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Featured Application: The study demonstrates the potential of industrial waste-derived volatile
fatty acids to be used as a sustainable carbon source in the heterotrophic cultivation of
Schizochytrium limacinum.

Abstract: Heterotrophic microalgae are recognized as a source of bioactive compounds. However,
there are still some drawbacks for their use at an industrial scale associated with the high cost of
glucose, the main carbon source in heterotrophic cultures. In recent years, significant efforts have been
made to investigate more sustainable carbon sources to produce biomass. In this study, the capacity
of Schizochytrium limacinum to grow on waste-derived volatile fatty acids and the effect that their use
produces on biomass and fatty acids profiles were investigated. Acetic, propionic, butyric, valeric
and caproic acid were evaluated independently, as well as in a synthetic mixture (VFA). The use of
acetic and butyric resulted in a good biomass productivity, while the use of valeric and propionic
acid resulted in higher content of odd-chain fatty acids (OCFA), increasingly investigated due to their
potential benefits for human health. The use of industrial waste-derived VFA as a potential carbon
source was validated through the utilization of biowaste derived effluents from a volatile fatty acid
platform. The biomass produced was of 18.5 g/L, 54.0% lipids, 46.3% docosahexaenoic acid (DHA)
and 25.0% OCFA, concluding that waste derived VFA can produce DHA and OCFA in a suitable ratio
of DHA/OCFA with potential industrial applications.

Keywords: heterotrophic microalgae; volatile fatty acids; DHA; odd-chain fatty acids

1. Introduction

Microalgae are a diverse group of organisms recognized for their capacity to produce
biomolecules of interest for industrial applications (energy, food, nutrition, or pharma) [1–4].
Although most of them are cultivated under phototropic conditions and their products are
already on the market, the industry is now focusing on heterotrophic cultivation due to the
similar characteristics to traditional fermentation process.

Heterotrophic microalgae contain mainly proteins and lipids, Omega-3 polyunsatu-
rated fatty acids (Omega-3 PUFA), in particular long chain PUFA docosahexaenoic acid,
DHA (22:6 n3) and eicosapentadecaenoic acid, EPA (20:5 n3). They are essential compounds
for nutrition and human health that the human body only produces in small quantities
and therefore must be acquired through the diet. Traditional sources of these compounds
are marine origin, fish and crustaceans in our diet since prehistory [5–7]. Nevertheless,
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the progressive population increase and the knowledge about their effect in nutrition and
health promote access limitations to traditional sources of Omega-3 PUFA [8].

To fill the gap between the demand and supply of Omega-3 compounds in the different
industrial sectors, alternative sources for Omega-3 were investigated in recent years. In
this context, heterotrophic microalgae represent an interesting alternative as they are
also primary producers of Omega-3 [9–12]. The capacity of certain species of microalgae
to produce high amounts of Omega-3 PUFA, in particular DHA under heterotrophic
conditions, turn them into a very attractive source for the production of these compounds
for industrial application. However, there are still challenges in the establishment of
economic feasible production processes from microalgae [13–15]. The main drawback is the
high cost associated with the use of glucose; the main carbon source used for the growth
of microalgae in heterotrophic cultures. Techno-economic analysis carried out by experts
indicated that the higher costs at industrial scale were mainly associated with the stage of
cultivation, considering that glucose can constitute up to 80% of the cost of the medium.
Therefore, it becomes a major disadvantage, from an economic point of view, to produce
high added-value compounds by heterotrophic microalgae [16,17].

However, the high potential of heterotrophic cultivation leads the industry to search for
more sustainable routes to produce Omega-3 PUFA though the identification of alternative
carbon sources. Great efforts are being taken by the scientific community to investigate
alternatives to the use of glucose, as is reflected in the increase in publications in this field
in the last ten years. In our previous reports, a compilation of the state of the art on the use
of alternative carbon sources was published [18]. Forest biomass, glycerol or pre-treated
whey permeates were discussed as substitutes of glucose. Cane molasses and sugarcane
waste was also investigated for this purpose, and it was concluded that the presence of
toxic substances may cause inhibition and cane molasses might be used in combination
with other carbon sources [19–24].

In recent years, the use of volatile fatty acids (VFA) as an alternative carbon source
has been studied [15,25,26]. VFAs are short-chain fatty acids (two to six carbon atoms) that
can provide microalgae a carbon chain ready to be used for further elongation, towards
long-chain unsaturated Omega-3. However, current production routes using petrochemical
feedstocks to obtain VFAs are considered as non-sustainable and therefore, more envi-
ronmentally friendly pathways are being investigated. Based on the principle of circular
bioeconomy, where the subproducts and waste from industry or human consumption must
be considered as raw material for other industrial processes, VFAs can be obtained from
organic side streams via anaerobic digestion and can be used as a carbon source to produce
Omega-3 PUFA and other bioactive compounds through the heterotrophic cultivation of
microalgae [27–30]. Several reports have been published in the last few years, indicating
the capacity of certain species of microalgae to grow on VFAs [31–33]. In these studies,
the authors focused on the culture conditions and DHA productivity, but the use of VFAs
as a carbon source presents more advantages. The presence of odd chain VFAs (such as
propionic or valeric acid) in the dark fermentation effluents and respective cultivation
medium can modify the respective lipid profile in microalgae. The use of odd-chain short
VFAs as a precursor for fatty acid synthesis leads to the formation of higher quantities of
odd-chain fatty acids in the biomass.

Aside from PUFAs, odd-chain fatty acids have been receiving more attention in recent
years. They consist of an odd chain of carbon, mainly pentadecanoic acid (C15:0) and
heptadecanoic acid (C17:0) usually namely as OCFA. OCFA are presented in ruminants,
bacteria and plants in small quantities. The interest in these compounds is based on
pharmacology properties and their utility in industrial applications [34–36]. C15:0 was
further studied by Venn-Watson et al. [37], and recent studies suggest that they can have
a positive effect on membrane fluidity as they have lower melting points than closely
even chain fatty acids, with particular interest for diseases like multiple sclerosis [38–40].
Diverse studies have revealed that the level of OCFA in Alzheimer patients was lower
than in other groups and, therefore, their application is suggested in the treatment of this
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type of disease [41]. Anticarcinogenic influence was also evaluated on carcinogenic cells
by Mika et al. [42]. Different large-scale epidemiological studies have now shown that
the plasma OCFAs levels found are associated with reduced disease risks for CHD and
T2D [36,43].

The aim of the present study was to evaluate the capacity of Schizochytrium limacinum
to grow on waste-derived VFA from dark fermentation effluents as an alternative carbon
source, and the effect produced by its use on fatty acid profiles, in particular OCFA and
DHA for the health benefits associated with them.

2. Materials and Methods
2.1. Chemicals and Microorganism

Schizochytrium limacinum (ATCC®® MYA1381TM) was procured from the American
Type Culture Collection (ATCC) and it was cultivated and maintained by sub-cultivation
on a medium recommended by the culture collection, containing 1 g/L yeast extract, 1 g/L
peptone, and 5 g/L glucose in artificial sea water. Artificial seawater was made according
to ASTM D1141-98 standard [44]. In addition, cryo-tubes were prepared for preservation at
−80 ◦C. All chemicals used for culture media preparation were purchased from Scharlab
(Barcelona, Spain). n-Hexane, dichloromethane, methanol, sulfuric acid and potassium
hydroxide, used in the extraction and analysis of lipids, were analytical grade from Scharlab
(Barcelona, Spain). Acetic, propionic, (iso)butyric, (iso)valeric and caproic acid used for
synthetic VFA preparation were purchased from Merck Life Science (Madrid, Spain).

VFA rich dark fermentation (DF) permeate was derived from a vegetable, garden and
food (VGF) waste stream treated via a VFA platform as described in [45]. The resulting effluent
was purified using an ultrafiltration membrane system (Koch Membrane Systems, Inc., USA)
with a ceramic membrane (1200 mm-length and 70 nm pore size). The permeate was further
concentrated with a Rotavapor R-220 PRO (BÜCHI Labortechnik AG, Switzerland), reaching a
final VFA concentration of 157.2 g/L. It consisted of acetic acid (41.0%), propionic acid (27.7%),
butyric acid (18.2%), valeric acid (8.4%), caproic acid (1.6%), isobutyric acid (1.2%) and isovaleric
acid (1.8%). A corresponding synthetic VFA feed solution was prepared (155 g VFA/L) to
compare waste derived VFA with pure (clean) VFA.

The standards for GC analysis FAME MIX, (C4-C24), DHA, C15:0, and C17:0 were purchased
from Merck Life Science (Madrid, Spain) and prepared according to required concentration.

2.2. Shake Flask Culture Conditions

Schizochytrium limacinum cells were cultivated in 250 mL baffled flasks containing
50 mL of medium with 5 g/L yeast extract, peptone 5 g/L and the corresponding carbon
source in each experiment—acetic, propionic, butyric, valeric acid or caproic acid prepared
separately at a final concentration of 10 g/L in artificial sea water and pH adjusted to
6.8 prior to autoclaving (Presoclave-75 Selecta, Barcelona, Spain). The pH was analysed
with a pH-meter (Basi 20; Crison Instruments S.A, ALELLA, Barcelona, Spain). The
inoculum was 10% of the total culture volume and was 3-day-old static-grown cultures in
basal medium (glucose 5 g/L, yeast extract 1 g/L, peptone 1 g/L in artificial sea water).
The baffled flasks were incubated for 72–96 h, at 22 ◦C and 120 rpm. Dairy samples were
collected to obtain cell dry weight, VFA consumption, and fatty acid profile.

2.3. Fed Batch Culture Conditions

Fed batch cultivations of Schizochytrium limacinum were carried out in a 2 L stirred tank
reactor (Biostat B plus, Sartorius. BBI Systems GmbH, Melsungen, Germany) in DO-stat
mode. The dissolved oxygen set-point was 20% saturation and the agitation speed varied
from 200 rpm to 700 rpm. The aeration rate used was 2.0 Lair/min and the temperature
25 ◦C. The pH was controlled at 6.8 with 4 M NaOH and 2 M HCl. Innoculum (10% v/v)
was prepared in 250 mL baffled flasks containing 50 mL of basal medium with 1 g/L
yeast extract, 1 g/L peptone, 5 g/L glucose in artificial sea water. It was incubated for
72 h at 22 ◦C. The initial volume of the fed-batch culture was 1200 mL using as starting
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medium 8 g/L yeast extract, 8 g/L peptone and 10 g/L VFAs (DF permeate or synthetic
VFA solution) in artificial sea water.

The fed-batch operation mode was carried out using a VFA feeding regime based
on the decrease in the stirring speed which occurred due to the increase in the dissolved
oxygen concentration as a result of VFA exhaustion. The feed solution consisted either of
a solution of synthetic VFA (155 g/L) or concentrated DF permeate (157.2 g VFA/L) and
was sterilized and adjusted to pH 6.8 before use. Every feeding pulse added 75 mL of
VFA solution to the bioreactor. Culture samples were periodically harvested to analyse cell
dry weight concentration, VFA consumption, as well as fatty acid profiles of the biomass
lipid fraction.

2.4. Analytical Methods
2.4.1. Harvesting and Cell Dry Weight Determination

Culture samples were centrifuged at 3100× g for 15 min (Centrifuge 5810, Eppendorf,
Merck Life Science, Madrid, Spain). The supernatant was collected, and the cell pellets were
washed with deionized (DI) water, frozen and freeze-dried (Lyobeta 25; Telstar, Terrasa,
Barcelona, Spain). The dry cell weight (DCW) was measured gravimetrically.

2.4.2. VFA Determination

Volatile fatty acids in samples (DF permeate, synthetic VFA solution, fermentation
broth) were quantified by direct injection of supernatant after the centrifugation step. One
millilitre of the sample was taken and then mixed with 50 µL of 1,3-butanediol (500 ppm)
and 50 µL of ortho-phosphoric acid to ensure a pH below 2. Agilent 8890/5977B GC/MSD
(Agilent Technologies, Inc., Palo Alto, CA, USA) (H2 flow rate 30 mL/min, air flow rate
300 mL/min) and Agilent DB-FFAP column (30 m × 0.32 mm i.d., 0.5 mm film thickness,
USA). Detector temperature and injector port temperature were 320 and 320 ◦C, respectively.
Helium was used as the carrier gas at flow rate 2.5 mL/min. The oven temperature was
programmed at 70 ◦C, raised to 130 ◦C at 15 ◦C/min, increased to 180 ◦C at 6 ◦C/min,
then increased again to 240 ◦C at 30 ◦C/min for 5 min. Standards from each compound
were used to perform calibration curves. The analysis of each sample was carried out in
triplicate. Results are reported as mean ± standard deviation (SD) values.

2.4.3. Lipids and Fatty Acid Profile

A modified Bligh and Dyer method was used to estimate the lipid content in dried microal-
gae biomass [46]. About 100–200 mg of dried biomass was put in contact with water at 50 ◦C
under stirring, overnight, to induce autolysis of cells. After that, a dichloromethane/methanol
(4:2) mixture was added to the sample and vortexed for 5 min. Dichloromethane/methanol
(2:1) mixture was added again, and the sample was kept in an ultrasound bath (FB15054
Fisherbrand, Fisher Scientific, Madrid, Spain) for 10 min. After centrifugation at 3100× g
for 15 min, the upper phase is discarded. The final extract with lipids is transferred to a
pre-weighted vial and the process is repeated two more times. After evaporation of the
solvent, the total lipid content was measured gravimetrically.

The dried lipids were mixed with 6 mL MeOH:KOH (88:12) and stirred at 55 ◦C for
one hour and thirty minutes. A second step was performed with H2SO4 12 M, at 35 ◦C for
one hour and thirty minutes. The methyl esters were extracted from the mixture with 1 mL
of hexane. The extraction step was repeated three times.

FAME identification and quantification was carried out using a GC/MS/FID system
with an Agilent 8890/5977B GC/MSD (Agilent Technologies, Inc., Palo Alto, CA, USA),
and a ZB-FAME column designed for the specific purpose. The injection temperature was
set at 250 ◦C, the carrier gas flow was 1.2 mL/min (Helium) and the column temperature
rose from 100 ◦C (5 min) to 240 ◦C (30 min) with a rate of 4 ◦C/min. Samples were injected
with a split ratio of 80:1. The Supelco 37 Component FAME mix, DHA, C15:0 and C17:0
standards were used for quantification. Results are reported as mean ± standard deviation
(SD) values.
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3. Results and Discussion
3.1. Schizochytrium Limacinum Growth on Synthetic VFAs and Resulting Fatty Acid Profile
3.1.1. Biomass Production and VFA Consumption in Batch Fermentations

The potential of Schizochytrium limacinum to produce DHA and OCFA utilizing volatile
fatty acids was evaluated in a first step. Therefore, acetic, propionic, butyric, valeric and
caproic acid, the main short-chain fatty acid present in the dark fermentation effluents, were
used in separated cultures, and their effect on biomass production and related parameters
was evaluated for each culture. At the same time, the rate of VFA consumption was
also evaluated.

When the microalgae Schizochytrium limacinum was grown in batch culture on 10 g/L
of each VFA for 72 h, acetic acid showed the highest dry cell weight reaching 3.2 g/L,
while propionic acid showed the lowest production with 0.7 g/L. Butyric and valeric acid
achieved 3.0 g/L and 2 g/L of dry cell weight, respectively. For caproic acid, no biomass
growth could be observed after the time of growth. The evaluation of biomass productivity
(g/L/h) and biomass yield (g·g−1substrate) resulted in a similar behaviour for acetic and
butyric acid, 0.04 g/L/h and 0.3 g·g−1substrate in both experiments, as it can be observed
in Table 1. On the other hand, propionic acid showed low productivity (0.01 g/L/h) and
the yields obtained were below 0.1 g·g−1 substrate.

Table 1. Parameters relating to cultivation in flask of Schizochytrium limacinum on each VFA.

Parameters Acetic Acid Propionic Acid Butyric Acid Valeric Acid Caproic Acid

Cell dry weight (g/L) 3.2 ± 0.05 0.70 ± 0.03 3.0 ± 0.05 1.2 ± 0.03 - -

Biomass productivity (g/L/h) 0.04 ± 0.01 0.07 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 - -

Biomass yield
(g·g−1substrate) 0.32 ± 0.01 0.07 ± 0.01 0.30 ± 0.01 0.12 ± 0.01 - -

Every 24 h, an aliquot of each culture was analysed for the evaluation of VFA con-
sumption. After 72 h of growth, 96.7% of the initial acetic acid concentration was consumed,
leaving a residual concentration of 0.4 g/L. On the contrary, no consumption was observed
after 72 h of growth on caproic acid. Propionic and valeric acid showed a similar rate
of consumption, after 72 h of growth, 79.0% and 74.0%, respectively, of initial carbon
source was still detected in the media (Figure 1). The evolution of valeric acid showed
an interesting behaviour. As it can be observed in Figure 2, after 24 h, the VFA analysis
revealed that at the same time that the valeric acid was disappearing in the culture media,
propionic acid was beginning to be detected. The experiment was then allowed to continue
for another 96 h and, after seven days of the experiment, the valeric acid was almost con-
sumed (0.70 ± 0.03 g/L) and propionic acid reached a concentration of 5.69 ± 0.09 g/L in
the media.

These results are in line with those obtained for the Thraustochytriacea and Crypthe-
codiniacea family, that are the two main families most studied for their capacity to grow
under heterotrophic conditions. In particular, schizochytrium and ulkenia species are able to
produce high Omega-3 PUFA content, especially DHA [47]. The evaluation of the effect of
every short chain fatty acid that comprises VFA on the growth of Schizochytrium limacinum,
resulted in acetic acid and butyric acid appearing to be the most suitable fatty acid to be
used when a concentration of 10 g/L of VFA was studied. Meanwhile, propionic acid
resulted in a very low capacity to produce biomass by itself (0.78 g/L). Aurantiochytrium
sp. from Thraustochytrid exhibited similar behaviour when Patel et al. studied its growth
on VFA [26]. Acetic and butyric acid resulted in a higher cell dry weight (2.10 g/L and
3.23 g/L, respectively) at 10 g/L carbon source [26].
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Cryptecodinium cohnii was also deeply investigated by Chalima et al., reaching similar
results, with the acetic acid consumed relatively fast with good biomass productivity [15].
Despite the different published studies, all of them mainly focused on the use of acetic and
butyric acid for the production of DHA or biodiesel [48–52]. The production of OCFA was
studied by Wang et al. [50] and Lee Chang et al. [14], but the effect of using short chain
fatty acids (propionic and valeric acid) on biomass growth and fatty acid profile have not
yet been studied for this species.

3.1.2. Effect on Fatty Acid Production

After 72 h of growing experiment, the culture medium was centrifuged and freeze
dried for biomass and fatty acid profile evaluation. According to the chromatographic
results obtained from batch experiments, propionic acid reached a higher unsaturated fatty
acids ratio (63.8%), close to the butyric acid experiment that showed 58.7% unsaturated
fatty acids. Regarding acetic and valeric acid, an equal distribution between unsaturation
and saturation was obtained, but significant differences can be observed in the type of fatty
acid in each group. Palmitic acid (C16:0) was the principal contributor to total saturated
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fatty acids concentration during the acetic experiment (40.6% of TFA), while for the valeric
acid experiment, OCFA (C15:0 and C17:0) were the main contributors to saturation on fatty
acid composition. The 20.34% TFA corresponded to C15:0 and 16.03% corresponded to
C17:0 fatty acid. Moreover, the use of propionic acid reported the highest DHA ratio, 50%
of TFA (Figure 3). The use of propionic acid and valeric acid (C3 and C5) as a carbon source
can result in a higher concentration of DHA and OCFA. However, the biomass productivity
obtained using these carbon sources was low and consequently it would be needed to
introduce acetic or butyric acid to increase the productivity. In comparison with a standard
feed of glucose, the results are very promising. A similar fatty acid profile was observed
when glucose, acetic or butyric acid was used for culture growing, but the contribution of
OCFA was significatively lower when glucose is used as feedstock. A combination of the
different VFAs could enhance the production of DHA and OCFA.
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Once the effect of each VFA was evaluated in 250 mL flasks, fed-batch cultivation of
Schizochytrium limacinum in 2 L bioreactor on a synthetic mixture of VFA in a similar ratio
as that usually found in dark effluents was performed [45]. The purpose of this study was
to evaluate the possibility of competition between VFAs that could result in any growth
inhibition or any change in expected final fatty acid composition. Synthetic VFA media
was prepared according to Section 2.3.

In the bioreactor, the use of a mixture of synthetic VFA resulted in a good biomass
productivity (12.3 g DCW/L), high lipid content 45.9 %, and a high quality fatty acid
distribution, with 18.3% of DHA and 19.2% of OCFA (Table 2). In comparison to the results
obtained by using separated VFA in batch experiments, the fatty acid profile distribution
seemed to follow the same pattern. Acetic and butyric acid contributed to the biomass
growth, C16:0 and DHA production, meanwhile, valeric and propionic acid contributed to
the production of OCFA, C15:0 and C17:0 (Figure 3).

Table 2. Synthetic VFA 2L bioreactor.

Carbon
Source

DCW
(g/L)

Biomass Productivity
(g/L/h)

Biomass Yield
(g·g−1 Substrate) Lipids (%) DHA

(%TFA)
C15:0

(%TFA)
C17:0

(%TFA)

Synthetic VFA 12.3 ± 0.1 0.23 ± 0.1 1.23 ± 0.01 45.9 ± 1.0 18.3 ± 0.9 14.3 ± 0.7 4.9 ± 0.6

3.2. Waste-Derived VFA for DHA and OCFA Production in Fed-Batch Fermentations
Biomass Production and VFA Consumption Pattern

Since the capacity of Schizochytrium limacinum to grow on both single and VFA mixtures
was verified in batch culture and bioreactor, the purpose of this study was to evaluate the
cultivation of this microalgae on VFA from an industrial effluent with the composition
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defined in point 2.3. The capacity of waste derived VFAs as a carbon source resulted in a
lipid accumulation of 54% w/w, 18.5 DCW/L of biomass, and a fatty acid profile containing
51.6% saturated fatty acids and 47.9% polyunsaturated fatty acids. OCFA are presented in
25.0% of TFA, comprising C15:0 and C17:0 at 18.1 and 6.9%, respectively. DHA as the main
fatty acid compound found in Schizochytrium limacinum resulted in almost 50% of TFA and
46.3% of TFA (Table 3).

Table 3. Waste derived VFA 2L bioreactor.

Carbon Source DCW
(g/L)

Biomass Productivity
(g/L/h)

Biomass Yield
(g·g−1 Substrate)

Lipids
(%)

DHA
(% TFA)

C15:0
(% TFA)

C17:0
(% TFA)

Waste-derived VFA 18.5 ± 0.1 0.35 ± 0.1 1.85 ± 0.01 54.0 ± 1.2 46.3 ± 0.8 18.1 ± 0.7 6.9 ± 0.7

The analysis of VFA throughout the experiment showed that during the first 24 h of
cultivation, over 75% of the carbon source was consumed, and it was practically exhausted
at 53 h where 93.2% VFA was already consumed by microalgae (Figure 4). However, as it
was described in Section 3.1., VFAs were not consumed in the same way. Acetic and butyric
acid were consumed faster than odd-chain VFA, propionic and valeric acid. Meanwhile,
most of them were consumed at 49 h of the growth experiment, while propionic acid
exhibited 23.9% of its initial content at this time in the experiment (Figure 5).
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In this study, the effect of carbon source consumption on the fatty acid profile was
also evaluated. As shown in Figure 6, when the carbon source associated with butyric
and valeric acid was consumed, and propionic and valeric acid were still in the media,
Schizochytrium limacinum used these short fatty acids as a carbon source and, consequently,
the fatty acid profile showed higher content in OCFA, C15:0 and C17:0.
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The parameters related to the two types of cultivation are summarized in Table 4.

Table 4. Parameters of Schizochytrium Limacinum grown on VFA carbon source.

Parameters VFA Synthetic Media 2L Waste-Derived VFA
Media 2L

Cell dry weight (g/L) 12.3 ± 0.1 18.5 ± 0.1

Biomass yield (g·g−1 substrate) 1.23 ± 0.01 1.89 ± 0.01

Lipid content (%) 45.9 ± 1.0 54.0 ± 1.2

C14:0 (%) 2.2 ± 0.1 1,4 ± 0.1

C15:0 (%) 14.3 ± 0.7 18.1 ± 0.7

C16:0 (%) 36.9 ± 0.3 23.3 ± 0.3

C17:0 (%) 4.9 ± 0.6 6.9 ± 0.6

C18:0 (%) 6.8 ± 0.1 1.4 ± 0.1

C18:3 (%) 2.7 ± 0.1 0.3 ± 0.05

EPA (%) 1.2 ± 0.3 1.5 ± 0.3

DPA (%) 2.5 ± 0.3 2.2 ± 0.3

DHA (%) 18.3 ± 0.9 46.3 ± 0.8

4. Conclusions

The present study demonstrates the potential of waste derived VFA to be used as a
sustainable carbon source in the heterotrophic cultivation of Schizochytrium limacinum. The
presence of odd-chain fatty acids provides a very interesting final fatty acid composition,
favouring the production of OCFA and DHA in proportions that are not achieved when
glucose is used as a carbon source.

The results did not show an inhibitory effect on growth, suggesting that there were no
toxic substances in the media. This is particularly interesting as other alternative carbon
sources need to be used in a very diluted or highly purified state to avoid this inhibitory
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effect. Moreover, the comparison between growth with synthetic VFA and growth with
waste-derived VFA showed that the use of waste- derived VFA provided a balanced
content of OCFA and DHA, which can be a good opportunity for the obtention of bioactive
compounds for food, pharma or health applications.

Further research should be done regarding the effect of odd chain short fatty acids on
biomass and the fatty acid profile produced by heterotrophic microalgae.
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