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Graph-Cut RANSAC: Local Optimization on
Spatially Coherent Structures

Daniel Barath™ and Jiri Matas

Abstract—We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local
optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The
minimized energy reflects the assumption that geometric data often form spatially coherent structures — it includes both a unary
component representing point-to-model residuals and a binary term promoting spatially coherent inlier-outlier labelling of neighboring
points. The proposed local optimization step is conceptually simple, easy to implement, efficient with a globally optimal inlier selection
given the model parameters. Graph-Cut RANSAC, equipped with “the bells and whistles” of USAC and MAGSAC++, was tested on a
range of problems using a number of publicly available datasets for homography, 6D object pose, fundamental and essential matrix
estimation. It is more geometrically accurate than state-of-the-art robust estimators, fails less often and runs faster or with speed
similar to less accurate alternatives. The source code is available at https:/github.com/danini/graph-cut-ransac.

Index Terms—Robust model estimation, RANSAC, local optimization, spatial coherence, energy minimization, graph-cut

1 INTRODUCTION

THE RANdom SAmple Consensus (RANSAC) algorithm
proposed by Fischler and Bolles [1] in 1981 has become
the most widely used robust estimator in computer vision.
RANSAC and its variants have been successfully applied to
a wide range of vision tasks, e.g., motion segmentation [2],
short baseline stereo [2], [3], wide baseline matching [4], [5],
[6], pose-graph initialization for structure-from-motion
pipelines [7], [8], detection of geometric primitives [9],
image mosaicing [10], and to perform [11] or initialize
multi-model fitting algorithms [12], [13]. In brief, RANSAC
repeatedly selects minimal random subsets of the input
data points and fits a model, e.g., a line to two 2D points, a
fundamental matrix to seven 2D point correspondences, or
a 6D pose to three 2D-3D correspondences. Next, the quality
of the model is measured, for instance, by the cardinality of
its support, i.e., the number of inlier data points. Finally, the
model with the highest quality, polished, e.g., by least-
squares fitting of all inliers, is returned. In this paper, we
propose a new local optimization technique for RANSAC
considering the fact that real-world data often form spa-
tially coherent structures.

Since the introduction of RANSAC, a number of modifi-
cations have been proposed replacing the components of
the original algorithm. For instance, improving the sampler
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impacts the speed of the robust estimation procedure via
selecting a good sample early and, thus, triggering the termi-
nation criterion. NAPSAC [14] assumes that inliers are spa-
tially coherent and therefore it draws samples from a hyper-
sphere centered at the first, randomly selected, location-
defining point. If this point is an inlier, the points sampled
in its proximity are more likely to be inliers than the ones
outside the ball. While NAPSAC exploits the observation
that inliers tend to be “closer” to each other than outliers,
the GroupSAC algorithm [15] assumes that inliers are often
“similar” to each other and, therefore, data points can be
separated into groups according to their similarities. PRO-
SAC [16] exploits an a priori predicted inlier probability
rank of each point and starts the sampling with the most
promising ones. Progressively, samples that are less likely to
lead to the sought model are drawn. P-NAPSAC [17] merges
the advantages of local and global sampling by drawing
samples from gradually growing neighborhoods. Gradually,
the algorithm changes from the fully localized NAPSAC to
the global PROSAC sampling. NG-RANSAC [18] predicts
the inlier probability of each point via deep learning.
Regarding speeding up the robust estimation process,
one way of avoiding unnecessary calculations is via termi-
nation of verification of models which are unlikely to be
more accurate than the current so-far-the-best. There has
been a number of preemptive model verification strategies
proposed. For example, when using the T;4 test [19], the
model verification is first performed on d randomly selected
points (where d < n). The remaining n — d ones are evalu-
ated only if the first d points are all inliers to the verified
model. The test was extended by the so-called bail-out
test [20]. Given a model to be scored, a randomly selected
subset of d points is evaluated. If the inlier ratio within this
subset is significantly smaller than the current best inlier
ratio, it is unlikely that the model will yield a larger consen-
sus set than the current maximum and, thus, is discarded.
In [21], [22], an optimal randomized model verification
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(a) Minimal sample initializing a rigid motion.

(b) Inliers by standard thresholding.

(c) Inliers by labeling Eq. 8.

Fig. 1. Inlier correspondences (green dots) of a rigid motion model, i.e., a fundamental matrix, initialized by a minimal sample (a). Inliers obtained by
(b) standard thresholding of the residual; (c) the proposed graph-cut-based selection considering spatial coherence. All other points are marked by
gray circles. The graph-cut-based selection (c) returns more inliers compared to the traditional thresholding (b).

strategy was described. The test is based on Wald’s theory
of sequential testing [23]. Wald’s SPRT test is a solution of a
constrained optimization problem, where the user supplies
acceptable probabilities for errors of the first type (rejecting
a good model) and the second type (accepting a bad model)
and the resulting optimal test is a trade-off between the
time to decision and the errors committed.

To improve the accuracy by better modelling the noise in
the data, different model quality calculation techniques
have been investigated. For instance, MLESAC [24] esti-
mates the model quality by a maximum likelihood proce-
dure with all its beneficial properties, albeit under certain
assumptions about data point distributions. In practice,
MLESAC results are often superior to the inlier counting of
plain RANSAC, and they are less sensitive to the manually
set inlier-outlier threshold. In MAPSAC [25], the robust esti-
mation is formulated as a process that estimates both the
parameters of the data distribution and the quality of the
model in terms of maximum a posteriori.

There are also methods to reduce the dependency on the
user-defined inlier-outlier threshold. For example, MIN-
PRAN [26] assumes that the outliers are distributed uni-
formly and finds the model where the inliers are least likely
to have occurred randomly. Moisan et al. [27] proposed a
contrario RANSAC, selecting the most likely noise scale for
each model candidate. Barath et al. [17], [28] proposed the
Marginalizing Sample Consensus method (MAGSAC) and
its recent improvement (MAGSAC++) marginalizing over
the noise scale o to eliminate the threshold from the model
quality calculation.

Observing that RANSAC requires in practice more sam-
ples than what theory predicts, Chum et al. [29] identified a
problem that not all all-inlier samples are “good”, i.e., lead to
a model accurate enough to distinguish all inliers, e.g., due to
poor conditioning of the selected random all-inlier sample.
They address the problem by introducing the locally opti-
mized RANSAC (LO-RANSAC) that augments the original
approach with a local optimization step applied to the so-far-
the-best models. In the original LO-RANSAC paper [29], the
local optimization is implemented as an iterated least-squares
model re-fitting with a progressively shrinking inlier-outlier
threshold inside an inner RANSAC applied only to the inliers
of the current model. In the reported experiments, LO-RAN-
SAC is superior to plain RANSAC both in terms of geometric

accuracy and number of iterations. It is shown that the num-
ber of local optimizations is close to the logarithm of the itera-
tion number and, therefore, it usually does not yield a
significant overhead in the processing time. However, Lebeda
et al. [30] showed that, for models with many inliers, the local
optimization becomes a computational bottleneck due to the
iterated least-squares model fitting where the processing time
is a function of the number of used points. In [30], it is pro-
posed to consider only a subset of the inliers in the local opti-
mization. Only the final model polishing process is applied to
the whole inlier set.

In this paper, we propose a new local optimization proce-
dure considering that in real-world applications, data points
often form spatially coherent structures. In the large body of
RANSAC-related literature, the inlier-outlier decision has
always been a function of the point-to-model residual, calcu-
lated individually for each data point. In practice, both inlier
and outlier poinn the remaining casets often are spatially
coherent and, therefore, a point near to an outlier or inlier is
likely to be, respectively, an outlier or inlier. Spatial coherence,
described by, e.g., the Potts model [31], has been exploited in a
number of vision problems, for instance, in segmentation [32],
multi-model fitting [12], [13], [33], [34], [35], [36] or sam-
pling [14], [17] in RANSAC-like techniques. Directly formaliz-
ing the model verification in RANSAC as a graph-cut problem
such that it considers spatial coherence is computationally pro-
hibitive. However, when applied as the local optimization
step, as in [29], just to each so-far-the-best model, the number of
graph-cuts is only the logarithm of the number of sampled
and verified models, and can be performed efficiently.

The proposed Graph-Cut RANSAC, GC-RANSAC in
short, is a locally optimized RANSAC alternating graph-cut
and model fitting as the local optimization step. It is supe-
rior to original LO-RANSAC in a number of aspects. The
contributions are:

1. GC-RANSAC is capable of exploiting spatial coher-
ence of points. See Fig. 1 for example. The LO step is
conceptually simple, easy to implement, its inlier
selection is a globally optimal and efficient graph-cut
with only a few intuitive and learnable parameters
unlike the ad hoc, iterative and complex LO steps [29].

2. We propose a new energy term which models the
spatial coherence of geometric data. Experiments



BARATH AND MATAS: GRAPH-CUT RANSAC: LOCAL OPTIMIZATION ON SPATIALLY COHERENT STRUCTURES

show that the proposed term is more suitable for
geometric robust model estimation than the tradi-
tionally used Potts model [31].

3. We combine GC-RANSAC with the bells and whis-
tles of USAC [37] and MAGSAC++ [17]. It is shown
experimentally that the proposed algorithm is supe-
rior to the state-of-the-art LO-RANSAC variants,
included in USAC [37], in terms of accuracy and fail-
ure ratio on a wide range of vision problems (.e.,
homography, essential and fundamental matrix, and
6D pose estimation).

Remark. Isack’s and Boykov’s PEARL [12] was the first
method to introduce spatial coherence to geometric model fit-
ting. However, PEARL cannot be directly used for the prob-
lems solved by RANSAC, since the user has to manually set
the number of hypotheses tested in the worst-case, i.e., the
lowest inlier ratio possible. The a-expansion step executes, in
the first iteration of PEARL, the graph-cut as many times as
the number of hypotheses tested. The number is calculated
from the worst-case scenario and is typically orders of magni-
tude higher than the number of iterations which the adaptive
RANSAC termination criterion determines. Moreover, in GC-
RANSAC, applying the local optimization to only the so-far-
the-best models ensures that the graph-cut runs only very few
times, paying only a small penalty.

A preliminary version of the GC-RANSAC algorithm
was published at CVPR 2018 [38]. This paper extends and
improves it by (i) proposing a new spatial coherence model,
(ii) adding the USAC components and MAGSAC++ scoring,
(iii) and providing a number of new experiments on homog-
raphy, fundamental matrix, relative and 6D object pose
estimation.

2 RANSAC VERIFICATION REFORMULATED

The inlier selection of RANSAC is formulated as an energy
minimization problem. The novel formulation allows to
include additional constraints when selecting the inliers of a
given model.

2.1 RANSAC as Energy Minimization

To facilitate understanding of the connection to energy min-
imization, we start by reformulating the original top-hat
loss function of RANSAC, see Fig. 2. Then continuous loss
functions, e.g., truncated L, will be considered.

Suppose that we are given a set P C R% (d, > 0) of n
points and a model represented by parameter vector § € R
(d,, > 0), where, respectively, d, and d,, are the dimensions
of a data point and the model. The residual function measur-
ing the point-to-model assignment cost is ¢ : P x R%" — R,
For the standard RANSAC scheme which applies a top-hat fit-
ness function (0 - close, 1 —far), the implied unary energy is as
follows: Eo1)(L) = > ,ep | Lpll o1}, Where

0 if (L,=0A¢(p,0)
(LP =1 A ¢(p7 9)
1 otherwise.

€) V

<
> €) (1)

||Lp||{o;1} =

Parameter L € {0,1}" is a labeling, ignored in standard
RANSAC, L, € L is the label of point p € P, and € € R* is
the user-defined inlier-outlier threshold. Labels 0 and 1 are
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Fig. 2. Example loss functions used for robust model fiting — RANSAC
[1], MSAC [25], MLESAC [24], MAGSAC++ [17].

the inlier and outlier labels, respectively. Solving problem
L* = argming Ey,) (L) leads exactly to the RANSAC solu-
tion since Ej,1; does not penalize only two cases: (i) when p
is labeled inlier and it is closer to the model than the thresh-
old, or (ii) when p is labeled outlier and it is farther from the
model than e. This is exactly what RANSAC does when
selecting the inliers.

A number of papers discussed [17], [24], [25], [28] the
replacement of the {0,1} loss with some continuous func-
tion f, e.g., the truncated L, loss of MSAC [25], to improve
the estimation accuracy. Considering a general robust loss
function, the energy term is written as follows: E;(L) =
> pep f(Lp,p). For example, when using the MSAC-like
truncated L, loss, fusac(Ly, p) becomes the following:

CHO i (L, = 07 9(p,6) < ¢
fusac(Ly,p) =< 0 if (L, =1A¢(p,0) >
1 otherwise.

)
a9, @

2.2 MAGSAC++ Loss

To use the state-of-the-art in robust model fitting, we consider
the loss function of MAGSAC++ [17] which was designed in a
way such that it does not require a strict inlier-outlier deci-
sion. The loss function proposed for MAGSAC++ is as fol-
lows: g(6,P) = 3 cp p(¢(p,0)), where function

o(r) = /T zw(z)dx for r € [0, +00). 3)
0

For 0 < r < kopmax

1 M(712113.74 dp+1 T2
IO(T) _GIII‘dX C dp 2 i [ 2 ( 2 720‘1211:4){)—’_

2 d,—1 1 d,—1 Kk

__(T'(Z2 —_T(=2 =

T TS5 ~TE 5=,

max

where o, 1s a user-defined maximum noise scale, constant
C(d,) = (2%/°T'(d,/2))"" and, fora > 0

+oo
I'a) = / t"Lexp(—t)dt,
0

is the gamma function, d, is the dimension of euclidean
space in which the residuals are calculated and (o) is set to
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A =0 [Potts model] A = 0.3 [Potts model]
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A = 0.6 [Potts model] A = 0.9 [Potts model]

(a) Potts

A =0.3 [GC-RANSAC model]

(b) GC-RANSAC model

Fig. 3. The effect of spatial coherence weight A on the inlier selection of a 2D line. The inliers (red points) of a line (green) initialized by a minimal sam-
ple (blue crosses) are shown. The top row shows the results of a single graph-cut run using different values for A when the Potts model (5) is applied.
The bottom one shows the labeling results of a single graph-cut run when using the proposed spatial coherence model (6). The inlier-outlier threshold
is shown by green dashed lines. The edges of the neighborhood graph are grey line segments.

a high quantile (e.g., 0.99) of the non-trimmed distribution.
For r > kopax

i} (d,, +1 K
AEEE

:O(T) = p(kalllklx) = GIIlleC(dp) )7
where y(a,z) = [ t" 'exp(—t)dt is the lower incomplete
gamma function. Weight w(r) in (3) can be calculated effi-
ciently by storing the values of the complete and incomplete
gamma functions in a lookup table.

The loss implied by MAGSAC++ given a binary labeling is

g(eap) if (Lp =0A ¢(p7 9) < EnlaX)v
fl\r1++(Lp’p) = 0 if (L;U =1 /\¢(p7 9) > 6111{‘1)()7
1 otherwise.

4)

where €, is the max. threshold which noise scale oy
implies.

2.3 Spatial Coherence in RANSAC

In geometric model fitting, real-world data often form spa-
tially coherent structures. This observation inspired a num-
ber of approaches, e.g., for sampling [14], [17] in robust
methods or multi-model fitting techniques [12], [13], [34],
[36]. To the best of our knowledge, there has been no
attempt to exploit this property in the local optimization
step of RANSAC.

Due to formalizing the inlier selection as an energy mini-
mization via a binary labeling, additional energy terms can
be straightforwardly considered. The problem is still solv-
able efficiently and globally via the graph-cut algorithm. To
model the point-to-point proximity in the energy, the Potts
model [31] usually is a justifiable choice. It is written as
follows:

if L, # Ly,

1
{ 0 otherwise, ©)

EPotts (L) = Z

(p.a)e€

where (p,¢) € € is an edge connecting points p and ¢ in a
pre-calculated neighborhood graph A = (P, ). When mini-
mizing energy Epous(L), the neighboring points are encour-
aged to have the same label, formalizing the assumption
that close points likely belong to the same model.

In our experiments, we saw that the Potts model fails to
act as expected, i.e., to spread the inlier label along a struc-
ture. An example line fitting is shown in Fig. 3a. Each col-
umn shows the results of the binary labeling using different
weighting A € [0, 1] for the spatial coherence term. Due to
the outliers being considered similarly structured as the
inliers, and the model, the 2D line, being too inaccurate to
select the sought inliers, the spatial coherence term forces
all points in the structure to be outliers even if their point-
to-model residuals are small, i.e., they are close to the line.
Other examples are in the supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2021.3071812.

The expected behaviour is to label all points which are
closer than the threshold inliers and, also, points which are
in the same spatial structure as the points close to the
model. We achieve this behaviour by breaking condition
L, = L, of (5) down to two cases. The property, of the Potts
model, of not penalizing two neighboring points p, ¢ if they
both are inliers, L, = L, = 0, should still be kept. The L, =
L,=1 case, i.e., when both points are outliers, should
depend on the point-to-model residual. Otherwise, the term
may force points with small residuals but in the neighbor-
hood of outliers to be labeled outlier. This can be seen in last
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plot of Fig. 3a, where points close to the line are labeled out-

liers due to being in a structure consisting mostly of outliers.
The proposed spatial coherence term which fixes the

mentioned issues of the Potts model is as follows:

1 if L, # Ly,
FEcc (L) = 0 if L,=L,=0, (6)
paee | 1 - L02H0a ¢ 7, — =1,

When using Egc, the points closer than the threshold are
penalized for jointly being labelled outliers. Farther than the
inlier-outlier threshold, only the L, # L, case is penalized,
thus, leading to the same effect as the Potts model. This can
be imagined as a “bumpy” non-uniform inlier-outlier
threshold.

The sub-modularity requires e,,(0,0) 4 e,(1,1) < ey
(1,0) 4 e,4(0, 1) to hold [39]. For (6), this inequality becomes

since €,,(0,0) = 0 and e,,(1,0) = €,,(0,1) = 1. The condition
holds if f(0,-) € [-1, c0), where operator - refers to either p
or g. This property depends solely on function g from (4).
When ¢(6,-) € [-1,00) is true, f(0,-) €[-1,00) holds as
well. Both for MSAC and MAGSAC++, function g(0,-) €
[0,1]. Thus, the implied energy term Eg is sub-modular.

The bottom row of Fig. 3 shows the effect of the proposed
term with different weights, A € {0,0.3,0.6,0.9}. Optimiz-
ing Eqc leads to the desired effect — the inlier label is spread
along the spatial structure while points close to the model
do not get affected by the surrounding outliers. Note that
this spatial coherence model leads to accurate results on the
geometric problems investigated in this paper. However, if
different assumptions hold, the energy can be straightfor-
wardly modified and used within GC-RANSAC.

2.4 Graph-Cut Energy

The energy E(L) minimized in the proposed Graph-Cut
RANSAC is a linear combination of the data (unary) and
spatial coherence (pair-wise) terms

E(L) = (1 — A By s (L) + AEge (L), (7)

where A € R is a parameter balancing the terms. The globally
optimal labeling L* = arg min;, E(L) can easily be determined
in polynomial time using the graph-cut algorithm [40].

To balance between the energy terms, it is important to
have each term normalized. It can be easily seen that
Eni+ < n since robust loss fap4(Ly,p) <1 for each data
point p. To ensure that Eqc(L) has the same scale, it has to
be divided by the number of edges in the neighborhood
graph and multiplied by n. Therefore, let us define the
energy to minimize as follows:

E(L) = (1= N)Eyis (L) + A%Ecc@), ®)

where |€] is the number of edges in A. It can be easily seen
that Eqc is sub-modular and, thus, E also is.

4965

3 GRAPH-CUT RANSAC (GC-RANSAC)

In this section, the described energy minimization-based
inlier selection is used for proposing a new locally opti-
mized RANSAC. Benefiting from the proposed approach,
the LO step is conceptually simpler and cleaner than that of
the original LO-RANSAC.

3.1 Energy-Based Labeling

The construction of problem graph G, which is fed into the
graph-cut procedure, using unary and pair-wise terms
Egs. (4), (6) is shown in Algorithm 1. Functions AddTerml
and AddTerm2 add, respectively, unary (4) and binary (6)
costs to the problem graph. Such graph construction proce-
dure is covered in depth in [39] (Section 4). The graph-cut
algorithm is applied to G determining the globally optimal
labeling L* which considers the spatial coherence of the
points and their point-to-model residuals given the current
so-far-the-best model.

Algorithm 1. Problem Graph Construction

Input: P — data points, A — neighborhood-graph
0 — model parameters, A — weight
Output: G — problem graph;
1: G < EmptyGraph().
2: forp € Pdo

> Initialize the problem graph
> Unary term (4)

3. ¢g— (1=X)p(¢p(p,0)). > Loss of p being outlier
4: ¢ — (1=XN)(1 = p(p(p,0),¢)). > Loss of p being inlier
5: G «— AddTerml(G, p, ¢y, ¢1).

6: for (p,q) € Ado > Binary term (6)
7 co1,Cl0 — A A > Loss of p, g with different labels.
8 coo 0. > Loss: p, ¢ being inliers.
90 e = 4D seqpg P(D(5,0)) > Loss: p, ¢ being outliers.

10: G « addTerm2(G, p, ¢, coo, Co1, C10, C11)-

3.2 Graph-Cut in Local Optimization

The original LO step of LO-RANSAC consists of an inner
RANSAC, applied locally to the inliers of the current best
model, and an iterative model refitting, which uses inliers
selected in each step by a progressively shrinking inlier-out-
lier threshold.

In the proposed GC-RANSAC algorithm, the inner RAN-
SAC is a necessary step. The reason is that the least-squares
(LS) fitting, which is applied to all inliers, minimizes the
point-to-model residuals, i.e., the unary term. Minimizing
this loss on points which are labeled inliers solely due to being
in a spatial structure leads to inaccurate results in most of the
cases. An intuitive example is shown in the right plot of
Fig. 3b, where the sought inliers are found, but, also, points
which are outliers of the ground truth model are labeled
inliers. In this case, applying LS fitting fails to return the
sought model parameters since LS is not robust and, thus, is
extremely sensitive to outlying points. Instead, we apply an
inner RANSAC to the points labeled inliers. In this case, the
configuration of the last plot of Fig. 3b leads to an inner RAN-
SAC applied to a point set with a very high inlier ratio. Conse-
quently, the sought model is found easily in a few iterations.

Each step of the inner RANSAC selects a 7m-sized sam-
ple from the points labeled inliers, where m is the size of a
minimal sample, e.g., m =4 for homographies. Parameter
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7m was proposed in [30] and works well in our experi-
ments. The LS fitting is always applied to points which are
inliers due to the unary term, i.e., their point-to-model resid-
uals are smaller than the inlier-outlier threshold. A detailed
explanation of the steps of the proposed local optimization
is written in Algorithm 2. Function ShouldTerminate is
either a fixed iteration number or the standard RANSAC
termination criterion. In the experiments, we used a fixed
iteration number set to 20 to achieve fast performance.

Algorithm 2. GC-RANSAC Local Optimization

Input: P - data points, L* —labeling,
¢* — quality, 0" — model;
Output: L, —labeling, wi, — support, ¢, — model;
1 qGe, Lée 060 — ¢, L7, 6"
2: terminate, «+ false.
3: while - terminate do

4: G« ConstructGraph(P, A, 6, N). > Algorithm 1
5. L <« GraphCut(G) > Labeling minimizing (8)
6: 6,L,q— RANSAC (L). > Inner RANSAC
7. if g > ¢ then & If the found model is the new best
8: G960 L — ¢,0, L. > Update the best model
9: else

10: terminate <« true.

11 i+ 1.

12:  if ShouldTerminate(0;q, Lic, ) then

13: terminate < true.

3.3 GC-RANSAC

The Graph-Cut RANSAC algorithm is shown in Algorithm 3
in depth. To achieve state-of-the-art results, we combine the
proposed graph-cut-based local optimization with the com-
ponents discussed in USAC [37]. We consider four popular
vision problems, i.e., fundamental matrix, homography, 6D
object pose (i.e., the PnP problem), and relative pose (i.e.,
essential matrix) estimation. The included components for
each problem are as follows:

1. Sample degeneracy. The degeneracy tests of minimal
samples are for rejecting clearly bad samples to
avoid the sometimes expensive model estimation.
For homographies, samples consisting of collinear
points are rejected. For 6D object pose estimation,
samples are not used where the area of the triangle
formed by the three selected points is smaller than a
predefined threshold.

2. Sample cheirality. The test is for rejecting samples
based on the assumption that both of the cameras
observing a 3D surface must be on its same side. For
homography fitting, we check if the ordering of the
four point correspondences — along their convex hulls
— in both images are the same. If not, the sample is
rejected.

3. Model degeneracy. The purpose of this test is to reject
models early to avoid verifying them unnecessarily.
For fundamental matrices, DEGENSAC [41] is applied
to determine if the epipolar geometry is affected by a
dominant plane. For relative pose and 6D object pose
estimation, improper rotation matrices [42], i.e., the
ones with negative determinant, are rejected.
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4. Model cheirality. The test is for rejecting models con-
sidering that the cameras must be on the same side
of the observed surface. For fundamental and essen-
tial matrix estimation, we apply the oriented epipo-
lar constraint [43]. For 6D object pose estimation, we
assume that the object is in front of the camera and,
thus, coordinate z of the translation must be positive.

5. Sampling. We use the PROSAC sampler [16]. It
requires an a priori determined ordering of the input
data points. For point correspondence-based meth-
ods, we used the scoring coming from the standard
SNN ratio-test [44]. For 6D object pose estimation,
the points are ordered by their confidence values
provided by deep-learning [45] in the used datasets.

6.  Preemptive model verification. We use the Sequential
Probability Ratio Test [22] (SPRT) to interrupt the
model verification if the probability of being better
than the current so-far-the-best model falls below a
threshold.

7. Scoring. We use the scoring of MAGSAC++ [17] to
calculate the model quality. Even though MAGSAC
++ does not require a single inlier-outlier threshold,
the other components of the algorithm (e.g., local
optimization, SPRT, DEGENSAC) do. Therefore, we
set the upper bound of the threshold in MAGSAC++
to be €nax = 10¢, where € is the manually set inlier-
outlier threshold.

8.  Final model polishing. The algorithm finishes with an
iteratively re-weighted least-squares model refitting
on all inlier points for all problems to polish the final
model parameters.

Algorithm 3. The GC-RANSAC Algorithm

Input: P — data points; e — inlier-outlier threshold
1 — confidence;
Output: 0 - model parameters; L — labeling
1: ¢, A <0, BuildNeighborhoodGraph(P).
2: while - Terminate() do

3: S« sample(P). > PROSAC sampler
4:  if - TestSample(S) then > Degen.and cheirality tests
5:  continue
6: 0« EstimateModel(S)
7.  if - TestModel(¥) then > Degen. and cheirality tests
8: continue
9:  q,L « Scoring(P, 0, ¢) > MAGSAC++ and SPRT
10:  if g > ¢ then
11: L, qac,0ce < GC(P, L, q, 0) > Algorithm 2
12: if qoc > ¢ A - TestModel(fgc) then
13: q,0", L" — qcc,0ac, Lac
14: else
15: q,60", L" +— q,6,L

16: L*, 0" «— ModelPolishing(L*, 6).

4 EXPERIMENTAL RESULTS

We tested Graph-Cut RANSAC on fundamental matrix, rela-
tive pose, homography, and 6D object pose estimation using
publicly available real-world datasets. The compared meth-
ods are GC-RANSAC with MSAC [25] and MAGSAC++ [17]
scoring techniques, vanilla RANSAC [1], MSAC [25], and
USAC [37]. USAC was applied with local optimization [29]
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(b) Homogr dataset

Fig. 4. Example image pairs from the datasets used for homography
estimation evaluation; with inlier correspondence visualization.

and with the same modules as GC-RANSAC, i.e.,, SPRT
test [22], degeneracy and cheirality tests, MSAC scoring, and
PROSAC sampling [16]. Since relative pose and 6D object
pose estimation are not included in the available USAC
implementation, we copied the corresponding parts from
our GC-RANSAC code. Also, we included NG-RANSAC [18]
in the comparison for fundamental matrix and relative pose
estimation. All compared methods are implemented in C++.
The part of NG-RANSAC predicting inlier probabilities is
implemented in Python and runs on GPU. Other parts, e.g.
the one doing the robust estimation, are in C++. All methods
were run on a computer with an Intel Core i7-8700K CPU
and two GeForce RTX 2080 Ti GPUs. To provide a neighbor-
hood graph, we used FLANN [46] in the 4D correspondence
space using a hypersphere with radius 20 to assign neighbors
to points. The distance for FLANN is calculated in the feature
space and assigns, on average, 3—4 neighbors to most points.
Parameter A was set to 0.975. These values lead to accurate
results on all tested problems.

If not stated otherwise, the required confidence in the solu-
tion was set to 0.99 and the maximum iteration number to
5000 for all methods. The maximum iteration number is an
upper bound for the iteration number — the robust estimation
finishes in two cases: (i) by the termination criterion being
triggered, (ii) by the iteration number exceeding the maxi-
mum iterations. For each method and problem, we chose the
threshold maximizing the accuracy. For homography fitting,
it was as follows: USAC, MSAC and GC-RANSAC (5.0 pix-
els); RANSAC (3.0 pixels). For fundamental and essential
matrix fitting, it was as follows: USAC, RANSAC, MSAC,
NG-RANSAC, and GC-RANSAC (0.75 pixels). For 6D object
pose estimation, the threshold was set to 1 pixel. We note that
since NG-RANSAC is a deep learning-based sampler and
GC-RANSAC is a local optimization technique, they can be
straightforwardly combined. We did not include MAG-
SAC [28] and MAGSAC++ [17] in the comparison since the
improvements are orthogonal to that of GC-RANSAC. The
algorithms, indeed, can be combined more than just taking
the MAGSAC++ scoring function. However, that is out of this
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(c) LM-0 dataset

Fig. 5. Example scenes from the datasets used for 6D pose estimation.
(Left) The input images passed to the EPOS method [45]. EPOS returns
a set of 2D-3D correspondences and object masks. (Right) The 3D
objects rendered using the poses estimated by GC-RANSAC from the
predicted 2D-3D correspondences. Courtesy of T. Hodan.

paper’s scope. Comparing the methods would give the false
message that they are competitors.

4.1 Fundamental Matrix Estimation

Fundamental matrix estimation is evaluated on the bench-
mark of [47]. The benchmark includes scenes from datasets
TUM, KITTI, Tanks and Temples, and Community Photo
Collection. TUM [48] consists of videos of indoor scenes.
Each video is of resolution 640 x 480. KITTI [49] consists of
consecutive frames of a camera mounted to a moving vehicle.
The images are of resolution 1226 x 370. Both in KITTI and
TUM, the image pairs are short-baseline and, thus, the epipolar
geometry estimation is relatively easy, usually, with high
inlier ratio. Tanks and Temples (T&T) [50] provides images
of real-world objects for image-based reconstruction and,
thus, contains mostly wide-baseline pairs. The images are of
size from 1080 x 1920 up to 1080 x 2048. Community Photo
Collection (CPC) [51] contains images of various sizes of
landmarks collected from Flickr. The benchmark defines 1000
randomly selected image pairs from each dataset. SIFT [44]
correspondences are detected, filtered by the SNN ratio
test [44] and, finally, used for estimating the epipolar geome-
try. The used error metric is the symmetric geometric dis-
tance [52] (SGD) in pixels which compares two fundamental
matrices by iteratively generating points on the borders of the



(d) TUM dataset

Fig. 6. Example image pairs from the datasets used for epipolar geome-
try estimation; with inlier correspondence visualization.

images and, then, measuring their epipolar distances. Exam-
ple image pairs from the datasets are shown in Fig. 6.

In Fig. 8, the cumulative distribution functions (CDF) of
the SGD errors (horizontal; in pixels) are shown. The prob-
ability (vertical axis) is plotted as the function of the error
(horizontal). For all datasets, GC-RANSAC is the most
geometrically accurate method no matter if MSAC or
MAGSAC++ scoring is used. The best performance is
achieved by using MAGSAC++ scoring.

The failure ratio (in percentage) and the average and
median errors are reported in Table 1. A test is considered
failure if the error of the estimated model is greater than the
1 percent of the image diagonal. The average values are cal-
culated from the successful tests. The best values are shown
in red, the second best ones are in blue. On three out of
the four datasets, GC-RANSAC with MAGSAC++ scoring
is superior to the competitor algorithms in terms of failure
ratio, average and median errors. On Tanks and Temples
dataset, GC-RANSAC with MSAC scoring leads to the
best accuracy by a small margin, while MAGSAC++ scoring
leads to significantly lower failure rate. NG-RANSAC
performs competitively on the datasets TUM and KITTI.
On Tanks and Temples and CPC it performs poorly,
worse than any tested method. This behaviour is probably
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Fig. 7. Maximum iteration number study. The avg. log , error (px) and
the run-time (ms) on manually selected inliers are plotted as the function
of the max. iteration number. The confidence was set to 0.99.

related to the properties of data it was trained on. GC-RAN-
SAC with MAGSAC++ scoring outperforms NG-RANSAC
in all cases.

In Fig. 7a, the log |, SGD errors (left plot) and the process-
ing times (right; in milliseconds) are plotted as the function
of the maximum iteration number. For these tests, the confi-
dence was set to 0.99. GC-RANSAC leads to the most accu-
rate results and it is the least sensitive one to the maximum
iteration number. MAGSAC++ scoring leads to better accu-
racy than MSAC while having similar processing time. In
Fig. 9a, the log, SGD errors (left plot) and the processing
times (right) are plotted as the function of the required con-
fidence. For these tests, the maximum iteration number was
set to 1000000. We excluded NG-RANSAC from this test

@ ’l/
/
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Fig. 8. Fundamental matrix fitting. The cumulative distribution functions
of the SGD errors (in pixels) on four datasets, each consisting of 1000
image pairs. Being accurate is interpreted as a curve close to the top-left
corner. The confidence and maximum iteration number were set to 0.99
and 5000, respectively.
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TABLE 1
The Errors and Failure Ratios (in Percentage) are Reported for All Methods (1st Row) on
All Problems (1st col.) and Datasets (2nd col.)

GC-RANSAC GC-RANSAC

MSAC [25 RANSAC [! USAC [37 NGRANSAC [18
(MSAC) (MAGSAC++) (2] [ 571 1]
€avg (DX) 5.42 4.95 5.81 5.91 5.60 5.26
E €med (PX) 435 3.73 4.68 4.97 4.63 3.96
y f (%) 10.30 8.52 12.00 13.39 10.40 10.40
< [ A Yo et b S
§ & = e (PX) 4.20 4.17 437 4.80 493 4.26
= & 5 ema (X 3.49 3.44 3.69 4.00 431 3.59
Ew f (%) 0.00 0.00 0.20 0.70 0.00 0.00
E o -~ - - - - - -"-"-"--"=-"="-"="-"="-"="-"="-"-"-"-"-"-"--"--"-"-"-="-"-"-"-"--"-="-"-"-="--~"-"--"=-"-"=-"=-"=-—"=-—=-""=”-=
_§ .u%" L Cae (PX) 5.15 5.20 5.83 5.63 5.79 7.03
5 B ned (DY) 3.81 3.83 4.53 4.27 4.50 5.16
f (%) 373 0.40 8.81 7.30 0.00 0.00
o e ) 8.85 8.23 10.20 9.66 9.30 10.58
& emed (DY) 6.82 6.26 8.74 7.90 7.29 9.54
f (%) 7.34 1.00 11.54 12.61 2.01 2.00
- er (©) 0.76 0.58 0.77 0.73 0.82 0.62
B & (°) 2271 18.63 23.78 23.40 25.68 20.03
f (%) 20.70 14.00 20.00 20.60 21.40 15.60
% o - €r (©) 0.10 0.09 0.11 0.11 0.11 0.11
2 ¢ B & (°) 3.57 3.53 3.47 3.54 3.50 3.39
£ - X f (%) 3.20 3.20 2.70 3.00 3.00 2.60
& T T T T T T T T T T T T T T T T T T T T T T s s s s s o oo s s oo oo — e — s
2 E er (©) 4.20 4.37 4.77 5.05 5.00 4.49
& & (°) 4.36 4.62 5.10 4.96 5.10 4.82
f (%) 2.50 1.30 2.80 3.10 2.80 2.40
o er (©) 8.57 7.57 9.77 9.46 10.82 6.20
& & (°) 13.12 11.90 15.69 14.68 14.77 10.19
f (%) 11.10 9.30 12.80 11.40 13.70 6.50
) 2.70 2.49 3.38 3.40 2.79 -
2T B emea (0 2.34 2.30 3.55 3.67 2.58 -
g f (%) 16.13 7.24 18.53 17.40 19.47 -
- S 0ee Mmoo e I T
g G B o () 1.13 1.17 1.34 1.33 1.55 -
= E  emea (PX) 1.12 1.12 1.09 1.11 1.59 -
< f (%) 0.12 0.00 0.00 0.00 0.12 -
o er (©) 8.53 8.54 9.35 9.36 9.17 -
% e (mm) 40.06 41.80 41.90 44.16 41.25 -
2 . f (%) 20.49 17.44 33.74 35.53 27.57 -
g ___ L2 _ 4T o 0 AT
gd = e () 4.90 4.42 5.09 5.06 4.77 -
F s 8 g (mm) 24.70 21.82 25.04 24.83 22.89 -
o & D
g = f (%) 17.08 15.03 21.14 21.33 17.84 -
0 er (©) 5.48 4.87 6.02 5.92 6.07 -
Lﬁ €& (mm) 19.80 17.72 19.76 34.23 20.67 -
& f (%) 38.45 36.53 44.15 43.74 44.46 -
Cave 9.42 8.83 10.07 10.81 10.03 -
= f (%) 11.46 8.78 14.29 14.46 12.37 -
t (ms) 81.82 93.12 131.96 120.73 107.84 728 (+ 1341)

For homography and fundamental matrix fitting, the avg. and median pixel errors are shown besides the failure rate. For relative and 6D object pose estimation,
the avg. rotation (in degrees) and translation (in millimeters) errors are shown. The errors were calculated from the successful tests. The last three rows reports
the average error, failure ratio and processing time (in milliseconds) over all datasets. The inlier-outlier thresholds were set to maximize the accuracy. The confi-
dence was 0.99 and the maximum iteration number 5000. The best values in each column are shown by red and the second best ones by blue. The plus time

demand of NG-RANSAC is the time of the model loading.

since it has no confidence parameter. It can be seen that GC-
RANSAC leads to the most accurate results and it is the
least sensitive method to the confidence parameter. The
processing time implied by the two tested scoring techni-
ques is similar.

4.2 Homography Estimation

For homography estimation, we downloaded homogr (16
pairs) and EVD (15 pairs) datasets [30]. They consist of
image pairs of different sizes from 329 x 278 up to 1712 x
1712 with point correspondences provided. The homogr
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Fig. 9. Confidence study. The avg. log , error (in pixels) and the run-time
(in milliseconds) are plotted as the function of the required confidence.
The max. iteration number was 1000000.

dataset contains mostly short baseline stereo images, whilst
the pairs of EVD undergo an extreme view change, i.e., wide
baseline or extreme zoom. In both datasets, inlier corre-
spondences of the dominant planes are selected manually.
All algorithms applied the normalized four-point algo-
rithm [53] for homography estimation and were repeated
1000 times on each image pair. To measure the quality of
the estimated homographies, we used the RMSE re-projec-
tion error (in pixels) calculated from the provided ground

1E§sential matrix estimation [translation error]

Essential matrix estimation [rotation error]
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Fig. 11. Homography fitting. The cumulative distribution functions of the
re-projection errors (in pixels) on two datasets. Being accurate is inter-
preted as a curve close to the top-left corner. The confidence and maxi-
mum iteration number were set to 0.99 and 5000, respectively.

truth inliers in the reference image. Example image pairs
are shown in Fig. 4.

The CDFs of the errors are in Fig. 11. On homogr, GC-
RANSAC with MSAC scoring is slightly more accurate than
the second best algorithm, i.e., GC-RANSAC with MAG-
SAC++. On EVD, the GC-RANSAC with MAGSAC++ goes
the highest — it is the most accurate method. The avg. and
median errors and the failure ratio are reported in Table 1.
For GC-RANSAGC, the avg. and median errors are fairly sim-
ilar for both scoring techniques with a max. of 0.12 px dif-
ference. On EVD, MAGSAC++ scoring leads to a significant
improvement in the failure ratio (~6%).

The effect of changing the maximum iteration number
and required confidence is shown, respectively, in Figs. 7b
and 9b. It can be seen that GC-RANSAC with MAGSAC++
scoring is the least sensitive to these two tested parameters
and leads to the most accurate results. The processing time
is marginally higher than that of the fastest methods, i.e.,
GC-RANSAC with MSAC scoring.
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Fig. 10. Relative pose fitting with varying parameters. The average translation (left; in degrees) and rotation (middle; in degrees) errors and the proc-
essing time (right; in ms) are plotted as the function of the confidence (top) and maximum iteration number (bottom). The reported values are the
average errors over 4000 scenes from datasets TUM, KITTI, T&T, and CPC. The compared methods are the proposed Graph-Cut RANSAC com-
bined with MSAC [24] and MAGSAC++ [17] scoring techniques, MSAC [24], RANSAC [1], USAC [37], and NG-RANSAC [18]. In the bottom-right
plot, the time of NG-RANSAC goes up to 3.4 seconds. In addition, NG-RANSAC model loading takes 1.4 seconds on average.
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Fig. 12. 6D object pose estimation. The cumulative distribution functions
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meters) errors on three datasets (rows) are shown. Being accurate is
interpreted as a curve close to the top-left corner. The confidence and
max. iteration number were set to 0.99 and 5000, respectively.

4.3 Relative Pose Estimation
The relative pose, i.e., essential matrix, estimation is tested
on the same datasets — TUM, KITTI, Tanks and Temples,
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and Community Photo Collection — as what are used
for fundamental matrix estimation since the intrinsic cam-
era matrices and the ground truth relative poses are pro-
vided for all scenes.

The reported rotation and translation errors are mea-
sured in degrees (°). The rotation error is calculated as fol-
lows: eg = cos ™' G tr(RRT) — 1)), where R is the
measured and R is the ground truth rotation matrix. Trans-
lation error e is the angular difference between the esti-
mated t and ground truth translations t.

The CDFs of the rotation (Fig. 14a) and translation
(Fig. 14b) errors are shown in Fig. 14. It can be seen that,
GC-RANSAC obtains the most accurate rotations and trans-
lations. NG-RANSAC leads to similar accuracy.

The failure ratio and avg. rotation and translation errors
are in Table 1. An estimation is considered failure if the
errors are greater than 45°. Note that using different thresh-
old does not change the ordering of the methods. The most
accurate results are obtained by GC-RANSAC and NG-
RANSAC which have similar accuracy. However, it can be
seen that GC-RANSAC is two orders of magnitude faster. The
effect of varying the confidence (top row) and maximum
iteration number (bottom) is shown in Fig. 10. The average
translation (left) and rotation (middle) errors and the proc-
essing time (right) are plotted as the function of the tested
parameter. The most accurate results are achieved by GC-
RANSAC with MAGSAC++ scoring and NG-RANSAC.

4.4 6D Object Pose Estimation

The experiments were conducted on three datasets: T-
LESS [54], YCB-V [55], LM-O [56]. The datasets include
color 3D object models and RGB-D images of VGA resolu-
tion with ground-truth 6D object poses. LM-O contains 200
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Fig. 13. 6D object pose fitting with varying parameters. The average translation (left; in millimeters) and rotation (middle; in degrees) errors and the
processing time (right; in milliseconds) are plotted as the function of the confidence (top) and maximum iteration number (bottom) The reported val-
ues are the average errors on datasets LM-0, YCB-V and T-LESS. The compared methods are the proposed Graph-Cut RANSAC combined with
MSAC [24] and MAGSAC++ [17] scoring techniques, MSAC [24], RANSAC [1], and USAC [37].
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rotation and translation errors (both in degrees) on four datasets are
shown. Being accurate is interpreted as a curve close to the top-left cor-
ner. The confidence and maximum iteration number were set to 0.99 and
5000, respectively.

test images with the ground truth for eight, mostly texture-
less objects from LM [57] captured in a cluttered scene
under various levels of occlusion. YCB-V includes 21
objects, which are both textured and texture-less, and 900
test images showing the objects with occasional occlusions
and limited clutter. T-LESS contains 30 objects with no sig-
nificant texture or discriminative color, and with symme-
tries and mutual similarities in shape and/or size. It
includes 1000 test images from 20 scenes with varying com-
plexity, including challenging scenes with multiple instan-
ces of several objects and with a high amount of clutter and
occlusion. To get 2D-3D correspondences, we applied the
EPOS method [45]. The tested robust estimators were
applied to the obtained correspondences and the 6D pose
was compared to the ground truth one. Example images
from the datasets are shown in Fig. 5.

The reported errors for rotation and translation both
were measured in degrees (°). The rotation errors were
calculated similarly as for relative pose estimation. The
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translation errors were in millimeters (mm) measured as

follows: e = \/ (t — t)T (t —t), where t is the estimated
and t is the ground truth translation vector.

The CDFs of the rotation (left column) and translation
errors (right) are shown in Fig. 12. It can be seen that, on all
tested datasets, GC-RANSAC leads to the most accurate
results both in terms of rotation and translation accuracy.
The failure ratio and average rotation and translation errors
are put in Table 1. An estimation is considered failure if the
rotation has greater than 45° angular error. Note that using
different threshold does not change the ordering of the meth-
ods. It can be seen that GC-RANSAC leads always to the
most accurate results with the lowest failure ratio. On YCV-V
and T-LESS, MAGSAC++ scoring leads to the most accurate
results both in terms accuracy and failure rate. On LM-O,
MSAC scoring leads to the most accurate results by a small
margin while being the second best in terms of failure ratio.

In the top row of Fig. 13, the average translation (left) and
rotation (middle) errors and the processing times (right) are
plotted as the function of the required confidence. For these
tests, the maximum iteration number was set to 1000000. It
can be seen that GC-RANSAC leads to the most accurate
results and it is the least sensitive one to the confidence set.
GC-RANSAC with MAGSAC++ scoring is the fastest method.

In the bottom row of Fig. 13, the average translation (left)
and rotation (middle) errors and the processing times (right)
are plotted as the function of the maximum iteration num-
ber. For these tests, the confidence was set to 0.99. It can be
seen that GC-RANSAC leads to the most accurate results
and it is the least sensitive one to the maximum iteration
number. GC-RANSAC with MSAC scoring is the fastest
method being slightly faster than MAGSAC++ scoring.

4.5 Effect of Spatial Coherence Weight

In Fig. 15, the effect of parameter A is shown. For each prob-
lem, the relative average error, i.e., divided by the maximum
average error, is plotted as the function of A € [0, 1]. For rela-
tive and 6D object pose fitting, the rotation (R) and translation
(t) errors are shown by different curves. For all problems, the
most accurate results are obtained when A is relatively high.
Interestingly, the most notable improvement is achieved for
homography fitting, while the gain on the other tested prob-
lems is around 10 — 15 percent. In all experiments, A is set to
0.975 since that leads to accurate results on all problems and
all datasets. It is however straightforward to tune A whenever
GC-RANSAC is applied to reflect spatial coherence proper-
ties of data in a particular domain.

4.6 Summary of the Experiments

The average errors and failure ratios on all datasets and prob-
lems are shown in the last two rows of Table 1. On average,
Graph-Cut RANSAC leads to the most accurate results and
the fastest robust estimation on all datasets on four vision
problems. On 10 out of the 14 datasets, it fails to find the
sought model parameters the least often. In the remaining
cases, it fails only marginally more often than the best method.
While NG-RANSAC shows comparable accuracy on relative
pose fitting, its processing time is two orders of magnitude
higher than that of GC-RANSAC. Using MAGSAC++ scoring
inside GC-RANSAC leads to a significant improvement, in
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terms of accuracy and failure rate, for almost all datasets. For
all the tested datasets and problems, setting the required con-
fidence in the solution to 0.99 and the maximum iteration
number to ~3000 leads to the most accurate results. We
included the results of [58], [59] in the supplementary mate-
rial, available online. Additional experiments on different
datasets can be found in [60].

5 CONCLUSION

We presented the Graph-Cut RANSAC algorithm which com-
bines the strands of robust model fitting and energy minimi-
zation. GC-RANSAC is capable of modelling spatially
coherent point distributions, and exploits this property in a
local optimization procedure. It is more geometrically accu-
rate than state-of-the-art robust estimation. It runs in real-time
for many problems at a speed similar to its less accurate alter-
natives. It is much simpler to implement in a reproducible
manner than many of the competitors (RANSACs with local
optimization). The inlier selection in the local optimization,
given the so-far-the-best model, is globally optimal. Two new
parameters are introduced in GC-RANSAC, the neighbor-
hood size and weight A\, which are easy to set. If A = 0 or the
neighborhood size is too small, the algorithm acts as a well-
implemented LO-RANSAC. Otherwise, if A € (0, 1) and a rea-
sonable neighborhood size is used, the results are superior to
LO-RANSAC and USAC. On the tested problems and data-
sets, A = 0.975 leads to the best performance with a neighbor-
hood size assigning 3—4 neighbors, on average, to each point.

The C++ and Python implementations of Graph-Cut RAN-
SAC are available at https:/ /github.com/danini/graph-cut-
ransacincluding all components tested in the paper and exam-
ples for homography, fundamental matrix, relative and 6D
object pose estimation.
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