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Tight Bounds on the Convergence Rate of
Generalized Ratio Consensus Algorithms

Balázs Gerencsér and László Gerencsér

Abstract—The problems discussed in this article are mo-
tivated by general ratio consensus algorithms, introduced
by Kempe et al. in 2003 in a simple form as the push-sum
algorithm, later extended by Bénézit et al. in 2010 under the
name weighted gossip algorithm. We consider a communi-
cation protocol described by a strictly stationary, ergodic,
sequentially primitive sequence of nonnegative matrices,
applied iteratively to a pair of fixed initial vectors, the com-
ponents of which are called values and weights defined
at the nodes of a network. The subject of ratio consensus
problems is to study the asymptotic properties of ratios of
values and weights at each node, expecting convergence
to the same limit for all nodes. The main results of this
article provide upper bounds for the rate of the almost
sure exponential convergence in terms of the spectral gap
associated with the given sequence of random matrices.
It will be shown that these upper bounds are sharp. Our
results complement previous results of Picci and Taylor in
2013 and Iutzeler et al. in 2013.

Index Terms—Asynchronous communication, conver-
gence, communication networks, distributed computing,
estimation, iterative algorithms, multiagent systems, ran-
dom processes, spectral gap.

I. INTRODUCTION

A. Setup and the Ratio Consensus Algorithm

THE problems discussed in this article are motivated by the
study of general ratio consensus algorithms, introduced

in [1] in a simple form as the push-sum algorithm, and later
extended in [2] under the name weighted gossip algorithm
for solving a class of distributed computation problems. The
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algorithm is designed to solve a consensus problem over a
network of agents, based on asynchronous communication.
The objective of the consensus can be expressed in its sim-
plest way as to achieve the average of certain values given at
each node. The original problem formulation and the algorithm
has been adapted to model a number of real-life situations
such as platooning, sensor networks, or smart grids (see [3]
and [4]).

Various relaxations and extensions of the baseline model were
proposed in the literature. A nice application of the push-sum
algorithm for computing the eigenvectors of a large symmetric
matrix, corresponding to the adjacency matrix of an undirected
graph, was given in [5]. Another application is distributed convex
optimization see [6]. A general class of solvable consensus prob-
lems for the distributed function computation was introduced
in [7].

The basic setup for this class of methods is a communication
network represented by a directed graph G = (V,E), to each
node i of which a pair of real numbers xi and wi ≥ 0 is associ-
ated, such that not all of thewi-s are 0. They are often called the
values and the weights. The problem is then to compute the ratio∑
i x

i/
∑
i w

i, at all nodes, using only local interactions allowed
by G = (V,E) in an asynchronous manner. In the special case,
when wi = 1 for all nodes, the problem reduces to the average
consensus problem.

A convenient illustration of the aforementioned problem is
the following: xi unit of some chemical is dissolved in a solvent
of wi ≥ 0 units leading to a solution with concentration xi/wi

at the node i. The problem equivalent to the aforementioned one
is then to compute the concentration of the grand total, defined
as
∑
i x

i/
∑
i w

i, using only local transfers allowed by G =
(V,E) in an asynchronous manner.

Let |V | = p and let x0 = x = (x1, . . . , xp)� and w0 = w =
(w1, . . . , wp)� denote the vectors of initial values and weights,
respectively, at time 0, assumingw ≥ 0, w �= 0.We update both
the values and weights successively as follows. Let xn−1 and
wn−1 denote the p-vector of values and weights, respectively,
at time n− 1. Select a directed edge fn = (i, j) ∈ E randomly,
representing the communicating pair at timen. Then, the sender,
node i, initiates a transactions by sending a fraction, say αji

with 0 < αji < 1, of his/her values and weights to the receiver,
node j. It is initially assumed that the sequence of edges (fn) is
i.i.d., with the probability of choosing an edge f = (i, j) being
denoted by qij .

In the context of the aforementioned illustration via elemen-
tary chemistry, the algorithm is equivalent to mixing a fraction of
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the solution at the node i into the current solution at the node j. It
is then expected that in the limit we get solutions with identical
concentrations at each node.

When setting αji = 1/2 for all edges the aforementioned
algorithm is the celebrated push-sum method. The dynamics
of the algorithm can be formally described by the equations

xn = Anxn−1 and wn = Anwn−1 (1)

for n ≥ 1, where An is a p× p random matrix obtained from
the identity matrix by modifying its ith column as follows:

Aiin = 1− αji Ajin = αji Akin = 0 for k �= i, j. (2)

The aforementioned problem can be modified by allowing
packet losses (see [3]). When a packet loss occurs along the
edge from i to j, denoted by (j, i), the content of the node j
is not changed. Packet losses are assumed to occur randomly
and independently. The functionality of the network at time
n is described by a collection of indicators ρn(f), f ∈ E:
ρn(f) = 1 if the edge f fails at time n, otherwise ρn(f) = 0.
The probability of failure along edge f is 0 ≤ rf < 1 at any time
so that P (ρn(f) = 1) = rf . With these notations, assuming
fn = (j, i), the matrixAn will have the following structure with
a single, possibly nonzero off-diagonal element in the positions
(j, i): ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

1− αji 0
. . .

(1− ρn(fn))α
ji 1

. . .
...

0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

We note in passing that the coordinates of vectors and the
elements of matrices will be indicated by superscripts, while
their dependence on the discrete time n will be indicated by
subscripts.

B. Generalized Framework

The aforementioned form of the push-sum or weighted gossip
algorithm has a natural extension reflecting the possibility of
certain schedules in choosing the sequence of interacting pairs
of agents, as in the case of geographic gossip, randomized path
averaging, or one-way averaging [2], [3], [8].

In addition, we may consider a significantly broader class
of matrices, allowing much more complex network dynamics.
Technically speaking, we consider a strictly stationary, ergodic
sequence of p× p random matrices with nonnegative entries
(An), n ≥ 1. Let x,w ∈ Rp denote a pair of initial vectors,
such thatw ≥ 0, w �= 0. Our objective is to study the asymptotic
properties of the ratios

e�i AnAn−1 · · ·A1x/e
�
i AnAn−1 · · ·A1w, i = 1, . . . , p (4)

where ei is the unit vector with a single 1 in its ith coordinate.
For a start, we provide a brief summary of two classical results

on products of strictly stationary, ergodic sequences of random

matrices, and recapitulate and extend a relevant application as
Theorem 8. The key results of this article are stated as Theorems
12, 14, 16, and 19, extending previous results on the almost sure
(a.s.) exponential convergence in the context of ratio consensus
such as given in [9], in particular, providing upper bounds for
the a.s. exponential convergence rate in terms of spectral gaps
associated with stationary sequences of matrices. It will be
shown that these upper bounds are sharp in Theorem 21, thus
solving an open problem formulated in the conclusion of one of
the fundamental papers [2] under very general conditions.

The proofs are based on the careful analysis of random
productsMn := AnAn−1 · · ·A1 for a random sequence of non-
negative matrices using Oseledec’s theorem. The application
of results in the theory of products of random matrices in
the context of consensus algorithms was previously initiated
and elaborated in [10] for the case of linear gossip algorithms
with pairwise, bidirectional, symmetric communication. While
we rely partially on the same mathematical methodology, the
range of communication protocols that we consider is sig-
nificantly broader, in particular, we consider ratio consensus
algorithms.

Our work complements and extends the result of [11] in which
an upper bound for the rate (or the exponent) of a.s. exponential
convergence of a (sampled) weighted gossip algorithm was
derived; see Remark 20. A more recent work to mention is [12],
in which an ingenious device was proposed, using auxiliary
variables, to solve the average consensus problem with column
stochastic matrices via a linear asynchronous gossip algorithm,
proving exponential mean square stability with an explicit upper
bound for the rate. It turns out that our results are applicable to
prove a.s. exponential convergence, as well.

Finally, we point out that exponential rate of convergence of
ratio consensus algorithms can be established, under appropriate
conditions, with purely deterministic methods; however, we are
unaware of any tight upper bounds for the rate of convergence in
this context. The key idea is to establish exponentially decaying
upper bounds for the error of rank-1 approximations of the form
un1

� of products of column stochastic matrices, belonging to
a given set, using pure linear algebra. This program is nicely
followed through in [4] and the follow-up paper [13], relying
on a result of [14]. A specific novelty of these papers is that
they develop a ratio consensus algorithm with arbitrary bounded
delays. Similar results, with focus on rank-1 approximations,
are formulated in [15, Lemma 2 and Prop. 1], although with no
proofs. The relevance of rank-1 approximations is also clarified
in the stochastic settings (see [16]) pointed out also by the funda-
mental approximate equations (39) and (40) of this article. It is
worth noting that in all the aforecited papers, the communication
matrices are assumed to be column stochastic.

This article is organized as follows. Sections II–VI are de-
voted to the description of the subject matter and the main
results of this article with minimal technical details; starting
with two sections presenting a few preliminary technicalities, a
section on normalized products, a section with the statements
and interpretations of the main results, followed by a brief
section on push-sum algorithms. In Sections VII and VIII, we



GERENCSÉR AND GERENCSÉR: TIGHT BOUNDS ON THE CONVERGENCE RATE OF GENERALIZED RATIO CONSENSUS ALGORITHMS 1671

elaborate on the major mathematical details; in Section VII, we
describe the essential fabric of the proofs of the main theorems,
while in Section VIII, an interlude on the connection between
spectral gap and Birkhoff’s contraction coefficient is added.
A brief discussion is given in Section IX, and finally, Section
X concludes this article. Relevant but minor technical details
will be given in the Appendices. Altogether we intend to give
a self-contained presentation of the subject matter and of the
background material.

II. TECHNICAL PRELIMINARIES

For the formulation of our results, we recall two basic facts
on the product of random matrices.

Proposition 1 (Fürstenberg and Kesten’s theorem, [17]): Let
(An), n ≥ 1 be a strictly stationary, ergodic process of p× p
random matrices over a complete probability space (Ω,F , P )
such that E log+ ‖A1‖ <∞. Then, the a.s. limit

λ1 = lim
n→∞

1

n
log ‖AnAn−1 . . . A1‖ <∞ (5)

exists and it is equal to

lim
n→∞

1

n
E log ‖AnAn−1 . . . A1‖

= inf
n

1

n
E log ‖AnAn−1 . . . A1‖. (6)

Note that we may have λ1 = −∞.
A more refined asymptotic characterization of

AnAn−1 . . . A1 is given by Oseledec’s theorem. To appreciate
the novelty and power of this theorem, we make a brief
elementary detour in the field of Lyapunov exponents; see [18].
Let (An), n ≥ 1 be a fixed sequence of p× p matrices. For any
x ∈ Rp, define the Lyapunov exponent of x with respect to
(w.r.t.) (An) as

λ(x) := lim sup
n→∞

1

n
log |AnAn−1 . . . A1x|.

Next, for any extended real number −∞ ≤ μ ≤ +∞, define the
set

Lμ = {x ∈ Rp : λ(x) ≤ μ}. (7)

It is easily seen thatLμ is a linear subspace of Rp and forμ < μ′,
we have Lμ ⊆ Lμ′ . It is also readily seen that Lμ is continuous
from the right: ifx ∈ Lμj

for a sequence ofμj-s such thatμj tend
to μ from above, then we have also x ∈ Lμ. Since there can be
only a finite number of strictly descending subspaces, it follows
that there is a finite number of possible values of the Lyapunov
exponents, +∞ ≥ μ1 > μ2 > · · · > μq ≥ −∞, such that

Rp = Lμ1
� Lμ2

· · · � Lμq
� {0} =: Lμq+1

, (8)

where Lμ is a piecewise constant function of μ with points of
discontinuity exactly at μi. Thus, for μr−1 > μ ≥ μr, we have
Lμ = Lμr

for 2 ≤ r ≤ q, and for μq > μ, we have Lμ = {0}.
It follows that for 1 ≤ r ≤ q

x ∈ Lμr
\ Lμr+1

implies λ(x) = μr. (9)

Let the dimension of Lμr
be denoted by ir, with 1 ≤ r ≤ q + 1

(with iq+1 = 0). Then, the codimension of Lμr+1
relative to

Lμr
is ir − ir+1, which can be interpreted as the multiplicity

of the Lyapunov exponent μr. Accordingly, we define the full

spectrum of Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λp, allowing
the values ±∞, by setting for 1 ≤ i ≤ p

λi = μr if ir ≥ i > ir+1. (10)

If (An) = (An(ω)) is the realization of a strictly stationary
ergodic process, then the above observations can be extended to
the following fascinating result, stated first in [19], and restated
and proved under weaker condition in [20]:

Proposition 2 (Oseledec’s theorem): Assume that (An) is a
strictly stationary ergodic process of p× p matrices such that
E log ‖A1‖+ <∞. Then, there exists a subset Ω′ ⊂ Ω with
P (Ω′) = 1 such that for all ω ∈ Ω′ and for any x ∈ Rp, the
following limit exists:

λ(x) = lim
n→∞

1

n
log |AnAn−1 · · ·A1x|. (11)

Moreover the Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λp, possi-
bly taking the value−∞, do not depend onω ∈ Ω′.Accordingly,
μr and ir for 1 ≤ r ≤ q do not depend on ω ∈ Ω′ either. The
mappingω → Lμr

(ω) is measurable fromΩ to the Grassmanian
manifold of linear subspaces of dimension ir. In addition, we
have with Mn = AnAn−1 · · ·A1

M ∗ = lim
(
MT
nMn

)1/2n
a.s. (12)

From the proof given in [20], it follows that taking a singular
value decomposition of Mn as

Mn = UnΣnVn (13)

where Un and Vn are orthonormal matrices, and Σn is diagonal
with entries σ1

n ≥ σ2
n · · · ≥ σpn ≥ 0, we have

λk = lim
n→∞

1

n
log σkn a.s. for k = 1, . . . , p. (14)

Therefore, we have, with o(1) denoting a sequence of random
variables tending to 0 a.s. as n tends to ∞

Σn = diag(e(λk+o(1))n). (15)

Surprisingly, the orthonormal matrices Vn will also converge
a.s. in a restricted sense. Allowing the possibility of multiplicity
of Lyapunov exponents consider a fixed μr and define Ir = {i :
λi = μr}, and let SV Ir ·n denote the subspace spanned by the
rows of Vn with indices in Ir. Then, we have a.s. lim SV Ir ·n =
SV Ir · for some random subspace SV Ir ·. We note in passing
that this technical result immediately implies the existence of
the a.s. limit in (12).

In particular, if λ1 > λ2, then for the first row of Vn, denoted
by v1·n , we have

lim
n→∞ v

1·
n = v1· (16)

with probability 1 (w.p.1) for some random v1·. In fact, it was
proved by Ragunathan in [20, Lemma 5] that for any ε > 0

v1·n − v1· = O(e−(λ1−λ2+o(1))n) w.p.1. (17)

Writing

Mn = u·1n v
1·σ1

n +

p∑
k=2

u·kn v
k·σkn (18)

it follows by straightforward calculations that

Mn = u·1n v
1·σ1

n +O(e(λ2+o(1))n). (19)
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A rank-1 approximation for the product of a strictly stationary,
ergodic sequence of column stochastic matrices has been derived
in [16, Th. 3] using different techniques.

A nice corollary of Oseledec’s theorem, obtained by a straight-
forward application of Fubini’s theorem, is that for all x ∈ Rp,
except for a set of the Lebesgue-measure zero, we have

λ1 = lim
1

n
log |AnAn−1 . . . A1x| w.p.1. (20)

In the special case when An = A for all n, arranging the
eigenvalues of A, say νi, according to their absolute values in a
nonincreasing order, we have λi = log |νi|.

III. SEQUENTIALLY PRIMITIVE NONNEGATIVE

MATRIX PROCESSES

In the next section, we present the extension of a result of [21]
on the asymptotic behavior of normalized products

AnAn−1 · · ·A1x/1
TAnAn−1 · · ·A1x (21)

where 1 is a p-vector all coordinates of which are 1. For the
generalization of [21, Th. 1], the extension of the notion of
primitivity for a class of matrices and stochastic processes will
be needed. For a nice introduction and motivation on this topic,
see [22].

Let A = {A1, . . . , Am} be a finite family of p× p matrices
with nonnegative entries. We may then ask if there is a product
of these matrices (with repetitions permitted) which is strictly
positive. The following definition is essentially given in [22].

Definition 3: A family A of nonnegative p× p matrices is
called primitive if there is at least one strictly positive product
of matrices of this family.

Let A0 := γ(A) denote the (0,1) matrix having a 1 in a posi-
tion exactly if in that position A has a positive element. Define
the set of matrices A0 = {γ(A) : A ∈ A}. Then, obviously, A
is primitive if and only if A0 is primitive. The definition and
claim extends to infinite sets of matrices A.

We will now extend the definition to stationary processes of
nonnegative random matrices. A matrix is called allowable, if it
has no zero row or zero column. It is called row allowable if it
has no zero row.

Definition 4: A strictly stationary process of nonnegative
allowable random matrices (An), n ≥ 1, is called (forward) se-
quentially primitive if Mτ = AτAτ−1 . . . A1 is strictly positive
for some finite stopping time τ with probability 1. For anyn ≥ 1,
we define the (forward) index of sequential primitivity as

ψn = min{ψ ≥ 1 : An+ψ−1An+ψ−2 . . . An > 0}. (22)

Since by assumptionAn is row allowable, we will haveMn >
0 with strict inequality for all n ≥ ψ1. It is also clear that a
stationary process of nonnegative random matrices (An), n ≥ 1,
is (forward) sequentially primitive if and only if the stochastic
process (A0

n), n ≥ 1, is (forward) sequentially primitive.
The definition extends to two-sided processes. In this case, we

may also define the concept of backward sequential primitivity,
and the backward index of sequential primitivity as

ρn = min{ρ ≥ 1 : AnAn−1 · · ·An−ρ+1 > 0}. (23)

Lemma 5: A two-sided strictly stationary sequence (An) is
forward sequentially primitive if and only if it is backward

sequentially primitive. Moreover, the forward and backward
indices of sequential primitivity, ψn and ρn, have the same
distributions.

The point in discussing both forward and backward primitivity
will become clear in connection with Theorems 14 and 16 below
in which the natural assumption is that (An), n ≥ 1 is forward
sequentially primitive, and Eψ1 <∞. However, in the proof,
we do need to ensure that for a two-sided extension of (An), we
have Eρ1 <∞.

Consider now the case of an i.i.d. sequence (An), n ≥ 1.
Remark 6: Let (An), n ≥ 1, be an i.i.d. sequence of allowable

matrices. Then, it is sequentially primitive if and only if the
following set is primitive:

A0
= {C : P (γ(A1) = C) > 0}.

Obviously, the range of (γ(An)), n ≥ 1 is finite. This moti-
vates the assumption in the following lemma.

Lemma 7: Consider an i.i.d. sequence of nonnegative, allow-
able p× p matrices (An), −∞ < n <∞ having a finite range
A,which is primitive. Then, ψn is finite w.p.1, and the tail prob-
abilities of ψn decay geometrically, P (ψn > x) < c exp(−αx)
with some c, α > 0. Analogous results hold for the indices of
backward sequential primitivity ρn.

The almost trivial proof will be given in Appendix A. The
above lemma implies that Eψn <∞, and sinceψn has the same
distribution for all n, the sequence ψn is sublinear, i.e., ψn =
o(n) a.s. Obviously, the same holds for the backward indices of
sequential primitivity, i.e., ρn = o(n) a.s.

IV. NORMALIZED PRODUCTS OF NONNEGATIVE

RANDOM MATRICES

In this section, we describe the extension of a nice result
of [21], the proof of which inspired the proofs of the main
theorems of this article.

Let (An), n ≥ 1 be a sequence of allowable p× p matrices.
Let x,w ∈ Rp be component-wise nonnegative vectors, written
as x,w ≥ 0, the set of which will be denoted by Rp

+, such that
x,w �= 0. Define the sequences

xn :=Mnx = AnAn−1 . . . A1x (24)

wn :=Mnw = AnAn−1 . . . A1 w. (25)

Obviously xn and wn are nonnegative, and since the An-s are
allowable andx,w �= 0, we have xn, wn �= 0.Therefore, we can
define

x̄n = xn/(1
�xn), w̄n = wn/(1

�wn). (26)

The following result is a straightforward extension of [21]. In
the theorem, ‖x̄n − w̄n‖TV := 1

2

∑p
i=1 |x̄in − w̄in| denotes the

total variation distance of the probability vectors x̄n and w̄n.
Theorem 8: Assume that (An), n ≥ 1 is a strictly sta-

tionary, ergodic process of random p× p matrices such that
E log+ ‖A1‖ <∞. In addition, assume that An is nonnegative
and allowable for all n, and assume that the process (An) is
sequentially primitive. Then, for all pairs (x,w) ∈ Rp

+ × Rp
+,

except for a set of Lebesgue measure zero, it holds that

lim
n→∞

1

n
log ‖x̄n − w̄n‖TV = −(λ1 − λ2) w.p.1
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where λ1 and λ2 are the first and second largest Lyapunov
exponents associated with (An). In addition, for any fixed pair
(x,w) ∈ Rp

+ × Rp
+ with strictly positive components with no

exception, it holds that the above limit exists w.p.1, and

lim
n→∞

1

n
log ‖x̄n − w̄n‖TV ≤ −(λ1 − λ2).

The proof of Theorem 8 is a straightforward extension of [21,
proof of Th. 1] and will be given in Appendix B. We should note,
however, that the proof given in [21] contains two nontrivial
deficiencies. These will be rectified by the following lemmas,
the proofs of which will be given also in Appendix B. The first
lemma was implicitly stated in [21], with a minor flaw in the
proof.

Lemma 9: Let the sequence of matrices (An) be as in The-
orem 8. Then, there exists a subset Ω′ ⊂ Ω with P (Ω′) = 1
such that for all ω ∈ Ω′ it holds that any strictly positive vector
x > 0, x ∈ Rp is contained in x ∈ Lμ1

\ Lμ2
, see (8)–(10):

λ1 = lim
n→∞

1

n
log |AnAn−1 . . . A1x|. (27)

The second result was tacitly used in [21], with no proof.
Here, the notion of exterior product of vectors and matrices,
denoted by x ∧ w and A ∧B, resp., is used. Here, x ∧ w can
be identified with the antisymmetric matrix xw� − wx�, and
(A ∧B)(x ∧ w) = Ax ∧Bw; see [23].

Lemma 10: Let (An), n ≥ 1 be a strictly stationary, ergodic
process of p× p random matrices such that E log+ ‖An‖ <∞.
Consider the exterior product space Rp ∧ Rp and the matrices
An ∧An acting on it. Then, for all pairs (x,w) ∈ Rp × Rp,
except for a set of Lebesgue measure zero, the a.s. limit

lim
n→∞

1

n
log |((AnAn−1 · · ·A1) ∧ (AnAn−1 · · ·A1))(x ∧ w)|

exists and is equal to λ1 + λ2.
Motivated by Theorem 8, we consider the possibility of an

extension of the results concerning the push-sum or weighted
gossip algorithms under significantly more general conditions.

V. GENERALIZED RATIO CONSENSUS

In this section, we will formalize our main results on the
convergence rate of a generalized ratio consensus algorithm.
The common setup for our results will be based on Theorem
8. However, this will have to be complemented by a variety of
additional conditions imposed on (An).

For the formulation of our technical results, we will need
to impose further conditions on the positive elements of An,
controlling the possibility of moving a random fraction (or share)
of values and weights during a transaction. Let us introduce
the following notations for the minimal and maximal positive
elements of An:

αn := min
ij

{Aijn : Aijn > 0}, βn := max
ij

Aijn . (28)

Since βn is equivalent to ‖An‖, it follows immediately that
E log+ βn <∞. A direct consequence of this is that for any
ε > 0, we have a.s. βn = O(eεn), i.e., βn is subexponential
(see below). A twin pair of the condition E log+ βn <∞ is
the following.

Condition 11: Let (An), n ≥ 1 be a strictly stationary, er-
godic process of random, p× p nonnegative matrices. We as-
sume that E log− αn > −∞, where αn is the minimal positive
element of An defined previously.

A direct consequence of this condition is that E log+ 1
αn

<

∞, implying that 1
αn

is subexponential. The above condition
is obviously satisfied if (An) takes its values form a finite set,
say A, w.p.1, which is the case with the push-sum algorithm
allowing packet loss.

Theorem 12: Assume that the conditions of Theorem 8 are
satisfied, in addition, the sequence (An) is i.i.d., and λ1 − λ2 >
0.Furthermore, assume that the minimal positive elements ofAn
satisfy Condition 11. Let ek denote the kth unit vector for any
k = 1, . . . , p. Take an arbitrary vector of initial values x ∈ Rp,
and a nonnegative vector of initial weights w ∈ Rp

+ such that
w �= 0. Then, ratio consensus takes place and an explicit upper
bound for the rate of convergence can be given as follows: for
all i = 1, . . . , p, we have

lim sup
n→∞

1

n
log

∣∣∣∣ e�i Mnx

e�i Mnw
− v1·x
v1·w

∣∣∣∣ ≤ −(λ1 − λ2) w.p.1.

(29)
By Theorem 12 for all agents i, the values xin/w

i
n will

converge to the same limitπTx a.s., whereπ is the random vector
defined by π = v1·/v1·w, with at least the given rate. The limit is
random, in contrast to the case of classic push-sum or weighted
gossip algorithms without packet loss. On the other hand, there
is ample empirical evidence that decreasing the probability of
packet loss leads to higher concentration of the distribution of
πTx, around x̄; see [9].

An extension of the aforementioned scenario is obtained if the
communicating pairs of agents are chosen according to some
time-homogeneous random pattern, which may be different
from an i.i.d. choice, see geographic gossip, randomized path
averaging, or one-way averaging, [2], [3], [8]. Thus, we come to
consider the case when (An) is a general, strictly stationary er-
godic sequence. As for the additional conditions to be imposed,
we consider two levels of complexity.

Condition 13: Let (An), n ≥ 1 be a strictly stationary, er-
godic process of random, p× p nonnegative matrices. We say
that (An) is bounded from below and from above, if there exist
α, β > 0 such that, with the notations of (28), we have a.s.

αn ≥ α > 0, βn ≤ β. (30)

Again, the above condition is obviously satisfied if the range
of (An), denoted above by A, is finite.

Theorem 14: Assume that the conditions of Theorem 8 are
satisfied, λ1 − λ2 > 0, and for the forward index of sequential
primitivity ψn, we have Eψn <∞. Furthermore, assume that
the positive elements of An are bounded from below and from
above in the sense of Condition 13. Then, for any vector of initial
values x ∈ Rp, and any nonnegative vector of initial weights
w ∈ Rp

+ such that w �= 0 ratio consensus takes place, in fact,
(29) holds.

A further extension of this result is obtained if the elements of
An are not bounded from above and from below, thus allowing
for the possibility of moving a negligible fraction of values
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and weights. In this case, we need an extra technical condition
ensuring some kind of mixing of the process (An).

Condition 15: A two-sided strictly stationary process (ξn)
satisfies a qth order M -mixing condition, with q ≥ 1, if
E|ξn|q <∞, and for any positive integerN , we have, with some
constant C > 0

E
∣∣∣ N∑
n=1

(ξn − Eξn)
∣∣∣q ≤ CNq/2. (31)

Theorem 16: Assume that the conditions of Theorem 8 are
satisfied, λ1 − λ2 > 0, and for the index of forward sequential
primitivity ψn, we have Eψn <∞. Furthermore, assume that
an = logαn and bn = log βn satisfy a qth order M -mixing
condition, given in Condition 15, with some q > 4. Then for
any vector of initial values x ∈ Rp, and any nonnegative vector
of initial weightsw ∈ Rp

+ such thatw �= 0 ratio consensus takes
place, in fact, (29) holds.

It may be of interest to consider an estimate of the average
at any time n by taking a weighted average of the respective
values of xin and win. In this case, Theorems 12, 14, and 16
easily generalize to the following.

Corollary 17: Let q ∈ Rp
+, q �= 0 be a nonnegative weight

vector. Assume that any of the sets of conditions of Theorems
12, 14, or 16 is satisfied. Then, for any vector of initial values
x ∈ Rp, and any nonnegative vector of initial weights w ∈ Rp

+

such that w �= 0, we have

lim sup
n→∞

1

n
log

∣∣∣∣ q�Mnx

q�Mnw
− v1·x
v1·w

∣∣∣∣ ≤ −(λ1 − λ2) a.s. (32)

Proof of Corollary 17: The claim is obtained by a direct and
standard convexity argument (see [2]): for any pair of vectors
a, b ∈ Rp such that b > 0, we have

min
i

ai

bi
≤ q�a
q�b

≤ max
i

ai

bi
. (33)

Indeed, this follows from

q�a
q�b

=

∑
i q
iai∑

i q
ibi

=
∑
i

(
ai

bi

)
qib

i∑
j q

jbj
. (34)

Setting ai = e�i Mnx and bi = e�i Mnw, we get

min
i

e�i Mnx

e�i Mnw
≤ q�Mnx

q�Mnw
≤ max

i

e�i Mnx

e�i Mnw
(35)

from which the claim follows by Theorems 12, 14, and 16. �
Let the left-hand side (LHS) and the right-hand side (RHS)

of (35) be denoted by yn and zn, respectively. The following
elementary lemma, which will be used later on, has been estab-
lished in [9] for the case of the push-sum algorithm with packet
loss.

Lemma 18: The values yn and zn are monotone nondecreas-
ing and nonincreasing, respectively. In particular, it follows that
for any time n, we have

min
i

e�i Mnx

e�i Mnw
≤ v1·x
v1·w

≤ max
i

e�i Mnx

e�i Mnw
a.s. (36)

Proof of Lemma 18: Indeed, for any index j, write

hn+1,j :=
e�jMn+1x

e�jMn+1w
=
e�j An+1Mnx

e�j An+1Mnw
=
q�j Mnx

q�j Mnw
(37)

with q�j = e�j An+1. Since An+1 is nonnegative and allowable,
we have qj ≥ 0, qj �= 0. Thus, we get by (35), the inequality
yn ≤ hn+1,j ≤ zn for all j from which the first claim follows.
The second claim follows trivially from the established mono-
tonicity, and the fact that, according to Theorem 12, we have
a.s.

lim
n→∞min

i

e�i Mnx

e�i Mnw
=
v1·x
v1·w

= lim
n→∞max

i

e�i Mnx

e�i Mnw
.

�
In the special case, whenAn is column stochastic for all n, as

in the case of the push-sum or weighted gossip algorithm with
no packet loss,Mn will be column-stochastic for alln. It follows
that ‖Mn‖ is bounded from above and bounded away from 0,
hence, it readily follows that for the top-Lyapunov exponent we
have λ1 = 0, and we obtain the following result.

Theorem 19: Assume that any of the sets of conditions of
Theorems 12, 14, or 16 is satisfied, and in addition,An is column
stochastic for alln.Then, for any vector of initial valuesx ∈ Rp,
and any nonnegative vector of initial weights w ∈ Rp

+ such that
w �= 0, we have for all i = 1, . . . , p

lim sup
n→∞

1

n
log

∣∣∣∣ e�i Mnx

e�i Mnw
− 1�x

1�w

∣∣∣∣ ≤ λ2 < 0 a.s.

Choosing w = 1, Theorem 19 implies that ratio consensus
will take place in the classic sense: for all agents k, the val-
ues xkn/w

k
n will converge to the same nonrandom limit x̄ =∑p

i=1 x
i
0/p, with at least the given rate.

Remark 20: It may come as a pleasing surprise that the a.s.
rate of convergence for weighted gossip algorithms provided by
Theorem 19 is identical with the a.s. rate of convergence of a
class of linear gossip algorithms, described in [10], defined via
a strictly stationary ergodic edge process. By [10, Th. 5.2], with
An denoting the associated doubly stochastic matrices, we have
for any x ∈ Rp and any i

lim sup
n→∞

1

n
log |e�i An · · · · ·A1x− 1Tx

p
| ≤ λ2 a.s. (38)

We note that an extension of this result can be easily derived
from the proof of Theorem 19: assuming the additional condition
that An is doubly stochastic for all n, inequality (38) holds.
Unfortunately the problem of deciding if λ2 < 0 is generally
not only NP hard, but undecidable [24], [25].

An upper bound for the rate of a.s. exponential convergence
of an appropriately sampled process xiτn/w

i
τn
, generated by

the weighted gossip algorithms, was derived in [11] assuming,
among others, that (An) is i.i.d. and column stochastic. These
upper bounds for the rate, obtained via the analysis of the
mean squared error of An . . . A1 · (I − 11�/p), are given by
κ = − 1

2 log ρ(R), with ρ(·) denoting the spectral radius, and

R = E[A1 ⊗A1] · ((I − 11�/p)⊗ (I − 11�/p)).
We should note that the same computable upper bound for

the rate of a.s. exponential convergence of the complete process
xin/w

i
n can be readily derived by combining the arguments

of [11] with Lemma 27 of this article.
The upper bounds for the rates in the preceding theorems seem

to have been unknown prior to this article. As for the exact rate,
the best we can claim is the following theorem.
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Theorem 21: Assume that any of the sets of conditions of
Theorems 12, 14, or 16 is satisfied. Then, for all pairs of non-
negative vectors (x,w) ∈ Rp

+ × Rp
+, such that x,w �= 0, except

perhaps for a set of Lebesgue-measure zero, it holds that

lim
n→∞

1

n
logmax

i

∣∣∣∣ e�i Mnx

e�i Mnw
− v1·x
v1·w

∣∣∣∣ = −(λ1 − λ2) a.s.

VI. SPECIFICATION FOR PUSH-SUM WITH PACKET LOSS

In this section, we summarize the implications of the previ-
ously stated results for the classic push-sum or weighted gossip
algorithm, allowing packet loss as described in the Introduction,
which is in line with the setting of [9].

Theorem 22: Let (An), n ≥ 1 be the associated i.i.d. se-
quence of matrices defined under (3). Assume that the directed
communication graph (G,E) is strongly connected. Then, for
any initial values x ∈ Rp, and a nonnegative vector of initial
weights w ∈ Rp

+ such that w �= 0 ratio consensus takes place,
and for all i = 1, . . . , p, an explicit upper bound for the a.s. rate
of convergence can be given as follows:

lim sup
n→∞

1

n
log

∣∣∣∣e�i Mnx

e�i Mn1
− v1·x
v1·1

∣∣∣∣ ≤ −(λ1 − λ2).

In the case of no packet loss, we have λ1 = 0 and v1· = 1�.
Proof of Theorem 22: For the first step of the proof, we verify

the only nontrivial condition of Theorem 8 requiring that (An)
is sequentially primitive. Since (An) is an i.i.d. sequence, we
can resort to Lemma 6. Consider, therefore, the (finite) range of
the random matricesAn given by (3), denoted by APS. The first
of the following two lemmas restates a well-known result in the
consensus literature (see [2]), while the second one claims the
validity of the key condition λ1 > λ2. The proofs will be given
in Appendix C.

Lemma 23: Assume that the directed communication graph
G = (V,E) is strongly connected. Then, the set APS is primi-
tive.

Lemma 24: Let (An), n ≥ 1 be an i.i.d. sequence of matrices
corresponding to the push-sum algorithm allowing packet loss,
defined in (3), satisfying the condition described in the Intro-
duction. Then, we have for the spectral gap λ1 − λ2 > 0.

To complete the proof of Theorem 22, we apply Theorem
12, the conditions of which are partially assumed, and partially
ensured by the above lemmas. This confirms the general case
with possible packet loss. In the case of no packet loss, the claim
λ1 = 0 and v1· = 1 is implied by Theorem 19. �

Remark 25: Note that the argument used in [21] to estimate
λ1 − λ2 from below cannot be used in our case. Namely, [21]
refers to a result of [26]

λ1 − λ2 ≥ −E log τ(A1)

where τ(A1) is the Birkhoff contraction coefficients of A1 (see
in the following). However, in our case, we have τ(An) = 1 a.s.,
hence, the lower bound is simply 0.

By this, we end the description of the key points of our work
and switch to slightly heavier mathematical details. First, we
describe the critical steps of the proofs of our main theorems,
with some technical details relegated to Appendix D, and then,
a mathematical interlude on the spectral gap is added.

VII. PROOFS OF THEOREMS 12, 14, 16, 19, AND 21

For the proof of Theorem 12, a natural starting point would
be Theorem 8. However, we will see that nothing is gained
compared to a direct proof. On the other hand, the situation
is completely different in the case of Theorem 21, the proof of
which will rely essentially on Theorem 8.

For the description of the proofs, we need the following defi-
nition. A stochastic process ξn, n ≥ 1 is called subexponential,
if for any ε > 0, we have for all n, with finitely many excep-
tions, a.s. |ξn| ≤ eεn. We will use the notation ξn = eo(1)n.
Equivalently, ξn, n ≥ 1 is subexponential if lim supn→∞

1
n

log |ξn| ≤ 0.
In view of (19), assuming λ1 > λ2, the matrix product Mn

is asymptotically equivalent to the sequence of rank-1 matri-
ces u·1n v

1·σ1
n, a.s. A weak, a priori estimate of a measure of

collinearity of the rows of Mn is formalized in Condition 26,
under which the proofs of Theorems 12–21 will be completed.
The validity of Condition 26 itself will be verified by Lemma
44 in Appendix D.

Condition 26: Letting Mn = AnAn−1 · · ·A1, as before, we
assume that for any pair of row indices i, j, and any column
index k, it holds that M ik

n /M
jk
n is subexponential.

Lemma 27: Under the conditions of Theorem 8, the additional
assumption that λ1 > λ2, and Condition 26, it holds that 1/ui1n
is subexponential a.s. for all i.

Proof of Lemma 27: Recall that according to (19), we have
a.s.Mn = u·1n v

1·σ1
n +O(e(λ2+o(1))n). Take an arbitrary pair of

row indices j, i, and compare the rows M j·
n and M i·

n . Choosing
a column index k such that v1k > 0, we consider

M jk
n

M ik
n

=
uj1n v

1kσ1
n +O(e(λ2+o(1))n)

ui1n v
1kσ1

n +O(e(λ2+o(1))n)
. (39)

Taking into account v1k > 0, we would have for any j, i

M jk
n

M ik
n

=
uj1n +O(e(−λ1+λ2+o(1))n)

ui1n +O(e(−λ1+λ2+o(1))n)
. (40)

From this, it follows that 1/ui1n is subexponential as stated.
Indeed, assume that this is not the case, then for some small
ε > 0, we have 1/ui1n ≥ eεn for an infinite subsequence, say
n = nr, consequently ui1n ≤ e−εn for n = nr. Select j so that
for some infinite subsequence of (nr), which we identify with
(nr), we have uj1nr

≥ 1/
√
p. The indirect assumption and the

choice of j would then imply M jk
n /M ik

n ≥ Ceεn with some
C > 0 infinitely many times a.s., which is a contradiction to
Condition 26. �

Lemma 28: Under the conditions of Theorem 8, with the
additional assumption that λ1 > λ2, and Condition 26, it holds
that v1i > 0 for all i = 1, . . . , p.

Proof of Lemma 28: Consider the matrix process Ān = A�
−n.

First, we show that the Lyapunov exponents for the processes
(Ān) and (An) are identical, λ̄k = λk for all k = 1, . . . , p.
Define for any pair of integers n > m, the products Mn,m =
AnAn−1 · · ·Am and M̄n,m = ĀnĀn−1 · · · Ām. Then, we have

M�
n,m = (AnAn−1 · · ·Am)� = A�

m · · ·A�
n−1A

�
n

= Ā−m · · · Ā−n+1Ā−n = M̄−m,−n.
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Let a singular value decomposition (SVD) of Mn,m be

Mn,m = Un,mΣn,mVn,m.

Then, an SVD for M̄−m,−n is obtained as follows:

M̄−m,−n = V �
n,mΣn,mU

�
n,m =: Ū−m,−nΣ̄−m,−nV̄−m,−n

with the notations

Ū−m,−n = V �
n,m (41)

Σ̄−m,−n = Σn,m (42)

V̄−m,−n = U�
n,m. (43)

To prove λ̄1 = λ1, note that (41)–(43) implies

λ̄1 = lim−m→∞
1

n−m+ 1
log σ̄1

−m,−n

= lim−m→∞
1

n−m+ 1
log σ1

n,m

w.p.1, and hence, also in distribution. But σ1
n,m and σ1

n−m+1,1

have the same distribution, and for the latter, we have

λ1 = lim−m→∞
1

n−m+ 1
log σ1

n−m+1,1

w.p.1, and hence, also in distribution. Thus, the distribution of
λ̄1 and λ1 agree implying λ̄1 = λ1.

Applying the same argument to the kth exterior product
sequences formed by An ∧ · · · ∧An and Ān ∧ · · · ∧ Ān, we
conclude that λ̄1 + · · ·+ λ̄k = λ1 + · · ·+ λk for all k implying
the claim.

Next, consider the matrices Vn,m with m fixed and n tending
to ∞. The first rows of Vn,m denoted by v1·n,m converge a.s.
to a limit, say v1·m with exponential rate by [20, Lemma 5], the
error being O(e(−λ1+λ2+o(1))(n−m)). This implies, that the first
columns of Ū−m,−n, denoted by ū·1−m,−n also converge to a limit
ū·1−m = v1·�m a.s. with the same exponential rate when n tends to
∞.

Take m = 1 and assume in contrary to the statement of the
lemma that v1i = v1i1 = 0 for some i. Then, ūi1−1 = 0, and thus,
ūi1−1,−n is exponentially small a.s. when n tends to ∞ : writing
ξn := ūi1−1,−n, we have for any 0 < μ < λ1 − λ2, with some
C(ω) > 0, the inequality ξn ≤ C(ω)e−μn. This implies for the
distribution of ξn that for any μ′ < μ < λ1 − λ2

P (ξn ≤ e−μ
′n) ≥ P (C(ω)e−μn ≤ e−μ

′n)

= P (C(ω) ≤ e(μ−μ
′)n) → 1, as n→ ∞. (44)

On the other hand, shifting the time indices in ūi1−1,−n by
n+ 1, we get the random variables ξ′n := ūi1n,1 having the same
distribution as ξn. Applying Lemma 27 to the process (Ān),
where the conditions are easily verified, we get that 1/ξ′n is
subexponential. Thus, for any ε > 0, we have 1/ξ′n ≤ C ′(ω)eεn,
with some C ′(ω) > 0. Following the argument given previ-
ously, we get for the distribution of 1/ξ′n that for any ε′ >
ε > 0, it holds that P (1/ξ′n ≤ eε

′n) → 1 as n→ ∞, implying
P (e−ε

′n ≤ ξ′n) → 1, which in turn yields

P (ξ′n < e−ε
′n) → 0, as n→ ∞. (45)

Choosing 0 < ε < ε′ < μ,′ and recalling that ξ′n and ξn have the
same distribution, we get a contradiction with (44), and thus, the
proof is complete. �

Proofs of Theorems 12, 14, and 16: Assuming the validity
of Condition 26, to be established separately under each set of
conditions of Theorems 12, 14, and 16, the proof of the quoted
three theorems are identical.

Recall that we have by (19), Mn = u·1n v
1·σ1

n +
O(e(λ2+o(1))n), hence

e�i Mnx

e�i Mnw
=
e�i u

·1
n v

1·xσ1
n +O(e(λ2+o(1))n)

e�i u·1n v1·wσ1
n +O(e(λ2+o(1))n)

. (46)

Divide both the numerator and the denominator by σ1
n to get

e�i Mnx

e�i Mnw
=
e�i u

·1
n · v1·x+O(e(−λ1+λ2+o(1))n)

e�i u·1n · v1·w +O(e(−λ1+λ2+o(1))n)
. (47)

Note that v1· > 0 by Lemma 28, and thus,w ≥ 0, w �= 0 imply
v1·w > 0. Divide both the numerator and the denominator by
v1·w and also by e�i u

·1
n . The proof is then completed by noting

that 1/e�i u
·1
n = 1/ui1n is subexponential for all i, as stated in

Lemma 27. �
Proof of Theorem 19: First note thatMn is column-stochastic

for alln, hence, ‖Mn‖ is bounded from above and bounded away
from zero. It follows that λ1 = 0. To complete the proof, it is
sufficient to show that v1· is proportional to 1�, (implying that
v1· = 1�/

√
p). Writing

1� = 1�Mn = 1�u·1n v
1·σ1

n +O(e(λ2+o(1))n) a.s. (48)

and noting that1�u·1n andσ1
n = ‖Mn‖ are bounded and bounded

away from 0, after dividing by these, we get

cn1
� = v1· +O(e(λ2+o(1))n) a.s. (49)

with some possibly random scalar cn. Letting n→ ∞, and
taking into account λ2 < 0, the RHS will converge to v1·, and
thus, the LHS will also converge, implying that cn converges to
some c, yielding c1� = v1·, as claimed. �

Proof of Theorem 21: Note that the a.s. inequality

lim sup
n→∞

1

n
max
i

log

∣∣∣∣ e�i Mnx

e�i Mnw
− v1·x
v1·w

∣∣∣∣ ≤ −(λ1 − λ2) (50)

follows directly from Theorem 12. For the proof that the in-
equality is actually an equality we will rely on Theorem 8. First
note that, in addition to w > 0, we may assume x > 0, since
the set of pairs (x,w) ∈ Rp × Rp, having a 0 component in x
has a zero Lebesgue measure. Now, note that for any pairs or
probability vectors (x̄, w̄), we have

1

2
max
i

|x̄i − w̄i| ≤ ‖x̄− w̄‖TV ≤ p

2
max
i

|x̄i − w̄i|.

Therefore, Theorem 8 can be restated as follows: for all pairs
(x,w) ∈ Rp

+ × Rp
+, x, w �= 0, except for a set of Lebesgue-

measure zero, it holds a.s. that

lim
n→∞

1

n
logmax

i
|x̄in − w̄in|

= lim
n→∞

1

n
logmax

i

∣∣∣∣ xin
1�xn

− win
1�wn

∣∣∣∣ = −(λ1 − λ2). (51)
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We may relate this equality to a ratio consensus problem by
rewriting the middle term as

lim
n→∞

1

n
logmax

i

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣ · win
1�xn

= lim
n→∞

1

n
max
i

(
log

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣+ log
win

1�xn

)
. (52)

Now, if ai and bi are real numbers, then maxi(a
i + bi) ≤

maxi a
i +maxi b

i. Apply this inequality to the RHS of (52)
and take into account (51) to get that −(λ1 − λ2) is bounded
from above by

lim inf
n→∞

1

n

(
max
i

log

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣+max
i

log
win

1�xn

)
.

Furthermore, if αn and βn, n ≥ 1, are real numbers and γn =
αn + βn, then lim infn γn ≤ lim infn αn + lim supn βn.

Also note that win ≤ 1�wn implies maxi log(w
i
n/1

�xn) ≤
log(1�wn/1�xn). Thus, we get

−(λ1 − λ2) ≤ lim inf
n→∞

1

n
max
i

log

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣
+ lim sup

n→∞
1

n
log

1�wn
1�xn

. (53)

Now, by Corollary 17, 1�wn/1�xn has a finite, nonzero limit
w.p.1, hence

lim sup
n→∞

1

n
log

1�wn
1�xn

= lim
n→∞

1

n
log

1�wn
1�xn

= 0.

Hence, we conclude that

−(λ1 − λ2) ≤ lim inf
n→∞

1

n
max
i

log

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣ (54)

and combining this with (50), we can write equality and lim in
place of lim inf on the RHS as

−(λ1 − λ2) = lim
n→∞

1

n
max
i

log

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣ . (55)

Now, in view of Corollary 17, we have

min
i

xin
win

≤ 1�xn
1�wn

≤ max
i

xin
win

. (56)

On the other hand, the trivial inequalities

1

2

∣∣∣∣max
i

xin
win

−min
i

xin
win

∣∣∣∣ ≤ max
i

∣∣∣∣ xinwin − 1�xn
1�wn

∣∣∣∣
≤
∣∣∣∣max

i

xin
win

−min
i

xin
win

∣∣∣∣ (57)

combined with (55) yield

−(λ1 − λ2) = lim
n→∞

1

n
log

∣∣∣∣max
i

xin
win

−min
i

xin
win

∣∣∣∣ a.s. (58)

except for a set of initial (x,w)-s of Lebesgue measure zero.
Considering (57) and replacing 1�xn/1�wn by an arbitrary
sequence of intermediate values vn such that

min
i

xin
win

≤ vn ≤ max
i

xin
win

we get by the same logic

−(λ1 − λ2) = lim
n→∞

1

n
max
i

log

∣∣∣∣ xinwin − vn

∣∣∣∣ . (59)

Taking vn = v1·x/v1·w for all n, in view of Lemma 18, we get
the claim. �

Remark 29: In the special case, whenMn is column stochas-
tic, we have 1�xn = 1�Mnx = 1�x, and similarly, 1�wn =
1�w for all n. Furthermore, by Theorem 19, we have v1· = 1�.
Thus, in this special case, (55) immediately implies the claim
without any further deliberations.

VIII. REPRESENTATION OF THE SPECTRAL GAP λ1 − λ2

As we have seen, the spectral gap λ1 − λ2 plays a key role
in characterizing the stability of normalized products and the
convergence rate of the ratio consensus method. In this section,
we present a set of simple results providing computable lower
bounds and alternative representations for the spectral gap under
the conditions of Theorems 8, 12, 14, or 16.

A lower bound for the spectral gap was established in [26,
Prop. 5], under the condition that A1 is strictly positive with
positive probability. In fact, this result is a simple corollary of
Theorem 8 relying on its less restrictive conditions. For the
formal statement, we introduce the following definitions and
notations.

Definition 30: Let x, y ∈ Rp
+ be strictly positive vectors,

x, y > 0. Then, their Hilbert distance is defined as

h(x, y) := logmax
k,l

(
xk
yk

/xl
yl

)
. (60)

The Hilbert distance satisfies the properties of a metric within
the set of strictly positive vectors in Rp, except that h(x, y) = 0
if and only if y = cx with some c > 0. The operator norm of
a nonnegative allowable matrix A corresponding to the Hilbert
distance is called the Birkhoff contraction coefficient ofA.More
exactly, we set the following.

Definition 31: The Birkhoff contraction coefficient of a non-
negative allowable matrix A is defined as

τ(A) := sup

{
h(Ax,Ay)

h(x, y)

∣∣∣∣ x, y ∈ Rp
+, h(x, y) �= 0

}
.

Note that x, y > 0 and the assumption that A is allowable
imply that Ax,Ay > 0, and thus, h(Ax,Ay) is well-defined.
It is easy to see that τ(A) is submultiplicative, i.e., τ(AB) ≤
τ(A) · τ(B), and obviously, τ(A) ≤ 1.

A beautiful theorem due to Birkhoff yields an explicit expres-
sion of τ(A) in terms of the elements of A, which we present
for allowable matrices. Define an intermediary quantityϕ(A) as
follows. Let ϕ(A) = 0 if A has any 0 element. Otherwise, we
set

ϕ(A) := log max
i,j,k,l

(
Aik

Ajk

)
/

(
Ail

Ajl

)
= max

i,j
h(Ai·, Aj·).

(61)
By Birkhoff’s theorem (see [27, Th. 3.12] or [28])

τ(A) = tanh

(
ϕ(A)

4

)
=
eϕ(A)/4 − eϕ(A)/4

eϕ(A)/4 + eϕ(A)/4
. (62)

Theorem 32: Let (An), n ≥ 1 be a strictly stationary, ergodic
stochastic process of p× pmatrices satisfying the conditions of
Theorem 8. Then

λ1 − λ2 ≥ −E log τ(A1).
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Proof of Theorem 32: Since Am is allowable for all m
and x,w are strictly positive, the Hilbert distances of xn =
AnAn−1 · · ·A1x andwn = AnAn−1 · · ·A1 w are well defined,
and we have

h(xn, wn) = h(AnAn−1 · · ·A1x, AnAn−1 · · ·A1 w)

≤
n∏
k=1

τ(Ak) · h(x,w). (63)

Therefore, we get

lim sup
n→∞

1

n
log h(xn, wn) ≤ lim sup

n→∞
1

n

n∑
k=1

log τ(Ak)

= lim
n→∞

1

n

n∑
k=1

log τ(Ak) = E log τ(A1) a.s. (64)

where the last two equalities follow from the ergodic theorem.
Note that we can handle also the case when E log τ(A1) = −∞
since log τ(A1) is bounded from above by 0. Now, the LHS can
be bounded from below via the total variation ||x̄n − w̄n||TV

using the following elementary lemma.
Lemma 33: Let ξ and η be two strictly positive probability

vectors in Rp. Then, for their total variation distance, we have

‖ξ − η‖TV ≤ 1

2
(eh(ξ,η) − 1).

Proof of Lemma 33: Let us write briefly h = h(ξ, η). First
note that for any k, l, we have

ξk

ηk
/
ξl

ηl
≤ eh.

Define R = maxk
ξk

ηk
, r = minl

ξl

ηl
. Since ξ, η are probability

vectors, we haveR ≥ 1 ≥ r, and thus, from the above inequality,
we get e−h ≤ r ≤ R ≤ eh. Taking a k such that ξk ≥ ηk, we
have

|ξk − ηk| = ξk − ηk =

(
ξk

ηk
− 1

)
ηk ≤ (eh − 1)ηk.

On the other hand, for ξk ≤ ηk, we get

|ξk − ηk| = ηk − ξk =

(
1− ξk

ηk

)
ηk

≤ (1− e−h)ηk ≤ (eh − 1)ηk.

Summation over k gives the claim. �
To complete the proof of Theorem 32, we note that due to

the above lemma, we can bound h = h(ξ, η) from below for
small h, say for 0 ≤ h ≤ 1/2, we get ‖ξ − η‖TV ≤ h. Taking
into account that the Hilbert distance is invariant w.r.t. scaling its
arguments, we have h(xn, wn) = h(x̄n, w̄n), and this is expo-
nentially small by Theorem 8, thus we can use ‖ξ − η‖TV ≤ h
in (64) to get

lim sup
n→∞

1

n
log ‖x̄n − w̄n‖TV ≤ lim sup

n→∞
1

n
log h(x̄n, w̄n)

= lim sup
n→∞

1

n
log h(xn, wn) ≤ E log τ(A1) a.s. (65)

But we know by Theorem 8 that for almost all pairs (x,w), x >
0, w > 0, the left side is equal to −(λ1 − λ2) a.s., even with lim

instead of lim sup . From here after rearrangement, we get the
claim. �

Note that the result proven is directly not applicable for
the analysis of the push-sum algorithm allowing packet loss,
since all off-diagonal elements of A1, except at most one, is
0, and hence, τ(A1) ≡ 1 for all ω. A set of alternative lower
bounds can be obtained by segmenting the product An · · ·A1

into the product of blocks of fixed length, say m ≥ 1. Let
An(ω) = A1(T

nω), where T is a measure-preserving ergodic
transformation of Ω. Theorem 32 has the following extension.

Theorem 34: Let (An), n ≥ 1 be a strictly stationary, ergodic
stochastic process of p× pmatrices satisfying the conditions of
Theorem 8. Then, for all integers integers m ≥ 1, we have

λ1 − λ2 ≥ − 1

m
E log τ(Mm). (66)

Proof of Theorem 34: Let m ≥ 1, and define Bn = Anm ·
Anm−1 · · · ·A(n−1)m+1. Obviously, Bn+1(ω) = Bn(T

mω),
thus (Bn) is a strictly stationary process. Now, in analogy with
(63), we have

h(xnm, wnm) = h(BnBn−1 · · ·B1x, BnBn−1 · · ·B1 w)

≤
n∏
k=1

τ(Bk) · h(x,w). (67)

Therefore, we get

lim sup
n→∞

1

nm
log h(xnm, wnm) ≤ lim sup

n→∞
1

nm

n∑
k=1

log τ(Bk)

=
1

m
lim
n→∞

1

n

n∑
k=1

log τ(Bk) w.p.1 (68)

where the last equality follows from the ergodic theorem. Here,
the LHS is bounded from below by −(λ1 − λ2) w.p.1 as seen
previously. Applying the ergodic theorem once again, the RHS
converges to 1

mE [log τ(B1) | FTm ], where FTm denotes the
σ-algebra of invariant sets w.r.t. Tm. Thus, we get the a.s. upper
bound for −(λ1 − λ2) as

1

m
lim
n→∞

1

n

n∑
k=1

log τ(Bk) =
1

m
E [log τ(B1) | FTm ].

Taking expectation of both sides, we get the claim. �
Now, it is easy to see that the sequence E log τ(Mm) is

subadditive (for any ergodic T ), therefore, E log τ(Mm)/m has
a limit (the value of which may be −∞). Additionally

lim
m→∞

1

m
E log τ(Mm) = inf

m

1

m
E log τ(Mm).

Thus, we get the following corollary.
Corollary 35: Let (An), n ≥ 1 be a strictly stationary, er-

godic stochastic process of p× p matrices satisfying the con-
ditions of Theorem 8. Then, λ1 − λ2 is bounded from below
by

lim
m→∞− 1

m
E log τ(Mm) = sup

m
− 1

m
E log τ(Mm). (69)

A nice application of Corollary 35, providing a lower bound
for the spectral gap, is the following.
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Theorem 36: Let (An), n ≥ 1 be a strictly stationary, ergodic
stochastic process of p× pmatrices satisfying the conditions of
Theorem 8. Then, we have λ1 − λ2 > 0.

Proof: Since (An) is sequentially primitive, there exists a
finitem such thatP (Mm > 0) > 0.But thenP (τ(Mm) < 1) >
0, and hence, −E log τ(Mm) > 0. The claim now follows from
the second part of Corollary 35. �

A natural question that arises at this point is if we can drop
the expectation from (69). We show that in fact this can be done
using Kingmans’s subadditive ergodic theorem; see [29]–[32].

Theorem 37: Let (An), n ≥ 1 be a strictly stationary, ergodic
stochastic process of p× pmatrices satisfying the conditions of
Theorem 8. Then, we have

lim
m→∞

1

m
log τ(Mm) = lim

m→∞
1

m
E log τ(Mm) w.p.1.

Proof of Theorem 37: The double index series
Mm,k = AmAm−1 · · ·Ak is obviously strictly stationary,
Mm+1,k+1(ω) =Mm,k(Tω),whereT is ergodic. It follows that
the double index series log τ(Mm,k) is also strictly stationary.
Moreover, it is obviously subadditive, and E log+ τ(M1,1) = 0
since τ(M1,1) ≤ 1. Thus, by the subadditive ergodic theorem,
we have

lim
m→∞

1

m
log τ(Mm,1) = lim

m→∞
1

m
E log τ(Mm,1) w.p.1

which proves our claim. �
Combining this theorem with Corollary 35, we get the fol-

lowing extension.
Corollary 38: Let (An), n ≥ 1 be a strictly stationary, er-

godic stochastic process of p× p matrices satisfying the condi-
tions of Theorem 8. Then, we have the following lower bound
for the spectral gap:

λ1 − λ2 ≥ lim
m→∞− 1

m
log τ(Mm) w.p.1. (70)

The aforementioned results can be interpreted as providing
various lower bounds for log τ(Mm). We will now develop an
a.s. asymptotic upper bound for log τ(Mm) using techniques
developed in the previous sections. Taking into account (62),
the Birkhoff contraction coefficient τ(Mm), for its small values
and for Mm > 0, is equivalent to ϕ(Mm). On the other hand,
ϕ(Mm) is a measure of collinearity of the rows ofMm; see (61).
Thus, an asymptotic upper bound for τ(Mm) provides a bound
on the speed with which Mm converges to a rank-1 matrix.

Theorem 39: Assume that any of the sets of conditions of
Theorems 12, 14, or 16 is satisfied. Then, we have

lim sup
n→∞

1

n
log τ(Mn) ≤ −(λ1 − λ2) w.p.1. (71)

Proof of Theorem 39: The conditions of the theorem are
identical to those of Lemma 44, implying that for any pair of
row indices i, j and any column index k, the quotientM ik

n /M
jk
n

is subexponential, and thus, Condition 26 is satisfied. It follows
that the conditions of Lemma 27 are also satisfied, implying that
1/ui1n is subexponential a.s. for all i.

Now, consider the equality (40), developed in the course of the
proof of Lemma 27. Recall that |uj1n | ≤ 1 and 1/ui1n is subexpo-
nential for all i and j. Hence, dividing both the numerator and
the denominator of (40) by ui1n , we get, independently of the

column index k
M jk
n

M ik
n

=
uj1n
ui1n

+O(e(−λ1+λ2+o(1))n) a.s. (72)

By assumption for sufficiently large (random) n, the matrixMn

is strictly positive, hence, we can write, see (61)

ϕ(Mn) = max
i,j,k,l

log

(
M jl
n

M il
n

)
/

(
M jk
n

M ik
n

)
. (73)

Taking into account (72), and once again noting that |uj1n | ≤ 1
and 1/ui1n is subexponential for all i and j, we get a.s.

ϕ(Mn) = O(log(1+e(−λ1+λ2+o(1))n)) = O(e(−λ1+λ2+o(1))n).

Taking into account Birkhoff’s quoted theorem, stating that
τ(Mn) = tanh(ϕ(Mn)/4), we immediately get

τ(Mn) = O(e(−λ1+λ2+o(1))n) (74)

from which the theorem immediately follows. �
From the theorem obtained, we get via a trivial rearrangement

an a.s. upper bound for the spectral gap in terms of the Birkhoff
contraction coefficient as

λ1 − λ2 ≤ − lim sup
m→∞

1

m
log τ(Mm) w.p.1. (75)

We have seen that on the RHS lim sup can be replaced with lim .
Combining the above upper bound for the gap with the lower
bound obtained in Corollary 38, we get the following result.

Theorem 40: Assume that any of the sets of conditions of
Theorems 12, 14, or 16 is satisfied. Then, we have

λ1 − λ2 = lim
m→∞− 1

m
log τ(Mm) w.p.1. (76)

IX. DISCUSSION

We should point out that the characterization of the a.s. rate
of convergence via the spectral gap λ1 − λ2 may provide a solid
ground for further investigations of direct practical interest, such
as explicit estimates on the relation of spectral gap with respect
to the number of nodes, the failure probabilities or the strength of
connectivity, see [11] on related empirical results to this effect.
Let us mention two simple facts that may be relevant in such
investigations.

First, we note that λ1(A) is monotone non-decreasing
in A. More precisely, letting A = (An) and A′ = (A′

n),
and assuming An ≤ A′

n entry-wise for all n w.p.1 implies
λ1(A) ≤ λ1(A′). Indeed, A′

nA
′
n−1 · · ·A′

1 is entry-wise not less
than AnAn−1 · · ·A1, hence letting ‖B‖ =

∑
i,j bij , we have

‖AnAn−1 · · ·A1‖ ≤ ‖A′
nA

′
n−1 · · ·A′

1‖, implying the stated in-
equality. From the above observation we immediately get the
following simple result:

Lemma 41: Let (An) and (A′
n) be two strictly stationary,

ergodic processes of matrices associated with the push-sum
method on the same underlying network but with packet loss
probabilities rij ≤ r′ij for all i, j. Then λ1(A) ≥ λ1(A′).

Unfortunately, the effect of increasing the packet loss proba-
bilities on λ2 is yet unknown. If we had λ2(A) ≤ λ2(A′) then
we could conclude that increasing the packet loss probabilities
would decrease, or at least not increase the gap. A nice observa-
tion here is that although we do not know if λ2(A) ≤ λ2(A′) we
do know that

∑p
i=2 λi(A) ≤∑p

i=2 λi(A′). The last inequality
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follows from a simple relationship for the sum of the Lyapunov
exponents given in the lemma below.

Lemma 42: Let (An) be a sequence of p× p matrices satis-
fying the conditions of Proposition 1. Then we have

λ1 + · · ·+ λp = E log(| detA1|).
In the case of the push-sum algorithm allowing packet loss we
get λ1 + · · ·+ λp = − log 2.

The magic of the lemma is in the fact that the l.h.s. depends
only on the marginal distribution of A1.

Proof of Lemma 42: For the p-factor exterior product, we
have

An ∧ · · · ∧An = detAn.

Therefore

Πnk=1 (Ak ∧ · · · ∧Ak) = Πnk=1 detAk.

On the other hand, using the singular-value decomposition
An . . . A1 = UnΣnVn, we can write

Πnk=1 (Ak ∧ · · · ∧Ak)
= Πnk=1 (Uk ∧ · · · ∧ Uk) ·Πnk=1 (Σk ∧ · · · ∧ Σk)

·Πnk=1 (Vk ∧ · · · ∧ Vk) .
Therefore

Πnk=1 detAk = ±Πnk=1 detΣk = ±Πnk=1σ
1
k . . . σ

p
k.

Taking absolute value and logarithm, dividing by n, and then
taking the limit, we get

E log(| detA1|) = λ1 + · · ·+ λp.

In the case of the push-sum algorithm allowing packet loss,
we have | detAn| = 1/2 for all n and all ω, thus, we get the
claim. �

Setting p = 2, the combination of the aforementioned two
observations give that in the case of the push-sum algorithm
increasing the probabilities of packet loss will decrease the
spectral gap

λ1(A)− λ2(A) ≥ λ1(A′)− λ2(A′) (77)

for any strictly stationary, ergodic 2× 2matrix-valued processes
(An) and (A′

n) of the form (3), no matter what the dependence
structure is.

X. CONCLUSION

The problems discussed in the article are motivated by the ra-
tio consensus problems and algorithms, such as the push-sum or
weighted gossip algorithms. We have considered fairly general,
strictly stationary communication protocols, covering as special
cases broadcast algorithms, geographic gossip, randomized path
averaging, or one-way averaging. We have given sharp upper
bounds for the rate of the a.s. exponential convergence in terms of
the spectral gap of the associated matrix sequence under various
technical conditions. We have presented a variety of connections
between the spectral gap and the Birkhoff contraction coefficient
of the product of the associated matrices. Among others, our
results provide a solution to an open problem raised in [2].

APPENDIX A
SEQUENTIAL PRIMITIVITY

Proof of Lemma 5: The lemma is a direct consequence of the
observation below, in which the indices of forward sequential
primitivity will be replaced by a sequence of generic nonnegative
waiting times Δn for all n, while the analogue of the indices of
backward sequential primitivity, denoted by Δ′

n,will be defined
in terms of the sequence (Δn). Thus, let (Δn) be a two-sided
strictly stationary, nonnegative process. Define for all n

mn = max
m≤n

{m : m+Δm ≤ n} and Δ′
n = n−mn. (78)

Then, we claim that the probability distributions of Δn and Δ′
n

are the same for all n. In particular, EΔn = EΔ′
n. Indeed

P (Δ′
n > x) = P (n−mn > x) = P (mn < n− x)

= P (n− x+Δn−x > n) = P (Δn−x > x).
(79)

for any x ≥ 0. Since (Δn) is strictly stationary, we
have P (Δn−x > x) = P (Δn > x), and thus, the proof is
complete. �

Proof of Lemma 7: Let the elements of A be denoted by
B1, B2, . . . , Br so that P (A1 = Bi) > 0 for all i. The i.i.d.
sequence (An) can be identified with an i.i.d. sequence of indices
i1, i2, . . . , with 1 ≤ ik ≤ r. Since A is primitive, there exists
a word w = (js, js−1, . . . , j1) such that BjsBjs−1

· · ·Bj1 > 0.
Segment the full sequence of indices into an i.i.d. sequence of
s-tuples vm. Let τ := min{m : vm = w}. Since p := P (vm =
w) > 0 implies P (τ > x) = (1− p)x and ψ1 ≤ mτ , the claim
follows. �

APPENDIX B
NORMALIZED PRODUCTS

In this section, we present the proof of Theorem 8, starting
with the proofs of the auxiliary results, Lemmas 9 and 10.

Proof of Lemma 9: Consider

M�
nMn = V �

n diag((σin)
2)Vn.

For n ≥ τ , this is a symmetric positive semidefinite matrix with
strictly positive elements. Its eigenvalues are (σin)

2 with cor-
responding eigenvectors (vi·n)

�. By the Perron–Frobenius theo-
rem, M�

nMn has a unique eigenvalue with maximal modulus,
which is positive as is the corresponding eigenvector. It follows
that (σ1

n)
2 is a single eigenvalue, and v1·n > 0 elementwise.

Expand x in the orthonormal system defined by the rows of
Vn: x� =

∑
i α

i
nv

i·
n. Here, αin := vi·nx. Then

x�M�
nMnx =

∑
i

(σin)
2(αin)

2.

Now, v1·n > 0 and |v1·n | = 1, together with x > 0 imply that
α1
n > α1 > 0 with some α1. Thus, x�M�

nMnx > (σ1
n)

2α2
1,

from which we get lim infn
1
n log |x�M�

nMnx| ≥ 2λ1, imply-
ing lim infn

1
n log |Mnx| ≥ λ1, and thus, the claim of the lemma

follows. �
Proof of Lemma 10: Write V ′

1 = Rp ∧ Rp. According to
Oseledec’s theorem, there is a proper random subspace of V ′

1
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of fixed dimension, say V2,′ such that for z ∈ V ′
1 \ V ′

2

lim
n→∞

1

n
log |((AnAn−1 · · ·A1) ∧ (AnAn−1 · · ·A1))z|

= λ1 + λ2 a.s.

Consider the tensor product space Rp ⊗ Rp and its canonical
linear mapping to V ′

1 = Rp ∧ Rp, denoted by S, defined by∑
i,j

xij ei ⊗ ej−→
∑
i,j

xijei ∧ ej =
∑
i<j

(xij − xji)ei ∧ ej .

Equivalently, interpreting Rp ⊗ Rp as the linear space of matri-
ces of size p× p, and identifying Rp ∧ Rp as the linear space
of antisymmetric matrices, the linear transformation S takes the
form S(X) = X −X�.

It is readily seen that V ′′
2 = S−1V ′

2 is a proper subspace of the
tensor product space Rp ⊗ Rp. Indeed, any X ∈ Rp ⊗ Rp can
be written as X = Xa +Xs, as a sum of its antisymmetric and
symmetric part, and we haveS(X) = 2Xa. Therefore, the linear
subspace V ′′

2 = S−1V ′
2 consists of matrices for whichXa ∈ V ′

2,
and thus, it is indeed a proper subspace.

Let E denote the random set of exceptional pairs (x,w)(ω)
defined as

Exw(ω) = {(x,w) : x⊗ w ∈ V ′′
2 (ω)}. (80)

We claim that Exw(ω) ∈ Rp × Rp has zero Lebesgue-measure
for all almost allω.Assuming the contrary, there is a setEx(ω) ∈
Rp of positive Lebesgue measure such that for each x ∈ Ex(ω),
the set

Ew|x(ω) = {w : (x,w) ∈ Exw(ω)}.
has positive Lebesgue measure in Rp. Taking any x ∈ Ex(ω),
the elements ofEw|x(ω) span the full Rp, therefore, (x,w), w ∈
Ew|x(ω) span the linear space x⊗ Rp. Letting x vary through
the positive set Ex(ω), we get that the elements of x⊗ Rp span
the whole Rp × Rp.This is in contradiction with the assumption
that for any (x,w) ∈ Exw(ω), the tensor product x⊗ w lies in
the proper subspace V ′′

2 .
We conclude by Fubini’s theorem that the exceptional set in

Rp × Rp × Ω

Exwω = {(x,w, ω) : (x,w) ∈ V ′′
2 (ω)}, (81)

has λ × λ × P -measure zero. Applying Fubini’s theorem once
again in the opposite direction, we get the claim. �

Proof of Theorem 8: Note that since x̄n and w̄n belong to the
simplex of probability vectors, we have

‖x̄n−w̄n‖TV∼| sin(x̄n, w̄n)| = | sin(xn, wn)| = |xn ∧ wn|
|xn| · |wn| ,

where an ∼ bn means that an/bn and bn/an are bounded by
a deterministic constant. After taking logarithm, we get that
log ‖x̄n − w̄n‖TV can be written as

log |xn ∧ wn| − log |xn| − log |wn|+O(1), (82)

where O(1) is bounded by a deterministic constant.
To deal with the second and third terms of (82), we use Lemma

9, from which we get for any strictly positive initial vectors
x,w > 0 almost surely

lim
n→∞

1

n
log |xn| = λ1 and lim

n→∞
1

n
log |wn| = λ1. (83)

To deal with the first term of (82), we use Lemma 10 implying
that for all initial pairs (x,w) ∈ Rp

+ × Rp
+, except for a set of

Lebesgue measure zero, we have

lim
n→∞

1

n
log |(xn ∧ wn)| = λ1 + λ2 a.s. (84)

Moreover, Oseledec’s theorem implies that for all initial pairs
(x,w) ∈ Rp × Rp the LHS of (84) exists, and it is majorized by
the RHS w.p.1. Combining these facts with (82), we immediately
get Theorem 8. �

APPENDIX C
PUSH-SUM ALGORITHM

Proof of Lemma 23: The basic idea is what is called flooding.
A convenient reference is [2, Lemma 4.2], the conditions of
which can be readily verified, implying that there exist anN such
that p := P (AN · · ·A1 > 0) > 0, where the strict inequality
is meant entry wise. It follows that for any m ≥ 1, we have
P (AmN · · ·A1 ≯ 0) ≤ (1− p)m, and the claim follows by a
Borel–Cantelli argument. �

Proof of Lemma 24: The following proof relies on a combina-
tion of [9] and Theorem 8. Note that our conditions are identical
with those of [9], except that in [9], αji = 1/2 for all (j, i) ∈ E
andw = 1were assumed. It is easily seen that the analysis of [9,
Th. 3] carries over for general w ≥ 0, w �= 0 and αji ∈ (0, 1).
In particular, setting sn = 1�xn and tn = 1�wn, we get by
a straightforward extension of [9, Th. 3] : for any vector of
initial values x ∈ Rp, and a nonnegative vector of initial weights
w ∈ Rp

+ such that w �= 0, we have for all i = 1, . . . , p a.s.

lim
n→∞

xni
wni

= lim
n→∞

sn
tn

· x̄ni
w̄ni

= x∗ (85)

for some random x∗. In fact, the convergence is at least expo-
nential with a deterministic rate: for all i = 1, . . . p a.s.

sn
tn

· x̄ni
w̄ni

= x∗ +O(e−αn). (86)

It follows by a simple convexity argument (see the proof of
Corollary 17) that we also have sn/tn → x∗ a.s. exponentially
fast with the same rate

sn
tn

= x∗ +O(e−αn) a.s. (87)

In addition, x∗ is a convex combination of the initial ratios
xk/wk. It follows that choosing x,w > 0, we will have x∗ > 0.

Hence, dividing (86) by (87), we get for all i = 1, . . . , p a.s.
x̄ni
w̄ni

= 1 +O(e−αn). (88)

From this, the exponential decay of the total variation distance
of x̄ni and w̄ni immediately follows: multiplying both sides
of (88) by 0 < w̄ni ≤ maxi wi, followed by summation over
i gives the a.s. asymptotics

|x̄ni − w̄ni| = O(e−αn) and ‖x̄n − w̄n‖TV = O(e−αn),

and hence, for all strictly positive pairs (x,w), we get

lim sup
n→∞

1

n
log ‖x̄n − w̄n‖TV < 0 a.s. (89)

But the LHS is equal to −(λ1 − λ2) a.s. for Lebesgue-almost
all (x,w) ∈ Rp

+ × Rp
+ x,w �= 0 by Theorem 8 with lim sup
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replaced by lim . Thus, −(λ1 − λ2) < 0 follows as stated in
the lemma. �

APPENDIX D
M ik
n /M

jk
n IS SUBEXPONENTIAL

We first provide an elementary a priori estimate ofM ik
n /M

jk
n

using the following lemma, a variant of which has been stated
by Bellman (see [17] and [33]).

Lemma 43: Let M,B, and X be p× p matrices such that
M = BX. Assume that B is strictly positive, and X is a non-
negative, allowable matrix. Then, M is strictly positive, and for
any fixed pair of row indices (i, j) and any column index k, we
have

min
r

Bir

Bjr
≤ M ik

M jk
≤ max

r

Bir

Bjr
.

Proof of Lemma 43: The (i, k) and the (j, k) element of M
can be expressed as

M ik =
∑
r

BirXrk and M jk =
∑
r

BjrXrk.

It is easily seen that the ratio M ik/M jk, i.e.,

M ik

M jk
=

∑
r B

irXrk∑
r B

jrXrk

can be written as a convex combination ofBir/Bjr with weights

μr = BjrXrk/
∑
s

BjsXsk

which implies the claim. �
Lemma 44: Under any set of conditions given in Theorem 12,

14, and 16, it holds that for any pair of row indices i and j and
any column index k, the quotient M ik

n /M
jk
n is subexponential.

Proof of Lemma 44: In order to apply Lemma 43, let us first
extend the sequence (An) for n ≤ 0, with eventual extension
of the underlying probability space so that we get a two-sided
strictly stationary, ergodic sequence, or even i.i.d. sequence in
the case of Theorem 12. Recall the definition of the index of
backward sequential primitivity

ρn = min{ρ ≥ 0 : AnAn−1 . . . An−ρ+1 > 0}.
Note that under any set of conditions given in Theorems 12,
14, and 16, we can claim that Eρn <∞. Indeed, under the
conditions of Theorem 12, Eρn <∞ follows from Lemma 7. On
the other hand, Eρn <∞ follows from the condition Eψn <∞,
that was a priori assumed to hold in the case of Theorems 14
and 16, due to Lemma 5. Consider now the sets

ΩGn = {ω : ρn ≤ n} and ΩGcn = Ω \ ΩGn .
Note that Eρn <∞ implies that

∞∑
n=1

P (ΩGcn ) =

∞∑
n=1

(1− P (ΩGn )) =

∞∑
n=1

P (ρn > n) <∞

and thus, ΩGcn occurs finitely many times w.p.1 by the Borel–
Cantelli lemma. Equivalently, the set

ΩGc := lim sup
n→∞

ΩGcn =
⋂
m≥1

⋃
n≥m

ΩGcn (90)

has measure 0, and consequently, its complement

ΩG := lim inf
n→∞ ΩGn =

⋃
m≥1

⋂
n≥m

ΩGn (91)

on which ρn ≤ n for n ≥ m(ω) for some random m(ω), has
probability 1. On the set ΩGn consider the following decompo-
sition of Mn by separating a strictly positive factor Bn on the
left

Mn = AnAn−1 . . . An−ρn+1M̃n = BnM̃n. (92)

Let β′
n =

∑
k,lA

kl
n . Obviously, β′

n is equivalent to βn =

maxk,lA
kl
n , and also to ‖An‖, i.e., β′

n ∼ βn ∼ ‖An‖. Then,
a simple crude estimator of minr B

ir
n /B

jr
n can be obtained on

the set ΩGn , with αn defined under (28), as follows:

Πnm=n−ρn+1αm

Πnm=n−ρn+1β
′
m

≤ Birn

Bjrn
≤ Πnm=n−ρn+1β

′
m

Πnm=n−ρn+1αm
. (93)

Obviously, the lower bound is the reciprocal of the upper bound.
We will estimate the latter as previously mentioned. From the
inequality (93), we get on ΩGn

log+
Birn

Bjrn
≤

n∑
m=n−ρn+1

log+ β′
m −

n∑
m=n−ρn+1

log− αm =: πn.

Note that the middle term, and thus, πn, is actually well-defined
on all Ω (since m can take on negative values), and obviously,
their distributions are independent of n.

Claim: Under any set of conditions given in Theorems 12, 14,
and 16, it holds that Eπn <∞.

For the proof in the case of Theorem 12, note that ρn is a
stopping time for the backward process with finite expectation.
In addition, E log+ β′

n <∞. Moreover E log− αn > −∞, by
Condition 11. Since log+ β′

n and log− αn form i.i.d. sequences,
we get by Wald’s theorem

E

(
n∑

m=n−ρn+1

log+ β′
m −

n∑
m=n−ρn+1

log− αm

)

= Eρn · E log+ β′
1 − Eρn · E log− α1 <∞. (94)

The proof for the case of Theorem 14, in which the positive
elements of An are assumed to be bounded from below by a
positive bound α and from above by β, is trivial. We have

E

(
n∑

m=n−ρn+1

log+ β′
m −

n∑
m=n−ρn+1

log− αm

)

≤ E ρn · log+(p2β)− E ρn · log− α <∞. (95)

Finally, consider the less trivial case of Theorem 16, in which
the positive elements ofAn may spread all over R+.Setting λ :=
E log+ β′

n, and noting that (log+ β′
n) is ergodic, the random

variable defined by

Cn(ω, ε) = max
k≥0

(
n∑

m=n−k
(log+ β′

m − λ − ε)

)+

(96)

is finite w.p.1 for any ε > 0.Obviously, by rearranging, we have
n∑

m=n−ρn+1

log+ β′
m ≤ Cn(ω, ε) + (λ + ε)ρn. (97)

We can proceed with the estimation of
∑n
m=n−ρn+1 log

− αm
analogously. Under the conditions of Theorem 16, we have
Eρn = Eρ1 <∞. Obviously, (Cn(ω, ε)) is a strictly station-
ary sequence; therefore, to complete the proof of the Claim,
it is sufficient to prove that ECn(ω, ε) <∞. For any fixed
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n, this follows directly from the following lemma by setting
ξk = log+ β′

n−k − λ − ε.
Lemma 45: Let (ξk), k ≥ 1 be a strictly stationary, ergodic

process such that Eξk =: −c > 0. Define

η = max
m≥1

(
m∑
k=1

ξk

)+

. (98)

Assume that (ξk) is M -mixing of order q with some q > 4.
Then, Eη <∞.

Proof of Lemma 45: For any x > 0, we have

P (η ≥ x) ≤
∞∑
m=1

P

(
m∑
k=1

ξk ≥ x

)

=
∞∑
m=1

P

(
m∑
k=1

(ξk + c) ≥ x+mc

)
. (99)

The mth term on the RHS can be bounded from above by
using Markov’s inequality for the qth absolute moment and the
condition that (ξk) is M -mixing of the order q as follows:

Cqm
q/2

(x+mc)q
=

Cqm
q/2

cq (x/c+m)q
≤ Cq (x/c+m)q/2

cq (x/c+m)q

=
Cq

cq (x/c+m)q/2
(100)

with some q > 4. Thus, the sum over m on the RHS of (99) can
be majorized, by noting that the RHS of (100) are monotone
decreasing, as follows:

∞∑
m=1

Cq
cq (x/c+m)q/2

≤
∫ ∞

0

Cq
cq (x/c+ t)q/2

dt

=

∫ ∞

x/c

Cq
cq tq/2

dt =
−Cq

cq (−q/2 + 1)

(x
c

)−q/2+1

. (101)

Summing through the positive integers x = n, and recalling that
q > 4, we conclude that

∞∑
n=1

P (η ≥ n) ≤
∞∑
n=1

Cq
cq(q/2− 1)

(n
c

)−q/2+1

<∞ (102)

hence, Eη <∞, as stated in the lemma. �
Having proved Eπn <∞, we conclude that πn is sublinear

on Ω, implying that Birn /B
jr
n is subexponential a.s. on ΩG for

any pair (i, j) and any r. This, in combination with Lemma 43
yields the proof of Lemma 44. �
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