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ABSTRACT:

In this paper, we propose a point-level foreground-background separation technique for the segmentation of measurement sequences
of a Non-repetitive Circular Scanning (NRCS) Lidar sensor, which is used as a 3D surveillance camera mounted in a fixed position.
We show that by applying the NRCS Lidar technology, we can overcome various limitations of rotating multi-beam Lidar sensors,
such as low vertical measurement resolution, which is disadvantageous in surveillance applications. As the main challenge, we need
to efficiently balance between the spatial and the temporal resolution of the recorded range data. For this reason, we automatically
generate and maintain a very high-resolution background model of the sensor’s Field of View, while for enabling real-time analysis
of dynamic objects we use low integration time to extract the consecutive time frames. As a result, the laser reflections from
foreground objects reflect sparse, but geometrically accurate samples of the silhouettes providing valuable input for higher-level
shape description or event analysis steps. We demonstrate the efficiency of the new approach in different realistic NRCS Lidar

measurements sequences, obtaining a 0.76 overall F1-score on the measured dataset.

1. INTRODUCTION

Accurate and real-time foreground-background separation is a
critical task in surveillance applications. As alternative solu-
tions of conventional optical video cameras, range sensors of-
fer significant advantages for scene analysis, since direct geo-
metrical information is provided by them (Borcs et al., 2017).
The use of infrared light based Time-of-Flight (ToF) cameras
(Schiller and Koch, 2011) or laser-based Light Detection and
Ranging (Lidar) sensors (Kaestner et al., 2010) enables record-
ing directly measured range images, where we can avoid arte-
facts of the stereo vision based depth map calculation.

From the point of view of data analysis, ToF cameras record
depth image sequences over a regular 2D pixel lattice, where
established image processing approaches, such as morpholo-
gical filters or Markov Random Fields (MRFs) can be adopted
for smooth and observation consistent segmentation and recog-
nition (Benedek et al., 2013). However, such cameras can only
be reliably used indoors, due to the limitations of current infra-
based sensing technologies, and they may have a narrow Field
of View (FoV), which fact can be a drawback for surveillance
and monitoring applications.

By extracting accurate 2D or 3D object silhouettes, one can ob-
tain various sorts of valuable scene information which can be
directly exploited in among others people detection, tracking,
biometric recognition, or activity analysis.

Prior existing Lidar-based surveillance solutions utilize mainly
Rotating Multi-Beam (RMB) Lidar sensors (Alkhalili et al.,
2019). These systems can capture point cloud sequences of the
full 360°view with a recording frequency of 15 — 30 fps. The
RMB Lidar’s vertical resolution is determined and fixed by the
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Figure 1. Point cloud recording from the Courtyard dataset,
recorded using the Livox Avia sensor with its Non-repetitive
Circular Scanning (NRCS) technique

number of the laser beams, while the horizontal resolution de-
pends on the speed of the sensor rotation. Each laser point of
the output point cloud is associated with 3D spatial coordinates,
and possibly with auxiliary channels such as reflection number
or an intensity value of laser reflection. RMB Lidars can pro-
duce high frame-rate point cloud videos enabling dynamic event
analysis in the 3D space. On the other hand, the measurements
have low spatial density, which quickly decreases as a function
of the distance from the sensor, and the point clouds may exhibit
particular ring patterns typical of the sensor characteristics.

While previous works have shown (Benedek et al., 2018), that
RMB Lidar measurements can be used for certain dynamic
scene analysis tasks, such as object separation, tracking and

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI1-B1-2022-45-2022 | © Author(s) 2022. CC BY 4.0 License. 45



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

Figure 2. Schematic of the used Livox Avia Lidar sensor. The
window on the left covers the sensor. (Avia User Manual,
https://www.livoxtech.com, 2021)

even gait-based biometric person recognition and activity ana-
lysis, the constant and low vertical resolution of the measure-
ments that is physically constrained by the number of vertically
fixed laser emitters and receivers (typically 32 or 64), means
a clear limitation by applying them in a static sensor config-
uration. Moreover, the RMB Lidar sensors are generally ex-
pensive, thus their application is not widespread for surveillance
tasks.

An alternative to the RMB Lidars is a new type of Lidar sensor
shown in Fig. 2, which is called Livox Avia (Li et al., 2021)
and it implements a unique Non-repetitive Circular Scanning
(NRCS) technique. This sensor uses a multi-line laser com-
bined with high-speed scanning on a circular path, which results
in a point cloud data capturing rate of up to 240,000 points/s.

The Livox Avia sensor has six Lidar beams organized in a lin-
ear beam array, which is moved and rotated inside the sensor
to cover its Field of View (FoV): horizontal 70.4° and vertical
77.2° FoV (See in Fig. 3), and 0.05° angular precision. The
non-repetitive scanning technology is used to improve the static
scanning effect, and it also increases the coverage area ratio and
improves the detection of objects and details within the FoV. As
demonstrated in (Lin and Zhang, 2020, Wang et al., 2021), this
NRCS approach is suitable for the majority of use case scen-
arios including traditional mapping and low-speed autonomous
driving.

The NRCS Lidar sensor is capable of providing measurements
for real-time scene analysis, while the sensor is available on the
market at affordable prices compared to the other Lidar techno-
logies (Glennie and Hartzell, 2020). The sensor continuously
records distance measurements with corresponding timestamps
following its non-repetitive circular pattern in its field of view.
Here, by setting fixed integration time, the consecutively col-
lected points can be grouped into separate Lidar time frames.
The main challenge is to efficiently balance between the spatial
and the temporal resolution of the recorded range data. While
allowing larger integration time, the laser beams cover a higher
proportion of the FoV yielding high spatial measurement resol-
ution of the measurement frame, the object movements of dy-
namic objects in the observation area induce various artefacts
(e.g., blurred pedestrian silhouettes), which do not allow ef-
ficient dynamic event analysis. For example, the Livox Avia
sensor collects 240,000 points within a time-window of 1s,

while 720,000 points in a 3s-window. On the other hand, if
the measurements are collected in a narrow time window (e.g.,
in 100 ms) the resulting point clouds are very sparse, which
phenomenon yields a loss of details across the spatial dimen-
sion of the FoV: a sample frame of 24,000 points is shown in
Fig. 1.

For the above reasons, in the proposed approach we generate
and maintain a very high-resolution (HR) background model of
the scene fully automatically in the range image domain of the
sensor’s FoV, while for enabling real-time analysis of dynamic
objects we use low integration time to extract the consecutive
time frames. The measured points are matched to the high-
resolution background model components in the closest match-
ing positions. This process ensures that the spatial accuracy of
the native measurements is largely maintained, instead of ap-
plying a rough spatial downscaling technique. As a result, we
can obtain sparse, but geometrically accurate point cloud seg-
ments representing the moving objects, which can be used in
higher-level scene analysis steps of surveillance systems.

This paper presents a new point-level foreground-background
separation method by processing measurement sequences of a
(NRCS) Lidar sensor, which is used as a surveillance sensor
mounted in a fixed position. The outline of the paper is as fol-
lows. The steps of the proposed approach are detailed in Sec.
2. Sec. 3 describes our new annotated dataset created for test-
ing the algorithm. For this purpose, two different measurement
sequences have been recorded by a Livox Avia sensor, in a con-
trolled Courtyard environment, and in a more challenging City
Center scene, respectively. In Sec. 4 we describe and analyse
the quantitative and qualitative evaluation results. Finally, con-
cluding remarks and future plans are given in Sec.5.

2. PROPOSED METHOD

The goal of the proposed method is to separat foreground and
background regions in Lidar frames extracted with a narrow in-
tegration window (used 100ms) from a measurement sequence
of a static NRCS Lidar sensor.

Formally, in a given time frame ¢, we assign to each point p €
L' alabel w(p) € {fg, bg} corresponding to the moving object
(i.e. foreground, fg) or background classes (bg), respectively.

The sensor’s non-repetitive circular scanning approach implies
a critical challenge to be handled: the moving laser beams can-
not densely cover the whole field of view within the considered
data collection window, which results in several sparse/empty
regions in the individual Lidar frames. Moreover, we can ob-
serve strongly inhomogeneous point density as shown in Fig.
1.

Surveillance applications demand real-time solutions. To avoid
computationally expensive algorithmic steps in the 3D point
cloud domain, and to enable the efficient and robust utilization
of the sparse data, we map the problem to the 2D range image
domain, by transforming the 3D Euclidean point coordinates
into a polar representation.

The proposed method consists of three main steps, as follows:

1. Incoming Lidar measurements are collected within a
100ms time window for composing the next point cloud
frame of the sequence. Thereafter, the distances of the 3D
measurement points from the sensor are assigned to cor-
responding pixels in a high-resolution range image.
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Figure 3. Field of view of the Livox Avia Lidar sensor (Avia User Manual, https://www.livoxtech.com, 2021)

2. A local background (Bg) model is assigned and main-
tained for each pixel of the range image lattice, following
the Mixture of Gaussians (MoG) approach (Stauffer and
Grimson, 2000) applied for the range values. Consider-
ing the sparseness of the captured point clouds, in a given
time frame, only the MoG Bg model components of range
image pixels linked to the actual measurement points are
updated. The incoming measurement points are classified
either as foreground or as background -based on matching
the measured range values to the local MoG distributions.

3. False foreground points in dynamic background regions
(e.g. by moving vegetation) are filtered out by using an
extension of the original MoG approach. To ensure com-
pact shapes for the extracted moving objects fast spatial
filters are adopted for segmentation refinement.

The above steps are detailed in the following subsections one
after another.

2.1 Range image formation

The point cloud’s representation is transformed from the 3D
Descartes to a spherical polar coordinate system. A 2D pixel
lattice is generated by quantizing the horizontal and vertical
FoV-s, and each 3D point’s distance from the sensor is stored in
a pixel determined by the corresponding azimuth and elevation
values. The polar direction and azimuth angles correspond to
the horizontal and vertical pixel coordinates, and the distance is
encoded in the corresponding pixel’s ‘gray’ value. As a result,
the upcoming steps of the proposed foreground segmentation
method can be developed in the 2D range image domain.

Using a narrow timing window the range image of a certain
frame contains several pixels with undefined range values as a
consequence of the NRCS scanning technology. The number
of undefined pixels depends on both the timing window and the
predefined size of the range image. In our experiments, exploit-
ing the precision parameters of the used Livox AVIA sensor,
its FoV is mapped onto a 600 x 660 sized pixel lattice, result-
ing in an 8.5px/° spatial resolution. We also have to consider
that the density of the recorded valid range values is decreas-
ing towards the peripheral regions of the range image due to the
applied scanning technique: the scanning pattern crosses the
optical center of the sensor more frequently than covering the
regions of the FoV’s perimeter. The sparseness of the range im-
age makes it significantly more difficult to perform e.g. object-
based foreground-background segmentation.

2.2 Background model

The scene’s estimated background is represented in the 2D
range image domain defined in Sec. 2.1.

Our background modeling technique is based on (Benedek et
al., 2013), which extends the Mixture of Gaussians (MoG) ap-
proach (Stauffer and Grimson, 2000) to the range image do-
main. A fitness term fq(p) is assigned to each point p € L'
of the cloud, which measures the quality of the hypothesis that
p is a background point. As explained in Sec. 2.1, we map the
points to the range image pixels, where we use the predefined
and fixed sized 2D pixel lattice. For each s cell of S8 we cal-
culate an MoG approximation of the d(p) distance histogram
of p points being projected to s. Following the approach of
(Kaestner et al., 2010), we use a fixed 5 number of components
with weight w¢, mean p, and standard deviation o paramet-
ers, ¢ = 1...5. Thereafter the weights are sorted in decreasing
order, and the minimal ks number is determined, which satisfies

ks
> wh > T, (1)
=1

where we used Ti,; = 0.89.

We consider the components with the k, largest weights as the
background components. Then, denoting by 7n() a Gaussian
density function, and by P" the projection transform onto S8,
the fug(p) background evidence term is obtained as:

ks
Foa(p) =Y wi-n (A(p), i, 0t) , where s = P"(p). (2)
=1

The Gaussian mixture parameters are calculated and refreshed
based on (Stauffer and Grimson, 2000). By thresholding
foe(p), we can get a dense foreground/background labeling of
the point cloud (Kaestner et al., 2010, Stauffer and Grimson,
2000).

As the incoming points from the consecutive sparse NRCS
Lidar frames are processed one after another, each pixel of the
HR background range image lattice becomes covered by valid
range measurement several times, thus the associated MoG dis-
tribution can learn the appropriate parameters. The used back-
ground model is adaptive, thus it automatically updates itself
when the background scene changes: for example, a static ob-
ject is relocated, or a parking car departs. Besides updating the
high-resolution background nap, the method also classifies the
incoming frame’s individual points whether they belong to the
foreground or the background classes.

Although the MoG technique is regarded as a highly robust ap-
proach for optical video processing, as demonstrated in Fig.
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(a) Detected foreground (by red) in a singel time frame of the
NRCS Lidar image sequence

(b) Detected foreground region (by red) displayed over the
generated high-resolution background range image

Figure 4. Foreground detection results (by red) in the City Center scene, displayed in 3D point cloud representation.

(a) Foreground detection without (b) Foreground detection result with
the spatial filtering adjustment in the proposed method in the central
the central area of Fig. 4a area of Fig. 4a

Figure 5. Foreground detection results (by red) in the Courtyard
scene, displayed in range image representation.

4(b), the above described Fg-Bg classification process is not-
ably noisy for NRCS Lidar-based range image sequences, es-
pecially in scenarios recorded in large outdoor environments.
Various sources of noise are present, including oscillations and
small movements in the background (tree leaves, branches),
whose regions are often classified falsely as foreground. Al-
though by fine-tuning the parameters of the algorithm, the neg-
ative effects of oscillations can be decreased, usually these arte-
facts cannot be eliminated in acceptable quality. As a con-
sequence, to reliably eliminate the oscillation artefacts, further
noise filtering steps are needed, as described in the next subsec-
tion.

As for the speed of adaption, the initialization period of the
method in a new scene needs about 50-100 time frames, to ob-
tain an efficient initial background range value for each pixel
of the HR background map. Additional 100-300 frames are
required to let the background model’s MoG distributions para-
meters converge, exploiting the repetitive sensor measurements

from the observed background scene.

2.3 Foreground noise filtering

In this section, we propose filtering steps applied to the Mixture
of Gaussians-based segmentation output, to obtain a smoothly
uniform and observation consistent segmentation of the point
cloud sequence recorded by the NRCS Lidar.

Let us observe that vibrations of objects (e.g. tree leaves,
branches) in the background area are usually composed of re-
latively small, but frequent movements. The vibrating ob-
jects’ edge points often oscillate between neighboring pixels
of the range image lattice, causing challenges for the original
MoG approach. As the background oscillations are often quasi-
periodic, we can frequently observe for the pixels of these
areas two high-weight Gaussian components, thus based on the
thresholding rule of eq. (1) these regions receive in majority of
background labels. However, there are regions in the observed
area where real foreground objects (persons, cars, etc.) often
pass. This frequent occurrence of an object in a typical dis-
tance also means, that the method will store this distance in the
model, in the second component as well, while the first com-
ponent will contain the real background distance value with the
highest weight. In order not to be misguided for these real fore-
ground points, we apply an additional filtering condition: if the
deviation of the highest weight Gaussian component is saliently
small (which indicates a compact background surface), we do
not allow to include further Gaussian components in the local
background model.

Since the above described MoG-based method works independ-
ently on each pixel of the range image, noise may result in many
standalone false foreground pixels surrounded by background
regions, which can be removed by morphological filtering op-
erations.

As a result, the number of false-positive foreground pixels can
be significantly decreased (see Fig. 5), and we can obtain com-
pact and largely connected object shapes as shown in Fig. 6.
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3. DATASET COLLECTION

For the development and the evaluation of the proposed
method, two measurement sequences were recorded by a
tripod-mounted Livox AVIA sensor in two different, outdoor
locations.

In the Courtyard scene, five people were walking in a narrow in-
ner courtyard surrounded by large building facades, while can-
opies of trees and bushes are waving in the background due to
the wind. The observed courtyard is 15m wide, its width is par-
allel to the NRCS Lidar’s front plane, while the length of the
observed area is 40m. This measurement setup was suitable for
the 70° horizontal field of view of the Livox sensor (see Fig.
3.) The sensor was placed horizontally, looking towards the ho-
rizon. 5-7 walking pedestrians formed the foreground regions
of the scene, while the background consisted of parking cars,
walls, trees, ground areas, etc. This setup utilized the benefits
of the NRCS Livox sensor, as the foreground regions appeared
close to the center of the sensor’s field of view, resulting in bet-
ter spatial resolution than in the peripheral FoV regions. Also,
the distance regions of the observed are were suitable for the
sensor’s angular resolution.

The City Center sequence was recorded in a busy scene
in downtown Budapest, Hungary, containing several moving
vehicles and pedestrians. The selected square and junction were
observed from a higher location, where the sensor was placed
looking towards the ground. The foreground regions of this
scene include various types of moving objects, including pedes-
trians, cars, trams, cyclists, etc. In this experiment, the observed
area was in an open space, thus the observed distances were also
limited by the sensor’s reflection detection capabilities, not only
by the static field objects such as buildings/vegetation. As the
observed area was farther from the sensor than in the Court-
yard scene, the City Center sequence has sparser data. As a
consequence of the sparser measurements, we observed here a
slightly longer initialization period of the high-resolution back-
ground model.

4. RESULTS AND DISCUSSION

The method was tested and evaluated using the Courtyard and
City Center Livox Lidar measurements (see Sec. 3).

A demonstrating example for foreground classification on a
sparse sample frame from the Courtyard sequence and the gen-
erated dense background model are displayed in Fig. 4 in the
range image representation.

A sample result from the City Center dataset is displayed in Fig.
6 in point cloud representation. Here both the foreground and
background objects were at larger distances, resulting in even
sparser Lidar point cloud frames.

4.1 Quantitative Results

Numerical evaluation of the algorithm’s performance was con-
ducted via comparing the detection results to ground truth seg-
mentation, which was manually generated for selected key-
frames of both the Courtyard and the City Center Lidar meas-
urement sequences. More specifically, we considered 25s long
measurement segments in both scenes, and manually annotated
every Sth point cloud (i.e. the annotation frame rate was 2fps)
via a 3D annotation tool, separating the foreground and back-
ground regions.

Courtyard  City Center
Precision 0.72 0.62
Recall 0.82 0.77
F1 Score 0.76 0.67
ToU 0.62 0.52

Table 1. Result of the quantitative evaluation of the method on
the annotated Courtyard and City Center datasets

The quantitative performance analysis was performed by the
comparison of each point’s label after the assignment of the 3D
corresponding points of the ground truth and the output clouds.
To measure the similarity between the binary annotation of the
ground truth point cloud, and the binary classification of each
point in the result point cloud, the mean F1-score, Intersection
over Union (IoU) were calculated alongside precision and re-
call. The used metrics’ definition follows the standard binary
classification metrics (Metz, 1978).

The results of the quantitative evaluation are listed in Table 1.
The mean point-level Fl-score of the method was 0.76 on the
Courtyard, and 0.67 on the City Center sequences. These ini-
tial results are satisfying considering our low-level classifica-
tion approach, which observation is can also be confirmed by
qualitative experiments. In practical use, the existing classific-
ation errors can be eliminated by considering various higher-
level object- or scene features, e.g. results of object detection
using PointPillars deep neural network (Lang et al., 2019). The
lower F1-score result of the City Center dataset is explained by
the greater distance between objects and the sensor, which yiel-
ded a lower spatial resolution of the measurement.

The average running speed of the method was 80ms for each
point cloud on a PC with an i7-7500U K CPU @2.7 GHz x4,
16 GB RAM.

4.2 Qualitative Results

For qualitative analysis, we constructed first a dense 3D point
cloud from the 2D high-resolution background model.

Then the moving objects detected in the consecutive Lidar
frames (Fig. 6a) can be displayed with the background’s dense
point cloud in the same coordinate system, which can provide
a useful visualization effect for the operators of a surveillance
system (Fig. 6b).

We demonstrate the development phases of the dense back-
ground model by the adopted MoG approach in Fig. 7. As the
time elapses, the sensor’s non-repetitive scanning pattern covers
more and more regions of its field of view, resulting in a step-
by-step evolution of the background point cloud. By the end of
the initialization process, all undefined regions disappear, and
all pixels in the FoV receive a valid range value. Once the high-
resolution background model is built, it is updated continuously
during the surveillance process.

During the experiments, we also tested the adaptivity of the
background model, by investigating the transition of different
scene regions from foreground to background classes and vice
versa. For example, Fig. 8 displays consecutive point cloud
frames, where a walking pedestrian stopped for a certain time
period, and its point cloud was built into the background model.
We should also mention when the pedestrian started to walk
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(a) Detected foreground (by red) in a single time frame of the
NRCS Lidar sequence

(b) Detected foreground regions (by red) displayed over the
generated high-resolution background point cloud

Figure 6. Foreground detection results (by red) in the City Center scene, displayed in 3D point cloud representation.

Figure 7. Evolution of the high-resolution background model in the City Center dataset

again later, we could see a quick “revival” of the hidden back-
ground region, whose range values were temporarily stored in
the second strongest Gaussian components of the concerning
pixels.

5. CONCLUSIONS

In this paper, a novel, robust and quick foreground-background
segmentation method was presented, which works efficiently
on point clouds recorded by Non-repetitive Circular Scanning
Lidar sensors. The method can be extended in various ways,
for example by taking into account object-level features, or the
temporal dynamics of the observed scene via object tracking.
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