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Abstract:  

Anaerobic digestion processes are one of the technologies most used by wastewater 

treatment plants (WWTPs) to stabilize and decrease the organic content of sludge. This 

process decreases the costs of disposal while increasing the energetic efficiency of 

WWTPs. In order to optimize this process, three model approaches were implemented. 

First, we calibrated and validated the anaerobic digestion model no.1 (ADM1) using data 

from an anaerobic lab digester treating sewage sludge (Phases I, II, III), and further 

receiving glycerol pulses (Phases IV, V). Then, to optimize the calibration and parameter 

estimation, an iterative procedure was applied by minimizing the root mean square error 

(RMSE). The second approach consisted of applying a machine learning (ML) model to 

the biogas and methane produced. The results showed that the ADM1 model adjusted 

well to the experimental results, especially to biogas, methane and pH. The optimization 

routine was useful to identify the most sensitive parameters, improving model calibration. 

Overall, the ML approach was more reliable to predict anaerobic reactors’ performance 

but did not respond so well to process perturbations (glycerol pulses). 
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Introduction 

The disposal of sludge generated during wastewater treatment may represent up to 50 % 

of the operating costs of a WWTP (Appels et al., 2011). The implementation of anaerobic 

digestion (AD) is generally considered to be an economic and environmentally friendly 

technology to treat sewage sludge, since it allows to reduce the overall load of biosolids 

to be disposed, with simultaneous generation of a green energy carrier (biogas) (Appels 

et al., 2011). The use of mathematical models in AD is a good way to design and assess 

the efficiency of anaerobic wastewater treatment, operational analysis, and control 

(Batstone et al., 2006). This work aims to model the AD of sewage sludge (SS) under 

process perturbations. Two model approaches were implemented and compared: ADM1 

was calibrated and validated; and a ML model was applied to the biogas and methane 

produced. 

Material and Methods 

Inoculum. Anaerobic granular sludge, from a WWTP of a brewery industry, was used as 

inoculum. It contained a volatile solids (VS) content of 82 ± 1 mg g-1 of sludge. The 

specific methanogenic activity in the presence of acetate (30 mmol L-1) and H2/CO2 



2 

(80/20 v/v, 101.35 kPa) reached 145 ± 17 mL g-1 d-1 and 443 ± 26 mL g-1 d-1 (volume of 

methane produced at STP conditions per amount of VS of inoculum and time), 

respectively. 

Substrates. SS was collected from WWTP (Braga, Portugal), after thickening and 

dewatering. 

Reactors’ operation. One anaerobic bioreactor was operated in mesophilic conditions (37 

°C), with 4 L working volume and inoculated with anaerobic sludge (at a final VS 

concentration of 28.3 g L-1). A semi-continuous system was adopted by feeding six times 

per week. The hydraulic retention time (HRT) was reduced from 40 d (Phase I) to 30 d 

(Phase II) and then to 20 d (Phase IIII), as presented in Table 1. In Phases IV and V 

macroalgae were added to the feeding together with SS (R1 and R2), and pulses of 

glycerol were added once a week only in R2. 

Table 1. Operation conditions. The organic loading rate (ORL) is expressed in g of COD fed per 

L of working volume and per day. 

Phase Time/d HRT / d OLR / (g L-1 d-1) 

I 1-51 40 1.58 ± 0.33 

II 51-131 30 2.98 ± 0.76 

III 131-179 20 3.38 ± 0.13 

IV 179-220 20 3.74 ± 0.08 (Plus 8.83 pulse) 

V 220-242 20 3.83 ± 0.00 (Plus 16.85 (pulse) 

 

Analytical methods. TS, VS, pH, TKN were measured according to Standard Methods 

(APHA et al., 1999). COD was determined using standard kits (Hach Lange, Düsseldorf, 

Germany). Volatile fatty acids (VFA) concentration and the % of methane in the biogas 

was measured following the guidelines in (Oliveira et al., 2015). 

Mechanistic model. ADM1. The ADM1 Matlab/Simulink implementation proposed by 

Rosen and Jeppsson, (2006) was used in the present study. In brief, ADM1 describes the 

different steps of AD: disintegration, hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis (Batstone et al., 2002), and considers 26 state variables and 19 

biochemical reactions associated with 7 bacterial populations. More details about model 

description and model parameters can be found in Batstone et al., (2002) and Rosen and 

Jeppsson, (2006). The major input variables driving the model are presented in Table 2. 

To calibrate the model, heuristic approach was followed intending to minimize the root 

mean square error (RMSE). 28 parameters were adjusted to fit experimental results (using 

the average data of the first 180 d of reactors operation). The values of the remaining 

model parameters were taken from Rosen and Jeppsson, (2006). Model validation was 

confirmed by comparing the simulated results with the data from reactor operation from 

day 180 to 240. 

Machine Learning. To compare the mechanistic approach with the data-driven model, an 

Artificial Neural Network (ANN) was developed, namely a Recurrent Neural Network 

(RNN). RNNs have shown excellent performances in the context of time series 

forecasting in the literature due to their ability to create a memory of the data behaviour 

in this type of problem. Namely, in this study, we used a kind of RNNs, the Long Short-

Term Memory (LSTMs). 
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Table 2. The major input variables driving the model. 

Time / d 
SIC

1 / 

kmol·m-3 

SIN
2 / 

kmol·m-3 

Xxc
3 / kg 

COD·m-3 

Xli
4 / kg 

COD·m-3 

XI
5 / kg 

COD·m-3 

OLR / kg 

COD·m-3·d-1 

0 - 50 0.060 0.074 57.9 0 11.6 1.0 

50 - 90 0.080 0.074 69.5 0 13.9 1.3 

90 - 119 0.080 0.234 81.1 0 16.2 4.1 

119 - 131 0.080 0.127 68.9 0 13.8 2.2 

131 - 155 0.060 0.127 50.2 0 10.0 3.3 

155 - 180 0.060 0.124 66.2 0 13.2 3.2 

180 - 210 0.060 0.300 74.1 93.6 18.75 8.5 

210 - 220 0.060 0.304 95.5 163.7 25.05 8.6 

220 - 234 0.060 0.528 105.2 231.0 28.05 15.5 

234 - 241 0.060 0.519 106.4 228.2 28.35 15.2 

1 Concentration of inorganic carbon (bicarbonate concentration); 2 Concentration of inorganic nitrogen (NH4 from 

macronutrients solution); 3 Concentration of composite materials (COD of sewage sludge); 4 Concentration of lipids 

(COD of crude glycerol); 5 Concentration of particulate inerts (estimated to be 20 % of composites) 

 

Results and Conclusions 

Phases I, II and III ended with a methane production yield (m3 of methane per kg of VS 

consumed) of 0.47 m3 kg-1, 0.64 m3 kg-1 and 0.49 m3 kg-1, respectively. Notice that a real 

digester of SS should produce 0.7 m3 kg-1 (Grady et al., 1999). Therefore, laboratory 

results for Phase II were the most similar to a real situation. The solids concentration 

increased constantly after day 20 and stabilised at 60 g L-1 for TS and 40 g L-1 for VS, 

during Phase III. In the end of Phase I, the VS reduction (VSred) was 52 %. Phases II and 

III ended with a VSred close to 43 %. In the intermittent addition of glycerol (R2) VSred 

reached 48 % and 56 %, and the methane production yield (per VS) was 0.26 m3 kg-1 and 

0.31 m3 kg-1, in Phases IV and V, respectively. 

Regarding model results, ADM1 responded very well in the prediction of biogas flow, 

methane proportion in the biogas, pH and dissolved COD. As an example of model 

calibration, Figure 1 depicts the simulated and experimental results for biogas flow 

(qgas). Contrary, simulated results for VFA, NH4, and VS presented a significant 

deviation from the experimental results.  

 

Figure 1. Example of model calibration (Phases I, II and III) and model validation (Phases IV 

and V). 
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To assess the quality of the optimised parameter sets and their applicability in the process 

model, a validation study was undertaken. The model outputs were compared with 

measured data from the Anaerobic Sequencing Batch Reactor treating sewage sludge and 

amended with crude glycerol. The process was simulated by applying the same 

implementation as described above and without changing the previously optimised 

parameter set. As observed in Figure 1 (IV and V), the biogas production responded as 

expected, i.e. increased with the glycerol pulses. COD also responded accordingly, as 

well as acetate accumulation. Simulated propionate and butyrate diverged from the 

experimental results, and these differences can be explained with the non-optimisation of 

several model parameters. 

After calibration optimization the model results were improved. ML approach showed a 

better fitting with the experimental results from R1, indicating that these data-driven 

models could represent a good alternative to traditional mechanistic models. 

Nevertheless, with the ML model, the prediction of biogas flows in response to process 

perturbation (in this case glycerol pulses in R2) were not so accurate. Thus, future 

directions should couple both model approaches in hybrid models, incorporating the 

advantages of both models to predict and optimize anaerobic sludge bioreactors. 
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