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ABSTRACT  10 

 11 

In animal societies, individuals may take on different roles to fulfil their own needs 12 

and the needs of their groups. Ant colonies display high levels of organisational 13 

complexity, with ants fulfilling different roles at different timescales (what is known as task 14 

allocation). Factors affecting task allocation can be at the individual level (e.g., 15 

physiology), or at the group level (e.g., the network of interactions). We focus on group 16 

level processes by exploring the relationship between interaction networks, task 17 

allocation and task switching using a previously published dataset (Mersch et al., 2013) 18 

tracking the behaviour of six Camponotus fellah colonies over 41 days. In our new 19 

analyses, our goal was to better explain the noisy process of task switching beyond simple 20 

age polyethism. First, we investigated the architecture of interaction networks using node 21 

(individual) level network measures and their relation to the individual’s task – foraging, 22 

cleaning or nursing – and whether or not the ant switched tasks. We then explored how 23 
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noisy information propagation was among ants, as a function of the colony composition 24 

(how many ants carried out which tasks), through the information-theoretic metric of 25 

Effective Information. Our results show that interaction history was tied to task allocation: 26 

ants who switched to a task are more likely to have interacted with other ants carrying out 27 

that task. The degree to which interactions related to task allocation, as well as the noise 28 

in those interactions, depended on which groups of ants were interacting. Overall, we 29 

showed that colony cohesion was stable even as ant-level network measures varied more 30 

for ants when they switched functional groups; thus, ant colonies maintained a high level 31 

of information flow as determined by network analysis, and ant functional groups played 32 

different roles in maintaining colony cohesion through varied information flows. 33 

 34 

Keywords: Ant behaviour, Effective Information, emergent behaviour, insect social 35 

networks, task allocation, information flow 36 

 37 

Highlights  38 

● We analysed the interaction networks of six Camponotus fellah colonies 39 

● We tested how centrality and information flow were tied to task switching  40 

● Node-level network metrics and the information theoretic measure of Effective 41 

Information explained differences among functional groups 42 

● Interactions were correlated with task switching, but the strength of the 43 

correlation differed across functional groups 44 

 45 

INTRODUCTION 46 
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In animal societies, individuals may carry out different tasks to fulfil their own needs 47 

and the needs of their group (Sumpter, 2006; Clutton-Brock, 2009; Jeanson & 48 

Weidenmuller, 2014). Larger and more complex societies can self-organise to fulfil tasks 49 

beyond basic sustenance and reproduction (Boomsma and Frank, 2006; Sumpter, 2010). 50 

Local exchange of information, between individuals of a group and between individuals 51 

and their environment, is key to self-organisation (Sumpter, 2006; Boomsma and Frank, 52 

2006; Couzin, 2009; Cavagna et al., 2010; Swain and Fagan, 2019). Social insect 53 

colonies display high levels of organisational complexity (Lukas & Clutton-Brock, 2018), 54 

where individual tasks may include foraging, nest construction, and caring for the young 55 

(Gordon, 2002). The assignment of tasks, also referred to as task allocation, is the result 56 

of patterns of factors that vary across different scales (Gordon, 2015). These tasks can 57 

be fixed throughout each individual’s lifetime due to physiological reasons, for example 58 

when only a fertile subset of the population is responsible for reproduction, or when a 59 

subset is responsible for providing food (Sumpter, 2010; Clutton-Brock et al., 2001).   60 

Task allocation can also result in individuals changing their main task over time. 61 

Task allocation in ants has been the subject of much previous work (Anderson and Shea, 62 

2001; Gordon, 2015). Across ant species, studies have shown that, depending on the 63 

tasks and on the colony, ants may display varying degrees of task flexibility, from small 64 

colonies of totipotent ants to larger ones with a structured division of labour (Anderson 65 

and Shea, 2001). Factors affecting task changes can occur at the individual level or at 66 

the group level. Individual-level factors include physiology (Anderson and Shea, 2001), 67 

age (Tripet and Nonacs, 2004), corpulence (Robinson et al., 2009) and past experience 68 

(Ravary et al., 2007), whereas group-level factors involve colony size (Ravary et al., 2007) 69 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2021.03.29.437501doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437501
http://creativecommons.org/licenses/by-nd/4.0/


4 

 

and interaction rates at the colony level (Gordon and Mehdiabadi, 1999). Studying 70 

individual-level factors associated with task change is often simpler than studying group-71 

level ones. For example, individual-level changes can be easier to track because their 72 

rate of change often follows a consistent and predictable pattern, as in the case of ageing. 73 

Individual-level factors can also be directly quantified, e.g., by measuring age, 74 

corpulence, or physiological features, and traditional statistical approaches can be used 75 

to predict task changes.  76 

An ant’s propensity to switch to a new task could also be linked to nature of its 77 

interactions and the topology of the group’s social interaction network structure. However, 78 

changes in task allocation affected by group-level factors are currently not well 79 

understood. Structural features or macro-level social properties of groups can affect 80 

micro-level individual actions if the social system is affected by feedbacks (Flack, 2017; 81 

Hobson et al., 2019). However, quantifying relevant macro-to-micro feedbacks can be 82 

challenging and can require large amounts of data. The development of automated 83 

tracking systems has made this level of data collection possible. While these systems 84 

have improved researchers’ ability to track detailed social behaviour (Robinson et al., 85 

2009; Smith and Pinter-Wollman, 2021), assigning quantitative metrics to group dynamics 86 

is still a non-trivial task. In the case of interaction patterns, tracking physical interactions 87 

among individuals does not necessarily map onto the amount of meaningful (predictive) 88 

information exchanged with each interaction (Valentini et al., 2020). Although tracking 89 

technologies can tell us how many times individuals in a social group interact with one 90 

another, they cannot explain to what extent these interactions are tied to task allocation 91 
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without considering the structure of these interactions and without including behavioural 92 

observations. Network methods and metrics allow us to explore the interaction structure. 93 

In this paper, we leverage social network methods to gain new insight into task 94 

allocation changes in an existing dataset of ant interactions (published by Mersch et al. 95 

2013). Mersch et al. studied task switching in Camponotus fellah by tracking and 96 

analysing the movements and interactions of individually-identified ants. Worker ants 97 

were categorised into three functional groups (nurse, cleaner or forager). Analyses 98 

showed that ants had more interactions with others in their same functional group. 99 

Communities defining the functional groups exhibited distinct behavioural signatures and 100 

were highly spatially divided. Nurses spent most of their time with the brood, while 101 

foragers spent time at the nest entrance and cleaners were located between the other 102 

two groups and the rubbish pile (Mersch et al. 2013). Mersch et al. also explored the 103 

questions of task switching cost, i.e., a time and energy investment associated with 104 

learning new tasks (Goldsby et al., 2012), and of age polytheism, i.e., the correlation 105 

between the age of an ant and which task they perform. The original study identified 106 

spatial fidelity as a key regulator of ant social organisation and interaction frequency 107 

(Mersch et al. 2013). They also found that task switches were present but uncommon and 108 

that when a shift in functional group occurred, ants showed a preferred direction of task 109 

transition, from nurses to cleaners to foragers, mostly based on age (Mersch et al., 2013). 110 

Task changes were thus hypothesised to be driven by age polyethism, but the patterns 111 

were fairly noisy. 112 

In this new analysis we focus specifically on this noisy process of task switching 113 

and its predictability. A question not addressed in the previous study is whether the history 114 
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of an ant’s interactions with others could be one of the elements explaining task switching. 115 

In other species, information flow patterns have been shown to affect task allocation and 116 

overall colony behaviour, such as in the case of midden workers in red harvester ants 117 

(Pogonomyrmex barbatus; Gordon and Mehdiabadi, 1999, Pinter-Wollman et al., 2018), 118 

tandem running recruitment (Franklin and Franks, 2012) and consensus-forming in rock 119 

ants (Temnothorax albipennis; Sasaki & Pratt, 2018). To test whether the history of 120 

interactions or information flow could explain the noise seen in task switching dynamics 121 

that was not explained by age polyethism alone, we evaluated several potential macro-122 

scale predictors of task switching not addressed in the original paper.  123 

First, we described the architecture of the interaction networks by focusing on 124 

information flow (which in our case refers to the possible information exchange due to 125 

interactions among ants). We tested whether the role played by individual ants in 126 

regulating information flow in the colony and the functional group that they belong to were 127 

correlated. To do this, we quantified three network measures that are tied to the 128 

architecture of information flows at the local level for ant-to-ant interactions: strength 129 

mode, betweenness centrality, and bridge betweenness centrality. We also quantified a 130 

network level measure, Effective Information (EI), for the whole colony. At the scale of 131 

ant-to-ant interactions, strength measures the quantity and frequency of interactions of 132 

an ant, and strength mode finds the value in the distribution of strengths most commonly 133 

observed across all the ants in the group. Betweenness centrality measures the number 134 

of shortest paths between pairs of ants that pass through it. Bridge betweenness centrality 135 

extends betweenness to measure the number of shortest paths that pass through a node 136 

and connect separate highly connected groups of nodes, or communities. While strength, 137 
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betweenness centrality, and bridge betweenness centrality are common node-level 138 

measures in network science and have been applied to animal social networks in the past 139 

(Holme et al., 2002; Lusseau and Newman, 2004; Krause et al., 2009; Farine and 140 

Whitehead, 2015), Effective Information is a new information theoretic metric reflecting 141 

how noisy a mechanism connecting nodes (ants, in our case) is within a system. It is 142 

calculated as the difference between degeneracy and determinism of the network (Hoel, 143 

Albantakis, & Tononi, 2013; Klein and Hoel 2020). In interaction networks, Effective 144 

Information reflects the noisiness and predictability of the interactions among individuals 145 

(Hoel et al., 2020): a higher Effective Information means that a system is more 146 

deterministic, with information spreading in a more effective way throughout the network.  147 

Second, we tested whether these four measures of information flow in the 148 

interaction network were related to task switching, to better understand the noise in task 149 

allocation not explained by age polyethism as determined by Mersch et al. (2013). We 150 

hypothesised that an ant’s previous interactions with other ants affect switching behaviour 151 

and tested whether interacting with a certain functional group increased the probability of 152 

an ant switching to that group. We found that the relationship between the structure of the 153 

interaction network and the different functional groups, as described by network 154 

measures at the node and the global level, could explain the varying correlations between 155 

interaction history and switching behaviour during task allocation. Our use of network 156 

metrics, including the Effective Information metric, allowed us to determine the 157 

relationship between interaction history, task allocation and information flow among 158 

functional groups in Camponotus fellah colonies.   159 

 160 
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METHODS 161 

Data, network construction, and ant categorisation 162 

The published Mersch et al. (2013) dataset contains summaries of interactions 163 

among a total of 985 individually-marked ants in six Camponotus fellah colonies. The 164 

authors collected interaction data for every pair of ants at a daily resolution over the 41-165 

day monitoring period, and the published dataset contains data pooled at the number of 166 

interactions per dyad per day per colony. We matched this published dataset with the 167 

colony metadata to inform our analyses (Supplementary material 1).  168 

Consistent with Mersch et al. (2013), we used the pairwise daily number of 169 

interactions to construct separate weighted, undirected, unipartite networks for each 170 

colony per day. Each ant in a colony was represented by an individual node. An edge 171 

between two nodes represents the interactions between those two ants on a given day. 172 

The edge weight is proportional to the number of pairwise interactions between them on 173 

that particular day. We used the available published dataset to recreate the 246 observed 174 

networks for the 6 colonies over 41 days used by Mersch et al. (2013) as well as the 175 

general pattern of task switching across the length of the experiments.  176 

 Mersch et al. (2013) assessed each ant’s functional group every 10 days to 177 

categorise them as a nurse, cleaner, or forager, representing their main task in the colony. 178 

They assigned functional groups based on what community an ant spent at least 70% of 179 

their time in, using the ‘infomap’ community detection algorithm paired with behavioural 180 

observations. They split the ants into the functional groups foragers (F), cleaners (C), 181 

nurses (N), queen (Q), and NA for ants who were counted as missing at a time point (e.g., 182 

if they were dead or had lost their tags).  183 
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Mersch et al. (2013) reported that their ants mostly did not change their task affiliation 184 

within the 10-day observation period between task assessment points. We used the same 185 

10-day snapshot window in our analyses which resulted in three time points at which a 186 

switch in task to a new category could be detected. Based on Mersch et al’s (2013) 187 

observational data, when an ant switches functional groups, it switches tasks to that of 188 

the new group. For our analyses, we categorised each ant as “switched” or “consistent”, 189 

depending on whether they were categorised as part of a different functional group, or 190 

remained within the same functional group after each task assessment point in the 191 

original behavioural data. These labels were assigned for each 10-day observation 192 

period, meaning that an ant could be labelled as “consistent” in one time period because 193 

it did not change tasks from the previous period, and “switched” in the next if it then 194 

changed tasks, and thus functional groups during that next period. We utilised these 195 

labels and the functional groups set by Mersch et al. (2013), throughout our work. 196 

Before performing new analyses, we first investigated whether we could replicate 197 

Mersch et al.’s (2013) results of age polyethism. We also tested whether we could 198 

recapitulate Mersch et al.’s results about task switching by determining the likelihood that 199 

an ant would stay in the same task throughout the experimental time versus performing 200 

two or three tasks.  201 

 202 

Quantifying individual network metrics for each ant 203 

     Our new analyses focused first at the individual scale within the networks. Node 204 

metrics and centralities define various types of influence that individual nodes exert on 205 

network connectivity and dynamics. For each network, we used R (v 3.6.2) and the 206 
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packages igraph (Csardi and Nepusz, 2006) and networktools (Jones, 2020) to calculate 207 

three node-level, local metrics: (1) strength, (2) betweenness centrality, and (3) bridge 208 

betweenness. Since networks were constructed for each daily set of interaction 209 

observations for each colony, these metrics were calculated for each ant in every colony, 210 

every day. Differences in these metrics were then analysed as a function of functional 211 

groups at the colony level, and for just ants that switched or ants that remained consistent.  212 

     First, we calculated each ant’s node strength as the sum of the weights of its edges. 213 

Thus, in our context, it is a measure of not only how many interactions (edges) an ant 214 

(node) had with other ants, but also of how frequently those interactions occurred during 215 

a day. While degree is an index of potential communication activity (Freeman, 1979), 216 

strength improves upon this index by weighting degrees according to communication 217 

frequency, to better inform total interaction and information flow potential. To measure the 218 

structure of the distribution of this node level metric at the network level, we calculated 219 

the maxima of the density distribution of strength of all ants (or all within a functional group 220 

subset) in a given colony on a given day to find the strength mode. The mode was used 221 

instead of the mean because the strength distributions were skewed. The strength mode 222 

provides a summary of how these strengths are generally distributed across each 223 

network. 224 

     Second, we calculated each ant’s node betweenness. Also known as betweenness 225 

centrality, this measure is another way to assess the influence of a node for the 226 

connectivity of the network. For a given pair of nodes in a weighted network, there exists 227 

at least one path between them such that the sum of the link weights is minimized, thus 228 

forming a shortest path. The betweenness of a node is therefore defined as the number 229 
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of shortest paths that pass through it. Freeman (1979) identified high betweenness 230 

centrality as a key indicator of whether a node occupies a central location in the network 231 

for information transmission. Individuals with high betweenness are often responsible for 232 

maintenance of communication, group coordination, and network stability (Lusseau and 233 

Newman, 2004; Farine and Whitehead, 2015). An ant with a high betweenness is an ant 234 

that is centrally located in the network, serving as a key connection for seemingly 235 

disparate ants.   236 

Third, we measured the bridge betweenness for each ant in the network. Bridge 237 

betweenness extends the betweenness centrality metric to the level of communities and 238 

is defined as the number of times a node lies on the shortest path between two nodes 239 

from different communities. In network science, a community is defined as a group of 240 

nodes that have a higher likelihood of connecting to each other than to nodes from other 241 

communities. Ants with a high bridge betweenness serve as key connectors for different 242 

communities in the network, where communities mostly overlap with functional groups. 243 

This means that ants with high bridge betweenness would be more integral to network 244 

cohesion and information flow across groups, thus they may play an important role in 245 

driving switching dynamics.  246 

To quantify each ant’s bridge betweenness, we needed to assign ants to network 247 

communities in both the observed networks but also in our 123,000 reference networks 248 

(see below). Assigning ants to network communities using the original network community 249 

detection algorithm Infomap (used in Mersch et al. 2013) was computationally prohibitive 250 

when applied to our many reference networks. Because of the computational demands 251 

of the bridge betweenness analysis, we used a Louvain community detection algorithm 252 
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(Csardi and Nepusz, 2006) which saved computational time and memory (Emmons et al., 253 

2016) compared to the Infomap algorithm. These new network community assignments 254 

were solely used for computing bridge betweenness and did not change the functional 255 

group assignments of the ants made by Mersch et al. (2013), which we use in all other 256 

cases in our analyses. To check that the Louvain algorithm assigned ants to network 257 

communities in ways consistent with the original community assignments from Infomap, 258 

we compared our community assignments to those found by Mersch et al. (2013): as we 259 

show below, our new assignments were similar enough to the original assignments that 260 

we could use our new method to assess bridge betweenness and the likelihood ants 261 

would be connected to others within different functional groups (see results, below). All 262 

other analyses involving functional group assignments of ants use the functional groups 263 

assigned in Mersch et al. (2013). 264 

 265 

Quantifying global network measures for each colony 266 

 267 

     We used Effective Information and its normalised measure, Effectiveness, to measure 268 

colony-level noisiness in the system, with respect to its underlying mechanisms (Hoel et 269 

al., 2020; Klein et al., 2022). Since we are considering the mechanism of communication 270 

and information flow among ants, Effective Information measures the level of 271 

predictability, or degeneracy, in ant-to-ant interactions. To calculate Effectiveness, we first 272 

found the sum of weights of all edges connected to each node in the interaction network, 273 

where edge weights correspond to the number of interactions between a pair of ants. An 274 

ant who had no interactions in a given network would have a weight of 0. We defined this 275 

weight as a vector 𝑊𝑖 of the same length as the total number of nodes and referred to 276 
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each element as 𝜔𝑖𝑗, signifying the normalised value of edge weight between nodes i and 277 

j, such that for any index i, ∑ ωij𝑗 = 1. Here, each term 𝜔𝑖𝑗 can be seen as the probability 278 

of moving from i to j, if a random walker is on the node i. Next, we characterised the 279 

uncertainty associated with each node i, calculated using Shannon’s entropy measure 280 

𝐻(𝑊𝑖). As node i has more connections, and as the weights 𝜔𝑖𝑗𝑠 of those connections to 281 

other nodes (j) become more equal, Shannon’s entropy (i.e., the uncertainty about where 282 

a random walker would go) increases. The average of this value across all the nodes in 283 

the network is < 𝐻(𝑊𝑖) >. When < 𝐻(𝑊𝑖) > is equal to 0, the network is deterministic 284 

(e.g., in the case of a line network or a ring lattice, both in directed and undirected cases, 285 

where information can only flow in one dimension). We then assessed the certainty of the 286 

network by calculating the term 𝐻(< 𝑊𝑖 >), which is Shannon’s entropy of the average 287 

out-weights from all nodes. When this expression is equal to 0, the network is degenerate, 288 

with all edges leading to the same node. Finally, we calculated Effective Information using 289 

the following equation:  290 

𝐸𝐼 = 𝐻(< 𝑊𝑖 >)−< 𝐻(𝑊𝑖) >                                                     (1) 291 

Here, the first term of the equation is determinism, and the second is degeneracy. Thus, 292 

the Effective Information for a line graph or a ring lattice, which are maximally 293 

deterministic and minimally degenerate, is the maximum. For the cases of a star 294 

network, which is both maximally deterministic and degenerate, and that of a complete 295 

graph, which is both minimally deterministic and degenerate, the value of Effective 296 

Information is zero. As the value of Effective Information can depend on the size of the 297 

network (Klein and Hoel, 2020), we calculated Effectiveness, the normalised Effective 298 

Information with respect to network size. Effective Information is normalized by log2N, 299 
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which is the maximal possible value of the entropy, where N is the number of nodes in 300 

the network. For comparison, this is akin to the normalisation of Shannon diversity to 301 

Shannon equitability in ecological studies. 302 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝐸𝐼

𝑙𝑜𝑔2  𝑁
                                                         (2) 303 

Effectiveness was calculated for each observed network (i.e., for each day, for every 304 

colony), using the R package einet (Byrum et al., 2020; Klein et al., 2022).  305 

If node level properties were affected by which functional group an ant was in, then 306 

system level measures could be affected by the proportion of ants in each functional 307 

group, so we tested how group composition affected Effective Information.  We used the 308 

functional group assignment from Mersch et al. (2013), then fit linear models to the 309 

Effectiveness for each observed network as a function of the proportion of each functional 310 

group in the network to determine significant relationships between Effectiveness and a 311 

colony’s functional group composition. 312 

 313 

Building reference models to test interaction patterns and task switching 314 

To test how interaction patterns resulted in different network metrics and/or task 315 

switching patterns than expected, we constructed randomised networks that served as 316 

null models, or reference networks, for the daily interaction networks of the six colonies. 317 

Using randomised networks as reference networks is a common method for testing the 318 

effect of interaction structure and significance on various network properties and 319 

dynamics (Hobson et al. 2021; Farine 2017). Constructing a reference model allowed us 320 

to randomise some aspects of the interaction patterns while preserving other relevant 321 

structural features of the networks (Hobson et al. 2021). We used a degree-based 322 
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randomisation (through the R package VertexSort; Abd-Rabbo, 2017) to generate our 323 

reference networks. This approach preserved the total number of interaction partners per 324 

any one ant on a given day but changed (1) who they interacted with and (2) how many 325 

times they interacted. This process distributed the total number of original interactions 326 

among the newly constructed edges of the randomised network.    327 

This reference model approach allowed us to test how specific ant interaction 328 

patterns affected the node and network level properties, while preserving the distribution 329 

of connections in relation to functional groups of the ants (functional group assignment 330 

and the degree of individual ants remained unchanged). As an example, a nurse that had 331 

20 interaction partners (degree = 20) would still have a degree of 20 in the reference 332 

network but would be interacting with 20 different ants with different frequencies, as the 333 

edge weights were also randomly assigned from the initial distribution for each reference 334 

network. This hypothetical reference model ant would then have a different total 335 

frequency of interactions while maintaining their original number of partners. For 336 

reproducibility, we created 500 seeded reference networks for each colony’s daily 337 

interaction network, for a total of 123,000 reference networks.  338 

To test how observed network measures differed from those expected with the 339 

identity of interaction partners and the number of interactions randomised, we compared 340 

the observed node-level network measures to the distribution of those measures in our 341 

reference networks. We found the strength mode, mean betweenness, and mean bridge 342 

betweenness for every observed ant network (each colony, for each day) and for each of 343 

the reference networks.  We also estimated the variance for each metric for every ant in 344 

a given colony on each day for the observed network and all the reference networks 345 
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associated with the observed one (please note that in the case of strength, the variance 346 

is the standard variance in the strength distribution). The metrics were investigated 347 

separately for each functional group within the following subsets: overall (all ants), 348 

switching and consistent ants. Variance measured the individual variation of metrics 349 

among ants of one group in a colony. The distribution of variances, in conjunction with 350 

those of the central tendencies, helps us to explore the variation of these metrics across 351 

colonies and through time. Central tendencies (mode for strength, and mean for 352 

betweenness and bridge betweenness) and variance values were Z-transformed, 353 

separately for each metric and individual observed network with its respective reference 354 

networks, to facilitate comparison across observed networks which can vary in size 355 

(number of ants), allowing us to find each metric’s value for a given group, colony and 356 

day relative to its own reference models. The Z-transformation allowed us to combine 357 

values across colonies and days, and to visualize the means of those metrics across all 358 

samples (groups, days and colonies). We then calculated the 95% confidence intervals 359 

of the Z-transformed values for each functional group and ant subset (switching, 360 

consistent and overall ants) to determine differences in the network measures in relation 361 

to ant role and task switching. Since the distribution of variances indicates the variation 362 

of a network metric both across colonies and through time, the size of the 95% confidence 363 

intervals of the variances provides a proxy metric for stability of the network metrics, when 364 

interpreted in conjunction with the distribution of the central tendencies of those metrics.  365 

To test if the frequency of interactions with different functional groups significantly 366 

affected an ant’s functional group membership and whether these interactions could 367 

explain how ants switched tasks, we compared the observed patterns of interactions in 368 
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relation to switching behaviour to that of the reference models. If the functional group 369 

identity of ants affected how individuals contributed to information flow within a colony, 370 

then the number of times an ant switched to a new functional group should affect the flow 371 

of information. We tested how observed patterns differed from reference networks that 372 

preserved the number of interactions per ant but redistributed the interactions among 373 

every ant. We also tested whether the frequency of interactions with different functional 374 

groups significantly affected an ant’s final functional group. At each task assessment 375 

point, we quantified the frequency of interactions with each functional group before 376 

switching from its original functional group to the final one in both the observed dataset 377 

and in the ensemble of randomised reference networks. We compared the distribution of 378 

values computed from the observed networks against those given by the reference 379 

network distribution using a suite of chi-square (independence/homogeneity) 380 

comparisons separately for each possible type of task transition (including non-381 

transitions) and each observed network, wherever the specific transition/non-transition 382 

occurred. To use the chi-square test, we assume that each interaction is independent as 383 

it involves transfer of new information between two individuals, even if it might be biased 384 

by more contact with certain individuals by choice. In addition, individual recognition is 385 

not particularly well established for ants, although they can recognize brood mates and 386 

their colony queen (see Esponda and Gordon, 2015; Sprenger and Menzel, 2020), 387 

lending more credibility to our assumption.  388 

The significance results from each type of transition across all observed networks 389 

were then combined using Stouffer’s method (see Heard and Rubin-Delanchy, 2017) and 390 

significant differences at the alpha level of 0.05 were noted after accounting for multiple 391 
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comparisons (across transitions) through the Benjamini-Hochberg (BH) correction. We 392 

combined all the cases where specific transitions were present, across all colonies and 393 

days. Importantly, we were comparing the total number of interactions in these tests 394 

pooled across all ants for a given subset, and not the number of ants that switched or 395 

remained consistent in their tasks. In all cases, the frequency of interactions with each 396 

type of functional group exceeded the minimum number required for using chi-square 397 

tests, even though in certain cases the number of ants who were interacting were less 398 

than five – their frequency of interactions exceed that number by a several orders of 399 

magnitude. This process allowed us to assess whether interactions within the previous 400 

observation period predicted functional group in the next observation period. 401 

 402 

RESULTS 403 

Replication of original results and visualisation of task switching 404 

Figure 1 shows a new visualisation that summarizes the tasks of ants within all six 405 

colonies and how those tasks changed over time (Figure 1; for details, see 406 

Supplementary material 2, Table S1). To ground our analyses, we first replicated the main 407 

results from the original Mersch et al. (2013) paper. We were able to replicate the original 408 

results of age polyethism and recapitulated the distribution of the age of an ant that would 409 

switch tasks once, twice, or three times (results from Mersch et al., novel visualisation in 410 

Supplementary material 2, Figure S1A). We were also able to replicate Mersch et al.’s 411 

results about task switching by determining the likelihood that an ant would stay in the 412 

same task throughout the experimental time versus performing two or three tasks 413 

(Supplementary material 2, Figure S1B).  414 
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Figure 1: Dynamics of task allocation across the experimental time for all ants in all six 

colonies. The alluvial diagram shows the number of ants per functional group and number of 

ants staying in the same group or transitioning to a new functional group between time periods 

as proportional to box and flow sizes, respectively (functional groups as originally determined 

in Mersch et al. 2013 via infomap). 

 415 

We also compared our interaction community assignments used in calculating bridge 416 

betweenness (via the Louvain community detection algorithm) with those obtained 417 

through the Infomap algorithm originally used by Mersch et al. (2013; for the task of 418 

functional group allocation). Community membership assignments, compared at an 419 

individual node level for a given network, resulted in an average 90.13 ± 7.25% similarity 420 

between the two methods across all the networks in the dataset.  While the functional 421 

group assignments used in our analyses were taken directly from Mersch et al.’s analysis 422 

(which were validated by behavioural observations), this similarity of community 423 

assignment is important as we wanted to certify that the structure of communities 424 

detected by both algorithms was not divergent. The bridge betweenness metric used the 425 
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communities from the Louvain algorithm as it provided a substantial reduction in 426 

computational time, and was indicative of the potential for an ant to connect ants from 427 

different functional groups because of the high similarity with the community assignments 428 

used to determine functional groups (i.e. by infomap and Mersch et al., 2013). 429 

 430 

Individual network centrality measures and task switching 431 

      We compared network measures and their variances across each of the functional 432 

groups for three categories: overall across all ants, for just switching ants, and for just 433 

ants that remained consistent in their tasks during the assessment periods (summarised 434 

in Figure 2; all values listed in Supplementary material 2 Table S2 and additional 435 

visualisation in Figure S2), relative to their respective reference networks. Variance was 436 

assessed due to apparent substantial fluctuations in the metrics for ants that switched 437 

within the 10-day period leading to a task assessment point (Figure S3). These 438 

fluctuations are represented by the 95% confidence intervals of the variances which 439 

indicate how stable the relative network measures were across colonies and over time 440 

(i.e., a larger confidence interval represents more fluctuations and less stability). 441 

 When we compared the distribution of the strength metric using the mode across 442 

each of the tasks, we found that foragers had the highest strength mode of any of the 443 

groups across all three of the categories, showing that they had the most frequent 444 

interactions over a day regardless of whether they remained foragers or switched task at 445 

some point. Values of variance (relative to their respective reference networks) of the 446 

overall strength did not significantly differ across functional groups or from the reference 447 

networks (see the 95% confidence intervals in Figure 2B) and the mode of strength 448 
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remained fairly consistent across functional groups (see the 95% confidence intervals in 449 

Figure 2A). When we looked at strength just for switching ants, we found that the mode 450 

differed significantly across functional groups and was significantly greater than for the 451 

reference networks. Out of these, foragers that switched had the highest strength mode. 452 

Strength mode variance of switching ants did not vary significantly among functional 453 

groups. However, variance of the strength mode of switching foragers was higher and 454 

more variable (i.e. larger confidence interval) than the reference networks, indicating less 455 

stability of this metric among these individuals and over time. When we looked at strength 456 

just for ants that were consistent, we found that the mode and variance followed the same 457 

pattern seen for ants that switched, i.e., consistent foragers had higher strengths and the 458 

values for all groups were of the same magnitude as those for the ants that switched.  459 

     At the colony level, the betweenness metric was stable (i.e., confidence intervals were 460 

small for the both mean and the variance relative to the reference networks) and cleaners 461 

played the most important role in connecting individual ants for flow of information, as 462 

they had significantly higher betweenness than nurses and foragers (Figure 2). When we 463 

assessed betweenness just for ants that switched, we found that mean betweenness 464 

centrality measures were significantly greater than those for the reference networks, 465 

except for foragers. Betweenness of switching ants was more variable than for consistent 466 

ants. Consistent ants had the same relative patterns and magnitude of mean 467 

betweenness centrality as ants that switched: consistent cleaners and nurses had higher 468 

mean betweenness than consistent foragers. However, the variance of betweenness was 469 

no longer significantly different than the reference networks, thus consistent ants 470 

maintained a less variable betweenness distribution among networks and through time 471 
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(i.e., the mean and variance remain within small confidence intervals, and that the 472 

variance is not significantly different from reference networks) than switching ants (where 473 

even if the mean has similar values, the variance is much higher than reference 474 

networks).  475 

 

Figure 2:  Z transformed values of the central tendencies (A) (note that the central tendency for 

strength is mode while for the other two metrics is mean) and variances (B) of the strength mode, 

betweenness and bridge betweenness determined for all ants across the six colonies. For each 

functional group, values were determined for all ants (overall), just ants that changed functional 

group during assessment periods (switching), and those ants that performed the same tasks from 

one time period to the next (consistent). Values were determined for every observed ant network 

(each colony, for each day) and for each of the reference networks before being Z-transformed 

to facilitate comparisons. Points are the values for each functional group (points depict average 

value and bars represent 95% confidence intervals among the measured central tendencies and 

variances (network-level statistics) of observed networks across days and colonies): nurses (red 

squares), cleaners (green triangles) and foragers (blue circles). The dashed black lines represent 

the upper extent of 95% confidence interval of the same normalised metrics from reference 

network simulations. (See Figure S2 for a more complete representation). 

 476 

     Since the communities we detected mapped primarily onto the previously determined 477 

functional groups (see results above), a high bridge betweenness indicated a high 478 

potential for connecting functional groups in a colony. When we compared bridge 479 
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betweenness across each of the functional groups at the colony level, we found that the 480 

overall mean bridge betweenness values and their variance did not vary among the 481 

functional groups or from the reference networks, indicating that connections among 482 

network group communities stayed stable among networks and through time at the colony 483 

level. Mean bridge betweenness was higher for the switching ants than for the consistent 484 

ants for all functional groups, though only significantly higher for foragers. All ants that 485 

switched had significantly higher mean bridge betweenness than the overall colony 486 

values per functional group, suggesting that ants that switched played an important role 487 

in connecting communities for information flow in the colony. The mean bridge 488 

betweenness of consistent ants did not vary significantly among the functional groups or 489 

from the reference network distribution. Although the variance of cleaners and foragers 490 

for both ants that switched and those that were consistent was significantly higher and 491 

more variable than the reference networks, the overall colony variance values remained 492 

stable with small confidence intervals; these results may indicate that these interaction 493 

structures could be important for colony cohesion at the community level. 494 

 495 

 496 

Global information flow and task switching 497 

     We measured Effectiveness, the normalised Effective Information (difference between 498 

how deterministic and degenerate a network is), as a function of the proportion of nurses, 499 

cleaners or foragers in each colony for each day (resulting in 246 Effectiveness 500 

measures, Figure 3). We found that the colony networks with high proportions of nurses 501 

and cleaners had higher Effectiveness, but that the dependencies based on the linear 502 

model were weak and non-significant (adj. R2=0.12, P = 0.063, Figure 3A for nurses; and 503 
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adj. R2=0.11, P = 0.052, Figure 3B for cleaners). Effectiveness significantly decreased 504 

with increasing proportions of foragers in a colony (adj. R2=0.22, P = 0.037, Figure 3C). 505 

This negative relationship between the proportion of foragers and colony-level 506 

Effectiveness suggests that interactions involving foragers were noisier than those 507 

involving only nurses or cleaners.    508 

 509 

Task interaction matrix and task switching 510 

     We tested whether previous interaction patterns affected switching behaviour using a 511 

task interaction matrix. We found that ants that remained consistent in their tasks usually 512 

 

Figure 3: Effectiveness (normalised Effective Information) of the interaction networks constructed for 

each colony and every day of the experiment as a function of the proportion of different functional groups 

in the networks. Data are stacked because the available granularity for task allocation was at a 10-day 

interval. Linear models fit to Effectiveness as a function of the proportions of nurses (A) and cleaners 

(B) separately return a nominally positive dependence (adj. R2=0.12, p = 0.063 for nurses; and adj. 

R2=0.11, p = 0.052 for cleaners). Effectiveness as a function of the proportion of foragers (C) returns a 

strong negative dependence (R2 =0.22, p = 0.037).  
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interacted most with other ants occupying their same task (Table 1, Consistent ants). For 513 

example, consistent nurses were significantly more likely to only have interacted with 514 

other nurses (90% of nurse interactions, p=0.0326). Although cleaners and foragers who 515 

stayed within their functional group also more commonly interacted with other cleaners or 516 

foragers, this difference in interaction frequency was not significantly higher than 517 

expected by chance. For simplicity and comparison throughout networks, we present the 518 

average of proportion of interactions in each case in Table 1. 519 

However, most ants that switched to a new task interacted with ants occupying a 520 

different task prior to switching (Table 1, Switching ants). For example, nurses who 521 

switched to cleaning had interacted more frequently with cleaners (71% of nurse 522 

interactions) and this was significantly more likely to occur based on interaction history 523 

than by random chance (p = 0.0489). The result that an ant would transition to a group 524 

that it previously interacted with the most was significant for the following other transitions: 525 

cleaner to nurse, cleaner to forager, and forager to cleaner. Interestingly, foragers who 526 

switched to nursing were significantly more likely to have interacted more with ants of a 527 

different functional group, the cleaners (65% of forager interactions who then switched to 528 

nursing). However, it is important to note that this forager to nurse transition only occurred 529 

in a few cases in the experimental data, so these results should be interpreted with 530 

caution (due to the low number of observed ants), even though the interaction frequency 531 

data was sufficient for the statistical comparison (see supplementary files for sample size 532 

information). 533 

 534 
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Original 

task 

Final 

task 

Proportion interactions with 

other ants by role 

 

Corrected p-value 

(Original task to 

final task) Nurse Cleaner Forager  

Consistent 

ants 

Nurse Nurse 0.9 0.09 0.01  0.0326* 

Cleaner Cleaner 0.23 0.4 0.37  0.2105 

Forager Forager 0.2 0.4 0.4  0.6744 

Switching 

ants 

Nurse Cleaner 0.22 0.71 0.07  0.0489* 

Cleaner Forager 0.04 0.41 0.55  0.0310* 

Forager Nurse 0.05 0.65 0.3  0.0446* 

Nurse Forager 0.27 0.35 0.38  0.3671 

Cleaner Nurse 0.71 0.24 0.05  0.0229* 

Forager Cleaner 0.02 0.64 0.34  0.0019** 

Table 1: The task interaction matrix, showing the proportion of an ant’s interactions with a specified 

functional group before switching from its original to final group. P-values were calculated using a chi-

square test contrasting the observed interaction proportions with the reference model results for each type 

of task transition; values significantly different from those obtained from their reference networks (after 

multiple comparison corrections) are indicated with asterisks. Bold type indicates the task and proportion 

of interactions with ants of that task that were dominant in each category (and which were higher than 

expected by random chance). 

DISCUSSION 535 

     We explored task allocation in ant colonies to determine whether we could explain 536 

how ants switched tasks based on information flow among functional groups and the 537 

interaction history of the individuals. Mersch et al. (2013) determined that task switching 538 

was a noisy process with a lot of individual variation, but that at least some of the task 539 

switching could be explained by age polyethism based on the spatial division of workers 540 

mediating the structure of the interaction network. In our analyses, we focused specifically 541 

on this noisy process of task switching. Our approach allowed us to determine that 542 
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previous interaction history can help explain some of the noise behind task switching in 543 

Camponotus fellah colonies and provides novel insight into task switching behaviour in 544 

these ants.  545 

Our results suggest that ants in different functional groups had varying levels of 546 

importance for information flow between individuals and groups in a colony, based on 547 

their individual roles in network connectivity as determined by the node-level metrics. Ants 548 

that switched tasks often occupied positions in the interaction network that had high 549 

potential for supporting information flow between groups. Network analyses, combined 550 

with the task interaction matrix, allowed us to describe how the architecture of interactions 551 

was related with the distribution of and switching among tasks in an ant colony.  552 

     At the scale of ant-to-ant interactions, we found that ants classified into the three main 553 

tasks (forager, cleaner, nurse) differed in how they interacted with each other, which 554 

affected their roles in information flow for the colony. Foragers had the highest interaction 555 

strength mode – they interacted more frequently than cleaners and nurses. Cleaners, 556 

however, had higher betweenness and thus were key connections between ants 557 

interacting in the colony.  558 

Ants that switched tasks functioned as key connectors for information flow in the 559 

colony, supporting colony cohesion. In general, mean betweenness was higher for ants 560 

that switched than for ants that remained consistent in their task, although confidence 561 

intervals overlapped. Bridge betweenness (which indicated how ants connected different 562 

communities within the colony) was significantly higher for ants that switched. This 563 

suggests that ants who switched tasks throughout the course of the experiment, and 564 

particularly foragers, played an important role in connecting functional groups through 565 
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information flows. Their high bridge betweenness means that they occupied a key 566 

network position for receiving and transmitting information before they switched tasks. If 567 

learning is required when ants switch tasks, this increased access to information may 568 

have allowed them to learn new behaviours more quickly, helping them transition to a 569 

new task. In general, cleaners were less likely to interact within their functional group 570 

(which was consistent with Mersch et al.’s 2013 results). The low group cohesion of 571 

cleaners may strengthen colony-wide cohesion. 572 

 The variability of the centrality metrics may be related to cleaners’ and foragers’ 573 

ability to transition tasks. Cleaners and foragers who switched functional groups had 574 

significantly higher variances of betweenness and bridge betweenness within networks. 575 

Across networks and over time, these variances also had a larger range, showing that 576 

these individual measures of social network connectivity changed more and were overall 577 

less consistent among individuals. However, when all ants in a colony were grouped for 578 

calculating the node-level network metrics, pooled variances were not higher than those 579 

for the reference networks and had small confidence intervals. So, while these metrics 580 

varied significantly among functional groups and when ants switched tasks, overall 581 

information flow in a colony remained fairly stable and colony cohesion was maintained.  582 

     At the group level, the operationalisation of Effective Information as a measure of the 583 

noisiness of network mechanisms is relatively new and under-explored. Our results for 584 

the six Camponotus fellah colonies show a correlation between variations in Effectiveness 585 

and the functional group composition of each colony. We found that a higher proportion 586 

of foragers led to noisier potential communication among ants. Paired with the results on 587 

interaction strength, this means that foragers interacted more frequently than ants 588 
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performing other tasks and that they had more diverse interactions with ants at different 589 

positions in the interaction network.  Results on centrality measures and Effectiveness 590 

can be linked with task allocation through our task interaction matrix. The matrix shows 591 

how previous interactions with ants in a given task are associated with a higher probability 592 

of the ant switching to that task. These results are consistent with previous work in another 593 

species: Gordon and Mehdiabadi (1999) found that, in red harvester ants, ants switching 594 

from other tasks to midden work were more likely to have interacted with midden workers, 595 

and that switching was more likely to occur the more frequent those interactions. In our 596 

results, interactions with foragers were correlated with switches to foraging: both cleaners 597 

and nurses who switched to foraging had a higher probability of interacting with foragers. 598 

Switches from foragers to other tasks, however, showed different dynamics. Both 599 

foragers who switched to nursing and foragers who switched to cleaning had a higher 600 

probability of interacting with cleaners. These results should be interpreted with some 601 

caution because ants switching from foragers to nursing was only observed three times 602 

(the interaction frequency data, however, was sufficient for the chi-square comparison). 603 

Consistent with betweenness results, these switching results show that cleaners were 604 

central in driving switching patterns by occupying key positions for information flow in the 605 

networks. These patterns suggest that, while previous interaction patterns were 606 

correlated to switching behaviour, the degree of correlation varied depending on the role 607 

played by the interacting ants and on the overall information flow of the system. It is 608 

important to note that without more detailed data we cannot determine whether a change 609 

in task or change in interactions happened first, but these insights provide valuable 610 

information about system dynamics and suggestions for future experiments.  611 
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     In future research, it would be interesting to further explore task switching in systems 612 

with a higher granularity of data collection across both behaviours and interactions. One 613 

limitation to the current analysis is that the task each ant was assigned to is assessed 614 

based on the interaction patterns, not the types of actions or tasks the ant completes in 615 

the colony. Even though interaction community membership was paired with behavioural 616 

observations by Mersch et al. (2013), it may not have been at the level of detail needed 617 

to assess fine-grain interaction patterns and task performance. It would be interesting to 618 

use the combination of network methods and behavioural observations to further explore 619 

existing results on the relationship between repetition (Langridge et al., 2004) and the 620 

existence of experienced individuals (Langridge et al., 2007) on task performance. 621 

Assessing not just who an ant interacts with, but what actions that ant is actually 622 

completing, would provide useful additional insight into the timing of behavioural and 623 

social change. This kind of data would allow researchers to determine whether an ant 624 

alters its behaviours first (for example, decreasing cleaning behaviours and increasing 625 

nursing behaviours) which then results in a change in the social interaction patterns, or 626 

whether an ant first begins to change its social interaction patterns (for example, 627 

interacting less with other cleaners and more with nurses) and then alters its behaviour 628 

from cleaning actions to nursing actions. Future targeted data collection, involving both 629 

social and behavioural observations, paired with statistically robust network methods, 630 

could be used to further explore the relationships between patterns of interactions, 631 

individual-level behaviour, and group-level behaviour.  632 
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