
Vol.:(0123456789)

Machine Learning (2021) 110:3037–3057
https://doi.org/10.1007/s10994-021-06055-x

1 3

Deep learning and multivariate time series for cheat
detection in video games

José Pedro Pinto2 · André Pimenta1 · Paulo Novais2

Received: 1 March 2021 / Revised: 1 July 2021 / Accepted: 9 August 2021 /
Published online: 14 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Online video games drive a multi-billion dollar industry dedicated to maintaining a com-
petitive and enjoyable experience for players. Traditional cheat detection systems struggle
when facing new exploits or sophisticated fraudsters. More advanced solutions based on
machine learning are more adaptive but rely heavily on in-game data, which means that
each game has to develop its own cheat detection system. In this work, we propose a novel
approach to cheat detection that doesn’t require in-game data. Firstly, we treat the mul-
timodal interactions between the player and the platform as multivariate time series. We
then use convolutional neural networks to classify these time series as corresponding to
legitimate or fraudulent gameplay. Our models achieve an average accuracy of respectively
99.2% and 98.9% in triggerbot and aimbot (two widespread cheats), in an experiment to
validate the system’s ability to detect cheating in players never seen before. Because this
approach is based solely on player behavior, it can be applied to any game or input method,
and even various tasks related to modeling human activity.

Keywords Deep learning · Multivariate time series · Human–computer interaction · Video
games

Editors: João Gama, Alípio Jorge, Salvador García.

 * José Pedro Pinto
 a80741@alunos.uminho.pt

 André Pimenta
 apimenta@anybrain.gg

 Paulo Novais
 pjon@di.uminho.pt

1 Anybrain, S.A., Braga, Portugal
2 Universidade do Minho, Braga, Portugal

http://orcid.org/0000-0002-1407-8023
http://orcid.org/0000-0002-3549-0754
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06055-x&domain=pdf

3038 Machine Learning (2021) 110:3037–3057

1 3

1 Introduction

Video games have been rapidly growing in popularity in the past two decades, driving what
is nowadays a multi-billion dollar industry. Given how widespread this form of entertain-
ment is, we ought to consider the social implications of online video-games, especially
in situations such as the current global pandemic, when this form of entertainment is also
one of the remaining means of social connection.

Developers and publishers of online video games focus on maintaining healthy commu-
nities. One aspect that contributes to the engagement of players is the competitiveness of
the game. Cheaters are players who resort to exploits or third-party software to gain unfair
advantages, often disturbing the game’s competitiveness.

In this sense, great effort has gone into developing anti-cheating systems. These systems
assert if a player cheated during a given match or time period.

Anti-cheating systems help to provide a better experience to the players. By keeping the
players engaged in a competitive environment, the game communities can keep growing,
providing entertainment, and generating profit.

The problem with traditional anti-cheating systems is that they have a history of always
being one step behind the most sophisticated fraudsters and cheaters. Most of them consist
of searching for malware or evidence that the game software has been tampered with.

In this sense, machine learning has helped by providing a statistical approach and tools
to predict if a player is cheating based on his data (Yeung et al., 2006; Galli et al., 2011;
Alkhalifa, 2016; Islam et al., 2020; Alayed et al., 2013).

Nearly all machine learning approaches to anti-cheating in video games consist of ana-
lyzing in-game data, which is information regarding the game environment (such as the
player’s avatar positioning or activity during gameplay). Analyzing this data demands
domain knowledge and a process of feature engineering for each game.

A system capable of analyzing gameplay without relying on in-game data would hold
great value since it could be applied to several games without modification and be adaptive
to new types of cheats. We developed an anti-cheating system that analyzes the interaction
between the player and the computer, attempting to learn which behavioral patterns occur
when a player is cheating.

Human–computer interaction (HCI) data can be very complex, and one possible
approach is to compute an array of behavioral biometrics for fixed time windows (Pimenta
et al., 2015, 2014; Carneiro et al., 2016). In this work, we take a different approach and
build multivariate time series to construct a more detailed representation of the interactions.

Multivariate time series are difficult to analyze, especially when they do not contain reg-
ular and periodic phenomena. Human behavior can be highly irregular and spontaneous,
which makes this task a challenge. To recognize patterns in this data, we use convolutional
neural networks, which have been successful in many problems involving sequential data.

Our core hypothesis is that cheaters share behavioral patterns that we can represent with
multivariate time series and successfully recognize with deep learning models.

To the best of our knowledge, this is the first work that approaches cheat detection from
an HCI perspective and successfully employs deep learning and multivariate time series
in cheat detection for video games. We tested our approach in two widespread cheats for
the famous game Counter-Strike: Global Offensive, with a dataset containing 490 h of real
human interactions from 118 players.

The presented framework portrays an outstanding performance in cheat detection, but
most importantly it accomplishes that by relying on HCI events (such as keystrokes and

3039Machine Learning (2021) 110:3037–3057

1 3

mouse clicks) that are ubiquitous not just in video games, but in the way humans interact
with computers.

Our contributions can be summarized as follows:

• Novel approach to cheat detection in video games that relies only on input data such as
keystrokes and mouse movements;

• CNN architecture to detect cheating occurrences in a supervised fashion;
• Data collection and processing method that creates a multivariate time series represen-

tation of HCI.

As for the organization of this paper, we start by introducing some concepts essential to
our work. We then present related scientific work regarding cheat detection in video games.
Next, we present our novel approach, namely our data collection methods and the adopted
deep learning architecture. Afterward, we explain the conducted experiments and report
the obtained results. Finally, we discuss those results and make some final remarks regard-
ing this work’s conclusion and future work.

2 Fundamental concepts

In this section, we introduce some concepts that are essential to the approach we propose.

2.1 Multivariate time series

We define a time series � in Eq. 2 as a sequence of T observations �t of a given state at
time t, called timesteps. Each timestep �t is composed of D values, as shown in Eq. 1. If
D > 1 , we face a multivariate timeseries, represented in Equation.

This data structure can represent dynamic systems across many fields. In an industrial
context, the multivariate time series can store data collected from an ensemble of sensors
monitoring a production pipeline (Siegel, 2020; Liu et al., 2019; Mehdiyev et al., 2017;
Filonov et al., 2016). In finance, each dimension can contain a stock’s price or trade vol-
ume fluctuation (Mehtab & Sen, 2020). Health-care is another important use-case, where
each timestep can contain measurements regarding biometrics such as heart rate and blood
pressure or gait-related features (Tan et al. 2019).

As pointed out by Xing et al. (2010), we can divide sequential data analysis methods
into three categories: feature-based, distance-based, and model-based.

(1)�t = {xt1, xt2, xt3, ..., xtD}

(2)� = {�1, �2, �3, ..., �T}

(3)� =

⎡
⎢⎢⎢⎢⎣

x11 x12 x13 ... x1D
x21 x22 x23 ... x2D
x31 x32 x33 ... x3D
...

xT 1 xT 2 xT 3 ... xTD

⎤⎥⎥⎥⎥⎦

3040 Machine Learning (2021) 110:3037–3057

1 3

The first approach consists of processing sequences into a feature vector that can be
analyzed by classifiers such as decision trees or SVMs. These methods are prone to lose
information and generally do not preserve the ordered nature of sequences.

Distance-based methods rely on distance functions such as Dynamic Time Warping
(DTW) or the Wasserstein distance. These can serve as the underlying similarity measures
in clustering methods such as K-Means Clustering or K-Nearest Neighbors.

Model-based approaches attempt to build a parametric approximation of the probability
density function of the sequences. Traditionally, models such as Dynamic Bayesian Net-
works (DBNs) or Hidden Markov Models (HMMs) were popular due to their simplicity.
More recently, with the advent of Deep Learning, models such as convolutional neural
networks (CNN) and Long Short-Term Memory (LSTM) recurrent neural networks have
increasingly become more popular for sequential data-related tasks.

In Table 1 we can find previous work in multivariate time series analysis, grouped by
task.

In our study of previous work involving multivariate time series, we find that LSTM
architectures perform well when the data portrays some sort of perioding and regular vari-
ation. Pattern recognition in more erratic time series is usually more successful with CNN
architectures.

2.2 Convolutional neural networks

CNNs (Cun et al., 1990) have been successful in many tasks, being particularly popular
for their use in computer vision. These models employ an infinitely strong prior belief that
features interact only within a given range of proximity (to which we refer in practice as

Table 1 Previous related work involving multivariate time series

Task Paradigm Work Models used

Anomaly detection in multivariate time series Unsupervised Siegel (2020) RNN, CNN
Lu et al. (2017) RNN
Lin et al. (2020) LSTM
Dietterich (2002) CNN

Multivariate time series classification Supervised Zheng et al. (2016) CNN
Cui et al. (2016) RNN
Liu et al. (2019) CNN
Zhao et al. (2017) CNN
Wang et al. (2017) CNN
Karim et al. (2018) LSTM + CNN
Tan et al. (2019) LSTM

Multivariate time series forecasting Supervised Borovykh et al. (2018) CNN
Wan et al. (2019) CNN
Mehtab and Sen (2020) CNN
Filonov et al. (2016) LSTM
Du et al. (2018) LSTM
Sagheer and Kotb (2019) LSTM

3041Machine Learning (2021) 110:3037–3057

1 3

convolutional layers’ kernel size). As pointed out by Goodfellow et al. (2016), CNNs por-
trays three essential properties:

• Firstly, they build an equivariant representation, since they apply the same kernel to all
input locations, which means that the interaction between features occurs in the same
way regardless of location;

• The parameters that encode equivariant interactions are shared across all input loca-
tions. Parameter sharing acts as a regulatory factor;

• Sparse connectivity greatly reduces the number of parameters in the model, which
facilitates its training.

These properties make CNNs a great candidate model for our approach since we intend to
recognize cheating patterns regardless of when they occur in the interaction. Additionally,
the statistical efficiency of CNNs is of great value in data as complex as multivariate time
series and as irregular as human behavior can be.

Methods used in previous work do not take advantage of the temporal context in time
series, so they would not be of use when we formulate our problem with this data structure.
An alternative to CNNs would be recurrent neural networks, especially gated architectures
which are feature in work referenced in Table 1. RNNs, however, are exhibit some dis-
advantages that make them an inferior choice. Due to unfolding, RNNs tend to have an
extremely high number of parameters and are difficult to paralelize (time steps need to be
processed sequentially).

2.3 Deep learning regularization techniques

There are many methods applied to deep learning models in order to lower their generali-
zation error without harming their ability to learn complex functions. Here we review the
main techniques which we used in this work.

L2 Regularization
Parameter norm penalties consist of introducing a penalty in the objective function of

the algorithm with the purpose of stabilizing the model’s parameters’ values. If our model
is described by the set of parameters ��� , and we have an objective function J(���;XXX) , the regu-
larized function J̃ can be defined as

where � is the function we use to calculate parameter norm and � is a hyperparameter that
defines how strong we want the penalty to be. The L2 regularization is the most popular
parameter norm penalty, defined by

where www
���
 is the set of trainable parameters in ��� . Notice that in Eq. 6, the value of � replaces

what would be �
2
 according to Eqs. 5 and 4, for a matter of simplicity.

Dropout

(4)J̃(𝜃𝜃𝜃;XXX) = J(𝜃𝜃𝜃;XXX) + 𝛼𝛺(𝜃𝜃𝜃)

(5)�(���) =
1

2
‖www

���
‖2
2

(6)J̃(𝜃𝜃𝜃;XXX) = J(𝜃𝜃𝜃;XXX) + 𝜆‖www
𝜃𝜃𝜃
‖2
2

3042 Machine Learning (2021) 110:3037–3057

1 3

Given the stochastic factors in the training of deep learning models (in parameter initial-
ization or data sampling, for example), it is extremely unlikely that an algorithm converges
to the same model twice.

In this sense, we can train several models using the same exact process. If these models
make independent errors, we can combine their answers to make even better predictions.

This is the core idea in bagging (Breiman, 1996), a method that aggregates the answers
of several models under the assumption that they make independent errors. These models
are trained with datasets randomly selected with replacement from the original dataset. If
the errors are correlated, bagging performs on average at least as well as any of the models
in the ensemble.

Another regularization method that can be seen as bagging is called dropout (Srivastava
et al., 2014), which works by randomly dropping connections in a neural network at train
time, as illustrated in Fig. 1. Dropout provides a way to train many less dense models with-
out the significant computational overhead associated with other bagging methods.

The ability to train these models simultaneously and implicitly is due to the parameter
sharing between them. This parameter sharing motivates the whole network to learn redun-
dant units since if a certain feature is not present, the network can still make a correct pre-
diction based on other information.

3 Related work

Machine learning has been used for cheat detection in video games before. Table 2 sum-
marizes previous work from which we can draw a few conclusions.

Nearly all approaches rely on in-game data (information regarding the state of the play-
er’s avatar in the game environment) and follow the supervised learning paradigm. Addi-
tionally, the only works using time series do not explore deep learning models, which are
currently the most popular methods for dealing with multivariate time series. From the

Fig. 1 Possible architectures generated by the dropout regularization technique in a very simple neural net-
work

3043Machine Learning (2021) 110:3037–3057

1 3

analyzed related work, Islam et al. (2020) stands out as the only unsupervised learning
approach and the only one that doesn’t use in-game data. Their approach consists of trying
to detect patterns in network traffic that correlate with cheating.

In this sense, there are two aspects in our approach that we couldn’t find in any previous
scientific work or report:

• Use of deep learning and multivariate time series for cheat detection in video games;
• Approaching cheat detection from an HCI perspective and capturing the interaction

between the player and the platform.

4 The proposed approach

In this section, we describe our novel approach to cheat detection, based on the idea of rep-
resenting HCI with multivariate time series. First, we provide details on the data collection
and preprocessing methods. Then, we specify the architecture used for classification.

4.1 Data collection

Our cheat detection system relies on a generic approach to player behavior. Instead of ana-
lyzing contextual game data (such as avatar positioning and activity), we analyze the events
produced by the platform’s peripherals (keystrokes and mouse activity, for example). As
we’ve mentioned, this allows the application of this system to several contexts (different
games or even domains beyond gaming).

This data collection method greatly diverges from previous work in cheat detection
using machine learning, since it does not rely on the game engine to retrieve any sort of
contextual data.

Carneiro et al. (2016), Pimenta et al. (2015, 2014), we see a similar approach to assess
mental fatigue in computer users. In these works, hardware events were processed to pro-
duce a collection of behavioral biometrics. These biometrics were calculated based on
domain knowledge and consisted of aggregational descriptive statistics.

Table 2 Related work applying machine learning to cheat detection in video games

Data origin Data structure Paradigm Work Models used

Network traffic data Tabular data Unsupervised Islam et al. (2020) Kernel machines
variant

In-game data Tabular data Supervised Galli et al. (2011) SVM logistic regres-
sion

Alayed et al. (2013) Decision trees random
forest MLP SVM

Pao et al. (2010) SVM K-nearest
neighbors

In-game data Multivariate time
series

Supervised Yeung et al. (2006) DBN
Alkhalifa (2016) HMM

3044 Machine Learning (2021) 110:3037–3057

1 3

In this work, we make use of raw event data with minor preprocessing. Table 3 illus-
trates the information we collect for each event. Each event is characterized by three attrib-
utes: a timestamp, a code, and a value.

Once we have the collection of events described above, we process them to obtain a data
structure as seen in the sample in Table 4. Each column represents an event code and each
row represents a timestep (each timestep corresponds to 100 ms).

We aggregate events in timesteps according to the value range of each event code.
For binary events (such as pressing or releasing keys), the value for each timestep is the

activation time (e.g. duration of a key press) within that timestep, given by the formula

where eupn and edownn are the timestamps between which the nth event with code e occured.
T is the duration of a timestep and t is the beginning of the timestep.

For real-valued columns, we follow a different approach. For each possible event code,
we generate two features expressing the variance and the amplitude of the values in each

(7)xt =

∑
n

�
min(t + T , eupn) −max(t, edownn)

�

T
,

∀ n ∶ t < eupn < t + T ∨ t < edownn < t + T

Table 3 Events occurring during an interaction

This table contains roughly 500 ms of a real interaction from our data

Timestamp (ms) Code Value Event description

1574365839854 cursorX 960 The cursor’s horizontal location
1574365839854 D 1 The D keyboard key was pressed
1574365839854 cursorY 540 The cursor’s vertical location
1574365839854 MOUSE_LEFT 1 The left mouse button was pressed
1574365840188 A 1 The A keyboard key was pressed
1574365840196 D 0 The D keyboard key was released
1574365840392 cursorX 960 The cursor’s horizontal location
1574365840392 cursorY 540 The cursor’s vertical location
1574365840392 MOUSE_LEFT 0 The left mouse button was released
… … … …

Table 4 Multivariate time series of the events in Table 3

Timestamp A D MOUSE_LEFT cursorX_var cursorY_var

1574365839854 0 1 1 0 0
1574365839954 0 1 1 0 0
1574365840054 0 1 1 0 0
1574365840154 0.66 0.42 1 0 0
1574365840254 1 0 1 0 0
1574365840354 1 0 0.38 0 0
… … … … … …

3045Machine Learning (2021) 110:3037–3057

1 3

timestep. Following the same language as before, the two columns can be defined with the
formulae

where envalue is the value of the nth event with the keycode of the column being calculated.
The function � serves the purpose of keeping the values of these columns in the same
range as the binary columns, and is defined by the formula

We can visualize the transformation applied by � in Figs. 2 (before) and 3 (after). The
mouse movement features we used in this work assume values in [0, +∞[. When we apply
the � function, these features are squashed into the interval [0, 1[, which is nearly same
domain seen in the features resulting from binary events.

4.2 Classifier architecture

Our proposed architecture for classification is a feedforward convolutional neural network
illustrated in Fig. 4. We follow each layer except for the last with a dropout mask to achieve

(8)

⎧
⎪⎨⎪⎩

xtvar = 𝜎

�∑N

n=1
(envalue

− evalues)
2

N−1

�

xtamp = 𝜎

�
max
n

envalue −min
n

envalue

� ,

∀ n ∶ t < en < t + T

(9)
� ∶ [−∞, +∞] → [−1, 1]

�(x) =
2

1 + exp(−x)
− 1

Fig. 2 Example of 10 s of interaction between the player and the computer. The red rectangle highlights the
data sample seen in Tables 3 and 4

3046 Machine Learning (2021) 110:3037–3057

1 3

better generalization. The use of a small number of filters can also be seen as a form of
obtaining better generalization.

Filter size has a strong meaning in this context because the range of timesteps interact-
ing to originate a hidden feature determines the time period that influences that feature.

We can multiply that range by applying some sort of pooling operation, such as max-
pooling, and although this can also mean fewer parameters and a model that is easier to
train, models using max-pooling layers did not perform as well as the ones that don’t use
pooling.

Perhaps in tasks with a necessity for detecting patterns with a wide temporal range,
deeper models that make use of pooling might be the better choice.

5 Experiments

In this section, we explain our experiments. First, we describe our dataset to show that our
results don’t just apply to a controlled environment as seen in previous work but extend to
a real-world scenario. We then present the results that led to our proposed architecture and
finally present a method for player-based cross-validation that allowed us to assert if our
approach can deal with unseen players.

5.1 Dataset description

The dataset we used in our experiments was collected in a real-world context of players
in the game Counter-Strike: Global Offensive, a first-person shooter. Players installed an
application that collected keyboard and mouse events as previously described. Since we

Fig. 3 The same data seen in Fig. 2, after applying the function � to the features outlined by the red rectan-
gle. Notice that the values of these features now lie between 0 and 1

3047Machine Learning (2021) 110:3037–3057

1 3

intended our dataset to be as realistic as possible, most data resulted from normal players
(not cheaters) engaging in matches on the game’s official servers. Players were given full
freedom to play as they intended (as long as they were not cheating) to maximize behavior
variety in the dataset.

We tested two types of cheating:

• Aimbot—a cheat that automatically aims towards the cheater’s target, thus greatly
reducing the need to perform mouse movements;

• Triggerbot—a script that automatically fires the weapon as soon as the crosshair
reaches an opponent, thus reducing the need for a fast reaction.

Fig. 4 Proposed architecture for the CNN classifier

3048 Machine Learning (2021) 110:3037–3057

1 3

These cheats greatly alter player behavior and allow much better performance in the game.
The hypothesis motivating our approach is that these different behavioral patterns reflect in
the multivariate time series, and are detected by the deep learning models.

As shown in Fig. 5, our dataset contains interaction data from 118 players, 8 of whom
have engaged in cheating. Labels of cheating interactions are rare, which is coherent with a
real-world scenario where cheaters represent a small minority of players.

Fig. 5 Distribution of players and data records by cheat. Although there isn’t an official report of the exact
amount of active cheating players in this game, we can argue that this our dataset is representative of the
real world proportion of legitimate to fraudulent players. Although cheaters form a minority of the commu-
nity, it is fairly common for most players to encounter one or more cheaters in a match

Fig. 6 Event codes that appear the most often in our dataset

Fig. 7 Two examples of records in our dataset

3049Machine Learning (2021) 110:3037–3057

1 3

The labels were generated in scheduled matches by altering the cheating software to
produce a timestamp for every cheat activation. Each record in our dataset corresponds
to 5 minutes of gameplay. We label a record as a cheating record if there is at least one
activation of the cheat during that interaction. In Fig. 7 we can visualize two samples
from our training dataset. Each record is a multivariate time series with 3000 time steps
and 10 values in each timestep. We selected those 10 variables based on the frequence
with which they occur, as seen in Fig. 6, and on their respective performed function in
the game.

5.2 Model hyperparameters

To arrive at our proposed architecture, we conducted several trials to search for a combina-
tion of hyperparameters that maximized the area under the receiver operating characteristic
curve (AUC) metric.

We used TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015) for model
implementation and Optuna (Akiba et al., 2019) for hyperparameter optimization. We used
the Adam algorithm (Kingma & Ba, 2014) to optimize our models by minimizing L2 regu-
larized cross-entropy, defined by

where yyyi and p(xxxi) are the true and predicted labels of the sample XXXi , respectively, N is the
number of samples in XXX , � is the L2 regularization hyperparameter and www

���
 is the trainable

subset of the model’s parameters ���.
Table 5 describes our hyperparameter search space. The number of layers and filters in

each layer was intended to regulate complexity in our model. The filter size has an impact
on model complexity, but it also determines the temporal range of the interactions between
features. The batch size and the L2 � value were the variable sources of regularization (we
also used a fixed 0.5 dropout rate in every layer). We also tested the use of max-pooling to
explore the potential benefits of dimensionality reduction in hidden features. In those mod-
els, we applied the max-pooling operation following each convolutional layer.

In Figs. 8 and 9, we can observe the results of the hyperparameter optimization. It
appears that two separate clusters are being formed according to the usage of max-pooling.
In Fig. 10, we examine the distribution of the AUC metric and the loss function values in

(10)
L(���;XXX;yyy) = �‖www

���
‖2
2
−

N∑
i=1

�
yyyi × log(p(XXXi)) + (1 − yyyi) × log(1 − p(XXXi))

�

N

Table 5 Hyperparameter search space and chosen values

Hyperparameter Type Search interval or set Chosen value

L2 regularization � Real-valued
[
5 × 10−5, 5 × 10−3

]
3 × 10−3

Number of convolutional layers Integer [2, 8] 3
Number of filters Integer [4, 16] 6
Filter size Integer [10, 50] 25
Max pooling Boolean {True, False} False
Batch size Integer [32, 512] 64

3050 Machine Learning (2021) 110:3037–3057

1 3

Fig. 8 Distribution of the experimental results by number of layers, number of filters in each layer, and filter
size. The best trials correspond to CNNs with a filter size bewteen 20 and 30. In terms of number of layers
and filters, we can observe two successful clusters of models: one with 2 layers and a higher number of fil-
ters (around 14 per layer), and other with 3 layers but a lower number of filters (around 6 per layer)

Fig. 9 Distribution of the experimental results by batch size, L2 Regularization parameter, and number
of layers. The best trials featured a batch size between 100 and 200 and an L2 regularization parameter
between 1e−3 and 2e−3

3051Machine Learning (2021) 110:3037–3057

1 3

models with or without max-pooling layers. Models without max-pooling seem to achieve
better results in both metrics while being more consistent in terms of loss function values.

Taking into account the results of the hyperparameter optimization, we went on to vali-
date our approach with the values shown in the last column of Table 5.

5.3 Player‑based cross‑validation

Previous works conducted experiments using rudimentary validation techniques and very
small datasets.

Alayed et al. (2013) performed tenfold cross-validation in 7.6 h of data from only 2
players. Galli et al. (2011) used a simple train-test split with a dataset of also 2 players,
but only 1 h of data. In Islam et al. (2020), interactions from 20 players were collected but
there is no reference to the volume of their dataset. Yeung et al. (2006) collected a mere
1.7 h of data from 3 players and divided it into training, validation, and test datasets. As
seen in Fig. 5, our dataset consists of roughly 490 h of gameplay and contains data from
128 players in total.

To quickly take action against fraudulent behavior, cheat detection systems must make
accurate classifications for new players. No previous work took this necessity into account,
so we developed a player-based cross-validation method to address it.

This player-based cross-validation method consists of training a model in all players
except for one left out for validation. We describe this method in Algorithm 1.

Player-based cross-validation not only tests our approach’s ability to perform well in
unseen data but most importantly of detecting cheating interactions in unknown players.

Fig. 10 Distribution of the validation AUC and loss for the 100 best trials, by use of pooling layers

3052 Machine Learning (2021) 110:3037–3057

1 3

We repeated this experiment for both cheats in our dataset: triggerbot and aimbot. The
results are presented in Tables 6 and 7 respectively. Triggerbot results were better, which
might be due to the patterns associated with this type of cheat being easier to detect or the
fact that there is more data on this type of cheat.

We chose the best by maximizing the validation true positive rate (TPR), as long as
the false positive rate (FPR) didn’t exceed 5%, which did not occur for any instance of our
experiment.

Table 6 Results of player-based cross-validation in triggerbot detection

Player Number of records AUC Best threshold t FPR for t TPR for t Accuracy for t

1 40 0.997 0.080 0.047 1 0.975
2 375 1 0.381 0 1 1
3 121 0.996 0.027 0.010 0.95 0.992
4 129 1 0.54 0 1 1
5 126 1 0.348 0 1 1
7 26 1 0.591 0 1 1
8 320 0.992 0.005 0.027 1 0.978
Avg 162.429 0.998 0.282 0.012 0.993 0.992

Table 7 Results of player-based cross-validation in aimbot detection

Player Number of records AUC Best threshold t FPR for t TPR for t Accuracy for t

1 29 1 0.049 0 1 1
2 381 0.954 0.160 0.011 0.895 0.984
3 109 0.996 0.073 0.030 1 0.972
4 133 0.991 0.124 0.032 1 0.970
5 110 1 0.214 0 1 1
6 25 1 0.225 0 1 1
7 29 1 0.054 0 1 1
8 314 0.995 0.225 0.016 1 0.984
Avg 137.625 0.992 0.141 0.011 0.987 0.989

3053Machine Learning (2021) 110:3037–3057

1 3

The left column in Fig. 11 shows the validation receiver operating characteristics curve
for aimbot detection on four players. The right column shows the models’ output distribu-
tion according to the ground truth. We can see that our models produce a very clear distinc-
tion between fraudulent and legitimate interactions.

The magnitude of the predictions varied mostly due to the stochastic nature of the mod-
el’s parameter initialization.

6 Result discussion

Results show that our models were able to establish a clear distinction between legitimate
and fraudulent gameplay.

As previously mentioned, max-pooling can enable learning longer patterns, and accord-
ing to our hyperparameter search, it allows for deeper networks. Different games or appli-
cations may require this additional capacity. For each new domain where this approach
is applied, a new hyperparameter search should be performed to find a well-performing
architecture.

The presented cross-validation method allowed us to show that our models learn pat-
terns that are not player-specific. Our models can detect fraudulent players even if they
weren’t exposed to their behavior. We suspect that the principal source of variation in our
results is the fact that some of the tested players (such as player #2) represent a significant
portion of our dataset.

We used a reduced set of event types (movement keys, mouse buttons, and mouse move-
ments). The number of necessary event types to include in the multivariate time series
might vary for different domains, which influences the architecture resulting from the
hyperparameter search.

Our models achieve higher accuracy than reported in previous related work (Galli et al.,
2011; Alayed et al., 2013; Islam et al., 2020; Alkhalifa, 2016) while also being tested in
a much larger dataset. Although we’re not able to test these previous approaches with
our data (since they use completely different structures and in-game data), we argue that
by comparing the reported accuracy we can safely suggest that our work constitutes an
improvement at this task.

The ability to analyze player behavior based solely on peripheral input data is remark-
able, allowing for the application of this system in many different video games, perhaps
with different input methods, thus greatly reducing the need for manual feature engineer-
ing. This approach can even translate to other tasks related to modeling human activity,
beyond video games.

This dataset has a large volume of data, collected from a wide variety of players in a
real-world context. In this sense, we are confident that these results will translate to (or
even improve with) communities with thousands or even millions of players.

7 Conclusion and future work

In this work, we developed a ground-breaking approach to cheat detection in video games.
We applied deep learning and multivariate time series to human–computer interaction data
to capture behavioral patterns in cheater mouse movements and keystrokes.

3054 Machine Learning (2021) 110:3037–3057

1 3

Fig. 11 Validation AUC and prediction distribution for 4 of the tested players

3055Machine Learning (2021) 110:3037–3057

1 3

Our models showed results that are extremely positive when compared to any previous
work. Additionally, our approach can be applied to any game, any input method, and per-
haps other use-cases involving human activity.

This work provides a starting point for a unified framework for using deep learning in
video games and should prove useful to the video-game industry, which is in great expan-
sion and requiring such technologies.

For future work, testing this approach with a variety of video games and larger com-
munities is a priority. Another path to be explored is to automate the model architecture
design even further by adopting a more sophisticated hyperparameter search.

Another important path to investigate is the use of unsupervised methods to leverage
great volumes of unlabeled data, not just in cheat detection but also in other use-cases such
as grouping players in clusters based on their experience.

Finally, we envision the core ideas in this approach extrapolating beyond video games
and finding uses in HCI applied to wellbeing.

Funding Not applicable.

Availability of data and material Not applicable.

Declarations

Conflict of interest Not applicable.

Code availability Not applicable.

Additional declarations Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

Abadi, M.,, Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz R, Kaiser,
L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S, Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. http:// tenso rflow. org/, software available from ten-
sorflow.org

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019) Optuna: A next-generation hyperparam-
eter optimization framework. In Proceedings of the 25rd ACM SIGKDD international conference on
knowledge discovery and data mining.

Alayed, H., Frangoudes, F., & Neuman, C. (2013). Behavioral-based cheating detection in online first per-
son shooters using machine learning techniques. In 2013 IEEE conference on computational inteli-
gence in games (CIG) (pp. 1–8). https:// doi. org/ 10. 1109/ CIG. 2013. 66336 17

Alkhalifa, S. (2016). Machine learning and anti-cheating in fps games. Ph.D. thesis, University College
London. https:// doi. org/ 10. 13140/ RG.2. 2. 21957. 86242

Borovykh, A., Bohte, S., & Oosterlee, C. W. (2018) Conditional time series forecasting with convolutional
neural networks. arXiv: 1703. 04691

http://tensorflow.org/
https://doi.org/10.1109/CIG.2013.6633617
https://doi.org/10.13140/RG.2.2.21957.86242
http://arxiv.org/abs/1703.04691

3056 Machine Learning (2021) 110:3037–3057

1 3

Breiman, L. (1996). Bagging predictors. Machine Learning, Morgan Kaufmann, 24, 123–140. https://
doi. org/ 10. 1023/A: 10180 54314 350.

Carneiro, D., Pimenta, A., Gonçalves, S., Neves, J., & Novais, P. (2016). Monitoring and improving
performance in human–computer interaction. Concurrency and Computation: Practice and Experi-
ence, 28(4), 1291–1309.

Chollet, F., et al. (2015) Keras. https:// keras. io
Cui, Z., Chen, W., & Chen, Y. (2016). Multi-scale convolutional neural networks for time series clas-

sification. arXiv: 1603. 06995
Cun, L., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1990)

Handwritten digit recognition with a back-propagation network. In: Advances in neural information
processing systems, Morgan Kaufmann (pp. 396–404).

Dietterich, T. G. (2002). Machine learning for sequential data: A review. In T. Caelli, A. Amin, R. P. W.
Duin, D. de Ridder, & M. Kamel (Eds.), Structural, syntactic, and statistical pattern recognition
(pp. 15–30). Springer.

Du, S., Li, T., & Horng, S. (2018) Time series forecasting using sequence-to-sequence deep learning
framework. In 2018 9th international symposium on parallel architectures, algorithms and pro-
gramming (PAAP) (pp. 171–176). https:// doi. org/ 10. 1109/ PAAP. 2018. 00037

Filonov, P., Lavrentyev, A., & Vorontsov, A. (2016) Multivariate industrial time series with cyber-attack
simulation: Fault detection using an lstm-based predictive data model. arXiv: 1612. 06676

Galli, L., Loiacono, D., Cardamone, L., & Lanzi, P. L. (2011) A cheating detection framework for unreal
tournament iii: A machine learning approach. In 2011 IEEE conference on computational intelli-
gence and games (CIG’11) (pp. 266–272). https:// doi. org/ 10. 1109/ CIG. 2011. 60320 16

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http:// www. deepl earni
ngbook. org

Islam, M. S., Dong, B., Chandra, S., Khan, L., & Thuraisingham, B. M. (2020). Gci: A gpu based trans-
fer learning approach for detecting cheats of computer game. IEEE Transactions on Dependable
and Secure Computing. https:// doi. org/ 10. 1109/ TDSC. 2020. 30138 17.

Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). Lstm fully convolutional networks for time
series classification. IEEE Access, 6, 1662–1669. https:// doi. org/ 10. 1109/ ACCESS. 2017. 27799 39.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv: 14126 980
Lin, S., Clark, R., Birke, R., Schönborn, S., Trigoni, N., & Roberts, S. (2020) Anomaly detection for

time series using vae-lstm hybrid model. In ICASSP 2020–2020 IEEE international conference on
acoustics, speech and signal processing (ICASSP) (pp. 4322–4326). https:// doi. org/ 10. 1109/ ICASS
P40776. 2020. 90535 58

Liu, C., Hsaio, W., & Tu, Y. (2019). Time series classification with multivariate convolutional neural
network. IEEE Transactions on Industrial Electronics, 66(6), 4788–4797. https:// doi. org/ 10. 1109/
TIE. 2018. 28647 02.

Lu, W., Cheng, Y., Xiao, C., Chang, S., Huang, S., Liang, B., & Huang, T. (2017). Unsupervised sequen-
tial outlier detection with deep architectures. IEEE Transactions on Image Processing, 26(9),
4321–4330.

Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P., & Loos, P. (2017). Time series classification
using deep learning for process planning: A case from the process industry. Procedia Computer
Science,114, 242–249. https:// doi. org/ 10. 1016/j. procs. 2017. 09. 066, https:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ S1877 05091 73187 07, complex Adaptive Systems Conference with Theme: Engi-
neering Cyber Physical Systems, CAS October 30–November 1, 2017, Chicago, Illinois, USA

Mehtab, S., & Sen, J. (2020). Stock price prediction using convolutional neural networks on a multivari-
ate timeseries. arXiv: 2001. 09769

Pao, H., Chen, K., & Chang, H. (2010). Game bot detection via avatar trajectory analysis. IEEE Trans-
actions on Computational Intelligence and AI in Games, 2(3), 162–175. https:// doi. org/ 10. 1109/
TCIAIG. 2010. 20725 06.

Pimenta, A., Carneiro, D., Novais, P., & Neves, J. (2014). Analysis of human performance as a measure
of mental fatigue. In J. S. Pan, M. Woźniak, H. Quintian, & E. Corchado (Eds.), Polycarpou M, de
Carvalho ACPLF. Hybrid artificial intelligence systems. Berlin: Springer.

Pimenta, A., Carneiro, D., Neves, J., & Novais, P. (2015). Improving user privacy and the accuracy of
user identification in behavioral biometrics. In P. Machado, E. Costa, A. Cardoso, & F. Pereira
(Eds.), Progress in artificial intelligence. Springer.

Sagheer, A., & Kotb, M. (2019). Time series forecasting of petroleum production using deep lstm recur-
rent networks. Neurocomputing, 323, 203–213. https:// doi. org/ 10. 1016/j. neucom. 2018. 09. 082.

Siegel, B. (2020). Industrial anomaly detection: A comparison of unsupervised neural network architec-
tures. IEEE Sensors Letters, 4(8), 1–4. https:// doi. org/ 10. 1109/ LSENS. 2020. 30078 80.

https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://keras.io
http://arxiv.org/abs/1603.06995
https://doi.org/10.1109/PAAP.2018.00037
http://arxiv.org/abs/1612.06676
https://doi.org/10.1109/CIG.2011.6032016
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TDSC.2020.3013817
https://doi.org/10.1109/ACCESS.2017.2779939
http://arxiv.org/abs/14126980
https://doi.org/10.1109/ICASSP40776.2020.9053558
https://doi.org/10.1109/ICASSP40776.2020.9053558
https://doi.org/10.1109/TIE.2018.2864702
https://doi.org/10.1109/TIE.2018.2864702
https://doi.org/10.1016/j.procs.2017.09.066
https://www.sciencedirect.com/science/article/pii/S1877050917318707
https://www.sciencedirect.com/science/article/pii/S1877050917318707
http://arxiv.org/abs/2001.09769
https://doi.org/10.1109/TCIAIG.2010.2072506
https://doi.org/10.1109/TCIAIG.2010.2072506
https://doi.org/10.1016/j.neucom.2018.09.082
https://doi.org/10.1109/LSENS.2020.3007880

3057Machine Learning (2021) 110:3037–3057

1 3

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A sim-
ple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1),
1929–1958.

Tan, H. X., Aung, N. N., Tian, J., Chua, M. C. H., & Yang, Y. O. (2019). Time series classification using a
modified lstm approach from accelerometer-based data: A comparative study for gait cycle detection.
Gait and Posture, 74, 128–134. https:// doi. org/ 10. 1016/j. gaitp ost. 2019. 09. 007.

Wan, R., Mei, S., Wang, J., Liu, M., & Yang, F. (2019). Multivariate temporal convolutional network: A
deep neural networks approach for multivariate time series forecasting. Electronics, 8, 8.

Wang, Z., Yan, W., & Oates, T. (2017) Time series classification from scratch with deep neural networks: A
strong baseline. In 2017 international joint conference on neural networks (IJCNN) (pp. 1578–1585).
https:// doi. org/ 10. 1109/ IJCNN. 2017. 79660 39

Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on sequence classification. SIGKDD Explorations
Newsletter, 12(1), 40–48. https:// doi. org/ 10. 1145/ 18824 71. 18824 78.

Yeung, S. F., Lui, J. C. S., Jiangchuan, L., & Yan, J. (2006) Detecting cheaters for multiplayer games: the-
ory, design and implementation[1]. In CCNC 2006. 2006 3rd IEEE consumer communications and
networking conference, 2006, (Vol .2, pp. 1178–1182). https:// doi. org/ 10. 1109/ CCNC. 2006. 15932 24

Zhao, B., Lu, H., Chen, S., Liu, J., & Wu, D. (2017). Convolutional neural networks for time series clas-
sification. Journal of Systems Engineering and Electronics, 28(1), 162–169. https:// doi. org/ 10. 21629/
JSEE. 2017. 01. 18

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2016). Exploiting multi-channels deep convolutional
neural networks for multivariate time series classification. Frontiers of Computer Science, 10, 96–112.
https:// doi. org/ 10. 1007/ s11704- 015- 4478-2.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/j.gaitpost.2019.09.007
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1145/1882471.1882478
https://doi.org/10.1109/CCNC.2006.1593224
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.1007/s11704-015-4478-2

	Deep learning and multivariate time series for cheat detection in video games
	Abstract
	1 Introduction
	2 Fundamental concepts
	2.1 Multivariate time series
	2.2 Convolutional neural networks
	2.3 Deep learning regularization techniques

	3 Related work
	4 The proposed approach
	4.1 Data collection
	4.2 Classifier architecture

	5 Experiments
	5.1 Dataset description
	5.2 Model hyperparameters
	5.3 Player-based cross-validation

	6 Result discussion
	7 Conclusion and future work
	References

