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Abstract

In this paper we reconsider a known technique for constructing strong MIP formula-
tions for disjunctive constraints of the form x € [ J/_; P;, where the P; are polytopes.
The formulation is based on the Cayley Embedding of the union of polytopes, namely,
Q = conv(J", Pi x {€'}), where €' is the ith unit vector in R”. Our main contri-
bution is a full characterization of the facets of Q, provided it has a certain network
representation. In the second half of the paper, we work-out a number of applications
from the literature, e.g., special ordered sets of type 2, logical constraints, the cardi-
nality indicating polytope, union of simplicies, etc., along with a more complex recent
example. Furthermore, we describe a new formulation for piecewise linear functions
defined on a grid triangulation of a rectangular region D C R? using a logarithmic
number of auxilirary variables in the number of gridpoints in D for any fixed d. The
series of applications demonstrates the richness of the class of disjunctive constraints
for which our method can be applied.
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1 Introduction

Disjunctive programming was introduced by Egon Balas [2,3] in the 1970s as an
extension of linear programming with disjunctive constraints. Disjunctive constraints
can express logical conditions that the feasible solutions must satisfy. A disjunctive
constraint can be represented as

m
celJr M)
i=1

where each P; is a polyhedron. Suppose P; = {x € R” : AWx < b} where
A® is a rational matrix and 5 is a rational vector of matching dimension. Balas [4],
and Jeroslow and Lowe [32] proved that if the P; are bounded and nonempty, then x
satisfies (1) if and only if the following set of constraints admits a solution:

m
Zx(i) =X,
i=1

A(i)x(i) < b(i))”-, i=1,....,m

A e {0, 1} (2)
More generally, a MIP formulation for (1) is a set of constraints
Ax+By+Cz<b, zeZt 3)

such that x satisfies (1) if and only if (3) admits a feasible solution when x = x (see
e.g.[26,32,44-46]). The Linear Programming (LP) relaxation of (3) is the polyhedron
Q determined by Ax + By + Cz < b. For simplicity we assume that Q has at least one
extreme point. The formulation is ideal , if z is integral in all extreme points of Q, and
non-extended if it contains no y variables, and extended otherwise. Balas’ formulation
(2) is extended and ideal [32,45]. A lot of work has been done for devising (ideal)
formulations for disjunctive constraints that do only involve the original x variables
(in particular, no copies of them) as well as some additional integral z-variables, see
Sect. 2 for a brief overview, and it is the main topic of this paper.

For illustrating the benefits of such formulations in terms of the size of the formu-
lation, consider the n-dimensional cross-polytope

n
P={xeR": ) |xl=1
j=1
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Ideal, non-extended formulations for disjunctive... 833

In fact, P equals the convex hull of the union of polytopes P, = {x e R : —1 <x; <
1, x; =0Vj #i}, i =1,...,n. A minimal linear representation of P consists of
2" linear inequalities (see e.g. Balas [9], page 146), that is,

_xl_..._xnfl

xp ==Xy <1

X1+ +x, < 1.
Now, an ideal, non-extended formulation for x € U?:l P; is

A <x; <A, i=1,...,n
n
D ai=1, ezl
i=1

This system has 2n continuous variables, and 3n + 1 linear inequalities (including the
nonnegativity of the variables).

A further advantage of ideal, non-extended formulations for (1) is that they may
be more efficient computationally than (2), since they do not contain copies of the
original problem variables and constraints. This claim is supported by a recent study
of Anderson et al. [1], who compared ideal non-extended, and extended formulations
for expressing the maximum of affine functions on polyhedral domains, and showed
that the former formulations result much shorter computation times.

To derive ideal, non-extended formulations for (1), we focus on a particular tech-
nique, pioneered by Vielma [45], which is based on the Cayley Embedding of a finite
union of polyhedra. The Cayley Embedding of polyhedra was proposed by Huber et al.
[25] for studying the Minkowski sum of point configurations in R”, see also [34,49],
and for the union of polyhedra in (1) it would be of the form | !~ P; x {€'}, where €
is the ith unit vector in R”. Vielma generalized the Cayley Embedding by replacing
the unit vectors with distinct binary vectors i’ € {0, 1}¢ for some d > [log, m].
Under the conditions that all the P; are non-empty, and pointed, Vielma proved that a
non-extended, ideal MIP formulation for (1) is given by

m

(x,2) € Q (P,’H) := conv (U (P x {hl})) e o, 1), )

i=1

where P = (P;)/L,,and H = (h’);"zl is a family of distinct binary vectors in {0, 1}¢.
This formulation is implicit in the sense that it does not provide a description of
Q(P,H) in terms of linear inequalities. Neverthless, Vielma determined the non-
trivial facets! of the convex hull Q(P, H) for the SOS2 constraints of [13], and also
for piecewise linear functions of two variables on grid triangulations of a square. In

! Those beyond the non-negativity of the variables.
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834 T. Kis, M. Horvath

Fig.1 Network N, and subgraph G!

both cases, the number of binary variables and also that of the non-trivial facets were
bounded by O (log, n).

These ideas were generalized to combinatorial disjunctive constraints by Huchette
and Vielma [27], which take the form

x € U P(S;) (5)

i=1

where the §; are subsets of V := {1, ..., n} such that U:"zl Si=V,P(S) ={x¢€
AV : x; =0Vj e V\Shand AY = {x € RY, Z?lej = 1} is the n—
dimensional standard simplex. Huchette and Vielma gave an explicit description of
Q(P, H) by linear inequalities, where P := (P (S;))/",, and H is a set of m distinct
binary vectors, under some mild technical assumptions. However, the construction of
the inequalities may be computationally heavy in general, and the authors left open
the characterization of those inequalities which induce facets of Q (P, H).

In this paper we propose a new systematic way of constructing ideal, non-extended
formulations for disjunctive constraints (1), when the P; are polytopes, and a certain
network representation exists. We will use the MIP formulation

(x,») € P .= conv <U P; x {e"}) , % e {0, 1) (6)

i=1

of Vielma [45] restricted to the unit vectors €. Nevertheless, if P emb admits a network
representation of a given structure, to be defined next, then we can characterize the
facets of P¢"?. Our method works not only for combinatorial disjunctions, but for a
much wider class of polytopes, which will be illustrated in Sect. 5.

A network representation for P€™? consists of a network N = (V, A, ¢) from the
following family. The set of nodes V' comprises a source node s, and a sink node ¢,
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Ideal, non-extended formulations for disjunctive... 835

the nodes V := {vy, ..., v, } representing m alternatives, the nodes V; := {1, ..., n}
corresponding to the variables xi, ..., x, in (6), and possibly some other nodes. We
assume that V; N V; = . The set of arcs A contains, among others, the arcs (s, v;)
fori € {1, ..., m}, and also the arcs (j, t) for j € {1, ..., n}, and neither s, nor ¢ has
other nodes adjacent to them. It is required that N\{r} decomposes into m directed
trees rooted at s, G, ..., G™, where v; is a node of G', the leafs of each G' lie in V;,
and V(GH N V(Gk) C V;U{s}forl <i <k < m (seeFig. 1). For each i and arc a
of G, the capacity of a is c(a) := kg A; for some rational number k, > 0. Moreover,
c(j,t) =xj foreach j € V;.

We say that N represents pemb , if for each i, when setting A; = 1, and the other
coordinates of A to 0, and for any x > 0, (x, 1) € PP if and only if the network
N parametrized by x and A as above, admits a feasible s — ¢ flow of value Z’}zl Xj,
and (x, A) satisfies the valid equations for P°"?. Deciding whether a particular P¢""®
admits a network representation from the above family is out of scope of this paper.
However, in several practical applications, the construction of N is easy, see Sect. 5.

In the sequel we concentrate on two special cases only. Either the only valid equation
for PP g YL A =1,orall (x,2) € PP also satisfy YL ik = Z'}zl Xj,
where a;A; = c(s, v;). We distinguish these two cases by writing P"?, and PP,
respectively, for P¢"*?. To simplify the presentation, let P,f”’b denote any of P¢"? and
PP We assume that each j € V; is reachable from s by a directed path. This implies
that x; = 0 is not a valid equation for P& The following assumption is without loss
of generality.

Assumption 1 Foreachi € {1, ..., m}, P:’"b contains a point (xf, €h).

Main results of the paper. In the first part of the paper, we fully characterize the non-
trivial facets of P for any choice of the P;, provided it has a network representation
N. At first, we prove that any s — ¢ cut of the network N yields a valid inequality
for P¢*? and moreover, along with the non-negativity of the variables, and the valid
equation(s), they describe P¢"*?. Then, we fully characterize those s — 7 cuts of N, that
induce facets of P"*?_ Briefly, some s — ¢ cut (S, S) of N induces a facet of PE"? if
and only if the subgraphs of N spanned by S\{t}, and by S, respectively, admit some
connectivity properties. In case of P<"?, slightly stronger conditions must hold. These
results, along with (6) provide an explicit, ideal, non-extended MIP formulation for
(1).

In the second part of the paper, we demonstrate the richness of the class of problems
for which our machinery can be applied by deriving well-known formulations for
problems in the literature, and working out some new ones. The list of examples
include reformulation of SOS2 and SOSk sets, the Cardinality Indicating Polytope,
the EVEN" polytope, the polytope of small cliques, the union of simplices, and
some more complicated ones. In addition, based on the ideas of [28], we obtain a
new formulation for piecewise linear functions defined on a grid-triangulation of a
rectangular domain in R using O (d log, n + 2¢d!) auxiliary variables.

Our results complement those of Vielma [45] and Huchette and Vielma [26-28].
On the one hand, Vielma [45] was able to derive the facets of the generalized Cayley
embedding of SOS2 sets for any choice of the (distinct) binary vectors ', but our
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836 T. Kis, M. Horvath

method works for a much wider class of disjunctive sets than SOS2, and we have
a full characterization of the non-trivial facets. On the other hand, in [26] a linear
representation is obtained for the convex hull Q (P, H) of the MIP formulation for
combinatorial disjunctive constraints (5) and any choice of distinct binary vectors
H = (hi ;”:1 while our characterization of facets is valid for any choice of the P;
provided that P¢"? in (6) admits a network representation.

In Sect. 2 we review some previous work. After some preliminaries in Sect. 3,
we state and prove our main results in Sect. 4. In Sect. 5 we describe a series of

applications, and conclude the paper in Sect. 6.

1.1 Terminology

Let P = {x € R" | Bx < b} be any convex polyhedron. A face F of P is a subset
of P obtained by setting some inequalities to equations in the system of inequalities
Bx < b defining P. In particular, P is a face of itself, and also the empty set is a face
of P. A facet F is a face of P such that F # P, and there exists no face F’ of P
such that F C F' C P (the containments are proper). A vertex of P is a face which
consists of exactly one point of P.

The dimension of P, dim(P), is the maximum number of affinely independent
points in P minus one. Equivalently, dim(P) = n — m—, where m— is the maximum
number of linearly independent equations which are satisfied by all the points of P.

Let ¢/ € R™ be the i-th unit vector in R™, i.e., el.i = 1 and e,i = 0 forall k €
{1,...,m)\{i}.

A network N = (V, A, ¢) is a directed graph with vertex set V, arc set A, and arc
capacities c. Let V1, V; be disjoint subsets of the set of vertices V of the network N.
Then [V}, V2] C A is the set of those arcs (4, v) € A suchthatu € Vi and v € V,.
Let s and ¢ be distinct vertices of N. An s — ¢ cut (S, S) is a partitioning of V into
subsets S and S = VA\S such thats € Sand ¢ € S. The associated cut-set is [S, S].
For any node u, let 89" := [{u}, V\{u}],and ' = {v € V : (u,v) € §"}.

Recall the general network N defined above. For fixed x and A, let Ny ; denote the
network with arc capacities determined by x and A.

2 Previous work

The ultimate reference on disjuntive programming is the recent book of Balas [9]. The
first results were summarized in a research report which got published only some 24
years later [6], but the first papers appeared in print already in the 1970’s, see [2] and
[3]. In these early works, extended formulations were obtained for general disjunctive
programs, the concept of duality was developed and a sequential convexification pro-
cedure was devised. Questions related to facets of general disjunctive programs were
raised and partially answered in [11].

Balas [2,3,6] investigated the convex hull of feasible points of a disjunctive program
by giving two distinct linear programming formulations: one involving only the orig-
inal problem variables, and another using additional continuous variables. We focus
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on the latter one. Let

m
P :=cl conv (U Pl-) ,

i=1

where P; := {x € R" | ADx < b} for some matrix A“) and vector () of matching
dimensions, fori =1, ..., m, and cl conv(-) is the closed convex hull operator. Balas
has shown that X € P if and only if the LP-relaxation of (2) admits a feasible solution
when x = X, provided that the P; are nonempty and bounded, or some additional
technical assumptions hold.

Jeroslow and Lowe [32] introduced the concept of MIP-representable sets, namely,
S C Q" is MIP—representable if there are rational matrices A, B, C, and a vector b
with the property that: x € S if and only if, for some y,z > 0 with z integer,
Ax+ By+ Cz < b. They also pointed out the connection to disjunctive programming,
and in particular they showed that (2) is ideal. Basu et al. [12] gave an alternative
definition, and the concept was generalized to convex sets by Lubin et al. [37]. Vielma
[44] provided a broad overview of MIP formulations in mixed-integer programming,
including MIP representability of sets and functions.

Conforti and Wolsey [19] generalized the idea of Balas [6] for expressing the union
of polyhedra in a higher dimensional space by first lifting each polyhedron in some
space where it admits an easy extended formulation. They applied this results to mixed
integer sets, like the continuous mixing set with upper bound, a mixing set with two
divisible capacities, and a divisible capacity single node flow model.

In the formulation (2), the original x variables are copied m times, which is com-
putationally unattractive. However, Conforti et al. [18] has recently shown that Balas’
extended formulation for conv(P; U P,) is optimal in the following sense. For any
polynomial o, there exist polytopes P, and P, of size’ fi and f>, respectively, such
that any formulation of conv(P; U P») of size bounded by o (f1 + f2) must have £2 (n)
additional variables.

In the best case, neither variable copies, nor new A; variables are needed to get
an explicit linear description of the convex hull of the union of some polyhedra. For
instance, Balas et al. [10] considered upper monotone polytopes in [0, 1]". A polytope
P ={x €[0,1]" | Ax > 1} is upper monotone if A is a non-negative matrix. Among
other results, Balas and his co-authors derived the convex hull of the union of two
upper monotone polytopes P C [0, 11" x {0,,} and P> € {0,,} x [0, 1]*? in disjoint
spaces, and in partially overlapping spaces as well without using any extra variables.
They also obtained the facets of conv(P; U P,), and applied their characterizations
to the union of matroid polytopes, and to logical inference. The latter result extends
that of [50], see also [7]. These results were generalized to nonlinear and possibly
unbounded orthogonal disjunctive sets in [42].

The second best option is that no variable copies are used in a formulation, only some
new (binary) variables. Jeroslow [31] studied a special class of disjunctive constraints,
where P; := {x € R" | Ax < b} fori € {1,...,m}, that is, only the right-hand-
sides change in the definitions of the P;. Let P := cl conv(U:.":l P;) and Q the set of

2 Size of a (linear) formulation is measured by the number of inequalities.
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those x € R” that have an extension (x, ») € R"™" satisfying

m
Ax — Zb(i)ki <0
i=1

m
ZA,- =1, A>0.
i=l1

While P € Q always holds, the converse inclusion is not true in general. Jeroslow
gave two sufficient conditions for Q = P. Blair [14] devised new necessary and
sufficient conditions for Q = P, and proved that deciding whether equality holds is
an NP-hard decision problem. Blair’s condition was later generalized by Vielma [46]
(Corollary 2). Balas [5] gave yet another sufficient condition for Q = P, and applied
it to multiple network polyhedra.

Vielma [45] developed ideal, non-extended MIP formulations for modeling dis-
junctive constraints based on the concept of Cayley Embedding, and applied it to
SOS2 constraints, and to piecewise linear functions on the grid. In [27], Huchette and
Vielma provided a very general ideal formulation for combinatorial disjunctive con-
straints based on the generalized Cayley Embedding of [45], and applied it to univariate
and bivariate piecewise linear functions. Lee and Wilson [36] studied the modeling of
piecewise linear functions on arbitrary triangulations of their domains. Their model
can be reinterpreted as the Cayley Embeddig of a union of polyhedra (one polytope
for each triangle) using the vectors €’. Vielma [46] generalized the Cayley Trick for
polyhedra to the union of convex sets. He obtained ideal, non-extended formulations
for |J'_, C; using the corresponding gauge functions, and applied them to a wide
range of disjunctive constraints. Vielma also characterized the boundary structure of
the Cayley Embedding of the union of convex sets, which in the polyhedral case is as
follows. Each face of P¢"? is of the form conv(U/”, (F; x {€!})), where the F; are
faces of the P; with intersecting normal vectors, see also [51].

Branching schemes constitute another approach for deriving ideal, non-extended
formulations for (combinatorial) disjunctive constraints. Tomlin [43] proposed a new
modeling of SOS2 sets with binary variables, while Martin et al. [38] introduced
SOSk constraints and a branching scheme for modeling two-variable piecewise linear
functions. Vielma and Nemhauser introduced the concept of independent branching
schemes for modeling a constraint very similar to the combinatorial disjunctive con-
straint (5) of [26], the only difference being that AY = {x e RZO : ZjeV xj < 1}is
the |V |[-dimensional simplex in the definition of the Q(S;),i = 1, ..., m. Anindepen-
dent branching scheme of depth d for (5) is given by pairs of disjoint sets Ly, Ry C V
fork =1,...,d, such that /", Q(S;) = ﬂle(Q(Lk) U Q(Ry)). This yields the
formulation

@)

xeaY, ij-gzk, ij <l—-zr,zk €0, 1}, k=1,...,d. 8)
J¢Lk JERk

This formulation is ideal. Of course, the existence of a branching scheme of depth d
depends on the sets S;. For SOS1 and SOS2 constraints, the authors obtained formu-
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lations with [log, n] binary variables and twice as many additional constraints. They
also devised MIP formulations for 2-variable piecewise linear functions on a grid tri-
angulation of a square using a logarithmic number of new variables and constraints in
the number of triangles, see also [47]. When AV is replaced by [0, 11V in the above
definitions, they obtained an independent branching scheme of depth d = m. In [26],
Huchette and Vielma gave a necessary and sufficient condition for the existence of an
independent branching scheme of depth d for a combinatorial disjunctive constraint.
The authors described a number of techniques for constructing independent branching
schemes of depth [log, m7, and applied them to several well-known disjunctive con-
straints, including SOS2, SOSk, and Grid Triangulations. In [28], new methods are
described for constructing independent branching schemes for univariate and bivariate
piecewise linear functions (on grid triangulations), and the computational merits of
the various approaches are evaluated.

Ceria and Soares [16] generalized the formulation (2) to closed convex sets C; using
the perspective mappings of the convex functions defining the C;. The authors also
described a primal procedure which converges to the optimum under mild conditions.
On/off constraints can be used to model disjunctive constraints and the description of
the set of feasible solutions in linear and nonlinear mathematical programs is the topic
of e.g., [15,22-24,42,46]. In particular, Hijazi et al. [24] considered a linear program
with a disjunctive constraint x € PypU Py, where P is given by lower and upper bounds
for the variables, while P; is specified by one linear inequality and another set of lower
and upper bounds on the variables. The authors provided a complete description of
conv(Py U Pp) using one new binary variable only. Note that their description needs
exponentially many new constraints in the number of the variables, but the authors
left open which inequalities induce facets.

For more results on extended formulations in combinatorial optimization see the
review paper [17], and also [35,40].

3 Preliminaries

In this section we derive a (not necessarily minimal) linear representation of Pf’"b .
Here and below, we always assume that Pf’"b admits a network representation N =
(V, A, c¢). As we will see, the linear representation is closely related to the s — ¢ cuts of
N. We will define a dominance relation between s — ¢ cuts, and prove that dominated
s — t cuts are redundant in the linear representation.

To start with, we describe some reduction rules for the arc capacities of N without
affecting any s — ¢ flow of value Z;lz 1 Xj. Recall that for any i the arc capacities of
the subnetwork G’ of N are specified by c(a) = kyA;, for a € E(G'). Let us define
kout = Zaeg,vm, k, for any node v € V(G)\V;. Let v € V(G')\{s}. The capacity
c(a) = kyA; of the unique arc a = (u,v) € E (G") can be reduced without affecting
the set of feasible s — ¢ flows of value Z?:l xjin Ny ; forany (x, A) € PSP if one
of the following two transformations can be applied to it:
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840 T. Kis, M. Horvath

— Ifv ¢ Vyand k, > k9", then k, can be reduced to k9", thus c(a) becomes KoM 0.
— If v # v;, and k; > k, for the unique arc a’ := (u’, u) € E(G"), then k, can be
reduced to &/, thus c(a) becomes k,/A;.

Throughout the paper we assume that N is reduced , i.e., the above transformations
cannot be applied to it. Now, we express the capacity of the s — ¢ cuts of N, ; in terms
of x and A.

Observation 1 Let (S, S) be an s — t cut of Ny .x. Then cy ([, S = Zjev,ms Xj+
Z:": 1 kiAi for some rational numbers k; > 0.

In order to describe P;mb by linear inequalities, we define the polytope

m
szzi(x,k)eR"me| ZA,-:I,sz,AzO,

i=1

n
e ([S.8) = ) xj, ¥s —tcut(S.8) ¢ .

j=1
©)
while for P*? consider
m
O— :=1(x,A) e R" x R™ | inzl, x>0, 1>0,
i=1
n
e (1S.8) =Y xj. Vs —tcut (S, 5) (10)
j=1

m n
=5
i=1 j=1

Let Q denote one of Q< and Q—.
Proposition 1 P C Q..

Proof By definition, for any i € [m], (x, ') € P¢"? if and only if N, ., admits an
s — t flow of value Z’;‘:l xj,x >0,and (x, ei) satisfies the valid equations for Pf’"b.
By the MAX-FLOW MIN-CUT Theorem of Ford and Fulkerson [20], Ny e admits
an s — ¢ flow of value Z;le x; if and only if all the s — ¢ cuts have a capacity of
at least Z'}zl xj. Now, observe that these are precisely the inequalities defining Q,
whence (x, €!) € Q.. To finish the proof, take any point (x, 1) € Pf’"b , and notice
that it is a convex combination of some points with A integral. Since Q* is a convex
polytope, the statement follows. O

Our next goal is to prove the converse inclusion.
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Ideal, non-extended formulations for disjunctive... 841

Proposition 2 Q. has vertices, and in each vertex (x, A) of Qx, the X is a 0/1 vector.

Proof By Assumption 1, and since Pf’"b C Qx, O« is not empty. Since all variables
are non-negative in the definition of Q,, it resides in the non-negative orthant of the
(n + m)-dimensional real vector space, and thus it has vertices.

Let H; :== {(x,X) € Q4 : A = l}foreachi € {l,..., m}. By Assumption 1,
H; # () for each i. Clearly, H; is a face of Q.. We claim that Q, = conv(UE”lei).
On the one hand, conv(U?" | H;) € Q, since H; € Q, for each i, and Q is convex.
Conversely, consider any point (x, A) € Q,and consider any s —¢ flow of Ny , of value
Z’}=1 xj. Clearly, such a flow must exist, since the minimum capacity of an s —# cut of
Ny is 27:1 xj by the definition of Q. Let fei be the flow on arc e of G'. Then we have
Xj = 20 Y esingy fo» since a flow of value Y~';_; x; must saturate all the (j, 7)
arcs of N.If 1; = 0, then we pick the vector x! provided by Assumption 1, and we have
(xf, € "y e H;. Otherwise, we rescale the fe for each arc e of G, i.e., let ge fe' JAi.
Letx = Zeeam () ge foreach j € V;N V(G"), and 0 otherwise. Then (x', €!) € H;,

since (gi, x') is a feasible flow of value Z/ 1 x] in N,i i, where the arc (s, v;) and
all the arcs (j, t) are saturated. Hence, (x, A) = Zi:l ri(xt, €l e conv(U;”ZIH,-). O
Corollary 1 P&"> = Q_ and P¢" = Q.

Definition 1 For any s — 7 cut (S, S) of N, the induced face of Pemb is Fg:={(x, )
€ P e n (IS, 81 = Y5 ).

Observation 2 The vertices of Fs are those vertices of P that are in Fs.

Consequently, in all the vertices (X, i) of Fy, % = € for some i.

Proposition 3 No facet Fg of P:mb induced by an s —t cut (S, S) of N equals the face
induced by xj = 0 for any j.

Proof We distinguish two cases. First suppose j € V; N S. Since Fs = {(x,A) €
P YL kiki = ) jrey,\s X7} the equation defining Fs is linearly independent

from x; = 0, so Fg cannot be induced by x; = 0.
Now suppose j € V;\S. Then x; = 0 is satisfied by all points (x, ) € Fg if and
only if the source s is not connected to j € V; by a directed path, which we excluded.
O

In order to characterize those s — ¢ cuts (S, S ) of N that induce facets of Pf’"b , as we
will see, the single most important parameter is the intersection of S with V;.

Definition2 Let U C V, be fixed. C(U) consists of all the s — ¢ cuts of N such that
SNV, =U.

A cut (S, S) € C(U) induces an inequality of the following general form (cf. Obser-
vation 1):

Zkk > Z Xj (1T)

JEVAU
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We are only interested in the minimum capacity s — ¢ cuts in C(U). We can identify
these cuts without fixing A and x as follows. Since N\{z} is the union of the directed
graphs G', where the G’ share only the nodes {s} U V;, we can determine separately
for each G’ which of its nodes belong to S in order to minimize the coefficients k;.

Observation3 Let U C V; be fixed. There exists an (S, S) € C(U) which minimizes
simultaneously all the coefficients k; in cx . ([S, S]) = ZjeU Xj 4+ 2oL kiki.

This observation motivates the following definition.

Definition3 Let U < V; be fixed. Let Cpin(U) consist of all the s — ¢ cuts
(S,8) e C(U) which minimize simultaneously all the coefficients k; in ¢, 5 ([S, E]) =
> jeu Xj+ Y kixi. The members of Crin (U) are the minimum capacity s —t cuts
of N with respect to U .

Remark 1 For any (S, S), (Z, Z) € Cnin(U), cx 1 ([S, S]) = cx.1([Z, Z)).

Proposition 4 Let U C V; be fixed. There exists a unique (S, S) € Crmin(U) such that
Z C Sforallthe (Z,Z) € Cpin(U).

Proof We claim that if both of (Z;,Z1),(Z2,Z2) € Cmin(U), then (Z; U
Z>,Z1U Zy) € Cnin(U), which proves the statement. Recall that the set function
which assigns to S the capacity of the s — 7 cut (S, §) is submodular, see e.g., Frank
[21]. Using this, we can derive

e ([21. Z1]) +exa([22. Z2]) = cxx (21N 22, Zi N Z2]) + e ([Z1 U 22, Z1 U Z3])
> cxn ([Z1. Z1]) + cxn ([22. Z2])

where the first inequality follows from the submodularity of the cut capacity function,
and the second from the assumption that both of (Z, Zl), (Z,, 22) € Cmin(U), which
implies that (Z1 N Zy, Z1 N Z3), (Z1U Zy, Z1 U Z) € C(U). Consequently, equality
holds throughout, and (Z{ U Z», Z{ U Z3) € Cyin(U). O

Definition4 Let U C V,. We call (S, S) € Cpin(U) dominating if Z C § for all
(Z,7) € Coin(U). If (S, S) € C(U)\Cmin(U), then we say that (S, S) is a dominated
s —t cut of N w.r.t. U, and any member of Cyjn (U) is a non-dominated s — t cut of
N wrt. U.

Remark 1 implies that in the following definition, the face Fs does not depend on
which non-dominated s — ¢ cut in Cyyin (U) is chosen.

Definition 5 The face induced by U C 'V, is Fg, where (S, E) is any non-dominated
s — t cutin Cpin(U).

Observation 4 If Fs is a facet of meb induced by the s — t cut (S, S), then V,;\S is
not empty.

Proposition 5 Consider any U C V;. For any non-dominated s — t cut (5,9) €
Cmin(U), the face Fs of Pf”’b contains a point (x', €') foranyi € {1, ..., m}.
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Proof Fix S and i, and we set A = €. Thus, the arcs of G’ have some positive
capacities, while all the arcs in the other G, k # i, subgraphs of N have zero
capacity. We construct a vector x” such that (x’, €') € P, and (x', €') satisfies (11)
at equality.

First we consider P£"?. We determine x’ by constructing an s —¢ flow f saturating
all the arcs in E(G')N[S, S1, and which has zero flow on any arc (u, v) € E(G') such
thatu € V(G')\S,and v € V(G')NS. The total capacity of the arcs in E(G')N[S, §]
is ki, when A = €’. Since (S, S) € Cmin(U), we can send k; amount of flow in G’
from s to the nodes V;\U. If k; > 0, then this flow necessarily saturates the arcs
E(GHN[S, S]. Then, we just set x} = f(ij’t) for all j, and it is easy to verify that (11)
is satisfied by (x’, €') at equality.

As for PP if the flow f! constructed above saturates the arc (s, v;) (which
is of capacity ;), then we are done, since then }_; x = f(is,u,-) = «;, by flow
conservation at the nodes. Otherwise, we have to augment f I with additional flow
restricted to the subgraph G'(S) of G' spanned by the nodes S N V(G'). Consider
any s — j path in G'(S) for some j € U which consist of non-saturated arcs only.
We increase the flow along this path until some arc becomes saturated. We repeat this
until no more flow can be sent from s to some node in U in G*(S). Let f ! be the
resulting flow. If the arc (s, v;) is saturated by f ! then we are done, since we can set
x} = f("j’l) for all j, and (x', ') € Fs. Otherwise, a subset of the arcs saturated by
f ! constitutes a cut-set separating v; from all the nodes in V; having capacity smaller
than «;. But this contradicts Assumption 1. O

Proposition 6 For any U C V;, dominated s — t cuts in C(U) cannot induce facets of
P:mb_

Proof Let (S, S) and (Z, Z) be a dominating and a dominated s — 1t cut in C(U),
respectively. We claim that Fz C Fg, and Fz # Fs. Let ¢, 1 ([S, S]) = Z/eU Xj+
YiLikiri, and ¢ i (1Z, Z]) = X jep xj + 2imy kjri. Since (Z,Z) € C(U) is
dominated, k; < k,f for all i, and at least one of these inequalities is strict. Hence, any
point (x, A) € Pf"’b satisfies

Zx,+ka >Zx,+Zk/\ >Zx]

jeU jeU

Consequently, if 3 cpyx; + X/Likidi = 2_jxj, then also 3 x; +
Y kidi = Z';:l xj,ie., Fz C Fs. Now let i* be an index such that k. > k;«.
Then by Proposition 5, there is an x such that (x, €") € Fs. Substituting (x, € into
the cut capacity functions we obtain

n
Zx]—l—Zk ij—l—k >Zx]+k*_2xj+2ke ij.
j=1

jeu jeu jeu jeu

Hence (x, ei*) € Fs\Fz. O
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4 Main results

Theorem 1 The set U C V; induces a facet of Pémb if and only if

(i) for the dominating s — t cut (S, §) € Cmin(U), the subgraph N\(S U {t}) is
connected, and

(ii) for each j € U, there exists some v; € S such that there is a directed path from
v; to j with all nodes in S, and «; > ki, where c(s, v;) = a;A;, and k;A; is the
total capacity of those arcs of G' in [S, S].

Proof Necessity : suppose that U induces a facet F of P¢*?, but the dominating s — ¢
cut (S, E) € Cin(U) is such that N\ (SU{r}) is not conne_cted. LetCy,...,Cq (g = 2)
be the connected components of N\({¢} U S). Consider the face Fz induced by the
s —tcut(Z,Z)of N, where Z := S U (UZ:Z V(Cg)). We claim that F C Fz and
F # Fz, and thus F' cannot be a facet, which contradicts our initial assumption.

Let (x, 1) € F, and suppose that the capacity of (S, ) is YjeuXit Yo ki
We can decompose the second term of this sum along the components of N\ (S U {¢})
as follows:

m qg m
Zki,\,- =ZZ/<§A,-,
i=1

g=1i=1

where Y 'L kf A; is the capacity of those arcs of [, S] that lead from S to the com-
ponent Cy of N\(S U {t}). But then (x, 1) satisfies the equation

Zkil)‘i = Z Xj.

i=1 jevcpnv,

However, this equation is equivalent to

m n
Z x./—}-Zkil)\,':Zx‘/,
j=1

JEVIV(CD) i=1

which is the capacity of the s — ¢ cut (Z, V4 ) of N. This shows that F' C F. It remains
to construct a point in Fz\ F. Since F is a facet, for each j € V; N (UZ:2 V(Cy)),

there exist some x and i such that (x, €) e F,and x j > 0, otherwise all points in F
satisfy x; = 0, and thus F cannot be a facet by Proposition 3. For each such j, we
define a vector X as follows: x; := 0, and X, := x¢ forall £ # j.Then (X, €') e Fz\F.

As for (ii), suppose the condition does not hold for some j € U. Then x; = 0 holds
for all (x, 1) € F, which leads to a contradiction by Proposition 3.

Sufficiency : Assume that conditions (i) and (ii) of the Theorem hold. Let F' := Fg
be the face of P¢"*? induced by the dominating s — 7 cut (S, S) € Cmin(U). It suffices
to prove that P¢"? does not admit any facet F’ such that F is a proper face of F’. By
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Fig.2 The capaxity of the arcs
leaving S and Z

condition (ii), for each j there exists i and x such that (x, €) e Fand x j > 0, and
therefore, F' cannot be a proper face of a facet induced by x; = 0. Furthermore, by
Proposition 5, F cannot be a proper face of a facet induced by A; = O for any i.

Consider any s — 7 cut (Z, Z) of N which induces a facet F; # F of P¢"?. By
Proposition 6, we may also assume that (Z, Z)isa dominating member of Cpin (ZNV;).
We distinguish two cases: U\Z # #,and U C Z.

First suppose U\Z # ¢, and we construct a point in F\ Fz to show that F ¢ Fz.
Let Y7, kiZ A; be the total capacity of those arcs directed from Z to some nodes of
N\(Z U {1}). Clearly, all points (x, 1) € Fz satisfy Y~ ;1cy,\ 7 X = DL, kZ ;. Let
R; be the set of those nodes in V;\ Z that are reachable from v; along a directed path
in N. Then choose index i* such that R N U # @, v;x € S, a; > k;, and there is a
directed path with all nodes in S from v;= to some j € R;* N U. If none of the sets R;
satisfies these conditions, then S violates condition (ii) of the theorem.

Consider some j € R;+ N U such that there is a directed path from s to j € V;
in the subnetwork G (S) of G' (such a node exists by the choice of R;+). Then there
exists a point (x, el *) € F such that x; > 0, since o; > k;. Consider the set of points
Xj={x|0=<x; <xj, xjy =xj forall J' # j}. On the one hand, (x,ei*) € F for
all x € X;. On the other hand, Zj’eR,»th Xjr is not a constant on X ;. Hence, there
exists x € X such that (x, € ¢ Fy.

Finally, assume U C Z.

Claim S C Z.

Proof Suppose S\Z is not empty. We define the quantities A;, B, Cy, and D; as
follows. Let A, be the total capacity of those arcs (u, v) such that u € SN Z and
v e S\Z. Wehave A, :=cx,([SNZ,S\Z]) = Zl'-"zl kiA)L,- for some non-negative
rationalsklA.Likewise, B; = cx 2 ([Z\S, S\Z]), Cy. := cx 2 ([S\Z, Z\S]),and D, :=
cx A ([S\Z, Z U S\{t}]), see Fig. 2. Since SNZ <€ S,and SNZNV, = U by
assumption, (SNZ, S N Z) € C(U), and therefore its capacity is at least that of (.S, 39).
Consequently, A, > Cy + D, for all (x, X) € P (where we compare the coefficients
of the ;). On the other hand, (Z, Z) isa dominating member of Cyin (Z N V;), whence
A, + B, < D, for some (x,1) € P.Combining the two inequalities, we obtain
By + C). + D, < D, for some (x, ) € P, which is impossible, since B;, C; > 0
always hold. O
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Fig.3 Sets § € S" ¢ Z.Dashed
arcs do not exist
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Indirectly, suppose F € Fz, and let ¢y ([S, S = Z/’EU xj + Yo kiki
for some rationals k; > 0, and ¢, ([Z, Z]) = ZjeV,ﬂZ xj + Z:":lkizki for
some rationals kZ > 0. Then, for all (x,1) € F, Y /L kiri = ZjeV,\U xj,
and Zl lklzk ZjeV,\Z x;. By condition (i), there is some i, and x such that
(x,€) € F, Y icynnuXi > 0, X jcynz ¥ > 0, and G'\S has a connected com-
ponent with non-empty intersection with V; N Z\U and also with V;\Z. However,
ZjeV,\lej = kiZ (A is fixed to €'). Hence, k; > kiZ > (. Therefore, for any x such
that (x, €') € F, we cannot send less flow than kl.Z through the edges of [Z, Z\{¢}]ina
feasible s —t flow of value Z'j’: 1Xj ip N, .i.Butthis is only possible, if the maximum
amount of flow that can be sent in G’ from S to Z N V;\U is at most (k; — k Y.

Claim There exists §" C Z such that § € §’, '\ S C V(GH\V;, and (a) ¢y 1 ([S' N
V(G), ZNV(GH\S') = (ki — kZ)A,, and (b) there is no arc (u, v) of G' such that
ueZNV(GH\S andv € Z.

Proof Suppose indirectly that any S’ C Z such that § € §" and §'\S C V(G)\V,,
violates condition (a), see Fig. 3. If ¢, 1 ([S' N V(G"), ZNV(GH\S']) > (ki — k7 )Ai
for all S’ such that S € S’ C Z, then the total flow that can be sent from S to those
nodes j € V; N V(G') N Z\U can be more than (k; — ki ). Therefore, there exists
(x,€) € Fsuch Zjevth\U xj > (ki — ki ), while ZjeV,\Z xj < kl , which implies
(x,€') ¢ Fz, acontradiction.

Let S’ be a subset of nodes that satisfies condition (a). Indirectly, suppose it violates
(b). Then the cut-set [V (G') N Z, V(G') N Z] contains those edges (u, v) of G' such
that u € Z N V(GH)\S" and v € Z. Then, in order to saturate all arcs of [V (G') N
Z, V(G")N Z], the flow through the arcs of [S'NV (G?), ZNV (G')\S'] must be split,
and less than (k; — k7) of it reaches the nodes j € Z N V;\U for any (x, ') € F.But
then ) jevinz\u Xj < ki — kiZ , again a contradiction. O

Using this claim, we can replace S by S := S’ U (ZNV(G')\S'). Then Fs, = F.
Therefore, if S» # S, then S is not dominating, a contradiction. Otherwise, G! \S has
no connected component which contains some nodes j € V(G') NV, N Z\U and
j' € V(G") N V;\Z simultaneously, again a contradiction. O
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Now we turn to P£"?. By definition, Y i, A; = 1,and Y j; a;h; = Y_i_; x; are
valid for P¢""?. However, adding the latter equation to Q< may render some of the
inequalities induced by s — ¢ cuts to implicit equations for P"*? (for the same problem

data).

Example 1 Suppose P; = {x € R;O P x1 <4, x0 < % x3=0},and P, = {x €
R;O :x1 =0, xp <1, x3 <1}. Then

1 2
b 3 2 X1 =< zAL, x2S 5A+ A, 35 A2
pem =Q5={(x,x)eRZOszo.M+A32=1 3 :
Now we add x; + x2 + x3 = 1 to Q< to obtain Q. But then x; = %)\1 is a valid
equation for Q— and it is linearly independent of x| + x +x3 = land A1 + X2 = 1.
Thus, a minimal linear representation of Q_ is

1 2
=2A1, 2 < FA1 4+, X3 < A
meb: - A ]R3 R2 :xl 3/ 2 3/ .
=T =0 {(x’ e T i e I

After these preliminaries, we determine the maximum number of linearly indepen-
dent valid equations for P£".

Proposition7 Let Ey, ..., E be a maximum number of disjoint subsets of V; such
that \ Jy_, E¢ = Vi, and for arbitrary (Se, S¢) € Cmin(E¢), £ =1,...,k,

> Buki= Y x;. (12)
i=l1

JEE;

are all valid equations for PE™", where cx 5 ([Se, Sel) = Y0 kiecki + D icE, X
and Bi¢ = o — kig. Then er»"zl Ai = 1, and (12) are linearly independent, and imply
all valid equations for PE™. Moreover, Y s_, Bie = a; for all i € [m], and the
partitioning is unique.

Proof First notice that (12) is obtained from c, ; ([ Sy, S‘g]) = Z;’: 1 X;j by subtracting
it from the equation ) ;" | ajA; = Z’}zl x; valid for P Since YL aihi =
Y "_, xj is a defining equation for PP the claimed partitioning exists and x > 1.

J
The linear independence of the given equations is straightforward. Now we turn to the

second part of the statement. Since a complete linear description of P is known, any
valid equation must correspond to some s —¢ cut (S, S) of N. Using the submodularity
of the cut capacity function cy j, we derive

23 "xj =cen ([Se. Se]) + cxn (8. 51)
j=1

n
> cxa (1SN S. Sy NS + cxn (1SeUS. S USH =2 ;.
j=1
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Hence, equality holds throughout, and in particular (S; N S, S, N S) induces a valid
equation for P Now, if V; NS¢ NS # @, and V; N S\(V; N S) # @, then E,
can be further split, whence « is not maximal, a contradiction. On the other hand, if
S NV, is the union of some of the Ey, then the equation induced by (S, S) is implied
by (12). The same argument shows that the above partitioning is unique. Finally, by
substituting €; to A;, we immediately derive Y y_, Bi¢r = ;. O

Corollary 2 Let k be defined as in Proposition 7. Then diim(P<"™) =n+m — 1 —«.

To facilitate the presentation, we assume that the rooted trees G that constitute the
network N have the following additional structure. For each i € [m], let A; C [«]
be the subset of those indices such that 8;; > 0. If |A;| > 2, then G' has exactly
|A;| outgoing arcs at node vj, i.e., 83},‘” = {(vi, wig) : € € A;}, and the capacity
of (v;, wig) is Bie)i. Moreover, the subtree of G' rooted at w;, has all leafs in E,. If
A; = {£} for some £ € [«], then all leafs of G' are in Ey, and no further assumptions
are needed. Let N be the subnetwork of N spanned by the nodes {s, 1} U E, along
with those nodes of G, i € [«], which are on a directed path from v; to Ej.

Due to the valid equations, the facets of P<"? may have several equivalent forms.
We argue that there is a normal form, which is easy to construct.

Proposition 8 Any facet Fs of P is induced by the dominating s — t cut (S, S) €
Cmin(U) for some U C V; such that U C Eg for some £ € [«].

Proof The facet inducing inequality induced by (S, ) is Y7, kir; > > jevaw Xj-If
U is the union of some of the Ey, then Fs is not a proper face of P¢""? a contradiction.
Hence, there exists some Ey such that E,Q\U #Jand U NE; #J.HHUNE, =0
for all u # ¢, then U C E,; and we are done. Otherwise, there are two cases. First
suppose there exists £, C U. If we add the valid equation (12) for E; to the inequality
induced by (S, S) we obtain

Yki+Bor= Y. x

i=1 je(V\U)UE,

This inequality corresponds to the dominating s — ¢ cut (Sy, S1) € Comin(U \E¢), and
Fs = Fg,. Finally, suppose U N E,, # @ for some E,, # E,. Since E; N E;, = ) by
definition, it means that a proper subset of E,, is contained in U. We will show that
then Fg is not a facet of Pimh , acontradiction. For any (x, 1) € Fg, consider a feasible
flow of value 27:1 xj. This flow saturates the arcs of G' in the cut-set [S, S] for any
i € [m], and it is split between the nodes E »\U and V;\(U U E ;). Hence, there exists
,Bilu € [0, Bin], independent of (x, 1), such that the amount of flow toward E,\U

is ,Bilﬂki, since the total flow toward the nodes of E, is B;, for any (x, A) € pemb,

Therefore, the dominating s — ¢ cut (Z, Z) € Cmin(U U E,) is such that Fs C Fz.
Moreover, Fs # Fz, otherwise E,, could be further split, and F7 # Pimb , since
ZNE,=SNE;#®,and V; N Z\E; = V; N S\E; # @. Then, Fy is not a facet of
pemb, o
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Theorem 2 For any € € [k], the set U C Ey induces a facet of P if and only if

(i) for the dominating s — t cut (S, S) € Cmin(U), the subgraph N\(S U {t}) is
connected, and

(ii) if \U| = 2, then for any partitioning of U into non-empty subsets Uy and U,
there existi € [m]), and a connected component C of(V(Gi) NS, E(V(GHNS))
which contains v;, and at least one point from each of Uy and U», such that for
A = €', the minimum capacity of a cut in C separating v; from V(G') N U is
larger than a; — k;, where k; is the total capacity of those arcs of G' which are
in[S,S], and o; — k; > 0.

Proof Necessity : Suppose that the dominating s — ¢ cut (S, S) € Cmin(U) induces a
facet of P¢"?. Observe that condition (i) coincides with Theorem 1(i). Since P¢"b ¢
P& (for the same data), itis enough to verify that U satisfies condition (ii). Indirectly,
suppose this is not the case, and there exists a partitioning U1 U U, of U into nonempty
subsets along with non-negative numbers ,Bi, ﬁé for all i € {1,...,m} such that
p ,B;;Ai = ZjeUk xj is satisfied by all (x, €'y € Fg for k = 1, 2. Therefore, Fg
cannot be a facet of P"b.

Sufficiency: Suppose conditions (i) and (ii) are satisfied by U, and we have to prove
that F := Fy is a facet of P for the dominating s — ¢ cut (S, ) € Crin(U). As in
the proof of Theorem 1, we may assume that F is not contained in the faces of P£"?
induced by x; = 0 for any j, or by A; = 0 for any i. So, suppose (Z, 7) induces
a facet Fz of Pi’”b and F C Fz. Since Fz is a facet, by Proposition 6, (Z, Z) is
a dominating s — ¢ cut in Cpin (Z N V;). We distinguish two cases: U\Z # @, and
UcCZ.

First suppose U\Z # ¥, and U N Z # (. We construct a point (x, A) in F\Fz
to show that F ¢ F. By condition (ii), there exist i and a connected component
C of (V(G) NS, A(V(G') N S)) such that v; € C, C has non-empty intersection
with U\Z and also with U N Z, and for A = €, the minimum capacity of a cut
separating v; from V (G') N U is larger than «; — k;, where o; — k; is the remaining
quantity to be covered by a flow from v;. Since this minimum capacity is larger than
the amount of flow to be sent from v; to the nodes V (G') N U, the flows on the arcs of
component C are not fixed. Therefore, there exist points (xl, ei), (xz, ei) € F such
that 32 %) # X jevnz X7 While 3o jcv\ wuz) X) = Xjevi\wuz) ¥} - But then
Zj_eV,\Z x} + ZjeV,\Z sz., whence it is impossible that both of (x!, €7) and (x2, €’)
are in Fz.

Now suppose U N Z = (. Let kiZ be the coefficient of A; in the linear expression
for the capacity of (Z, Z) as in Observation 1. Consider the partitioning V, = U U
(V; N Z) U (V,\(U U Z)). We argue that for any i, and any (x, ') € F, the sum of
the x; in the three subsets equals o; — ki, oy — k7, and k; + k¥ — o, respectively.
For any (x,€') € F, ZjeV,\U x; = k; by definition, and thus ZjeU
Since F C Fyz, x also satisfies ZjeV,ﬂZ Xj = o — kiZ. Since Z'}:l Xj = aj, we
get that ZjG(Vz\(UUZ) xj=o — (0 — ki) — (otj — kiZ) =k + kiZ — «;. Therefore,
ifUU((V,NZ)=V,,thenk; + kl.Z = «;, and thus Fz C F, a contradiction. Now
suppose U U (V;NZ) C V;. Then, by condition (i), there exists v; € V\ S, such that v;
is connected to some j; € V; N Z, and also to some node j» € V;\(U U Z). Moreover,

xj = —k,’.
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the capacity of the cut (in G') separating v; from these two sets must be greater than
k;, since (S, S) is a dominating s — ¢ cut. Clearly, there must exist (x, €') € F such
that x;, > 0, say. Let § > O be small enough such that increasing x;, by J, while
decreasing xj, by 8 yields a vector x’ such that (x", €') € F. But x” does not satisfy
the equation ZjeV,ﬁZ x} =qa; — kiZ, hence (x, €') ¢ Fz, a contradiction.

Finally, if U C Z, then we can proceed as in the proof of Theorem 1. O

5 Applications

In this section we present a number of applications where we apply Theorem 1 or
Theorem 2 in order to derive the non-trivial facets (different to the non-negativity of
the variables) of the corresponding formulations. For each application we will present
a MIP formulation, then a network representation, and finally derive the dominating
and facet defining inequalities, but we abandon straightforward technical details such
as the network correctly represents the feasible solutions of the MIP formulation in a
higher dimensional space. If not stated otherwise, the formulations contain no implicit
equations.

5.1 Special ordered sets of type 2

A special ordered set of type 2 (SOS2) consists of vectors x € RZ; such that
Z’;’:l x;j = 1, and x has either one nonzero coordinate, or two consecutive nonzero
coordinates, see [13].

Let 2 < n € Z and consider the polytope (Pns 082yemb Ri”ofl defined as the

convex hull of points

{(x,k) ERM X {0, 1) Yy =1, Y =1,

X1 <AL, Xj S Ajo1+ A forall j =2,....,n—1, x, S)»n_l}. (13)

Observe that in this formulation, if A; = 1, then x; and x;; may be positive, but
all other coordinates of x must be 0. Hence, if A is integral, then proj, (P> 0S2yemb
is indeed a SOS2. However, relaxing the integrality of the A; variables in (13), we
obtain a polytope 15,;9 052 which has a number of vertices with fractional A; variables.
For instance, forn =5, x = (1/2,1/2,0,0,0), and A = (1/2,0,1/2,0), (x, 1) is a
vertex of 1555 052,

We create a network NnSOS2 = (V, A, c)withV = {s}UV UV, U{r}, where V; =
{vi,...,vy—1}tand V; = {1,...,n}.Foralli = 1,...,n—1weaddarcs (s, v;), (v;, i)
and (v;, i + 1) to the network of capacity A; each, and the arcs (j, 7) of capacity x;
for j € V;, see Fig. 4.
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Fig.4 Construction of network N;f 052 for special ordered sets of type 2

By construction, we have

n—1 n
i=1 j=1

n
e (1S, 81) = Y xj foralls — t cuts (S, 5)
j=1

Proposition 9 The non-trivial facets of (PS952)"" are

n

n—1
S xj=Y m b=1....n-1 (14)
i=¢

j=t+1

n—1 n
ZMSZ}@, 0=2,...,n. (15)
i=t j=t

Proof Consider a nonempty set U C V; and the corresponding unique dominating
s —tcut (S,S) wrt. U. By definition, vy € S if and only if S N {k, k + 1} # 0.
Clearly, ifi,k ¢ U and j € U forsome 1 <i < j < k < n, then N,fOSz\(SU{t}) is
disconnected, and thus the set U does not induce a facet of (P,5?52)¢"> We distinguish
three cases.
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First, suppose U = {1, ..., £} forsome 1 < ¢ <n—1,then S = {s}U{vy, ..., ve}U
U which clearly satisfies the conditions of Theorem 2, and thus yields the inequality
(14).

Second, suppose U = {{,...,n} for some 2 < ¢ < n,then § = {s} U
{ve—1, ..., vy—1} U U which clearly satisfies the conditions of Theorem 2, and thus
yields the inequality

-1 -1
I
j=I k=1

which can be reformulated as (15).

Third, suppose V;\U = {k,..., ¢} forsome 2 < k < ¢ < n —1.Then § =
(s}Ufvie Vy|1<i<k—1lorl <i <n—1}UU.However, (S, S) violates
condition (ii) of Theorem 2, since (S\{s}, A(S\{s})) is not connected. O

Observe that (14) and (15) along with the non-negativity of the variables and the two
valid equations, is precisely the reformulation of Padberg [39] for SOS2 (obtained by
complety different means), see also [26,28,45].

5.2 Special ordered sets of type k

A special ordered set of type k (SOSk) consists of vectors x € RZ, such that
27:1 xj = 1, and x has at most k consecutive non-zero components, see [26,38].

Clearly, it generalizes SOS2 discussed in the previous section. Let (PnSOSk)"’"b be the
convex hull of those (x, A) that satisfy the constraints

J
Xj— Z A <0, j=1,...,n

i=max{j—k+1,1}

n
Y oxi=1
j=1

n—k+1

Z =1,

i=1

x>0,x e {0, 1}".

The corresponding network N = (V, A, c) has a set of nodes V comprising a source

s,asink 7, thenodes Vi = {vy, ..., vy—k+1}, and also V; := {1, ..., n}. s is connected
to each of the v; by a directed arc of capacity A;, and each j € V; to ¢ by a directed arc
of capacity x;. Finally, v; is connected to the nodes i, ..., i +k — 1 in V; by directed

arcs of capacity A; each. By applying Theorem 2 to the network N, one can prove
analogously to the SOS2 special case the following:
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Proposition 10 The non-trivial facets of (PS5 are

n n—k+1
iji Z Xi, h=k,...,n, and
j=h i=h—k+1

n n—k+1
Z)Cjz Z)»,‘, h=2,....,n—k+1.
Jj=h i=h

5.3 Logical constraints

Consider a set of binary variables x; indexed by j € J = {I,...,n}. For each
i=1,....mlet& € {H € J : H # (0} be a set of pairwise disjoint subsets
of J, that is, E;; N E;pr = @ for distinct sets E;x, E;jr € &;. Note however, that for

distinct i and i’, there may exist E € & and E’ € &y such that E N E' # @. We

also assume that V = (J/, Uﬁ‘l Ei. Let PSLOG be the convext hull of those binary

vectors x € {0, 1}” that satisfy the following disjunctive constraints:

m [ &l

VIALD. x<pu (16)

i=1 \k=1 \jeEy
In order to obtain a MIP formulation for P£9C | we introduce a binary variable %; for

i=1,...,m.Let (PLOG)°m’ be the convex hull of points (x, &) € {0, 1} x {0, 1}™
that satisfy the constraints

=1, a7

(Exl = pi) i+ Y xj <|Eul, i=1,....m k=1,.,I&. (8
JEEik

Define the network N = (V, A, ¢), where V = {s,t} U V, U W U V;, where V; :=

{fvi,...,vp}, Vi=J,and W ={wi |i =1,...,m, k =1,...,|&]|}. The set of arcs
A comprises the (s, v;) of capacity (n — Li|1(|Eik| — pik))ri foreachi =1, ..., m;
the (v;, wix) of capacity pyX; fori = 1,...,m, k= 1,...,|&]|; the arcs (v;, j) of
capacity A; fori =1,...,m,and j € V,\U (Ejx | k=1, ...,|&]); and the (wi, j)
of capacity A; fori =1,...,m,k=1,...,1&l,j € Eit.

Firstly, we identify the dominating s — ¢ cut (S, S) w.r.t. some U C V;. Clearly,
S={s}UV;UUU{wijr € W : |Eix\U| < pir}, because the capacity of the arc
(vi, wik) 1s pik i, while the total capacity of those arcs from w;j to V,\U is | Ejx \U|A;.

We can apply Theorem 1 to determine those dominating s — ¢ cuts of N with respect
to some U C V, that induce facets of (PL99)¢"b however, the condition we get is
not much more specific than that of the theorem. All we can say is that the dominating
s —tcutwrt. any U C V; satisfies condition (ii) of Theorem 1.
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As a special case we reconsider the logical constraints of [7], which we summarized
in Sect. 2. By splitting J into two subsets J; and J;, and after complementing all the
variables, i.e., x; = 1 — x; for all j, we can express P; and P, as

Pl = {(xl, Xy y) € [0, 1) MilFHIM N+ IN

(M) < |Mi| — pr. i=1,...,r},

and

P = {(xl, oy _“,ys> € [0, 1MIl++HM N N |

F/(Nj) < INjl — ¢}, j=1,...,s}.

Since P; and P; are in disjoint subspaces, the characterization of Theorem 1 becomes
more apparent. Let E1; = M;, and E; = N;.

Proposition 11 The subset U C V; induces a facet of conv(P; U Py) zf [VAU| =1,
or therc_e exists wi; or wyj such thatfor_the dominating s — t cut (S, S) € Cnin(U),
wy; € S and Mi\U = V,\U, or wyj € S and N;\U = V;\U.

Proof By Theorem 1, N\(SU({t}) must be connected. However, the M; and the N; are
disjoint by assumption, so, condition (i) holds only if the conditions of this statement
are satisfied. On the other hand, Vy C S, and thus condition (ii) of the same theorem
is met as well. O

5.4 Cardinality indicating polytope

The cardinality indicating polytope PnCAR D c Rzz”(;rl is defined as the convex hull of
the points

n
(x,2) €{0,1}" x {0, 1}"T! : 2y = 1 and Lj=0for j #k, where k = in

i=1

Clearly, >} _o A« = 1 holds for each (x, 1) € PEARD,

First, we create a network NnCARD =(V, A, c)withV = {s}U{r} UV, UV;, where
Vs = {vo, v1, ..., v}, and V; = {1, ..., n}, and A comprising the following arcs. For
k=0,...,n,thearcs (s, vg) € Aofcapacitykr;.Fork =0,...,nandj=1,...,n,
the arcs (vg, j) € A of capacity Ax. For j =1, ..., n, the arcs (j, t) € A of capacity
x;j (Fig. ).
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nApt1 |

Vs
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Fig.5 Network for the cardinality indicating polytope

By construction, we have

n n n
PCARD _ ) (1 3) e R x R" Z)‘k =1, Zk/\k = ij, x>0, 2=0,
k=0 k=0 j=1

n
e (S, 81) = Y xj foralls —t cut (S, 5)
j=1

Proposition 12 The non-trivial facets of PCARP are

|7 n
Zx;izkkkﬂll Z M, @#FTC{l,...,n}. (19)
jel k=1 k=|1]+1

Proof By Proposition 6 it suffices to consider dominating s — ¢ cuts to identify the
facets of PnCARD. For any nonempty subset I C {1, ...,n},letU := V;\I, and (S, S)
the unique dominating s — ¢ cut w.r.t. U. Since (S, §) is of minimum capacity w.r.t. U,
ve € Sforallk > |I],and vy € S forall k < |I]. Since, (S, ) is dominating w.r.t. U,
vj| € S. Clearly, (S, S) satisfies the conditions of Theorem 2, thus the corresponding
face F is a facet of PnCARD , and takes the form (19). O

Notice that Theorem 10 of [35] gives precisely the same description of Pnc ARD
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5.5 All even subsets

EVEN
Pn

The parity polytope is defined as the convex hull of points

{x € {0, 1}" : x has even an number of l’s} .

The minimal description of PEVEN in terms of linear inequalities in the space of

original variables is attributed to Jeroslow [30]. We apply our technique to get one in
a higher dimensional space. Let (PEVEN )¢"b be the convex hull of the set of points

n
{(x,k) € {0, 1" x {0, 1}/2+1 . Jk such that A = €, and 2k = in}.

i=1

Similarly to Sect. 5.4, we create a network NfVEN = (V,A,c)withV = {s} U
Vs UV, U {t}, where Vs := {vg, ..., v[u/2)} and V; := {1, ..., n}, and the set of arcs
is defined analogously to that of N,;“"d. The arc capacities are c(s, vg) = 2k, for
k=0,...,[n/2], c(v, j) = A forall j € V), and c(j,t) = x; for j € V;. By
construction we have

n [n/2] n
(PnEVEN)emb _ {(x,k) c R" x R - Z)‘k =1, Z ki = ij, x>0, 2>0,
k=0 k=0 J=1

n
xS, S > ij forall s — ¢ cut (S, S) } .
j=1

Proposition 13 The non-trivial facets of(PnEVEN)emb are

L171/2] n
DS ) 2+l Y, ke TeT, (20)
jel k=1 k=[11]/2]+1

where I, :={I C{1,...,n} : |I| #2,3k € Z such thatn > 2k > |I|}.

Proof By Proposition 6 only dominating s — ¢ cuts of NEVEN can define facets. For
any nonempty subset I C {1, ...,n},letU := V;\I,and (S, S’) the unique dominating
s—tcutw.r.t. U. Since (S, S) is of minimum capacity w.r.t. U, vy € Sforall 2k > |I|,
and v, € S for all 2k < |I|. In contrast to the cardinality indicating polytope, not all
I determine facets of (PnEVE Nyemb namely, || induces a facet if and only if |/| # 2,
and there exists an integer k such that n > 2k and 2k > |I|. If this condition fails,
then the s — ¢ cut (S, S) corresponding to I does not satisfy condition (i) or (ii) of
Theorem 2. The statement follows. O
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5.6 Polytopes of small cliques

Given a simple graph G = (V, &), and a constant c, let
chLQ 1= conv ix(C) € [0, I]V | C € Vclique of size < c]
be the polytope whose vertices correspond to cliques of G of size at most ¢, and
PZCCLQ 1= conv {x(C) e [0, 1]V | C €V clique of size c}

Let Cq, ..., Cy be the node sets of the cliques of size ¢ of G, and n = |V|. Clearly,
m < ?) The corresponding MIP formulations can be derived using a network

N =(V,A,c),where V = {s,1} U Vs UV, such that Vi comprises a distinct node v;
for each C;, and V; = V (the set of nodes of G). The source s is connected to each
v;, each j is connected to the sink 7, and each node v; is connected to every j € C;.
c(s,v;) = chj, c(v;, j) = A for j € C;, and ¢(j,t) = x; for all j € V,. First we
consider ( P:CCL Q)emb . It is easy to see that

emb n
(PSC?Q) @M eR xR Y xj=c, Y ai=1x20 120,
Jjev i=l

n
Cx A ([S, S‘]) > ij, Vs — ¢ cut (S, S)
j=1

In fact, this polytope has a very simple structure.

Proposition 14

emb n
(chcLQ> — W ER XR" s a;= Y A Y =1x20,120
ijeC; i=1

Proof The validity of the equations is easy to verify. They correspond to the dominating
s —t cuts for U C V; such that [U| = n — 1, but they hold at equality for all
(x,A) € (P:CCL Q)emb and together imply jey Xj = ¢. Moreover, the polyhedron on
the right is integral, which can be verified by ad-hoc methods. O

When ¢ = 2, we can easily project out the X; variables, by considering the stables
sets of G. That is, using a result of [8], we apply the extreme rays of the polyhedron
yB > 0, where BA = x is the subsystem defining the connection between the x and A
in the definition of (P:CCLQ)"’"I’. For any stable set / of G, let y; = —1for j € I, and

yj = 1l for j € I'(I), the neighbors of I in G. These extreme rays y yield the valid

@ Springer



858 T. Kis, M. Horvath

inequalities
x(I) —x(I"'(I)) <0, forall stable set / of G.

These inequalities were derived in [33] by starting out from a different extended
formulation, and Kaibel and Loos also show that along with x i =0,/ ¢ V, and

> jeyXj = 2, they suffice to describe P=C,;L 2 and they give conditions for these
inequalities to define facets.

Now let us turn to (PS-)¢". Clearly,

emb n
(Pg.LQ) :{(x,x)eR”xRM Yhi=1,x20 120,
i=l1

n
e[S, 8) = Y " xj. Vs —tcut (S, S)
j=l

Proposition 15 The non-trivial facets of(PSCcLQ)"mb are

S hizaxj Yjefl,....n}.

irjeC;
Proof By Theorem 1, the only sets U C V; that induce facets of (PSCCL Q)"mb are those,
where U contains all but one of the nodes j € V;, and the statement follows. O

The special case with ¢ = 2 is extensively studied in [29] and [33], where all facets
of PSCCLQ are determined in the space of the original problem variables.

5.7 Union of simplicies

This application is from Jeroslow [31]. Let P2 := conv(U?, Pl.A), where

1

n
PAi={xeR"| > x;<UB', x; > LB, j=1,..n
j=1

We assume that Z’}:l LB; < UB! forall i, and all bounds are finite. Let (PA)””I’ =
" (PA x €'). Clearly, (P#)“™? is the convex hull of those (x, A) that satisfy

conv (U
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the constraints

n
Y xj<UBN, i=1,....m
j=1

x;>LB;, i=1,....m, j=1,....n
j= Bt J @1)

A e {0, 1}™.

In order to describe (P4)¢? we form a network N = (V, A, ¢, Ib), where V com-
prises a source s, sink 7, the nodes Vs = {vy, ..., v, }aswellas V; = {1, ..., n}. The
set of arcs A comprises (s, v;) for all v; € Vi, (v;, j) forall v; € Vg, and j € V,,
and (J, t) for all j € V;. There are both capacities c, and lower bounds /b on the arcs.
Let c(s, vi) = UB'A, Ib(s, vi) = & Y_j_ LB}, c(vi, j) = (UB" = Y4, ; LB,
Ib(vi, j) = LB;M, and ¢(j,t) = x;, and [b(j,t) = O for all i and j. The lower
bounds on the arcs (s, v;), and (v;, j) can be eliminated by the following transforma-
tion. We derive anew network N’ = (V, A, ¢’) from N by modifying the upper bounds
as follows. ¢/(s, v;) := (UB" — Y} _| LB)A;, ¢ (v, j) := (UB' — Y 7 _; LB)A;,
and ¢/(j,t) := x/;, where x, = x; — /.| LB;A,-. We have the following relation

J J
between the feasible flows of N and N’.

Proposition 16 Letr x € R", y € R™ be vectors such that » > 0, and Y ;_, A; = 1.
We have the equivalences

i) (x,1) € (P2 ifand only if Ny ;. admits a feasible s —t flow of value Z.'}:l Xj.
ii) Ny, admits a feasible s — t flow of value Z?:l xj if and only ifN)/(, , admits a
feasible s — t flow of value 27:1 x;-, where x;- =xj— i LB;.)Li.

Proof Part i) is obvious. As for ii), first suppose N, ; admits a feasible flow f of
value 3%y x;. Let fii = fsn — i X LB;., f(/vj’j) = foijp — )LiLB;, and
fin = fon — p )LiLB;.. Clearly, f" is a feasible s — ¢ flow in N|, , of value
Z’}:l x}, as claimed. The opposite direction can be proved similarly. O

Let Q' be convex hull of those (x’, ) such that x’, A > 0, and N)’C,’A admits a
feasible s — ¢ flow of value 27:1 x}. Now we use Theorem 1 to identify those facets

of Q' that corresponds to some s — ¢ cuts of N’ and then we lift the description of Q’
to that of (P4)emb.

Observatiqn 5 Q' is of dimension n +m — 1 if there exists i € {1, ..., m} such that
Zl;':l LB < UB', otherwise it has dimension m — 1.
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Proposition 17 Any proper subset U C V; does not induce a facet of Q'. If dim Q' =
n+m — 1, then the set U = V; induces the facet

m

n n
doxi <> |uB =) LB | n (22)
j=1 j=1

i=1

Proof Let U C V,. If [U| < n — 2, then any s — ¢ cut (S, S) in Cpin(U) has the
following structure: S = {s} U U. But then condition (ii) of Theorem 1 is not satisfied
by (S, S). Now suppose |U| = n — 1. Then the dominating s — ¢ cut (S, S) in Coin (U)
has the following structure: S = {s} U V; U U. But then condition (i) of Theorem 1 is
not satisfied by (S, ), since for each v;, a single arc of capacity A; (U B! — Yot LB,Z)
leaves S, but this matches the capacity of (s, v;). Finally, if U = V;, then the conditions
of Theorem 1 are satisfied (the first one is void), and thus we get the inequality in the
statement. O

So, we have the following description for Q’:

m

n
< in UB! —ZLB;'.
j=1

j=1 i=1

M=
\%\
A

kg
Il
—_

x,A>0

Notice that this description is valid even if UB' = Z;f:]
transform this description to one for (P4)¢?. But this is easy. By Proposition 16
we know that (x,A) € (P#)"? if and only if x; > Y/, LB;M for each j, and
(x’, ) € Q, where x} =Xj — )i, LB;A,- for all j. Consequently, we have the
following:

LB; for all i. Now we

Proposition 18 A minimal linear description of (P2)¢"? is
n m
> x; <Y UB'A,
Jj=1 i=1
m
xj =Y LB, j=1....m
i=1

1.

e
I

This is precisely the description of Jeroslow obtained by completely different means.
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5.8 Multi-variate piecewise linear functions

This application is from [26], see also [28]. The objective is to model the graph of a
continuous piecewise linear function f : D — R on a bounded domain D € R¢,
where D admits a polyhedral partition | J{~_; C; = D (relint(C;) N relint(C ) =¥ for
i # j)suchthat x € C; implies f(x) = a; - x + b;, for some a; € R? and b; € R.
The graph of f is gr(f) := {(x, f(x)) : x € D}. Let W := [J/_, vert(C;). In fact,
we have

g () =1 x, fw) : xel JPt,
weW i=1

where P; = {x € RE’O DY wew Xw = 1, xyy = 0 Vw € W\vert(C;)}. Here,
X € U;”zl P; is the combinatorial disjunctive constraint (5).

Let PPW = conv(UJ'_, P;). Suppose W = {wy, ..., w,}. Then (pPwhyemb g the
convex hull of those (x, A) which satisfy

n
ij:l’
j=1

Xj < Z i, j=1,...,n

i€[m] : wjevert(C;) (23)
m
Z)\,’ =1,
i=1
A e {0, 1)

It is easy to see that (P? whyemb admits a network representation N = (V, A, ¢), where
V ={s,t}UV; UV, suchthat Vg = {vy,..., vy}, V, ={1,...,n},and (v;, j) € A
if and only if w; € C;. Furthermore, A contains all the arcs (s, v;) fori =1,...,m,
and (j,t) for j =1,...,n. Asusual, c(j, 1) = x; for j € V;, while c(s, v;) = A,
and c(v;, j) = A; forall (v;, j) € A. The facets of (P?*!)¢"b have a particularly nice
geometrical characterization. Let k' (T') denote the number of connected components?
of some T C R4, Clearly, the dimension of (PPwhyemb is 4 m — 1 — k(D).

Proposition 19 The non-trivial facets of (PP take the form

Yo=Y x (24)
ieM jEU,‘EMFJ;m
where M C {1, ..., m} is such that k (D\(U;cpy Ci)) + &k (U;eps Ci) = k(D) + 1.

Proof We construct a dominating s — ¢ cut (S, S) from M and show that it determines
an inequality equivalent to (24). Let U := U,-GMFUU’_”’, and S = {s}U{v; € V;

3 Path-connected in topological sense.
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|Fv‘;“‘\U| < 1} U U. Observe that v; ¢ S if and only if |Fv‘;“t\U| >2andi € M if
and only if T U(;“’ C U. Therefore, the corresponding inequality for (S, S) is

n
Z Ai + Z )»,'—}-Z)Cjzzxj'.
j=1

viEVy ¢ [FQ\U|=2 vieVy : [Fg\U|=1 jeu

Since 37/L; A; = Y x; = 1 by assumption, we can rewrite this as

1= " a+ ) x> 1

ieM jeu

Rearranging terms yields (24).

We still have to verify that S meets the conditions of Theorem 2. In fact, if either
of the conditions does not hold, then either the nodes in U are disconnected in the
subnetwork spanned by S\{s}, or those in V;\U are disconnected in N\ (S U {z}),
which implies « (D\((U;cps Ci)) + k (U;jepr Ci) > k(D) + 1. O

In fact, this characterization is the same as that of Lee and Wilson [36].

The 2-dimensional special case, where D = [0, S1] x [0, S>], and the {C; };”:]
constitute a grid triangulation of D with m = 25,5, triangles, is extensively stud-
ied in [26-28,45,48], and ideal formulations with O (log, m) new (binary) variables
and constraints are provided. Different triangulation of the grid may define different
piecewise linear functions, even if they agree on the grid points, for an example we
refer the reader to [28].

The naive modelling (23) of the grid triangulations leads to m auxiliray A; variables,
which is far more than O (log, m) needed by the methods of [26-28,45,48]. On the
other hand, the techniques of the above papers are difficult to generalize for 3 or more
dimensions. Nevertheless, Huchette and Vielma [28] proved that intersecting ideal
formulations for combinatorial disjunctions yields an ideal formulation:

Theorem 3 [28] Fix s € Zx1, and consider s distinct combinatorial disjunctive con-
straints B = | J!; Q(T"") on the same set V, where | J/'| T"' =V, fort € [s].

Let IT" € RY x R’ be such that {(x, ') € IT" : \' € Z'"} is an ideal formulation
for B!, for each t € [s]. Then, an ideal formulation for (\;_, B is

{(x,,\l,...,,v‘) S A eI, M eZ Vi € ﬂs]]}. (25)

Huchette and Vielma suggested that this result permits to go beyond the 2-variable
special case. Below we describe a possible realization of their idea. In d dimensions, the
unit grid for D := xle [0, Si] consists of]—[;l=1 S; unit cubes. Letn = ]—[;121 (S;+1)be
the number of grid points in W := DNZ?. For each unit cube in the grid, a partitioning
into d! simplices of [0, 1]¢ is specified. Let C be the set of all the simplices given in
all the unit cubes of the grid W. We can use d distinct combinatorial disjunctions for
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Fig.6 Covering the grid 1121112
[0, 4]2 nz2 by 4 sets of node
disjoint unit squares. The 314|134
squares with the same number

. 11212
constitute one set of the
partitioning 314|134

selecting a cube, and then some additional combinatorial disjunction(s) to select a
single simplex in the selected cube (this is how the compact formulation of [28] works
in 2 dimensions). So, for t € [d],letm, = S;,and T"' = {w e W : w; € {i — 1, i}}
for i € [m,], namely, in T%' we select all the grid points w € D such that w, €
{i —1,i}.Let B' = [J"', OQ(T"*"), and observe that this is the SOS2 constraint along
the 1" axis. Let IT" C R" x R’* be any ideal formulation for B’ with r, = O (log S;)
variables and O (log S;) constraints, see e.g., [28], and Sect. 2. By Theorem 3, joining
the IT', t € [d], yields an ideal formulation for ﬂle B, and in fact it selects a single
cube from the grid (by setting the A’ to unit vectors). However, we still have to select a
simplex. All we need is one more combinatorial disjunction, which covers the vertices
of all the d! ]_[fl: 1 S; simplices such that each term in this disjunction covers simplices
of node disjoint cubes. In fact, 24 41 terms suffice, as the following statement shows.

d .
Proposition 20 There is a combinatorial disjunction B4t = | 24" (T4 such
that

_ Ufié{’ Ti,d+l = DN Zd,

— for any unit cube in the grid D N Z¢, and any simplex C € C from the cube, there
is a unique T4 containing vert(C), and

— Any TH4HY consists of the vertices of simplices from vertex disjoint unit cubes of
the grid.

Proof To cover a grid in Z? by sets of node disjoint unit cubes, we can partition the
grid into 2¢ subsets, see Fig. 6. Each of the 2¢ sets of cubes yields d! disjunctive
terms, namely, we identify each simplex in each unit cube uniquely by a number from
1,...,d!, and then we collect all vertices of those simplices having the same id. in a
term of the disjunction. More formally, let R¥ for k € [[Zd]] be the sets of node disjoint
unit cubes from the grid which together cover D. Each R¥ gives rise to d! sets 77!

fori € {d\(k — 1) + 1, ..., d'k}, where T"4+! contains vert(C) for those simplices
C from the cubes of R* having id (i — d!(k — 1)). It is easy to see that the sets 7/:¢F!
satisfy the conditions of the statement. O

Corollary3 Let AY ={x e RYy : > _yyxw =1, x,, = 0Vw ¢ vert(C)}. Then
(:onv(ﬂ;iil1 B") = COHV{A(‘}V : C € C}. Moreover, joining any ideal formulations IT'
for B', t € [d + 1], as in Theorem 3, yields an ideal formulation for ﬂfill B'.

Finally, using our techniques, it is straightforward to obtain an ideal formulation

for P41 = conv(B*!). Let m = 29d!, and n = |W/|. The underlying network
N = (V, A, c) has nodes {s,t} UV, U V,, where Vy, = {v{,...,vy}, and V, =
{1,...,n}. Node s is connected to each v; € Vi by an arc of capacity A;, node v;
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is connected to each node j € V; such that w; € T1-4+1 by an arc of capacity A;,
and finally, each j € V; is connected to ¢ by an arc of capacity x;. We also have
the equations > /- | A; = Z?:l x;j = 1. However, there are no implicit equations
for (Pi“)e’"b, because if a partitioning E1, ..., E, of W, for some « > 2, induces
linearly independent valid equations for (PZ+1)¢? then each T%4*! must be a subset
of some Ej. It is easy to verify that this is impossible.

Observation 6 dim((P4t1)emly =pn 4 m — 2.

We can apply Theorem 2 to obtain the non-trivial facets of (PZt1)emb

conv{UiziT Q(Ti’d"’l) x {€'}). Note that there are only 244\ auxiliary variables in the
resulting formulation, which is just 8 for d = 2, 48 for d = 3, and 384 for d = 4,
and it is independent of the size of n. As for the number of facets of (pdtlyemb ¢
can be exponential in n even if d = 2. However, to our best knowledge, for d > 3,
no ideal formulation is known with a logarithmic number of auxiliary variables and
linear inequalities in 7.

Proposition 21 Let U C V;, and (S, S) € Cnin(U). Then F is a facet of(PiH)emb
if and only if (a) N\(S U {t}) is connected, and (b) for any partitioning of U into
nonempty subsets Uy and Uy, there is some i such that TH4T' N\ U, £ @ fort = 1,2,
and T+ C U,

5.9 Modeling of variable intensity activities in a resource loading problem

This application stems from the paper [41], where a resource loading problem is stud-
ied. Here we give a new derivation of the polyhedral description of feasible intensity
assignments to an activity.

Suppose there is a time horizon of n consecutive time periods of unit length each,
and an activity which has to be scheduled in an interval of time periods uninterruptedly.
In those time periods when it is processed, a fraction between given lower and upper
bounds, LB and U B, must be assigned such that the sum of fractions is 1, where
0 < LB < UB < 1.Let& consistof all the possible execution intervals for the activity,
ie., [k, 2] € Eifandonlyifl <k <¢ <n,and —k+1)LB <1< ({—k+1)UB.
For ease of notation, [k, £] also represents the set of integers { € Z : k <t < {}.
If we select [k, £] € &, then the intensity assignment x € R" of the activity must
satisfy the conditions Zf‘:k xj =1,LB <xj <UBforj e[k {],andx; =0
otherwise.

For each interval [k, ] € &£, we can strengthen the lower and upper bounds as
follows: LBy = max{LB,1 — ({ —k)UB} and UByy; = min{UB, 1 — (¢ — k)LB}.
To avoid implicit equations, we assume that for each pair of consecutive time periods
Jj,and j + 1, there exists some execution interval [k, £] € £ such that j, j+1 € [k, £],
and (¢ —k+1)LByy <1 < (—k+ 1)U Byy.

We can model the feasible intensity assignments by means of the following integer
program:
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> LB <xj< Y. AwUBw, Vje{l,....n} (26)
[k,)e&:jelk,t] [k,L]e&: jelk, €]

S =1 @7)

[k,0]1eE

Yxj=1 28)
j=1

x;>0, Vjell,...,n}
1 e o, 1) (29)

Let PRLP be the convex hull of those (x, ) vectors that satisfy these constraint. In
order to get the (non-trivial) facets of PRLP, we model the above integer program
by a network N = (V, A, ¢, Ib), where V comprises a source node s, a sink node ¢,
the nodes V; := {vi¢ | [k, €] € £}, and the nodes V; := {1, ..., n}. We have one arc
from s to each v, with lower bound Ib(s, vk¢) = (£ — k + 1) L Bx¢ ie, and capacity
c(s, vge) = Age. Further on, for each vgy € Vi and j € Vi, we have one arc (vge, j)
of lower bound Ax¢ L By, and capacity Ar¢Uge. Finally, we have one arc from each
J € Vi tot of lower bound 0, and capacity x ;. Observe that the positive lower bounds
stem from the left hand side of (26). Let x} =xj— Z[k,ﬂ]e&je[k,ﬁ] Mie L By¢, and we
derive network N’ = (V, A, ¢’) from N as follows. The capacity of the arcs (s, vi¢)
reduces to (1 — (¢ — k 4+ 1)L By¢)Ake, that of (vke, j) becomes (U By — L Byg)rie,
while on the arcs (j, ¢) the new capacity is x;. Let m = |&|. The following statement
is analogous to Proposition 16.

Proposition 22 Suppose Z[k,(]eé’ Ae=1x>0and » > 0. (x, 1) € PRLP ifand
only if Ny ;. admits a feasible s — t flow of value 1 if and only ifN)/C, , admits a feasible

s —t flow of value Y ;. pce(l — (€ =k + 1)L Bre)Age-

Let PRLP' e the convex hull of those (x/, %) such that x, A > 0, D ik.cjee Me =1,
and N;/c',x admits a feasible s — ¢ flow of value Z[k,z]eg(l — (& —k 4+ 1)LByg)hie.
We apply the MAX FLOW-MIN CUT theorem to N’ to obtain a linear representation
of PRLF',

PREP = 3 ) eR" xR | D g =1,x20 120,
[k, 0]1€e€E

> (= —k+1)LBi) e,
k.(1e€

n
2.
Xj
j=1

n
c (1S, 1) = Y x), Vs —tcut (S, §) of N'}.
j=l1
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Let (S, S) be any s — ¢ cut of N/, the corresponding inequality is

> hkellk, ENU|- (UBke = LBie) + Y M (1= (€ —k+1) - LBr) = Y x}.
vk €S ke €S jeVi\U
(30)

If we increase both sides by Z[k,f]eg |lk, ¢\U| - LBy¢rie, we obtain

Y haellk, ONUL-UBre+ Y dae (1= |k, £1NU| - LBi) = ) xj,
Ve €S N JjeVi\U
(31)

whereweusedx; = X+ y1ce.jeir ¢ L Bkehke. These are precisely the inequalities
(27) obtained in [41] by a different argument. The following statement is analogous
to Proposition 18.

Proposition 23 A minimal linear description of PRLY consists . > 0, the inequalities
Xj = Z[k,@]es L Byghie, (27)—(29), and those inequalities from (31) for which the

corresponding inequality from (30) induces a facet of PREP B

It remains to characterize those U C V, that induce facets of PRLP’, First, for a fixed
U C V;, we determine the non-dominated s — ¢ cuts of N’ w.r.t. U. So we build a set
S containing {s} U U, and some of the nodes vi¢. We can decide for each viy whether
to include in S or not in order to minimize the capacity of (S, S).

— If vge € S, then the arcs (v, j) for j € [k, £]\U are adjacent to v and leave S.
The total capacity of these arcs is

Akellk, ENU| - (Ure — LBi¢) = Aiellk, EN\U| - Ure — Aiellk, £1\U| - L Byg.
(32)

— Ifvge ¢ S, then the arc (s, vge) leaves S and its capacity is

Ae(1— (€ —k+1)- LByg) = dge (1 — |k, 1N UJ) - LByg) — Agellk, €N\U| - LBy
(33)
Comparing (32) and (33), we can derive the following.

Observation7 (S, S) € Cumin(U) if and only if vge € S when |[k, £]\U| - UBy; <
1—|[k,£]NU|- LBy, and vig ¢ S when |[k, E\U|-UBy¢ > 1 —|[k, £]NU| - LByg.

Now we apply Theorem 2 to single out those subsets U C V; that induce facets
of PRLP" et £T consist of those [k, £] € &£ for which (¢ —k + DUBy > 1 >
(£ —k + 1)LByg.

Theorem 4 Fix U C V,, and let (S, S) the dominating s — t cut of N w.rt. U. It
induces a facet of PRLP if and only if both of the following conditions hold.
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i) IflVA\U| > 2, thenforeach j € V,\U except the last one, there exists [k, £] € ET
suchthatvie € S, [k, £1N[1, jIN(V\U) # @and [k, £]N[j+1, n]N(V\U) # .

i) If \U| > 2, then for each j € U except the last one, there exists [k, £] € T such
that vig € S, [k, LN [1, j1NU # @ and [k, 1N [j+ 1,n]NU # A

Proof We derive the two conditions of the theorem from those of Theorem 2. First
note thatif vi, ¢ £, then vy € S, as (S, S) is the dominating s — ¢ cut of N’ w.r.t. U.
Consider the first condition of Theorem 2. N\ (S U {¢}) is not connected if and only
if there exists a partitioning of V;\U into two subsets U, =%+ () and U, =% ¢, such that
each viy € SNV, is adjacent to some nodes of U, only, or to some nodes of Us
only, that is, [k, £]\U < U, or [k, ¢]\U < U,. Since [k, £] is an interval, [k, £]\U
consists of consecutive members of V;\U, and thus the latter condition is equivalent
to the existence of some j € V;\U (but not the last one) such that [k, £]\U C [1, j]
or [k, (]\U C [j + 1, n] for each vz, € S. But this is precisely the negation of the
first condition of this theorem.

The equivalence of the second condition of Theorem 2 to that of the present theorem
can be shown analogously. O

The above characterization of the facets of PREP ig equivalent to that obtained in [41]

for the non-trivial facets of PRLP. However, in that paper a more problem specific
approach is used.

6 Final remarks

In this paper we have proposed a new systematic way of constructing ideal, non-
extended MIP formulations for disjunctive constraints of the form x € (J/_, P;,
where the P; are polytopes. Our method works if the Cayley Embedding of this union of
polytopes admits a certain network representation. Then we can characterize the facets
of the LP-relaxation of the MIP formulation. We have illustrated the richness of the
class of problems that fits this framework by several examples from the literature, and
we have also worked out a new one. We emphasize that our characterization of facets
is valid for any union of polytopes such that the corresponding Cayley Embedding
admits a network representation.

These results may also pave the way for modeling problems using building blocks
representing the convex hull of polytopes with the above properties. Then, the solver
could generate cuts for such building blocks as needed in the course of solving the
problem by branch-and-cut.
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