design of standard innovative solutions and enhance the reliability of this assessment 

towards a homogeneous benchmark solution. 

Recent reviews targeting fall risk assessment have presented and discussed the different 

approaches to analyse fall risk. For instance, Rucco et al. [18] reviewed the state of art of the fall risk 

assessment using wearable sensors investigating the most used sensor technologies, their number and 

location, as well as the number and type of tasks performed in the experimental protocol. Montesinos et 

al. [19] conducted a systematic review that studied the most significant and strong associations between 

combinations of feature categories, tasks performed and sensor locations to ascertain a subject fall status, 

as faller or non-faller. Rajagopalan et al. [20] performed a comprehensive review regarding the 

relationship between the different fall risk factors and highlighted current work and challenges on fall 

prediction systems. However, the analysis within these manuscripts was performed without specifying 

the different fall risk assessment methods, such as long-term or real-time fall risk assessment. Therefore, 

the identification of trends is less reliable than an individual analysis carried out for each fall risk 

assessment method identified. The assessment of the fall risk from both long-term and real-time 

perspectives requires different specifications and setups and, consequently, different and individual 

analysis. For instance, a specific type of sensor placed on a certain position of the body can be widely 

used for a specific fall risk assessment method and not for another. Furthermore, none of the previously 

mentioned reviews ascertained the validation processes carried out to validate the fall risk assessment 

systems found in the literature.  
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Thus, the aim of this work was to find evidence on the following topics: (i) “Which are the main 

types of fall risk assessment methods using wearable sensors in literature studies?”'; (ii) “What types, 

number, and location of wearable sensors were adopted in the literature studies?”; (iii) “Which tasks or 

clinical scales were performed during experimental protocols for data acquisition?”; (iv) “Which algorithms 

are used in the scientific literature for the classification of fall risk?”; and (v) “How was the validation of 

fall risk assessment systems performed using wearable sensors?”. The first, fourth, and fifth questions 

offer novel analysis regarding the reviews articles [18–20]. To the best of the author's knowledge, no 

previous study has addressed the first question. The third question offers a technological description of 

the sensors used in fall risk assessment systems. This allows the further comparison with previous review 

studies to ascertain if trends of sensor specifications are maintained or updated. The fourth question 

offers a review of the tasks or clinical scale protocols performed for data collection. 

2.1. Methods 

An electronic systematic search was accomplished in IEEE, Scopus, Web of Science, and PubMed 

databases on the topic of fall risk assessment of towards the elderly population using wearable sensors. 

The search was completed in the aforementioned databases on 3 November 2020. On IEEE the keywords 

used were: (aged OR elderly OR geriatric OR old) AND fall risk AND wearable sensor. The terms (aged OR 

elderly OR geriatric OR old) AND (wearable sensor OR wearable device) AND fall risk AND (gait OR posture 

OR walking) were used in the other 3 databases. In order to provide an overview of the most recent and 

emerging trends of fall risk assessment using wearable sensors, the search was conducted considering 

all articles that were published after 2015. A total of 332 articles were found and 223 remained after 

removing duplicates. Further, a careful reading of the title and the abstract of those articles enabled the 

exclusion of articles that clearly did not perform fall risk assessment or were a review. Reviews were 

excluded from the search results as the purpose of the search strategy was to find studies which 

developed a fall risk assessment system. Following this procedure, 48 articles remained for full text 

reading. In order to screen the most important ones, eligibility criteria were applied to the selected papers. 

Articles were excluded if: (i) the system described in the study presented any kind of non-wearable device; 

(ii) a fall risk assessment method was not applied or described; (iii) there was a lack of information on 

either the sensor system or its placement on the body; and (iv) the study was a previous version of a 

more recent one, being both in the 48 selected articles group. Regarding the application of these criteria, 

16 articles were selected for further analysis. In Figure 1, it is depicted the Preferred Reporting Items for 
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Systematic Review and Meta-Analysis (PRISMA) flowchart regarding the previously described literature 

search. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

2.2. Fall Risk Assessment Methods 

As suggested in Figure 2, the 16 selected manuscripts were divided into groups according to the 

method used to assess fall risk. 

Figure 2. (a) Number of studies from each fall risk assessment methods identified. (b) Fall risk assessment method adopted 
by each study. Saadeh [21], Leone [22], Rivolta [23], Tang [24], Parvaneh [25], Annese [26], Rivolta [27], Shahzad [28], 
Saporito [29], Rescio [30], Leone [31], Buisseret [32], Yang [33], Selvaraj [34], Vieira [35], and Dzhagaryan [36]. 

Figure 1. PRISMA flow diagram. 
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A group of 9 studies [23,24,27–29,32,33,35,36] assessed fall risk from a long-term perspective 

based on clinical established scales. This group comprised more than half of the manuscripts, i.e., 56%. 

In addition, 25% of the selected manuscripts [21,22,30,31] considered fall risk assessment from a short-

term or real-time approach by developing a system and an algorithm able to identify pre-fall/unbalanced 

situations and consequently detect fall risk events. Lastly, 3 studies [25,26,34], i.e., 19%, which followed 

different approaches to assess fall risk, were identified and included in the “Other Methods” group. 

 Fall Risk Assessment Based on Clinical Scales 

Vieira et al. [35] developed a gamified application for the elderly to independently measure the 

Berg Balance Scale (BBS) score at home by means of a custom-made sensor containing an accelerometer 

and a gyroscope. Shahzad et al. [28] estimated the BBS score from data acquired from a single 

accelerometer. Tang et al. [24] performed a study to obtain the BBS and MiniBEST test scores for each 

subject with a sensor apparatus composed by a SmartShoe, which comprised a pressure sensitive insole 

with 3 pressure sensors and an accelerometer, as well as an hip accelerometer. Yang et al. [33] 

conducted four environment-adapting TUGs in order to assess fall risk in a more comprehensive way than 

standard TUG by adapting gait in complex environments. During the trials, subjects wore a Smart Insole 

(SITUG) in each foot, with a sensing device composed by 16 pressure sensors array along with an Inertial 

Measurement Unit (IMU) including an accelerometer, gyroscope, and magnetometer. Saporito et al. [29] 

attempted to predict a remote TUG score based on data recorded from 3 days of free-living conditions by 

means of one accelerometer and one barometric sensor. Buisseret et al. [32] assessed subjects' fall risk 

based on the TUG test score and data acquired from an accelerometer, a gyroscope and a magnetometer 

during the 6-minute walking test (6MWT). Dzhagaryan et al. [36] developed a wearable system, the Smart 

Button, capable of providing an automated mobility assessment of TUG and 30-second Chair Stand 

(30SCS) tests from data collected by an IMU with an accelerometer, a gyroscope and magnetometer 

sensors. In both studies conducted by Rivolta et al. [23,27], the Tinetti test score was predicted for each 

of the test subjects by means of data collected from a single accelerometer. Further details about the 

sensor systems used are provided in Figure 3.  
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Figure 3. Overview of the sensor characteristics from clinical scale-based fall risk assessment studies. (a) Anterior and 
posterior views of the human body depicting sensor location, where: (i) [23,27,29,35,36], (ii) [24], (iii) [24,33], and (iv) 
[28,32]. (b) Adopted sensor specifications, where: S = sensors, N = number, fs = sampling frequency, Acc = accelerometer, 
Gyro = gyroscope, Mag = magnetometer, Press = pressure sensors, Bar = barometer, Dist = distance sensors, 𝑁\𝐴 = Not 

Available. Rivolta [23], Tang [24], Rivolta [27], Shahzad [28], Saporito [29], Buisseret [32], Yang [33], Vieira [35], and 
Dzhagaryan [36]. 

 

2.2.1.1. Sensor System Characteristics 

Figure 3 summarises the sensor characteristics from the studies that performed fall risk 

assessment based on clinical scales. 

All the studies used at least one accelerometer, which underlines the importance of the use of 

acceleration data to characterise the score results from clinical standard scales. The use of gyroscope 

sensors was highlighted in 4 articles [32,33,35,36]. This search revealed that accelerometers and 

gyroscopes were the most widely used sensors for this fall risk assessment method. The magnetometer 

sensor is also included in the sensing device of 3 studies [32,33,36] and is used along with both 

accelerometer and gyroscope sensors. Beyond inertial sensors, pressure sensors were used in 2 studies 

[24,33]. Concerning the sensors' sampling frequency, all the studies acquired data from sensors at 100 

Hz or less except Tang et al. [24], which used 400 Hz, and Vieira et al. [35] that did not mention the 

frequency adopted. However, in the data processing stage, Tang et al. [24] downsampled data from 400 

Hz to 25 Hz.  

Most of the studies used a small number of 3 sensors or less. However, Tang et al. [24]and Yang 

et al. [33] used 9 and 38 sensors, respectively. In their setup, Yang et al. [33] used 32 pressure sensors 

and 2 IMU's (with accelerometer, gyroscope, and magnetometer). Tang et al. [24] sensing apparatus 



 
 

12 

consisted on 6 pressure sensors and 3 accelerometers. Within these manuscripts, almost all sensors 

were placed in the insole of the test subjects, thus the high number of sensors did not compromise the 

wearability of the system. All the single sensor solutions that assessed fall risk through clinical-based 

scales used accelerometers [23,27,28]. 

The most widely used two-sensor combination for fall risk assessment is accelerometer and 

gyroscope, which is line with the search results of Rucco et al. [18]. In addition, 4 articles used the 

accelerometer and gyroscope combination [32,33,35,36], with Buisseret et al. [32] and Vieira et al. [35] 

using only data from those two sensing modalities. 

Furthermore, 5 studies described the sensor placement on the chest [23,27,29,35,36], 2 on the 

waist/lower back [28,32], 2 on the feet [24,33] and one on the right hip [24]. Both studies that considered 

the feet to place the sensors used pressure sensors [24,33]. Additionally, 8 studies [23,24,27–

29,32,35,36] considered at least one upper body part to place the sensors, in which 7 of them only 

considered upper body parts [23,27–29,32,35,36]. The chest and the lower back were the most used 

upper body locations. Therefore, the upper body contains the preferred locations to place the wearable 

sensors in fall risk assessment based on clinical scales. 

 

2.2.1.2. Clinical-based Scales Adopted 

The variety of clinical-based scales adopted in the literature towards fall risk assessment is shown 

by the 6 different scales included in the group of 9 studies. TUG was the most selected scale 

[29,32,33,36] and BBS was the second most adopted [24,28,35]. The Tinetti test was implemented in 

both studies conducted by Rivolta et al. [23,27] and MiniBEST, 6MWT, and 30SCS were included in one 

study each [24,32,36]. In addition, 3 studies conducted 2 different clinical scales [24,32,36]. While the 

majority of the studies [23,24,27,32,33,35,36] collected data from activities performed during the clinical 

scales experimental protocols to assess fall risk, some collected data from activities outside the clinical 

scale protocols. For instance, Shahzad et al. [28] attempted to predict BBS score of test subjects by 

means of data collected during a routine which included a group of simple physical movement activities, 

namely the TUG test, five times sit-to-stand test, and alternate step test. Further, in Saporito et al. [29] 

data collected from subjects during 3 days of free-living conditions was used to predicted TUG time score. 
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2.2.1.3. Algorithms for the Classification of Fall Risk 

In this fall risk assessment method, 4 studies implemented Machine Learning models 

[23,24,28,29], 2 considered a Deep Learning approach [27,32], 2 adopted threshold-based algorithms 

[32,35], and 2 studies did not perform this classification [33,36]. 

All 4 studies which applied Machine Learning used linear regression-based models to predict 

clinical scale scores. Shahzad et al. [28] used linear regression Machine Learning models to estimate the 

scores of the BBS test from the information provided by a single accelerometer positioned in the lower-

back. In the same study, researchers opted to choose Machine Learning models that could be applied in 

small datasets and found that linear least square and LASSO regularised linear regression outperformed 

decision tree-based models, especially the LASSO one. Saporito et al. [29] also adopted a regularised 

linear model for the estimation of a TUG score, by means of signals collected from an accelerometer and 

a barometer in free living conditions for 3 days. Moreover, Rivolta et al. [23] applied a multiple linear 

regression model in order to predict the value of the Tinetti test scores assigned to the subjects by a 

clinician, using data obtained from a single sternum-mounted accelerometer. Tang et al. [24] applied a 

linear kernel support vector regression to predict clinical scores of BBS and MiniBEST from pressure and 

acceleration sensors data. 

Some authors considered the use of Deep Learning [27,32]. Rivolta et al. [27] attempted to 

estimate the Tinetti test scores based on gait and balance features obtained from a single low-cost 

acceleration sensor, considering a two-fold problem: (i) a binary classification problem to dichotomize 

individuals at score 18 as High and Low Fall risk; and (ii) a regression problem in order to estimate the 

gold standard Tinetti score assigned to each subject. Based on the performance results, the Artificial 

Neural Networks (ANN) provided better classification outcomes than the linear model.  

Buisseret et al. [32] implemented a Deep Learning model, as well as a threshold-based algorithm 

in order to predict the risk of falls based on the TUG and 6MWT. Therefore, a 6-month prediction of 

subjects' fall risk based on prospective fall occurrence as the start of the study was performed in three 

different classification ways: (i) a threshold-based approach considering only the time taken to complete 

standard TUG; (ii) another threshold-based approach (TUG+) considering the previously described time 

and kinematic parameters computed from IMU sensor data; and (iii) a Deep Learning Convolutional 

Neural Network (CNN) network that receives the raw IMU data only. The authors verified that both TUG+ 

and the Artificial Intelligence (AI) algorithm enhanced the performance in several classification metrics of 

the faller status of the subjects regarding the standard TUG alone. Vieira et al. [35] also implemented a 

threshold-based approach in order to assess the score of BBS through accelerometer and gyroscope 
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measures. The researchers established reference values concerning each of the movements performed 

during the test in order to assign their respective classification. The works developed in [33,36] assessed 

the performance metrics of the features calculated by their systems against ground truth measures of 

video and optical motion capture system, respectively, rather than using algorithms to classify subject's 

fall risk. 

 Fall Risk Assessment Based on the Detection of Fall Risk Events 

Besides the clinical scale-based approach, 4 manuscripts [21,22,30,31] addressed fall risk 

assessment from a real-time perspective, focusing on the detection of fall risk events during the 

performance of activities. The details about the sensor systems used are presented in Table 1. Saadeh 

et al. [21] used the data collected from an acceleration sensor to distinguish between ADLs and pre-fall 

events. Their system achieved a timely prediction of fall events, activating a fall risk alarm before the fall 

occurrence. Rescio et al. [30] described an electromyography (EMG) based system composed by 4 EMG 

sensors capable of detecting and recognising fall risk events. Leone et al. [31] also presented a 4 EMG 

sensor-based fall risk assessment system capable of recognising pre-fall events. Later, the authors 

developed a smart sock system, each one equipped with 2 EMG sensors, able to detect unbalance events 

associated with a potential fall risk [22]. More details about the performance metrics obtained by these 

systems are further provided in Table 2. 

One important aspect analysed by each of the 4 studies was the lead-time. This time, which was 

used to study system's detection performance of fall risk events, was considered with two different 

meanings. Saadeh et al.'s investigation [21], as well as both studies conducted by Leone et al. [22,31], 

evaluated detection performance of the system considering the lead-time as the time between the 

detection of the unbalance event and the impact of the fall. Saadeh et al. [21] mentioned that their system 

could predict a fall event with a lead-time between 300 ms and 700 ms before the fall impact. Leone et 

al. [31] claimed a mean lead-time of 775 ms of their system and, in a later study performed by the same 

authors [22], a smart sock EMG system was able to detect unbalance conditions with 750 ms of mean 

lead-time. However, Rescio et al. [30] interpreted lead-time from a different perspective, by considering 

it to be the time delay between the onset of the perturbation and the instant when the perturbation was 

detected. The authors claimed that their system was able to detect a perturbation 200 ms, on average, 

after its onset. 
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2.2.2.1. Sensor System Characteristics 

Table 1 depicts the sensor characteristics adopted in the studies that performed fall risk 

assessment based on the detection of fall risk events. 

Table 1. Sensor characteristics from the fall risk assessment studies based on the detection of fall risk events, where: fs = 
Sampling Frequency, Acc = Accelerometer 

Authors Sensors Number 
fs 

(Hz) 
Sensor 

Location 
Mean Lead-
Time (ms) 

Lead-Time Meaning 

Saadeh 
[21] 

Acc 1 256 upper thigh 300-700 
time between the detection 
of the unbalance event and 

the impact of the fall 

Leone [22] EMG 4 125 
gastrocnemius 

and 
tibialis muscles 

750 
time between the detection 
of the unbalance event and 

the impact of the fall 

Rescio [30] EMG 4 1000 
gastrocnemius 

and 
tibialis muscles 

200 
time difference between the 
perturbation onset and the 

detection of the perturbation 

Leone [31] EMG 4 1000 
gastrocnemius 

and 
tibialis muscles 

775 
time between the detection 
of the unbalance event and 

the impact of the fall 

 

EMG-based systems were used in 3 studies [22,30,31] to detect pre-fall scenarios or unstable 

situations associated with fall risk. On the other hand, Saadeh et al. [21] described the detection of fall 

risk events based on accelerometer data. All the studies collected data using sampling frequencies higher 

than 100 Hz. All sensor systems were composed of 4 wearable sensors or less. A single-sensor solution 

comprised by one accelerometer was used in [21], 2 EMG sensors were used for each smart sock in 

[22], and a system with 4 EMG sensors was presented both in [30,31]. Saadeh et al. [21] placed the 

accelerometer sensor in the upper thigh. The 3 other studies placed EMG sensors in the gastronecmius 

and tibilias muscle groups. Leone et al. [22,31] specified the use of these sensors in the gastronecmius 

lateralis and tibialis anterior muscles. 

2.2.2.2. Types of Activities Performed 

In order to collect data to identify fall risk events, the 4 studies performed ADL and fall events in 

the experimental protocol. Rescio et al. [30] instructed test subjects to simulate a series of events in a 

random order: (i) being at idle position or walking, both in either a normal context or presented with a 

deviant auditory stimuli; (ii) perform some common ADLs such as bending, lying down, standing up or 

sitting down; and (iii) unstable situations provoked by a tilting platform which simulated loss balance 

characteristic of fall events. Saadeh et al. [21] adopted an experimental protocol similar to the one 
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performed to obtain the MobiFall dataset [37] and used the collected data along with the data from 

MobiFall dataset to train and test their system. A total of 6 different examples of falls and 11 ADL events 

were performed. ADLs included events that have a higher chance of being classified as false positives/falls 

such as: (i) jumping and jogging, as they are abrupt events that are alike to a fall event; (ii) stepping in a 

car or sitting on a seat; and (iii) performing standing or walking tasks and ascending or descending stairs. 

In addition, forward lying falls, back chair falls, front knees falls, and side falls were considered in the 

protocol. In [31], Leone and colleagues also developed a dataset consisting of ADLs and fall events  to 

train and test their algorithm. Although the types of ADL performed were not specified in the study, the 

researchers mentioned that the falls were provoked through a movable platform to cause unstable events 

in the test subjects. In a later work performed by the same authors [22], simulated ADLs and fall events 

were conducted in order to acquire data to train and test their algorithm. Simulated ADLs included: (i) 

walking; (ii) sitting down on a chair; (iii) bending; and (iv) lying down on a mat. Additionally, forward, 

lateral, and backward falls were induced by the same movable platform described in [31]. 

2.2.2.3. Algorithms for the Classification of Fall Risk 

Within the 4 studies that assessed fall risk from a real-time perspective based on the detection of 

fall risk events, 3 adopted Machine Learning models [21,22,31], whereas the remaining study used a 

threshold-based model [30]. 

Saadeh et al. [21] implemented a prototype system with two parallel real-time operating modes: 

slow mode fall detection (SMFD) and fast mode fall prediction (FMFP). In the FMFP mode, a nonlinear 

support vector machine classifier is used in order to predict fall events. This prediction is Patient Specific 

(PS) as, in the offline training stage of the classifier, PS parameters are computed and then uploaded to 

the system's repository. Once those parameters are uploaded, they are used in the classification phase 

of fall prediction, adapting this process for each subject. Leone et al. [31] also implemented Machine 

Learning in order to distinguish between pre-fall and non-pre-fall events. A linear discriminant analysis 

classifier was used to achieve a high generalisation capacity in the classification process while requiring 

low computational costs. Furthermore, in [22], Leone et al. used the same classifier to detect fall risk 

events using data collected from their developed smart EMG sock system. Rescio et al. [30] assessed the 

fall risk through a threshold-based approach as they had chosen the assurance of the system's real-time 

operation rather than its generalisation ability. 
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 Other Fall Risk Assessment Methods 

There were other approaches also identified to assess the risk of fall. Selvaraj et al. [34] highlighted 

the importance of analysing the foot clearance during stair negotiation, as reduced values of this metric 

have an explicit mechanism linked to falls by increasing the chance of tripping. Therefore, the authors 

developed a wearable system for the subject's shoe to determine the foot clearance during stair 

negotiation. The system was equipped with 2 distance sensors and an IMU sensor composed by an 

accelerometer, a gyroscope, and a magnetometer. Annese et al. [26] underlined the complexity of fall 

risk assessment and the need to perform it in a multifactorial approach in an everyday life monitoring 

scenario in order to accurately predict future falls. Hence, the same authors developed a cyber-physical 

system composed by EMG and EEG sensors interfaced to a Field-Programmable Gate Array (FPGA) 

responsible to perform an online processing of a subject's fall risk coefficient. This fall risk index is based 

on a multifactorial approach considering the partial sum of four indexes namely, a subject condition or 

baseline factor, an environmental factor, an EMG co-contraction factor, and an EEG signal factor. While 

the first two factors, which are PS, are constant, the latter two are re-calculated just after a new step is 

detected during gait. Parvaneh et al. [25] explored the relationship between fall risk and the number of 

Premature Ventricular Contractions (PVC) episodes per hour, by using an ECG sensor. 

 System's Validation 

From the 16 selected studies, only 11 performed the validation of their fall risk assessment system 

[21,22,33,23,24,27–32]. As depicted in Table 2, the validation carried out on the fall risk assessment 

systems varied across these different studies. The fall risk outcome of the system was compared against 

reference measures in order to compute the system's performance metrics. 
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Table 2. Validation characteristics adopted by the 11 selected articles, where: ML = machine learning, Th = threshold-based, 
Accu = accuracy, Sens = sensitivity, Spec = specificity, CV = cross-validation, NLSVM = NonLinear Support Vector Machine 
classifier, LDA = Linear Discriminant Analysis classifier, SVR = Support Vector Regression, ANN = Artificial Neural Networks, 
LLS = Linear Least Square Regression, LASSO = Least Absolute Shrinkage and Selection Operator regression, and CNN = 
Convolutional Neural Network 

Authors 
Participants 

(Number/Age) 
Model 
Used 

Validation 
Method 

Reference Measures 
for Classification 

Results 

Saadeh [21] (77 / 20-70) ML (NLSVM) N\A 
Type of event 

(pre-fall or normal 
ADL events) 

Sens = 97.8%; 
Spec = 99.1% 

Leone [22] (5 / 28.7 ± 7.1) ML (LDA) 
Holdout 

(70% training; 
30% testing) 

Type of event 
(pre-fall or normal 

ADL events) 

Accu = 82.3%; 
Sens = 86.4 %; 
Spec = 83.8% 

Rivolta [23] 
(13 / 69.7 ± 

10.7) 

ML (multiple 
linear 

regression 
model) 

Leave-one-out 
CV 

Clinical score 
(Tinetti) 

Accu = 84.6% 
Sens = 85.7%; 
Spec = 83.3% 

Tang [24] 
(30 / 76.0 ± 

10.5) 
ML (Linear 
kernel SVR) 

Leave-one-out 
CV 

Clinical score 
(BBS and 
MiniBEST) 

Mean error: 
6.07 ± 3.76 (BBS); 

5.45 ± 3.65 
(MiniBEST) 

Rivolta [27] 
(90 / 69.3 ± 

16.8) 

ML (linear 
regression 

model); 
DL (single 

hidden 
layer ANN) 

Holdout 
(60% training; 
40% testing) 

Clinical score 
(Tinetti) 

Sens (ML) = 71% 
Spec (ML) = 81% 
Sens (DL) = 86%; 
Spec (DL) = 90% 

Shahzad 
[28] 

(23 / 72.87 ± 8) 
ML (LLS 

and LASSO 
models) 

10-fold CV 
Clinical score 

(BBS) 

Mean error: 
1.9 ± 2.53 (LLS); 

1.44 ± 1.98 (LASSO) 

Saporito 
[29] 

(239 / 75.2 ± 
6.1) 

ML 
(regularised 

linear model) 

Leave-one-out 
CV 

Clinical score 
(TUG) 

Mean error: 
2.1 ± 1.7s 

Rescio [30] (7 / 28.8 ± 7.6) Th 10-fold CV 
Type of event 

(pre-fall or normal 
ADL events) 

Sens 70%; 
Spec 70% 

Leone [31] (15 / 32.6 ± 9.3) ML (LDA) 10-fold CV 
Type of event 

(pre-fall or normal 
ADL events) 

Sens= 89.1%; 
Spec=87.1% 

Buisseret 
[32] 

(73 / 83.0 ± 8.3) Th; DL (CNN) 
Holdout 

(78% training; 
22% testing) 

Faller status based 
on prospective 
fall occurrence 

Accu(Th) = 73.9%; 
Sens(Th) = 85.7%; 
Spec(Th)= 50%; 
Accu(DL) = 75%; 
Sens(DL) = 75%; 
Spec(DL) = 75% 

Yang [33](*) (10 / 19-44) N\A N\A 
Video recordings 

from TUG 

Accu(gait cycle 
count) = 100% 

Accu(segment TUG 
phases) = 92.23% 

Accu(spatial—
temporal 

features) = 92% 

(*) This study validated a system that extracted features from TUG rather than directly validate the system towards the 

classification of fall risk. 
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Seven studies [21,23,24,27–29,32] validated their fall risk assessment systems using data 

collected from elderly patients, while the remaining 4 manuscripts used data from young subjects 

[22,30,31,33]. In addition, the number of subjects enrolled in the experimental protocols was usually 

equal or below 30 subjects [22–24,28,30,31,33]. Only 4 studies [21,27,29,32] included data from more 

than 30 subjects in their validation process. Saadeh et al. [21] was the only study that performed an 

external validation, i.e., used data collected outside the study's experimental protocol to validate the 

system. As well as the data collected from 20 subjects (aged between 65 and 70) within their study, 

these authors also used data from 57 subjects (aged between 20 and 47) from the MobiFall dataset [37]. 

The remaining studies performed only an internal validation, i.e., validate the system using only data 

collected within the same study. 

Cross-Validation (CV) was the most used validation method using both K-fold [28,30,31] and Leave-

one-out [23,24,29]. The Holdout validation method was used in 3 studies [22,27,32]. Saadeh et al. [21] 

did not explicitly mention the validation method used. Lastly, Yang et al. [33] performed validation without 

using an algorithm. Their validation process consisted of comparing the features extracted from their 

smart insole system during the performance of four environment-adapting TUGs against video ground 

truth references. 

Concerning the references measures for classification, 5 studies [23,24,27–29] used the clinical 

scale scores obtained at the baseline assessment as the reference measures for comparing the 

algorithm's classification outcome. The algorithms developed by these 5 studies attempted to estimate 

the baseline clinical scale scores based on the wearable sensor data collected from the subjects. A group 

of 4 studies [21,22,30,31] labelled the data based on the activities performed. Thereby, data samples 

were labelled as fall risk/pre-fall or normal/ADL events and were used as the reference values to compare 

against the algorithm's outcome. The algorithms developed in these studies attempted to detect if the 

subject was experiencing a fall risk event and obtain the lead-time values of that detection. Buisseret et 

al. [32] followed a different approach by considering the faller status, i.e., faller or non-faller, associated 

to each subject based on the prospective occurrence of falls during a follow-up period of 6 months. This 

faller status served as the reference metric for the algorithm's fall risk outcome. Yang et al. [33] used 

video recordings to obtain reference values. The features extracted by their smart insole systems are 

compared against these reference values to obtain the system's performance metrics. According to Table 

2, the accuracy, sensitivity, and specificity were the most used performance metrics to validate fall risk 

assessment system's performance. Nevertheless, the mean error is also used by some studies that 
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predicted clinical scale scores [24,28,29]. Generally, studies seem to have reached good performance 

from the developed fall risk assessment systems. 

2.3. Discussion  

 Which Are the Main Types of Fall Risk Assessment Methods Using 

Wearable Sensors in Literature Studies?  

Concerning the search results, 2 main methods to assess the fall risk were identified. The first and 

most widely used consisted of the long-term assessment of fall risk and was based on clinical scales. In 

this method, which was adopted by 9 studies, data from wearable sensors are used to predict subject's 

fall risk based on clinical scale scores. Thereby, subjects are assigned to either high or low fall risk 

category. This method will promote the decrease in long-term fall risk by enabling subjects to continuously 

perform long-term fall risk assessments. 

The second method, which was described in 4 studies, comprised a real-time assessment of fall 

risk by means of the detection of fall risk events. Data from wearable sensors were used to detect pre-

fall/unbalanced situations in order to identify fall risk events. This method will promote the decrease in 

short-term fall risk by allowing subjects to be monitored in real-time on a daily basis, providing subjects 

feedback as to when a fall risk event is taking place. All the studies within this fall risk assessment method 

analysed the concept of lead-time. Two different perspectives of lead-time were considered: (i) the time 

between the detection of the unbalance event and the impact of the fall [21,22,31]; and (ii) the time delay 

between the onset of the perturbation and the instant when the perturbation was detected [30]. The first 

definition of lead-time may be particularly interesting, because if the time is high enough, it may enable 

the trigger of protection systems or alarms to reduce the harmful consequences of a fall [38]. In addition, 

the second concept of lead-time appears to be oriented to the speed of unbalance event detection rather 

than time for prevention of a fall. Future work in fall risk assessment should attempt to address both time 

concepts in order to evaluate not only the time for triggering a system for fall prevention, but also the 

speed of detection of unbalance events. 

Another group of 3 articles, which assessed the risk of falling from other perspectives, was also 

identified [25,26,34]. Although these studies adopted interesting metrics and approaches to assess the 

risk of falling, they present some limitations. Selvaraj et al. [34] and Parvaneh et al. [25] only considered 

one metric to assess the fall risk and thus their studies did not perform a comprehensive fall risk 

assessment. Nevertheless, the inclusion of the foot clearance feature in fall risk assessment systems is 
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pertinent, as it may depict the propensity of a subject to trip events [39]. In addition, cardiovascular 

metrics may also be important, as they can be considered a fall risk factor [40]. The cyber-physical system 

developed by Annese et al. [26] may bring some wearability issues, as users may not be comfortable with 

using EEG electrodes on a daily basis. In addition, considering that the baseline and environmental factors 

are constant, the assessment of fall risk based on these factors may not be accurate in all scenarios, as 

they are subject to change in real-life conditions. 

Regarding the search results obtained, it was possible to conclude that the selection of which fall 

risk assessment method to adopt is strongly linked to the purpose of the assessment. For instance, if it 

is intended to perform a long-term prediction of the subject's risk of falling, the estimation of clinical scale 

scores may be the most suitable approach, as it is performed in a single time period and allows direct 

feedback of fall risk based on the score obtained from the assessment. Further, it is possible to compare 

clinical scores obtained from the current and previous assessments in order to perceive the effectiveness 

of the evidence-based treatment interventions applied. On the other hand, if the objective of the 

assessment is a real-time prediction of the fall risk in the everyday life scenario, the method to detect fall 

risk events may become the most appropriate. Thereby, it is possible to monitor subjects continuously 

and alert them when fall risk events are identified. 

 What Types, Number, and Location of Wearable Sensors Were 

Adopted in the Literature Studies? 

Inertial sensors, especially accelerometers, were used in all the studies that performed fall risk 

assessment based on clinical scales. As mentioned by Rucco et al. [18], the trend for using acceleration 

sensors may be related to the wide range of these inertial sensors on the market, as well as its low-cost 

and small size and weight. In addition, accelerometers have a lower power consumption compared to 

other inertial sensors, such as gyroscopes, which makes them more suitable for continuously monitoring 

applications [21,41]. In addition, as moderate correlations in scientific literature have been found between 

accelerometery features and some clinical scales, the use and interest of wearable sensors to assess the 

risk of falling through clinical-based scales has been growing [27,42]. Although 3 studies [23,27,28] only 

used accelerometers, 4 studies combined accelerometer with other inertial sensors, namely gyroscope 

[32,33,35,36] and magnetometer [32,33,36].  

The stand-alone use of the described inertial sensors may bring various sources of measurement 

errors. For instance, in dynamic activities, accelerometers lack the proper estimation of orientation as 

they measure the motion's external acceleration besides the gravitational acceleration. Additionally, due 
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to gyroscope's cumulative measurement errors, its use for estimating orientation in long-time activities 

may not be effective. In addition, especially in indoor environments, the geomagnetic field measures from 

the magnetometer are affected by ferrous structures [43]. Thus, the use of accelerometer, gyroscope, 

and magnetometer in a single IMU enables their sensing data fusion, which may solve the mentioned 

drawbacks and provide a reliable orientation estimation [43]. Furthermore, IMUs can be easily attached 

to subject's clothing, which enhances the wearability of the sensor systems [32,33]. As such, IMUs 

became a reliable solution for gait analysis and, consequently, the assessment of fall risk. Pressure 

sensors were also included in 2 studies [24,33] to assess fall risk through clinical scales. Kinetic data 

collected from these sensors enable the detection of foot--ground contacts due to the pressure increase 

during specific phases of the gait cycle. This method of phase detection may be more accurate than the 

methodologies that use IMU sensor data, as contact phases are indirectly detected from inertial data by 

using foot orientation information [33,44]. Therefore, the use of data collected by pressure sensors in the 

feet insole may be helpful to enhance the performance of fall risk assessment. As opposed to fall risk 

assessment based on the detection of fall risk events, no study described the use of EMG sensors in fall 

risk assessment based on clinical scales. 

There was also found to be clear evidence regarding the use of the wearable sensors on the upper 

body in fall risk assessment through clinical scales. Nevertheless, both studies that included pressure 

sensors in their systems placed these sensors on the feet [24,33]. According to Rucco et al. [18], the 

upper body placement of sensors is preferred over the lower limbs, as the upper body is preponderant in 

both static and dynamic stability, and is strongly linked to the upright gait which requires the ability to 

maintain upper body's balance during walking. The chest and the lower back are the most adopted upper 

body locations to place the wearable sensors. Rivolta et al. [23] focused on the global body stability by 

placing their single wearable sensor on the chest, which restricts the relative motion between the body 

and the acceleration sensor. Shahzad et al. [28] and Buisseret et al. [32] considered the placement of 

sensors on the lower-back. In fact, the lower back positioning of wearable sensors is relevant in fall risk 

assessment applications as it is near the Center of Mass of the human body. Therefore, the sensors 

placed near that location provide signals with information of the whole body movements [28,45]. This 

evidence allows for wearable sensors to be included in user-friendly systems, e.g., waistbands, which can 

enhance the compliant use of the sensor systems by the elderly on a daily basis. 

On the other hand, EMG sensors were the most used to detect fall risk events in real-time, being 

adopted in 3 of the 4 studies gathered [22,30,31]. The remaining study [21] used accelerometer data to 

perform this detection, activating a fall risk alarm whenever a fall event was predicted. As stated by Leone 
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et al. [22], most of the studies in the scientific literature use inertial sensors to assess the fall risk. As 

such, the authors suggested the alternative to assess the unbalance condition by means of muscle 

contractile EMG data from the lower limb muscles. Concerning the search results, it seems that EMG 

signals may provide important information towards real-time fall risk assessment. In the 3 studies that 

used EMG systems to assess the fall risk [22,30,31], it was suggested that using lower limb surface 

electromyography sensors would promote higher lead-times than using inertial-based sensors, 

considering that the sudden change of EMG patterns due to an unbalance event is faster than the change 

of inertial signal patterns. However, the use of conventional EMG sensors may cause discomfort to the 

users on a daily basis, as they require a proper attachment to the surface of the skin next to the target 

muscle. This may bring compliance issues with the electrodes' gel considering a long-term use of these 

kind of wearable devices. To overcome these drawbacks, Leone et al. [22] used hybrid polymer 

electrolytes-based electrodes, instead of the conventional pre-gelled electrodes, incorporated in socks to 

reduce skin irritation while improving biocompatibility, mechanical properties and signal detection. These 

novel solutions may increase users' conformity with the use of EMG sensors and enhance its role in fall 

risk monitoring in free-living context. 

Regarding sensor placement, it was observed that all the studies that used EMG sensors [22,30,31] 

considered its placement on gastrocnemius and tibialis muscle groups of both legs. These muscles are 

particularly important due to their role on walking, controlling stability, and maintaining the standing 

position. They are also relevant to evaluate gait changes related to age, fall risk, and postural deficits 

[22,31,46,47]. As gastrocnemius and tibialis are agonist--antagonist muscles, during a normal walk, they 

are alternatively activated. By detecting simultaneous and persistent activation of these muscles, it is 

possible to identify an unbalance event [48]. 

The sampling frequency adopted by each fall risk assessment method was different. While studies 

that assess fall risk based on clinical scales adopted frequencies below 100 Hz, the real-time detection 

of fall risk events was performed by acquiring data at a sampling frequency higher than 100 Hz. As the 

onset of fall risk events happen in fractions of a second, real-time fall risk assessment systems require 

sensor systems capable of collecting and processing high amounts of data in short periods of time. 

Therefore, a high sampling frequency is needed [21]. On the other hand, the analysis of long-term fall 

risk does not need to fulfil such requirements considering that the subject is not in danger of falling during 

the assessments. In addition, 4 studies [23,27–29] used sampling frequencies equal to or below 50 Hz. 

The use of lower sampling frequencies in this fall risk assessment method may be based on the fact that 

human activity frequencies lie between 0 and 20 Hz with 98% of its Fast Fourier Transform (FFT) 
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amplitude contained under 10 Hz [49]. However, as lower sampling frequencies do not capture some 

useful particularities of the gait pattern, such as the subject's walking style, higher frequencies may still 

be necessary to further enhance the reliability of metrics extracted for long-term fall risk assessment 

[50,51]. 

Regarding both fall risk assessment groups, there was found clear evidence to use the least number 

of sensors, explained by the fact that most of the studies have developed systems with 4 wearable sensors 

or less. The technological advances in wearable sensors along with the meaningful data they provide are 

responsible for enhancing the wearable properties of fall risk assessment systems while maintaining or 

improving their performance. 

Considering the search results, some important advantages are assigned towards the use of 

wearable sensors for fall risk assessment, as they: (i) increase the objectivity of the evaluation: (a) the 

assessment is based on objective data collected from sensors; (b) in conventional clinical scale 

assessments, participants are more aware that they are being evaluated and their behaviour may not be 

representative of the one in everyday context; and (c) it is removed the bias associated with the inter-

operator variability of score assignment of conventional clinical scale assessments; (ii) enable the 

performance of some clinical standard scales at home, which increases the accessibility of these tests 

and decreases their related health care costs; and (iii) enable the real-time assessment of fall risk based 

on data collected during functional tasks performed in the everyday life context, which reflect subject's 

real fall risk more accurately, and further allow for the timely detection of fall risk events. 

Some of the findings in this search are in line with Rucco et al. [18], as: (i) the trend to use the 

upper body sensor placement, particularly of inertial sensors, was identified; (ii) the use of a single 

accelerometer was the more widespread single-sensor solution; and (iii) the combinations of the 

accelerometer sensor with either gyroscope or pressure sensors were the most used two-sensor solutions. 

 Which Tasks or Clinical Scales Were Performed during 

Experimental Protocols for Data Acquisition? 

Considering the activities performed for data acquisition, the majority of studies 

[23,24,27,32,33,35,36] from the group of fall risk assessment based on clinical scales instructed their 

participants to perform experimental protocols relative to one or more clinical standard scales. The variety 

of clinical scales addressed in fall research is depicted by the 6 different scales adopted in the previously 

mentioned group of studies. According to the search results, the most adopted clinical scales were the 

TUG [29,32,33,36], the BBS [24,28,35] and the Tinetti test [23,27]. Although TUG is simple to administer 
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in the older population, this test comprises some limitations, mainly due to its simplicity, which leads to 

the lack of information about gait adaptability that is strongly linked to fall risk [33,52]. This led Yang et 

al. [33] to conduct four environmental adapting TUG tests in order to obtain a more in-depth fall risk 

assessment. Other clinical scales, such as BBS and Tinetti, involve a more comprehensive group of 

activities, which may lead to a more representative amount of information on the subject's fall risk [53,54]. 

Nonetheless, the time, material resources and monitoring from health care providers are more costly, 

making it less likely to be performed frequently and in the home environment. In order to overcome these 

issues, Vieira et al. [35] developed a gamified application that enables them to safely and autonomously 

perform the BBS. Nevertheless, as no results have been presented in the paper, there is no actual proof 

of the usability of the developed method. Despite being only considered in one study, the miniBEST test 

includes some advantages over the other clinical scales, as it evaluates more components of dynamic 

stability such as standing on a compliant or inclined surface and reacts to postural perturbations and 

crossing obstacles [24,55]. Concerning the 6MWT, as it provides relevant information concerning 

subject's functional capacity, endurance, and systems involved during physical activity while requiring a 

simple setup, it may be interesting to include this test in fall risk assessment applications [56]. Although 

30SCS requires a simple setup requirement, the test only provides the number of stands performed in 

30 s as the only quantitative outcome [36,57]. It is noteworthy that 3 studies assessed the risk of fall 

using more than one clinical-based scale [24,32,36]. This can be particularly useful to gather metrics 

that are task-specific for each scale, which may enrich the information extracted to assess the fall risk. 

The decision of which clinical scale to adopt depends not only on the aim of the assessment, but also on 

the characteristics of the targeted population. Each scale has a specific objective and a preferable target 

population, both of which should be considered during the clinical scale selection. 

On the other hand, a minority of 2 studies [28,29] acquired data outside the clinical scale 

experimental protocol to predict the clinical scale score. This may be particularly useful if: (i) the activities 

used to collect data require less time than performing the clinical scale protocol [28]; or (ii) data acquired 

from free-living conditions could be used to predict a clinical scale score [29]. Therefore, more compliant 

ways to assess the fall risk can be achieved by decreasing the inconveniences associated with the 

performance of the whole clinical scale protocols. This should be addressed in future investigations.  

The experimental protocol of studies that assessed fall risk based on the detection of fall risk events 

generally included some common ADLs, ADLs that can be misclassified as falls and fall events in different 

directions [21,22,30,31]. The inclusion of ADLs that can be misclassified is particularly interesting to test 

the algorithms' fall positive rate and show its capability in classifying only true fall events. In [21], the 
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conducted experimental protocol was similar to the one used to obtain the MobiFall dataset [37] and, 

along with the data collected in their study, they used data from that dataset in order to evaluate their 

system. The other studies from this fall risk assessment method [22,30,31] only included data collected 

within their experiments, which would limit the reliability of the systems' performance metrics obtained. 

In addition, Leone et al. [22,31] and Rescio et al. [30] lack on the variety of ADL and fall events performed 

and on the number of subjects enrolled in the experimental protocol, in comparison to the study 

performed by Saadeh et al. [21]. Nevertheless, all the activities performed in these 4 studies were 

conducted in controlled conditions, which will introduce some bias on the data collected regarding real-

world ADLs and falls. Future work should attempt to introduce real-world data from both ADL and fall 

event towards fall risk assessment based on the detection of fall risk events. 

 Which Algorithms Are Used in the Scientific Literature for the 

Classification of Fall Risk? 

Concerning the analysis of the algorithms used for the classification of fall risk, Machine Learning 

models were the most used in the fall risk assessment methods identified [21–24,28,29,31]. These 

models are able to generate more reliable and reproducible results of fall risk classification than simpler 

algorithms such as threshold-based methods [40]. Aziz et al. [58] compared the performance of 5 

Machine Learning algorithms against 5 threshold-based algorithms described in the literature to 

distinguish fall events and non-fall events. Accelerometer data from young adults were collected while 

performing 8 types of ADLs, 5 types of near-falls, and 7 types of falls in laboratory-controlled conditions. 

The authors concluded that Machine Learning algorithms had generally greater performance than the 

threshold-based algorithms by providing higher values of sensitivity and specificity. The use of Machine 

Learning may be particularly useful in cases where it is complex to define a threshold value to classify 

data samples. However, if the threshold definition is simple and effective, threshold-based algorithms 

could be considered. As a matter of fact, Aziz et al. [58] found that 2 threshold-based algorithms had a 

lower false alarm rate than the Machine Learning algorithms. In this regard, the authors suggested that 

both algorithms could potentially be combined to increase the classification performance. 

Nevertheless, Deep Learning algorithms have also been used to assess the fall risk and address 

some of the drawbacks related to the commonly used Machine Learning methods. Yu et al. [59] 

highlighted that the simple architecture of traditional Machine Learning models consists of only one layer 

that performs the extraction of a feature space from the raw input signals. However, the information 

processing mechanisms exhibited by humans indicate a more complex processing of the sensory input 
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information, suggesting that data processing is performed through layered hierarchical structures [59]. 

Therefore, Deep Learning algorithms may be more appropriate to assess the fall risk, as they extract the 

most relevant features automatically towards this assessment. Hence, the manual extraction of pre-

determined features from the sensor data, needed in traditional Machine Learning methods, is not 

required [60]. Deep learning models have been compared against traditional Machine Learning 

algorithms and have been shown to provide greater results, e.g., in gait event detection using 

accelerometer data [61]. The increasing computational power of micro devices over the recent years may 

lead to the implementation of more complex and sophisticated AI algorithms in wearable devices, which 

would enable an enhanced performance of fall risk assessment in a free-living context. 

 How Was the Validation of Fall Risk Assessment Systems 

Performed Using Wearable Sensors? 

Different approaches were adopted to validate fall risk assessment systems, regarding the 11 

studies that performed the validation process [21,22,33,23,24,27–32]. 

Most studies that performed fall risk assessment based on clinical scales used data from elderly 

subjects to validate their systems [21,23,24,27–29,32]. However, only one study that performed fall risk 

event detection used data from elderly participants [21]. Those remaining which used this method 

collected data from young subjects [22,30,31]. The participation of younger subjects may have been 

related to the compliance issues of elderly participants, considering the EMG sensor placement, 

compared to inertial sensors, do not require proper attachment to the skin. Nevertheless, future work on 

this fall risk assessment method should address the elderly's muscle behaviour towards the detection of 

fall risk events, as the elderly are the targeted population for fall risk assessment. 

Regardless of the fall risk assessment method adopted, the number of subjects enrolled in the 

experiments was generally reduced. This will directly affect system's performance metrics, as the reduced 

number of subjects could not be representative of the whole population. Therefore, the algorithm's 

classification can be biased to the study's participants and not reproduce a reliable fall risk assessment 

towards subjects outside the study. Thus, researchers should focus on training and testing these 

algorithms on a larger sample of subjects. 

The lack of external validation performed in the selected studies is remarkable. In fact, Saadeh et 

al.'s [21] was the only study which conducted an external validation, which was accomplished by using 

data from a public dataset, MobiFall [37]. Evaluating the performance of a system with data collected 

outside the study's experiments would increase the reliability of the classification outcomes by reducing 
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the bias of the system's classification towards data collected within the study. This external validation 

should be pointed out as one of the main requirements in the design and conception of every fall risk 

assessment system [42]. The use of public datasets may be an interesting approach to perform external 

validation, particularly for fall risk assessment based on the detection of fall risk events. Choosing the 

datasets to perform the external validation must be done carefully and critically. Some recommendations 

should be followed during the dataset selection process, as pointed out by Casilari et al. [62]. By analysing 

some of the public available datasets, the authors suggested that the performance of a system should be 

evaluated by more than one dataset, giving the heterogeneity of existing repositories. Therefore, this 

evaluation would lead to more reliable and reproducible performance results of a system. However, most 

of the publicly available datasets contain ADLs and falls induced in laboratory controlled conditions rather 

than in free-living conditions [62]. In this regard, repositories such as FARSEEING contain real-world fall 

data. Nevertheless, as that dataset is private, the use of the full dataset information is limited to 

researchers who collaborate with the FARSEEING repository [7]. However, it is important to mention that 

advances have been performed during the latest years in order to decrease the gap between laboratory-

induced and real-world falls [2]. 

According to the search results, the validation process is mostly achieved either by using CV 

[23,24,28–31] or Holdout [22,27,32] methods. Despite its simplicity, the Holdout method produces a 

reduced dataset for algorithms' training and testing, which could lead to a generation of weaker models 

and a smaller dataset to test its classification performance [42]. CV emerged as an alternative, as it would 

substantially increase the data available for algorithm training and testing. This validation method became 

widely used to estimate the generalisation performance of Machine Learning models [42,63]. This is in 

line with the search results obtained, considering that more than half of the validation methods applied 

were related to CV [23,24,28–31]. 

It is noteworthy that none of the studies used the resubstitution method to validate the fall risk 

assessment systems performance. In this methodology, the model is trained and tested with the same 

dataset, leading to an obvious overfitting of the model towards the validation dataset and over-optimistic 

performance results [42]. In fact, Shany et al. [42] identified some studies that performed this inefficient 

validation model. Thus, it is possible to understand that recent work on fall risk assessment systems has 

been addressing more robust validation methods, disregarding weaker methods such as resubstitution. 

Overall, the performance results obtained by fall risk assessment systems were quite promising. 

Regarding fall risk assessment based on clinical scales, various studies reported high performance from 

their systems. The Deep Learning model developed by Rivolta et al. [27] achieved a sensitivity and a 
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specificity of 86% and 90%, respectively, towards the classification of individuals at high or low fall risk 

category based on the Tinetti test score attributed at the baseline assessment. In addition, Saporito et al. 

[29] and Shahzad et al. [28] obtained a relatively low misclassification error towards the estimation of 

participants' TUG and BBS clinical scale scores, respectively. The smart insole system developed by Yang 

et al. [33] also showed high values of accuracy in estimating relevant spatio-temporal features from the 

TUG test that enable the assessment of fall risk. Concerning fall risk assessment based on the detection 

of fall risk events, Saadeh et al. [21] obtained an outstanding performance detecting fall risk events, 

reporting a sensitivity of 97.8% and a specificity of 99.1%. Leone et al. [22,31] also achieved accuracy, 

sensitivity, and specificity values between 80% and 90%. Nevertheless, as previously mentioned by Shany 

et al. [42], fall risk assessment study results are often over-optimistic considering the reduced number 

and age of subjects enrolled in the test. In addition, even the pervasively used CV presents some problems 

given the fact that its statistical properties are not fully understood [42,63]. Furthermore, a remarkable 

lack of external validation of fall risk assessment systems was observed. These topics should be further 

addressed and discussed in future studies in order to reliably design and validate fall risk assessment 

systems while tackling the limitations and gaps found in current studies. 

2.4. Future Directions and Work 

As the interest in the field of fall risk assessment is growing, it is expected that novel wearable 

monitoring solutions will emerge and enhance the assessment's performance. That can be enabled by: 

(i) the advances on the current used sensing technologies; (ii) the used algorithms; or (iii) the introduction 

of innovative wearable sensors that record meaningful data for this assessment. Regarding this last topic, 

the advances of sensors that measure biosignals can play an important role by providing meaningful 

metrics underlying a subject's biomechanical reactions to falls. Future work on the fall risk assessment 

field may focus on a multifactorial approach to assess the risk of fall, comprising meaningful data provided 

by wearable kinematic, kinetic, and biosignal sensors [20]. Nevertheless, it is essential to perform a trade-

off between the number of sensors used, which should be the lowest number possible, and the system's 

algorithm performance, that should be as high as possible. Fall risk assessment systems must be user-

centred designed so that the user feels compliant with the designed sensor system, in order to be able 

to use it for long periods of time without any issues [20]. 

According to the topics previously discussed, a solution to accomplish a comprehensive fall risk 

assessment may be a system that: (i) monitors the risk of fall in real-time, based on the detection of fall 

risk events; and (ii) has the option to predict the score of the most suited clinical established scales, in 
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order to conduct a long-term prediction of the individual's fall risk. This long-term evaluation may motivate 

the subject to decrease its fall risk by being able to compare its current clinical scale index of fall risk with 

the previous ones obtained. The ideal scenario is that all of this assessment is executed during the 

everyday life and that the user does not need to go to any medical care centre to perform clinical scales 

towards fall risk assessment. However, despite the encouraging performance of the real-time fall risk 

assessment systems towards the timely detection of fall risk events, its applicability to accurately prevent 

falls in the elderly community remains unclear. The elderly may not be agile enough to react to a fall risk 

alarm and prevent a fall, considering their level of physical and cognitive decline and how rapidly a fall 

occurs [1]. In fact, to the authors’ knowledge, there are no studies in the scientific literature that address 

and evaluate the applicability of fall risk assessment systems to actually prevent falls. In this regard, two 

potential solutions could be used with the fall risk assessment systems in order to enhance the likelihood 

of balance recovery upon a fall risk event: (i) trigger an assistive system attached to the subject, whenever 

a fall risk event is detected, in order to help regain balance and thus prevent the fall [64,65]; or (ii) 

improve subject's reactive stability and fall resisting skills. This can be achieved through conventional 

training, such as Tai-chi, which has proven effective towards fall prevention by improving balance, muscle 

strength, endurance, and proprioception [66]. Nevertheless, perturbation-based balance training (PBT), 

which is a promising new task-specific training, has also been shown to reduce fall incidence [67]. 

Essentially, PBT consists on the delivery of unexpected destabilising balance perturbations during walking, 

which match real-life LOB scenarios, in a controlled environment [2,67,68]. The goal of this training 

scheme is to prepare high fall risk subjects to develop fall resisting skills to counteract real-life loss of 

balance events. When using an assistive device as a means to prevent a fall, several considerations have 

to be researched to verify their applicability. Falls happen very fast. Thus, the applicability of a system to 

prevent a fall must be assessed to guarantee that after the detection of the incoming signal to prevent a 

fall, there is still enough remaining time to prevent it. 

It is also necessary to plan and perform a suitable and reliable validation of the performance of the 

fall risk assessment systems [42]. Hence, future work should also focus on the identification of gold 

standard external validation sources, i.e., public datasets, in which systems could be benchmarked. This 

would provide a reliable comparison between the different literature fall risk assessment systems. In this 

regard, as these systems are intended to be used by the elderly or subjects with mobility deficits, an effort 

should be performed to validate the systems with data collected from these target populations. 
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3. Provoked Falls Review 

Human motion data while dealing with gait perturbation exposure is required to test the 

effectiveness of perturbation detection algorithms. However, despite the higher fall occurrence presented 

by older individuals (due to their higher fall risk), the average number of falls experienced per year ranges 

from 0.3 falls in community-dwelling older adults to 3 falls in high fall risk older adults [8]. This low fall 

incidence of the targeted elderly populations hinders the real-world LOB and fall data collection. In order 

to answer to this limitation, researchers have been extensively attempting to provoke artificial 

perturbations in laboratory conditions that mimic the characteristics of real gait disturbances in order to 

collect data from individuals during LOB events. 

The perturbations applied must resemble the most relevant causes preceding fall events in the 

real-life context. Slips and trips prevail as the most common events that precede falls [4,69]. In that 

respect, studies that provoke artificial perturbations often rely on the application of these two main kinds 

of gait perturbations to the participants. Slips occur when the interface between the subject's foot and the 

floor does not provide sufficient coefficient of friction (COF) [70]. These events take place mostly when 

the foot is either contacting (heel strike) or leaving (toe-off) the floor, which resemble critical body weight 

transfer situations between the lower limbs, especially when the heel strikes the floor [70]. Trip events 

happen when the motion of the swing limb is abruptly interrupted, which can be generally induced by 

objects while walking [71]. Recent literature has been more focused on addressing slip-related events 

rather than trips. In fact, slips have been identified as the main contributors to falls with a higher incidence 

than trips [5,6]. Previous investigations reported that slips accounted for 55% of the falls on the same 

level, while trips only represented 22% [6]. 

The perturbations' characteristics and the conditions in which they are applied play a fundamental 

role to mimic humans' biomechanical reactions to LOB events and thus collect meaningful data to further 

test perturbation detection algorithms. Previous review studies have addressed the different methods 

used in the scientific literature to provoke artificial slips and trips. McCrum et al. [2], studied the different 

gait perturbation methods used for PBT to improve healthy older adults' reactive balance recovery and 

reduce their fall rate. However, the authors applied narrow inclusion criteria regarding age population 

(mean age of at least 60 years), remaining 8 studies for the analysis. Therefore, review [2] does not 

analyse the methods used to provoke perturbations from studies that enrolled younger adult participants. 

Additionally, Karamanidis et al. [71] performed a review study that focused on the balance training 
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following slip- and trip-like PBT during treadmill locomotion. Despite including both slips and trips, 

information about how these LOB events are provoked during overground walking is not provided. 

The objective of this state-of-art analysis is to survey the different methods used in the scientific 

literature to provoke slip- and trip-like perturbations to healthy adults during treadmill and overground 

walking and identify the key experimental aspects to consider in future related research. Hence, the 

following research questions were addressed: i) “Which methods and walking conditions are used to 

provoke slip- and trip-like perturbations?”; ii) “Is it preferable to deliver perturbations during treadmill or 

overground walking?”; iii) “Is it preferable to use a single-belt or a split-belt treadmill to perturb walking?”; 

iv) “What procedures are implemented to maintain responses to perturbations unbiased?”; v) “Which 

limb is generally used to apply the perturbations?”; vi) “Which was the participants' walking speed during 

the trials?”; vii) “What are the main sensor systems used to collect data during perturbation-based 

protocols?”; and viii) “Are there benefits to apply both slip- and trip-like perturbations?”. This narrative 

review provides novel literature analysis towards artificial slip and trip perturbations concerning the 

second, third, fourth, seventh, and eighth research questions since they were not addressed by McCrum 

et al. [2] and Karamanidis et al. [71]. Although the first and sixth questions have been analysed in both 

previously mentioned reviews and that McCrum et al. [2] have also considered the fifth question, the work 

from this manuscript attempted to find if new trends have been adopted in recent literature studies 

towards these investigation topics. Overall, this state-of-art analysis contributes with the latest knowledge 

on the best conditions to induce artificial slip and trip perturbations. 

3.1. Methods 

A comprehensive search was performed in the scientific literature in Pubmed, Web of Science, 

CINAHL (EBSCO), and Scopus databases. This search was carried out until January 15th of 2021 using 

the set of keywords: (gait OR walking OR walk OR locomotion) AND (perturb* OR trip* OR slip* OR balance 

loss OR dynamic stability OR static stability OR waist pull OR provoked falls) AND (training OR exercise 

OR adaptation OR adaptive OR repeated OR repetition OR rehabilitation OR task OR responses OR 

adjustments) AND (age OR ageing OR aging OR aged OR elderly OR old OR older OR senior). The keywords 

used to perform this search were based on the ones used on a previous systematic review [2]. Since in 

that review paper, the search process was performed at the end of 2015, the present search considered 

all the articles that were published since 2016 to find updated trends or evidence regarding gait 

perturbation paradigms. 
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A total of 3622 articles were gathered from the aforementioned databases and 2288 remained 

after duplicates removal. Afterwards, the papers obtained were screened based on their title. This process 

enabled the inclusion of articles that meet the following inclusion criteria: i) perturbations were applied 

exclusively during walking; ii) perturbations were not visual nor was included a virtual environment on the 

experimental setup; and iii) the paper was not a review. Reviews were excluded from the search results 

since the search strategy's purpose was to find studies which described an experimental protocol for slip 

or trip perturbation delivery. Only studies that included healthy participants were included in order to 

enable more reliable comparisons across all the studies collected during the search. Also, the participants' 

age was not used as an exclusion criterion to achieve a comprehensive analysis of a wider range of 

methods used to deliver slip- and trip-like perturbations. A group of 338 articles resulted from the 

screening procedure. The article titles in which it was not clear that the conditions stated above were 

respected were included in the abstract screening. This following selection was based on the careful 

reading of the abstract of each remaining paper. The eligibility criteria were applied in order to obtain the 

set of articles that: i) included only slip and/or trip-like perturbations in the experimental protocol; ii) 

delivered the perturbations unexpectedly; iii) only included healthy subjects; and iv) did not use an 

assistive robotic device during the experimental trials. Beyond these conditions, the criteria used for title 

screening were also applied during the abstract's reading. A group of 110 articles was then obtained 

through the screening procedure. Since it is not possible to ascertain if the papers fulfilled the eligibility 

criteria previously defined by only reading the title and the abstract, the remaining articles were read and 

carefully analysed in order to exclude those who did not respect at least one of the above mentioned 

conditions. After this analysis, a final group of 48 articles was obtained. Figure 4 depicts the PRISMA 

flowchart concerning the previously described literature search. 

From the 48 included studies, slip-like perturbations (40 studies) were more prevalent than trip-

like perturbations (15 studies). In addition, 7 studies performed both slip- and trip-like perturbations. We 

conducted a separate analysis for slip- and trip-like perturbations since they have different characteristics 

and its critical adverse effects are associated to different phases of gait [70–73]. Table 3 depicts the 

different methods used in the literature to deliver slip- and trip-like perturbations. 

 



 
 

34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. PRISMA flow diagram. 

 
Table 3. Characteristics of perturbations applied in the group of 48 selected articles 

Type of 
perturbation 
(Number of 

studies) 

Perturbation 
condition 

(Number of studies) 

Perturbation 
mechanism 

Number of 
studies 

Articles 

Slip (40) 
(*)(**) 

Treadmill 
walking (18) 

Changing belt 
acceleration 

18 [10,74,83–90,75–82] 

Overground 
walking (29) 

Movable 
platforms 

19 
[76,77,94–

102,78,80,81,86,87,91–
93] 

Slippery 
solutions 

8 [103–110] 

Novel Robotic 
Devices 

2 [111,112] 

Trip (15) 
(*) 

Treadmill 
walking (6) 

Changing belt 
acceleration 

3 [89,90,113] 

Brake-and-release 
systems 

2 [11,114] 

Tripping 
device 

1 [115] 

Overground walking (9) 

Obstacle 
trigger 

6 [12,100–102,110,116] 

Manual obstacle 
placement 

2 [117,118] 

Novel robotic 
devices 

1 [112] 

(*) some studies conducted both slip and trip perturbations; (**) some studies conducted both types of slip-like perturbations 
conditions. 
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3.2. Slip-like perturbations 

Slip-like perturbations were issued in 40 studies, 18 and 29 manuscripts during treadmill and 

overground walking, respectively. Seven of these 40 manuscripts performed slip-like perturbations during 

both treadmill and overground locomotion. Figure 5 depicts some of the methods used to provoke slips 

in the selected studies. 

Figure 5. Some slip-like perturbation methods conducted in the selected studies. (a) Changing belt acceleration [75]. (b) 
Application of a slippery solution (gray surface) [104]. (c) Movable platforms [99]. (d) FIMP robotic system [112]. 

 Treadmill Walking 

Table 4 depicts the 18 studies that conducted slip-like perturbations during treadmill locomotion. 

Ten studies conducted their experiments using only young subjects (aged 40 or younger) [75,79–81,83–

85,87,89,90], whereas 6 manuscripts only considered the enrolment of older participants (aged 60 or 

older) [76–78,82,86,88]. Additionally, 2 studies considered data from both young and older subjects 

[10,74]. Hereafter, if a study enrolled participants from different age groups, these groups were 

distinguished within the "Participants" column in the tables. Only 2 studies [78,86] enrolled more than 

50 participants during the experimental trials. The sample size ranged from 10 to 152 participants with 

a median of approximately 28 subjects.  
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Table 4. Overview of the 18 studies that performed treadmill slip-like perturbations, where: Y = young subjects, Optical 
MoCap = Optical Motion Capture system, EMG = electromyography sensors and N\A = Not Available 

Authors 
Participants 

(Number/Age) 
Perturbation 

method 
Gait event 

LOB 
direction 

Speed (m/s) 
Perturbed 

leg 
Sensor 
systems 

Aprigliano 
[74] 

(10 / 24.4 ± 2.5); 
(10 / 66.3 ± 5.1) 

changing belt 
acceleration 

heel strike backward 
normalised speed 

calculated for 
each subject 

both legs 
Optical 
MoCap; 

Force plate 

Swart [75] (30 / 21.6 ± 2.2) 
changing belt 
acceleration 

heel strike backward 1.0 right leg Force plate 

Lee [76] (45 / 74.5 ± 6.9) 
changing belt 
acceleration 

N\A backward 

self-selected speed 
from 4 speed 

options (1.2, 1.0, 
0.8 or 0.6) 

right leg 
Optical 
MoCap; 

Force plate 

Lee [77] (45 / 74.5 ± 6.9) 
changing belt 
acceleration 

N\A backward 

self-selected speed 
from 4 speed 

options (1.2, 1.0, 
0.8 or 0.6) 

right leg 
Optical 
MoCap; 

Force plate 

Wang [78] (146 / 65≤) 
changing belt 
acceleration 

heel strike backward 

self-selected speed 
from 4 speed 

options (1.2, 1.0, 
0.8 or 0.6) 

right leg 
Optical 
MoCap; 

Force plate 

Patel [79] (10 / 27 ± 4) 
changing belt 
acceleration 

N\A backward self-selected N\A 
Optical 
MoCap; 

fMRI 

Lee [80] 
(36 / 26.74 ± 

4.9) 
changing belt 
acceleration 

N\A backward 1.2 right leg 
Optical 
MoCap; 

Force plate 

Liu [81] (36 / N\A (Y)) 
changing belt 
acceleration 

beginning 
of the 
single 
stance 
phase 

backward 1.2 right leg 
Optical 
MoCap; 

Force plate 

Ding [82] (36 / 71.3 ± 4.7) 
changing belt 
acceleration 

foot 
touchdown 

backward self-selected N\A 
Optical 
MoCap 

Bhatt [83] 
(10 / 26.90 ± 

4.25) 
changing belt 
acceleration 

N\A backward self-selected N\A fMRI 

Debelle 
[84] 

(17 / 25.2 ± 3.7) 
changing belt 
acceleration 

heel strike forward 1.2 right leg 
Optical 
MoCap; 

Force plate 

Hirata [85] (10 / 21.0 ± 1.0) 
changing belt 
acceleration 

heel strike backward 

matched with the 
beat of a metronome 
(slow (0.9) and fast 

(1.6) conditions) 

both legs 
Optical 
MoCap; 

Force plate 

Martelli 
[10] 

(8 / 24 ± 2.7); 
(8 / 65 ± 4.8) 

changing belt 
acceleration 

heel strike backward 
normalised speed 

calculated for 
each subject 

both legs 
Optical 
MoCap; 

Force plate 

Liu [86] (152 / 65≤) 
changing belt 
acceleration 

N\A backward 

self-selected speed 
from 4 speed 

options (1.2, 1.0, 
0.8 or 0.6) 

right leg 
Optical 
MoCap; 

Force plate 

Yang [87] (43 / N\A (Y)) 
changing belt 
acceleration 

foot 
touchdown 

backward 1.2 right leg 
Optical 
MoCap 

Wang [88] (25 / 70.2 ± 5.9) 
changing belt 
acceleration 

double-
stance 

or 
single-
stance 
phases 

backward 

self-selected speed 
from 4 speed 

options (1.2, 1.0, 
0.8 or 0.6) 

N\A 
Optical 
MoCap 
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Lee [89] (20 / 23.3 ± 3.3) 
changing belt 
acceleration 

initial 
double limb 

support 
backward self-selected 

non-
dominant 

leg 

Optical 
MoCap; 
Force 
plate; 
EMG 

Mueller 
[90] 

(13 / 28 ± 3) 
changing belt 
acceleration 

heel strike backward 1 both legs 

EMG; 
Plantar 

Pressure 
Insole 

 

3.2.1.1. Perturbation Methods 

All the 18 treadmill studies provoked slips by changing the acceleration of the treadmill belt. This 

change focuses on the sudden decrease of the belt velocity, and, in some studies, even reverse its 

direction to cause a slip-like perturbation by inducing an anteriorly displacement of the subjects' Base of 

Support (BOS) regarding their Centre of Mass (COM) [88]. The belt may reach its maximum reverse 

velocity in values close to zero speed [10] or crossing the zero speed limit, which resulted in the belt 

moving in the forward direction [88].  

Alternatively, Mueller et al. [90] conducted both of these belt speed profile scenarios. After the belt 

speed peak, belt's velocity would return to steady-state walking velocity [88] or zero velocity [10] 

depending on each study's experimental protocol. This process mimics overground walking slips that 

cause a backward LOB. Seventeen studies provoked the slip perturbations to elicit a backward LOB (Table 

4). From these studies, Wang et al. [88], Martelli et al. [10] and Lee et al. [89] provoked slip perturbations 

by sudden accelerating in the forward direction the treadmill belt at an unexpected timing to induce 

instability to the subjects. Hirata and colleagues [85] applied the perturbations under specific stepping 

conditions when a subject stepped onto a treadmill mounted on a walkway. If the conditions were met, 

the belt would accelerate from zero speed to maximum velocity and then decelerated at the same rate to 

zero speed in order to cause a backward LOB, inducing a slip-like perturbation. In this study, the belt 

velocity did not reverse its direction to cause the perturbations as the trend identified above, since it was 

initially stopped before slip onset. On the other hand, study [84] was the only one that considered the 

application of slip-induced forward LOBs. In this regard, forward falling slips were provoked by suddenly 

increasing the treadmill's belt velocity in the same the direction as the one in steady walking condition. 

Therefore, there was no reverse of treadmill's belt velocity as opposed to the studies [10,88,89]. 

3.2.1.2. Gait Phase Perturbed 

Seven out of the 18 studies provoked slip-like perturbations at the heel strike of the leading foot 

[10,74,75,78,84,85,90]. The other authors applied the slip during the beginning of the single stance 
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phase [81], initial double-limb support [89], both single and double-stance phases [88] or shortly after 

the foot touchdown [82,87]. These gait events shortly precede or immediately follow the heel strike event. 

Six studies did not mention the gait event in which the slips were provoked [76,77,79,80,83,86]. 

3.2.1.3. Gait speed and perturbed leg  

Slip perturbations were mostly provoked only on the right or on both legs, with 9 

[75,77,78,80,81,84,86,87] and 4 studies [10,74,85,90], respectively.  

Furthermore, 50% of these studies instructed their participants to walk at their self-selected speed 

during the experiments [76–79,82,83,86,88,89]. While studies [79,82,83,89] instructed participants to 

ambulate at their comfortable self-selected speed, manuscripts [76–78,86,88] required their participants 

to select a speed from 4 available options (1.2, 1.0, 0.8 or 0.6 m/s). A third of the papers applied a fixed 

belt speed across all the participants [75,80,81,84,87,90]. Belt speeds of 1.2 and 1.0 m/s were applied 

in 4 [80,81,84,87] and 2 studies [75,90], respectively. From the 3 remaining manuscripts, 2 applied a 

belt speed that was normalised for each subject according to their leg length [10,74], whereas the other 

study [85] matched the speed of the subjects with the beat of a metronome, considering both slow (0.9 

m/s) and fast (1.6 m/s) walking conditions. 

3.2.1.4. Sensor systems and Data Collection  

Most of the studies acquired data from at least an Optical Motion Capture (MoCap) system [74,76–

79,82,84,85]. These data were used to compute spatial-temporal gait parameters [74,85], elevation 

angles of lower limb segments [74], upper limb segment angles [10,89] or stability measures obtained 

through the computation of COM position and velocity [10,78,80,81,84]. Some authors also collected 

force data to obtain ground reaction force information [75,80,84–86]. EMG data were collected in 2 

studies [89,90]. Also, Patel et al. [79] and Bhatt et al. [83]collected data from a functional Magnetic 

Resonance Imaging (fMRI) system. In these studies, subjects were asked to perform mental imagery of 

slip events after the perturbation trials. 

 Overground Walking 

Table 5 highlights the 29 studies that delivered slip-like perturbations in overground walking 

conditions. From these studies, 11 conducted their experiments with only young subjects 

[80,81,112,87,95,101,104,105,109–111], 13 with only older subjects [76,77,98–100,78,86,91–

94,96,97], and 3 studies considered both young and older participants [102,103,106]. Additionally, one 

study allowed the enrolment of young and middle age participants (aged between 40 and 60) [107] while 
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another manuscript considered young, middle age and older subjects [108]. Only studies 

[78,86,91,92,96–99,108] conducted the experimental trials with more than 50 participants. The number 

of participants ranged from 6 to 195 with a median of 36 subjects. 

 

Table 5. Overview of the 29 studies that performed overground slip-like perturbations, where: Y = young subjects, O = older 
subjects, Optical MoCap = Optical Motion Capture system, EMG = electromyography sensors, fMRI = functional Magnetic 
Ressonance Imaging, N\A = Not Available 

Authors 
Participants 

(Number/Age) 
Perturbation 

method 
Gait 

event 
LOB direction 

Speed 
(m/s) 

Perturbed 
leg 

Sensor 
systems 

Lee [76] (45 / 74.5 ± 6.9) 
Movable 
platform 

heel 
strike 

backward N\A right leg 
Optical MoCap; 

Force plate 

Lee [77] (45 / 74.5 ± 6.9) 
Movable 
platform 

heel 
strike 

backward N\A right leg 
Optical MoCap; 

Force plate 

Wang [78] (146 / 65≤) 
Movable 
platform 

heel 
strike 

backward self-selected right leg 
Optical MoCap; 

Force plate 

Lee [80] 
(36 / 26.74 ± 

4.9) 
Movable 
platform 

heel 
strike 

backward self-selected right leg 
Optical MoCap; 

Force plate 

Liu [81] (36 / N\A (Y)) 
Movable 
platform 

heel 
strike 

backward N\A right leg 
Optical MoCap; 

Force plate 

Liu [86] (152 / 65≤) 
Movable 
platform 

Step 
contact 

backward self-selected right leg 
Optical MoCap; 

Force plate 

Yang [87] (43 / N\A (Y)) 
Movable 
platform 

Step 
contact 

backward self-selected right leg Optical MoCap 

Wang [91] 
(195 / 72.3 ± 

5.3) 
Movable 
platform 

Foot 
contact 

backward N\A right leg 
Optical MoCap; 

Force plate 

Wang [92] 
(195 / 72.3 ± 

5.3) 
Movable 
platform 

Foot 
contact 

backward N\A right leg 
Optical MoCap; 

Force plate 

Sawers 
[93] 

(25 / N\A (O)) 
Movable 
platform 

heel 
strike 

backward N\A right leg 
Optical MoCap; 

Force plate; 
EMG 

Sawers 
[94] 

(28 / N\A (O)) 
Movable 
platform 

heel 
strike 

backward self-selected right leg 
Optical MoCap; 

Force plate; 
EMG 

Inkol [95] (11 / 21.9 ± 0.3) 
Movable 
platform 

heel 
strike 

forward, 
right 

and left 
self-selected 

dominant 
leg 

Optical MoCap; 
Force plate 

Liu [96] (75 / 65≤) 
Movable 
platform 

Step 
contact 

backward self-selected right leg 
Optical MoCap; 

Force plate 

Liu [97] 
(131 / 71.8 ± 

5.2) 
Movable 
platform 

Step 
contact 

backward self-selected N\A 
Optical MoCap; 

Force plate 

Wang [98] 
(114 / 72.5 ± 

5.3) 
Movable 
platform 

Foot 
contact 

backward self-selected right leg 
Optical MoCap; 

Force plate 

Wang [99] (67 / 72.2 ± 5.3) 
Movable 
platform 

heel 
strike 

backward self-selected right leg 
Optical MoCap; 

Force plate 

Merril 
[103] 

(16 / 20-31); 
(17 / 50-65) 

Slippery 
solution 

heel 
strike 

unconstrained self-selected left leg 
Optical MoCap; 

Force plate 

Nazifi [104] 
(20 / 23.6 ± 

2.52) 
Slippery 
solution 

heel 
strike 

unconstrained self-selected left leg 
Optical MoCap; 

Force plate; 
EMG 

Ziaei [105] 
(22 / 24.5 ± 

3.43) 
Slippery 
solution 

N\A unconstrained self-selected right leg 
Optical MoCap; 

Force plate 

Soangra 
[106] 

(7 / 22.64 ± 
2.56); 

(7 / 71.14 ± 
6.51) 

Slippery 
solution 

heel 
strike 

unconstrained self-selected 
dominant 

leg 

Optical MoCap; 
Force plate; 
EMG; Inertial 

Sensors 
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O’Connel 
[107] 

(24 / 23.75 ± 
2.83); 

(24 / 57.13 ± 
2.83) 

Slippery 
solution 

heel 
strike 

unconstrained self-selected left leg 
Optical MoCap; 

Force plate; 
EMG 

Allin [108] (108 / 18-66) 
Slippery 
solution 

heel 
strike 

unconstrained 
self-selected 

(slightly 
hurried) 

dominant 
leg 

Optical MoCap; 
Force plate 

Kim [109] (8 / 19–27) 
Slippery 
solution 

heel 
strike 

unconstrained N\A 
dominant 

leg 
Optical MoCap; 

Force plate 

Rasmussen 
[111] 

(6 / 23 ± 2.4) 
Slippery 

solution (robotic 
device) 

heel 
strike, 
mid-

stance 
and 

toe-off 

unconstrained self-selected 
dominant 

leg 
Optical MoCap 

Okubo 
[100] 

(44 / 65-90) 
Movable 
platform 

foot 
contact 

backward 

matched 
with 

the beat of a 
metronome 

both legs Optical MoCap 

Okubo 
[101] 

(10 / 29.1 ± 5.6) 
Movable 
platform 

foot 
contact 

backward 

matched 
with 

the beat of a 
metronome 

both legs Optical MoCap 

Okubo 
[102] 

(10 / 20-40); 
(10 / 65-90) 

Movable 
platform 

foot 
contact 

backward 

matched 
with 

the beat of a 
metronome 

both legs Optical MoCap 

Arena 
[110] 

(12 / 20.9 ± 2.2) 
Slippery 
solution 

heel 
strike 

unconstrained 
between 

1.45 
and 1.60 

right leg 
Optical MoCap; 
Inertial Sensors 

Er [112] (7 / 25 ± 0.94) 

Motor 
impulse 
(robotic 

device)(*) 

early 
stance 
phase 

backward self-selected left leg 
Optical MoCap; 
Inertial Sensors 

(*) The impulses were elicited by a robotic device that followed subject’s motion. 

 

3.2.2.1. Perturbation methods 

As depicted in Table 5, movable platforms were used in 19 studies, whereas slippery contaminant 

surfaces were the source of instability in 8 other articles. Two additional papers described a novel robotic 

system that was responsible to apply the perturbations [111,112]. While 19 studies induced slip-induced 

backward LOBs, 9 papers induced LOBs in an unconstrained direction. Study [95] provoked LOBs in the 

forward, right and left directions. 

Briefly, movable platforms consist of platforms that are assembled to an aluminium track by means 

of ball bearings and are embedded in a walkway [76,94,97]. In regular walking trials, the platforms are 

firmly locked. However, when a slip trial is about to be conducted, a trigger mechanism releases the 

device enabling the participants' leading foot to be exposed to a low-friction surface causing a slip. The 

trigger mechanism focused on the detection of the heel strike event through force plates embedded 

beneath the movable platforms [76,97]. In a similar approach, Inkol et al. [95] performed a forward 
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translation of the users' entire support surface by means of a robotic movable platform to provoke slip 

perturbations. Generally, according to the selected studies, movable platforms elicited slip-like 

perturbations in the anterior-posterior (AP) direction [86,91,97,98]. Liu et al. [86,97,119] and Sawers et 

al. [93] mentioned that their platforms could not move in the medial-lateral (MLat) direction. The platforms 

were generally installed in pairs, i.e., one in the left and one in the right side of the walkway. The platform 

of the unperturbed foot was automatically released after the activation of the leading/perturbation 

platform [91]. In [91] and [92], after the perturbed platform's release, the platform of the unperturbed 

side was released once the recovery foot landed on it. 

Another method used to provoke slip perturbations consisted of the application of a slippery surface 

in a specific location of the walkway. The slippery contaminant solutions were applied to achieve a 

reduction of the COF, which resembles realistic daily-life slippery conditions. Different contaminant 

solution compositions were used. Merril et al. [103], Nazifi et al. [104] and O'Connel et al. [107] chose 

a glycerol and water mixture contaminant while Ziaei et al. [105] and Kim et al. [109] selected soapy 

water as the slippery solution. A single study [106] considered a mixture of water and jelly to induce the 

imbalance event. Vegetable oil was used to create the slippery surface in [108] and [110]. With the 

exception of Allin et al. [108] and Arena et al. [110], the contaminant solution was generally applied on 

the top of a force plate to record ground reaction force data in both slip and non-slip trials [104,106,107]. 

Furthermore, 2 studies applied slip-like perturbations through robotic devices that were connected 

to the subject during walking and would unexpectedly provoke slips. Rasmussen et al. [111] developed a 

Wearable Apparatus for Slipping Perturbations (WASP), which consisted of a detachable outsole and a 

release mechanism controlled via wireless communication. The outsole, worn on subjects’ dominant foot, 

initially presented an adequate friction with the floor but, when wirelessly triggered, could elicit a slip-like 

perturbation during walking by creating a low-friction surface under the foot. This perturbation mechanism 

was activated by a wireless command sent by an operator in heel strike, mid-stance, or toe-off phases, 

which had to be anticipated by the operator due to the delay observed between the trigger signal reception 

and low friction surface release. The WASP was designed to deliver slip-like perturbations unpredictably 

and unconstrainably concerning the direction and magnitude of the slip. During the trials, beyond the 

device on the dominant foot which provoked slip perturbations, another WASP outsole (which did not 

apply perturbations) was used in the non-dominant foot in order to prevent differences in the length of 

both limbs and ensure a more natural locomotion. In another study, Er et al. [112] developed the Fall 

Inducing Platform (FIMP), capable of randomly and unexpectedly elicit slip-like perturbations by 

accelerating subject's left ankle, while providing freedom of movement. The ankle was interfaced with the 
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perturbation mechanism by a wire rope. The FIMP is programmed with a subject follower algorithm that 

allows it to automatically follow the subject based on camera footage. It also comprises a gait detection 

phase algorithm that enables the application of the perturbation on the desired gait event based on data 

collected by IMU sensors placed on the subject's body. There is also a user interface system control that 

allows the operator to inform the FIMP to trigger a perturbation in the subsequent characteristic gait 

phase detected, regarding the perturbation chosen to be elicited. In that matter, slips were triggered by 

forward accelerating the left ankle during the early stance phase by a pull force powered by a DC motor 

positioned anteriorly to the subject. 

3.2.2.2. Gait Phase Perturbed 

Sixteen studies provoked the slips at the heel strike, as highlighted in Table 5. In order to ensure 

that the provoked slips occurred at this gait event and on the intended slipping leg, slippery solution 

studies included regular walking trials to guarantee that the slipping foot landed on the zone in which the 

surface would be contaminated [106]. For instance, O’Connell et al. [107] varied the start position of the 

walkway to ensure the correct foot placement of the test subjects. Furthermore, study [111] provoked 

slips at the heel strike, mid-stance or toe-off phases and study [112] elicited slip-like perturbations during 

the early stance phase. The other 11 studies (Table 5) did not mention a specific phase and stated that 

the slip was elicited when the foot step or contact was detected by the force plates. Nevertheless, this 

foot contact might be resembled by the heel strike event of the slipping foot in most slip scenarios in the 

studies' experiments. 

3.2.2.3. Gait speed and perturbed leg 

As depicted in Table 5, most studies (16 in 29) applied slips in the right leg. Four studies only 

perturbed the left leg, 5 only the subject's dominant leg, and 3 both legs. One study did not mention the 

perturbed leg. Moreover, 18 manuscripts instructed their participants to ambulate at their self-selected 

speed, 3 studies matched the speed of the subjects to the beat of a metronome and study [110] instructed 

participants to maintain their speed between 1.45 and 1.60 m/s. The remaining 7 studies did not 

mention the speed instructed during the trials. 

3.2.2.4. Sensor systems and Data Collection 

All the studies used an Optical MoCap for data acquisition (Table 5). Data from these systems were 

used to compute spatial-temporal gait parameters [106,111], lower limb segment angles [99], joint 

angles [109,112] and joint moments [92,99] or stability measures obtained through the computation of 
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COM position and velocity [91,92,95,97,101,102]. Additionally, 22 studies also included force plates to 

collect ground reaction force data (Table 5). EMG sensors were included in 5 manuscripts 

[93,94,104,106,107] and 3 studies used wearable inertial sensor systems [106,110,112]. 

3.3. Trip-like Perturbations 

Trip-like perturbations were conducted in 15 studies. From this group, 6 papers described the 

application of a trip during treadmill walking, whereas the remaining 9 articles concerned its delivery in 

overground walking conditions. Figure 6 presents some of the methods used to provoke trips in the 

selected studies. 

 

Figure 6. Some trip-like perturbation methods conducted in the selected studies. (a) Brake-and-release system [11]. (b) 
automatic obstacle trigger [116]. (c) Manual obstacle placement [117]. (d) FIMP robotic system [112]. 
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 Treadmill Walking 

Table 6 shows the methods applied to induce trip-like perturbations during treadmill walking. Four 

studies involved young adults [11,89,90,113] and one study included middle age adults [114]. Study 

[115] enrolled young, middle age, and older adults. All the studies conducted the experiments with less 

than 25 participants. The sample size ranged from 8 to 24 participants with a mean number of 14 

subjects, approximately. 

 

Table 6. Overview of the 6 studies that performed treadmill trip-like perturbations, where: Optical MoCap = Optical Motion 
Capture system, EMG = electromyography sensors, N\A = Not Available 

Authors 
Participants 

(Number/Age) 
Perturbation 

method 
Gait event 

LOB 
direction 

Speed 
(m/s) 

Perturbed 
leg 

Sensor 
systems 

Lee [113] 
(10 / 26.3 ± 

4.8) 
Changing belt 
acceleration 

initial 
double-limb 

support 
forward 

self-
selected 

non-
dominant 

leg 

Optical MoCap; 
Force plate 

Aprigliano 
[11] 

(8 / 25.9 ± 2.8) 
Brake-and-

release 
system 

swing phase forward 1 right leg 
Optical MoCap; 
Inertial sensors 

König 
[114] 

(24 / 41-62) 
Brake-and-

release 
system 

swing phase forward 1.4 right leg 
Optical MoCap; 
Inertial sensors 

Silver 
[115] 

(7 / 24 ± 3.3); 
(4 / 46 ± 3.0); 
(3 / 63 ± 3.8) 

Tripping device 
early swing 

phase 
forward 

self-
selected 

left leg Optical MoCap 

Lee [89] 
(20 / 23.3 ± 

3.3) 
Changing belt 
acceleration 

initial 
double-limb 

support 
forward 

self-
selected 

non-
dominant 

leg 

Optical MoCap; 
Force plate; 

EMG 

Mueller 
[90] 

(13 / 28 ± 3) 
Changing belt 
acceleration 

heel strike forward 1 both legs 

EMG; 
Plantar 

Pressure 
Insole 

  

3.3.1.1. Perturbation methods 

Table 6 shows that half of the studies (3 studies) induced trip-like perturbations during treadmill 

walking by suddenly changing the belt's acceleration. In addition, 2 studies elicited trips using a brake-

and-release system connected to the subject's leg. The remaining study used an external device to 

unexpectedly place a tripping board to perturb subjects' locomotion. All of these studies provoked trip-

induced LOBs in the forward direction. 

Concerning the studies that provoked trip perturbations by changing the treadmill's belt 

acceleration, Lee et al. [89,113] elicited the trips to the non-dominant leg by the sudden stoppage of the 

perturbed foot treadmill belt. After the detection of the first heel strike from the unperturbed foot following 
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the perturbation, the belt returned to its pre-perturbation speed, which allowed the subject to recover from 

the trip-like event by continuing walking. Mueller et al. [90] provoked trips to both legs by accelerating the 

treadmill belt shortly after the heel strike event. This accelerating period was followed by a deceleration 

phase towards the pre-perturbation speed of 1 m/s. 

In a different approach, brake-and-release systems have also been used in 2 studies. These 

systems unexpectedly apply resistance to the subject's gait and inhibit the foot from going forward, 

emulating a trip event. In regular walking without perturbations, these systems accompany subject's 

walking without hindering it [11,114]. König et al. [114] applied resistance to the right foot during the 

swing phase via an ankle strap which was pulled through the brake-and-release system with a Teflon 

cable [120]. This device was able to generate a force around 55 N with a rise and fall times of the pulling 

force under 20 ms. During non-perturbation trials, the resistance received by the participants was below 

0.1 N, which was considered negligible [114,120]. The cam-based mechanism developed by Aprigliano 

et al. [11] was also able to stop the forward motion of the right foot along with the swing phase. During 

unperturbed walking, the rope moved according to the foot's movement. A nylon rope was attached to 

the participants' foot at one side and to the main frame of the brake-and-release system on the other side 

by a compliant spring with a stiffness of 3 N/m. 

The remaining study proposed a tripping device. Silver et al. [115] included a device capable of 

unexpectedly placing an obstacle in front of a subject during single-belt treadmill walking. This tripping 

system randomly delivered one of two selected objects to the left foot, one closed and one opened, both 

matching in volume and with a parallelepiped shape. The closed object was used to elicit a perturbation 

similar to a trip over a solid object placed on the floor while the opened one was used to mimic a trip 

event where the foot of a subject is “caught” by the open area underneath the obstacle. 

3.3.1.2. Gait Phase perturbed 

Three studies delivered the trip-like perturbations during the swing phase [11,114,115], 2 at the 

initial double-limb support phase [89,113], and one at the heel strike [90]. 

3.3.1.3. Gait speed and perturbed leg 

While 3 studies instructed their participants to ambulate at their self-selected speed [89,113,115], 

the other 3 applied a fixed speed across all the subjects [11,90,114]. Two studies applied the trip-like 

perturbations to the right leg [11,114], 2 to the subjects' non-dominant leg [89,113], one to the left leg 

[115], and the remaining one to both legs [90]. 
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3.3.1.4. Sensor systems and Data Collection  

As depicted in Table 6, Optical MoCap systems were used to collect data in 5 studies. Data from 

these systems were used to compute COM position and velocity, as well as upper body segment angles 

[89,113]. Force data were acquired through force plates embedded on the treadmill in [89,113] or by 

using a plantar pressure insole in [90]. EMG sensors were used in [89,90]. Wearable inertial sensors 

were considered in both brake-and-release systems studies [11,114]. 

 Overground Walking 

Table 7 presents the 9 studies that conducted trip-like perturbations during overground locomotion. 

Five studies conducted experiments with only young adults, 2 manuscripts with only older adults and 2 

studies with both young and older adults. All the studies conducted the experimental trials with less than 

50 participants. The number of subjects ranged from 6 to 44 with a median of 12 participants. 

 
Table 7. Overview of the 9 studies that performed overground trip-like perturbations, where: Optical MoCap = Optical Motion 
Capture system, EMG = electromyography sensors, N\A = Not Available 

Authors 
Participants 

(Number/Age) 
Perturbation 

method 
Gait event 

LOB 
direction 

Speed 
(m/s) 

Perturbed 
leg 

Sensor 
systems 

Potocanac 
[12] 

(7 / 24.6 ± 3.2) Obstacle trigger mid-swing forward self-selected right leg 
Optical MoCap; 

Force plate; 
EMG 

Wang 
[116] 

(40 / 67.9 ± 5.5) Obstacle trigger 
mid-to-late 

swing phase 
forward N\A left leg 

Optical MoCap; 
Force plate 

Ko [117] 
(6 / 21.83 ± 

0.75) 
Manual obstacle 

placement 
swing phase forward N\A right leg Optical MoCap 

Schulz 
[118] 

(14 / 20-35); 
(25 / 66-89) 

Manual obstacle 
placement 

swing phase forward 

3 speeds: 
slower 
than 

preferred; 
preferred; 

and 
as fast as 

safely 
possible 

N\A Optical MoCap 

Okubo 
[100] 

(44 / 65-90) Obstacle trigger mid-swing forward 

matched 
with 

the beat of a 
metronome 

both legs Optical MoCap 

Okubo 
[101] 

(10 / 29.1 ± 5.6) Obstacle trigger mid-swing forward 

matched 
with 

the beat of a 
metronome 

both legs Optical MoCap 

Okubo 
[102] 

(10 / 20-40); 
(10 / 65-90) 

Obstacle trigger mid-swing forward 

matched 
with 

the beat of a 
metronome 

both legs Optical MoCap 

Arena 
[110] 

(12 / 20.9 ± 2.2) Obstacle trigger 
mid-to-late 

swing phase 
forward 

between 
1.45 

and 1.60 
right leg 

Optical MoCap; 
Inertial Sensors 
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Er [112] (7 / 25 ± 0.94) 

Braking impulse 
from a novel 
robotic device 

(*) 

terminal 
Swing 

and Mid-
swing 

forward self-selected left leg 
Optical MoCap; 
Inertial Sensors 

(*) Impulses were elicited by a robotic device that followed subject’s motion. 

 

3.3.2.1. Perturbation methods 

Regarding the group of 9 studies that performed trip-like perturbations during overground walking, 

the triggering of a tripping object was the main source of instability. More specifically, this tripping object 

was activated in two different ways, either by the automatic spring of the obstacle from the floor (6 studies 

[12,100–102,110,116]) or by the manual placement of the object in the walkway (2 studies [117,118]). 

In a different approach, Er et al. [112] considered the application of trips by a novel robotic device. 

Concerning the studies that described the obstacle triggering, Potocanac et al. [12] included a 

walkway with a layout of 14 hidden obstacles (15 cm height) arranged in a row. During perturbation trials, 

any of these obstacles could be released from the floor to cause a trip. The released obstacle was selected 

by a kinematic data-based algorithm while the subject was approaching the obstacles zone [12,121]. In 

Okubo et al. [100], 14 cm height trip boards could suddenly flip up from the walkway to cause a trip. 

These obstacles were triggered by a foot detection sensor during perturbation trials and were released 

50 ms before the foot arrived at the hidden board position. This would lead to the automatic delivery of 

perturbations in the mid-swing phase. If participants reported increased levels of anxiety or perceived 

difficulty during the trials, the trip board height was decreased to 7 cm. Wang et al. [116] applied an 

unexpected trip event by releasing an 8 cm height hinged metal plate obstacle in less than 150 ms. This 

board was locked by the powered electromagnets, but when the unperturbed limb's ground reaction force 

measured by a force plate (placed before the hidden obstacle) exceed 80% of the subjects' body weight, 

the electromagnets were turned off and the plate was unlocked to elicit a trip. During baseline non-

perturbed walking trials, the starting position of the test subjects was adapted in order to assure that trip-

like perturbations were applied during the mid-to-late swing phase [116]. Also, in studies [101,102], 14 

cm height tripping boards sprang up from the walkway in order to elicit trip events on the subjects. During 

the first trials, Okubo et al. [102] used a 7 cm height board and further increased the height to 14 cm 

once the participant became more confident that they could avoid falling. However, in both studies, the 

obstacle was wirelessly released by a trained tester when the participants leading foot passed beside the 

location of the hidden trip board, such that the perturbation occurred at the mid-swing phase. Unlike the 

first 3 mentioned studies [12,100,116], in [101,102] the trip obstacle was manually triggered. Although 
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Arena et al. [110] mentioned that the trip obstacle embedded in the walkway was manually actuated, it 

is not clear if that activation is performed remotely as in [101] and [102]. 

Two studies manually placed the obstacles in the walkway. Ko et al. [117] and Schulz [118] placed 

objects in the walkway to induce trip-like perturbations during the unperturbed limb stance and perturbed 

limb swing phases, respectively. In [118] the obstacles were either visible or hidden. In the visible layout, 

the obstacles were white coloured placed on a black surface, whereas in the hidden layout both the 

obstacles and the surface were black. 

The remaining study considered the use of FIMP, a robotic device that elicits trip-like perturbations 

[112]. The device allowed freedom of movement in non-perturbation trials and was able to posteriorly 

arrest the participant's left ankle with an electromagnetic brake to cause an unexpected trip. Subject's 

ankle was connected to the FIMP's brake system by wire ropes. 

3.3.2.2. Gait phase perturbed 

All the studies considered the application of the trip-like perturbations during the swing phase to 

provoke trip-induced LOBs at the forward direction (Table 7). 

3.3.2.3. Gait speed and perturbed leg 

Studies instructed the participants to match their speed to the beat of a metronome [100–102], 

adopt a speed between a range of walking speeds [110] or to walk at their self-selected speed [12,112]. 

Schulz [118] instructed participants to walk under 3 different speed conditions, namely slower than 

preferred speed, preferred speed and as fast as safely possible speed. Ko et al. [117] did not mention 

the speed instructed. Three studies perturbed both legs [100–102], 3 perturbed the right leg 

[12,110,117], and 2 perturbed the left leg [112,116]. Study [118] did not mention which leg was 

perturbed. 

3.3.2.4. Sensor systems and Data Collection 

Optical MoCap systems were used for data collection in all of the mentioned studies (Table 7). 

These systems provided data to compute the COM position and velocity [100,116], spatial-temporal gait 

parameters [12,116], and upper body segment angles [116]. Force data were acquired in [12,116]. An 

EMG system was considered in [12] and wearable inertial sensors were used in [110,112]. 
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3.4. Methods used to unbias the perturbations 

From the group of 48 selected studies, some strategies have been adopted to mitigate participants' 

anticipatory behaviours towards the perturbations applied. 

Some studies attempted to affect participants' vision in order to reduce the likelihood of them 

predicting the position of the obstacles and the perturbations' onset. Studies instructed subjects to look 

straight ahead while walking [82,83,103,107] or to fix their eye sight on an object positioned at eye level 

[89,109]. Other authors dimmed the lights to prevent visual cues that would allow participants to identify 

potential slippery areas [103,104,107,108,110] or tripping obstacles [118]. Silver et al. [115] and Ko et 

al. [117] attempted to occlude subjects' peripheral visual field with special goggles and eye patches, 

respectively. Studies also instructed participants to face away from the walkway before each trial to limit 

their perception about the positioning of the slip or trip perturbation sources [101,103,107,108]. As such, 

the perturbation sources could be added, removed, or moved to different places along the walkway 

between trials [100–102,117]. 

Furthermore, studies did not inform participants about the perturbations' characteristics and 

provoked perturbations with different: i) intensities [10,74,79]; ii) directions [95]; iii) gait events perturbed 

[111,112]; and iv) trials' time length [111]. In addition, Okubo et al. [100,101]applied slips and trips in 

a mixed order. Moreover, other studies provoked the perturbations to both legs [10,74,85,90,100–102]. 

Some authors only applied a single perturbation in order to minimise gait adaptations following 

repeated perturbation exposure [84,109,110]. Studies also conducted walking trials without perturbations 

between perturbation trials in order to increase the unpredictability of the perturbation delivery [100,116]. 

3.5. Discussion 

Prevalence of slip-like perturbation studies was higher than trip-like perturbations ones. This is in 

line with the evidence that slips contribute more to fall events than trips [5,6]. 

From the group of 48 selected studies, 22 enrolled young subjects, 16 manuscripts included older 

participants and 6 studies accounted for both young and older subjects. The remaining studies enrolled 

young, middle age and older adults [108,115], young and middle age participants [107], and middle age 

adults [114]. The high number of studies that included participants of young and middle age groups has 

motivated this review to extend the analysis of the review study [2]. Moreover, only 9 out of the 48 selected 

studies included more than 50 participants during the experimental trials. These search results depict 

the prevalence of young subjects during the experimental protocols for provoking artificial falls, as well as 
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the low number of participants enrolled. Considering that the elderly entails a substantially higher fall risk 

than younger adults, an effort should be performed to include older participants in future experiments. 

Additionally, a higher number of participants should be enrolled in order to enable the generalisation of 

the study's findings over a higher sample of the population. These efforts would promote a better and 

wider understanding of the reactions of these high fall risk subjects to slip and trip gait perturbations. 

When applicable, the search results obtained from this narrative review will be compared against 

the evidences found in the review studies conducted by McCrum et al. [2] and Karamanidis et al. [71]. 

 Which methods and walking conditions are used to provoke slip- 

and trip-like perturbations? 

This review finds a variety of procedures implemented in the scientific literature to elicit slip- and 

trip-like perturbations. 

Slip-like perturbations were applied during both treadmill and overground walking with the latter 

(29 studies) being more prevalent than the former (18 studies). The application of slips during treadmill 

walking consisted of the sudden change of the belt's acceleration to induce an anteriorly displacement 

between the BOS and the COM. This finding is aligned to Karamanidis et al. [71]. On the other hand, 

overground walking slips were delivered by movable platforms, slippery solutions, and novel robotic 

devices. McCrum et al. [2] had also found the prevalent use of movable platforms to provoke slip 

perturbations. 

The slip-like events were generally applied at the instant of the heel strike. This is in line with 

Lockhart [70] that highlighted this gait event as the most hazardous one towards slip events during 

walking. During the heel strike, the body weight is being transferred to the limb where the heel strike is 

taking place (slipping limb). Applying a slip to that limb when this transfer is yet to be concluded would 

cause a highly unstable situation due to the lack of stable body support provided by the lower limbs. 

Additionally, Lockhart [70] also pointed out the toe-off event as another critical gait phase for slipping. 

However, since in this event almost all of the body weight has been transferred from the toe-off limb 

(slipping limb) to the other one (trailing limb), the likelihood of inducing an hazardous situation is smaller 

than the slip perturbation at heel strike [70]. This may be the reason why only one study applied slips at 

the toe-off phase [111]. 

Although overground walking conditions are more realistic to emulate daily life locomotion, 

treadmill devices provide continuous collection of gait patterns over longer periods of time. Thereby, slip 

perturbation's onset timing during treadmill locomotion may be more unpredictable than during 



 
 

51 

overground walking [122]. Regarding real-world slips, treadmill slips may not resemble the whole nature 

of slips, since treadmill belts can often move in only one direction, generally considered the AP direction 

[10,74,75,85]. In spite that, study [123] shows that from the total of the instability-induced falls collected 

during their experimental protocol, only 8.2% were related to the MLat direction. Hence, there is literature 

evidence that supports the AP direction as the most relevant in slip dynamics, which may provide support 

to the studies that performed slip-like perturbation during treadmill walking. 

Moreover, concerning real-world slips, the slippery solution-based perturbations are more likely to 

resemble real slippery conditions by reducing COF at the interface between the foot and the floor [70]. 

Herein, the perturbation direction is not restricted which allows for a more realistic and unpredictable slip 

dynamics as they happen in real life. However, the slip direction and magnitude unpredictability may 

hinder the generalisation of specific findings of slip dynamics since the slip conditions are less controlled. 

When the perturbation is controlled, i.e., its characteristics can be normalised across different 

experimental trials, specific aspects of the slip dynamics and responses can be studied which can enable 

a better and more reliable generalisation of the studies' findings [10]. In addition, the slippery solution 

studies did not automatically deliver the perturbations, which could yield more variability on the onset and 

the magnitude of the provoked slip. Conversely, slips caused by movable platforms, novel robotic devices 

and by changing treadmill's belt acceleration were delivered automatically. 

Trip-like perturbations were also elicited during treadmill or overground locomotion. Treadmill 

walking trips were caused by changing the belt's acceleration, using a brake-and-release system or a 

tripping device. Karamanidis et al. [71] verified the same methods except for the tripping device. On the 

other hand, overground walking trips were caused by triggering an obstacle release, manual placing an 

object along the walkway, or using a novel robotic device. Trips were mainly applied during the swing 

phase of gait. This is in line with Karamanidis et al. [71], which described trip events as the sudden 

disruption of the relation between subject's COM and BOS caused by the abrupt interruption of the swing 

limb motion. The advantages and disadvantages of using treadmill or walkway setups to provoke trips are 

analogous to the ones mentioned above for the slip-like perturbations. All the treadmill-based setups 

conceived to apply trip-like perturbations, except study [115], did not use objects to perturb the 

locomotion. Thereby, the perturbations applied either by changing belt's acceleration or brake-and-release 

systems may be less likely to resemble real-world trips. Nevertheless, the latter systems are able to 

interrupt the swing phase of gait by directly pulling the respective foot, which can also accurately depict 

trip events. While in the manual obstacle placement it was not guaranteed that the trips would occur at 

a specific phase of gait, studies that triggered an obstacle release had a more automatic and reliable way 
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to perturb participant's gait during their swing phase [12,100–102,116]. Moreover, regarding the tripping 

obstacles implemented in the selected articles, it was observed the prominent use of boards with height 

values of 7/8 cm [110,116] and 14/15 cm [12,100–102]. Predictably, an inter-trial variability of the 

perturbation onset may arise in the obstacle manual trigger. Therefore, it is recommended that 

researchers consider more automatic approaches to deliver trips. It is noteworthy that from all the trip-

like perturbation studies, only Silver et al. [115] considered the application of more than one type of 

obstacle. Future work should follow this approach in order to enable a more comprehensive analysis of 

the variability of trip events triggered by different types of obstacles. 

For both types of perturbations, the selection of the walking condition (treadmill or overground) has 

to take into consideration the trade-off between the relevance of inducing natural perturbation dynamics 

and the generalisation of the studies’ results. Further, the selection should attend to the available space 

for the experimental setup and if the perturbations are intended to be delivered: i) automatically or not; 

and ii) directly from a device connected to the subject or not [11,111,112,114]. Additionally, for slip 

perturbations, this selection has also to keep in mind whether the perturbations are intended to be 

delivered in a specific direction or not. For trip perturbations, it is also necessary to consider if one or 

more types of obstacles are planned to be used to apply the trips. 

 Is it preferable to deliver perturbations during treadmill or 

overground walking? 

Results showed that there is a prevalence of overground walking perturbations relative to treadmill 

perturbations in both slip- and trip-like perturbations. The walkway perturbations may be more realistic 

than the treadmill-based ones since real-life slips and trips occur during overground walking. However, 

recent research has been attempting to validate the perturbation delivery during treadmill locomotion 

against overground walking [78,86]. Liu et al. [86] compared the retention of fall resisting skills in the 

follow-up period of 6 months between treadmill and overground walking conditions. Results showed that 

the group of individuals that received baseline overground walking perturbation training had a lower fall 

incidence and a higher reactive stability against an overground slip applied 6 months after the perturbation 

training sessions than the group that underwent the baseline treadmill perturbation training. Therefore, 

since the treadmill slip training group achieved a lower balance recovery performance than the overground 

slip training group, the authors could not generalise the delivery of slips during treadmill walking against 

overground walking. Nevertheless, treadmill perturbation training group had increased stability metrics 
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and lower fall incidence than its control counterpart (treadmill training without perturbations), which depict 

a long-term relative retention of fall resisting skills from treadmill perturbation training. 

Researchers are working towards this topic given all the advantages associated with treadmills to 

provoke perturbations. Perturbation delivery during treadmill walking provides accurate velocity profile 

control, which may lead to the reliable delivery of slips [76]. Computer controlled treadmill devices enable 

the application of different perturbations in a highly precise and standardised manner, which is not 

observed during overground perturbations studies since the perturbation characteristics entail more 

variability [88,90]. Additionally, treadmill devices allow researchers to easily modulate the intensity of the 

perturbation and, therefore, to study subject's adaptation to different perturbations characteristics [88]. 

Furthermore, the portability of treadmill devices, as well as the reduced space they occupy are also 

noteworthy [76,81,88]. Treadmills also allow for the collection of multiple and continuous walking 

patterns over long periods of time [122]. As reported in previous review studies [2,71], this will also lead 

to an increased difficulty to predict when the perturbation will be delivered, which ensures more realistic 

reactive balance control strategies adopted by the participants. Concerning all of the above mentioned 

advantages of treadmill's perturbation delivery, the generalisation of treadmill perturbations application 

against the ones applied during overground walking becomes essential [81,88]. 

 Is it preferable to use a single-belt or a split-belt treadmill to 

perturb walking? 

Both single and split-belt treadmills have been used to apply treadmill gait perturbations. Single 

belt treadmills were used in 14 studies [11,76,87,88,114,115,77–83,86], while split-belt treadmills were 

adopted in 8 manuscripts [10,74,75,84,85,89,90,113]. Compared to single-belt, split-belt treadmills give 

researchers the opportunity to study kinetic data from both feet independently by integrating force sensors 

in each of the belts. Additionally, the application of gait perturbations is more standardised and 

reproducible across different test subjects, allowing to define: i) more accurately the limb that is going to 

be perturbed; ii) specific velocity profiles for each belt to conduct the perturbation; and iii) automatic onset 

of the perturbation based on kinetic data from the targeted limb [10,90]. These features turn the split-

belt treadmill more suitable to deliver realistic perturbations. However, a comparison study [122] of the 

walking kinematics between the single- and split-belt treadmill walking, concluded that subjects tend to 

widen their base of support while walking on a split-belt treadmill to manage the walking gap between the 

two belts. Despite of this unnatural gait pattern, frontal plane lower limb kinematics were not significantly 

different between both types of treadmills [122]. With this in mind, it is possible to deliver perturbations 
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on a split-belt treadmill taking advantage of its features compared with the single belt one. Regardless, 

single-belt treadmills are more accessible to apply gait perturbations [11,79,82,115]. 

 What procedures are implemented to maintain responses to 

perturbations unbiased? 

Different mechanisms were adopted by the authors to reduce the predictability of the perturbation 

events delivered. Generally, all the studies described that those perturbations were intended to be 

unexpected and instructed their participants to react naturally and try to recover balance whenever a 

perturbation was applied. As such, studies did not carry out trials to familiarise subjects with the 

perturbations to mitigate participants' learning effects and gait adaptation to the perturbations. Previous 

literature studies suggested that following the first perturbation exposure, subjects alter their gait 

characteristics to adapt to those perturbation conditions [97,124]. Thus, some authors tripped or slipped 

their participants only once [83,84,114,96,97,103,104,107–110]. 

However, 38 studies conducted multiple perturbations on the same subject. Consequently, they 

included different techniques to enhance the unpredictability of both perturbation's onset and 

characteristics so as to limit the bias associated with subjects' gait modification following repeated 

perturbation exposure and increase the reliability of the results obtained. Some authors conducted 

perturbations with different intensities [10,74,79], directions [95], and on both limbs [10,74,85] to 

prevent subjects' adaptation to only one type of perturbation. Other sources of variability consisted of 

changing the gait phase to be perturbed [111,112], trials' duration [111], and the location of obstacles 

[101]. Overground walking perturbation studies often refer that, between different trials, participants were 

required to face away from the walkway in order to limit the perception of the perturbations source's 

placement [101,108,117]. Furthermore, most of these studies included non-perturbation trials between 

perturbation trials to create more unexpected conditions when perturbations were delivered. 

Some authors attempted to somehow control participant's field of view to be less likely for them to 

perceive the perturbation onset. Studies instructed their subjects to look straight ahead while walking 

[82,103,107] and focus their sight on an object [109] or a mark [89] in an eye level. Silver et al. [115] 

and Ko et al. [117] conducted another approach to limit participants peripheral sight by requiring them 

to use an eye patch during the trials. In slip-like perturbations through slippery solutions, authors created 

a dimmed lighting environment so as to reduce the light reflection of the slippery surface and prevent 

participants to spot its location [103,104,108]. Also, Schulz [118] created a low lighting environment that 

would reduce subjects' ability to spot the tripping obstacles. However, since these visual constraints 
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introduced do not exist during real-life walking, its application should be avoided to mimic daily-life 

conditions. 

It is also noteworthy that any gait asymmetries provoked by the placement of some constraint on 

the subject's body during the trials must be compensated to ensure a natural gait. In this regard, despite 

the perturbations were applied to only one limb, participants in [111] wore the outsole device on both 

feet and in [11] a rope was attached to each foot. 

 Which limb is generally used to apply the perturbations? 

Studies have applied the perturbations on one or both legs. However, some works did not mention 

which leg or legs were perturbed [79,82,83,88,97,118]. Most of the studies (35 studies) applied the 

perturbation to only one leg. From this group of articles, 22 and 8 papers applied the perturbations to the 

right and left legs, respectively, whereas the 5 remaining studies described the perturbation delivery to 

the dominant leg. It is also noteworthy that from the 8 studies that only perturbed the left leg, 2 of them 

described that leg as the participant's non-dominant leg. 

There is clear evidence for the application of the perturbations preferably to the right limb instead 

of the left one. This may be related to the fact that the large majority of individuals present right-side 

dominance [125]. However, only 7 studies have reported the limb selection according to the side-

dominance of individuals: the dominant [95,106,108,109,111] or the non-dominant limb [89,113]. 

Additionally, Okubo et al. [100–102] also considered the side-dominance of the subjects, despite the 

authors conducted perturbations in both legs. Despite side-dominance is not covered by most of the 

collected studies (works [92,107] reported this limitation), it should be considered, especially if the study 

considers PBT, where perturbations are delivered to improve subjects' balance recovery skills. Martelli et 

al. [126] highlighted that the dominant limb is mainly responsible to propel the body forward whereas the 

main role of the non-dominant limb is to provide body support. A previous work also suggests that there 

is an increased risk of falling in the situations where the perturbed limb is the non-dominant limb [127]. 

Therefore, the analysis of the subjects' reactions to perturbations is more comprehensive if the dominance 

of the leg being perturbed is considered. 

Furthermore, 7 studies perturbed participants in both legs [10,74,85,90,100–102]. Although it 

represents less than 15% of the included studies, the perturbation delivery to both legs play an important 

role to maintain the natural responses to the perturbations from the participants. As mentioned by Martelli 

et al. [10], Aprigliano et al. [74] and Mueller et al. [90], although only data from right-sided perturbations 

were considered for the study's analysis, left-sided perturbations were also randomly delivered to obtain 
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unbiased results by limiting subject's gait pattern adaptation to only right-sided perturbations. The 

randomisation of the perturbations' side allows to decrease the learning effects to counteract the LOBs 

induced and the participants' awareness of the perturbations' characteristics in comparison with 

perturbations provoked always to the same side [85,100–102]. Moreover, the application of perturbations 

to both sides would enable the study of the differences between subject's reactions to perturbations 

applied to the dominant and non-dominant limbs. It is also noteworthy that more complex resources are 

required in order to deliver perturbations to a specific limb. A split-belt treadmill is more suitable to reliably 

apply perturbations to only one limb during treadmill walking [80]. Yet, these treadmill devices are less 

available in the market regarding the single-belt treadmill. Similarly, concerning overground walking 

perturbations, the walkway should be divided into independent segments for each limb so as to enable 

the reliable and reproducible perturbation delivery towards a specific leg [128]. 

 Which was the participants' walking speed during the trials? 

From the forty-one studies that included trials under only one walking condition, either treadmill or 

overground locomotion, subjects were instructed to walk at self-selected speed on 23 studies, 10 studies 

applied a fixed walking speed across all participants, 2 studies described the application of a normalised 

walking speed specific for each subject, and 6 studies did not mention the walking speed adopted. The 

7 studies that delivered perturbations during both treadmill and overground walking, reported different 

velocity paradigms for each walking condition. For instance, Yang et al. [87] and Lee et al. [80] described 

the application of 1.2 m/s speed in the treadmill and a self-selected speed while walking along the 

walkway. The other studies either reported self-selected speed on both walking conditions [78,86] or did 

not describe the overground walking speed [76,77,81]. 

Regardless of the walking condition adopted, most of the authors instructed their participants to 

walk at their self-selected speed. This is in line with the review conducted by McCrum et al. [2]. Regarding 

those 23 manuscripts, subjects selected their own comfortable speed on overground walking studies 

[12,94,107,111,112,129,95,96,98,99,103–106], while in treadmill walking studies participants were 

instructed to either ambulate at their own self-selected speed [79,82,83,89,113,115] or were asked to 

select a speed from 4 available options (1.2, 1.0, 0.8 or 0.6 m/s) [88]. Although walking at that 

comfortable speed would simulate more realistic walking conditions, it is more difficult to deliver 

perturbations equally challenging across all the subjects. 

Studies [11,75,84,90,114] selected a constant speed throughout all the trials towards mitigating 

the problem associated with the different velocities from the different participants. In these manuscripts, 
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belt speeds of 1.0 [11,75,90], 1.2 [84], and 1.4 [114] m/s were applied. The constant speed condition 

is easier to perform in the treadmill than in overground since a constant belt speed can be employed. 

However, some overground walking perturbation studies adopted strategies to overcome that limitation. 

Arena et al. [110] initially instructed their participants to walk naturally while monitoring their gait speed 

using Optical MoCap data. Afterwards, participants were told to increase or decrease their speed to keep 

it between 1.45 and 1.6 m/s. In addition, Okubo et al. [100–102] regulated participants' speed using a 

metronome such they stepped in the tiles positioned along the walkway according to the metronome's 

beat. These tiles were configured according to subject's cadence and normal step length. Hirata et al. 

[85] also matched the speed of the subjects with the beat of a metronome, considering both slow (0.9 

m/s) and fast (1.6 m/s) walking conditions. However, in this constant walking speed condition, subjects' 

normal walking is partially disconsidered and the velocities in which perturbations are delivered may not 

still be equally challenging for subjects with different anthropometric characteristics [84]. In order to 

answer this limitation, Martelli et al. [10] and Aprigliano et al. [74] calculated a velocity that was specific 

for each participant according to the leg length. This procedure is in line with McCrum et al. [130], who 

claimed that the walking speed should be adapted to each subject to induce a similar margin of stability 

across all the participants along the trials. This procedure enables to create an equally challenging 

environment of perturbation delivery regardless of the subjects' characteristics. 

 What are the main sensor systems used to collect data during 

perturbation-based protocols? 

The Optical MoCap devices were the most used sensor systems (45 out of 48 studies). The use of 

reflexive markers to acquire subject's motion data enables the extraction of relevant kinematic and angular 

information of subjects' motion in laboratory conditions. This may be particularly important to find 

parameters that relate to the biomechanical reactions to falls, which could be employed in the 

development of fall prevention strategies for individuals with increased risk of falling, as shown in 

[10,98,99]. Data from these systems were used to compute subject's stability through the computation 

the COM position and velocity [10,78,81,84,89,92,95,97,101,116] and for the analysis of spatial-

temporal gait parameters [12,74,85,106,116], upper limb segment angles [10,89,116], lower limb 

segment angles [74,99], joint angles [109], and joint moments [92,99]. 

Force data were acquired in 32 studies. These data were mainly collected by force plates either 

installed beneath treadmill's belts [10,85] or embedded in some position along a walkway [92,106]. The 
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main purpose for using the force plates was to provide ground reaction force information to detect the 

reliable timing of perturbation application rather than to collect data for further analysis [10,90,91,116]. 

Five studies equipped participants with wearable inertial sensors with different purposes. Arena et 

al. [110] placed an IMU on the forehead to acquire meaningful information from head motion during slip 

and trip events. Aprigliano et al. [11] collected inertial data to compute several limb elevation angles 

during normal and perturbed walking trials. Additionally, Er et al. [112] used data provided by inertial 

sensors to feed a gait event detection algorithm that led to a precise application of the gait perturbations. 

Lastly, EMG sensors were considered in 8 studies. They were the only type of biosensor used 

among the 48 studies collected. EMG data may provide useful information about muscles activated during 

imminent fall risk situations [131]. Accordingly, Sawers et al. [93,94] and Nazifi et al. [104] explored 

muscle synergies, which represent groups of muscles that coactivate to produce a biomechanical function 

that is required to perform a certain motor task [132], during perturbation trials. The study of the synergies 

underlying gait perturbation recovery could be promising to better understand which muscles are not 

being properly activated in fall risk individuals. In addition, it can also promote an evidence-based fall 

prevention treatment. Moreover, during human imbalance condition, a sudden EMG pattern alteration 

due to a reactive neuromuscular response may be generated faster than the modification of inertial signal 

patterns [22]. Accordingly, Marigold & Patla [133] and Pijnappels et al. [134] showed that rapid lower 

limb muscle activation was elicited following slip- and trip-like events, respectively. Thereby, future studies 

should consider the use of EMG sensors concerning the relevant information they provide towards the 

better understanding and faster detection of human's reactions to perturbation events. 

Although load cells were used in some studies, these sensors did not provide meaningful data 

regarding the subject's reactions to the provoked perturbations since their main purpose was to label the 

experimental trials as fall or non-fall/recovery [76,97,101]. 

 Are there benefits to apply both slip- and trip-like perturbations? 

Among the included studies, 6 studies delivered both types of perturbations to each participant 

[89,90,100–102,112]. The application of both types of perturbations may be more suitable than the 

single type of perturbation if the purpose of the study regards to PBT [89,90,101,102]. Okubo et al. [101] 

pointed out that the application of only slip-like perturbations may lead individuals to learn recovery 

strategies related to the predictive adaptation of anterior shifting the COM, which may in turn increase 

the risk of tripping. Thus, to adapt individuals to real-life perturbations these COM predictive alterations 

must be mitigated by the mixed application of both slips and trips. Furthermore, study [102] applied slips 
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and trips in a mixed order to mimic more realistic perturbation conditions. This would ensure more natural 

reactions to the gait perturbations applied, similar to the real-life context. Nevertheless, the inclusion of 

both types of perturbations may yield a more complex experimental protocol. 
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4. Slip-related Fall Prevention Strategy Proposal 

The fall prevention strategy concept is divided in 2 major modules: i) the actuation strategy; and ii) 

the detection strategy. Requirements were drawn for each strategy in order to promote the effective 

performance from the detection of slip-induced LOBs to the successful corrective actuation of the assistive 

device. Considering that the slip fall prevention is aimed at real-world conditions, the sensors used for 

data acquisition were considered to be wearable devices or implemented on the assistive device. 

Concerning the actuation strategy definition, a literature investigation was conducted on studies 

that analysed the human biomechanical reactions to slip perturbations. Only slips induced at the heel 

strike were analysed for the current strategy, considering that this gait event was found to be the most 

prominent and prevalent to onset slip perturbations during walking [70]. In fact, the state-of-art literature 

research on Provoked Falls (Chapter 3), highlighted that almost all the studies considered this gait event 

as the slip onset. Considering the prominent role of the perturbed (leading) and unperturbed (trailing) 

legs to counteract slip-induced LOBs, the ideal scenario would include the assistive torque supply to all 

the lower limb joints from both legs upon a slip. However, such an approach would increase the 

complexity of the fall prevention strategy, in both computational and mechanical aspects, which could 

lead to an ineffective fall prevention. Therefore, only the leg and joint found to be the most relevant to 

counteract the slip-induced LOBs will be provided with assistive actuation. Actually, Trkov et al. [65] and 

Mioskowska et al. [135] assisted only one joint with their slip fall prevention system. Hence, the current 

search was aimed at understanding: i) 'Which leg has a more prominent role to counteract slip-induced 

LOBs?'; ii) 'Which lower limb joint has a more determinant role to counteract slip-induced LOBs?'; and iii) 

'Which should be the joint moment characteristics applied towards the actuation joint?'. The first question 

considers the selection of the most suitable leg to actuate upon a slip-induced LOB. The second question 

allows to define the actuation joint for the slip-related fall prevention strategy. The third question allows 

to understand the joint moment characteristics that should be applied towards the actuation joint upon a 

slip-induced LOB. The answers given to these questions allowed to define the assistive device for the fall 

prevention strategy.  

The detection strategy definition relies on the use of biological-inspired controllers, which are able 

to learn and adapt its output to almost periodic signals. As such, these controllers are well-adapted to 

monitor human locomotion variables and present advantages, which are further highlighted, in 

comparison with other training-based algorithms. In the presence of a gait perturbation, the signal 

predicted by the biological-inspired controller will deviate from the actual motion signal. Thus, threshold-
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based algorithms were used to detect the gait perturbations based on these induced deviations. 

Nevertheless, it is necessary to objectively select the variables which will be monitored towards the 

detection of slip-induced LOBs. Therefore, important human motion variables were considered based on 

the previous literature reviewed and further criteria was applied to them in order to select the most suitable 

variables to be monitored by the biological-inspired controllers. 

Following these procedures, the timings assigned to the slip-related fall prevention strategy, namely 

the times attributed to the detection and actuation stages, were determined according to literature 

evidence on biomechanical reactions to slip perturbations. 

4.1. Introduction 

 Biomechanics of the Slip event 

Slips have been identified as the main contributors to falls [5,6]. In addition, occupational fall 

mortality rates are substantially higher for elderly aged 65 and above in comparison with other age groups 

[6]. Hence, researchers have been studying the biomechanics of slips to better understand the human 

responses to these events and reduce their harmful consequences. Slips occur when the interface 

between the subject's foot and the floor does not provide sufficient COF [70]. As such, the environmental 

conditions play an important role in the likelihood of slipping. These events take place mostly when the 

foot is either contacting or leaving the floor, which resemble critical body weight transfer situations 

between the lower limbs, especially when the heel strikes the floor [70]. For instance, if at the end of the 

swing phase the heel is not sufficiently decelerated, an increased heel velocity will take place at the heel 

strike, which increases the possibility of slip initiation, whenever slippery conditions are presented [136]. 

Slips initiated at the heel strike deviate subject's COM relative to the BOS causing a backward LOB. Upon 

the detection of this abnormal deviation by human sensory systems, information is sent through afferent 

nerves to the motor control regions of the Central Nervous System (CNS). The CNS processes the 

information received and further sends efferent signals towards targeted skeletal muscles to compensate 

the LOB suffered by properly contracting to maintain the body position within the BOS. The coactivity of 

the activated lower limb muscles counteracts the displacement of the perturbed foot and promotes slip 

recovery [70]. The slip perturbation direction is often referred as the direction of motion, i.e., the AP 

direction. In fact, Wang et al. [123] has shown that from all the instability-induced falls provoked during 

their experiments, only 8.2% were related to the MLat direction. 

A previous study performed by Cham & Redfern [9] investigated the corrective strategies to prevent 

falls adopted during a slip event based on the lower limb joint moment profiles from the leading leg. The 
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authors found that the primary response to counteract the LOB induced by a slip at the heel strike 

consisted on the increase of both knee flexion and hip extensor moments at the leading leg, which is also 

corroborated by Moyer et al. [137]. This allows to counteract the sliding motion of the perturbed foot to 

bring it back closer to the COM and minimise the body's vertical descent. These increased moments, 

which are produced in the leading limb joints between 25% and 45% of the stance phase, comprise the 

dominant corrective response to slip events. Despite only addressing the recovery biomechanics from the 

leading limb, Cham & Redfern [9] also acknowledged the possible assistive role of the trailing leg during 

a slip. In this regard, Moyer et al. [137] underlined the lack of study of the trailing leg kinematics and 

emphasised its importance towards the human biomechanical reaction to slips. These researchers 

distinguished 4 responses of the trailing leg towards slips provoked at the heel strike, which were recruited 

based on the slip severity (measured by the peak heel horizontal velocity of the leading foot) and were 

evoked after the onset of the leading limb's corrective responses. As in Marigold & Patla [133], Moyer et 

al. [137] observed that the higher was the slip severity, the faster the swing phase of the trailing foot was 

interrupted by lowering the foot to the ground, by means of a corrective hip extension, and reestablish a 

stable BOS to increase the chances of recovery. The increase in slip severity also induces a more posterior 

landing of the trailing foot on the ground and with a smaller contact area. The time taken to reverse the 

swing motion direction following a slip before landing the foot on the ground plays an important role 

towards the slip recovery [10]. If the slip was minimally disturbing to the user, the trailing leg behaved 

similarly to normal walking conditions and its swing phase was not interrupted [137]. 

Moyer et al. [137] also found evidence on interlimb coordination while recovering from slip events, 

since the magnitude of the trailing leg's response was associated with the knee moment exerted in the 

leading leg following the slip. As such, the successful recovery after a slip event is achieved by the 

interlimb coordination of both lower limbs. An increase of the flexion moment applied at the knee is 

accompanied with an increase in the hip extension moment in order to decelerate the sliding motion of 

the slipping leg and bring it back closer to the COM [9]. In parallel, the trailing leg's response is also 

characterised with the application of increased moments at the hip and knee joints [137]. The hip 

response is characterised by an increased extension moment in order to lower the foot onto the ground 

to interrupt the swing phase and reestablish a stable BOS. A corrective flexion moment is also provided 

at the knee to: i) decelerate the forward swing motion of the trailing limb; ii) absorb the energy produced 

by the hip extensors; and iii) allow to perform the trailing leg's foot clearance during swing despite the slip 

[137]. These corrective responses promptly applied to the leading and trailing legs are derived from 

different muscle synergies, which may crucially represent the neural control during a slip event [104]. 
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Muscle synergies constitute groups of muscles that coactivate in order to produce a biomechanical 

function that is required to perform a certain motor task [132]. The 3rd and 4th muscle synergies 

highlighted in the study conducted by Nazifi et al. [104] depict the previously highlighted corrective actions 

adopted by the leading and trailing legs, respectively, upon a slip event. These findings further corroborate 

the interlimb coordination achieved in both lower limbs to counteract the slip perturbations. Moyer et al. 

[137] also found that intralimb coordination was also implied on the trailing leg, since the corrective 

moments generated at its knee and hip were also correlated. To sum up the literature evidence found, 

Figure 7 depicts the main human biomechanical reactions adopted upon a slip event. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Human biomechanical reactions adopted upon a slip event. The human stick diagrams were extracted from study 
[10]. The red dot represents the extrapolated COM. 

 

Wang et al. [99] presented a schematic diagram illustrative of all possible slip outcomes (Figure 

8), i.e., the consequences a slip has on an individual. According to Figure 8, the slip outcome is firstly 

classified into LOB or no-LOB. In the presence of a slip, if the body COM state, which is described by the 

relationship between the COM position and the COM velocity relative to BOS [97], remains within the 

limits of stability without the need of stepping or grasping actions, the outcome is a no-LOB. In this 

scenario, the trailing leg proceeds with the forward motion progression, as in regular walking, by landing 

in line with the slipping foot or in front of it. The no-LOB can be further classified into skate over and 

walkover outcomes. A walkover takes place when the sliding motion of the leading foot is minimised or 
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completely neutralised. Nevertheless, if the sliding motion is mitigated, but not eliminated, the outcome 

is a skate over. However, if the body COM state is moved outside the limits of stability, a LOB occurs. In 

this condition, the forward progression of the trailing leg is interrupted to immediately provide a stable 

BOS to counteract the perturbation [137]. As such, the trailing leg lands behind the slipping foot, as a 

backward stepping action is necessary. Upon a slip-induced LOB, a fall takes places when an individual 

fails to restore stability, i.e., bring back the COM state within the limits of stability, or is unable to produce 

sufficient vertical limb support. However, in the non-fall outcome, individuals regain stability by effectively 

taking a recovery step with the trailing leg, which will end up providing enough vertical limb support to 

slow down or reverse the hip descent and consequently avoid falling [138]. 

Figure 8. Schematic diagram depicting the possible slip outcomes [99] .  
 

 Literature Slip-related Fall Prevention Strategies 

High fall risk individuals are constantly threatened by the unpredictability of the occurrence of gait 

perturbations, which can happen in a wide range of scenarios during the everyday living. Although these 

subjects are able to produce reactive responses to counteract the LOBs, they are generally not agile and 

strong enough to avoid falling [64]. According to the overwhelming prevalence and harmful consequences 

associated with the occurrence of slips, recent literature has attempted to implement slip-related fall 

prevention strategies. 

Monaco et al. [64] developed a wearable robotic device which consists of an Active Pelvis Orthosis 

(APO) to assist balance recovery following unannounced slip perturbations. The authors grounded their 
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approach considering that a stiffness increase at the hip joints could help subjects to recover from 

treadmill slip-like perturbations. The APO operated either in the zero-torque mode (Z-mode), in which no 

assistance torque was applied to the participants, or in the assistive mode (A-mode), where the system 

supplied assistive torques at the hip joints. Herein, the APO assistance consists of the synchronous 

extensor and flexor torques towards the leading and trailing limbs, respectively, in the sagittal plane. 

Monaco et al. [64] adopted some assumptions towards the APO's assistive actuation since they claimed 

that no previous study had closed the loop from the LOB detection to the assistive support provided by a 

wearable robot: i) the assistive torque duration was chosen as 0.25 s, considering that a fall happens 

within 0.7 and 1 s [139] and the APO's LOB detection time is between 0.3 and 0.4 s; and ii) Since the 

subject's inertia affects the reactive response, APO's assistive torque was proportional to the sum weight 

of participant and exoskeleton by the ratio of 0.2 Nm/kg. Perturbations were detected based on the real-

time comparison between the actual APO's hip angles and the hip angles predicted by a group of adaptive 

oscillators. An adaptive-threshold algorithm monitored the difference between the actual hip angle and 

the one predicted by a pool of adaptive Hopf oscillators [13]. Whenever this difference or error value 

exceeded the computed threshold, a LOB was detected. Then, the system switched from the passive Z-

mode to the active A-mode in order to provide assistive torques so as to counteract the downward COM 

displacement. The adaptive threshold algorithm was able to detect a LOB situation in about 350 ms. 

Furthermore, it was concluded that the APO did not significantly alter gait characteristics, which makes it 

transparent to subject's steady gait. 

Mioskowska et al. [135] presented a wearable knee assistive device that aims to prevent slip related 

falls. The system was designed to actively extend the trailing leg's knee by means of a knee brace once 

a slip perturbation has been detected. This leg would immediately restore contact with the ground under 

perturbation conditions and thus extend subject’s BOS to help achieve balance recovery and regain 

stability. The system contains a lightweight cable-driven knee brace and a backpack, which stores the 

actuator and electronic components of the system. The system's actuation is powered by means of an 

air cylinder and a small cartridge with CO2 compressed gas. The system contains one cartridge, which 

must be replaced for each slip assistance. Upon pressure release into the air cylinder, its piston pulls the 

Bowden cable connected to the knee brace around a circular hub, which provides torque to pull the device 

straight and perform knee extension. The hub was placed on the outer side of the knee to mitigate 

potential walking constraints. Unlike the previous system, these authors did not test the system's LOB 

detection performance since this study focused on the actuation strategy to prevent slip-induced falls. 

Firstly, the authors performed benchtop testing by actuating the system from 90 to 0 and 60 to 0 degrees. 



 
 

66 

Afterwards, 3 human subject tests were conducted to test the system's knee extension during: i) sitting; 

ii) standing; and iii) walking. Results showed that the system is promising to be used in slip experiments 

due to its demonstrated capability of performing fast knee extension during gait. Benchtop testing results 

demonstrated an average actuation time for device extension was 0.082 and 0.072 seconds from the 

initial 90 to 0 degrees and 60 to 0 degrees, respectively. In addition, the device was shown to extend a 

human knee more than 30 degrees within the short period of 0.4 seconds. The authors also concluded 

that the device caused minimal deviations on subject's walking. 

Trkov et al. [65] developed a Robotic Knee Assistive Device (ROKAD) capable of providing assistive 

knee torque to the leading limb during slip events. The system's design requirements rely on the 

comparison of the computed knee angular velocities and torques during normal walking and walking with 

slip perturbation exposure. ROKAD operates with an impedance and torque feedback control. The desired 

torque magnitude is determined based on the linear feedback between the actual and desired knee angle 

positions and velocities. The electric motor that powers the ROKAD, as well as the battery, actuators and 

other embedded systems is dislocated from the knee in order to ensure subjects' natural gait by lessening 

the external weight on the knee. Similar to Mioskowska et al. [135], the authors focused on the actuation 

strategy to prevent slips rather than testing the system's LOB detection performance. Nevertheless, Trkov 

et al. [65] mentioned that a slip detection algorithm that uses data from wearable IMUs is integrated into 

the ROKAD. The authors conducted benchtop and human subject testing. The former allowed for the 

device's characterisation. The latter tests consisted of performing sit-to-stand task with a 90 degrees 

motion range and fast squat motions. The human subject testing allowed to ascertain if the participants 

took advantage of the external torque assistance to perform the tasks. Furthermore, the sudden knee 

flexion and extension performed during the squat motion can mimic those from slip events and allowed 

to test the device's response under the impedance controller. Benchtop test results show that ROKAD is 

able to properly track the knee angle profile. It was also suggested that the ROKAD device did not hinder 

subject's gait. ROKAD was also capable of generating torques up to 40Nm in less than 0.2 sec. According 

to human testing results, it was found that subjects stood up faster in both tasks with the torque 

assistance compared with no torque assistance. Thus, subjects positively used the ROKAD torque 

assistance to perform the experimental tasks. Hence, these results suggested that ROKAD could 

effectively provide torque assistance during slip events. 

Figure 9 depicts a general overview of the actuation system from the 3 previously described studies. 

Monaco et al. [64] sought to provide assistive torque to the hip of both leading and trailing limbs, whereas 
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Mioskowska et al. [135] and Trkov et al. [65] applied this torque to the trailing and leading knee, 

respectively. Some of the most relevant characteristics from these systems are summarised in Table 8. 

Figure 9. Literature slip-related fall prevention actuation systems. (a) Monaco et al. [64]. (b) Mioskowska et al. [135]. (c) 
Trkov et al. [65]. 

 

Table 8. Overview of the literature slip-related fall prevention systems 

Authors 
Actuation 
location 

Embedded 
slip 

detection? 

Actuation 
Strategy 

Usage 
Slip 

Onset 
Torque 

Magnitude 

System tested 
during slip-like 
experiments? 

Monaco 
(2017) [64] 

hip 
(both legs) 

yes 
extend perturbed 

leg and flex 
unperturbed leg 

continuous 
after 

heel strike 
0.2 Nm/kg yes 

Mioskowska 
(2020) [135] 

knee 
(trailing 

leg) 
no 

extend the 
unperturbed leg 

knee 

Single usage 
(replace CO2 

cartridge) 

after 
heel strike 

25 Nm no 

Trkov (2017) 
[65] 

knee 
(leading 

leg) 
yes 

apply the desired 
torque on the 

perturbed knee 
based on the linear 
feedback between 

its actual and 
desired angular 
positions and 

velocity 

continuous 
after 

heel strike 
0.45 Nm/kg yes 

 

4.2. Actuation 

Successful fall prevention requires the comprehensive definition of the assistive actuation 

characteristics. Thereby, it is important to reliably ascertain which leg and joint present the most relevant 

reactive response to counteract a slip-induced LOB, considering that only one joint will be provided with 

assistive actuation. Once a joint has been identified, the assistive actuation characteristics and the 

assistive device, which will provide the actuation, were determined. Figure 10 provides the assistive 

actuation characteristics proposed for the current slip-related fall prevention strategy. This selection was 

based on the literature evidence collected, which is further described. 
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Figure 10. Assistive actuation strategy characteristics. 
 

 Which leg has a more prominent role to counteract slip-induced 

LOBs? 

Concerning the selection of the actuation leg, two criteria that must be considered: i) the leg which 

is perturbed; and ii) the subject's side-dominance. For the first criteria, one should consider the actuation 

of the system in either the leading or the trailing legs. For the second criteria, the decision concerns to 

the actuation on the dominant or non-dominant legs. 

Previous research has underlined the crucial response of both the leading [9] and the trailing [137] 

legs towards balance recovery after a slip perturbation at the heel strike. The leading leg's function 

essentially consists on bringing the anteriorly displaced BOS, as result of the sliding motion of the foot, 

closer to the COM [9]. The trailing leg's role consists on interrupting the swing phase by lowering the 

swing limb onto the ground in order to provide support and prevent the body from collapse, in case of a 

more severe slip [137]. Despite the importance given to the individual action of each leg, previous 

literature studies have suggested that the overall recovery response to slip perturbations results from the 

interlimb coordination between the corrective responses of both legs [94,104,137,140]. However, the 

leading leg's corrective reactions are believed to be the most relevant. This is depicted by the higher 

amount of studies that consider the leading leg's corrective responses in comparison with the ones that 

address the trailing leg's responses [9,137,141]. In fact, the primary corrective response to a slip is 

attributed to the leading leg [9]. Yang et al. [142] found that slip outcomes, i.e., fall or non-fall, were 

critically determined by the leading leg before the recovery touchdown of the trailing limb, which suggests 

that by individually controlling the leading leg it is possible to prevent slip-induced falls [99]. Indeed, an 

increased knee flexion angle elicited in the leading leg can result in a reduction in the demand of the 

braking impulse needed to counteract the sliding motion of the leading foot after the slip perturbation 

[143]. Hence, the timely actuation on the leading leg following a slip may reduce the further efforts needed 

from the trailing leg to restore the stability. Thereby, the actuation on the leading leg may tackle the slip 

in its origin by decreasing the displacement between the COM and the BOS, which directly reduces the 
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slip severity. Despite the crucial role of the trailing leg towards slip fall prevention, this leg is not able to 

directly counteract the sliding motion of the slipping foot and thus reduce the severity of the slip. The 

trailing leg only allows to produce a compensatory response to the slip that has already happened. This 

corrective response mainly consists of the interruption of trailing leg's swing phase motion to reestablish 

a stable BOS, if the slip is severe enough. Therefore, the leading leg was chosen as the actuation leg. 

Nevertheless, since the leading leg can be the right or the left leg, it still remains in open discussion 

which should be the actuation leg. In this regard, the side-dominance or laterality, i.e., the preference 

exhibited for one side of the body over the other, should be considered. Previous research has 

hypothesised that the asymmetrical behaviour during healthy locomotion between the two lower limbs 

potentially mirrors natural functional differences between the dominant and non-dominant limbs [144]. 

Despite the foundation of these bilateral asymmetries during healthy gait is still unclear, the "functional 

asymmetry” hypothesis suggests that these asymmetries may relate to the task discrepancy between 

both lower limbs. This theory postulates that the dominant lower limb is more responsible to propel the 

body forward, whereas the non-dominant lower limb provides more support function [145]. The laterality 

has been found to produce gait asymmetries, which increase fall risk when the non-dominant leg was 

perturbed [127]. Thereby, the laterality may influence the reactions adopted to both standing [146] and 

walking [126] corrective reactions towards perturbations. Martelli et al. [126] observed an asymmetric 

interlimb coordination behaviour, which was depicted by the different coupled body segments to perform 

the balance recovery, concerning the side in which the perturbation was delivered. According to the above 

mentioned, the non-dominant leg is more used to and prepared to provide the body support function in 

comparison with the dominant leg. Therefore, in the presence of a slip perturbation during walking, it 

seems more appropriate to provide the assistive actuation to the dominant leg, considering that the 

leading leg was selected as the actuation leg. In this regard, the danger associated with the slip is lessened 

compared to the supply of the assistive actuation to the non-dominant leg as the leading leg, since in this 

scenario the body support would have to rely on the less prepared dominant leg. Therefore, the strategy 

will hereafter consider the dominant leg as the perturbed limb and thus the actuation leg. Hence, as a 

preliminary approach, the actuation strategy herein conceived only considered slips delivered to the 

dominant leg. 
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 Which lower limb joint has a more determinant role to counteract 

slip-induced LOBs? 

Sawers et al. [94] found that during slip trials, subjects who fell exhibited a delayed knee muscle 

activity onset time in the leading leg, when compared with subjects that recovered. These findings 

suggested that the capability to timely coordinate muscle activity around the knee may play a crucial role 

in avoiding slip-induced falls. Sawers & Bhatt [93] also showed that participants who recovered from slips 

had increased diversity and complexity of neuromuscular control, which is grounded on the coordination 

of the knee muscle activity in the perturbed and unperturbed legs. In fact, the overall muscle strength 

among adults can be depicted by the knee muscle strength [147]. Additionally, the crucial function of 

knee joints in arresting slip-induced falls has been empirically [9] and analytically [142] proven. These 

evidences led Ding et al. [82], to build predictive models that calculate the probability of falling based on 

the flexor and extensor knee joint strength (joint torque in isometric condition) and computed optimal 

threshold knee strength values to classify fallers and non-fallers for both knee extensor and flexor torques. 

Additionally, Cham & Redfern [9] found that increased knee flexion and hip extensor moments 

were the corrective reactions adopted by the leading leg in order to recover from a slip. In fact, the knee 

and hip moments in slip trials differed from dry trials, which depicts their crucial role on the recovery 

biomechanics during slip events. Conversely, this difference was not observed in the ankle joint as it was 

found to act as a passive joint with no net moment during the recovery attempts in slip trials. 

In addition, Liu & Lockhart [148] showed that the major actuators for balance recovery following a 

slip perturbation were the ankle and the knee. The larger moments actively produced by these joints 

revealed to be crucial in controlling and correcting the sagittal plane motion perturbation. Conversely, the 

hip joint function was to increase its frontal joint moment to passively maintain and stabilise the upright 

upper body posture.  

Furthermore, Moyer et al. [137] showed that the corrective response produced by the hip of both 

leading and trailing legs did not scale with slip severity. Nevertheless, the knee response of both legs was 

modulated according to the slip severity which shows that the knee joint has a more versatile role in 

counteracting slip-induced LOBs since it can adapt its response concerning the severity of the slip. In 

addition, the authors also found that the corrective moments generated by the ankle joint were reduced 

in severe slips when compared to the knee and hip moments. 

Moreover, Beschorner & Cham [136] examined the association between the heel acceleration, 

which is an important fall risk factor according to slip biomechanics [70], in the motion direction at the 

heel strike from the leading foot with fall risk and studied the main joint torque contributors to heel 
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acceleration. In fact, this study revealed that subjects who recovered from a slip contacted the floor with 

a significantly greater heel deceleration in comparison with subjects who fell. Despite the ankle, knee and 

hip strongly correlate with the heel deceleration at the heel strike with increasing plantar flexion, flexion 

and extension moments, respectively, 76% of the heel acceleration variability was explained by the knee 

torque alone compared to the 38% from the ankle joint and the 56% from the hip joint. Furthermore, the 

combined contribution of any 2 or all 3 joint torques explained heel acceleration variability no more than 

1%, i.e., 77%, above the knee torque contribution alone. Hence, since the heel acceleration at the heel 

strike, is mostly controlled by the moment exerted at the knee joint from the leading leg, the actuation on 

the knee joint will provide control on this important factor in order to reduce the likelihood of slip-induced 

falls. As such, walking with an increased knee flexion at the heel strike results in an increased heel 

deceleration and therefore reduce the risk of slipping. 

Considering the above mentioned, the knee appears to be the major lower limb joint to counteract 

slip-induced LOBs. Hence, the fall prevention strategy conceptualised in this dissertation will highlight the 

knee joint as the actuation joint towards slip fall prevention. 

 Which should be the joint moment characteristics applied towards 

the actuation joint? 

 According to the decision taken towards the actuation leg and actuation joint, the next concern 

resides on the joint moment that should be applied in order to prevent slip-induced falls. As previously 

mentioned, literature studies have underlined the importance of the knee flexion response in order to act 

against slips at the heel strike. In fact, the primary response to counteract slip-induced LOBs includes the 

increase of the knee flexion moment, which magnitude is related to the slip severity [9,104,137]. Upon 

a slip, this joint moment increase allows to retard the sliding motion of the slipping foot and reduce its 

anterior displacement to bring it closer to the COM. As such, according to literature evidence, the torque 

exerted to flex the knee allows to control important variables for slip-induced fall prevention, namely the 

heel acceleration [136] and the shank-to-ground angle, i.e., the angle formed by the shank segment 

relative to the ground [99]. 

As mentioned above, the heel acceleration in the motion direction at heel strike is considered a 

crucial predictor of slip occurrence [70,136]. In fact, experimental studies have considered heel kinematic 

metrics to quantify the severity of slips [137,148]. Beschorner et al. [136] concluded that the heel 

acceleration at the heel strike was mainly determined by the torque exerted by the knee from the leading 

leg with 76% of the heel acceleration variability being explained by the knee torque alone. 
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Additionally, Wang et al. [99] found that the shank-to-ground angle, in the sagittal plane of motion, 

from the leading leg was associated with the forward displacement of the BOS induced by slips and was 

the most crucial determinant towards LOB prevention. The authors claimed that, upon the heel strike on 

a slippery surface, if the shank-to-ground angle was above 90º, i.e., the ankle was anterior to knee, an 

external knee extensor moment would be exerted on the shank due to gravity. This additional moment 

would cause the propulsion of the leading foot forward, which would increase the likelihood of a LOB. 

Conversely, if the angle is below 90º, i.e., the ankle was posterior to knee, an external knee flexor moment 

would be added to the shank due to gravity, which would retard the forward propulsion of the leading 

foot, reducing the LOB likelihood. 

Therefore, the heel acceleration and the shank-to-ground angle can be decreased in the presence 

of slip perturbations by properly controlling the flexion moment of the leading leg's knee. As such, the 

flexion of the leading leg's knee arises as an important action to counteract slip-induced LOBs. It is 

necessary to consider that despite high fall risk subjects are generally not agile and strong enough to 

avoid falling from slip-induced LOBs, they are still capable of producing some actions to counteract these 

gait perturbations [64]. As such, the torque values exerted from the assistive device must be context-

dependent by considering the reactive torque produced by the subject upon the gait perturbation to 

compute the additional torque needed to successfully recover from the slip-induced LOB. Hence, only a 

complementary 'delta' torque would be applied on the actuation joint. In this regard, the assistive robotic 

system would only assist as needed and when needed the subject, which promotes a symbiotic interaction 

between the human and the robotic system [64]. 

In order to provide the assistive torque needed, an orthotic system would be worn on the knee. 

Previous research regarding human knee reflexes, has shown that it is safe to provide short and rapid 

knee torque assistance during gait, which supports the use of the knee orthosis to provide assistive torque 

to the knee [149]. 

 Assistive device 

 A knee orthosis was considered as the assistive device for the slip-related fall prevention strategy 

conceived. A Powered Knee Orthosis (PKO) is integrated in the SmartOs system, which was developed 

by a research team in BiRD Lab. SmartOs is a smart and modular wearable active lower limb orthotic 

system that provides repetitive and user-oriented gait training in impaired gait while assessing human 

motor condition using kinematic and muscular gait metrics. Currently, SmartOs's framework integrates 2 
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active orthoses, the ankle and knee right-side modules of the lower-limb H2-exoskeleton (Technaid S.L., 

Spain). 

The PKO assists gait in the sagittal plane of motion for gait speed between 0.5 and 1.6 km/h. It 

also comprises the following embedded sensors: i) an angle position sensor, which consists of a precision 

potentiometer with a resolution of 0.5º; ii) a user-PKO interaction torque sensor comprised by strain 

gauges (4 strain gauges connected in a full Wheatstone bridge) with a resolution of 1 Nm; and iii) a hall 

effect sensor, which measures the motor's angular speed (rpm), current and torque. 

The PKO's actuation system comprises an electrical actuator (flat brushless DC motor EC60-100 

W, Maxon) coupled to a gearbox (CSD20-160-2A strain wave gear, Harmonic Drive), with a ratio of 160:1, 

which provides an average torque of 35 Nm and peak torques of 180 Nm. The PKO's mechanical 

structure is made of type 7005 aluminium and stainless steel and incorporates a 4-strap system with 2 

lower straps on the shank and 2 upper straps on the tight, as depicted in Figure 11. More details on the 

PKO can be observed in [150]. Considering the herein conceived fall prevention strategy, the PKO will 

assist subjects with an assistive torque, whenever a slip-like perturbation is detected. 

 

 

 

 

 

 

 

 

 

 

Figure 11. PKO device. (a) Device’s elements. (b) Mounted in one subject. The images were extracted from study [150]. 

 

 Additional Actuation Requirements 

The actuation stage of the fall prevention strategy must fulfil some requirements related to the 

assistive system's operation and to the interaction between the subject and the system. Previous literature 

studies proposed and attempted to fulfil some requirements, which the fall prevention system should 

satisfy. The fall prevention system requirements found to be the most adopted were: i) easy customisation 

between different users [64]; ii) assisting when needed behaviour [64,151]; iii) no (or very limited) 
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disturbance to the subjects, which can be depicted by: a) lightweight and comfortable to wear during 

walking [64,65,135]; b) compact design [65]; c) mechanical compliance between the subject and the 

exoskeleton [151]; and d) position heavy parts of the device away from the actuation joint [65,135,151]; 

iv) high torque development in a short time [65,135]; and v) continuously adapt to the mechanical 

demands of subject's motion and intentions [151]. The fulfilment of these demands allows the system to 

ensure a natural gait under no-assistance circumstances and fast assistive torque supply to counteract 

the LOB events in assistance conditions. In addition, in the case of the fall prevention strategy herein 

conceived, the actuation of the assistive system must be completed under the actuation time period 

further defined (100 ms). 

4.3. Detection 

The timely and successful detection of slip-induced LOBs requires a comprehensive selection of 

the perturbation detection algorithm and the motion variables which it will monitor. Figure 12 presents 

the characteristics of the detection strategy conceived. Candidate motion variables were selected from 

literature studies. Then, these variables underwent through objective criteria to ensure that the final 

monitoring variables selected highlight visible changes upon a slip without requiring costly computation. 

A slip-like perturbation protocol (described in Chapter 5) was designed and conducted to collect data from 

the selected monitoring variables, which were further used to test the perturbation detection algorithm. 

The proposed detection algorithm presents: i) a CPG controller, which monitors and predicts the selected 

variables' signals; and ii) a threshold-based algorithm that monitors the prediction error signal to detect 

the slip perturbations. A perturbation was detected whenever the error signal surpassed a threshold value. 

 

 
Figure 12. Detection strategy characteristics. 
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 Selection of monitoring variables 

Literature studies highlight several motion variables to assess the human biomechanical reactions 

to slip perturbations. Therefore, there is the need to comprehensively identify the most suitable motion 

variables, which the CPG algorithm will monitor, towards the gait perturbation detection. The variable 

selection process adopted is hereafter described. 

4.3.1.1. Candidate variables 

Concerning the biomechanics of the slip event, some of the important variables previously 

highlighted may potentially be relevant towards the detection of slip-induced LOBs. The human motion 

variable selection herein developed only included kinematic variables, considering that the slip-related fall 

prevention strategies analysed [64,65,135], as well as the majority of literature studies that address the 

human biomechanical responses to slip events [9,137] only considered the study of kinematic 

parameters. 

Beyond the evident influence the slip perturbation elicits on the perturbed leg's motion, the 

unperturbed leg kinematics may also be promptly altered upon a slip, considering the interlimb 

coordination observed during the human reactive responses [137]. Therefore, the variables selected 

towards the detection of slip-induced LOBs were analysed for both the perturbed and unperturbed legs. 

This allowed to understand the alterations induced by slips to the kinematics of both legs and enable the 

identification of which data from which leg provides a more effective detection of perturbation occurrence. 

From the previously reviewed literature, the heel acceleration, the shank-to-ground angle, as 

well as the hip angle were highlighted as important kinematic variables. Additionally, other variables 

were further included to widen the amount of potentially relevant kinematic parameters and perform a 

more comprehensive selection. As such, the variables of knee angle and the shank angular velocity 

were also considered. Considering the critical contribution that the knee joint presents to the slip recovery 

dynamics, the study of the knee angle may become pertinent towards the slip perturbation detection 

[9,137,148]. In addition, the external knee torque applied in the fall prevention system presented by 

Trkov et al. [65] is directly associated with the linear feedback between the actual and desired knee angle 

values. Concerning the shank angular velocity variable, Aprigliano et al. [11] suggested that the perturbed 

shank angle could be potentially used to detect slip perturbations, since it had a good performance in 

detecting trip perturbations. As such, alterations in the shank angular velocity, which is a variable widely 

used for gait analysis and event detection [152–154], may also be relevant to detect slip-induced LOBs. 
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4.3.1.2. Criteria for variable selection 

An objective selection of the most relevant monitoring variables was attempted with the criteria 

defined. As such, most of the criteria were aimed at describing technical aspects of the variables 

including: i) the simplicity of the data processing needed to obtain the variable in real-time from sensor 

data (Criterion 1); ii) the ability of the variable's signal to effectively perform gait event detection, based 

on the scientific literature (Criterion 2); iii) the number of sensors needed to compute the variable, the 

simplicity of the sensor placement, and if additional instrumentation beyond the assistive device is needed 

to obtain the variable (Criterion 3); and iv) bibliography evidence of the use of the variable or its respective 

body segment (e.g. knee) to study human biomechanical reactions to slips and/or to detect these 

perturbations (Criterion 4). In addition, some videos recorded during the perturbation trials from the slip-

like perturbation protocol were visually inspected in order to perceive visual alterations of the human body 

segments upon a slip-like perturbation. This allowed to obtain visual cues about the alterations provoked 

by the gait perturbations on the variable signal's time evolution (Criterion 5). Moreover, it was also 

included an innovation criterion in order to account to whether the variable was previously addressed in 

a fall prevention strategy in the scientific literature, to the best of the author's knowledge (Criterion 6). 

Afterwards, these criteria were sorted according to their priority. As such, since the objective is to 

ensure the functional performance of the slip-induced LOB detection rather than to produce an innovative 

approach, priorities were given to each criterion as shown in Table 9. 

In this regard, criterion 4, which relates to the bibliography support, was chosen as the most 

important criteria, since it underlines the direct influence a slip has on a variable, which ensures its 

feasibility in the detection process. 

Criteria 1 and 2 were considered equally important, since both of these criteria play a key role 

towards the functional detection of the slip-induced LOBs. Criterion 1 regards to the real-time computation 

of the variable, which has a critical role regarding the computational resource demands of the system 

and thus on the slip detection latency. Concerning criterion 2, if the variable is suitable for performing 

gait event detection, it is possible to acknowledge whether the LOB detected took place around the heel 

strike event, which would increase the reliability of the slip detection. 

Equal priority was also given to criteria 5 and 6, considering that both introduce a somewhat 

subjective analysis. Criterion 5 depicts the video-based evidence (based on the videos recorded during 

the experimental protocol trials) that the variable’s characteristics are altered upon a slip-like perturbation. 

This criterion was chosen given that it could provide additional visual information beyond the bibliography 

consulted. In addition, criterion 6 highlights the innovative characteristics of the variable regarding the 
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ones used in the literature to perform slip detection. The use of innovative variables can expand the 

knowledge on the human corrective behaviours upon slip events and potentially lead to an accurate 

detection of slip-induced LOBs. 

Lastly, criterion 3 mainly represents the number of sensors needed to obtain a variable. Thereby, 

it benefits the variables whose computation require the least number of wearable sensors. This criterion 

was considered the least important, considering that the conceptualised fall prevention strategy gave 

more importance to the functionality of the system rather than the constraints associated to the number 

of sensors. 

Table 9 represents the priorities and weights ascribed to all the criteria. Relative priority was 

assigned to each criterion, such that the higher the number, the least relevant is the criterion. As such, 

from the most to least relevant, criteria were ordered as: 4, 2, 1, 5, 6, 3. Then, weights were attributed 

to each criterion according to their relative priority in order to depict their weighted contribution towards 

the decision process. The higher was the relative priority, the higher was the weight assigned to the 

criterion. The weight attribution to each criterion and the further variable selection process were 

determined by all the investigation team members. 

 
Table 9. Criteria priority established 

Criteria Relative Priority Weight attributed 

1. Real-time computation 2 1.75 

2. Gait event detection 2 1.75 

3. Subject instrumentation 4 1 

4. Bibliography support 1 2 

5. Video-based evidence 3 1.5 

6. Innovation 3 1.5 

 

4.3.1.3. Variable Decision Process 

Thus, according to the above mentioned, the Decision Table (Table 10) was built. For each 

criterion, a classification between 1 and 3 was attributed. A classification of 1 was assigned when the 

variable minimally respected the criterion, while a classification of 3 was attributed if the variable fully 

met the criterion. Then, the final score of each variable resulted from the weighted sum of the scores 

attributed to each criterion (concerning the weights assigned in Table 9). In light of the fall prevention 

strategy defined, it is noteworthy that these kinematic variables are either obtained from wearable IMUs 

or from sensors coupled to the knee orthosis device. 
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Table 10. Decision table established 

         Variable 
 
Criteria 

Knee angle 
Heel 

acceleration 
Shank-to-ground 

angle 
Shank angular 

velocity 
Hip angle 

1. Real-time 
computation 

3(*) 3 1 2 1 

2. Gait event 
detection 

2 1 2 3 2 

3. Subject 
instrumentation 

3 1 3 3 3 

4. Bibliography 
support 

3 3 2 2 3 

5. Video-based 
evidence 

2 2 2 2 3 

6. Innovation 3 3 3 3 1 

Total score 25.25 21.5 19.75 23.25 20.25 

  (*) considering the orthosis’ encoder will provide the Knee angle information directly. 

 

According to the Decision Table 10, the knee angle and the shank angular velocity appear to be 

the most suitable variables in order to perform the detection of slip-induced LOBs, in light of the decision 

criteria applied. 

Despite the importance given to the heel acceleration towards the slip biomechanics [136], two 

main factors contributed to the disregard of this variable: i) the difficulty of properly placing and using 

wearable sensors attached to heel; and ii) the impact of the foot on the floor introduces a substantial 

amount of noise in the heel acceleration signal, which hinders its use and its ability to detect gait events. 

In fact, Beschorner et al. [136] collected the heel acceleration signals using reflexive marker recordings 

from an Optical MoCap, which solved the noise issue. However, that solution presupposes a non-wearable 

monitor system, which goes against the fall prevention strategy premise. 

The hip angle and the shank-to-ground angle variables were also disregarded mainly due the need 

to integrate the respective angular velocity signal in real time to obtain the angle signal. The integration 

process constraints would increase the time needed to obtain the variable, the computational costs of the 

system, and introduce drift errors, which would have to be properly compensated [155]. In addition, since 

the hip angle has already been analysed to detect slip-induced LOBs, the total score assigned to this 

variable was further reduced [13,64].  

Considering the fall prevention strategy conceived, it is noteworthy that the knee angle variable 

would be provided by the encoder from the knee orthosis. As such, the extraction of this variable would 

not need any integration and therefore would not bring any drift problems. Accordingly, the detection of 
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slip-induced LOBs proceeded considering the monitoring of the knee angle and the shank angular 

velocity variables. 

 Central Pattern Generators controllers 

Human locomotion as well as their crucial vegetative functions are known to be repetitive and cyclic 

tasks. Despite the important role played by neuromuscular dynamics and sensory feedback in modulating 

these rhythmic functions, the foundation of the cyclic activity patterns generation is attributed to the 

functional activity of the neuronal circuits located in the spinal cord, i.e., Central Pattern Generators or 

CPGs [14,15]. The term "Central" implies that the peripheral nervous system and its sensory feedback 

are not recruited towards the rhythm generation [156]. Thereby, the implementation of biomimetic or 

biological-inspired CPG controller systems to monitor and control variables of human locomotion becomes 

attractive, since such motion is very likely controlled by spinal oscillators, i.e., biological CPGs [16,17]. 

The artificial CPG is thereby presumed to synchronise along with the biological one, which plays a 

fundamental role towards rhythmic movement assistance [16,157]. From the rehabilitation point of view, 

the artificial CPG would feedback an assistive torque to the controlled joint, whenever necessary, that 

would allow to compensate the deficits of biological CPGs, for instance due to a neural injury, towards an 

healthy locomotion [16]. 

Furthermore, a system capable of accurately and real-time monitor the main rhythmic features of 

steady human locomotion fosters the detection of sudden and unexpected gait perturbations, whereupon 

these rhythmic features are momentarily lost [13]. In this regard, CPG controllers based on nonlinear 

Adaptive Frequency Oscillators (AFO) arise as a reliable solution to assist this detection. An AFO is a 

mathematical tool capable of synchronising its output to a frequency component of a periodic or quasi-

periodic input signal, while learning its relevant characteristics, such as amplitude and phase. In turn, a 

network of AFOs, i.e., a CPG controller, can continuously synchronise with and provide an estimate of a 

periodic or quasi-periodic input signal [13,157,158]. The occurrence of an unexpected perturbation 

during steady walking would introduce abnormal variations to the input signal and lead the AFOs to seek 

for new signal patterns associated with distinct frequencies. This would quickly deviate the input signal 

from the trajectory expected by the CPG, i.e., the predicted or estimated signal, which would allow to 

early and effectively detect an unexpected gait perturbation [13]. In fact, this controller architecture has 

been previously employed to detect gait perturbations due to its interesting properties [13,64]. From the 

fall prevention point of view, the artificial CPG would trigger a robotic assistive system to provide a timely 

assistive torque at the controlled joints to counteract the LOB and promote an efficient balance recovery, 
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whenever a perturbation was detected [64]. Since the biped locomotion exhibited by humans consists of 

a periodic or quasi-periodic motor task, it can be thereby decomposed into the sum of periodic or quasi-

periodic signals [159]. As such, a prior knowledge of the periodicity of human locomotion can be 

performed by making use of the ability of nonlinear oscillators to generate stable rhythmic patterns, i.e., 

limit cycle behaviour, which is useful for decomposing the respective signals into a sum of sinusoidal 

waves that can be learned by a network of oscillators [157,158]. 

The application of artificial CPG controllers, regardless of its rehabilitation or fall prevention 

purposes, allows for the contribution effort of both the therapeutic system and the patient to produce a 

stable locomotion and overcome gait perturbations. Hence, the parallel intervention of both artificial and 

biological CPGs may have an important key role on the stimulation of the human nervous system plasticity 

[160]. This cooperation could be especially beneficial for elderly people according to their increasingly 

reduced cognitive, physical and sensory status [1]. Also, robots based on CPG controllers stand out from 

traditional robots, as they are agile and more adaptable for real-world environments [161]. 

According to the model architecture presented in Righetti & Ijspeert [162], each CPG is modelled 

by a group of coupled nonlinear Hopf AFOs. Generally, a fixed parameter controls an oscillator intrinsic 

frequency. Nevertheless, the Hopf oscillators used by these authors are modified in order to be able to 

constantly adapt their intrinsic frequency to one main frequency component, i.e., frequencies with more 

power in the frequency spectrum, from a periodic or quasi-periodic input signal, as long as the CPG is 

receiving the input signal. Righetti et al. [163] described this modification of the Hopf AFOs. The CPG 

controller must contain as many AFOs as the number of main frequencies components needed to 

successfully describe the input signal, i.e., the learning signal. If the number of oscillators is insufficient 

to account for all the relevant frequency components of the input signal, the oscillator network will only 

learn and adapt to the frequency components with more power [162]. Thereby, the learned signal 

provided at the CPG output will be a relatively rough approximation to the input signal. Contrariwise, 

according to Righetti et al. [162], if the number of oscillators is higher than the number of frequency 

components to learn from the input signal, two cases can happen: i) either some oscillators will not 

converge towards any frequency and therefore they will have a null contribution to the learned signal; or 

ii) more than a single oscillator will code the same frequency component and the sum of their 

corresponding amplitudes will match the amplitude of the respective frequency component. During the 

AFO's frequency adaptation, the amplitude of the correspondent frequency component, 𝛼, is also learned 

as well as the phase relationship between the different AFOs, 𝜙, within the CPG to ensure their phase 

coupling. This coupling is also important to guarantee the phase synchronisation between different CPGs, 
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in cases where more than 1 CPG is considered, such as for distributed implementation applications 

[156,160]. This phase coupling ensures that, upon the input signal removal, the rhythmic pattern is still 

maintained at the CPG's output. The CPG learning process does not require any pre-processing of the 

input signal or any optimisation algorithms or external regression, since the learning process is fully 

embedded into the dynamical system [162]. 

Ijspeert et al. [160], Tropea et al. [13] and Santos et al. [156] pointed out several interesting 

characteristics that make CPG controllers suitable for the monitoring of human locomotion concerning 

other alternative methods: i) the CPG controllers can generate stable limit cycles, which are robust against 

perturbations. More specifically, if the rhythmic pattern is perturbed, the controller promptly returns to its 

previous cyclic behaviour; ii) different CPGs can be used to individually control different segments or 

modules within the same system. The different CPGs can be coupled together through phase relationship. 

This makes CPG model architecture well appropriate for distributed implementation [156]; iii) CPG 

controllers have few control parameters, which allow to modulate the locomotion, according to changes 

in direction and speed. This property allows CPGs to properly perform online trajectory generation with 

smooth modulations even when there is an abrupt change of the control parameters; iv) CPGs allow for 

the mutual entrainment between the mechanical system and the CPG, since these controllers are ideally 

appropriate for the integration of sensory feedback; v) CPG controllers do not require any training before 

being implemented, which happens for other algorithms that require a prior training stage, since the 

algorithm's learning process is included in the network dynamics; vi) CPG controllers do not have high 

computational costs as it not required any demanding signal or algorithmic processing; and vii) once the 

frequency bandwidth of the controlled signals is known, the CPG can be tuned to only monitor these 

signals (all the higher frequency components can be associated to LOB reactions). Hence, unlike training-

based algorithms, the tuning of the CPG does not require the use of signals recorded during complex 

unexpected gait perturbation protocols, as only steady-state walking parameters are used to tune the 

algorithm. 

4.3.2.1. Hopf AFO 

The traditional Hopf oscillator dynamics is represented by the differential equations below. The 

oscillator state variables are depicted by (𝑥, 𝑦), and the oscillator's intrinsic frequency is defined by ω 

and r = √𝑥2 + 𝑦2. In the traditional Hopf oscillator, 𝜔 is constant and always equal to its initial value. 

The variable 𝛾 dictates the convergence speed to the limit cycle and µ, which is positive, controls the 

steady-state amplitude of the oscillations. As previously mentioned, these nonlinear oscillators exhibit limit 
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cycle behaviour, i.e., they produce closed loop trajectories in the state space 𝑥 − 𝑦, limit cycles, which 

specify that the system is periodic in time. During a stable steady-state locomotion, the state variables 

oscillate rhythmically throughout time [164]. 

 

𝑥̇ = γ(µ − 𝑟2)𝑥 − ω𝑦 

 

𝑦̇ = γ(µ − 𝑟2)𝑦 + ω𝑥 

 

As previously mentioned, Righetti et al. [162,163] modified the traditional Hopf oscillator, creating 

the Hopf AFO based on the following differential equations. 

 

𝑥̇ = γ(µ − 𝑟2)𝑥 − ω𝑦 +  εF(t)  

 

𝑦̇ = γ(µ − 𝑟2)𝑦 + ω𝑥 

 

ω̇ = −εF(t)
𝑦

𝑟
 

 

The variable 𝐹(𝑡) corresponds to the periodic input signal. The oscillator intrinsic frequency, 𝜔, 

will adapt to one main frequency component from 𝐹(𝑡), as opposed to the fixed 𝜔 from the traditional 

Hopf oscillator. Nevertheless, this adaptation depends on the 𝜔 attributed to the oscillator as the initial 

intrinsic frequency. The latter equation represents the learning rule, which allows 𝜔 to converge into the 

𝐹(𝑡) frequency, if the signal only has one frequency component, or to one of the 𝐹(𝑡) frequencies if the 

signal has more than one frequency component. In the multi-frequency case, the oscillator often 

converges towards the main frequency component of 𝐹(𝑡) that is closer to the initial 𝜔. The higher is 

the intensity, i.e., amplitude in the frequency spectrum, of a frequency component from the input signal 

and the less is its distance to an AFO intrinsic frequency, the higher is the attraction of that frequency 

component to the oscillator [163]. Essentially, CPG controllers generate a dynamic Fourier series 

representation of the input signal, with each oscillator encoding a single main frequency component of 

the input signal [162]. The oscillator is coupled with the input signal with a coupling strength of 𝜀. When 

𝜀 is null, the system will not learn from the input signal and will oscillate at a frequency of 𝜔 rad/s. 

Thereby, the modified Hopf oscillator equations will essentially match the ones from the traditional Hopf 
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oscillator. However, when 𝜀 is positive, the oscillator will be coupled to 𝐹(𝑡) with a positive coupling 

strength, which allows for its adaptive frequency adaptation [163]. The variable 𝜀 controls the 

convergence rate, considering that the learning process is faster if the 𝜀 is higher. Nevertheless, a faster 

learning promotes a higher error of adaptation from the oscillator [163]. 

4.3.2.2. Coupling of multiple Hopf AFOs 

Within the CPG, the first oscillator, i.e., oscillator 0, provides a phase reference measure for the 

remaining AFOs from the oscillator network. As such, the 𝑖𝑡ℎ AFO has a scaled phase difference of 𝜙 

from the oscillator 0. Oscillator 0 transmits the respective phase difference to each oscillator by sending 

them its state variables. This allows for all the AFOs within the same CPG to be phase coupled. The use 

of a coupled oscillator architecture allows for the CPG to keep the phase relations between the oscillators 

and to encode the periodic signal within the system as a stable limit cycle, even when the input signal is 

removed from the system or in the presence of other temporary perturbations. In order to account for 

this coupling, a single generic CPG formed by N AFOs is characterised by the following equations, where 

the 𝑖𝑡ℎ AFO is represented by 𝑥𝑖, 𝑦𝑖and 𝜔𝑖. 

 

𝑥̇𝑖 = γ(µ − 𝑟𝑖
2)𝑥𝑖 − ω𝑖𝑦𝑖 + εF(t) + τsin(θ𝑖 − ϕ𝑖) 

 

𝑦̇𝑖 = γ(µ − 𝑟𝑖
2)𝑦𝑖 + ω𝑖𝑥𝑖 

 

ω̇𝑖 = −εF(t)
𝑦𝑖

𝑟𝑖
 

 

α̇𝑖 = η𝑥𝑖F(t) 

 

ϕ̇𝑖 = sin (
ω𝑖

ω0
θ0 − θ𝑖 − ϕ𝑖) 

 

θ𝑖 = sgn(𝑥𝑖) cos−1 (−
𝑦𝑖

𝑟𝑖
) 
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𝑖 ∈ 0, … , 𝑁 

While 𝜀 determines the coupling strength between each AFO and the input signal, 𝜏 determines 

the coupling strength between each AFO and the oscillator 0 to maintain the correct phase difference 

between oscillators. The coefficient 𝜂 corresponds to a learning constant. These 3 variables control the 

learning rate of the oscillator [163]. The phase difference between oscillator i and oscillator 0, 𝜙𝑖, 

converges to the difference between 𝜃0, scaled at frequency 𝜔𝑖, and 𝜃𝑖, which resemble the 

instantaneous phase of oscillator 0 and i, respectively.  

Considering the operating basis of the above stated equation, the generic CPG network is depicted 

in Figure 13. The signal already learned by the oscillator network, learnedS, is computed as the sum of 

all outputs from all the oscillators, 𝑥, weighted by their respective amplitude, 𝛼, and accounting for the 

learned phase relations among them, 𝜙. Then, learnedS is subtracted to the signal intended to be 

learned, learningS, in the negative feedback loop, which results in the learning signal, 𝐹(𝑡). Afterwards, 

𝐹(𝑡) is provided to all oscillators to proceed with their frequency adaptation to 𝐹(𝑡). As soon as an AFO 

has completely adapted to a main frequency from the signal to be learned, learningS, that frequency 

component is generated by the correspondent AFO at the CPG output, learnedS, and is thus removed in 

the negative feedback loop. In addition, the evolution of the amplitude of each oscillator, 𝛼𝑖, is firmly 

related to the evolution of its frequency, 𝜔𝑖. As 𝜔𝑖 is converging towards one main frequency component 

of 𝐹(𝑡), 𝛼𝑖 increases. When the oscillator completely converges to the targeted frequency, this frequency 

component is removed from 𝐹(𝑡) in the negative feedback loop and 𝛼𝑖 stagnates. As such, the signal 

𝐹(𝑡) will only contain the frequency components from learningS that were still not learned by the 

oscillator network. The learned frequencies will stay encoded in the respective oscillators as stable limit 

cycles. Therefore, the negative feedback loop allows for the dynamic learning of the oscillator network. 

 

 

 

          

 

 

 

 

 

Figure 13. Generic CPG network of modified Hopf oscillators [158,162]. 
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In cases where more than one CPG is used, the coupling between different CPGs is achieved by 

the transmission of the state variables from the oscillator 0 from the designated first CPG to the oscillators 

0 from the other CPGs. Thereby, the phase differences among the different CPGs are ensured. Although 

the work performed in this dissertation only considers the use of a single CPG, more details from the use 

of a multiple CPG network can be found in [156]. 

4.3.2.3. Multi-frequency periodic input learning 

Subsequently, one example of the learning dynamics of the CPG system is given, which depicts 

the adaptation behaviour of the CPG system towards a multi-frequency periodic input signal. Following 

the example used by Righetti et al. [158], the CPG controller will receive as input the multi-frequency 

signal described by 𝐹(𝑡) = 0.8𝑠𝑖𝑛(15𝑡) + 𝑐𝑜𝑠(30𝑡) − 1.4𝑠𝑖𝑛(45𝑡) − 0.5𝑐𝑜𝑠(60𝑡). All the AFOs 

are configured with  µ = 1, 𝛾 = 8, 𝜀 = 1, 𝜏 = 0.03 and 𝜂 = 0.5. The initial frequencies were set to 

be uniformly distributed between 6 and 70 rad/s [158]. As such, 𝑤1(0) = 6 𝑟𝑎𝑑/𝑠, 𝑤2(0) =

27 𝑟𝑎𝑑/𝑠, 𝑤3(0) = 48 𝑟𝑎𝑑/𝑠, and 𝑤4(0) = 70 𝑟𝑎𝑑/𝑠. The initial amplitudes 𝛼(0) and phases 

𝜙(0) are set to 0. In addition, 𝑟(0) = 1. Considering that each AFO adapts to one main frequency 

component of the input signal and that the 𝐹(𝑡) signal spectrum is limited to 4 frequency components, 

the CPG system will be formed by 4 Hopf AFOs. All 4 AFOs are phase coupled. 

The Matlab Simulink software was used to conduct simulations of the CPG learning of multi-

frequency component signal. The learning process outcomes are depicted in the Figures below. Figure 

15 depicts the frequency evolution of each of the oscillators’ intrinsic frequencies. Figure 14 shows the 

evolution of the global CPG output in comparison with the input signal 𝐹(𝑡). 

According to Figure 14, it is possible to acknowledge that each AFO within the CPG controller 

converged into one main frequency component of 𝐹(𝑡). As expected, each AFO's intrinsic frequency 

converged towards the closest frequency component of F(t). Once an AFO achieves this convergence and 

stabilises, its output amplitude becomes equivalent to the weighted amplitude of the input signal 𝐹(𝑡) 

relative to the converged frequency. Upon the convergence of all the AFOs, the input signal is completely 

learned by the CPG controller. 
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Figure 14. Simulation time course of the 4 oscillator frequencies. From top to bottom: 𝜔1, 𝜔2, 𝜔3 and 𝜔4. 

 

Figure 15 depicts the CPG dynamic learning process throughout different stages. The top-left 

graphic presents the moment when the CPG started learning the input signal. For that reason, the error 

signal between the CPG output and 𝐹(𝑡) is very noticeable. At the time of the top-central graphic, some 

adaptation of CPG output signal towards the input signal has already been performed due to the 

convergence of some AFOs to the desired frequencies. Consequently, the error is reduced comparing to 

the start of the learning. On the top-right graphic, all the AFOs are already correctly phase-coupled, the 

CPG output matches the input signal, and the error produced between them converges to 0. 

Figure 15. CPG learning dynamics simulation. Top: Simulation time course of the sum of the outputs from all the Hopf 
oscillators (solid line) in addition to the input signal (dashed line). The learning onset (left graphic), its middle (central graphic) 
and the total learning (right graphic) of the input signal F(t) are presented. Bottom: Simulation time course of the error between 
the CPG output and F(t). 
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As expected, the initial conditions applied to the oscillators will influence its adaptation towards a 

main frequency component of the input signal. This adaptation is as fast as the closer is the initial 

frequency parameter to one targeted frequency of the input signal. The knowledge of the frequency 

spectrum of the controlled signal becomes important in order to determine appropriate initial conditions 

and allow the prediction of the oscillators behaviour [156,163]. In the case where the nominal trajectory 

is not known, the frequency spectrum information of the controlled signal, which contains the 

corresponding amplitudes, is extracted by performing a static spectral analysis [156]. From the spectral 

analysis, the frequency components with more power or amplitude, i.e., the frequencies more important 

to describe the signal, are depicted and it is thus possible to use a limited number of frequencies from 

the controlled signal to manually reproduce it with a good approximation. Thereby, by considering only 

the frequencies of higher power, it is possible to verify the minimal number of oscillators necessary to 

generate a sufficiently good approximation between the learned and the controlled signals. This 

optimisation of the number of oscillators within the network avoids higher computational costs due to a 

broaden number of oscillators. In that sense, for each different input signal analysed, it should be 

performed its Fourier Frequency Decomposition to not only determine the initial frequencies of the 

oscillators, but also to determine the minimal number of main frequency components needed to properly 

describe the input signal. In order to identify these main frequencies, one has to examine the frequencies 

of the input signal that have the highest amplitude among the frequency spectrum [163]. This analysis 

will reduce the time taken by the CPG to properly adapt to the input signal. 

 Threshold-based algorithms  

The gait perturbations were detected using threshold algorithms based on the work developed by 

Tropea et al. [13], as show in Figure 16. A simple threshold-based algorithm was proven effective and 

generalisable to detect slip-like perturbations based on the error produced between the actual kinematics 

and the kinematics predicted by a network of oscillators [13]. In the presence of a perturbation, the error 

signal promptly increases and surpasses the established threshold values, allowing to timely and 

effectively detect the postural disturbances. This timely detection would allow to promptly trigger a 

powered orthosis worn by the subject to provide mechanical assistance in order to mitigate the fall risk 

[13,64]. In this respect, it was studied the ability of a simple threshold algorithm and an adaptive threshold 

algorithm towards this detection. The performances obtained for both types of threshold algorithms are 

further compared. 
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For the simple threshold approach, which is depicted in Figure 16(a), it was firstly verified if the 

current sample, 𝑖, of the error signal was between the defined fixed threshold values. 𝑇1 and 𝑇2 

represent the upper and lower threshold values, respectively. If the error value surpassed one of the 

thresholds, which depicts an abnormal situation, a warning was raised and a counter variable, 𝑐, was 

incremented. Otherwise, 𝑐 was reseted. Secondly, it was verified if the number of consecutive warnings 

exceeded the number of acceptable warnings, 𝑟. The variable 𝑟 was applied in order to provide a more 

consistent perturbation detection by minimising the number of false alarms detected, which could arise 

from individual samples that surpassed a threshold but were not perturbations. If 𝑐 was lower than 𝑟, the 

algorithm proceeds towards the evaluation of the next sample, i.e., 𝑖 + 1. Contrarily, a perturbation was 

detected by the algorithm if 𝑐 was equal or greater than 𝑟. Further, in order to ascertain the correct 

detection of the perturbation, the detection time (𝐷𝑇) was calculated. 𝐷𝑇 was obtained as the time 

difference between the actual onset of the perturbation, given by 𝑝𝑒𝑟𝑡_𝑠𝑎𝑚𝑝𝑙𝑒, and the perturbation 

onset detected by the algorithm. The 𝑡𝑖𝑚𝑒 variable provided the timestamp information for each sample. 

If the perturbation was detected before its onset or was detected later than 1 second after its occurrence, 

the detection was considered a false alarm. However, if the perturbation was detected within the 1 second 

interval following its onset, the perturbation was considered successfully detected. This time period was 

selected as a reference, since previous research mentioned that falls occur in a maximum time of 1 

second [64,139]. 

The adaptive threshold algorithm, which is shown in Figure 16(b), follows a similar method in 

comparison with the fixed threshold. However, unlike the fixed threshold approach, the adaptive threshold 

allowed to consider contextual information about previous samples in the definition of the threshold 

values. In this regard, the mean, 𝜇, and standard deviation, 𝜎 of the 𝑚-sized window preceding the 

current sample 𝑖 were obtained in order to compute the dynamic thresholds adapted to each sample. 

The thresholds were also calculated according to the coefficients 𝑎 and 𝑏 assigned to each subject in 

order to enhance the performance of the subject-specific perturbation detection. The coefficients 𝑎 and 

𝑏 depict the influence that the standard deviation, 𝜎, has on the calculation of the upper and lower 

thresholds, respectively. Once the thresholds were calculated, the principle of perturbation detection was 

similar to the fixed threshold methodology.  

The threshold and window size parameters applied in these algorithms were determined for each 

subject and are described in Chapter 6. The variable 𝑟 was assigned with the value 3 in order to only 

detect a perturbation if 3 or more samples consecutively surpass one of the threshold values. Since both 
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threshold-based algorithms do not use information from future samples, these algorithms are considered 

to perform an online perturbation detection, which is adapted to the real-world settings. 

 

Figure 16. Perturbation detection algorithm based on (a) fixed threshold and (b) adaptive threshold. 

 

 Additional Detection Requirements 

Despite few studies describe the detection of slip-induced LOBs [64], some requirements were 

defined for the detection stage of the fall prevention strategy in order to validate the perturbation detection 

performance: i) the detection accuracy of real perturbations must be above 75%; ii) the mean detection 

time (MDT) of the real perturbations must be inferior to the detection time further defined for the fall 

prevention strategy (360 ms); and iii) the number of false perturbations detected must be inferior to the 

number of correct perturbations detected, i.e., less than one false perturbation must be detected for each 

correct perturbation identified. Considering that this dissertation addresses a fall prevention strategy in 

its preliminary stage, the current goal of this work is to ascertain whether the perturbation detection 

algorithm can achieve an acceptable rather than an optimal performance. Hence, the fulfilment of the 

above defined requirements would prove an acceptable performance of the perturbation detection 

algorithm and pave the way for the future optimisation of the detection process. 

4.4. Fall Prevention Strategy Timings 

As previously mentioned, the trailing leg has a prominent role to counteract slip-induced LOBs. 

Upon a slip perturbation of sufficient intensity, a successful response is characterised by promptly 
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interrupting the forward swing motion of the trailing limb after its lift-off, reverse its direction and land the 

trailing foot posteriorly, i.e., behind, to the leading foot to compensate for the backward LOB [137]. 

As such, the time taken by the subjects to reverse the trailing leg's swing motion direction may be 

related to the time needed to detect that a slip perturbation is happening. Martelli et al. [10] named this 

variable as the "Reverse time" (RT) and associated it with the time required by the subjects to select the 

most suitable biomechanical response. The spatial-temporal parameters of the backward swing motion 

in response to the slip were similar between the elderly and young age groups. However, these authors 

also observed that the elderly participants (0.36 ± 0.01 s) revealed a higher RT in comparison with the 

younger subjects (0.32 ± 0.01 s). The age-related modification of the periphery nervous system, which 

causes the reduction of the speed of sensory information processing, may be the foundation of this 

delayed reaction shown by the elderly and their consequent less efficient reactive response to the 

perturbations [10,165]. As such, according to the results presented and considering that the strategy is 

targeted to the elderly subjects, 360 ms was defined as the maximum time period needed to detect the 

perturbations. Since the objective of this strategy is to provide assistance to counteract the perturbation, 

the system is required to detect the occurrence of the perturbation before the subject, i.e., in a maximum 

mean time period of 360 ms after the perturbation onset [10]. This timely detection of the perturbation 

would allow to provide early and appropriate mechanical support to help subjects recover their balance 

before they are even aware that the perturbation is taking place. 

Furthermore, it is also necessary to address the actuation time, i.e., the maximum time needed to 

complete the assistive actuation, from the instant of the perturbation detection. Martelli et al. [166] 

observed that the compensatory cycle induced by a slip perturbation, which ranged from the instant of 

the perturbation onset to the instant of the trailing foot's landing on the ground, lasted for 0.46 ± 0.07 s. 

Therefore, the time required for subjects to recover from a slip perturbation was defined as 460 ms. Since 

this duration already includes the mean time needed by the subjects to detect the perturbation 

occurrence, i.e., 360 ms [10], the actuation time was defined as the time period between the instant of 

subjects' perturbation detection and the instant of the trailing foot landing on the ground. Hence, the 

actuation time was determined as 100 ms long. Thus, the strategy herein conceived purposes to detect 

slip perturbations within 360 ms following the slip onset and complete the assistive actuation under 100 

ms following the perturbation detection. Overall, the timings purposed suggest that the time duration 

between the slip initiation and the completion of the assistive torque supply must be under 460 ms. 



 
 

91 

Additionally, Lockhart [70] mentioned that dangerous slips that lead to falls are most expected to 

happen between 70 and 120 ms after the heel strike. Therefore, the detection and actuation times are 

applied after this time period. The fall prevention strategy timings defined are summarised in Figure 17. 

 
Figure 17. Proposed fall prevention strategy timings. The time durations are not to scale. The human stick diagrams were 
extracted from study [10]. The continuous and dashed line legs depict the perturbed and trailing legs, respectively. The red 
dot represents the extrapolated COM. The red arrows depict the backward Margin of Stability in the direction of motion (AP 
direction). It represents the difference between the extrapolated COM position and the position of the posterior boundary of 
the BOS (𝐵𝑂𝑆𝑀𝑖𝑛), i.e., the foot that last finished the swing phase to the ground. The Margin of Stability assumes positive 

values (rightward arrow) when the extrapolated COM is in front of the 𝐵𝑂𝑆𝑀𝑖𝑛 and vice-versa. 

 

Table 11 depicts the comparison between the timings proposed for the current slip-related fall 

prevention strategy and the timings already obtained by the fall prevention strategies previously 

addressed. 

 

Table 11. Comparison between the timings proposed and the ones obtained for the literature fall prevention strategies 

analysed, where N\A = not available 

Study Detection time (ms) Actuation time (ms) 

Monaco [64] 350 250 

Mioskowska [135] 100* N\A 

Trkov [65] 90** N\A 

Current proposal 360 100 

(*) the detection time is based on a previous study [167]. (**) the detection time is based on a previous study [168]. 

The detection times obtained in studies [65,135] were considerably lower than the detection time 

attributed in the fall prevention herein conceived. Nevertheless, although those studies developed a real-

time slip perturbation detection algorithm, the approach was only tested under offline conditions. Thereby, 

Mioskowska et al. [135] and Trkov et al. [65] studies did not close the loop from the slip-induced LOB 

detection to the assistive support provided by a wearable robot. Conversely, Monaco et al. closed this 
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loop [64] by performing the real-time detection and prevention of slip-induced LOBs during their 

experimental protocol, which confers more reliability to the detection time attributed in this particular fall 

prevention strategy. Hence, considering the comparison between the fall prevention strategy herein 

conceived and the other strategies developed, it was given an higher importance to the detection time 

obtained by Monaco et al. [64] in comparison with the detection times reported by the remaining authors 

[65,135]. 

In addition, Mioskowska et al. [135] and Trkov et al. [65] did not specifically mention the actuation 

times defined for their devices. During bench tests, Mioskowska et al. [135] mentioned that their assistive 

system was capable of performing the transition of the knee angle from 90º and 60º to 0º in the average 

times of 82 and 72 ms, respectively. Despite the authors reported that the device could assist human 

subjects with more than 30º of knee extension in under 150 ms during standing, no information was 

given about the time taken by the device to perform the knee extension during walking. Furthermore, 

Trkov et al. [65] only mentioned that their assistive device could produce up to 40 Nm torque values with 

rise times under 200 ms during the bench tests. Contrarily, Monaco et al. [64] defined the fixed duration 

of 250 ms to supply the assistive torque during experimental slip-like perturbation trials. This actuation 

time is greatly higher than the 100 ms defined for the proposed fall prevention strategy. However, 100 

ms were determined as the actuation time considering previous literature evidence on the biomechanical 

reactions to slip perturbations [10,166]. 

Since this dissertation describes the preliminary steps of the slip-related fall prevention strategy, 

the actuation requirements conceived were not tested. Conversely, the slip perturbation detection 

algorithm was further tested and validated according to the detection requirements stipulated. However, 

it is necessary to collect meaningful data from individuals while dealing with slips to test the algorithm. 

Chapter 5 describes the experimental protocol designed and conducted for data collection. 
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5. Materials and Methods 

The collection of meaningful human motion data while dealing with gait perturbations is essential 

to reliable define and test gait perturbation detection algorithms. In this regard, a slip-like perturbation 

protocol was designed and conducted to extract the selected monitoring variables, i.e., knee angle and 

shank angular velocity in the motion direction, during normal and perturbed walking. Considering that 

this dissertation comprises a preliminary stage of the slip-related fall prevention strategy, older subjects 

were not enrolled and the PKO was not worn by the subjects during the experiments. As a preliminary 

approach, it is firstly required to ascertain whether the perturbation detection algorithm developed 

presents an acceptable perturbation detection performance using healthy steady-state gait data, 

according to the detection requirements previously defined. 

Regarding to the improvement opportunities identified in Chapter 3 for experimental protocols that 

provoke artificial falls, the protocol designed attempted to tackle some limitations: i) data from slip-like 

perturbations provoked to both legs was collected in order to account for individuals' side-dominance; ii) 

one of the walking speeds adopted during the trials was adapted for each subject. This allowed to simulate 

similar dynamic conditions among participants while dealing with the slip-like perturbations; and iii) data 

acquisition was performed from multiple different sensors, including not only kinematic data, but also 

biosignal data. This allowed to build a dataset with vast sensor information to be further used to 

comprehensively study the motion alterations induced by slip-like perturbations. 

In addition, the slip-like perturbations were provoked by anteriorly pulling the participant's ankle at 

the heel strike or posteriorly pulling the ankle at the toe-off using a rope. The heel strike and toe-off were 

chosen as the slip onset events, considering that slip-induced LOBs are mainly initiated in these gait 

events. An experienced operator manually performed the rope pulling. 

5.1. Participants and Equipment 

Eleven healthy young subjects (age: 24.55 ± 2.15; height: 1.70 ± 0.09 m; weight: 63.25 ± 7.11 

kg; males = 6; females = 5) were enrolled in the experimental protocol. Subjects were selected if they 

presented: i) healthy locomotion; ii) total postural balance; iii) more than 18 years; and iv) body mass 

lower than 135 kg. Subjects were excluded if they: i) presented a disease or deficit that affects locomotion; 

and ii) were recently subjected to surgical procedures that affect mobility. All participants provided written 

informed consent and voluntarily accepted to participate in the experimental trials. Each participant 
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performed the qualitative assessment of the preferred foot by completing the Waterloo Footedness 

Questionnaire [169]. 

In order to better understand the changes that slip perturbations introduce to human motion, data 

were collected from a wide range of sensor systems so as to provide a vast dataset with kinematic and 

biosignal data during both normal and perturbed walking. Xsens MVN Awinda (Enschede, The 

Netherlands) and Optitrack V120 Trio (Corvallis, OR, USA) systems provide information about any 

potential changes in motion kinematic parameters towards LOB situations provoked by slip-like events. 

The remaining sensor systems provide biosignal data and, therefore, information about their change in 

the presence of slip-like perturbations. Delsys Trigno (Natick, MA, USA) provides muscles' electrical 

activity data, RespiBAN (Lisbon, Portugal) collects subject's respiration data and Shimmer (Dublin, 

Ireland) Galvanic Skin Response (GSR) provides information from subject's galvanic skin response and 

heart frequency rate. Furthermore, Kinect v2.0 camera (Redmond, WA, USA) offers video support to the 

labelling of events in the data samples.  

Subjects were firstly equipped with 8 Delsys Trigno wearable sensors, which collected EMG data 

at approximately 1111 Hz. The sensors were placed in some lower body muscles, namely the rectus 

femoris, biceps femoris, tibialis anterior and gastrocnemius lateralis from both legs (Figure 18). Three 

trials of Maximum Voluntary Contraction (MVC) were performed for each muscle for further normalisation 

of EMG envelope. Further, participants were equipped with the full body configuration of Xsens MVN 

Awinda wearable inertial system that collected data at 60 Hz, which is composed by 17 IMUs placed in 

the following body landmarks: i) head; ii) sternum; iii) pelvis; iv) right and left shoulders; v) right and left 

upper arms; vi) right and left forearms; vii) right and left hands; viii) right and left upper legs; ix) right and 

left lower legs; and x) right and left feet. Following the sensor placement, participants underwent the N-

Pose calibration of the system. Afterwards, reflexive markers were placed in the following body landmarks 

(based on a previous study [170]): i) head; ii) sternum; iii) midtrunk; iv) right and left shoulders; v) right 

and left elbows; vi) right and left wrists; vii) right and left hips; viii) right and left knees; ix) right and left 

heels; and x) right and left feet. These markers were tracked at 120 Hz by an Optitrack V120 Trio camera 

bar. Any existing shiny surface from subjects' clothing was removed in order to reduce the noise on the 

Optitrack cameras while tracking the reflexive markers. Kinect camera was used to provide video 

recordings from the experimental trials at 30 frames per second. Lastly, participants also worn the 

RespiBAN system on the upper trunk, between the sternum and the Xiphoid process, and the Shimmer 

GSR device on the dominant forearm with the electrodes placed on the index and middle fingers. These 
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devices collected data at 1000 Hz and 100.21 Hz, respectively. The reflexive marker and IMU placements 

are depicted in Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Muscles monitored by the EMG sensors, which were placed on the "x"marks highlighted in each of the 4 
subfigures. (a) Tibialis anterior. (b) Gastrocnemius lateralis. (c) Rectus femoris. (d) Biceps femoris. The images were extracted 
from [171]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Reflexive marker (black dots), IMU (orange squares), RespiBAN device (blue square) and Shimmer electrodes 
(brown dots) placement. 
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Afterwards, subjects worn a safety harness system in the case an irreversible slip-induced LOB 

took placed. The harness system consisted in a vest that was attached to a structure in the ceiling through 

a rope. The length of the harness rope was adjusted in order to register a minimum of 15cm between 

the knees and the treadmill belt. This procedure was accomplished by asking participants to raise their 

feet, which led to the application of all the body weight into the harness system [100]. 

In order achieve synchronous data acquisition from all the sensor systems, Sync Lab Desktop App 

was used. This team-developed desktop application for Windows OS is capable of synchronously start 

and stop data collection from the above mentioned systems and save the collected data in the computer 

that runs the app. The trigger signals sent by the Desktop application are electronic or wireless pulses. 

The former are either sent via Syncbox, which is a team-developed hardware interface that connects to 

the Xsens and Delsys systems or by direct USB communication, which is used to connect to both Kinect 

and Optitrack cameras. The wireless communication with the RespiBAN and Shimmer GSR systems is 

performed directly from the computer running the app. Figure 20 summarises the experimental setup 

prepared for the data collection. It is noteworthy that the Optitrack cameras were tilted in order to capture 

all the reflexive markers placed on the subject's body. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Experimental setup used for slip-like perturbation data collection. (1) Optitrack V120 Trio cameras. (2) Kinect 
v2.0 camera. (3) wireless communication between the computer running the app and RespiBAN and Shimmer systems. (4) 
Rope attached to the participant’s ankle, which is pulled by the operator to cause the perturbation. (5) Sync Box. (6) Xsens 
Awinda station, which establishes wireless communication with the Xsens IMUs. (7) Delsys Trigno Workstation, which 
establishes wireless communication with the Delsys sensors. The safety harness system connected to the subject was not 
included for simplification. Some of the content from this image was extracted from a previous study [172]. 
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5.2. Slip-like perturbation protocol 

During the experimental protocol, participants were asked to manage unexpected slip-like 

perturbations during locomotion on a treadmill. All subjects were blind to the protocol to not introduce 

any prior bias on their response to the slip-like perturbations. Thus, subjects did not know when, how and 

how many times they were going to be perturbed. Firstly, subjects performed a familiarisation trial by 

walking in the treadmill without slip-like perturbations exposure while using the entire sensor setup. 

Subjects were instructed to fix their gaze on a point at eye level while walking so as not to foresee the 

onset of a potential perturbation. 

During perturbation trials, a trained operator pulled a rope attached to the subjects' ankle at some 

heel strike events, i.e., when the subject's heel strikes the floor, performed by the subjects during their 

gait, which ended up provoking an instability similar to a slip event. In other perturbations trials, slips 

were induced at the toe-off gait event, i.e., when the subject's toe is raised from the floor to start the swing 

phase. In these perturbations, the operator pulled the rope in some of the toe-off events performed by 

the subjects. The rope was always attached to one of the participant's feet throughout all the trials. 

Thereby, participants did not know if there was going to be a perturbation or not. 

Each subject underwent 8 trials, which depicted all the combinations between perturbed leg (right 

or left), perturbed gait event (heel strike or toe-off) and treadmill belt inclination (0 and 10%). Table 12 

exhibits each trial's order and characteristics. 

 

Table 12. Trial’s order organisation during the experimental protocol for data acquisition 

Trial Number Perturbed leg Perturbed gait event Treadmill inclination (%) 

1 Right Heel strike 0 

2 Right Heel strike 10 

3 Right Toe-off 0 

4 Right Toe-off 10 

5 Left Heel strike 0 

6 Left Heel strike 10 

7 Left Toe-off 0 

8 Left Toe-off 10 

 

Within each trial, 6 sub-trials were performed. Subjects walked at 3 different speeds (1.8 km/h 

(slow speed), 5.4 km/h (fast speed), and a normalised speed that was calculated through a formula, 

according to the subject's leg length, in order to simulate similar dynamic conditions across all the 
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participants) and in 2 different conditions (perturbation or non-perturbation). Slow and fast gait speed 

were defined according to the literature [173–175]. The normalised speed (v) for each subject was 

calculated in accordance with the principle of dynamic similarity, which is expressed by the equation 

below. 

 

𝑣(𝑚/𝑠) = √𝐹𝑟𝑔𝐿 

 

𝐹 r is the Froude number (0.15); 𝑔 is the gravity accelerations (9.81 m/s2); and 𝐿 is the leg length 

from the prominence of the greater trochanter external surface to the lateral malleolus) [166]. 

Table 13 depicts the characteristics from each of the 6 sub-trials. These sub-trials were conducted 

in a randomised order to make the perturbations delivered more unpredictable. During perturbation trials, 

the operator applied 3 perturbations in random moments of the trial. Non-perturbation trials had a mean 

duration of 30 seconds, whereas perturbation trials had a more variable duration, which was generally 

between 30 seconds and 1 minute. 

 
Table 13. Characteristics of the 6 sub-trials performed within each trial 

Velocity Perturbation? 

1.8 km/h Yes 

1.8 km/h No 

Velocity adapted to subject’s leg length Yes 

Velocity adapted to subject’s leg length No 

5.4 km/h Yes 

5.4 km/h No 

 Discussion 

Considering the procedures performed during the experimental protocol, some topics should be 

addressed. First, the perturbations delivered to the subjects were non-standardised. Since the operator 

manually pulled the participants ankle, a variability on the timing and the magnitude of the perturbation 

application was created. More specifically, the perturbations were not applied consistently at the heel 

strike instant and the strength of rope pull was not fixed. For instance, if a perturbation was applied shortly 

after the heel strike, the subject would already have more height supported by the perturbed limb. 

Therefore, the perturbation would not be as perturbing to the participant. In this regard, some 

perturbations were not considered during the labelling process since they were not considered sufficiently 
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destabilising. This caused the reduction of the number of perturbations available for the further analysis. 

However, the operator was experienced with the perturbation delivery and was not changed throughout 

all the trials in order to mitigate the perturbation variability. Secondly, although participants were 

instructed to fix their gaze on a point at eye level during the trials, their peripheral vision of the operator 

could potentially have allowed cues to predict the onset of a perturbation. Nonetheless, the operator was 

almost totally occluded from the participants’ vision by the treadmill velocity panel. Thirdly, since all the 

perturbation trials accounted for 3 perturbations, participants may at some point of the trials have adapted 

their gait towards the perturbation received. Nevertheless, participants were instructed to always maintain 

their normal walking pattern and reminded that if any irrecoverable LOB took place, they would be 

arrested by the harness, which was securely attached to the ceiling and provided unconditional safety. In 

addition, the time of the perturbation trials was varied in order to enhance the unpredictability of the 

perturbation delivery and stimulate subjects to walk naturally. 

5.3.  Data Processing 

Once data has been collected, it was further processed using Matlab software to convert data from 

all the sensors into Matlab table format. However, some sensor data had to be previously processed using 

other software before being processed in Matlab. This is depicted in the Software processing stage from 

Figure 21. For instance, each subject's EMG data collected from the Delsys sensors had to be previously 

normalised with their MVC information using EMG Analysis software. Optitrack reflexive markers were 

labelled for each trial using Motive software. Only some of the markers were labelled since some markers 

suffered constant occlusions, i.e., markers disappeared from the video recordings because they were 

occluded by some obstacle, during the treadmill gait. Therefore, the labelled markers were: i) head; ii) 

sternum; iii) midtrunk; iv) right and left shoulders; and v) right and left hips. The frames provided by the 

Kinect camera were aligned together using Adobe Premiere Software in order to produce a video for each 

trial. 

Once these steps were concluded, all data were ready to be processed in Matlab in the Matlab 

data processing stage. Since the sampling frequencies among the sensor systems were different and the 

system which had the lower sampling frequency was Xsens with 60 Hz, all data were downsampled to 

60 Hz. The downsampling of RespiBAN data had to be performed second by second, since the device's 

sampling frequency was variable throughout the data collection. Further, data from each sensor were 

organised into mat tables with each column depicting one feature extracted from the sensors. For each 

trial, the number of Xsens data samples served as reference. Therefore, the excess data samples acquired 
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from the other sensors were excluded and empty samples were added if there was a lack of data samples. 

Data samples from the different systems were temporally aligned according to the timestamps of start 

and stop data recording provided by the Sync Lab Desktop App. This was particularly useful in RespiBAN 

and Shimmer GSR devices, which often did not start and stop data collection at the same time as the 

other sensor systems. Thereby, all the data collected from the different sensors were aligned and had the 

same number of samples for each trial. Sensor data tables from the same trials were then concatenated 

in order to generate a single data table for each trial. 

Once this process was concluded, it was proceeded to the labelling of events for each trial. The 

events of interest are: i) start of a sub-trial: marked in the frame of the first heel strike of the foot being 

perturbed (with the rope) since the subject achieved steady walking during the sub-trial; ii) end of a sub-

trial: marked in the frame of the last heel strike of the foot being perturbed in steady walking during the 

sub-trial; iii) perturbation onset: marked in the frame where the operator starts to pull the rope to perturb 

the participant's gait; and iv) end of the perturbation: marked in the frame of the first heel strike of the 

perturbed foot after the participant has recovered from the perturbation and regained steady walking. To 

this end, videos generated from the Kinect frames for each trial were uploaded to Djv software to facilitate 

the labelling process. This software allowed to identify Kinect frame numbers in which an event occurred. 

Since Sync Lab Desktop App provided the timestamp associated with each Kinect frame, it was possible 

to correlate the identified frame timestamps with data table timestamps from the same trial in order to 

mark events. The number of the frames of interest were introduced in a Matlab script in order to label 

the data samples from each trial table with the respective event. Thereby 2 columns were added to each 

trial data table from this labelling process. One column indicates the type of sub-trial of the data samples 

and the other indicates if the data samples correspond to a perturbation or not. It is noteworthy that only 

the perturbations that were found to disturb subject's gait and balance based on video evidence were 

labelled. Once the labelling process was concluded, each trial data table was divided into their individual 

sub-trials for the further test of the perturbation detection algorithm. 
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Figure 21. Experimental Protocol data processing flowchart. 
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6. Slip-like perturbation Detection Validation 

The validation strategy proposal for slip-like perturbation detection was conducted considering data 

from the 2 selected variables, the knee angle and the shank angular velocity. The validation scheme is 

depicted in Figure 22. For each selected variable, the perturbation detection algorithm was tested using 

perturbation data from the perturbed and the unperturbed legs. The validation strategy was employed 

using the data collected from normal walking trials and perturbation delivery trials, while subjects were 

ambulating on the treadmill with 0% inclination at a normalised speed previously calculated for each 

subject. The locomotion conditions considered for this analysis depict a level-ground walking scenario 

and a velocity that is likely to be adopted by the subjects during their daily-life. Hence, data from these 

conditions were considered for analysis, since these conditions are the most likely to precede the 

occurrence of a real-life slip perturbation for the enrolled participants [5,6]. Also, according to the literature 

reviewed, only perturbation trials where the slips were provoked during the heel strike were considered, 

since this gait event is the most prominent for the onset of real-world slips [70]. As such, for each subject, 

there were data from 6 trials: i) 4 normal walking trials, i.e., without perturbation; and ii) 2 perturbation 

trials. However, data from 2 subjects were unable to be used due to data loss. From the total of 

perturbation trials included, there were 23 valid slip-like perturbations from 9 participants (according to 

the perturbation labelling process described in Chapter 5), which were further used to test the 

performance of the perturbation detection algorithm. 

Initially, the data collected from each selected variable from all 6 trials were jointly normalised 

within the interval between 0 and 1. The normalisation was performed in order to scale the amplitude 

variations of the kinematic signals to a shorter and equal interval while respecting and maintaining the 

differences among data from the different trials. 

From the 4 normal walking trials, data from 3 trials were chosen to tune the oscillators within the 

CPG, i.e., normal walking tuning data. Data from the remaining trial were used to further test the tuned 

CPG, i.e., normal walking testing data. For each subject, 2 CPGs were tuned and tested, one with knee 

angle data and the other with shank angular velocity data.  A Fourier frequency spectral decomposition 

of the tuning data was performed to obtain the frequency, amplitude and phase values associated to each 

relevant frequency component. Once these parameters were obtained, their mean was determined for 

each relevant frequency component. The mean parameters of frequency and their respective amplitudes 

and phases were used to tune the initial conditions of the CPG’s oscillators specifically for each subject. 

Then, normal walking testing data were augmented, i.e., replicated, by a factor of 200 and used as input 
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to the tuned CPG. This allowed to test the subject-specific tuned CPG to track the steady-state walking 

profile of the selected variables (Normal Walking Testing). The selection of this high augmentation factor 

allowed to perceive and study the CPG’s adaptation to the input signals for longer time periods. The 

Normal Walking Testing performance was evaluated between the selected variables, according to the 

mean error metrics (Mean error and root mean square error (RMSE) values) obtained across all the 

participants. 

After the Normal Walking Testing, the perturbation labelled data were extracted from the 

perturbation trials’ data. As such, knee angle and shank angular velocity data from the 23 valid slip-like 

perturbations were obtained. For each selected variable, data from each perturbation was individually 

processed and further concatenated between normal walking data from the respective subject. This 

concatenation process allowed to obtain, for each valid perturbation, steady-state walking data before and 

after the slip-like perturbation occurrence. Then, these concatenated data were provided as input to the 

CPG tuned for the respective subject with data from the respective motion variable, i.e., knee angle or 

shank angular velocity. As previously mentioned, the CPGs were subject-specifically tuned during the 

Normal Walking Testing. This allowed to obtain simulation data from the CPG’s signal prediction upon 

the occurrence of a slip-like perturbation during steady walking. In this regard, an error signal between 

the CPG output and the actual kinematic signal was produced for each perturbation, which was further 

used by threshold-based algorithms to detect the perturbation onset (Perturbed Walking Testing). The 

MDT, the detection accuracy of real perturbations (the 23 valid slip-like perturbations), the mean number 

of false perturbations detected per each real perturbation identified, and the mean number of samples 

per false perturbation detected (false alarms) were used to evaluate the perturbation detection 

performance of the threshold-based algorithms. All the data processing previously described was 

performed using the Matlab software, while the simulation data were obtained using the Simulink 

software. 

Nonetheless, before conducting the proposed validation strategy, it was necessary to perform the 

study of the most suited number of oscillators within the CPG to monitor the selected variables. For the 

purpose of this master dissertation, this Chapter will address 3 main study topics for each selected 

variable: i) ascertain the most suited number of oscillators within the CPG for monitoring purposes; ii) 

perform the Normal Walking Testing; and iii) perform the Perturbed Walking Testing. 
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Figure 22. Validation strategy proposal for slip-like perturbation detection. 

6.1. Study of the number of oscillators within the CPG 

In order to tune the oscillator network according to the selected variables (knee angle and shank 

angular velocity), the number of oscillators within the respective CPG must be chosen. The analysis of 

the number of main frequency components needed to properly describe the selected variables’ signals 

allows to optimise the number of oscillators to track each variable. This avoids unnecessary computational 

costs due to the use of an excessive number of oscillators. The selection process of the most suited 

number of oscillators was carried out for each variable and is summarised in Figure 23. 
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Figure 23. Selection process of the number of oscillators. 

 

A spectral analysis was firstly performed to perceive the most relevant frequency components from 

each variable signals. This analysis was carried out using data from only one subject, since the signals' 

profile was considered similar among subjects, considering that all of them were healthy and belonged 

to the same age group. From the 4 normal walking trials of the chosen subject, data from 3 trials were 

used to parameterise the initial conditions of frequency, amplitude, and phase of each oscillator. For each 

of these 3 trials' data, the FFT was performed in order to decompose the signal in its frequency 

components. In this process, the amplitude and phase spectra were calculated with a resolution of 0.001 

[176]. Figures 24 and 25 depict examples of regular knee angle and shank angular velocity signals, 

respectively, during steady-state walking, and their corresponding frequency spectrum. 
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Figure 24. Knee angle (a) time-course amplitude; and (b) frequency amplitude spectrum. 
 

Figure 25. Shank angular velocity (a) time-course amplitude; and (b) frequency amplitude spectrum. 

 

As depicted in Figures 24(a) and 25(a), although it is observed a clear pattern in both knee angle 

and shank angular velocity signals, there is some variability among the different gait cycles, which 

underlines the quasi-periodic property of human gait. This variability will, in turn, result in the attribution 

of considerable amplitude values not only to the main frequency components, but also to the frequencies 

surrounding them (Figures 24(b) and 25(b)). However, the main frequency components of both signals 

are still noticeable and depicted by the frequencies corresponding to the peak amplitude values in the 

amplitude spectrum. These main frequency components are sorted in ascending order according to their 

frequency value. As such, considering Figures 24(b) and 25(b), the first main frequency component, 

which is the one with the lowest frequency value, corresponds to the 0 Hz frequency and the second 

main frequency component is assigned to the frequency associated with a peak amplitude just below 1 

Hz. According to these frequency spectra, it was possible to acknowledge the existence of more visible 

and less perceptible amplitude peaks. This is related to the importance of a frequency to describe the 
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signal, which is as high as the amplitude it has the frequency spectrum [163]. Since there is no prior 

knowledge of the minimum number of frequency components needed to accurately reproduce the knee 

angle signal, 6 peaks were considered for further analysis.  

 Knee angle 

Table 14 highlights the frequency, amplitude, and phase values for the first 6 frequency 

components of the knee angle signal obtained from the 3 normal walking tunning trials. 

 

Table 14. Values of frequency, amplitude, and phase of the first 6 frequency components of the knee angle variable (3 

normal walking tuning trials) 

Trial 1 Trial 2 Trial 3 

Frequency 
(Hz) 

Amplitude Phase (º) 
Frequency 

(Hz) 
Amplitude Phase (º) 

Frequency 
(Hz) 

Amplitude Phase (º) 

0 0.3678 0 0 0.3548 0 0 0.3882 0 

0.8224 0.1668 -42.3826 0.7731 0.1613 127.3497 0.8541 0.1692 108.8388 

1.6448 0.0905 -84.1338 1.5462 0.0914 -102.7192 1.7082 0.0913 -137.4449 

2.4329 0.0184 13.8409 2.3193 0.0177 -28.0031 2.5623 0.0176 -72.9138 

3.2553 0.0070 -162.6813 3.1353 0.0048 -61.3806 3.4164 0.0056 -101.0342 

4.0777 0.0047 97.5756 3.9084 0.0045 -10.0613 4.2705 0.0025 -51.3716 

 

Then, the mean of the frequency, amplitude, and phase values for each main frequency component 

was determined, i.e., it was performed the mean of the values within the same row, which have the same 

frequency component order. According to the oscillator model input format on the Simulink software, the 

mean frequencies were converted from Hz to radians per second (rad/s), the amplitude values were 

powered by a factor of 2 and the phase values were converted to radians (rad). The mean values obtained 

for each frequency component are highlighted in Table 15. 
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Table 15. Mean values of frequency, amplitude, and phase for the first 6 frequency components from the knee angle signal 

Mean Frequency (rad/s) Mean Powered Amplitude Mean Phase (rad) 

0 0.137105 0 

5.130428 0.027485 1.127517 

10.260863 0.008293 -1.886689 

15.319455 0.000321 -0.506588 

20.539733 0.000034 -1.891332 

25.670161 0.000016 0.526089 

 

The values presented in Table 15 will thereafter be used to assign initial frequency, amplitude, and 

phase for each oscillator. As an example, the intrinsic frequency of the first AFO, as well as its initial 

amplitude and phase are depicted by the values from the first row of Table 15. The other AFO parameters 

were attributed according to Santos et al. [156] with the exception of 𝜀, which was maintained similar 

among all the oscillators. Thus, all the oscillators were parameterised with 𝛾 = 8, 𝜀 = 1, 𝜏 = 0.03 and 

𝜂 = 0.5. Once the AFOs were tuned with their respective initial parameters, their number within the CPG 

was varied across different simulations in order to ascertain the most suitable number of oscillators to 

track the knee angle signal. In this regard, knee angle data from the remaining normal walking trial (the 

only one that was not used to compute the initial parameters of the oscillators) were used to verify the 

CPG’s ability to adapt to this signal. According to the knee angle frequency spectrum amplitudes 

presented in Figure 24(a), the first 3 frequency components seem to contain crucial information to 

describe the knee angle signal. Thereby, a minimum of 3 oscillators was considered in the CPG controller. 

In addition, considering the frequency component information previously extracted from the knee angle 

signal, the highest number of oscillators within the CPG was 6. Thus, there were performed simulations 

considering the CPG configurations with 6, 5, 4 and 3 oscillators, which will adapt to the 6, 5, 4 and 3 

main frequencies of the knee angle signal, respectively. 

In order to allow all the oscillators to have time to adapt to a frequency component and to study 

their behaviour after achieving frequency convergence, the knee angle signal from the remaining normal 

walking trial was augmented 200 times. This augmented signal was used as input for the oscillator 

network. Considering that these data refer to steady-state walking conditions and that the data samples 

start and stop at the same gait event, i.e., the heel strike of the foot being perturbed (as previously 

depicted in the Chapter 5), it was possible to properly replicate the knee angle signal without introducing 

abnormal variations during the data augmentation process. The simulation time was defined as the time 
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duration of the augmented knee angle signal, considering the sampling frequency of 60 Hz of the 

kinematic data from Xsens. The simulation results are depicted from Figures A1 to A4 (Appendix I). 

The relationship between the error metrics obtained during the simulations (mean error and RMSE) 

and the time taken for the last oscillator’s frequency to converge (convergence time) were studied to 

select the most suitable number of oscillators to track the knee angle signal. The error produced regards 

to the difference between the CPG’s prediction output and the input knee angle signal. The CPG was 

assumed to achieve convergence (and thus be adapted to all main frequency components from the input 

signal) from the point when the frequency values from all oscillators did not vary more than 1 rad/s for 

the rest of the simulation time. The outcomes are presented in Table 16. 

 

Table 16. Performance results of knee angle monitoring for all the tested CPG configurations 

Number of oscillators Mean error (RMSE) Convergence time (s) 

3 0.0482 (0.0659) instantaneous 

4 0.0459 (0.0656) 1868 

5 0.0407 (0.0607) 2506 

6 0.0413 (0.0635) 5912 

 

According to Table 16, it is possible to depict that a higher number of oscillators is generally 

accompanied with a decrease in the error values. However, the error obtained with the CPG with 5 

oscillators was lower than the one observed with the CPG with 6 oscillators. The increase in the number 

of AFOs, which accounts for the inclusion of more frequency components from the knee angle signal, 

was expected to produce a better approximation of the CPG output to the input signal and thus reduce 

the error obtained. The CPG with 3 oscillators was associated with the highest error values. Nevertheless, 

the error difference between all the CPG configurations was not very noticeable, as the increase in the 

number of oscillators does not substantially reduce the error produced. In fact, the RMSE difference 

between the highest (0.0659) and lowest (0.0607) error values obtained was only around 7.9%. According 

to Figure 24(a), the amplitudes of the fourth, fifth and sixth frequency components of the knee angle 

signal are significantly lower than the ones from the first 3 components. Thereby, it was expected that 

the information added to the CPG output by the fourth, fifth and sixth oscillators would not be significant 

enough to considerably reduce the error. 

The increase in the amount of AFOs also leads to a higher global frequency convergence time for 

the CPG. Despite the initial frequencies attributed to the oscillators being relatively close to the main 

frequency components of the input signal, regarding to the initial parameterisation performed (Table 15), 
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the amplitudes of the higher frequencies are considerably lower than the amplitudes observed for the first 

frequency components (Figure 24(b)). As such, the attraction between the AFOs and the higher frequency 

components will be lower [163]. This justifies the larger amount of time taken by the oscillators to 

converge to higher frequency components. As such, a noticeable difference was observed between the 

convergence times obtained for the CPG with 3 oscillators and the other CPG configurations. Indeed, the 

high frequency convergence times obtained for the networks with 4, 5 and 6 oscillators hinder the use of 

these CPG configurations in daily-life scenarios, considering the high number of gait cycles needed to 

achieve frequency convergence. Conversely, the convergence time of the CPG with 3 oscillators was 

considered instantaneous, since the intrinsic frequencies of the different oscillators seem to 

instantaneously adapt and converge to a frequency component, as the frequency values from each of the 

3 oscillators did not vary more than 1 rad/s since the start of the simulation (Figure A4, Appendix I). 

Considering that the first 3 frequency components from the knee angle signal present a significant 

amplitude (Figure 24(b)), their attraction to their respective oscillators will be more intense and thus the 

convergence time will be substantially lowered [163]. In order to better understand the frequency time 

course from each of the 3 oscillators, Figure 26 depicts an expanded version of Figure A4 (Appendix I). 

Figure 26. Expanded frequency evolution of the CPG with 3 oscillators throughout the simulation time course (knee angle). 
From top to bottom: 𝜔1, 𝜔2 and 𝜔3. 

 

While the variations of the first oscillator frequency are imperceptible, the second and third 

oscillators seemed to have almost immediately produced nearly stable oscillations around a central 

frequency. These low amplitude oscillations, with peak-to-peak amplitudes less than 0.5 rad/s, depict the 
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quasi-periodic nature of human gait, considering that the kinematic differences observed among different 

gait cycles may reflect variations of the frequency values from the main frequency components. This 

results in the cyclical adaptation to a central main frequency, which is observed in the graphics of the 

second and third oscillators from Figure 26. In the fourth, fifth and sixth oscillators from the CPG 

configurations with 4 oscillators or more (Figures A1 to A3, Appendix I), the frequency values changed 

considerably before reaching a cyclical adaptation to a central main frequency. 

Therefore, among all the CPG configurations considered, it is possible to understand that the CPG 

with 3 oscillators has the best relationship between the mean error produced and the time taken for the 

oscillators’ frequencies to converge. Thereby, the detection of gait perturbations using knee angle data 

considered a CPG with 3 oscillators. 

 Shank angular velocity 

Table 17 depicts the frequency, amplitude, and phase values for the first 6 frequency components 

of the shank angular velocity signal obtained from the 3 normal walking tuning trials. 

 

Table 17. Values of frequency, amplitude, and phase of the first 6 frequency components of the shank angular velocity 
variable (3 normal walking tuning trials) 

Trial 1 Trial 2 Trial 3 

Frequency 
(Hz) 

Amplitude Phase (º) 
Frequency 

(Hz) 
Amplitude Phase (º) 

Frequency 
(Hz) 

Amplitude Phase (º) 

0 0.5120 0 0 0.4787 0 0 0.5146 0 

0.8224 0.0927 -101.1107 0.7731 0.0755 67.5162 0.8541 0.0998 51.6990 

1.6448 0.0826 -164.8690 1.5462 0.0696 177.5450 1.7082 0.0903 140.7318 

2.4329 0.0162 -75.6084 2.3193 0.0137 -100.700 2.5623 0.0208 -159.1366 

3.2553 0.0144 102.3050 3.1353 0.0067 -157.6629 3.4164 0.0112 163.8546 

4.0777 0.0099 16.1080 3.9084 0.0052 -68.2749 4.2705 0.0064 -128.7854 

 

Afterwards, for each frequency component, the frequency, amplitude, and phase values were 

averaged similarly to the knee angle variable. The values obtained for each frequency component are 

highlighted in Table 18. 
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Table 18. Mean values of frequency, amplitude, and phase for the first 6 frequency components from the shank angular 
velocity signal 

Mean Frequency (rad/s) Mean Powered Amplitude Mean Phase (rad) 

0 0.251751 0 

5.130428 0.007980 0.105328 

10.260863 0.006535 0.892490 

15.319455 0.000286 -1.951540 

20.539733 0.000116 0.631208 

25.670161 0.000051 -1.052738 

 

The values presented in Table 18 will be assigned to the different AFOs within the CPG. The 

remaining parameters (𝛾, 𝜀, 𝜏, and 𝜂) attributed to each oscillator were similar to the knee angle variable. 

The shank angular velocity data from the remaining trial were augmented by a factor of 200 and were 

used as input to the CPG in order to ascertain its ability to adapt to this signal. The shank angular velocity 

frequency spectrum shown in Figure 25(a) suggests that the first 3 frequency components entail the most 

important signal information. Thereby, a minimum of 3 AFOs were considered within the CPG. Once 

more, the number of oscillators within the CPG network was varied from 3 to 6 during the different 

simulations. The simulation results are presented from Figures A5 to A8 (Appendix I). 

For each of the 4 simulations, the mean error, the RMSE, and the frequency convergence times 

were obtained. The outcomes obtained are depicted in Table 19. 

 

Table 19. Performance results of shank angular velocity monitoring for all the tested CPG Configurations 

Number of oscillators Mean error (RMSE) Convergence time (s) 

3 0.0615 (0.0869) instantaneous 

4 0.0486 (0.0733) instantaneous 

5 0.0491 (0.0735) did not converge 

6 0.0451 (0.0685) 5453 

 

Considering Table 19, the CPG configurations with 3 and 6 oscillators obtained the highest and 

lowest error values, respectively. However, the increase in the number of oscillators did not imply the 

decrease in the error values produced, since the CPG with 4 oscillators obtained smaller error values 

than the CPG with 5 oscillators. In fact, the error difference between the CPG configurations with 4, 5 

and 6 oscillators were not very noticeable, which showed that the increase in the number of AFOs did not 

substantially reduce the error produced. The RMSE values obtained for the CPG with 4 oscillators 
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(0.0733) and the CPG with 6 oscillators (0.0685) differed in only around 6.5%. Nonetheless, the RMSE 

difference between the CPG configurations with 3 and 4 oscillators was more perceptible, being 15.7% 

higher for the CPG with 3 oscillators. Results suggest the lack of additional relevant information provided 

by the fifth and sixth frequency components, regarding to their considerably lower amplitudes in 

comparison with the amplitudes from the first 3 frequency components, which is depicted in Figure 25(b). 

Additionally, the CPG with 6 AFOs presented the highest frequency convergence time. Despite the 

network with 5 oscillators seemed to have achieved convergence at around 644 seconds, the frequency 

values decrease considerably later in the simulation (Figure A6, Appendix I). This implied that the 

respective oscillator was not yet stably adapted to a frequency component of the input signal. The CPG 

configurations with 3 and 4 AFOs were considered to have achieved an instantaneous frequency 

convergence, since all of their oscillators’ frequency values did not vary more than 1 rad/s since the start 

of the simulation. Therefore, the increase in the number of oscillators led to higher frequency convergence 

times. Although the initial parameterisation of each oscillator (Table 18) allowed them to be closer to one 

main frequency component of the input signal, the lower amplitude of the higher frequency components 

led to a decrease of the attraction intensity between these frequency components and the respective 

oscillators [163]. This caused longer time periods for the oscillators to converge towards the high 

frequency components. Figure 27 provides an expanded version of Figure A7 (Appendix I) to better 

understand the frequency time-course of the 4 oscillators. 

Figure 27. Expanded frequency evolution of the CPG with 4 oscillators throughout the simulation time course (shank angular 
velocity). From top to bottom: 𝜔1, 𝜔2, 𝜔3, and 𝜔4. 
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As depicted in Figure 27, the first oscillator frequency appears stable on the 0 rad/s throughout 

the simulation time. The second and third AFOs rapidly produced nearly stable oscillations around a 

central frequency. These oscillations were characterised by a low peak-to-peak amplitude of less than 0.5 

rad/s. The foundation of this oscillatory behaviour may rely on the quasi-periodic nature of human gait, 

as depicted for the knee angle variable. The fourth AFO also reached this cyclical adaptation, despite 

needing an additional time to achieve it. Conversely, in the fifth and sixth oscillators from the CPG 

configurations with 5 and 6 oscillators, the frequency values changed considerably before achieving a 

cyclical adaptation towards a central frequency (Figure A5 and A6, Appendix I). 

Hence, considering all the CPG configurations analysed, the CPG with 4 oscillators appears to be 

the most suitable option to monitor the shank angular velocity variable, as it provides the best relationship 

between the error metrics produced and the frequency convergence time. As such, the detection of gait 

perturbations using shank angular velocity data will proceed using a CPG with 4 oscillators. 

6.2. Normal Walking Testing 

 Before providing the CPG algorithm with perturbation data, it was firstly tested with normal walking 

data to perceive the adaptation of the CPG’s output to the normal walking knee angle and shank angular 

velocity signals (Figure 22). Two CPGs were specifically tuned and tested for each subject using their 

normal walking data (one tuned with knee angle data and the other tuned with shank angular velocity 

data). According to the previous analysis, the CPGs that monitor the knee angle and shank angular velocity 

variables were composed by 3 and 4 oscillators, respectively. The parameterisation of the intrinsic 

frequency of each oscillator, as well as their respective amplitude and phase, was similar to the CPG 

tuning process described to obtain the most suited number of oscillators for each variable. Also, all the 

oscillators were parameterised with 𝛾 = 8, 𝜀 = 1, 𝜏 = 0.03, and 𝜂 = 0.5, which were similar to the 

previous analysis. Once more, the normal walking data used to test the tuned CPGs were augmented by 

a factor of 200 to allow the study of the error signal's evolution for longer time periods of steady-state 

walking. Figures 28 and 29 present 3 different stages of the CPG’s output adaptation to steady-state knee 

angle and shank angular velocity signals, respectively. 

Considering both signals, some time is required for the CPG to adapt its amplitude to the input 

signal. However, it is possible to acknowledge that the CPG output rapidly adopts a signal pattern similar 

to the input signal. According to the simulation outcomes, there are some visible phase deviations, even 

after a long period of simulation. This is due to the quasi-period property of human gait, which is reflected 

by the differences observed among different gait cycles and the consequent variable frequency values of 
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the main frequency components. Therefore, the non-static main frequency components from the actual 

signal will lead to the constantly adaptation of the CPG to this change, which inherently justifies the 

foundation of the deviations between the CPG output and the actual signals. Some amplitude deviations 

between the predicted and actual signals were also observed. This may be due to the learning dynamics 

of the oscillator network, which take longer to adapt to the input signal's amplitude, according to their 

initial parameter definition. As shown in Figure 29, it is also noteworthy that the CPG output prediction of 

the shank angular velocity data does not account for the small peak that follows the highest peak from 

the actual signal profile. The frequency component complexity required to describe this small peak may 

be the reason why none of the 4 oscillators was capable to produce it at the CPG output. Nevertheless, 

since the heel strike is marked by the derivative signal change of the shank angular velocity signal 

following the highest signal peak [152], this event may however be still timely detected. Considering that 

the knee angle profile (Figure 28) entails less complexity than the previous signal, the knee angle signal 

prediction from the CPG fully respects the morphology of the actual knee angle signal.  

Figure 28. Three different stages of the CPG’s output signal (blue) adaptation to the steady-state knee angle signal (orange). 
 

Overall, the CPG output signals' morphologies and amplitudes were identical and in phase to the 

input signal. Once the CPG output starts to stabilise according to the steady-state walking input signal 

data, the error produced between both signals was considered irrelevant. Thus, the error signal would 

adopt considerable values only when the steady-state gait is disrupted, for e.g., in the presence of a gait 

perturbation. In these situations, larger deviations between the CPG output and the actual signal would 

be caused. Considering the similarities between the predicted and actual signals, it is possible to perform 
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an accurate detection of gait events based on the signals predicted by the CPG. For instance, the 

recognition of the heel strike, which is the most critical and common gait event associated with a slip 

during walking [70], shortly before or upon a perturbation detection would increase the reliability of the 

slip detection. The detection of this gait event would be based on the identification of derivative change 

of the steady-state CPG output signal following the highest peak for both the knee angle [177] and the 

shank angular velocity [152] variables. 

Figure 29. Three different stages of the CPG’s output signal (blue) adaptation to the steady-state shank angular velocity 
signal (orange). 

 

Once the simulations have been performed, it was computed the mean error and the RMSE values 

of the error signal obtained for each subject. Then, the mean error values obtained from all subjects were 

averaged in order to compare the tracking performance obtained for the knee angle and shank angular 

velocity variables. The error values obtained using the knee angle and shank angular velocity variables 

are depicted in Table 20. Only 9 subjects were considered since data collected for 2 subjects were unable 

to be used. Overall, although both variables produced a similar mean RMSE, the average mean error was 

marginally shorter for the shank angular velocity. This suggests that the CPG output achieved a slightly 

better approximation to the shank angular velocity rather than to the knee angle. 
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Table 20. Mean Error and RMSE values obtained during the Normal Walking Testing using knee angle and shank angular 
velocity data 

Subject 
Knee angle Shank angular velocity 

Mean error RMSE Mean error RMSE 

1 0.0485 0.0664 0.0494 0.0746 

2 0.0531 0.0714 0.0488 0.0716 

3 0.0505 0.0676 0.0448 0.0676 

4 0.0456 0.0605 0.0374 0.0587 

5 0.0593 0.0853 0.0430 0.0617 

6 0.0493 0.0639 0.0480 0.0718 

7 0.0630 0.0909 0.0395 0.0591 

8 0.0458 0.0657 0.0583 0.0908 

9 0.0523 0.0721 0.0553 0.0873 

Mean 0.0519 0.0715 0.0472 0.0715 

 

6.3. Perturbed Walking Testing 

 Gait perturbation influence 

In order to understand the influence of the slip-like perturbations applied to the selected variables 

(knee angle and shank angular velocity), one perturbation from a perturbation trial was considered. Figure 

30 depicts the various stages of the application of one slip-like perturbation during the experimental 

protocol. Figures 31 and 32 represent the respective influence of this perturbation on the knee angle and 

shank angular velocity signals, respectively, from both legs. For both the knee angle and shank angular 

velocity variables, the heel strike events are marked by the derivative change of the signals following the 

highest signal peaks [152,177]. 
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Figure 30. Slip-like perturbation application: (a) the operator pulls the rope attached to the participant’s ankle when he 
performs the heel strike; (b) the participant is perturbed by the rope pull; and (c) the participant recovered the balance.  

 

 Figure 31. Knee angle signal from: (a) the perturbed limb; and (b) the unperturbed limb. These signals were collected during 
steady-state gait affected by the application of a slip-like perturbation. The red marks in the graphics depict the first and the 
last samples labelled as perturbation. 
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Figure 32. Shank angular velocity signal from: (a) the perturbed limb; and (b) the unperturbed limb. These signals were 

collected during steady-state gait affected by the application of a slip-like perturbation. The red marks in the graphics depict 

the first and the last samples labelled as perturbation. 

 

The knee angle is composed by 2 main signal peaks within each gait cycle, one with a higher 

amplitude, which corresponds to the knee angle variation during the swing phase, and a smaller peak, 

characterised by the knee angle variation during the stance phase. As depicted in Figure 31(a), upon a 

slip perturbation with sufficient intensity at the heel strike, the stance peak amplitude from the perturbed 

limb's knee angle remarkably increases due to the pull provoked by the operator, which caused the knee 

to abnormally extend and thus increase its angle. The perturbation applied also affected the unperturbed 

knee angle signal, specifically during its swing phase. Figure 31(b) highlights the visible deviations 

produced at the swing peak of the unperturbed knee angle provoked by the slip. Both the perturbed and 

unperturbed knee angle signals seemed to be evidently affected by the slip-like perturbation. 

The shank angular velocity is characterised by 3 main peaks within each gait cycle. The highest 

one describes the shank angular velocity variation during the swing phase, while the shorter peak following 

the swing and its subsequent peak are associated with the stance phase. According to Figure 32(a), the 

delivery of a slip perturbation at the heel strike causes the 2 peaks from the stance phase to merge and 

slightly increase the stance phase time duration in the perturbed shank angular velocity signal. The swing 

phase of the unperturbed limb was also affected by the slip-like perturbation applied. In fact, Figure 32(b) 

clearly depicts the alterations provoked to the swing signal peak. Considering the shank angular velocity 

signal, it appears that the unperturbed leg's signal is more affected by the slip-like perturbation than the 

perturbed leg's signal. 
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 Perturbed walking data processing 

As previously mentioned, 2 perturbation trials were considered for each subject, one for 

perturbations delivered to the right leg and the other one to the left leg. However, due to data loss, data 

from 2 subjects were unable to be used and for some subjects only data from one perturbation trial were 

available. Furthermore, it is noteworthy that although perturbation trials accounted for 3 perturbations 

given to each participant, some were excluded during the labelling process, as they were not considered 

to perturb the subject's motion. As such, data from a total of 23 slip-like perturbations from 9 different 

subjects were available for the further perturbation detection analysis. Since the perturbation trials 

presented few gait cycles, according to their limited time, and that they accounted for more than one 

perturbation, data relating to each perturbation were extracted individually from the perturbation trials. 

Data from both the perturbed and unperturbed legs were considered. Then, in order to simulate a single 

perturbation delivery during steady-state walking for the perturbation detection algorithm, data from each 

extracted perturbation were concatenated between normal walking data from the non-perturbation trials 

of the respective subject and leg. Thus, the data obtained for each perturbation accounted for steady 

walking before the perturbation, the following perturbation occurrence and steady walking after the 

recovery. For each subject, the normal walking data used in this concatenation were the data used for 

their respective Normal Walking Testing. These data were augmented by a factor of 20 in order to 

guarantee sufficient time for the CPG to achieve a steady-state output before the perturbation onset. 

Since both normal walking and perturbation labelled data start and end in the same gait event, i.e., 

the heel strike of the perturbed foot, and that both data were collected during the same speed and at 

steady walking conditions, it was possible to perform this concatenation. As such, considering data from 

a perturbation, the first perturbation sample is concatenated to the last sample of the augmented normal 

walking data and the last sample of perturbation is concatenated to the start of another augmented 

normal walking data. However, to assure that the concatenation was properly performed, especially 

considering that the heel strike labelling could have not been optimal across all the trials, a manual 

correction was performed for each concatenated perturbation. Figure 33 clarifies the importance of the 

manual correction. 
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Figure 33. Concatenation of knee angle data from one perturbation between normal walking knee angle data. The red marks 
in the graphics depict the first and the last samples labelled as perturbation from: (a) original perturbation data from the 
perturbation trial; (b) the perturbation data concatenated between the normal walking data without the manual corrections; 
and (c) the perturbation data concatenated between the normal walking data after the manual corrections. 

 

According to Figure 33(b), it is possible to acknowledge that the perturbation data were not correctly 

concatenated to the normal walking data without the manual corrections. This is depicted by the 

noticeable difference between the perturbation data within the perturbation trial (Figure 33(a)) and the 

same perturbation data concatenated between augmented normal walking data (Figure 33(b)). 

Conversely, after performing the manual corrections by adjusting the normal walking data to both ends 

of the perturbation samples, it was possible to obtain a graphic similar to original perturbation trial data, 

as shown in Figure 33(c). The manual corrections were therefore necessary and used to enhance the 

reliability of the concatenation process in order to accurately depict the kinematic changes provoked by 

the perturbations. 

Afterwards, the manually corrected concatenated data was provided to the CPG algorithm as input. 

This allowed to obtain the CPG’s signal prediction of the manually corrected concatenated data and the 

respective prediction error (perturbed walking simulation data). This process of obtaining perturbed 

walking simulation data is summarised in the flowchart from Figure 34(a). As previously suggested, the 

perturbation detection algorithm will detect the perturbation onset based on the error signal acquired. A 

detailed description of the steps taken to perform the CPG simulations is provided in Figure 34(b). For 

each subject, it was initially considered the first perturbation trial. From this trial, it was firstly performed 

the CPG simulation using data from its first perturbation and data from the right leg. Once the simulation 

was concluded, the simulations signals, namely the CPG prediction of the input signal and the error 

generated between this prediction and the actual signal, were saved. In addition, some relevant 

information regarding to the timestamp of the perturbation onset was extracted from each perturbed 

walking simulation. This information was important to localise the perturbation timestamp on the 

simulation data for the further detection of perturbations. This process was repeated to the left leg’s data 
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and posteriorly to the second perturbation trial’s data. Regarding subjects that presented data from only 

the first or second trials, the simulation data extraction was only performed for the respective trial. When 

all the simulations were performed for one subject, the simulation data extraction process proceeded to 

the next subject. 

Figure 34. (a) Perturbed walking simulation data extraction. (b) Description of the steps taken to perform the CPG simulations. 
(*) Information relating to the perturbation onset timestamp. 

 Threshold Algorithm Parameters Definition 

Since the goal of this detection was to be subject-specific, the criterion for threshold definition was 

based on the analysis of the gait signals from each subject individually. As such, thresholds were 

empirically determined for each participant based on the CPG’s prediction error signal produced during 

the simulation using normal walking data. To this end, data from a normal walking trial were augmented 

by a factor of 50 (to allow sufficient time for the error signal to stabilise) and provided as input to the 

CPG. Based on the time-course evolution of the respective error signal produced, different threshold 

values were tested in order to ascertain their respective false perturbation detection. The thresholds were 

applied 80 seconds after the start of the simulation since the error signal started to stabilise around this 

timestamp across all the subjects. It is noteworthy that although the frequencies were considered to 

achieve convergence instantaneously, as previously mentioned, the amplitude of the CPG output took 

longer to adjust to the input signal and consequently achieve steady-state error values. 
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 Then, a pair of upper and lower threshold values were obtained, in which no false perturbations 

were detected. These threshold values were relatively close to the error signal with some margin to 

account for subtle deviations and thus were selected for the further perturbation detection algorithm. 

Essentially, considering that the threshold parameters defined are adapted to the normal gait of each 

subject, a significant deviation of the normal gait, which can be induced by a perturbation, would cause 

the error signal to surpass one of the threshold values and thus detect a perturbation. 

For the fixed threshold algorithm, the upper and lower threshold values were varied from 0.2 with 

increments of 0.01 and from -0.2 with increments of -0.01, respectively. When the first pair of fixed 

thresholds with no false perturbations detected was obtained, a tolerance absolute value of 0.05 was 

added to both thresholds. Figure 35 presents the threshold values selected for one subject, considering 

the knee angle variable, according to the criteria previously defined. In this case, the upper and lower 

threshold values were defined as 0.3 and -0.35. Note that the perturbation detection signal, which is the 

black signal in the graphic, was maintained at 0, since no false perturbations were detected. 

Figure 35. Fixed threshold definition based on the error signal between the CPG output and the actual normal walking signal 
(blue). The green and red signals represent the upper and lower threshold, respectively. The black signal depicts the 
perturbation detection signal, which is 0 when no perturbation is detected and 1 upon a perturbation detection. 

 

The adaptive threshold definition was based on the variation of the standard deviation's (𝜎) 

multiplier factor. As such, for each subject, the multiplier factors associated to the upper (𝑎) and lower 

(𝑏) adaptive thresholds were varied from 2 with increments of 0.1 and from -2 with increments of -0.1, 

respectively. When the first pair of adaptive thresholds with no false perturbations detected was obtained, 

a tolerance absolute value of 0.1 was added to both 𝑎 and 𝑏 multiplier factors. In addition, for the adaptive 
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threshold, it was also necessary to define the number of samples from the window preceding the current 

sample (window size) to compute the 𝜇 and 𝜎 threshold parameters. The number of samples chosen 

influenced the threshold calculated and was tested initially with 100 samples, as it was the minimum 

number of samples tested in [13], with increments of 50 samples. Considering the knee angle signal, 

200 samples were empirically chosen for the most part of the participants. A window size of 400 samples 

was selected for the shank angular velocity variable across all the participants. 

Figure 36 depicts the adaptive threshold values selected for one subject, considering the knee 

angle variable, and according to the criteria previously defined. In this case, the upper and lower threshold 

values were defined as µ + 3𝜎 and µ − 4.1𝜎, respectively. Similarly to the fixed threshold, the 

perturbation detection signal, which is the black signal on the graphic, was maintained at 0, since no 

false perturbations were detected. 

Figure 36. Adaptive threshold definition based on the error signal between the CPG output and the actual normal walking 
signal (blue). The green and red signals represent the upper and lower threshold, respectively. The black signal depicts the 
perturbation detection signal, which is 0 when no perturbation is detected and 1 upon a perturbation detection. 

 

The selection of the threshold parameters for the shank angular velocity variable was similar to the 

process adopted for the knee angle. The fixed and adaptive thresholds defined for each subject based on 

the knee angle and shank angular velocity normal walking data are presented in Table 21. 
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Table 21. Knee angle and shank angular velocity threshold parameters attributed to all the subjects 

Subject 

Knee angle Shank angular velocity 

Fixed 
threshold 

Adaptive threshold 
Fixed 

threshold 
Adaptive threshold 

Upper Lower 
Upper 

(𝜇 + a𝜎) 
Lower 
(𝜇 - b𝜎) 

Window 
size 

Upper Lower 
Upper 

(𝜇 + a𝜎) 
Lower 
(𝜇 - b𝜎) 

Window 
size 

1 0.3 -0.35 𝜇 + 3𝜎 𝜇 – 4.1𝜎 200 0.35 -0.27 𝜇 + 4.4𝜎 𝜇 – 4.8𝜎 400 

2 0.25 -0.25 𝜇 + 2.8𝜎 𝜇 – 3.2𝜎 200 0.27 -0.27 𝜇 + 3.6𝜎 𝜇 – 4.8𝜎 400 

3 0.25 -0.25 𝜇 + 3𝜎 𝜇 – 3.7𝜎 200 0.3 -0.25 𝜇 + 4.8𝜎 𝜇 – 4.2𝜎 400 

4 0.25 -0.25 𝜇 + 3𝜎 𝜇 – 3.5𝜎 200 0.25 -0.25 𝜇 + 4.1𝜎 𝜇 – 4.2𝜎 400 

5 0.3 -0.25 𝜇 + 3𝜎 𝜇 – 3.5𝜎 250 0.35 -0.25 𝜇 + 4.5𝜎 𝜇 – 4.6𝜎 400 

6 0.3 -0.25 𝜇 + 3.6𝜎 𝜇 – 3.8𝜎 200 0.33 -0.3 𝜇 + 4.5𝜎 𝜇 – 4.9𝜎 400 

7 0.3 -0.35 𝜇 + 3.7𝜎 𝜇 – 4.1𝜎 200 0.3 -0.3 𝜇 + 4.3𝜎 𝜇 – 4.1𝜎 400 

8 0.2 -0.2 𝜇 + 2.8𝜎 𝜇 – 3.3𝜎 200 0.3 -0.3 𝜇 + 4.2𝜎 𝜇 – 5.5𝜎 400 

9 0.3 -0.35 𝜇 + 3.1𝜎 𝜇 – 4.4𝜎 200 0.33 -0.4 𝜇 + 4𝜎 𝜇 – 4.9𝜎 400 

 

Comparisons between the threshold parameters present in Table 21 suggest that higher absolute 

threshold values and window sizes were adopted for the shank angular velocity signal rather than the 

knee angle variable. This may be related to the fact that the shank angular velocity signal is more complex 

than the knee angle signal. The shank angular velocity signal (Figure 25) values within one gait cycle 

entail more variability than one gait cycle from the knee angle signal (Figure 24). As such, this increased 

complexity of the shank angular velocity variable may have increased its respective error between the 

actual signal and the respective CPG prediction during the simulations. In fact, to obtain similar RMSE 

values during the Normal Walking Testing simulations (Table 20), the shank angular velocity variable 

needed an additional oscillator in relation to the knee angle variable. Thus, the higher error values 

produced by the shank angular velocity signal required increased threshold values towards the 

perturbation detection in order to mitigate the false perturbation detection. Additionally, a higher window 

size was demanded for the shank angular velocity to account for the higher complexity and variability of 

the signal during the threshold parameters computation. 

 Online Perturbation Detection  

Figure 37 presents the variation of the real and the CPG output signals, upon the occurrence of a 

slip-like perturbation. Before the perturbation occurrence, the CPG output was similar to the actual signal. 

However, when the perturbation was provoked, the real knee angle signal pattern was altered, which 

caused its consequent deviation from the CPG output. Since the CPG oscillators did not recognise the 

new frequency components and signal patterns introduced by the perturbation, the network output 

entered a transient state to try to adapt to the perturbation signal. Nevertheless, since the subject rapidly 
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recovered from the perturbation and promptly regained the normal gait, the perturbation pattern was 

removed from the signal as the real knee angle signal returned to its steady-state. This caused the CPG 

output to quickly re-adapt to its previous learned state. 

 

 

Figure 37. Variation of the CPG output upon the occurrence of a slip-like perturbation. Top: the real (blue) and CPG output 
(yellow) knee angle signals. Bottom: the error produced between the real and CPG output knee angle signal. The red dots in 
both top and bottom graphics depict the samples from the start and end of the perturbation. 

 

Considering the same perturbation, Figure 38 highlights the use of the fixed threshold algorithm to 

detect the slip-like perturbation onset. Herein, the algorithm detected the perturbation 0.7537 seconds 

following its onset. Since the detection time was below 1 second, it was possible to acknowledge that the 

perturbation was successfully detected. However, the algorithm also detected 2 false perturbations, 

accounting for a total of 23 misclassified samples (false alarms). These were considered false 

perturbations since they were detected either: i) before the perturbation occurrence; or ii) more than 1 

second after its onset. Conversely, as shown in Figure 39, the adaptive threshold algorithm was able to 

detect the perturbation in a shorter time, 0.1392 seconds, and without any false perturbation detected. 

In this case, the contextual information provided by the adaptive thresholds allowed the algorithm to avoid 

the misclassification of perturbations. This is due to the fact that the thresholds computed accounted for 

the variability of previous samples from the error signal. As such, the error signal peaks following the 

perturbation peak were associated with higher absolute threshold values and thus were not misclassified. 
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Figure 38. Detection of the perturbation onset based on the fixed threshold algorithm. The top panel is expanded into the 
bottom panel to simplify the graphical interpretation. The fixed upper (green) and lower (red) thresholds are used to classify 
the error signal (blue). If 3 or more consecutive samples of the error signal surpass one threshold, a perturbation is detected 
(black signal changes from 0 to 1). The lilac signal’s peak represents the onset timestamp of the perturbation. 
 

Then, the detection performance of both threshold-based algorithms was also tested using data 

from the remaining perturbations in order to obtain the global MDT and mean number of False 

Perturbations. From the 23 perturbed walking simulations obtained from the group of 9 subjects, the 

detection performance of both fixed and adaptive threshold algorithms was tested. In addition, it was also 

ascertained the ability of the knee angle and shank angular velocity variables to perform the perturbation 

detection, regarding each threshold algorithm individually. The performance of the perturbation detection 

was obtained considering: i) MDT, which is the mean time taken by the algorithm to detect the 

perturbation occurrence in relation to the real perturbation onset timestamp; ii) Detection accuracy, i.e., 

the number of real perturbations successfully detected by the algorithm among all the 23 real 

perturbations; iii) Mean number of false perturbations detected per perturbed walking simulation data 

and the respective mean number of samples (false alarms) associated with each false perturbation 

detected. 
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Figure 39. Detection of the perturbation onset based on the adaptive threshold algorithm. The top panel is expanded into 
the bottom panel to simplify the graphical interpretation. The adaptive upper (green) and lower (red) thresholds are used to 
classify the error signal (blue). If 3 or more consecutive samples of the error signal surpass one threshold, a perturbation is 
detected (black signal changes from 0 to 1). The lilac signal’s peak represents the onset timestamp of the perturbation. 

 

6.3.4.1. Knee angle 

Regarding to the use of knee angle data to detect the perturbations, Table 22 depicts the 

performances obtained for the fixed and adaptive threshold algorithms. Both threshold algorithms 

achieved a successful detection of the real perturbations with accuracy values above 80%. However, for 

each real perturbation successfully identified, a mean of 1.78 and 1.608 false perturbations were 

detected for the fixed and adaptive thresholds, respectively. Although for some perturbed walking 

simulation data no false perturbation was detected, some had an increased false perturbation detection 

rate, which in turn increased the global mean of false perturbations. The fixed threshold obtained a 

considerable higher MDT in comparison to the adaptive threshold, with a difference of 180 ms. In 

addition, the accuracy of the detection was slightly higher for the adaptive threshold, by around 4%. 

Furthermore, even though the mean number of false perturbations was slightly higher for the fixed 

threshold, the mean number of samples of each false perturbation detected by the adaptive threshold 

algorithm (2.946) was considerably smaller than the one detected by the fixed threshold algorithm 

(9.293). This suggests that once a false perturbation was detected by the adaptive threshold algorithm, 

it rapidly stopped detecting that perturbation, within a mean lower than 3 samples. Overall, the adaptive 

threshold algorithm had a considerable better perturbation detection performance than the fixed threshold 

algorithm. 
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Table 22. Knee angle detection performance based on the type of threshold algorithm 

Type of 
threshold 

MDT (s) 
Detection accuracy 

(%) 

False 
perturbations detected 

(Mean) 

False 
alarms per false perturbation 

(Mean) 

Fixed 0.521 80.435 1.780 9.293 

Adaptive 0.341 84.783 1.608 2.946 

 

Nonetheless, the individual detection performance of the perturbed and unperturbed knee angle 

data was also evaluated for each type of threshold algorithm, which is depicted in Table 23. This allowed 

to ascertain which leg’s data had a more prominent detection role. 

For the fixed threshold, there were observed few differences between the use of perturbed and 

unperturbed knee angle data. The perturbed knee angle data achieved a smaller MDT (by a mean 

difference of 25 ms) and a slightly smaller mean number of both false perturbations detected and their 

respective false alarms. However, a marginally higher accuracy was obtained for the unperturbed knee 

angle data (82.609%) in comparison with the perturbed knee angle data (78.261%).    

According to the results obtained for the adaptive threshold, a substantial difference was observed 

between the MDT values obtained. For the perturbed leg data, a mean duration 250 ms was needed to 

detect the perturbation onset, whereas for the unperturbed leg data a MDT of 419 ms was observed. 

Additionally, the mean number of false perturbations detected was considerably inferior using perturbed 

leg data. In fact, less than one false perturbation in average (0.652) was detected per each real 

perturbation identified, which contrast with the mean 2.565 false perturbations detected using data from 

the unperturbed leg. Furthermore, the mean number of samples associated with each false perturbation 

detected (false alarms) was lower for the perturbed leg data (2.6) than for the unperturbed leg data 

(3.034). However, the accuracy of 91.304% achieved with the unperturbed leg data was superior to the 

78.261% obtained using the perturbed leg data. 

 

Table 23. Knee angle detection performance based on the type of leg and type of threshold algorithm 

Type of 
threshold 

Leg MDT (s) 
Detection 

accuracy (%) 

False 
perturbations 

detected (Mean) 

False 
alarms per false 

perturbation (Mean) 

Fixed 
Perturbed 0.508 78.261 1.696 8.513 

Unperturbed 0.533 82.609 1.870 10.000 

Adaptive 
Perturbed 0.250 78.261 0.652 2.600 

Unperturbed 0.419 91.304 2.565 3.034 
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Considering the results presented above, the adaptive threshold showed a general better 

perturbation detection performance than the fixed threshold. In addition, the perturbed knee angle data 

presented an overall higher perturbation detection performance in comparison to the unperturbed leg 

data. Despite the detection accuracy obtained for the former was lower, the perturbed leg data presented 

smaller MDT values, lower mean of false perturbations detected and fewer samples for each false 

perturbation detected. Therefore, considering the knee angle variable, monitoring data from the perturbed 

leg using an adaptive threshold algorithm seems to be the most reliable option. 

6.3.4.2. Shank angular velocity 

Table 24 highlights the perturbation detection performance obtained for the fixed and adaptive 

threshold algorithms using shank angular velocity data. The detection accuracy of the real perturbations 

obtained for both threshold algorithms were below 80%. Although the fixed threshold achieved an overall 

accuracy of 78.261%, the adaptive threshold obtained a considerable smaller accuracy of 56.522%. 

Nevertheless, for each real perturbation successfully detected, a mean of 5.28 and 3.935 false 

perturbations were identified for the fixed and adaptive thresholds, respectively. Despite no false 

perturbations being detected for some perturbed walking simulation data, some of these data had a 

higher false perturbation detection rate, which caused the overall increase in the mean of false 

perturbations detected. The fixed threshold algorithm was associated with a substantial higher MDT in 

relation to the adaptive threshold, with a mean time difference of 192 ms. Moreover, the fixed threshold 

algorithm detected a considerable higher mean of both false perturbations and their false alarms, 

comparing to the adaptive threshold algorithm. This implied that once a false perturbation was detected 

by the adaptive threshold algorithm, it rapidly stopped detecting that perturbation, within a mean of 

around 3 samples. 

 

Table 24. Shank angular velocity detection performance based on the type of threshold algorithm 

Type of 
threshold 

MDT (s) 
Detection 

accuracy (%) 

False 
perturbations detected 

(Mean) 

False 
alarms per false 

perturbation (Mean) 

Fixed 0.534 78.261 5.280 6.914 

Adaptive 0.342 56.522 3.935 3.155 

 

Additionally, the perturbation detection performance was compared between the perturbed and 

unperturbed shank angular velocity data. Table 25 presents the performance results obtained for the 

perturbed and unperturbed shank angular velocity data using the fixed and adaptive threshold algorithms. 
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For the fixed threshold algorithm, it was possible to acknowledge that the unperturbed leg data 

achieved a better detection performance with a remarkably lower MDT, a considerable higher accuracy, 

and a lower mean number of false perturbations identified per real perturbation detected. Nevertheless, 

the mean number of false alarms per false perturbation was slightly lower for the perturbed leg.  

Considering the results from the adaptive threshold algorithm, the unperturbed leg data obtained 

the best performance. This is depicted by the lower MDT (266 ms) and the significantly higher accuracy 

(73.913%) achieved in comparison to the MDT (486 ms) and the accuracy (39.13%) of the adaptive 

threshold. Nonetheless, the use of the unperturbed leg data was associated with a higher number of false 

perturbations detected and with a slightly higher number of false alarms per false perturbation. 

 

Table 25. Shank angular velocity detection performance based on the type of leg and type of threshold algorithm 

Type of 
threshold 

Leg MDT (s) 
Detection 

accuracy (%) 

False 
perturbations 

detected (Mean) 

False 
alarms per false 

perturbation (Mean) 

Fixed 
Perturbed 0.795 73.913 5.870 6.067 

Unperturbed 0.301 82.609 4.696 7.972 

Adaptive 
Perturbed 0.486 39.130 2.696 2.724 

Unperturbed 0.266 73.913 5.174 3.420 

 

Regarding to the results obtained using the shank angular velocity data, the adaptive threshold 

algorithm led to the decrease of MDT and to an overall decrease of the number of false perturbations and 

their respective number of false alarms. However, the accuracy achieved with the adaptive threshold 

algorithm was considerably lower in comparison with the fixed threshold. The unperturbed leg shank 

angular velocity data presented an overall better detection performance in comparison to the perturbed 

leg data. Although the former detected a generally higher number of false perturbations and false alarms 

per false perturbation, their MDT and accuracy results were considerably better than for the perturbed 

leg data. Thus, for the shank angular velocity variable, the most reliable option seems to be the monitoring 

of the unperturbed leg. However, the use of both fixed and adaptive threshold algorithms appeared to 

have their advantages and disadvantages. While the fixed threshold allowed for a higher accuracy and 

lower mean number of false perturbations detected, the adaptive threshold provided a lower MDT and a 

lower number of false alarms per false perturbation. As such, it is necessary to perform a trade-off 

between the detection accuracy, the time taken to perform the detection and the number of false 

detections towards the selection of the most suitable type of threshold algorithm for the shank angular 

velocity data. Nonetheless, the mean number of false alarms obtained per false perturbation for the fixed 
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threshold algorithm was considered exceedingly high with a mean of almost 8 false alarms per each false 

perturbation detected, which contrasts with the mean of 3.420 false alarms obtained for the adaptive 

threshold. This reveals that the fixed threshold approach is less capable of recognising that a false 

perturbation has been detected. Therefore, the contextual information provided by the adaptive threshold 

algorithm may play a crucial role towards the reliability of the perturbation detection. Despite the accuracy 

achieved with the adaptive threshold (73.913%) being lower than the one obtained for the fixed threshold 

(82.609%), according to the previously mentioned trade-off, the adaptive threshold algorithm seems to 

be the most reliable option to perform the perturbation detection using shank angular velocity data. 

6.3.4.3. Comparative detection performance between the variables 

Concerning the results obtained, it is possible to acknowledge that the adaptive threshold was 

responsible to generally lower the false detection rate, by considerably decreasing the mean number of 

false perturbations detected and their respective number of false alarms. Despite the adaptive threshold 

not always increasing the accuracy in comparison with the fixed threshold, the former algorithm was also 

able to substantially decrease the MDT. For instance, although the knee angle data from the perturbed 

leg obtained similar accuracies for both types of threshold algorithms (Table 23), the adaptive threshold 

led to a lower MDT, mean number of false perturbations detected, and mean number of false alarms per 

false perturbation. Thus, the adaptive threshold algorithm achieved a generally better performance than 

the fixed threshold algorithm, which may be mostly due to the contextual information it provides about 

previous samples during the threshold definition. 

While data from the perturbed leg allowed to obtain a better performance for the knee angle 

variable, the shank angular velocity achieved a greater performance with the unperturbed leg information. 

According to these findings, it is highlighted the need to initially consider data from both legs in order to 

select the leg that should be monitored for each selected variable. In fact, data from one leg may achieve 

a considerably better perturbation detection performance than data from the other one (Table 25). While 

the primary response to a slip perturbation is attributed to the perturbed leg [9], the unperturbed leg has 

a strong role to counteract the LOB induced by the slip event and should be included in the perturbation 

detection analysis [137]. 

Table 26 presents the best detection performances obtained for both the knee angle and the shank 

angular velocity variables. For both variables, the adaptive threshold algorithm was considered the most 

suitable to perform the perturbation detection. Both MDT values reported were similar, with a difference 

of around 16 ms and the accuracies obtained differed with a percentage shortly above 4%. However, a 



 
 

133 

substantial difference was observed between the mean number of false perturbations detected. While for 

each correctly detected perturbation the shank angular velocity from the unperturbed leg detected a mean 

of 5 false perturbations, the knee angle from the perturbed leg detected less than one false perturbation 

(0.652). Moreover, the mean number of false alarms detected for each false perturbation was slightly 

lower for the knee angle variable. Hence, from the study conducted, monitoring the knee angle from the 

perturbed leg using an adaptive threshold algorithm, appears to be the best option towards the detection 

of slip perturbations during walking. 

 

Table 26. Best detection performances obtained for the knee angle and shank angular velocity variables 

Variable 
Type of 

threshold 
Leg 

MDT 
(s) 

Detection 
accuracy (%) 

False 
perturbations 

detected (Mean) 

False 
alarms per false 

perturbation 
(Mean) 

Knee angle Adaptive Perturbed 0.250 78.261 0.652 2.600 

Shank angular 
velocity 

Adaptive Unperturbed 0.266 73.913 5.174 3.420 

 

Although the false detection rate obtained with the adaptive threshold algorithm using perturbed 

knee angle data was the lowest, future work must be performed to lower the mean number of false 

perturbations detected. As such, the algorithm must be further optimised in order to only account for the 

detection of the real perturbations. 

6.3.4.4. Comparative detection performance with the detection 

requirements stipulated 

Considering that the practical work performed in this dissertation was aimed at performing the 

detection of slip-like perturbations and did not address the actuation stage of the fall prevention strategy, 

only the fulfilment of the detection requirements was addressed. 

According to the fall prevention strategy conceived, a maximum time period of 360 ms after the 

perturbation onset was required for the perturbation detection. Considering that the MDT values 

associated with the overall best performances obtained for the knee angle and shank angular velocity 

variables were 250 ms and 266 ms, respectively, it was possible to acknowledge that the perturbations 

were on average timely detected. In fact, the perturbations were detected on average 100 ms earlier than 

the detection time stipulated on the strategy. This timely detection allows an additional lead-time to 

actuate the potential assistive device, which would be triggered upon the perturbation detection to early 

assist the subjects and help them to promptly recover the balance. 



 
 

134 

The best overall performance obtained using the knee angle variable also achieved a detection 

accuracy of real perturbations above the requirement of 75% (78.261%). Indeed, the monitoring of the 

knee angle from the perturbed leg using an adaptive threshold algorithm allowed to roughly detect 8 out 

of 10 slip-induced LOBs. Conversely, the overall best performance obtained for the shank angular velocity 

variable was below 75%, although by close margin (73.913%). 

The knee angle's best performance was also characterised by the lowest mean number of false 

perturbations detected (0.652) and mean number of false alarms per false perturbation (2.6). Hence, the 

false perturbation detection requirement was also fulfilled, since less than one false perturbation was 

detected per correct perturbation identified. In fact, according to the results, for each 10 correct 

perturbations detected, only an estimated number of 6 false perturbation are identified. However, the 

best overall performance obtained using the shank angular velocity data comprised the mean of 5.174 

false perturbations identified per correct perturbation detected, which was far from fulfilling the false 

perturbation detection requirement. 

Considering that the best overall performance obtained for the knee angle variable was able to fulfil 

all the slip perturbation detection requirements, the perturbation detection performance was considered 

acceptable. The achievement of this goal proves the effectiveness of simple adaptive threshold-based 

algorithms to perform a timely and subject-specific detection of slip perturbations based on human 

kinematic data and paves the way towards the optimisation of this algorithm to achieve optimal 

performances. For instance, in order for the algorithm to be able to accurately monitor the occurrence of 

slip perturbations in real-life, the number of false perturbations detected must be lowered. Future work 

must focus on optimising the adaptive threshold algorithm to mitigate the false perturbation detection 

and attempt to increase the detection accuracy of real perturbations. 
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7. Conclusions 

Falls are one of the leading causes of unintentional injury deaths worldwide. These harmful events 

mostly affect the elderly, which entail the highest fall risk due to the cognitive, physical, and sensory 

deficits associated with the ageing process. Slip-like perturbations have been widely addressed in the 

scientific literature as they were shown to be the main precursors to fall events. Hence, wearable sensors 

and assistive robotic devices may be coupled to allow the timely detection of these gait perturbations and 

provide effective mechanical countermeasures to help the subject regain balance, respectively. 

In this regard, this dissertation developed a proof-of-concept slip-related fall prevention strategy 

based on the human biomechanical responses to these gait perturbations highlighted in the scientific 

literature. This strategy was divided into detection and actuation stages. The detection of slip perturbations 

was achieved with an adaptive threshold algorithm that analyse the error produced between a kinematic 

signal and the same kinematic signal predicted by a biological-inspired CPG controller. 

A state-of-art of fall risk assessment systems was firstly conducted in order to identify the main 

methods used to assess the fall risk, since, to the best of the author's knowledge, no study has previously 

addressed this issue. Most of the studies assessed the fall risk based on clinical scales by collecting 

kinematic or kinetic data from inertial and pressure sensors, respectively, generally placed in the upper 

body. Other studies performed fall risk assessment based on the detection of fall risk events by using 

EMG sensors on lower limb muscles. Machine Learning models were preferably adopted to classify the 

subject’s risk of fall. Considering that almost all studies performed internal validation of the developed fall 

risk assessment systems, a lack of external validation was remarkably noticed. This highlights the need 

for establishing an open access gold standard by which different fall risk assessment systems could be 

benchmarked. 

Considering that previous literature studies underlined slips and trips as the main gait perturbations 

preceding falls, a subsequent state-of-art analysis was performed to survey the different methods and key 

experimental aspects to mimic these perturbations in laboratory conditions. Slip and trip perturbations 

were mostly provoked during overground walking conditions. However, the perturbation application during 

treadmill locomotion entails several advantages due to its ability to collect continuous walking patterns 

over long periods of time and deliver more unexpected perturbations. Studies attempted to mitigate the 

participant's prediction towards the perturbations' onset. Most studies perturbed only the right leg during 

the experimental trials and did not consider the laterality of the subjects. Despite most studies instructed 

participants to ambulate at their self-selected speed, literature evidence suggested that the walking speed 
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should be adapted to each subject in order to create an equally challenging environment of perturbation 

delivery across all subjects. 

The investigations concerning the human biomechanical responses to slip perturbations suggest 

the prominent role of both leading and trailing legs to counteract the slip perturbation. However, despite 

the considerable number of manuscripts that studied the slip event and its consequences on the human 

motion, there are still few slip-related fall prevention strategies developed. 

Considering the limitations and evidence found in the scientific literature, a slip-related fall 

prevention strategy was proposed. The actuation stage considered the assistive torque supply on a single 

leg using a single assistive device, an orthosis, in order to reduce the complexity of the actuation to only 

the main joint that counteracts slip-induced LOBs. The strategy highlighted the need to provide a knee 

flexion moment to the leading leg, considering it to be the dominant leg, upon the occurrence of a slip-

induced LOB provoked at the heel strike. The magnitude of the assistive knee flexor torque must be 

complementary to the torque generated by the subject's knee to counteract the slip. The detection stage 

considered the attractive properties associated with biological-inspired CPG controllers to monitor the 

quasi-periodic variables of the human locomotion and to help to timely detect gait perturbations. The 

occurrence of a perturbation rapidly increases the error produced between the monitoring signal and the 

signal predicted by the CPG, since CPGs do not recognise the abnormal patterns introduced by the 

disturbance. Simple threshold-based algorithms are then able to early detect the perturbation onset based 

on the error signal increase. The knee angle and shank angular velocity variables were selected as the 

most suitable kinematic variables to perform the detection of slip-induced LOBs, in light of the decision 

criteria applied. Furthermore, the definition of timings and requirements to be fulfilled for both stages 

based on the scientific literature allowed to conceptualise a fall prevention strategy that timely and 

effectively prevents slip-initiated falls. 

Considering the literature evidence found, an experimental protocol was designed in order to collect 

data from healthy young subjects while dealing with unexpected slip-like perturbations during treadmill 

walking. This allowed to obtain a vast dataset with kinematic and physiological information concerning 

subjects' reactions to slip-induced LOB events. Some kinematic features obtained were used for the 

further perturbation detection algorithm analysis. 

According to the trade-off analysis between the frequency convergence times and the mean error 

values produced during the simulations, CPGs with 3 and 4 oscillators were attributed to the knee angle 

and shank angular velocity variables, respectively. Overall, the CPG configurations chosen on the previous 

analysis were shown to accurately produce output signals with similar morphology and in phase to the 
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signals from the selected kinematic variables. Concerning the perturbation detection, the performance 

was evaluated by considering the different combinations of the 2 kinematic variables selected, i.e., knee 

angle and shank angular velocity, 2 lower limbs (perturbed and unperturbed) and 2 types of threshold 

algorithms (fixed and adaptive threshold algorithms). Generally, a higher performance was obtained using 

the adaptive threshold rather the the fixed threshold algorithm. The best overall performance was 

achieved with the monitoring of the perturbed leg's knee angle using the adaptive threshold algorithm. 

This combination achieved a detection accuracy of real perturbations close to 80% (78.261%), a MDT of 

250 ms and a mean number of 0.652 false perturbations detected for each correct perturbation detected. 

These results allowed to fulfil the detection requirements previously stipulated, which proves an 

acceptable performance of the perturbation detection algorithm implemented. However, in order to 

achieve an optimal performance, the mean number of false perturbations detected must be further 

reduced. 

The work developed allowed to answer the RQs specified in Chapter 1: 

• RQ1: What are the main fall risk assessment methods implemented in the scientific literature? 

Chapter 2 answered this RQ. Concerning the literature search results, 2 main fall risk assessment 

methods were identified. The most widely adopted was the long-term assessment of fall risk and was 

based on clinical scales. This method consisted of the data collection from wearable sensors to predict 

subject’s fall risk based on clinical scale scores. Thereby, subjects are allocated to either high or low fall 

risk category. This method will promote the decrease in long-term fall risk by enabling subjects to 

continuously carry out long-term fall risk assessments. The second method comprised a real-time fall risk 

assessment by means of the detection of fall risk events. Data from wearable sensors were used to detect 

unbalance situations and further identify fall risk events. This method will promote the decrease in short-

term fall risk by enabling the real-time monitoring of subjects on a daily basis, providing subjects feedback 

as to when a fall risk event is taking place. 

• RQ2: What are the key experimental methods implemented in the scientific literature to provoke 

artificial slip and trip perturbations? 

Chapter 3 answered this RQ. The current state-of-the-art on provoking artificial slip and trip 

perturbations suggested that these perturbations are provoked during either treadmill or overground 

walking conditions. Slip perturbations were provoked during treadmill locomotion by changing the belt's 

acceleration or during overground walking by using: i) a movable platform; ii) a slippery solution; or iii) 
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novel robotic devices. Treadmill trips were elicited by means of: i) changing belt acceleration; ii) using a 

brake-and-release-system; or iii) using a tripping device. Trips were provoked during overground 

locomotion by: i) triggering an obstacle; ii) manually placing an obstacle along the walking path; or iii) 

using a novel robotic device. 

• RQ3: Which are the main aspects that a fall prevention strategy should include in terms of 

detection of slip perturbations and actuation upon slip-induced LOB events? 

Chapter 4 answered this RQ. According to literature studies that address the human biomechanical 

responses to slip perturbations, a maximum detection and actuation times of 360 ms and 100 ms were 

delineated, respectively. Upon a slip perturbation at the heel strike, a knee orthosis would provide an 

assistive flexor moment to the perturbed limb, considering it to be the dominant limb. The flexor moment 

exerted would allow to bring the anteriorly displaced BOS back near the COM. The flexor moment 

magnitude must be complementary with respect to the torque generated at the subject's knee to 

counteract the slip. The slips were considered to be initiated at the heel strike, since previous research 

showed that this gait event is the most prominent event that onsets slips. The application of the assistive 

knee torque was considered to the perturbed leg in order to tackle the slip-induced LOB at its genesis 

and directly reduce its severity. The assistive actuation was provided to the dominant leg, considering it 

as the perturbed leg, since the non-dominant leg is already more used to provide the body support 

function in comparison with the dominant leg. Therefore, the hazard associated with the slip will be 

lessened if the assistive actuation was provided to the dominant leg. 

• RQ4: Are the biological-inspired CPG controllers and the threshold-based algorithms able to 

effectively track human motion variables and timely detect slip perturbation occurrences, 

respectively? 

Chapter 6 answered this RQ. According to the results obtained, the CPG algorithms were able to 

successfully produce an acceptable estimation of the monitoring signals. These biological-inspired 

controllers generated output signals with similar morphology and in phase with the knee angle and shank 

angular velocity variables, which is depicted by the relatively low mean error values obtained during the 

simulations. Furthermore, the adaptive threshold algorithm effectively detected the slip-induced LOBs. 

The best overall performance was obtained with the monitoring of the perturbed leg's knee angle using 

the adaptive threshold algorithm, which achieved a detection accuracy of real perturbations near 80% 

(78.261%), a MDT of 250 ms and a mean number of 0.652 false perturbations detected for each correct 
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perturbation detected. These results suggest an acceptable performance of the perturbation detection 

algorithm implemented in light of the detection requirements previously specified. 

7.1. Future work 

Several improvement opportunities were identified along this dissertation, which should be 

addressed in future work. 

Firstly, despite the low false detection rate achieved with the adaptive threshold algorithm using 

perturbed limb's knee angle data, the mean number of false perturbations detected must be further 

lowered. Hence, future work should focus on the optimisation of the adaptive threshold algorithm to 

improve the reliability of the perturbation detection towards the algorithm's adaptation to the real-world 

settings. In addition, artificial intelligence algorithms should be tested to understand their possible 

application and performance towards the slip-like perturbation detection. 

Secondly, although the knee angle and shank angular velocity variables were selected based on 

decision criteria, more kinematic and biosignal-based variables should be addressed for perturbation 

detection. In fact, previous studies suggested that lower limb surface EMG data would provide a faster 

LOB detection than using kinematic data, considering that the sudden change of EMG patterns provoked 

by an unbalance event is faster than the change of inertial signal patterns [22,30,31,131]. 

Thirdly, since the threshold and the window size parameters were empirically determined, the 

optimal conditions may have not been addressed for each subject. As such, future work should attempt 

to find more objective and automatic procedures to compute optimal parameters. This would potentially 

increase the perturbation detection performance and pave the way for a future perturbation detection 

algorithm that would not be affected by the inter-subject variability. Although the goal of this dissertation 

was to develop a proof-of-concept subject-specific perturbation detection, future work should also consider 

the development of an inter-subject perturbation detection approach. In addition, although the number of 

acceptable warnings, 𝑟, was defined based on a previous study, its value was not optimised. Hence, 

future work should test different values of 𝑟 and select its optimal value based on the trade-off between 

the false detection rate, the MDT and the accuracy values obtained. 

Furthermore, although some of the initial conditions attributed to the adaptive oscillators, such as 

the 𝛾, 𝜏 and 𝜂 parameters, were equal among all the oscillators (based on a previous study [156]), future 

work should consider the test of new values of these initial conditions. This may allow to improve the 

quality of the CPG prediction of the monitoring signals. 
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Although, slip-like perturbations were delivered under various conditions of gait event onset, 

treadmill inclination and gait speed, only slips at the heel strike during normalised speed and level ground, 

i.e., 0% inclination, walking conditions were considered for perturbation detection. These walking 

conditions were chosen as they depict the most likely scenario for participants to experience a slip 

perturbation during their daily-life [5,6,70]. However, future work could address the detection of slip 

perturbation under other walking conditions. 

In addition, considering that the elderly are the targeted population of the fall prevention strategy 

conceived, normal and perturbed walking data from these subjects should be collected in the future in 

order to tune and test the oscillator networks. In addition, the data collection should also consider subjects 

ambulating while wearing the assistive device, since the gait alterations it provokes must be accounted 

by the algorithms towards perturbation detection. 

Moreover, it is possible to not only increase the reliability of slip event detection, but also to detect 

other types of perturbations by performing the gait event detection. For instance: i) a slip would be 

identified if the heel strike or toe-off events of the leading leg were detected upon the detection of a 

perturbation; and ii) a trip would be identified in the cases where a perturbation was detected while the 

leading leg was identified to be in the swing phase. Although the objective of this dissertation was to only 

perform the detection of slip perturbations, future work should broaden the fall prevention strategy to 

consider different types of gait perturbations, taking advantage of the gait event detection. 

Considering the actuation stage, further tests should be conducted with a powered knee orthosis 

in order to ascertain the capability of the assistive device to be triggered and provide the assistive knee 

flexor torque under the actuation time defined in the fall prevention strategy (100 ms). 

Finally, future work should integrate the CPG controller algorithm into an electronic development 

board and connect it to the knee orthosis system. This would allow to: i) close the loop from the real-time 

detection of slip-induced LOBs to the actuation of the orthosis' flexor moments; and further ii) validate the 

fall prevention strategy conceived. 

 

 

 

 

 



 
 

141 

References 

1.  WHO. Falls [Internet]. 2021. Available from: https://www.who.int/news-room/fact-
sheets/detail/falls 

2.  McCrum C, Gerards MHG, Karamanidis K, Zijlstra W, Meijer K. A systematic review of gait 
perturbation paradigms for improving reactive stepping responses and falls risk among healthy 
older adults. Eur Rev Aging Phys Act [Internet]. 2017;14(1). Available from: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85014356079&doi=10.1186%2Fs11556-017-0173-
7&partnerID=40&md5=f1c091b05aec0ea76dee040e95ddd9af 

3.  Boyé NDA, Mattace-Raso FUS, Van der Velde N, Van Lieshout EMM, De Vries OJ, Hartholt KA, et 
al. Circumstances leading to injurious falls in older men and women in the Netherlands. Injury. 
2014 Aug;45(8):1224–30.  

4.  Berg WP, Alessio HM, Mills EM, Tong C. Circumstances and consequences of falls in 
independent community-dwelling older  adults. Age Ageing. 1997 Jul;26(4):261–8.  

5.  Chang W-R, Leclercq S, Lockhart TE, Haslam R. State of science: occupational slips, trips and 
falls on the same level. Ergonomics. 2016 Jul;59(7):861–83.  

6.  Courtney TK, Sorock GS, Manning DP, Collins JW, Holbein-Jenny MA. Occupational slip, trip, 
and fall-related injuries--can the contribution of  slipperiness be isolated? Ergonomics. 2001 
Oct;44(13):1118–37.  

7.  Klenk J, Schwickert L, Palmerini L, Mellone S, Bourke A, Ihlen EAF, et al. The FARSEEING real-
world fall repository: a large-scale collaborative database to  collect and share sensor signals 
from real-world falls. Eur Rev aging Phys Act  Off J Eur  Gr Res into Elder Phys Act. 2016;13:8.  

8.  Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. 
Age Ageing. 2006 Sep;35 Suppl 2:ii37–41.  

9.  Cham R, Redfern MS. Lower extremity corrective reactions to slip events. J Biomech [Internet]. 
2001;34(11):1439–45. Available from: 
https://www.sciencedirect.com/science/article/pii/S0021929001001166 

10.  Martelli D, Aprigliano F, Tropea P, Pasquini G, Micera S, Monaco V. Stability against backward 
balance loss: Age-related modifications following slip-like perturbations of multiple amplitudes. 
Gait Posture [Internet]. 2017;53:207–14. Available from: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85012298574&doi=10.1016%2Fj.gaitpost.2017.02.002&partnerID=40&md5=aa156a9b9c760
2f0d2f7878e397236a0 

11.  Aprigliano F, Micera S, Monaco V. Pre-Impact Detection Algorithm to Identify Tripping Events 
Using Wearable Sensors. SENSORS. 2019;19(17).  

12.  Potocanac Z, Pijnappels M, Verschueren S, van Dieen J, Duysens J. Two-stage muscle activity 
responses in decisions about leg movement adjustments during trip recovery. J Neurophysiol. 
2016 Jan;115(1):143–56.  

13.  Tropea P, Vitiello N, Martelli D, Aprigliano F, Micera S, Monaco V. Detecting Slipping-Like 
Perturbations by Using Adaptive Oscillators. Ann Biomed Eng. 2015;43(2):416–26.  

14.  Bucher D. Central Pattern Generators. In: Squire LR, editor. Encyclopedia of Neuroscience 
[Internet]. Oxford: Academic Press; 2009. p. 691–700. Available from: 
https://www.sciencedirect.com/science/article/pii/B9780080450469019446 

15.  Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol  Off J Int Fed  Clin 
Neurophysiol. 2003 Aug;114(8):1379–89.  

16.  Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Chiara Carrozza M, Ijspeert AJ. Adaptive 



 
 

142 

oscillators with human-in-the-loop: Proof of concept for assistance and rehabilitation. In: 2010 
3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics. 
2010. p. 668–74.  

17.  Frigon A, Rossignol S. Experiments and models of sensorimotor interactions during locomotion. 
Biol Cybern. 2006 Dec;95(6):607–27.  

18.  Rucco R, Sorriso A, Liparoti M, Ferraioli G, Sorrentino P, Ambrosanio M, et al. Type and Location 
of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A 
Review. SENSORS. 2018;18(5).  

19.  Montesinos L, Castaldo R, Pecchia L. Wearable inertial sensors for fall risk assessment and 
prediction in older adults: A systematic review and meta-analysis. IEEE Trans Neural Syst 
Rehabil Eng. 2018;26(3):573–82.  

20.  Rajagopalan R, Litvan I, Jung T-P. Fall Prediction and Prevention Systems: Recent Trends, 
Challenges, and Future Research Directions. SENSORS. 2017 Nov;17(11).  

21.  Saadeh W, Butt SA, Altaf MAB. A Patient-specific single sensor iot-based wearable fall prediction 
and detection system. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):995–1003.  

22.  Leone A, Rescio G, Giampetruzzi L, Siciliano P. Smart EMG-based Socks for Leg Muscles 
Contraction Assessment. In: 2019 IEEE International Symposium on Measurements Networking 
(M N). 2019. p. 1–6.  

23.  Rivolta MW, Aktaruzzaman M, Rizzo G, Lafortuna CL, Ferrarin M, Bovi G, et al. Automatic vs. 
clinical assessment of fall risk in older individuals: A proof of concept. In: 2015 37th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 
2015. p. 6935–8.  

24.  Tang W, Fulk G, Zeigler S, Zhang T, Sazonov E. Estimating Berg Balance Scale and Mini Balance 
Evaluation System Test Scores by Using Wearable Shoe Sensors. In: 2019 IEEE EMBS 
International Conference on Biomedical Health Informatics (BHI). 2019. p. 1–4.  

25.  Parvaneh S, Najafi B, Toosizadeh N, Riaz IB, Mohler J. Is there any association between 
ventricular ectopy and falls in community-dwelling older adults? In: 2016 Computing in 
Cardiology Conference (CinC). 2016. p. 433–6.  

26.  Annese VF, De Venuto D. FPGA based architecture for fall-risk assessment during gait 
monitoring by synchronous EEG/EMG. In: 2015 6th International Workshop on Advances in 
Sensors and Interfaces (IWASI). 2015. p. 116–21.  

27.  Rivolta MW, Aktaruzzaman M, Rizzo G, Lafortuna CL, Ferrarin M, Bovi G, et al. Evaluation of the 
Tinetti score and fall risk assessment via accelerometry-based movement analysis. Artif Intell 
Med. 2019;95:38–47.  

28.  Shahzad A, Ko S, Lee S, Lee J, Kim K. Quantitative Assessment of Balance Impairment for Fall-
Risk Estimation Using Wearable Triaxial Accelerometer. IEEE Sens J. 2017;17(20):6743–51.  

29.  Saporito S, Brodie MA, Delbaere K, Hoogland J, Nijboer H, Rispens SM, et al. Remote timed up 
and go evaluation from activities of daily living reveals changing mobility after surgery. Physiol 
Meas. 2019 Mar;40(3).  

30.  Rescio G, Leone A, Caroppo A, Siciliano P. A preliminary study on fall risk evaluation through 
electromiography systems. In: 2015 International Conference on Interactive Mobile 
Communication Technologies and Learning (IMCL). 2015. p. 219–21.  

31.  Leone A, Rescio G, Siciliano P. Fall risk evaluation by surface electromyography technology. In: 
2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC). 2017. p. 
1092–5.  

32.  Buisseret F, Catinus L, Grenard R, Jojczyk L, Fievez D, Barvaux V, et al. Timed Up and Go and 
Six-Minute Walking Tests with Wearable Inertial Sensor: One Step  Further for the Prediction of 
the Risk of Fall in Elderly Nursing Home People. Sensors (Basel). 2020 Jun;20(11).  



 
 

143 

33.  Yang Z, Song C, Lin F, Langan J, Xu W. A Smart Environment-Adapting Timed-Up-and-Go System 
Powered by Sensor-Embedded Insoles. IEEE INTERNET THINGS J. 2019;6(2):1298–305.  

34.  Selvaraj M, Baltzopoulos V, Shaw A, Maganaris CN, Cullen J, Obrien T, et al. Stair fall risk 
detection using wearable sensors. In: Proceedings - International Conference on Developments 
in eSystems Engineering, DeSE [Internet]. 2019. p. 108–12. Available from: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85063141174&doi=10.1109%2FDeSE.2018.00023&partnerID=40&md5=b6682e72143279b3
0eb2d4309d0f8531 

35.  Vieira B, Pereira L, Freitas R, Terroso M, Simoes R. A gamified application for assessment of 
balance and fall prevention. In: 2015 10th Iberian Conference on Information Systems and 
Technologies (CISTI). 2015. p. 1–6.  

36.  Dzhagaryan A, Milenkovic A, Jovanov E, Milosevic M. Smart Button: A wearable system for 
assessing mobility in elderly. In: 2015 17th International Conference on E-health Networking, 
Application Services (HealthCom). 2015. p. 416–21.  

37.  Vavoulas G, Pediaditis M, Chatzaki C, Spanakis E, Tsiknakis M. The MobiFall Dataset:: Fall 
Detection and Classification with a Smartphone. Int J Monit Surveill Technol Res. 2016;2:44–
56.  

38.  Yao M, Zhang Q, Li M, Li H, Ning Y, Xie G, et al. A wearable pre-impact fall early warning and 
protection system based on MEMS inertial sensor and GPRS communication. In: 2015 IEEE 
12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 
2015. p. 1–6.  

39.  Begg R, Best R, Dell’Oro L, Taylor S. Minimum foot clearance during walking: strategies for the 
minimisation of  trip-related falls. Gait Posture. 2007 Feb;25(2):191–8.  

40.  Hemmatpour M, Ferrero R, Montrucchio B, Rebaudengo M. A review on fall prediction and 
prevention system for personal devices: Evaluation and experimental results. Adv Human-
Computer Interact. 2019;2019.  

41.  Abbate S, Avvenuti M, Cola G, Corsini P, Light J, Vecchio A. Recognition of false alarms in fall 
detection systems. In: 2011 IEEE Consumer Communications and Networking Conference 
(CCNC). 2011. p. 23–8.  

42.  Shany T, Wang K, Liu Y, Lovell NH, Redmond SJ. Review: Are we stumbling in our quest to find 
the best predictor? Over-optimism in sensor-based models for predicting falls in older adults. 
Healthc Technol Lett. 2015;2(4):79–88.  

43.  Nazarahari M, Rouhani H. 40 years of sensor fusion for orientation tracking via magnetic and 
inertial measurement units: Methods, lessons learned, and future challenges. Inf Fusion 
[Internet]. 2021;68:67–84. Available from: 
https://www.sciencedirect.com/science/article/pii/S1566253520303997 

44.  Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance 
phase of gait using foot-worn  inertial sensors. Gait Posture. 2013 Feb;37(2):229–34.  

45.  Mathie MJ, Coster ACF, Lovell NH, Celler BG. Accelerometry: providing an integrated, practical 
method for long-term, ambulatory  monitoring of human movement. Physiol Meas. 2004 
Apr;25(2):R1-20.  

46.  Cheng J, Chen X, Shen M. A Framework for Daily Activity Monitoring and Fall Detection Based 
on Surface Electromyography and Accelerometer Signals. IEEE J Biomed Heal Informatics. 
2013;17(1):38–45.  

47.  Lee D, Kim Y, Yun J, Jung M, Lee G. A comparative study of the electromyographic activities of 
lower extremity muscles  during level walking and Pedalo riding. J Phys Ther Sci. 2016 
May;28(5):1478–81.  

48.  Annese VF, De Venuto D. Gait analysis for fall prediction using EMG triggered movement related 



 
 

144 

potentials. In: 2015 10th International Conference on Design Technology of Integrated Systems 
in Nanoscale Era (DTIS). 2015. p. 1–6.  

49.  Antonsson EK, Mann RW. The frequency content of gait. J Biomech [Internet]. 1985;18(1):39–
47. Available from: https://www.sciencedirect.com/science/article/pii/0021929085900430 

50.  Martínez-Solís F, Claudio-Sánchez A, Rodríguez-Lelis JM, Vergara-Limon S, Olivares-Peregrino V, 
Vargas-Treviño M. A portable system with sample rate of 250 Hz for characterization of knee 
and hip  angles in the sagittal plane during gait. Biomed Eng Online. 2014 Mar;13(1):34.  

51.  Winter DA. Biomechanics and Motor Control of Human Movement: Fourth Edition. Biomechanics 
and Motor Control of Human Movement: Fourth Edition. 2009. 1–370 p.  

52.  Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail 
elderly persons. J Am Geriatr Soc. 1991 Feb;39(2):142–8.  

53.  Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation 
of an instrument. Can J Public Health. 1992;83 Suppl 2:S7-11.  

54.  Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of 
chronic disabilities. Am J Med. 1986 Mar;80(3):429–34.  

55.  Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to 
improve the Balance Evaluation Systems Test: the  mini-BESTest. J Rehabil Med. 2010 
Apr;42(4):323–31.  

56.  Crapo RO, Casaburi R, Coates AL, Enright PL, MacIntyre NR, McKay RT, et al. ATS statement: 
guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul;166(1):111–7.  

57.  Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in 
community-residing  older adults. Res Q Exerc Sport. 1999 Jun;70(2):113–9.  

58.  Aziz O, Musngi M, Park E, Mori G, Robinovitch S. A comparison of accuracy of fall detection 
algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer 
signals from a comprehensive set of falls and non-fall trials. Med Biol Eng Comput. 2016;55.  

59.  Yu D, Deng L. Deep Learning and Its Applications to Signal and Information Processing 
[Exploratory DSP]. IEEE Signal Process Mag. 2011;28(1):145–54.  

60.  Meyer BM, Tulipani LJ, Gurchiek RD, Allen DA, Adamowicz L, Larie D, et al. Wearables and Deep 
Learning Classify Fall Risk From Gait in Multiple Sclerosis. IEEE J Biomed Heal Informatics. 
2021;25(5):1824–31.  

61.  Tan H, Aung N, Tian J, Chua M, Ou Yang Y. Time series classification using a modified LSTM 
approach from accelerometer-based data: A comparative study for gait cycle detection. Gait 
Posture. 2019;74.  

62.  Casilari E, Santoyo-Ramón J-A, Cano-García J-M. Analysis of Public Datasets for Wearable Fall 
Detection Systems. Sensors [Internet]. 2017;17(7). Available from: 
https://www.mdpi.com/1424-8220/17/7/1513 

63.  Arlot S, Celisse A. A Survey of Cross Validation Procedures for Model Selection. Stat Surv. 
2009;4.  

64.  Monaco V, Tropea P, Aprigliano F, Martelli D, Parri A, Cortese M, et al. An ecologically-controlled 
exoskeleton can improve balance recovery after slippage. Sci Rep. 2017;7.  

65.  Trkov M, Wu S, Chen K, Yi J, Liu T, Zhao Q. Design of a Robotic Knee Assistive Device (ROKAD) 
for Slip-Induced Fall Prevention during Walking. IFAC-PapersOnLine [Internet]. 
2017;50(1):9802–7. Available from: https://doi.org/10.1016/j.ifacol.2017.08.887 

66.  Huang Z-G, Feng Y-H, Li Y-H, Lv C-S. Systematic review and meta-analysis: Tai Chi for preventing 
falls in older adults. BMJ Open. 2017 Feb;7(2):e013661.  

67.  Gerards MHG, McCrum C, Mansfield A, Meijer K. Perturbation-based balance training for falls 
reduction among older adults: Current  evidence and implications for clinical practice. Geriatr 
Gerontol Int. 2017 Dec;17(12):2294–303.  



 
 

145 

68.  Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of traditional and 
recent approaches in the promotion of balance and  strength in older adults. Sports Med. 2011 
May;41(5):377–400.  

69.  Gabell A, Simons MA, Nayak US. Falls in the healthy elderly: predisposing causes. Ergonomics. 
1985 Jul;28(7):965–75.  

70.  Lockhart T. Biomechanics of Human Gait – Slip and Fall Analysis. In: Encyclopedia of Forensic 
Sciences. 2013. p. 466–76.  

71.  Karamanidis K, Epro G, McCrum C, König M. Improving Trip- and Slip-Resisting Skills in Older 
People: Perturbation Dose  Matters. Exerc Sport Sci Rev. 2020 Jan;48(1):40–7.  

72.  Eng JJ, Winter DA, Patla AE. Strategies for recovery from a trip in early and late swing during 
human walking. Exp brain Res. 1994;102(2):339–49.  

73.  Shirota C, Simon A, Kuiken T. Trip recovery strategies following perturbations of variable 
duration. J Biomech. 2014;47.  

74.  Aprigliano F, Martelli D, Tropea P, Pasquini G, Micera S, Monaco V. Aging does not affect the 
intralimb coordination elicited by slip-like perturbation  of different intensities. J Neurophysiol. 
2017 Sep;118(3):1739–48.  

75.  Swart SB, den Otter R, Lamoth CJC. Anticipatory control of human gait following simulated slip 
exposure. Sci Rep. 2020 Jun;10(1).  

76.  Lee A, Bhatt T, Liu X, Wang Y, Pai Y-C. Can higher training practice dosage with treadmill slip-
perturbation necessarily  reduce risk of falls following overground slip? Gait Posture. 2018 
Mar;61:387–92.  

77.  Lee A, Bhatt T, Liu X, Wang Y, Wang S, Pai Y-C (Clive). Can Treadmill Slip-Perturbation Training 
Reduce Longer-Term Fall Risk Upon Overground Slip Exposure? J Appl Biomech. 
2020;36(5):298–306.  

78.  Wang Y, Bhatt T, Liu X, Wang S, Lee A, Wang E, et al. Can treadmill-slip perturbation training 
reduce immediate risk of over-ground-slip  induced fall among community-dwelling older adults? 
J Biomech. 2019 Feb;84:58–66.  

79.  Patel PJ, Bhatt T, DelDonno SR, Langenecker SA, Dusane S. Examining Neural Plasticity for Slip-
Perturbation Training: An fMRI Study. Front Neurol. 2018;9:1181.  

80.  Lee A, Bhatt T, Pai Y-C. Generalization of treadmill perturbation to overground slip during gait: 
Effect of different perturbation distances on slip recovery. J Biomech. 2016 Jan;49(2):149–54.  

81.  Liu X, Bhatt T, Pai YC. Intensity and generalization of treadmill slip training: High or low, 
progressive increase or decrease? J Biomech. 2016 Jan 25;49(2):135–40.  

82.  Ding L, Yang F. Muscle weakness is related to slip-initiated falls among community-dwelling 
older  adults. J Biomech. 2016 Jan;49(2):238–43.  

83.  Bhatt T, Patel P, Dusane S, DelDonno SR, Langenecker SA. Neural Mechanisms Involved in 
Mental Imagery of Slip-Perturbation While Walking: A Preliminary fMRI Study. Front Behav 
Neurosci. 2018;12.  

84.  Debelle H, Harkness-Armstrong C, Hadwin K, Maganaris CN, O’Brien TD. Recovery From a 
Forward Falling Slip: Measurement of Dynamic Stability and Strength  Requirements Using a 
Split-Belt Instrumented Treadmill. Front Sport Act living. 2020;2:82.  

85.  Hirata K, Kokubun T, Miyazawa T, Hanawa H, Kubota K, Sonoo M, et al. Relationship Between 
the Walking Velocity Relative to the Slip Velocity and the Corrective Response. J Med Biol Eng. 
2020;  

86.  Liu X, Bhatt T, Wang Y, Wang S, Lee A, Pai Y-C. The retention of fall-resisting behavior derived 
from treadmill slip-perturbation  training in community-dwelling older adults. GeroScience. 2021 
Apr;43(2):913–26.  

87.  Yang F, Cereceres P, Qiao M. Treadmill-based gait-slip training with reduced training volume 



 
 

146 

could still prevent slip-related falls. Gait Posture. 2018;66:160–5.  
88.  Wang Y, Wang S, Lee A, Pai Y-C, Bhatt T. Treadmill-gait slip training in community-dwelling older 

adults: mechanisms of  immediate adaptation for a progressive ascending-mixed-intensity 
protocol. Exp brain Res. 2019 Sep;237(9):2305–17.  

89.  Lee B-C, Kim C-S, Seo K-H. The Body’s Compensatory Responses to Unpredictable Trip and Slip 
Perturbations Induced by a Programmable Split-Belt Treadmill. IEEE Trans NEURAL Syst Rehabil 
Eng. 2019 Jul;27(7):1389–96.  

90.  Mueller J, Engel T, Mueller S, Kopinski S, Baur H, Mayer F. Neuromuscular response of the 
trunk to sudden gait disturbances: Forward vs. backward perturbation. J Electromyogr Kinesiol. 
2016;30:168–76.  

91.  Wang S, Liu X, Lee A, Pai Y-C. Can Recovery Foot Placement Affect Older Adults’ Slip-Fall 
Severity? Ann Biomed Eng [Internet]. 2017;45(8):1941–8. Available from: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85018726524&doi=10.1007%2Fs10439-017-1834-
4&partnerID=40&md5=40c115a81c2da09999b64f5150baf85b 

92.  Wang S, Pai Y-C, Bhatt T. Is There an Optimal Recovery Step Landing Zone Against Slip-Induced 
Backward Falls  During Walking? Ann Biomed Eng. 2020 Jun;48(6):1768–78.  

93.  Sawers A, Bhatt T. Neuromuscular determinants of slip-induced falls and recoveries in older 
adults. J Neurophysiol. 2018 Oct;120(4):1534–46.  

94.  Sawers A, Pai Y-CC, Bhatt T, Ting LH. Neuromuscular responses differ between slip-induced falls 
and recoveries in older  adults. J Neurophysiol. 2017 Feb;117(2):509–22.  

95.  Inkol KA, Huntley AH, Vallis LA. Repeated Exposure to Forward Support-Surface Perturbation 
During Overground Walking Alters Upper-Body Kinematics and Step Parameters. J Mot Behav. 
2019;51(3):318–30.  

96.  Liu X, Bhatt T, Wang S, Yang F, Pai Y-CC. Retention of the “first-trial effect” in gait-slip among 
community-living older  adults. GeroScience. 2017 Feb;39(1):93–102.  

97.  Liu X, Reschechtko S, Wang S, Pai Y-CC. The recovery response to a novel unannounced 
laboratory-induced slip: The “first  trial effect” in older adults. Clin Biomech (Bristol, Avon). 2017 
Oct;48:9–14.  

98.  Wang S, Bhatt T, Liu X, Pai Y-C. The Role of Recovery Lower Limb Segments in Post-Slip 
Determination of Falls Due to Instability or Limb Collapse. Ann Biomed Eng. 2020 
Jan;48(1):192–202.  

99.  Wang S, Wang Y, Pai Y-C (Clive), Wang E, Bhatt T. Which Are the Key Kinematic and Kinetic 
Components to Distinguish Recovery Strategies for Overground Slips Among Community-
Dwelling Older Adults? J Appl Biomech. 2020;36(4):217–27.  

100.  Okubo Y, Sturnieks DL, Brodie MA, Duran L, Lord SR. Effect of Reactive Balance Training 
Involving Repeated Slips and Trips on Balance Recovery Among Older Adults: A Blinded 
Randomized Controlled Trial. JOURNALS Gerontol Ser A-BIOLOGICAL Sci Med Sci. 
2019;74(9):1489–96.  

101.  Okubo Y, Brodie MA, Sturnieks DL, Hicks C, Carter H, Toson B, et al. Exposure to trips and slips 
with increasing unpredictability while walking can improve balance recovery responses with 
minimum predictive gait alterations. PLoS One. 2018;13(9).  

102.  Okubo Y, Brodie MA, Sturnieks DL, Hicks C, Lord SR. A pilot study of reactive balance training 
using trips and slips with increasing  unpredictability in young and older adults: Biomechanical 
mechanisms, falls and clinical feasibility. Clin Biomech (Bristol, Avon). 2019 Jul;67:171–9.  

103.  Merrill Z, Chambers AJ, Cham R. Arm reactions in response to an unexpected slip—Impact of 
aging. J Biomech [Internet]. 2017;58:21–6. Available from: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-



 
 

147 

85018991861&doi=10.1016%2Fj.jbiomech.2017.04.011&partnerID=40&md5=7346510a3d2
6b4d84a497911358490c3 

104.  Nazifi MM, Beschorner KE, Hur P. Association between Slip Severity and Muscle Synergies of 
Slipping. Front Hum Neurosci. 2017 Nov;11.  

105.  Ziaei M, Mokhtarinia H, Tabatabai Ghomshe F, Maghsoudipour M. Coefficient of friction, walking 
speed and cadence on slippery and dry surfaces:  shoes with different groove depths. Int J 
Occup Saf Ergon. 2019 Dec;25(4):524–9.  

106.  Soangra R, Lockhart TE. Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and 
Older Adults  during Walking. Appl bionics Biomech. 2017;2017:1014784.  

107.  O’Connell C, Chambers A, Mahboobin A, Cham R. Effects of slip severity on muscle activation of 
the trailing leg during an  unexpected slip. J Electromyogr Kinesiol  Off J Int  Soc Electrophysiol 
Kinesiol. 2016 Jun;28:61–6.  

108.  Allin LJ, Nussbaum MA, Madigan ML. Feet kinematics upon slipping discriminate between 
recoveries and three types of  slip-induced falls. Ergonomics. 2018 Jun;61(6):866–76.  

109.  Kim S, Joo K-S, Liu J, Sohn J-H. Lower extremity kinematics during forward heel-slip. Technol 
Heal care  Off J Eur Soc  Eng Med. 2019;27(S1):345–56.  

110.  Arena SL, Davis JL, Grant JW, Madigan ML. Tripping Elicits Earlier and Larger Deviations in 
Linear Head Acceleration Compared to Slipping. PLoS One. 2016 Nov;11(11).  

111.  Rasmussen CM, Hunt NH. A novel wearable device to deliver unconstrained, unpredictable slip 
perturbations  during gait. J Neuroeng Rehabil. 2019 Oct;16(1):118.  

112.  Er JK, Donnelly CJW, Wee SK, Ang WT. Fall inducing movable platform (FIMP) for overground 
trips and slips. J Neuroeng Rehabil. 2020;17(1).  

113.  Lee B-C, Martin BJ, Thrasher TA, Layne CS. A new fall-inducing technology platform: 
development and assessment of a programmable split-belt treadmill. In: 2017 39th Annual 
International Conference Of The Ieee Engineering In Medicine And Biology Society (Embc). 
2017. p. 3777–80.  

114.  König M, Epro G, Seeley J, Catala-Lehnen P, Potthast W, Karamanidis K. Retention of 
improvement in gait stability over 14 weeks due to trip-perturbation training is dependent on 
perturbation dose. J Biomech. 2018;84.  

115.  Silver TA, Mokha GM, Peacock CA. Exploring fall training adaptations while walking. Work. 2016 
Jun;54(3):699–707.  

116.  Wang Y, Wang S, Bolton R, Kaur T, Bhatt T. Effects of task-specific obstacle-induced trip-
perturbation training: proactive and  reactive adaptation to reduce fall-risk in community-dwelling 
older adults. Aging Clin Exp Res. 2020 May;32(5):893–905.  

117.  Ko Y-C, Ryew C-C, Hyun S-H. Relationship among the variables of kinematic and tilt angle of 
whole body according to the foot trip during gait. J Exerc Rehabil. 2017;13(1):117–21.  

118.  Schulz BW. A new measure of trip risk integrating minimum foot clearance and dynamic stability 
across the swing phase of gait. J Biomech. 2017;55:107–12.  

119.  Liu X, Bhatt T, Wang S, Yang F, Pai Y-C (Clive). Retention of the “first-trial effect” in gait-slip 
among community-living older adults. GEROSCIENCE. 2017;39(1):93–102.  

120.  Epro G, McCrum C, Mierau A, Leyendecker M, Brüggemann G-P, Karamanidis K. Effects of 
triceps surae muscle strength and tendon stiffness on the reactive  dynamic stability and 
adaptability of older female adults during perturbed walking. J Appl Physiol. 2018 
Jun;124(6):1541–9.  

121.  Potocanac Z, de Bruin J, van der Veen S, Verschueren S, van Dieën J, Duysens J, et al. Fast 
online corrections of tripping responses. Exp brain Res. 2014 Nov;232(11):3579–90.  

122.  Altman AR, Reisman DS, Higginson JS, Davis IS. Kinematic comparison of split-belt and single-
belt treadmill walking and the effects  of accommodation. Gait Posture. 2012 Feb;35(2):287–



 
 

148 

91.  
123.  Wang S, Liu X, Pai Y-C. Limb Collapse or Instability? Assessment on Cause of Falls. Ann Biomed 

Eng. 2019 Mar;47(3):767–77.  
124.  Wright RL, Peters DM, Robinson PD, Watt TN, Hollands MA. Older adults who have previously 

fallen due to a trip walk differently than those  who have fallen due to a slip. Gait Posture. 2015 
Jan;41(1):164–9.  

125.  Side-Dominant Science: Are You Left- or Right-Sided? - Scientific American [Internet]. [cited 2022 
Mar 17]. Available from: https://www.scientificamerican.com/article/bring-science-home-
dominant-side/ 

126.  Martelli D, Luciani LB, Micera S, Member S. Angular Momentum During Unexpected 
Multidirectional Perturbations Delivered While Walking. IEEE Trans Biomed Eng. 
2013;60(7):1785–95.  

127.  Nagano H, Begg RK, Sparrow WA, Taylor S. Ageing and limb dominance effects on foot-ground 
clearance during treadmill and  overground walking. Clin Biomech (Bristol, Avon). 2011 
Nov;26(9):962–8.  

128.  Bassi Luciani L, Genovese V, Monaco V, Odetti L, Cattin E, Micera S. Design and Evaluation of a 
new mechatronic platform for assessment and prevention of fall risks. J Neuroeng Rehabil. 
2012;9(1):1–13.  

129.  Allin LJ, Wu X, Nussbaum MA, Madigan ML. Falls resulting from a laboratory-induced slip occur 
at a higher rate among  individuals who are obese. J Biomech. 2016 Mar;49(5):678–83.  

130.  McCrum C, Willems P, Karamanidis K, Meijer K. Stability-normalised walking speed: A new 
approach for human gait perturbation research. J Biomech [Internet]. 2019;87:48–53. Available 
from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85062059483&doi=10.1016%2Fj.jbiomech.2019.02.016&partnerID=40&md5=c11ca52e966b
7dfddc67cda7fa065e97 

131.  Ferreira RN, Ribeiro NF, Santos CP. Fall Risk Assessment Using Wearable Sensors: A Narrative 
Review. Sensors [Internet]. 2022;22(3). Available from: https://www.mdpi.com/1424-
8220/22/3/984 

132.  Chvatal SA, Macpherson JM, Torres-Oviedo G, Ting LH. Absence of postural muscle synergies 
for balance after spinal cord transection. J Neurophysiol. 2013 Sep;110(6):1301–10.  

133.  Marigold DS, Patla AE. Strategies for dynamic stability during locomotion on a slippery surface: 
effects of  prior experience and knowledge. J Neurophysiol. 2002 Jul;88(1):339–53.  

134.  Pijnappels M, Bobbert MF, van Dieën JH. How early reactions in the support limb contribute to 
balance recovery after  tripping. J Biomech. 2005 Mar;38(3):627–34.  

135.  Mioskowska M, Stevenson D, Onu M, Trkov M. Compressed gas actuated knee assistive 
exoskeleton for slip-induced fall prevention during human walking. IEEE/ASME Int Conf Adv 
Intell Mechatronics, AIM. 2020;2020-July:735–40.  

136.  Beschorner K, Cham R. Impact of joint torques on heel acceleration at heel contact, a 
contributor to slips  and falls. Ergonomics. 2008 Dec;51(12):1799–813.  

137.  Moyer BE, Redfern MS, Cham R. Biomechanics of trailing leg response to slipping - evidence of 
interlimb and  intralimb coordination. Gait Posture. 2009 Jun;29(4):565–70.  

138.  Yang F, Bhatt T, Pai Y-C. Role of stability and limb support in recovery against a fall following a 
novel slip induced in different daily activities. J Biomech [Internet]. 2009;42(12):1903–8. 
Available from: https://www.sciencedirect.com/science/article/pii/S0021929009002747 

139.  Aprigliano F, Martelli D, Micera S, Monaco V. Intersegmental coordination elicited by unexpected 
multidirectional slippinglike perturbations resembles that adopted during steady locomotion. J 
Neurophysiol. 2016;115(2):728–40.  

140.  Tang PF, Woollacott MH, Chong RK. Control of reactive balance adjustments in perturbed 



 
 

149 

human walking: roles of  proximal and distal postural muscle activity. Exp brain Res. 1998 
Mar;119(2):141–52.  

141.  Wilson S, Donahue PT, Williams C, Hill C, Simpson J, Waddell D, et al. Differences in Falls and 
Recovery from a Slip Based on an Individual’s Lower Extremity Corrective Response. Int J 
Kinesiol Sport Sci. 2019;7:34.  

142.  Yang F, Pai Y-C. Role of individual lower limb joints in reactive stability control following a novel  
slip in gait. J Biomech. 2010 Feb;43(3):397–404.  

143.  Bhatt T, Wening JD, Pai Y-C. Adaptive control of gait stability in reducing slip-related backward 
loss of  balance. Exp brain Res. 2006 Mar;170(1):61–73.  

144.  Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a 
review. Gait Posture. 2000 Sep;12(1):34–45.  

145.  Seeley MK, Umberger BR, Shapiro R. A test of the functional asymmetry hypothesis in walking. 
Gait Posture. 2008 Jul;28(1):24–8.  

146.  Young PM, Whitall J, Bair W-N, Rogers MW. Leg preference associated with protective stepping 
responses in older adults. Clin Biomech (Bristol, Avon). 2013 Oct;28(8):927–32.  

147.  Bohannon R. Is it Legitimate to Characterize Muscle Strength Using a Limited Number of 
Measures? J Strength Cond Res. 2008;22:166–73.  

148.  Liu J, Lockhart TE. Age-related joint moment characteristics during normal gait and successful  
reactive-recovery from unexpected slip perturbations. Gait Posture. 2009 Oct;30(3):276–81.  

149.  Mrachacz-Kersting N, Lavoie BA, Andersen JB, Sinkjaer T. Characterisation of the quadriceps 
stretch reflex during the transition from swing  to stance phase of human walking. Exp brain Res. 
2004 Nov;159(1):108–22.  

150.  Félix P, Figueiredo J, Santos CP, Moreno JC. Electronic design and validation of Powered Knee 
Orthosis system embedded with wearable sensors. In: 2017 IEEE International Conference on 
Autonomous Robot Systems and Competitions (ICARSC). 2017. p. 110–5.  

151.  Zhang T, Tran M, Huang H. Design and Experimental Verification of Hip Exoskeleton With 
Balance Capacities for Walking Assistance. IEEE/ASME Trans Mechatronics. 2018;23(1):274–
85.  

152.  Gouwanda D, Gopalai AA. A robust real-time gait event detection using wireless gyroscope and 
its application on normal and altered gaits. Med Eng Phys [Internet]. 2015;37(2):219–25. 
Available from: https://www.sciencedirect.com/science/article/pii/S1350453315000028 

153.  Chia Bejarano N, Ambrosini E, Pedrocchi A, Ferrigno G, Monticone M, Ferrante S. A Novel 
Adaptive, Real-Time Algorithm to Detect Gait Events From Wearable Sensors. IEEE Trans Neural 
Syst Rehabil Eng. 2015;23(3):413–22.  

154.  Alshehri YS, Liu W, Mullen S, Phadnis M, Sharma NK, dos Santos M. Inertial sensors identified 
asymmetries in shank angular velocity at different gait speeds in individuals with anterior 
cruciate ligament reconstruction. Gait Posture [Internet]. 2020;80:302–7. Available from: 
https://www.sciencedirect.com/science/article/pii/S096663622030165X 

155.  Abyarjoo F, Barreto A, Cofino J, Ortega F. Implementing a Sensor Fusion Algorithm for 3D 
Orientation Detection with Inertial/Magnetic Sensors. In 2012.  

156.  Santos CP, Alves N, Moreno JC. Biped Locomotion Control through a Biomimetic CPG-based 
Controller. J Intell Robot Syst Theory Appl [Internet]. 2017;85(1):47–70. Available from: 
http://dx.doi.org/10.1007/s10846-016-0407-3 

157.  Ronsse R, Lenzi T, Vitiello N, Koopman B, van Asseldonk E, De Rossi SMM, et al. Oscillator-
based assistance of cyclical movements: model-based and model-free  approaches. Med Biol 
Eng Comput. 2011 Oct;49(10):1173–85.  

158.  Righetti L, Buchli J, Ijspeert AJ. From Dynamic Hebbian Learning for Oscillators to Adaptive 
Central Pattern Generators. 2005;  



 
 

150 

159.  Whittington BR, Thelen DG. A simple mass-spring model with roller feet can induce the ground 
reactions observed  in human walking. J Biomech Eng. 2009 Jan;131(1):11013.  

160.  Ijspeert AJ. Central pattern generators for locomotion control in animals and robots: A review. 
Neural Networks [Internet]. 2008;21(4):642–53. Available from: 
https://www.sciencedirect.com/science/article/pii/S0893608008000804 

161.  Ayers J, Davis JL, Rudolph A. Neurotechnology for Biomimetic Robots. Cambridge, MA, USA: 
MIT Press; 2002.  

162.  Righetti L, Ijspeert AJ. Programmable central pattern generators: an application to biped 
locomotion control. In: Proceedings 2006 IEEE International Conference on Robotics and 
Automation, 2006 ICRA 2006. 2006. p. 1585–90.  

163.  Righetti L, Buchli J, Ijspeert AJ. Dynamic Hebbian learning in adaptive frequency oscillators. 
Phys D Nonlinear Phenom [Internet]. 2006;216(2):269–81. Available from: 
https://www.sciencedirect.com/science/article/pii/S0167278906000819 

164.  Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek D. Quantifying dynamic stability and 
maneuverability in legged locomotion. Integr Comp Biol. 2002 Feb;42(1):149–57.  

165.  Lockhart TE. An integrated approach towards identifying age-related mechanisms of slip initiated  
falls. J Electromyogr Kinesiol  Off J Int  Soc Electrophysiol Kinesiol. 2008 Apr;18(2):205–17.  

166.  Martelli D, Monaco V, Bassi Luciani L, Micera S. Angular momentum during unexpected 
multidirectional perturbations delivered while  walking. IEEE Trans Biomed Eng. 2013 
Jul;60(7):1785–95.  

167.  Trkov M, Chen K, Yi J, Liu T. Inertial Sensor-Based Slip Detection in Human Walking. IEEE Trans 
Autom Sci Eng. 2019;16(3):1399–411.  

168.  Trkov M, Yi J, Liu T. Slip detection and prediction in human walking using only wearable inertial 
measurement units (IMUs). In 2015. p. 854–9.  

169.  Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness 
of emotional lateralization. Neuropsychologia. 1998;36(1):37–43.  

170.  Pellikaan P, Giarmatzis G, Vander Sloten J, Verschueren S, Jonkers I. Ranking of osteogenic 
potential of physical exercises in postmenopausal women based on femoral neck strains. PLoS 
One [Internet]. 2018;13(4):1–18. Available from: 
https://doi.org/10.1371/journal.pone.0195463 

171.  SENIAM. Welcome at Seniam.org [Internet]. [cited 2022 Feb 25]. Available from: 
http://www.seniam.org/ 

172.  Abdulatif S, Aziz F, Armanious K, Kleiner B, Yang B, Schneider U. Person Identification and Body 
Mass Index: A Deep Learning-Based Study on Micro-Dopplers. 2018.  

173.  Klemetti R, Moilanen P, Avela J, Timonen J. Effects of gait speed on stability of walking revealed 
by simulated response to tripping perturbation. Gait Posture [Internet]. 2014;39(1):534–9. 
Available from: http://dx.doi.org/10.1016/j.gaitpost.2013.09.006 

174.  Quach L, M. Galica A, N.jones R, Procter-Gray E. The Non-linear Relationship between Gait 
Speed and Falls:The Mobilize Boston Study. J Am Geriatr Soc. 2012;59(6):1069–73.  

175.  Kyrdalen IL, Thingstad P, Sandvik L, Ormstad H. Associations between gait speed and well-
known fall risk factors among community-dwelling older adults. Physiother Res Int. 
2019;24(1):1–6.  

176.  Aghayan A, Jaiswal P, Siahkoohi HR. Seismic denoising using the redundant lifting scheme. In 
2016. p. 4679–84.  

177.  Ahn J, Hogan N. Walking Is Not Like Reaching: Evidence from Periodic Mechanical 
Perturbations. PLoS One. 2012;7:e31767.  

 
 



 
 

151 

Appendix I - Study of the number of oscillators within the CPG 

Figures A1 to A4 represent the results of the oscillators’ intrinsic frequency adaptation to the knee 

angle signal throughout the simulation time from the CPG configurations with 6, 5, 4 and 3 oscillators, 

respectively. 

Figure A9. Frequency evolution of the CPG with 6 oscillators throughout the simulation time course (knee angle). From top 
to bottom: 𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5 and 𝜔6. 

Figure A10. Frequency evolution of the CPG with 5 oscillators throughout the simulation time course (knee angle). From 
top to bottom: 𝜔1, 𝜔2, 𝜔3, 𝜔4 and 𝜔5. 
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Figure A11. Frequency evolution of the CPG with 4 oscillators throughout the simulation time course (knee angle). From 
top to bottom: 𝜔1, 𝜔2, 𝜔3 and 𝜔4. 
 

Figure A12. Frequency evolution of the CPG with 3 oscillators throughout the simulation time course (knee angle). From 
top to bottom: 𝜔1, 𝜔2 and 𝜔3. 
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Figures A5 to A8 present the results of the oscillators’ intrinsic frequency adaptation to the shank 

angular velocity signal throughout the simulation time from the CPG configurations with 6, 5, 4 and 3 

oscillators, respectively. 

Figure A13. Frequency evolution of the CPG with 6 oscillators throughout the simulation time course (shank angular 
velocity). From top to bottom: 𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5 and 𝜔6. 
 

Figure A14. Frequency evolution of the CPG with 5 oscillators throughout the simulation time course (shank angular 
velocity). From top to bottom: 𝜔1, 𝜔2, 𝜔3, 𝜔4 and 𝜔5. 
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Figure A15. Frequency evolution of the CPG with 4 oscillators throughout the simulation time course (shank angular velocity). 

From top to bottom: 𝜔1, 𝜔2, 𝜔3 and 𝜔4. 

Figure A16. Frequency evolution of the CPG with 3 oscillators throughout the simulation time course (shank angular 
velocity). From top to bottom: 𝜔1, 𝜔2 and 𝜔3. 

 

 

 


