
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno José Infante de Sousa

ROS-based Data Acquisition System

May 2022



Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno José Infante de Sousa

ROS-based Data Acquisition System

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Professor Doutor Paulo Cardoso
Doutor Adriano Carvalho

May 2022



C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA RT Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the
internationally accepted standards and good practices are respected concerning copyright
and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should
contact the author through the RepositóriUM of the University of Minho.

license granted to users of this work :

CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/


S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or
falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University
of Minho.

a



A C K N O W L E D G E M E N T S

This work is supported by: European Structural and Investment Funds in the FEDER
component, through the Operational Competitiveness and Internationalization Programme
(COMPETE 2020) [Project nº 039334; Funding Reference: POCI-01-0247-FEDER-039334].

b



A B S T R A C T

Nowadays, we are living in a time where sensors and applications that take advantage
of them are increasingly taking part of our daily lives. Thus, it is increasingly common
to be surrounded by sensors, like image, sound or even luminosity or motion sensors,
among several other types. In this context arises the challenge of how to connect sensors
and applications that use them. The basic approach is to have each sensor bound to an
application with its own private interface. The desirable approach is the oposite: a sensor
should serve any application that requires its data using a well known interface. For this
purpose a middleware solution is needed.

Nowadays, two trends are emerging in automotive industry: electrification and au-
tonomous driving. Both cases means more sensors and software to deal with these sensors.
Also in this context the concept of a middleware makes sense to connect sensors and ap-
plications. More specifically, in this dissertation it is shown how Robot Operating System
(ROS) can be used to bridge the gap between the in-vehicle sensors and the applications
that process the data from those sensors. Through a distributed architecture, remote inter-
action between different components is possible, thus facilitating resources allocation and
management.

The project on which the work developed during this dissertation focuses, is part of the
EasyRide Program, the result of a partnership between the University of Minho and Bosch.

keywords Middleware, Robot Operating System, Data Acquisition System.

c



R E S U M O

Atualmente, vive-se uma época em que os sensores e as aplicações que tiram partido deles
são cada vez mais parte integrante do nosso quotidiano. Tornando-se natural contactar
com uma vasta gama de dispositivos no nosso dia-a-dia, o crescimento da área aplicacional
facilita o processo de interação entre os diferentes dispositivos. Assim, é cada vez mais
comum estar-se rodeado por vários sensores, como sensores de imagem, som ou ainda
sensores de luminosidade ou movimento, entre diversos outros tipos. É neste contexto
que surge o desafio de criar soluções distribuı́das para lidar com esta grande variedade de
dispositivos, tecnologias e aplicações.

No caso concreto do setor automóvel, o processo de monitorização dos passageiros no
veı́culo é muito similar. Então, o objetivo deste projeto consiste em criar um sistema de
aquisição de dados, para o setor automóvel, para monitorizar o interior do veı́culo, desde o
seu estado de conservação até ao estado e comportamento dos passageiros.

Mais concretamente, o objetivo é mostrar como o Robot Operating System (ROS) pode
ser utilizado para fazer a ponte entre os sensores dentro do veı́culo e as aplicações que
processam os dados desses mesmos sensores. Através de uma arquitectura distribuı́da, é
possı́vel uma interação remota entre diferentes componentes, facilitando assim a alocação e
a gestão de recursos.

O projeto sobre o qual incide o trabalho desenvolvido durante esta dissertação, faz parte
do Programa EasyRide, fruto de uma parceria entre a Universidade do Minho e a Bosch.

palavras-chave Middleware, Robot Operating System, Sistema de Aquisição de Da-
dos.

d



C O N T E N T S

1 introduction 2

1.1 Context and Motivation 2

1.2 Objectives 3

1.3 Dissertation Structure 4

2 state of art 6

2.1 Middleware 6

2.2 Apache Kafka 7

2.3 Main Concepts 10

2.3.1 Scalability 10

2.3.2 Component-based Software 11

2.3.3 Distributed Systems 11

2.3.4 Message Passing 12

2.3.5 Real-time Systems 14

3 software development methodology 15

4 robot operating system 2 17

4.1 Design and Architecture 17

4.2 Main Concepts and Communication 18

4.2.1 Nodes 18

4.2.2 Topics 19

4.2.3 Parameter Server 20

4.2.4 Bags 20

4.2.5 ROS Middleware Interface 20

4.3 Package Structure 21

5 packages migration 22

5.1 Audio - audio common 22

5.2 Image/Video - avt vimba camera 24

5.3 Package Migration Guidelines 25

6 health monitoring 26

6.1 Requirements Specification 26

6.2 Architecture 28

6.2.1 Health Monitoring Node Machine 29

6.2.2 Health Monitoring Node Sensor 29

6.2.3 Health Monitoring Messages 30

e



contents f

6.3 Results 31

7 sensors synchronization strategy 35

7.1 Architecture 35

7.2 Cameras Synchronization – Precision Time Protocol 36

7.3 AVSync Generator 37

7.4 Blob Detector 38

7.5 Amplitude Getter 39

7.6 Results 41

7.7 Improvements 44

8 user interface 47

8.1 Init 48

8.2 Preview 49

8.3 Record 50

8.4 Review 53

8.5 Reboot/Shutdown 54

9 results and discussion 56

9.1 System Performance 56

9.1.1 Sensors Configuration 57

9.1.2 Test Scenarios and Setups 60

9.1.3 Performance Tests Results 63

9.1.4 Performance Improvements 73

9.2 Data Campaigns 74

9.2.1 Software Architecture 74

9.2.2 Hardware Architecture 75

9.2.3 Final Results 77

10 conclusion 78



L I S T O F F I G U R E S

Figure 1 Different messaging patterns: (a) request-response and (b) publish-
subscribe. 13

Figure 2 Design Science Research Methodology model (adapted from [1]). 15

Figure 3 Communication structure of Robot Operating System. 19

Figure 4 Code changes after the audio package migration process from ROS1
(top image) to ROS2 (bottom image). 23

Figure 5 The general architecture of the Health Monitoring subsystem. 28

Figure 6 The architecture of the Health Monitoring Node Machine. 29

Figure 7 The architecture of the Health Monitoring Node Sensor. 30

Figure 8 Results from the HM Node Machine subsystem. 32

Figure 9 Results from the HM Node Machine subsystem with plotjuggler
tool. 33

Figure 10 Usage of ROS2 Node List command. 33

Figure 11 Usage of ROS2 Topic List command. 33

Figure 12 Results from the HM Node Sensor subsystem. 34

Figure 13 The architecture of the synchronization strategy. 35

Figure 14 Precision Time Protocol Synchronization (from Allied Vision1). 36

Figure 15 Time diagram of the cameras synchronization process. 37

Figure 16 Frames with the pendulum at different coordinates. 37

Figure 17 Illustration of blob detection. 38

Figure 18 The pendulum’s coordinates over the time. 39

Figure 19 Audio amplitude over the time, with two different amplitudes/fre-
quencies magnified. 40

Figure 20 Excerpt from the audio graph, with the identification of ampli-
tude/frequency change points. 41

Figure 21 Lag over time between two cameras synchronized using PTP. 42

Figure 22 A result from the Blob Detector. 42

Figure 23 Synchronization data from one camera and the microphone. 43

Figure 24 Astable Timer 55 circuit diagram (from Circuit Digest. 45

Figure 25 LED frames: (a) LED off and (b) LED on. 45

Figure 26 Initial screen. 47

Figure 27 System ready to initialize confirmation. 48

Figure 28 Skip initialize confirmation. 48

g



list of figures h

Figure 29 Wait 2 minutes until the system is ready. 48

Figure 30 Screen when the system is running. 49

Figure 31 Image preview of fisheye camera. 50

Figure 32 Insert ID for record. 51

Figure 33 Invalid ID confirmation. 51

Figure 34 Calibration record ID confirmation. 51

Figure 35 Test record ID confirmation. 52

Figure 36 Record screen, with Stop button unlocked. 52

Figure 37 Record performance statistics and confirmation to keep or delete
record. 53

Figure 38 Insert the record ID for review. 53

Figure 39 Front camera review. 54

Figure 40 System reboot confirmation. 55

Figure 41 System shutdown confirmation. 55

Figure 42 Illustrative image of the Allied Vision MAKO G-234c camera. 56

Figure 43 Illustrative image of the miniDSP UMA-8 microphone-array. 57

Figure 44 Illustration of different audio sampling frequencies [2]. 59

Figure 45 Camera’s FPSerror under normal conditions, when using ROS2 and
only the Vimba SDK. 64

Figure 46 Camera’s FPSerror under lightweight conditions, when using ROS2

and only the Vimba SDK with CPU load. 66

Figure 47 Microphone’s CPSerror under normal conditions. 68

Figure 48 Microphone’s CPSerror under lightweight conditions. 69

Figure 49 Results from the minimal setup under normal conditions, with record-
ing. 71

Figure 50 Results from the minimal setup under lightweight conditions, with
recording. 72

Figure 51 Illustration of software operation. 75

Figure 52 Layout of sensors in the van. 76

Figure 53 Van trunk with hardware components. 77



L I S T O F TA B L E S

Table 1 List of status data required per hardware type. 27

Table 2 Health monitoring machine message structure. 31

Table 3 Health monitoring sensor message structure. 31

Table 4 Excerpt from a CSV file with the coordinates of pendulum. 43

Table 5 Sensor configuration values used during the performance tests. 60

i



A C R O N Y M S

A

API Application Programming Interface.

C

CPU Central Processing Unit.

CSV Comma-separated values.

D

DCE Distributed Computing Environment.

DDS Data Distribution Service.

DNS Domain Name System.

DSR Design Science Research.

F

FPS Frames per Second.

G

GPS Global Positioning System.

GPU Graphics Processing Unit.

I

IDL Interface Definition Language.

M

MOM Message Oriented Middleware.

MTU Maximum Transmission Unit.

N

j



Acronyms 1

NTP Network Time Protocol.

O

OMG Object Management Group.

OSF Open Software Foundation.

P

PTP Precision Time Protocol.

Q

QOS Quality of Service.

R

RAM Random-access Memory.

ROM Read-only Memory.

ROS Robot Operating System.

ROS1 Robot Operating System - version 1.

ROS2 Robot Operating System - version 2.

RPC Remote Procedure Call.

S

SSH Secure Socket Shell.

T

TCP Transmission Control Protocol.

U

UDP User Datagram Protocol.



1

I N T R O D U C T I O N

This first chapter begins with a contextualization of the project and with the reasons that led
to the realization of this dissertation. Next, the objectives of this study are presented. This
chapter finishes with the presentation of the structure of the entire document.

1.1 context and motivation

With the constant advances in technology, it is increasingly common for us to live our daily
lives surrounded by sensors of various types, even if we do not have this perception. Using
as an example a home automation system we can find from a simple light sensor, to motion
sensors, video cameras, among many others.

This development in technology is also present in the automotive domain, where numerous
sensors are used for different purposes. This project focuses on monitoring the interior of
the vehicle, where, soon, in a context of shared autonomous vehicles, passengers unknown
to each other will share the same vehicle at the same time and throughout the day. Thus, it
is important to have a set of sensors that will monitor not only the state of the interior of the
vehicle, but also the state (i.e., alive, very sick, death...) and actions (e.g., aggression) of the
passengers.

This dissertation focuses on the creation of an infrastructure that allows the creation of
interfaces and mechanisms that facilitate the integration of data producers and data con-
sumers, thus enabling a scenario where sensors make their data available to the applications
that require them. This distributed context of great heterogeneity of devices, technologies
and applications, is a challenge for the creation of solutions, dealing also with scalability of
the context as well with the scalability of the solution. In this sense, the use of a middleware,
is one way to tackle these requirements, providing an infrastructure that offers a set of
services for the creation of distributed and heterogeneous solutions.

Although the Robot Operating System (ROS) framework [3] was created for the field of
robotics it is also being used for research purposes by the automotive industry, particularly
for research on autonomous driving, which concerns itself with what is outside of the vehicle.
As an example, there is the case of Autoware [4] that provides open-source software, based

2



1.2. Objectives 3

on ROS2, and intended for the development of autonomous driving technologies. Similarly,
Apex.Ai [5] operates in the same area, also taking advantage of the ROS framework to
develop new autonomous driving solutions. This dissertation, however, concerns itself with
what is inside of the vehicle, where ROS act as middleware between the in-vehicle sensors
(more specifically, their data) and the applications that need them.

ROS provides an infrastructure for robot control software, as well as a set of support tools
and libraries for the development of robotic systems and applications. That is, it includes:
a middleware layer for message/data exchange through a publish/subscribe messaging
pattern; a set of tools to support the configuration, testing, debugging, visualization and start-
up and stop of distributed computing systems; and a set of libraries/packages to support
the implementation of a robotic systems, such as mobility, handling ability, perception, and
many others.

There are two versions of ROS, ROS1 and ROS2, and ROS2 makes a modular redeployment,
introducing, among other improvements, the notion of modularization of middleware and of
quality of service. This framework is organized in packages and, although the two versions
of ROS start from very similar principles, the packages are incompatible, so it is necessary to
migrate packages from ROS1 to ROS2 (when a ROS2 version of the package is not available).

1.2 objectives

The main objective of this dissertation is the creation of a data acquisition system, based
on ROS2. This data acquisition system is based on a set of sensors installed inside a
vehicle. The sensors mentioned can be of various types, including RGB cameras, NIR and
thermal cameras, microphones and microphone arrays, etc., depending on the particular
application(s).

The following tasks were defined to be the main necessary steps to achieve the desired
goals:

• Detailed study on ROS2, focusing on middleware, and the structure and creation of
packages.

• Implementation/Migration of a ROS2 package for the RGB camera;

• Implementation/Migration of a ROS2 package for the microphone array;

• Development of health monitoring mechanisms in order to monitor the active sensors
and machines in the system;

• Development of a mechanism capable of ensuring synchronization between image and
sound data;



1.3. Dissertation Structure 4

• Development of a graphical user interface;

• Analysis and improvement (if necessary) of the performance of the developed system.

1.3 dissertation structure

Regarding the structure of this document, it is divided into ten chapters.
In the first chapter (1), the context and motivation of this dissertation is presented, followed

by its objectives. At the end of this chapter, there is this section, where the structure of this
document is presented.

In chapter two (2) the state of the art is presented, with the main concepts that are the
basis of this dissertation. In this way, the concept of middleware is explained, presenting
different types of middleware and a concrete example of a framework that could have been
used in the context of this project.

The third chapter is Software Development Methodology (3). Here is presented the
research/development methodology adopted in this project and that served as support to
all the options taken throughout the development of this dissertation.

Next comes the chapter four (4) entirely dedicated to the framework that serves as the
basis for the entire system, the Robot Operating System 2 (ROS2). Here is presented its
architecture, along with the main concepts to understand the operation of this software.

In chapter five (5) begins to be presented the work developed in this project. The migration
processes of audio and image packages from ROS1 to ROS2 are described. This chapter
ends with a set of guidelines that should be used in the process of migrating packages.

In chapter six (6), the system monitoring mechanism is presented. This mechanism is
responsible for monitoring all system components, from machine resource consumption to
the performance of sensors responsible for data acquisition.

Since one of the objectives of the system is to capture various types of data (e.g., audio
and video) it is necessary to ensure the synchronization of the same. Thus, in chapter seven
(7), the synchronization strategy of the various sensors, such as cameras and microphones,
is presented.

In order to make the system developed user-friendly, a graphical interface was developed
that exports all the functionalities of the system, in an intuitive way for the user to interact.
The development of this interface is presented in chapter eight (8).

In chapter nine (9) the results section appears. Here are presented and analyzed the initial
results of the system, in relation to its performance, followed by improvements that were
implemented to improve the system performance. This chapter ends with the presentation
of the architecture that was used during the Data Campaigns that were carried out, since
this project is inserted in the EasyRide Program, the result of the partnership between the
University of Minho and Bosch.



1.3. Dissertation Structure 5

The document ends with the chapter of the conclusion (10), where a critical analysis of
the work presented in this dissertation is made, focusing on points that may constitute
improvements for the system in the future.



2

S TAT E O F A RT

In this chapter is made a more presentation of the state of the art, resulting from the study of
the main concepts of this project. Thus, the first step is to deepen the concept of middleware,
exploring the different existing types, characteristics of each, as well as strengths of each
type.

Next, is dedicated a section to Apache Kafka, with a more in-depth analysis, highlight-
ing the pros and cons of using this software as middleware in the context in which this
dissertation is included.

To end this chapter, are presented the main concepts of the project behind this dissertation
with an explanation and the importance of each one of them.

2.1 middleware

Formally, Middleware is the software that resides between the operating system and the
applications that run on it [6]. The concept of middleware has abroad scope. Here we
use it as a software layer that resides between the operating system and the applications
to support the development of distributed applications, providing to them an uniform
interface, and mechanisms to their execution. There are distinct taxonomies of middleware
as its categorisation is difficult. For the purpose of this brief presentation we will refer just
Remote Procedure Call (RPC) and messaging Message Oriented Middleware (MOM), not only
because they have distinct communication paradigms but also because RPC-like middleware
is the oldest, and MOM is one of the most popular types of middleware. RPC extends
to a distributed environment the concept a local function call: an invocation is made and
the function waits, synchronously for an answer in the context of the same transaction.
Distributed Computing Environment (DCE) from Open Software Foundation (OSF)/Open Group,
was the first implementation, being DCOM from Microsoft and its main competitor CORBA
from Object Management Group (OMG), and Java RMI other implementations.

Message-oriented middleware supports two different communication models, message
queuing and publish/subscribe messaging and is based on an asynchronous paradigm and
loose coupled components.

6



2.2. Apache Kafka 7

The context of this dissertation, as mentioned above, aims at the creation of a distributed
and heterogeneous data acquisition system. In this sense, in the following sections will
be presented two examples of almost antagonistic technology in terms of the scale of data
with which they have to deal and which are solutions for the heterogeneity and distribution
inherent to these architectures. Therefore, these tools can be used in the context of the theme
of this dissertation but at different scales, that is, the Kafka used as a platform for massive
data collection in an industrial context and the ROS2 used in a much narrower context. For
example, a robotic/car vehicle.

2.2 apache kafka

In a classic industrial context, you can find a significant set of machines producing mainte-
nance and production data massively, each with its own format and with its application that
understands/uses them. This existence of data islands is incompatible with an integrated
view of the production system and with the use of this data for the most diverse purposes,
from production analysis and maintenance strategies, to machine learning-based predictive
systems for the most diverse purposes.

In this context, event streaming technologies, which allow real-time data capture of sensors
and other sources, are backbone of a distributed and heterogeneous environment allowing
different applications to have access to data for different purposes.

As has been seen currently there are several methods to establish communication between
different processes or applications. This section addresses the topic of message queues,
along with Apache Kafka software [7], a middleware that takes advantage of this message
queue processing system [8] to process large amounts of data.

In this system, there is a process responsible for sending the message (producer) and
another process responsible for its processing (consumer). The message queue is what
allows these two processes to communicate with each other: the producer puts your message
in the queue, so that it can be processed later by the consumer. An important point in
this architecture is the ability to share a message queue between multiple producers and
consumers, thus enabling the implementation of communication under broadcast and
unicast paradigms. This solution is also characterized by the ability to store messages, since,
unlike traditional question/answer systems, in which communication between producer
/consumer is made through sockets with TCP and UDP protocols, here the messages are
stored in a kind of buffer until they are processed by the consumer or removed. This scenario
also causes an asynchronous process, allowing multiple messages to be stored consecutively
without the previous ones being processed by the recipient. This is another point where
it differs from that of question/answer systems, since the processes of production and
consumption of messages can work independently, without the need for synchronized



2.2. Apache Kafka 8

execution. These characteristics become particularly interesting when certain scenarios
are studied in which there are failures in communication between origin and destination.
Because messages remain stored in the buffer and processes work asynchronously, the
consumer can reprocess the message, even if the previous attempt failed, without interfering
to the normal implementation of the producer process.

The message queue system has the ability to distribute work. With this, you can use several
smaller programs, all independent, to divide the load of the full execution of the process.
This allows you to prevent a single program from performing all tasks sequentially, taking
advantage of the parallel execution of multiple programs that, at the end of performing their
function, send the result in the form of messages. This division of tasks is facilitated by
the fact that there is no need for direct connections between the various programs, whether
producers or consumers. Because all messages are buffered, programs can continue to run
without having to make interruptions to send or receive messages from other stakeholders.
Thus, the program does not need to process the message at the exact moment of its receipt,
but at the most appropriate time, depending on the task you are performing. The fact that
messages remain in the queue until they are removed by another program, enhances the
exploitation of this form of asynchronous execution.

As already started above, programs don’t need to process messages the instant they receive
them. This producer/consumer communication can be event-oriented and controlled by the
current state of the message queue. Thus, one program may be set to process the message at
the time of its receipt, and another, fully independent, has indication to start running when
there are more than N messages in the queue. With this, you can introduce another very
important feature: the notion of priority between messages. In a scenario where there are
multiple queued messages, programs can consume messages according to their priority and
not on a first-come, first-served basis. This priority is set by the program that queues the
message, allowing it to have preference over others at the time of processing.

Another important factor is that some systems, such as Kafka, allow several message
queues to exist. These systems also allow easy scalability when we talk about increasing
message load, since message queues can be scaled horizontally, also taking advantage of the
fact that communication between the various entities occurs indirectly and asynchronously
through the message queue.

After the general characterization of these messaging queue systems, highlighting their
main advantages, follows the presentation of the concrete case of Apache Kafka software, a
concrete example of the use of this type of communication between processes.

Apache Kafka software was developed from the first moment to be able to handle a
high load of messages, having as main characteristic its strong scalability. This software
is responsible for establishing communication between the set of programs that produce
the messages and consumers thereof. In Kafka there are topics where producers publish



2.2. Apache Kafka 9

their messages, and consumers can subscribe and listen to these topics in order to receive
the desired message. It is important to note that each consumer can read messages from
various Kafka topics. These topics can be constituted by multiple partitions and, internally,
a partitioned commit record (log) is made. From a more practical point of view, a partition
is no more than an ordered sequence of messages that is continually attached to the commit
log. In order to preserve the order of messages, exclusively within each partition, an
identification number is assigned to each message in the partition, called by offset. This type
of internal topic partitioning is important to preserve system scalability. Each producer can,
in addition to the topic, choose which partition sends the message to, thus taking advantage
of parallelism, being able to divide the messages by different processes. Each message is
kept in the Kafka cluster (Kafka topic set) for an arbitrary period and is later deleted to
free up space for new messages. Thus, taking advantage of the offset variable, consumer
programs can read older or newer messages, varying only the value of this parameter. This
offset value allows you to ensure that messages will be attached to the log in the order in
which they were sent, thus causing consumers to see messages in the correct sending order.

In Kafka software, the servers responsible for ensuring the transfer of messages between
producers and consumers are called brokers. These brokers are responsible for the per-
sistence and replication of messages. The brokers are organized in a decentralized way
and a distribution of all partitions is made between the brokers, each being responsible
for the storage of one or more partitions. To build a fault-tolerant solution, partitions are
replicated in different brokers, one of which is designated as the leader of a certain partition.
This leading broker saves the record of all reads and writes to the partition assigned to it.
Because the log of each partition is replicated by multiple brokers, a message can only be
processed by the consumer when it is committed by all brokers that contain the replica
of their partition. During this process, producers can choose to block until the message is
committed by all replicas of the log or, in return, continue to transmit messages without
blocking their normal execution.

In this architecture, producers are aware of the topics and their existing partitions, thus
taking advantage of the Kafka API to send their messages. Through the API the producers
can know which brokers are responsible for each partition and thus direct the message to
the broker responsible for the partition to where the producer wants to send the message.
Producers are also allowed to send batch messages. This is how an accumulation of messages
is sent simultaneously.

For consumers, they request blocks of messages from brokers regarding the partitions
from which they will read the messages and can read all the messages present in the log of
that partition through the offset parameter, as mentioned earlier.



2.3. Main Concepts 10

2.3 main concepts

In this chapter are presented some important concepts related to the scope of this dissertation.
Here are covered from development concepts, like scalability (2.3.1), to software concepts,
like distributed(2.3.3) or real-time systems(2.3.5).

2.3.1 Scalability

One of the objectives of this project is that the developed data acquisition system follows a
distributed architecture, and the number of components can grow easily. It is in this sense
that the concept of scalability arises.

To better explain the meaning of this concept, three definitions of different authors (Bondi’s
[9] first and followed by El-Rewini and Abd-El-Barr [10]) are presented:

• The ability to handle more work by adding more resources to the system (e.g., two
servers can handle more clients than one server).

• The ability to handle more work without changing the system (e.g., an oversized server
may handle uncommon but very heavy workloads).

• The effort required for an existing system to handle more work or provide more
functionality (e.g., a distributed system is often easier to scale than a monolithic
system).

Therefore, considering these three definitions, the work rate that a system can handle in a
given period of time can be increased in three different ways:

• Improving software

• Improving hardware (vertical scalability)

• Adding more hardware (horizontal scalability)

Sometimes the only chance to increase this rate is even adding more hardware to the
system. However, it is important to understand the impact of this decision. To be an option
with a high cost-benefit it is important that the system is dividing the workload, acting in a
mostly parallel and non-sequential manner.

In this project, scalability is horizontal, being achieved through a distributed peer-to-peer
architecture using ROS2.



2.3. Main Concepts 11

2.3.2 Component-based Software

The system developed during this dissertation follows a component-based architecture.
Thus, in this type of architectures, each component is responsible only for a portion of the
total functionality of the system, communicating and exchanging data with the remaining
components through well-defined interfaces. In this way, it has a supplied interface and an
interface required.

Component-based software has the following advantages:

• Separation of concerns: each component is responsible for only a part of the total
system functionality. Thus, the system is split into smaller problems/components that
are more manageable.

• Loose coupling and encapsulation: components are defined by their interface, not their
implementation. Thus, components can be developed and tested independently.

• Facilitates reuse: effective reuse, however, depends on well-defined interfaces. It is
well known that a significant effort and expertise is needed to define widely reusable
interfaces.

• Facilitates modification and evolution: one component can be replaced with a different
version on the conditions that the provided interface is the same and the required
interfaces are available.

• Increased test coverage and reliability: reusable components can be evaluated and
tested by more parties.

To take advantage of this concept, this project takes advantage of ROS2’s publish-subscribe
message pattern and the package management system also made available by ROS2. The
first point allows separation of concepts, loose coupling, and encapsulation. The second
facilitate the modification and evolution.

2.3.3 Distributed Systems

As seen before, the developed system follows a distributed architecture. This type of
systems are characterized by the fact components are distributed among different networked
computers, or nodes, which communicate with each other through message passing (2.3.4)
[11]. As examples of distributed systems, there are the world wide web, most multiplayer
online games, aircraft and car control systems, industrial control systems, among many
others.

Distributed systems have the following characteristics:



2.3. Main Concepts 12

• Concurrency and high performance: different computers run concurrently to each
other. However, synchronization is required between the different computers, which,
if not done appropriately will result in very low system performance.

• There is no global clock: each computer has its own particular clock and clock syn-
chronization is required to ensure that all clocks remain synchronized.

• Fault tolerance: the failure of a component does not necessarily mean the failure of
the entire system (as seen before (2.3.3), each component is only responsible for only a
part of total functionality of the system).

This project use ROS2, following a distributed peer-to-peer architecture, providing high
performance, concurrency and fault tolerance.

2.3.4 Message Passing

Message passing is one of several techniques for invoking behaviour; other techniques
include: direct and indirect invocation and CPU interrupts. Message passing enables,
in particular: (1) objects1 to communicate with each other within the same or different
computers (intra- and inter-process communication); and (2) remote procedure calls. In
message passing:

• The invoking object (the caller) sends a message to another object (the callee).

• The invoked object, based on the message received, selects and runs a function(s).

In synchronous messaging the invoking object waits (or blocks) until the function completes.
In asynchronous messaging, conversely, the invoked object doesn’t wait for the function to
complete and continues execution (completion can be signalled by, for example, a callback).
Synchronous messaging can be built on top of asynchronous messaging2; asynchronous
messaging, however, requires buffering as well as a strategy to handle, among other things, a
full buffer. In message passing an object model is typically used, distinguishing the functions
(or services) in abstract from their concrete implementation. Objects can invoke functions
with no concern about how those functions are actually implemented (encapsulation). An
object model relies on an intermediate layer to select and run the appropriate function’s
implementation. This intermediate layer (a message broker or middleware) can distribute
messages between objects, not only within the same computer but also across different
computers3 (distribution). The performance of message passing is much lower than direct

1 In this context, objects can also stand for: programs, processes, agents, actors, etc.
2 With additional infrastructure (e.g., threads), it is also possible that asynchronous messaging is built on top of

synchronous messaging, but this is rare.
3 Different operating systems, different programming languages, etc



2.3. Main Concepts 13

invocation by name and this should be considered during the design and implementation
phases. Message passing is best suited for small-size messages. Two of the most common
messaging patterns are: request-response and publish-subscribe. The simplest messaging
pattern, request-response, is illustrated in Figure 3(a). In this pattern, the server issues a
response to a client request. A single entity can act both as a server and as a client, meaning
that it can issue requests as well as responses.

Figure 1: Different messaging patterns: (a) request-response and (b) publish-subscribe.

In a publish-subscribe messaging pattern, illustrated in Figure 3(b) publishers send
messages, each message belonging to a specific class (or topic). Subscribers register interest
in one or more classes of messages, and only receive messages of that class. Publishers don’t
explicitly specify the receivers of messages nor do receivers specify the senders of messages
(loose coupling); instead, the middleware is responsible, based on the class of messages, to
direct messages from the publishers to the appropriate subscribers. In this pattern, it is easy
to add more publishers and subscribers, and thus, scalability is good. It is also possible to
change the network topology with only a few modifications (e.g., moving a publisher or
subscriber to a dedicated computer). One of the downsides is that, after a publisher has
been deployed, it may be hard to modify that publisher and particularly the structure of the
published data (many subscribers will have to be updated as well). Moreover, this pattern
scales well for small networks and low message volume; however, as the size of the system
increases the likelihood of instability increases (e.g., load surges, slowdowns).

This project follows a publish-subscribe messaging pattern, taking advantage of ROS2
middleware capabilities’.



2.3. Main Concepts 14

2.3.5 Real-time Systems

Real-time systems are useful when it is necessary to ensure that, in addition to logically
correct operation, the system responds to certain events within a specific time period [12]. If
the real-time system is unable to provide these guarantees, the system fails. In a real-time
system predictability is more important than throughput or low latency. According to Shin
and Ramanathan [13], real-time systems are usually distinguished between three classes,
depending on the importance that a failure can have in the normal functioning of the system:

• Hard: failing to guarantee a deadline (a deadline miss) is a system failure (e.g., heart
pacemaker, drive/fly-by-wire systems, anti-lock brakes).

• Firm: occasional deadline misses are acceptable (the quality of service may decrease).
Results after the deadline must be discarded (no longer useful) (e.g., financial forecast
systems).

• Soft: occasional deadline misses are acceptable (the quality of service may decrease).
Results after the deadline are still useful (e.g., music/video player).

The difference between soft and firm systems lies in the usefulness of the result obtained
after the deadline. The real-time system designed for this project takes advantage of ROS2
real-time capabilities and fits into the soft category. Some occasional failures are acceptable,
decreasing the quality of service but the results remain useful even after the deadline.



3

S O F T WA R E D E V E L O P M E N T M E T H O D O L O G Y

The research methodology represents the approach that is made to the problem that is
intended to be studied. This methodology varies depending on the type of problem in
question, and there are already several approaches to be taken depending on the type of
case being investigated. Thus, this chapter describes the various stages of the Design Science
Research (DSR) methodology, a methodology adopted in this project. The following figure
2 was taken from the article ”A Design Science Research Methodology for Information
Systems Research” [1] and represents all stages of this approach.

Figure 2: Design Science Research Methodology model (adapted from [1]).

As shown in the figure 2, the Design Science Research (DSR) methodology is based on a set
of six steps that help to obtain a well-structured and reasoned solution for the case study to
which it applies. Therefore, in order to allow a better understanding of this methodology of
investigation, a brief presentation of each step is made:

1. Problem identification: this point is the basis of all development. It consists in the
clear identification of the problem that is to be addressed and the reasons for doing
so. It is important to present the case study in order to demonstrate the importance of

15



16

it and the relevance of the solution to be developed in the environment in which the
problem is included.

2. Definition of the objectives of the solution: follows the first stage. Once the problem
has been identified, it is necessary to understand what objectives are intended to be
achieved with the solution that will be developed. Thus, at this stage it is important
to study the possible solutions already existing to understand how one can develop
something better or more relevant than the existing alternatives. This research also
serves as a support for the motivation of the case study that is being addressed.

3. Design and development: in this stage begins the development of the solution. Ideally
it begins with the idealization of the architecture to be followed until the development
of a functional solution, according to the objectives defined in the previous point and
that can be redefined.

4. Demonstration: a time when the solution developed to solve the problem proposed in
whole or in a first phase is used in a partitioned form. As a first approach, test cases or
simulation scenarios can be used to understand the effectiveness of the solution before
going into the actual scenario. Important part where you can get a point of some
points to improve in the architecture itself and in the development of the solution.

5. Evaluation: consists of analyzing the performance of the solution based on the results
obtained in real environment. Whenever possible, it is important to have a comparison
term with pre-existing solutions or fit-in alternatives. Point where the consistency of
the solution is evaluated, from the proposed objectives to the designed architecture. At
the end of this step, you can return to steps two or three to readjust the objectives you
set earlier or restructure the architecture developed for the solution.

6. Communication: if the result of the previous stage is satisfactory, the problem is
disclosed, highlighting its importance and the usefulness of the solution developed,
supported by the results obtained in the previous points.

Since this is the natural structure of this methodology, it is important to note that, as the
figure shows, it is not necessary to follow the methodology from the first point to the end.
To exemplify, if it is supposed to develop a solution for a case study where the problem is
already well identified and whose objectives have already been defined, there is no need to
repeat the first two steps, and can immediately jump to the third stage of the development
chain. According to the figure, this would be a startup centered on design and development.



4

R O B O T O P E R AT I N G S Y S T E M 2

The ROS aims to create an integrative environment in a context of data acquisition. Unlike
an event streaming processor like Kafka, ROS is not aimed at massive data retrieval, but
rather a relatively modest environment in terms of data producers and consumers.

ROS consists of a set of tools, libraries and a middleware layer that aims to create robotic
systems. As part of autonomous driving research programs, ROS is seen as an alternative
given its past in the creation of mobile autonomous robotics. The context of this dissertation
is based on the principle of the application of ROS in autonomous driving and takes
advantage of its existence as a middleware system for an environment for data acquisition
[14].

4.1 design and architecture

For starters, ROS is advantageous because it is not limited by a specific language. Its
developers designed it with the aim of being neutral in the language chapter. With this, it
is possible to develop code in several languages, taking advantage of an Interface Definition
Language (IDL) that makes a kind of ”translation” of code, so that excerpts from programs
written in several languages can interact with each other. Taking advantage of code genera-
tors for supported languages are also generated native implementations of objects that are
realized and deployed by ROS, and then sent as messages (concept discussed later). This
process allows to greatly reduce the writing time of code and consequently the number of
programming errors. ROS still supports cross-plataform, which can be an advantage for
system integration.

For its architecture, ROS follows a distributed and component-based implementation,
using a micro kernel design, with various modules, where several small tools are used to
build and run software components. This effort to separate the various tasks by different
modules, rather than concentrating everything on a master module, allows a significant gain
in stability and complexity in program management, which ultimately compensates for the
possible loss of efficiency when compared to a centralized architecture. The ROS package
management’s facilitates management and distribution of software.

17



4.2. Main Concepts and Communication 18

Focusing attention on ROS2 on its real-time support and security mechanism (namely,
DDS-security support), are important points for choosing this version, rather than ROS1.

In addition to being free and open source, both for personal and commercial use, this
software offers a great facility regarding code reuse. This is because the libraries used are
developed independently and without ROS dependence. This puts all the complexity in
the libraries, and then creates small executables in order to export the functionality of each
library to ROS. Thus, the process of extracting and reusing code, outside its original context,
is greatly simplified. This is also the reason ROS reuse code from various open source
projects, such as drivers or OpenVC library algorithms, for example.

4.2 main concepts and communication

In order to better understand the functioning of ROS, it is necessary to know its main
concepts.

4.2.1 Nodes

The main entity of ROS is node. These are responsible for the execution of the system and, as
was seen earlier, a system is composed of several nodes, in order to maintain the distributed
modular architecture presented.

In order to communicate with each other, nodes send messages with the desired in-
formation. By default, these messages adopt primitive types such as integers, floats or
strings. However, you can also create custom structures to form a message, through arrays or
matrices organized in the desired way. The communication is made via a publish-subscribe
messaging pattern, enabling nodes to be developed independently and so to be also loosely
coupled. At runtime, nodes are identified by a unique name (within a namespace).

In ROS2 specifically, nodes can opt-in for a managed lifecycle, providing users with more
control over the state of a ROS2 system (i.e., nodes start executing only after all nodes
have initialized). A managed node provides an interface which is called based on a known
life cycle state machine. ROS services (e.g., publish, subscribe, the parameter server) are
accessible through ROS client libraries. In ROS1 there are roscpp (C++), rospy (Python), etc.
And, in ROS2 there are rclcpp (C++), rclpy (Python), etc. ROS1 and ROS2 interfaces are not
compatible. ROS1 interfaces were designed before February 2009 and some design decisions
at the time are now known to not be the best. ROS2 was an opportunity to improve on these
interfaces. This meant breaking compatibility. There are, nevertheless, ways for ROS1 nodes
to communicate with ROS2 nodes, and vice-versa; more specifically, using the ros1 bridge (a
ROS2 package) which translates topic/message data across the two (incompatible) systems.



4.2. Main Concepts and Communication 19

4.2.2 Topics

To make communication between nodes possible, another entity emerges: the topics. These
topics are a kind of ”channel” where nodes publish messages so that other nodes can read
them. Thus, each topic can have one or more nodes to publish or read messages. Just as a
topic can be associated with one or more publishers, a node may also be publishing messages
in more than one topic. This allows you to publish multiple messages simultaneously with
different information, thus establishing communication with multiple nodes at the same
time. For subscribers the process is identical, being possible to subscribe to several topics,
thus receiving several messages simultaneously. The following figure (3) exemplifies this
process of communication between nodes, through the respective topics.

Figure 3: Communication structure of Robot Operating System.

Topics are identified by a name (within a namespace) and each topic / name corresponds
to one or more data type. Available data types include primitive data types (e.g., integers,
booleans, strings), structures and arrays of primitive data types, and arbitrarily nested
structures. There are also several types of topics: message (one-way), service (response-
reply, remote procedure call), and action (response-reply-feedback, remote procedure calls).
Examples of topics: data from sensors (e.g., images from cameras, audio from microphones),
results of data processing, control signals; etc.

ROS2 has control over the quality-of-service. More specifically, it provides control over:

• History, Depth: how many samples to keep;

• Reliability: “best effort” or “reliable”;

• Durability: “transient” or “volatile”.

In ROS, after name lookup (similar to DNS), nodes communicate directly with each other.
In ROS1, name registration and lookup are provided by the ROS master (a special-purpose
node). In ROS2, conversely, the ROS master is not necessary; name lookup and registration
are done via multicast (DDS-specific). In ROS, the ROS master is implemented using



4.2. Main Concepts and Communication 20

XMLRPC (a stateless, HTTP-based protocol); nodes, however, exchange messages using a
different protocol (i.e., TCPROS or UDPROS).

4.2.3 Parameter Server

In ROS, the parameter server stores data (e.g., configuration parameters, state, etc.); data is
stored by key (similar to a dictionary). In ROS1, the parameter server is part of the ROS
master and, like the ROS master, implemented using XMLRPC. ROS2, on the other end,
relies on the global parameter server (a dedicated node).

4.2.4 Bags

In ROS, a bag is an actual file or file format. It supports recording/capture and playback of
data, and thus, facilitates development and testing. In ROS2, the default storage plugin is
sqlite3, and the SQLite settings are optimized for performance, by default.

4.2.5 ROS Middleware Interface

ROS services are accessible via ROS client libraries. In ROS1, services are implemented
on top of custom protocols: TCPROS/UDPROS (persistent, stateful TCP and UDP socket
connections). These were built almost entirely from scratch and the ROS master is required
(a single point of failure)

ROS2 services, conversely, are not tied to a specific protocol. ROS2 services are built on
top of existing DDS-based middleware solutions (though other solutions can be used). This
approach was chosen in order to leverage existing, mature solutions, each with its own
advantages and disadvantages. Users are thus free to choose the solution which better fits
their needs (cost, footprint, dependencies, legal requirements, etc.). Moreover, the project’s
overall maintenance effort is lower. Existing solutions include:

• eProsima Fast RTPS (Real Time Publish Subscribe)1;

• RTI Connext2;

• Eclipse Cyclone3.

By default, ROS2 uses Fast RTPS, a DDS implementation and this project follows that
implementation.

1 http://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
2 RTI Connext https://www.rti.com/products/
3 https://projects.eclipse.org/projects/iot.cyclonedds



4.3. Package Structure 21

DDS is a machine-to-machine standard whose goal is to be dependable, high-performance,
interoperable, real-time, and scalable. DDS follows a publish-subscribe messaging pat-
tern, and provides support for discovery (in other words, name registration and lookup),
serialization, and transport. DDS also provides control over the Quality of Service: configu-
ration, however, is complex and so ROS2 provides some predefined QoS settings to simplify
development. Unlike ROS1, a ROS master is not required in DDS (no single point of failure).

Despite the advantages of building ROS2 services on top of existing DDS-based middle-
ware solutions, different solutions expose slightly different interfaces. To address this, an
abstract middleware interface was introduced. Furthermore, this abstract interface, hides the
complexity and implementation-specific details of DDS. This interface is a function-based
interface and thus facilitates interoperability with different languages.

4.3 package structure

To better understand the ROS architecture, it is also important to know the base structure of
your packages. In general, a ROS package is composed of the following (depending on the
case, there may be more, as we will see later on section 5):

• package.xml: this file consists of information such as the name, version, author, license,
and dependencies of the package.

• CMakeLists.txt: is the input to a CMake build system for building software packages,
which describes all its dependencies, how to compile the code and how to install the
necessary files.

• src folder: contains code of the package’s nodes and related programs which enable
their execution.

• launch folder: contains files that allow the execution of several nodes with a single
command.



5

PA C K A G E S M I G R AT I O N

The system developed under this project is responsible for the acquisition of data from
sensors such as cameras and microphones, through ROS2. The sensors used already had
compatible ROS packages implementations, but only for ROS1. Thus, to take advantage
of these implementations, it was necessary to migrate the ROS1 packages to ROS2. The
migration was made to the audio common and avt vimba camera packages, thus managing to
acquire data from the UMA-8 microphone [15] and Mako G cameras [16], respectively.

To start the package migration, it is important to bear in mind the structure of a ROS
package, explained earlier in section 4.3.

5.1 audio - audio common

The audio common package contains two main sub-packages: audio capture and audio play. As
their names imply, the first contains the features necessary for capturing audio through the
microphone and the second for playing audio.

The first step of the migration of this package was to create a ROS2 package with the
default files and folders mentioned in section 4.3. It was then necessary to check the libraries
used in ROS1 and analyze whether they exist in ROS2. If they do not exist, ROS2-compatible
libraries that perform the same function have to be found. In this package, it was necessary
to replace the library roscpp with rclcpp, which is the corresponding in ROS2. All the
others were supported in both ROS1 and ROS2. With this, it was necessary to update the
CMakeLists.txt file by adding the new libraries used, and removing the old ones. Finally, an
analysis was made to the code implemented in the nodes, replacing the references to ROS1
libraries with the corresponding references to ROS2 libraries, as can be seen in Figure 4, with
an excerpt of the code from the original package in ROS1 (top image) and the corresponding
code after the migration to ROS2 (bottom image), with the respective changes highlighted.

22



5.1. Audio - audio common 23

Figure 4: Code changes after the audio package migration process from ROS1 (top image) to ROS2
(bottom image).



5.2. Image/Video - avt vimba camera 24

5.2 image/video - avt vimba camera

The package responsible for support image/video capture is more complex than the audio’s,
presented earlier (5.1). It is important to understand its structure before going to the next
steps of migration. Thus, in addition to the parts mentioned in section 4.3, this package also
includes:

• calibrations folder: contains the files with the calibrations required for the cameras to
use.

• cfg folder: integrates camera configuration files.

• cmake: contains the files needed to detect the type of architecture that is being used by
the user.

• include folder: contains header files where data structures and methods are created to
assist the nodes implementation in the src folder.

• lib folder: contains files that help the installation of the package depending on the
architecture of the target machine.

Since this package is complex, only the essential points for migrating the package to ROS2
will be addressed, referencing the respective files:

• AvtVimbaCameraConfig: The ROS library that required more attention was the dy-
namic reconfigure. In the ROS1 environment, this library aims to enable the update, at
run-time, of the parameters of a given node, without having to restart it. Therefore,
this library is an important point in the process of migrating the package to ROS2, so
that it is possible to reconfigure the camera at run time, without having to restart the
node.

To do this migration it was necessary to develop some new functionality in order
to adapt the code to the ROS2 architecture and keep the dynamic reconfigure features
active in ROS2.

The solution addressed, for the fact that the dynamic reconfigure is not present in ROS2,
was to take advantage of the ROS2 equivalent buil-in, the ROS2 parameters, in order
to read and update the camera parameters at run-time, without the need to interrupt
the execution of the node.

• Mono Camera: In this class, is where the methods developed in the class ”AvtVimba-
CameraConfig” are called. This way the values of the parameters of the node that is
running can be read and updated, without having to restart it.



5.3. Package Migration Guidelines 25

• Mono Camera Node: In this class, the nodes that serve as the reference for the
remaining classes are created, thus exporting all the functionalities contained in the
package.

5.3 package migration guidelines

Regarding the process of migrating ROS1 packages to ROS2, as seen in the previous sections
(5.1 and 5.2), there are steps common to any migration. Thus, these steps are listed here.

Therefore, to migrate a ROS1 package to ROS2, the following steps should be followed:

• Create the ROS2 package with the files and default folders (see section 4.3).

• Check the libraries used in ROS1 and analyze if they exist in ROS2. If they do not
exist, it is necessary to find the libraries that perform the same (or equivalent) function
in ROS2.

• After this analysis is done, it is needed to add the new dependencies of the libraries
found to the CMakeLists.txt file and remove the old ones.

• Modify the paths of the header files that are included. The installation of ROS1 and
ROS2 are different and, in some cases, the relative path of the files are also different.

• Finally, it is necessary to analyse the code implemented in the nodes, where references
to ROS1 libraries should be replaced by references to ROS2 libraries and, if needed,
modify the code implementation.



6

H E A LT H M O N I T O R I N G

Health monitoring aims real-time monitoring of software and hardware components, that
make up the data acquisition solution.

In this context, it is essential to gather the requirements of the health Monitoring subsystem
to organize all the work necessary for its implementation. Thus, according to the type of
hardware that has been considered to be part of the data acquisition solution, the components
that need to be monitored are the machines (or computers), where the software supporting
data acquisition is running, and the sensors, whose performance and data quality is a key
element for the data acquisition to be successful.

In the following sections it is presented the requirements defined for the health Monitoring
subsystem, the architecture developed, and the results obtained after its implementation.

6.1 requirements specification

The first step in requirements gathering was to divide the requirements between mon-
itoring requirements of the machines and monitoring the sensors. Thus, for machines,
the requirements relate to the hardware resources used. Thus, the following features are
monitored:

• CPU;

• Memory (RAM);

• Swap memory;

• Disk (ROM);

• Network.

As far as sensors are concerned, it is important to have access to:

• List of active nodes: to be able to identify which sensors are active.

26



6.1. Requirements Specification 27

• List of topics for each sensor: to identify the channels to which sensor data is being
sent.

• Frequency of publication of each topic (i.e. frames per second or frame rate): To have
access to the performance/quality of the data being published.

Table 1 summarizes the requirements described above, and you can observe in the second
column the data for each requirement, with the respective units in which they are measured.

Table 1: List of status data required per hardware type.
Hardware Status Data

CPU Usage per CPU (%)

Memory
(RAM)

Usage (%)
Total (MB)

Available (MB)
Used (MB)
Free (MB)

Swap Memory

Usage (%)
Total (MB)
Used (MB)
Free (MB)

Sin/Sout (MB)

Disk
(ROM)

Usage (%)
Total (MB)
Used (MB)

Read/Write (MB/s)
Network Sent/Received (MB/s)

Sensors
Active Sensors
Active Topics

Publish Rate (frames per second/Hz)

For data regarding memory (RAM), it is important to note the difference between the
following concepts:

• available memory: the memory that can be given instantly to processes without the
system going into swap. This is calculated by summing different memory values
depending on the platform and it is supposed to be used to monitor actual memory
usage in a cross platform fashion.

• free memory: memory not being used at all, and that is readily available; note that this
does not reflect the actual memory available (use available instead), i.e. total − used
does not necessarily match free.



6.2. Architecture 28

6.2 architecture

Before presenting the architecture designed for the monitoring solution, it is important to
note that this system was built from scratch and consists of a ROS2 package, developed using
the Python1 and C++2 programming languages. It also took advantage of some features
present in ROS2 to meet the proposed requirements, as will be seen later.

Development of the Health Monitoring subsystem starts with defining the general archi-
tecture. Thus, according to the architecture presented in Figure 5, it is possible to perceive
the different layers that make up the Health Monitoring subsystem, more specifically:

• ROS Health Monitoring Layer: supports two separate stacks, one for machine monitor-
ing and another for sensor monitoring, described in detail in the following subsections.

• ROS Layer: represents the ROS packages that supports the data acquisition from the
sensor(s).

• OS Layer: denotes the operating system that supports the entire system.

Figure 5: The general architecture of the Health Monitoring subsystem.

For the User Interface, refer to section 8.
As for the hardware layer, the machine components and sensors that are part of the data

acquisition solution are represented, such as computers, cameras or microphones.
Finally, there is the network layer enabling different machines to interact with each other,

allowing data to be exchanged between the machines and sensors connected to the network.

1 https://www.python.org/
2 https://www.cplusplus.com/



6.2. Architecture 29

6.2.1 Health Monitoring Node Machine

Figure 6 illustrates the architecture designed to extract information about the resources
used by the machine, namely CPU, Disk, Memory, Swap Memory, and Network. The
implementation of this node was made using the Python language. For its implementation,
there are two essential components:

• Machine Monitor: For the development of this node, a library called psutils3 was used,
to retrieve the machine’s status data from the operating system. With this, a publisher
(i.e., a ROS node) was developed to retrieve the machine’s status data and publish that
under the topic /machine state.

• Get Current State: To view the information from the node described above, another
ROS node was developed that subscribes to the /machine state topic and, when run by
the user pretty-prints the status for the machine.

Figure 6: The architecture of the Health Monitoring Node Machine.

6.2.2 Health Monitoring Node Sensor

Figure 7 illustrates the architecture designed to monitor the status and data quality of a
sensor, providing real-time access to a sensor’s frame rate. These features were developed in
a C++ subpackage. For its implementation, there are two essential components:

• Sensor Monitor: This ROS2 node receives the name of the sensor to be monitored;
then, it subscribes to the sensor’s respective topic(s), calculates the frame rate at which

3 https://psutil.readthedocs.io/en/latest/



6.2. Architecture 30

the sensor is publishing, and publishes that information, also adding the size of each
frame, and a delta which corresponds to the time difference between each frame.

• Get Current State: This ROS2 node displays the frame rate of the sensor specified by
the user. To do this, it subscribes to the topic that the Sensor Monitor node described
above and pretty-prints that information to the user.

Figure 7: The architecture of the Health Monitoring Node Sensor.

To achieve the remaining requirements, standard ROS2 tools4 are used to obtain the list of
active sensors and their respective topics, namely:

• ros2 node list: presents a list with all active nodes, including the sensors’ respective
nodes.

• ros2 topic list: presents a list of all topics, including the topics published by the sensors’
respective nodes.

6.2.3 Health Monitoring Messages

Since this package has been built from scratch, it has taken advantage of the capacity that
ROS offers over custom messages. In this way, another subpackage was created to declare
two data structures (one for the machines and one for the sensors) completely customized
and adapted to this context. Each structure represents a custom message, and Table 2 and
Table 3, show the variables present in each structure, as well as their data type.

4 https://docs.ros.org/en/foxy/Concepts/About-Command-Line-Tools.html



6.3. Results 31

Table 2: Health monitoring machine message structure.
Variable Data type
mem percent float32
mem total float32
mem available float32
mem used float32
mem free float32
mem active float32
mem inactive float32
mem cached float32
swap total float32
swap used float32
swap free float32
swap percent float32
swap sin float32
swap sout float32
disk float32
disk used float32
disk read float32
disk write float32
net recv float32
net sent float32
cpu float32[]

For the machine structure, the fields are those mentioned in Table 1, section 6.1, noting
only the fact that a variable-sized array is created for the CPU, thus making this message
universal for CPU’s with different number of cores.

Table 3: Health monitoring sensor message structure.
Variable Data type
fps int64
size int64
delta float32

For the sensor structure, there are three fields, as mentioned above (6.2.2). One for the
frame rate, another for the size of each frame, and still a last one with the time delta between
frames.

6.3 results

Regarding machine monitoring, to demonstrate the results obtained with this monitoring
system, first, it is necessary to run the node machine monitor of the package machine monitor



6.3. Results 32

(HM Node Machine). Then, running a listener/subscriber, the results shown in Figure 8 are
obtained. In the figure, it is possible to verify that the machine that is being monitored has a
CPU with 4 cores, through the size of the array present in the last field of the message.

Figure 8: Results from the HM Node Machine subsystem.

For a user-friendly interface, with the information provided by the above-mentioned
package, it is possible to display the results in a graphical format using plotjuggler5, as
shown in Figure 9. The graph on the left side, represents the CPU usage of each of the cores.
On the right side, the percentage of disk usage, RAM, and swap memory is shown. This
representation was enabled by creating a ROS message whose contents include several fields,
each corresponding to each resource, as seen in section 6.2.3.

5 https://plotjuggler.io/



6.3. Results 33

Figure 9: Results from the HM Node Machine subsystem with plotjuggler tool.

For sensor monitoring, at this stage, some requirements specified in section 6.1 can be
fulfilled using ROS2 tools, as shown in Figure 10 (the list of active nodes) and Figure 11 (the
list of topics).

Figure 10: Usage of ROS2 Node List command.

Figure 11: Usage of ROS2 Topic List command.

For continuous monitoring of the sensors, as described earlier, it is necessary to specify
the sensor to be monitored to view its frame rate. As can be seen in Figure 12, using the
ROS2 topic echo command, the intended topic is subscribed and the frame rate is returned.
A method was also developed to check when the frame rate drops below a given value, in
relation to the previous one. This alerts the user when data acquisition from a given sensor
begins to lose quality.



6.3. Results 34

Figure 12: Results from the HM Node Sensor subsystem.



7

S E N S O R S S Y N C H R O N I Z AT I O N S T R AT E G Y

The developed Data Acquisition Solution has the ability to acquire different data types from
different sensors simultaneously. Based on this functionality, it was necessary to develop a
synchronization strategy of all acquired data, to reduce the lag that may exist between data
coming from different sensors.

To better understand this, the designed architecture is explained first, with all components
involved in the synchronization strategy. After that, an analysis is made of the results
obtained with the application of this mechanism.

7.1 architecture

The developed synchronization strategy is divided in two distinct parts. The first concerns
the synchronization of the cameras between each other and the second is related to the
synchronization between the cameras and the microphone. In order to synchronize the
cameras, the Precision Time Protocol (PTP) is used, as explained in more detail later (section
7.2). The architecture of the synchronization strategy between cameras and microphone is
shown in Figure 13. It starts at least 2 sensors (1 camera and 1 microphone, for example)
and the goal is to calculate the lag time between the data acquired by each sensor.

Figure 13: The architecture of the synchronization strategy.

35



7.2. Cameras Synchronization – Precision Time Protocol 36

7.2 cameras synchronization – precision time protocol

The goal of the Precision Time Protocol1 (PTP) is to manage and synchronize the clocks of
multiple devices on the same Ethernet network. This protocol was created with the objective
of improving upon existing methods. In comparison, this method offers more accuracy than
the Network Time Protocol (NTP) and better accuracy/cost ratio than the Global Positioning
System (GPS), which provides a fairly high accuracy, but at a high cost. Through PTP, it is
possible to obtain clock synchronization at the microsecond level.

To obtain synchronization via PTP, whose protocol is illustrated in Figure 14, it is necessary
to start by assigning roles to the cameras. One of the cameras must be classified as ”Master”
and the rest as ”Slave”. After this assignment, the cameras classified as ”Slave” will calculate
the difference of their clocks to the clock of the ”Master” camera and constantly adjust their
clock. The cameras are then synchronized via PTP when the difference from the ”Slave”
camera clocks to the ”Master” is within two microseconds.

Figure 14: Precision Time Protocol Synchronization (from Allied Vision1).

After reaching synchronization, the next step is to set the parameter ”PtpAcquisitionGate-
Time”, which represents the instant the cameras will start acquiring images. Please note that
because the camera clocks are synchronized, this parameter must have the same value on

1 https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/appnote/GigE/
PTP IEEE1588 with Prosilica GT GC Manta.pdf

https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/appnote/GigE/PTP_IEEE1588_with_Prosilica_GT_GC_Manta.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/appnote/GigE/PTP_IEEE1588_with_Prosilica_GT_GC_Manta.pdf


7.3. AVSync Generator 37

all cameras, and it should be larger than the time required to reach synchronization, for
the image acquisition to start at the same instant in all of them. The figure 15 shows a time
diagram with all steps of this synchronization process.

Figure 15: Time diagram of the cameras synchronization process.

7.3 avsync generator

For the process of analysis and synchronization of the data acquired by the cameras and the
microphone to be more intuitive, a test video with well-defined specifications was created in
order to meet the desired objective.

For the video, a pendulum is used, with a controlled and repetitive movement, in order to
allow the acquisition of a repetitive sequence of images by the camera. With the use of this
pendulum, the goal is to get the exact coordinates of the object in each frame acquired by
the camera. Figure 16 presents an excerpt with some frames of the video, where you can
perceive the movement that the pendulum describes over time.

Figure 16: Frames with the pendulum at different coordinates.

As far as the audio is concerned, two audio samples with different frequencies and
amplitudes were used. These audio samples were associated with the movement of the
pendulum, one being reproduced when moving the object in the positive direction of the X



7.4. Blob Detector 38

axis (left to right) and the other when the object moves in the opposite movement (right to
left).

With this, it is possible to calculate the lag time between audio and video, taking into
account the fact that the change in the direction of the movement of the pendulum and the
change in the frequency/amplitude of the audio happen (or should happen) at exactly the
same instant.

7.4 blob detector

Blob detection, in this context, is the process of analyzing the images acquired by the camera.
This process consists of two parts: the first is the extraction of the images from the bag file
in JPEG format, and the second is the analysis of the contents of each image.

For this, different tools based on the OpenCV2 library were used.
First, after deserializing each message coming from the camera, the ROS2’s cv bridge3

package was used to convert it to JPEG format.
Second, for the analysis of each frame, the Blob Detector class, also provided by OpenCV,

was used. The Blob Detector analyzes an image, depending on previously defined parameters
and returns the coordinates of the objects or blobs that meet the criteria specified by those
parameters. In this specific case, the parameters were defined for it to identify a black circle,
and thus the coordinates of the pendulum in each image of the test video. In Figure 17

it is shown the result of this process. In each image, the pendulum is identified by a red
circumference, which means that the Blob Detector was able to detect it.

Figure 17: Illustration of blob detection.

With the coordinates of the pendulum in each image, it is possible to draw a chart
representative of the pendulum’s movement, as shown in Figure 18, where the red line
corresponds to the coordinates of the X axis and the green line to the Y axis.

2 https://opencv.org/
3 https://index.ros.org/p/cv bridge/

https://opencv.org/
https://index.ros.org/p/cv_bridge/


7.5. Amplitude Getter 39

Figure 18: The pendulum’s coordinates over the time.

As can be seen in section 7.6, to calculate the level of synchronization between the sensors,
it is still necessary to identify the points of interest in the graph represented above. These
points are identified on each curve of the graph by the (XMax,YMin) and (XMin,YMin)
coordinates that correspond to the instants in which the pendulum movement direction
changes and, consequently, the sound frequency/amplitude also changes, as seen in section
7.3.

7.5 amplitude getter

The Amplitude Getter is the tool that was developed to extract the audio data from the bag
file, which contains the calibration video described in section 7.3, for post-processing. After
identifying the messages corresponding to the audio topic, each message is deserialized
through the libraries provided by ROS2. After this process, the content of each audio chunk
present in each message is extracted, and, from this data, a sound wave is created where it is
possible to observe the different amplitudes/frequencies acquired by the microphone, as
shown in Figure 19.



7.5. Amplitude Getter 40

Figure 19: Audio amplitude over the time, with two different amplitudes/frequencies magnified.

With the pendulum’s coordinates and the audio’s frequency/amplitude in one chart, the
level of (de)synchronization of the data present in the bag file can be seen. As mentioned in
section 7.3, the change in the direction of motion of the pendulum occurs at the same instant
as the change in audio frequency. Thus, in an ideal scenario, where the data is perfectly
synchronized, these two shifts happen at exactly the same instant of time.

In order to automate the process of searching for the points at which the sound frequency
changes, a low pass filter was applied to the audio amplitude graph (excerpt from Figure
19), generating a graph whose excerpt is shown in Figure 20.



7.6. Results 41

Figure 20: Excerpt from the audio graph, with the identification of amplitude/frequency change
points.

The black points present in the figure indicate the instant in which the sound frequency
changes and were identified through the find peaks method. All this was possible taking
advantage of the scipy4 library, specifically the signal module. After identifying these points,
as shown in the next section, it is only necessary to subtract the timestamps from these with
the points identified in the camera graph, in order to obtain the level of (de)synchronization
between the sensors.

7.6 results

In this section, the results obtained with the synchronization strategy described earlier are
presented.

As explained before, the cameras are synchronized with each other through the PTP
protocol. Therefore, the process of calculating the lag time between audio and video is only
applied to the camera designated as ”Master”. Since the other cameras are synchronized
with it through PTP, if the ”Master” is synchronized with the audio, then the other cameras
are also synchronized. Figure 21 shows a chart with the variation of the lag/delay over time
between two cameras (i.e., Master’s timestamp minus Slave’s timestamp), on a microsecond
scale. In a two and a half hour-long test, the average lag was in the order of -9 µs, which
means that the Slave camera was on average 9 µs behind of the Master camera. Still, the

4 https://scipy.org/

https://scipy.org/


7.6. Results 42

Slave camera for the same test had a maximum ahead lag of 15 µs (maximum in the chart)
and a maximum behind lag of 30 µs (minimum in the chart).

Figure 21: Lag over time between two cameras synchronized using PTP.

Regarding the Blob Detector (section 7.4), responsible for processing the data acquired
by the camera, Figure 22 shows an example of a frame, where it is possible to verify the
correct identification of the pendulum. Together with this, a CSV file is also obtained with
the timestamps of each frame and the pendulum’s coordinates at that moment, as can be
seen from the excerpt shown in Table 4.

Figure 22: A result from the Blob Detector.



7.6. Results 43

Table 4: Excerpt from a CSV file with the coordinates of pendulum.
Frame ID Timestamp Coordinate X Coordinate Y
... ... ... ...
68 1619519659327756860 515,544 323,467

69 1619519659367819528 519,914 338,569

70 1619519659367819528 559,081 404,649

71 1619519659367819528 571,874 417,777

72 1619519659367819528 639,072 466,88

... ... ... ...

From the data in Table 4, it is possible to generate a chart representative of the movement
of the pendulum, as seen in section 7.4. The chart shown in Figure 23 shows this, along
with the result of the Amplitude Getter, already explained in section 7.5. The overlap of the
camera data with that of the microphone is shown. The points of greatest interest are the
points where the frequency/amplitude of the audio changes. In the case of the camera, it is
important to focus on the coordinates (XMax,YMin) and (XMin,YMin), which correspond to
the instant where the frequency/amplitude of the audio changed in the test video. With
these points, the lag time, marked in the chart as ”DSync”, can be calculated by subtracting
the timestamps.

Figure 23: Synchronization data from one camera and the microphone.

After performing some synchronization tests, using the strategy presented in this disserta-
tion, desynchronization values between audio and video in the order of milliseconds were
obtained. In these tests, the minimum observed value was 20 ms, a maximum of 127 ms,



7.7. Improvements 44

with an average of around 56 ms. Please note that all these values correspond to an audio
delay in relation to the image. However, in one of the tests performed, a different behavior
was observed, with the video delayed about 200 ms in relation to the captured audio. Since
this scenario has only been observed once, it is considered an exception, but the system
should be prepared if it happens again in the future.

Despite the delay verified between the sensors, this is not a problem, since during the
post-processing it is possible to realign and synchronize the data, having as reference the
obtained DSync value.

7.7 improvements

Throughout the tests that were carried out, this strategy showed that some problems were
needed to be solved.

The first had to do with the blob identification process. In laboratory environment,
this question was not raised, because the conditions between the tests were identical and
controlled. But when testing in a real environment, with different lighting conditions, it
became difficult to automate the blob identification process, since the screen where the video
was played was always subject to light reflections or other issues that could have influence.

The other point refers to the difficulty in ensuring that the computer playing the video
was able to ensure that it was played with a fixed frequency. Some variations in the playback
frequency of the image and audio of the video were found, which is a problem, since the
video would have to be as accurate as possible, to be used as a reference for synchronization.

In order to solve this problem, the video option was discarded, finding a solution that
would allow to maintain the developed strategy. An Astable Timer 555

5 circuit was then
used, such as the one that is diagramming in Figure 24.

5 https://circuitdigest.com/calculators/555-timer-astable-circuit-calculator

https://circuitdigest.com/calculators/555-timer-astable-circuit-calculator


7.7. Improvements 45

Figure 24: Astable Timer 55 circuit diagram (from Circuit Digest.5).

This circuit was connected to a speaker and an LED, and both components were activated
at the same time and the frequency at which this occurred remained constant. Thus, the
process presented in section 7.5 on the processing of the audio remained unchanged, and it
was only necessary to change the image processing, thus solving the two problems identified.

For this, the first part concerning the extraction of the bag file frames continued to be
done and was only replaced the blob identification part, which was generating problems. In
order to understand the new process, it is important to analyze Figure 25 containing two
frames taken from the bag file: the one on the left with the LED off and the one on the right
with the LED on.

Figure 25: LED frames: (a) LED off and (b) LED on.



7.7. Improvements 46

After analyzing the figure, it is easy to see the difference between one and the other. Thus,
to process the frames was made the sum of the value of all pixels of the frame. As can be
seen, when the LED is on, most pixels are clear, with the frame having a higher value (in
terms of sum of pixels) than when it is turned off. Thus, by comparing the value of the sums
of all frames consecutively, it is possible to identify the moments in which the LED turns on
and match these instants to those identified by the Amplitude Getter (section 7.5).

To automate this process, a script was created that from the bag file, with the synchroniza-
tion sequence, extracts all the necessary data and runs the entire process described in this
strategy, returning the average value of DSync.



8

U S E R I N T E R FA C E

The developed Data Acquisition Solution can obtain data from different sensors simulta-
neously. The challenge described in this chapter was to make this system more accessible
to the common user, so a user-oriented graphical interface has been developed, where all
the features offered by the system are available. The interface was developed in Python, by
taking advantage of the PySimpleGUI1 module, designed for the creation of graphical user
interfaces. In each of the following sections, each of the features available are presented
alongside a description of their implementation and one or more illustrative images.

As can be seen later in section 9, the final configuration of the Data Acquisition System
consists of two computers and 6 sensors (5 cameras and 1 microphone array) distributed by
the two machines (two cameras on one PC and one camera and the microphone array on
another machine). So, it is important to take this into account when analyzing the present
interface.

The graphical user interface presented here is heavily based on remote invocations,
through SSH, for the two machines of the system, to start the whole system and interact
with the sensors present in the two machines. The Figure 26, shows the interface state’s
before starting the system. As can be seen the only available functions are Init, Review,
Reboot and Shutdown. After the system is initialized, it is also possible to use Record and
Preview (Figure 30).

Figure 26: Initial screen.

1 https://pysimplegui.readthedocs.io/

47

https://pysimplegui.readthedocs.io/


8.1. Init 48

8.1 init

The Init button in Figure 26 initializes the Data Acquisition System. When pressed, the
current state of the system is queried:

• If the system is turned off, a message with the information that the system is ready to
initialize is displayed, asking users if they want to initialize the system (Figure 27).

• If the system is already in operation, users are informed about this and asked if they
want to skip initialization (Figure 28). If the answer is yes, the interface is updated
with the sensors’ health monitoring data and the Preview and Record features are
made available. Otherwise, the system initializes again.

Figure 27: System ready to initialize confirmation.

Figure 28: Skip initialize confirmation.

After this initial check, if the user wishes to proceed with init, a remote signal is sent to the
two computers, starting the sensors contained in each of them, as well as the mechanisms
for their health monitoring. After this signal is sent, a user message is displayed to the user,
stating that there is the need to wait 2 minutes before the system is fully operational (Figure
29). During this wait time, the sensors are initialized, and the cameras are synchronized as
described in the previous sections (7).

Figure 29: Wait 2 minutes until the system is ready.



8.2. Preview 49

After two minutes, the system should be operational, and the Preview and Record
functions made available. As can be seen in Figure 30, the health monitoring data of each
sensor are displayed, changing the colour from green to red in case there are differences
between the number of received/recorded frames and the number of expected frames. For
these, there are the minimum, the maximum and the average number of frames received
so far as well as the calculated number of lost frames, considering the number of frames
received so far and that which would be expected.

Figure 30: Screen when the system is running.

8.2 preview

The Preview feature allows the visualization of the image acquired by the cameras in real-
time. This feature is only available after the system is initialized and acquiring data from
the sensors, as illustrated in Figure 30. When the Preview button is pressed, a command
is sent to one of the machines to run RQT2. By taking advantage of the image view plugin,
the user only needs to select the camera he wants to preview, and as soon as the camera is
selected, he has access to the image that is being acquired (Figure 31).

2 http://wiki.ros.org/rqt

http://wiki.ros.org/rqt


8.3. Record 50

Figure 31: Image preview of fisheye camera.

8.3 record

The Record feature records the data that is being acquired by the sensors so that it can
be used later. For this the data of each sensor is recorded separately in different bag files,
through the command ros2 bag record, made available by ROS2.

Since this dissertation is framed within the scope of the EasyRide Program, as already
mentioned, some features of this user interface were designed with data campaigns in mind
that were carried out during the project. One of them is present in the record function, at
the time of asking to enter an ID, as seen later.

This record feature is divided into 3 distinct scenarios, identified through the ID that
is requested from the user before starting each recording (Figure 32). The first scenario
is intended for the common user, and the remaining two were designed for the team
responsible for managing the Data Acquisition System and the data campaigns.



8.3. Record 51

Figure 32: Insert ID for record.

In the case of a normal recording, the ID consists of 3 digits. This option was made to
facilitate the process, since, as can be seen in the Figure 32, the complete ID of each scene
was composed by the city and vehicle where it was being recorded. As these data campaigns
took place in Braga, in a Mercedes Vito van, the first part of the ID was static (Braga Vito ...),
being only necessary to enter the last 3 digits.

If the ID entered is not within the desired range (000-999), the user is warned (Figure 33).

Figure 33: Invalid ID confirmation.

The two remaining recording scenarios concern calibration between sensors and test
recordings. These scenarios are identified by another two types of IDs: the ID must start,
in the case of calibration, with ”cal ” (Figure 34), and, in the case of test recordings, with
”test ” (Figure 35).

Figure 34: Calibration record ID confirmation.



8.3. Record 52

Figure 35: Test record ID confirmation.

As for the process behind each scenario, the calibration recording process corresponds to
what has been presented in the section 7, regarding to the synchronization process. For this,
only data from the master camera and microphone array are recorded (in separate bag files).
When a calibration recording is finished, the script that calculates the desynchronization
time between the audio and the video is run. The calculated value is shown to the user
which can then save it for later (i.e., to synchronize the data recorded subsequently).

Finally, the test recording, as the name implies, was made available for testing and sanity
checks. Test and normal recording are no different, except in their IDs. In the presence of a
valid ID (000-999, cal XXX or test XXX), data recording begins until it is stopped, using the
respective Stop button (Figure 36).

Figure 36: Record screen, with Stop button unlocked.

When a recording is stopped, the health monitoring data for each sensor during the
recording is displayed (Figure 37), so that the user can decide whether to keep the recording
or delete it (e.g., if the quality is not acceptable). If the user chooses to keep the recording,
nothing is done; otherwise, the bag files are deleted.



8.4. Review 53

Figure 37: Record performance statistics and confirmation to keep or delete record.

In the Figure 37, it is possible to check the frame rate of three cameras (rear, fisheye and
front) as well as the publish rate of the audio from microphone array.

8.4 review

The Review feature allows the user to review a recording by replaying the corresponding
bag files. When the Review button is pressed, a text box is displayed (Figure 38) for the user
to enter the ID of the recording that he wants to review.

Figure 38: Insert the record ID for review.



8.5. Reboot/Shutdown 54

The necessary commands are then sent to each machine to replay the bag files, through
the command ros2 bag play, available in ROS2. To view the images from the recording, the
process is identical to the one described in section 8.2 for Preview (Figure 39).

Figure 39: Front camera review.

8.5 reboot/shutdown

The processes behind the Reboot and Shutdown features are identical. If the respective
button is pressed, a message is displayed to the user, asking for confirmation (Figure 40 and
Figure 41). If there is confirmation, remote commands are sent to each machine to shutdown
or restart, according to the button pressed. In the end, the graphical user interface is closed
(it is running in one of the machines being shutdown/restarted).



8.5. Reboot/Shutdown 55

Figure 40: System reboot confirmation.

Figure 41: System shutdown confirmation.



9

R E S U LT S A N D D I S C U S S I O N

By taking advantage of the health monitoring system, described in section 6, some of the
tests performed on the data acquisition solution to verify its ability to full the requirements
are presented and discussed.

9.1 system performance

Initially, performance tests were done with the aim of understanding what are the the
requirements in terms of hardware resources as well as improving the software (and the
architecture) being developed.

These performance tests took place with three sensors:

• 2 x RGB cameras (Allied Vision MAKO G-234c): these cameras have a maximum
resolution of 2,35MP (1936x1216), recording up to 41.5 fps. Power and data connection
are supported through Power-over-Ethernet.

Figure 42: Illustrative image of the Allied Vision MAKO G-234c camera.1
1 https://www.alliedvision.com/en/camera-selector/detail/mako/g-234/

• 1 x microphone array (miniDSP UMA-8): this consists of an array of 7 michophones/chan-
nels, digital audio amplifier and noise reduction. Power and data connection are
supported through USB.

56

https://www.alliedvision.com/en/camera-selector/detail/mako/g-234/


9.1. System Performance 57

Figure 43: Illustrative image of the miniDSP UMA-8 microphone-array.2
2 https://www.minidsp.com/products/usb-audio-interface/uma-8-microphone-array

Before the system performance tests, the sensors’ configurations was analysed and tested
in isolation to understand what exactly could be expected from them.

9.1.1 Sensors Configuration

From the analysis and tests performed on the sensors’ synchronisation, a set of parameters
were found to have a major impact on the sensors performance.

For the RGB camera used, the following set of parameters have an influence on the camera
throughout, i.e., the number of frames per second:

• Resolution: parameter related to image size/quality. Several tests were performed,
and this parameter varied between a minimum resolution of 640x480 and a maximum
of 1936x1216 (maximum resolution supported by the camera). It directly influences the
size of each frame received by ROS2 and the maximum value supported for acquisition
rate (i.e., higher resolutions reduce the maximum frame rate allowed by the cameras).

• Stream Bytes per Second: parameter that defines the maximum amount of data
transmitted by the camera, in bytes per second. Varies between 45 and 115

3 MiB. This
parameter also influences the maximum acquisition rate supported by the cameras (i.e.,
lower values of stream bytes per second, can reduce the maximum value of frames per
second allowed).

3 In the final version this value was increased to 124, due to a firmware update.

https://www.minidsp.com/products/usb-audio-interface/uma-8-microphone-array


9.1. System Performance 58

• Exposure/Exposure Auto: corresponds to the camera’s exposure time in microseconds.
The value of “exposure auto” has been set to ”Off” so that multiple settings with
different exposure values could be tested. This parameter also influences the maximum
acquisition rate supported by the cameras (i.e., higher values of exposure, reduce the
maximum value of frames per second allowed).

• Acquisition Rate: parameter that defines the frame rate of the camera, being affected
by the settings of the remaining parameters presented above.

Regarding the microphone, it is necessary to have prior knowledge of some concepts
about digital audio. The conversion of analog to digital audio, consists in sampling the
original waveform according to a given sampling frequency, as illustrated in Figure 44. In
this case, to perform this conversion process it is necessary to consider some parameters
that determine the quality of the audio:

• Sample Rate: number of samples taken, per second. This feature determines the
fidelity of the signal, i.e., the higher the frequency of the samples, typically, made the
more percentage of signal is acquired.

• Bit Depth: determines how much information can be stored in each sample. The larger
the number of bits, the more information each sample acquires, typically promoting
audio quality.

• Channels: number of audio sources within the audio signal. Each channel contains a
sample indicating the amplitude of the audio being produced by that source at a given
moment in time.

• Bit Rate: bit transfer rate or flow that are converted or processed per second. It is
commonly used to describe the audio stream. For uncompressed audio, it can be
calculated.



9.1. System Performance 59

Figure 44: Illustration of different audio sampling frequencies [2].

In Table 5, the values used in the configuration of the sensors during the performance
tests are presented.

Regarding the camera, the resolutions varied between 640x480 to 1936x1216 (maximum
supported), the value of stream bytes per second alternated between 90000000 and 115000000,
with the acquisition rate parameter varying between a minimum of 2 FPS and a maximum of
30 FPS. As for exposure, the Auto was set to Off, having always been used the value of 14988

for this parameter, which allowed to combine a good image quality, without compromising
the acquisition rate values.

For the microphone, the sample rate varied between 8000 and a maximum of 48000 with
the bit depth switching between 16 and 24. The number of channels also varied between 1

and 8, as can be confirmed in the table below.



9.1. System Performance 60

Table 5: Sensor configuration values used during the performance tests.
Camera

Parameters Values

Resolution
640x480, 800x600, 1024x768,

1280x720, 1440x900, 1600x900,
1920x1080 and 1936x1216

Stream Bytes per Second 90000000 and 115000000

Acquisition Rate
2.0, 4.0, 8.0, 12.0, 14.0, 18.0,

22.0, 24.0, 26.0, 28.0 and 30.0

Exposure
14988

(Exposure Auto set to Off )
Microphone

Parameters Values
Sample Rate 8000, 16000, 44100 and 48000

Bit Depth 16 and 24

Channels 1, 2, 3, 4, 6 and 8

9.1.2 Test Scenarios and Setups

Besides the different sensor configurations (see 9.1.1, other factors that can compromise the
system’s performance have also been considered. Thus, for each one these, a test scenario
and a test setup has been developed, all of which are described in this section. These
scenarios/setups essentially have to do with the conditions of the machine on which the
system is running (i.e., consumption or limitation of hardware resources).

Each test scenario goes through all the combinations of values of the different parameters
of each sensor (see Table 5). In order to automate this process, a bash script was written
to go through all those combinations. Moreover, tests were performed with and without
storing/recording data, in order to better understand the impact of data acquisition from
data storage.

All steps related to the script are listed below:

1. Drop cache.4

2. Set the sensor’s configuration (depends on the sensor being tested).

3. Start Health Monitoring.

4. Start the sensor node (effectively starting data acquisition).

a) Test without recording.

4 The cache was cleaned up between each test so that the test of the previous configuration had no impact on the
following.



9.1. System Performance 61

b) Test with recording.

5. Save file with results for analysis.

Below, the test setups that were developed to assess the system’s performance under
different scenarios are presented.

• Normal Conditions

In this scenario, the sensors are used under ”normal” conditions, that is, no changes
to the hardware/software support system, or in other words, the tests running on a
regular Ubuntu 20.04 operating system. This scenario is used as a reference for later
drawing up conclusions about the results obtained in others scenarios. For this setup,
it is only necessary to run the script for the camera and for the microphone, with no
additional operations.

• Ubuntu 20.04 Lightweight Conditions

Unlike the normal conditions’ scenario, this scenario relies on a lightweight Ubuntu
20.04 operating system, limiting the number of drivers and services that are loaded
(e.g., GUI). Under normal conditions, the Ubuntu 20.04 operating system activates
services and drivers that are unnecessary for the application at hand, such as services
related to the graphical user interface, network, and many more. For this setup,
Ubuntu 20.04 is booted into recovery mode where only the most essential services
and drivers are start. Because of this, the system has more resources available and its
performance is expected to increase.

Moreover, the following setups are built on top of these two.

• Vimba SDK

In this test setup, only the low-level image acquisition software, Vimba SDK5, is used
(i.e., ROS2 is not used). The goal is to remove ROS2 from the acquisition process and
so getting the highest possible performance from the camera. Besides, it enables the
impact of ROS2 on performance to be evaluated.

This setup was implemented on top of all the two setups presented so far.

• CPU Load

This scenario assesses the influence of CPU load in the system. The performance
of an application is often related to the resources made available by the operating

5 https://www.alliedvision.com/en/products/software/

https://www.alliedvision.com/en/products/software/


9.1. System Performance 62

system, being the CPU one of the most important. CPU (Central Processing Unit) can
be idealized as the brain of a computer, responsible for processing all operations, as
specified by instructions (i.e., by the software). In this way, it is essential to consider its
analysis, since it directly influences the speed with which an application is running.
Given this, to evaluate the influence of this resource on performance, CPU stress tests
were performed, under different loads, using stress-ng6. More specifically, tests were
performed for loads of 0, 20, 40, 60, and 80 percent.

This setup was implemented on top of all the three setups presented so far.

Here is a summary of the test setups/scenarios applied to each of the sensors that are
reported in this dissertation:

• Camera:

– Normal Conditions:

* Initial Tests (ROS2)

* Vimba SDK

– Ubuntu 20.04 Lightweight Conditions:

* Initial Tests (ROS2)

* Vimba SDK (also with CPU load)

• Microphone:

– Normal Conditions:

* Initial Tests (ROS2)

* CPU Load

– Ubuntu 20.04 Lightweight Conditions:

* Initial Tests (ROS2)

To perform these tests, a Workstation HP Z2 Tower G47 was used, with the following
specifications:

• Motherboard: HP Z2 Tower G4 Workstation

• CPU: Intel® Core™ i7-8700K 3.70GHz x 6

• RAM: 16GB DDR4

• Storage: SSD 500GB M.2 NVMe

6 https://wiki.ubuntu.com/Kernel/Reference/stress-ng
7 https://support.hp.com/us-en/document/c06100744

https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://support.hp.com/us-en/document/c06100744


9.1. System Performance 63

9.1.3 Performance Tests Results

In this section the results obtained from the tests performed are presented and analysed, for
the different setups.

Each test for the RGB camera lasted 90 seconds, while for the microphone a duration of
60 seconds was used instead. For the entire execution of the test script, for the camera there
is a total of 176 tests (8 resolutions x 2 stream bytes per second x 11 acquisition rates), due to
the different combinations of parameters. For the microphone, for the reason, there is a total
of 48 tests (4 sample rates x 2 bit depths x 6 number of channels).

For a clearer analysis of the results, the error value of the frames per second is presented.
To obtain this value, the following formula is used:

FPSerror = FPSexpected − FPSobtained

For the camera, FPSexpected corresponds to the acquisition rate. For the microphone, it is
always 100.

In the following charts, FPSerror is on the Y axis, while the X axis corresponds to the
different configuration for each of the sensors, namely:

• Camera: Resolution, Bytes per second, Acquisition Rate (e.g., ”800x600,90000000,2.0”
corresponds to a 800 by 600 resolution, 90000000 Bytes per second, and an Acquisition
Rate of 2.0 Frames per Second).

• Microphone: Sample Rate, Bit Depth, Number of Channels (e.g., ”16000,24,3” corre-
sponds to a Sample Rate of 16000, a Bit Depth of 24 and 3 Channels).

Moreover, in the charts with the results from the microphone, their first half corresponds
to tests without recording while the second corresponds to tests with recording. In the
camera results’ charts, the tests with and without recording are represented by different
lines, as indicated by the labels in each chart.

Figure 45 presents results from the camera under normal conditions, when using ROS2

and only the Vimba SDK. The best results were obtained when using only the Vimba SDK
(green line), where there are only very small deviations from what was expected. When
using ROS2 (blue and orange lines), there was a higher FPSerror, especially with higher
resolutions, in tests where the Stream Bytes per Second parameter was set to 90000000 bytes.
This behaviour is understandable, since the camera may not hold with the amount of data
being requested. Moreover, as expected, the FPSerror when recording (orange line) is higher
than when not recording (blue line). All these results were obtained with a CPU load of
0%. Results using higher loads are not report because they were worse than what is already
shown here.



9.1.System
Perform

ance
64

Figure 45: Camera’s FPSerror under normal conditions, when using ROS2 and only the Vimba SDK.



9.1. System Performance 65

Figure 46 presents results from the camera under lightweight conditions. These results are
significantly better than under normal conditions. When using ROS2, there is no significant
different between recording or not, there are only very small deviations from what was
expected. The highest errors occur with a resolution of 1920x1080, but still, always less than
1 frame per second, considerably better than under normal conditions. Results when using
ROS2 were only obtained with a CPU load of 0% because using higher loads the results
were worse than what is already shown here. Conversely, when using the Vimba SDK even
with a CPU load of 80% level (purple line), there are no significant errors.



9.1.System
Perform

ance
66

Figure 46: Camera’s FPSerror under lightweight conditions, when using ROS2 and only the Vimba SDK with CPU load.



9.1. System Performance 67

Figure 47 and Figure 48 present results from the microphone under normal and lightweight
conditions, respectively. Under normal condition, there only a few significant errors; CPU
load and recording seems to have negligible impact on the results. Under lightweight
conditions, the results are even better, with CPSerror equal to zero on many occasions (i.e.,
the result obtained equals the expected).



9.1.System
Perform

ance
68

Figure 47: Microphone’s CPSerror under normal conditions.



9.1.System
Perform

ance
69

Figure 48: Microphone’s CPSerror under lightweight conditions.



9.1. System Performance 70

After testing the sensors separately, two tests of approximately one hour each, with
recording, were performed. Using a ”minimal setup”, these tests served to understand the
behavior of the system in its final version. Three sensors were used (i.e., 2 cameras and 1

microphone). The tests were performed, one under normal conditions and the other under
lightweight conductions. The parameters used for the sensors were as follows:

• Cameras:

– Resolution: 1936x1216 (2.35mpx)

– Stream Bytes per Second: 115000000 bytes

– Acquisition Rate: 20.0 frames per second

• Microphone:

– Sample Rate: 44100 Hz

– Bit Depth:16 bits

– Number of Channels: 8

Figure 49 and Figure 50 present results from the minimal setup under normal and
lightweight conditions, respectively. Regarding the microphone, the error is negligible.
Regarding the cameras, on the other hand, the error starts high but decreases over time.
Under normal conditions it reaches 0.4 but under lightweight conditions it get very close to
zero.



9.1.System
Perform

ance
71

Figure 49: Results from the minimal setup under normal conditions, with recording.



9.1.System
Perform

ance
72

Figure 50: Results from the minimal setup under lightweight conditions, with recording.



9.1. System Performance 73

From these results, it can be concluded that the system should run under lightweight
conditions. Nevertheless, that is still not ideal, especially the performance of the cameras.
The changes that have been implemented, after analyzing these results, are presented below,
with the aim of improving the performance of the cameras.

9.1.4 Performance Improvements

After the analysis of the results presented in the previous section, and taking into account
the issues with the performance of the cameras, the manufacturer was contacted and
the documentation further analysed, from which small but significant changes were made,
resulting in even better performance. These changes have to do with three specific parameters
of the camera:

• GVSPMaxRequests: the maximum number of resend requests that the host attempts
before marking a packet dropped.

• GVSPPacketSize: network packet size in bytes.

• Stream Bytes per Second: moderates the data rate of the camera.

The first parameter (GVSPMaxRequests) defines how many times packets can be resent
before marking them lost and so it can be used to improve immunity against some network
errors. The default value of this parameter is 3, but in the original avt vimba camera package,
this parameter was set to 0 and no resend attempts were made. Having seen this, this
value has been increased to 512 (maximum allowed by the camera), reducing the number of
packets and frames lost, and thus, reducing FPSerror

8.
As for the second parameter (GVSPPacketSize), it defines the size of each packet that is

transferred between the camera and the computer. This value is also related to the MTU
settings of the computer’s network card. At the time of the first tests this value was set to
1500 bytes. According to the documentation provided by Allied Vision9, the cameras being
used support jumbo frames (in Ethernet terminology, jumbo frames are the name given
to frames/packets whose size is greater than 1500 bytes10). Seen this, the packet size was
increased to 9000 bytes (at the same time, the network card’s MTU has to be configured with
the same or higher value). As a result, network traffic decreased (larger packets result in
fewer packets/headers being transmitted), thereby reducing the probability of a network
error, packets or frames lost, and thus, reducing the probability of increased FPSerror.

8 This was confirmed during the Data Campaigns, through the graphical interface, therefore there are no graphics
like those presented with the initial tests.

9 https://www.alliedvision.com/fileadmin/content/documents/products/cameras/various/installation-manual/
GigE Installation Manual.pdf - How to minimize/eliminate dropped packets? (Page 50)

10 https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/features/Camera and
Driver Attributes.pdf - Packet Size (Page 54)

https://www.alliedvision.com/fileadmin/content/documents/products/cameras/various/installation-manual/GigE_Installation_Manual.pdf
https://www.alliedvision.com/fileadmin/content/documents/products/cameras/various/installation-manual/GigE_Installation_Manual.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/features/Camera_and_Driver_Attributes.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/features/Camera_and_Driver_Attributes.pdf


9.2. Data Campaigns 74

Finally, the maximum value supported for the Stream Bytes per Second parameter was
changed. This parameter moderates the camera data rate and initially the maximum allowed
was 115 MiB. After an update made to the firmware of the cameras, it was possible to
increase this value to 124 MiB and thus increase the volume of data that can be transmitted,
per second, from the cameras to the computers.

These three changes resulted in a performance improvement and were implemented
before the Data Campaigns, the results of which are presented in section 9.2.3.

9.2 data campaigns

As already mentioned, since the project of this dissertation is part of the EasyRide Program,
the result of a partnership between Bosch and the University of Minho, data campaigns
were carried out in this area. Thus, it was possible to test the system in an environment
close to reality and perceive its behaviour, thus analyzing all the options that were taken
throughout their development.

The system architecture used during the data campaigns is presented below, focusing first
on the software organization and later on the hardware architecture.

9.2.1 Software Architecture

The final version of the system software architecture integrates all the work documented
in this dissertation. As can be identified in the Figure 51, ROS2 is the center of the entire
operation, making the connection between the sensors, database or monitoring system, for
example.



9.2. Data Campaigns 75

Figure 51: Illustration of software operation.

To clarify the information presented in the figure, the main concepts are explained:

• Recording: acquisition and storage of data from sensors.

• Playback: Playback and visualization of data stored during recording.

• Monitoring: analysis of the status of sensors and machines.

• Applications: being integrated in the EasyRide project, this system aims to provide
data as each project needs, such as for the purpose of identifying violence, objects,
among others.

9.2.2 Hardware Architecture

This data acquisition system was installed in a Mercedes Vito van, with the passenger part
customized in a shuttle configuration (see Figure 31). The distribution of the sensors is
shown in Figure 52.



9.2. Data Campaigns 76

Figure 52: Layout of sensors in the van.

The system consists of six sensors:

• 3x RGB Camera Mako G-507C (a central with ”fisheye” lens);

• 2x RGB Camera Mako G-234C;

• 1x UMA-8 Microphone Array.

The rest of the hardware is observable in Figure 53 and is installed in the trunk of the van.
The system consists of two PC Gigabyte Z950M Gaming X11 computers (with 10 Gigabit

connection) to support the entire system, with the following features:

• Motherboard: Gigabyte Z590M Gaming X;

• CPU: Intel® Core™ i9-11900KF Processor;

• RAM: 32GB 3200MHz DDR4 CL16 DIMM (Kit of 2) HyperX FURY Black;

• ROM: Samsung M.2 PCI-E NVMe Gen4 980 PRO 2Tb;

• Network Card: Asus (1-Port) 10GBase-T PCIe Network Adapter;

• GPU: Geforce RTX 3080 Gaming 10GB.

The sensors are distributed by the two machines, one responsible for the Graphical
Interface (Section 8), one camera and microphone and the other with the other cameras.
Attached to this, there is the switch (not visible in the Figure 53) that allows to follow this
distributed architecture, responsible for connecting machines and sensors. There is also a
QNAP TES-3085U with about 40TB of capacity to store data and a power system, to ensure
power to the system while driving the van.

11 https://www.gigabyte.com/Motherboard/Z590M-GAMING-X-rev-10#kf

https://www.gigabyte.com/Motherboard/Z590M-GAMING-X-rev-10#kf


9.2. Data Campaigns 77

Figure 53: Van trunk with hardware components.

9.2.3 Final Results

In these data campaigns, more than 600 scenes were performed during almost 2 months,
with close to 300 actors, and a volume of data in the order of 14TB was generated. The
system performed very well, with no major performance breaks to be recorded, having
fulfilled the project objective.

The dataset created during the data campaigns was important so that other projects within
the EasyRide Program could test and train their algorithms. At the end of the Program, the
objective was for the data acquired by the system presented in this dissertation to be made
available in real time for the remaining projects.

In the next chapter, a complete analysis of all the work developed is made, also addressing
the points that can be improved in the solution presented here.



10

C O N C L U S I O N

The study of the state of the art permitted a better understanding of all the concepts
important for the following stages of this work. With this, it was possible to create a solid
foundation capable of sustaining the work, from the development of the architecture to the
final solution. It was possible to understand, in more detail, some of the available tools and
the main concepts that should underlie the development of this work.

In this way, the goal was on using ROS2 to implement the audio and image packages,
defining a set of guidelines for migrating packages from the first to the second version
of ROS. After this, the focus was on developing the mechanisms of health monitoring,
simultaneously with the mechanisms of synchronization between sound and image sensors.
An graphical interface was also developed to facilitate the interaction between the system
and the user. An analysis to the performance of the developed solution was also made, to
understand if the objectives are being met or if there is any improvement that can be made
in the built data acquisition system.

Thus, reaching the end of the project is made a positive evaluation of the work developed.
The proposed objectives were met, developing a system capable of responding to requests for
data acquisition from various sensors, such as cameras and microphones. The way in which
some setbacks were resolved, such as performance issues or changes to the synchronization
strategy, proved to be important points for the good performance of the system during
the Data Campaigns, which constituted the final test of all the work presented in this
dissertation.

Looking at the points that can be improved, it essentially goes through the issue of
synchronization between sensors. The synchronization of the cameras was resolved in a
very positive way, ensuring that the images of the various cameras were synchronized in
real-time, without requiring any post-processing work. However, when this issue involves
audio data, the strategy found requires post-processing data to synchronize and realign the
different types of data. Thus, it would be interesting to get a solution identical to that used
in cameras, where the different sensors would be synchronized in real-time, without forcing
any data processing after their acquisition.

However, this less positive point does not hinder the functioning of the system, thus
fulfilling the purpose for which it was developed throughout this dissertation project.

78



B I B L I O G R A P H Y

[1] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A design science research
methodology for information systems research,” Journal of Management Information
Systems, vol. 24, pp. 45–77, 01 2007.

[2] “About oscilloscope sample rate — labtronix test and development solutions.” https:

//labtronix.co.uk/drupal/content/about-oscilloscope-sample-rate. (Accessed on 2021).

[3] “Ros.org — about ros.” https://www.ros.org/about-ros/. (Accessed on 2021).

[4] “Autoware.auto.” https://www.autoware.auto/. (Accessed on 2021).

[5] “Apex.ai – autonomous driving software.” https://www.apex.ai/. (Accessed on 2021).

[6] D. Linthicum, “Next generation application integration: From simple information to
web services,” 01 2004.

[7] “Apache kafka.” https://kafka.apache.org/intro. (Accessed on 2021).

[8] “Kafka and message queues – microsoft docs.” https://docs.microsoft.com/en-us/learn/

modules/cmu-message-queues-streams/1-message-queues. (Accessed: 2021).

[9] A. B. Bondi, “Characteristics of scalability and their impact on performance,” In Pro-
ceedings of the Second International Workshop on Software and Performance - WOSP ’00,
2000.

[10] H. El-Rewini and M. Abd-El-Barr, “Advanced computer architecture and parallel
processing,” John Wiley Sons, vol. 42, 2005.

[11] M. Van Steen and A. Tanenbaum, “Distributed systems principles and paradigms,”
Network, vol. 2, 2002.

[12] M. Ben-Ari, “Principles of concurrent and distributed programming,” New York: Prentice
Hall, 1990.

[13] K. Shin and P. Ramanathan, “Real-time computing: A new discipline of computer
science and engineering,” Proceedings of the IEEE, vol. 82, 1994.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng,
“Ros: an open-source robot operating system,” vol. 3, 01 2009.

79

https://labtronix.co.uk/drupal/content/about-oscilloscope-sample-rate
https://labtronix.co.uk/drupal/content/about-oscilloscope-sample-rate
https://www.ros.org/about-ros/
https://www.autoware.auto/
https://www.apex.ai/
https://kafka.apache.org/intro
https://docs.microsoft.com/en-us/learn/modules/cmu-message-queues-streams/1-message-queues
https://docs.microsoft.com/en-us/learn/modules/cmu-message-queues-streams/1-message-queues


bibliography 80

[15] “UMA-8 USB microphone array.” https://www.minidsp.com/products/

usb-audio-interface/uma-8-microphone-array. (Accessed on 2021).

[16] “Allied vision - MAKO G cameras.” https://www.alliedvision.com/en/products/

camera-series/mako-g/. (Accessed on 2021).

https://www.minidsp.com/products/usb-audio-interface/uma-8-microphone-array
https://www.minidsp.com/products/usb-audio-interface/uma-8-microphone-array
https://www.alliedvision.com/en/products/camera-series/mako-g/
https://www.alliedvision.com/en/products/camera-series/mako-g/


This work is supported by: European Structural and Investment Funds in the FEDER component, through
the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039334;
Funding Reference: POCI-01-0247-FEDER-039334].


	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Dissertation Structure

	2 State of Art
	2.1 Middleware
	2.2 Apache Kafka
	2.3 Main Concepts
	2.3.1 Scalability
	2.3.2 Component-based Software
	2.3.3 Distributed Systems
	2.3.4 Message Passing
	2.3.5 Real-time Systems


	3 Software Development Methodology
	4 Robot Operating System 2
	4.1 Design and Architecture
	4.2 Main Concepts and Communication
	4.2.1 Nodes
	4.2.2 Topics
	4.2.3 Parameter Server
	4.2.4 Bags
	4.2.5 ROS Middleware Interface

	4.3 Package Structure

	5 Packages Migration
	5.1 Audio - audio_common
	5.2 Image/Video - avt_vimba_camera
	5.3 Package Migration Guidelines

	6 Health Monitoring
	6.1 Requirements Specification
	6.2 Architecture
	6.2.1 Health Monitoring Node Machine
	6.2.2 Health Monitoring Node Sensor
	6.2.3 Health Monitoring Messages

	6.3 Results

	7 Sensors Synchronization Strategy
	7.1 Architecture
	7.2 Cameras Synchronization – Precision Time Protocol
	7.3 AVSync Generator
	7.4 Blob Detector
	7.5 Amplitude Getter
	7.6 Results
	7.7 Improvements

	8 User Interface
	8.1 Init
	8.2 Preview
	8.3 Record
	8.4 Review
	8.5 Reboot/Shutdown

	9 Results and Discussion
	9.1 System Performance
	9.1.1 Sensors Configuration
	9.1.2 Test Scenarios and Setups
	9.1.3 Performance Tests Results
	9.1.4 Performance Improvements

	9.2 Data Campaigns
	9.2.1 Software Architecture
	9.2.2 Hardware Architecture
	9.2.3 Final Results


	10 Conclusion

