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Abstract
In this paperwe show that the dynamics of a class of kinetic compartmentalmodelswith
bounded capacities, monotone reaction rates and a strongly connected interconnection
structure is persistent. The result is based on the chemical reaction network (CRN) and
the corresponding Petri net representation of the system. For the persistence analysis, it
is shown that all siphons in the Petri net of the studiedmodel class can be characterized
efficiently. Additionally, the existence and stability of equilibria are also analyzed
building on the persistence and the theory of general compartmental systems. The
obtained results can be applied in the analysis of general kinetic models based on the
simple exclusion principle.

Keywords Dynamical models · Chemical reaction networks · Compartmental
systems · Qualitative model analysis · Stability

1 Introduction

Nonnegative systems form an important subclass within dynamical systems having
the property that the nonnegative orthant is invariant with respect to the dynamics.
The practical motivation for developing the theory of nonnegative systems is the
fact that there are several application fields such as chemistry, biology, population
and disease dynamics, where in many cases the state variables of the models in the
original physical coordinates are nonnegative [18]. Compartmental models are used
to describe the change of distribution of objects (e.g., molecules or particles) among
different storage compartments in time [5]. Compartments can be physically distinct
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subsystems such as interconnected containers, but they can also represent disjoint
states like different stages of diseases in the case of epidemic models [10]. Since the
natural state variables in compartmental systems correspond to amounts of materials,
numbers of molecules (or to their ratios, concentrations), these models belong to the
nonnegative system class. The fundamental properties of compartmental models have
been intensively studied in the literature. The observability, controllability, realizability
and identifiability of compartmental systems are summarized in [11] focusing mainly
on linear models. The analytic solution of linear compartmental ODEs is studied in
[17] in a kinetic context. A fundamental reference on the qualitative analysis of a wide
class of general nonlinear compartmental models is [22], where important results can
be found on the structure of equilibria and stability.

It is known that most compartmental models can be represented in the form of
kinetic systems also called chemical reaction networks (CRNs), where the dynamics
can be formally realized by a set of reactions with appropriate complexes and reaction
rates [15, 21]. Although kinetic models are originated from physical chemistry, they
have been highly generalized in a mathematical sense (see, e.g. [3, 20, 29]), widening
their application possibilities even to non-chemical processes as general descriptors
of nonlinear dynamics. Chemical reaction network theory (CRNT) is a dynamically
improving research field with strong results on the relations between the reaction
graph structure and the qualitative properties of the kinetic dynamics [16]. Persistence
analysis is a problem of central importance in CRNT, for instance, it is a key property
for proving global asymptotic stability of complex balanced networks [2, 13, 14].

The application of discrete structures and graph theory is an essential tool in the
modeling and analysis of chemical phenomena [4, 9, 12]. If themolecules and reactions
in a kinetic system are tracked individually, the CRN can be considered as a discrete
event systemwhich is equivalent to a Petri net [6, 30]. A fundamental and theoretically
deep result of CRNT is published in [7], where conditions are given for the persistence
of continuous time CRNs using the graph structure of their Petri net representation
and conserved quantities in the dynamics. These results were further generalized in
[8] to time-dependent open systems, where reaction rates can be time-dependent and
there are in and outflows.

The model class we study is related to the so-called simple exclusion principle
known from the theory of Markov Processes [24] in the sense that particles can move
along a directed graph (called the compartmental graph). It is also assumed that the
capacity of the compartments is bounded. Therefore, transition is only possible if
there are available particles in the donor compartment, and also free space in the
recipient compartment. A well-known application of the simple exclusion principle is
the class of ribosomeflowmodels (RFMs) [33] capturing key features of the translation
process. Numerous valuable analysis results have been developed for RFMs, we can
only mention a few. In [27] it is shown that RFMs with a tube-like structure have a
unique asymptotically stable equilibrium point within the invariant domain of their
dynamics. RFMs with a ring topology are studied in [32] where it is shown that
trajectories converge to equilibria within the compatibility classes of the state space
defined by the initial conditions. The dynamics and stability of RFMs under periodic
excitation is analyzed in [26]. We also mention that ODE models with essentially
the same structure can be obtained by an appropriate finite volume discretization of
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hyperbolic partial differential equations describing the flow of material or vehicles
[25].

The structure of the paper is the following. In Sect. 2, we introduce the basic
notions and known results for the ODE and Petri net representation of kinetic models.
Section 3 describes the studied kinetic compartmental model class. Section 4 contains
the persistence analysis results through the characterization of siphons, while the
stability results are summarized in Sect. 5. Finally, the brief summary of the results is
given in Sect. 6.

2 Background and notations

In this section, we introduce the class of kinetic systems and their representation in
the form of Petri nets. Throughout the paper, we will use the following notations.

2.1 Kinetic systems

For the characterization of kinetic systems (also called chemical reaction networks
or briefly, CRNs), we will use the notations used in [16], where more details can be
found. A kinetic model contains M species denoted by X = {X1, . . . , XM }, and the
corresponding species vector is given as X = [X1 . . . XM ]T . Species are transformed
into each other through elementary reaction steps of the form

C j → C ′
j , j = 1, . . . , R (1)

where C j = yTj X and C ′
j = y′

j
T X are the complexes with the stoichiometric coef-

ficient vectors y j , y′
j ∈ Z

M
+ for j = 1, . . . , R. The transformation shown in Eq. (1)

means that during an elementary reaction step between the reactant complex C j and
product complex C ′

j , [y j ]i molecules of species Xi are consumed, and [y′
j ]i molecules

of Xi are produced for i = 1, . . . , M . The reaction (1) is called an input (output) reac-
tion of species Xi if [y′

j ]i > 0 ([y j ]i > 0).
The directed graph containing the complexes as vertices and reactions as directed

edges is called the reaction graph of a CRN. A directed graph is strongly connected
if there exists a directed path between any pair of its vertices in both directions. A
strong component of a directed graph is a maximal strongly connected subgraph. A
weakly connected component of a directed graph is a subgraph where all vertices are
connected to each other by some (not necessarily directed) path. A reaction graph
is called weakly reversible if each weakly connected component of it is a strong
component. Weak reversibility is equivalent to the property that each directed edge
(reaction) is a part of a directed cycle in the reaction graph.

Let x(t) ∈ R
M
+ denote the state vector corresponding to X for any t ≥ 0 (in a

chemical context, x is the vector of concentrations of the species in X ). Then the
ODEs describing the evolution of x in the kinetic system containing the reactions (1)
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are given by

ẋ =
R∑

i=1

Ki (x)[y′
i − yi ], x(0) ∈ R

M
+ (2)

where Ki : RM
+ −→ R+ is the rate function corresponding to reaction step i , deter-

mining the velocity of the transformation [16]. For the rate functions, we assume the
following for i = 1, . . . , R:

(A1) Ki is differentiable,

(A2)
∂Ki (x)

∂x j
≥ 0 if [yi ] j > 0, and

∂Ki (x)

∂x j
= 0 if [yi ] j = 0,

(A3) Ki (x) = 0 whenever x j = 0 such that j ∈ supp(yi ).

The above properties guarantee the local existence and uniqueness of the solutions as
well as the invariance of the nonnegative orthant for the dynamics in Eq. (2). From now
on, a reaction from complex Ci to complex C ′

i with rate function Ki will be denoted
as

(3)

The dynamics of a kinetic system (2) is called persistent if no trajectory that starts in
the positive orthant has an omega-limit point on the boundary of RM+ .

A set of nonlinear ODEs given as ẋ = f (x) is called kinetic if it can be written in
the form (2) with appropriate rate functionsKi . We remark that the representation (2)
of a kinetic ODE is generally non-unique even if the rate functions are polynomial,
and assumed to be fixed [1].

An important special case in the theory of CRNs is mass action kinetics when the
rate function is given in the following monomial form

Ki (x) = ki

M∏

j=1

x
[yi ] j
j , i = 1, . . . , R (4)

where ki > 0 for i = 1, . . . , R are the reaction rate coefficients.
A positive linear conserved quantity (or positive linear first integral) for a CRN is

defined as cT x for which cT ẋ(t) = 0 for t ≥ 0, where c ∈ R
M
+ and c �= 0. We say

that a set of species {Xi1 , . . . , Xik } ⊆ X defines a positive linear conserved quantity

if there exists c ∈ R
k
+ for which

∑k
j=1 c j ẋi j (t) = 0 for t ≥ 0.
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Example 1

Consider the following CRN given by X = {X1, . . . , X6} and the reactions

(5)

Furthermore, assume that the reaction rates obey the mass action kinetics described
in Eq. (4), i.e.

K1(x) = k1x1x2, K2(x) = k2x2x6, K3(x) = k3x3x4 (6)

Then according to Eq. (2), the ODEs of the system can be written as

ẋ1 = −k1x1x5 + k3x3x4
ẋ2 = k1x1x5 − k2x2x6
ẋ3 = k2x2x6 − k3x3x4
ẋ4 = k1x1x5 − k3x3x4
ẋ5 = −k1x1x5 + k2x2x6
ẋ6 = −k2x2x6 + k3x3x4

(7)

It can be checked from (7) that
∑6

i=1 xi is a positive linear conserved quantity for the
kinetic system (5).

2.2 Petri net representation of CRNs and persistence conditions

If we consider each molecule and reaction individually, CRNs can be described in the
framework of discrete event systems [30], and modeled e.g., by Petri nets [7]. More-
over, certain properties of the corresponding Petri net have fundamental consequences
on the continuous dynamics of the studied CRN.

A Petri net is a directed bipartite graph G = (V , E), where V = {v1, v2, . . . , vn}
is a set of vertices and E = {e1, . . . , ek} is a set of directed edges, i.e. ei = (v j , vk),
where v j , vk ∈ V . The set of vertices can be partitioned into two disjoint sets, the set
of places denoted by P = {p1, . . . , pnp }, and T = {t1, . . . , tnt } which is the set of
transitions, where P ∪ T = V , and P ∩ T = ∅. Moreover, for any ei = (v j , vk) ∈ E ,
either v j ∈ P and vk ∈ T or vice versa.

The state of a Petri net is given by the number of tokens assigned to places. This
can be characterized by a marking μ : P −→ N0. Obviously, a marking can be given
as an integer vector of size |P|. The places from which edges point to a transition
are called the input places of the transition, while the places to which edges run from
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Fig. 1 Petri net representation of
the CRN described in Example
1. All edge weights are equal
to 1

a transition are the output places of the transition. The input and output places of
a transition ti are denoted by In(ti ) and Out(ti ), respectively. Analogously, we can
define the input and output transitions of a place pi denoted by In(pi ) and Out(pi ),
respectively. Positive integers are assigned to each directed edge through theweighting
W : (P × T ) ∪ (T × P) −→ N. A transition t j is enabled if there are enough tokens
in each of its input places: i.e., if ∀ pi ∈ In(t j ): μ(pi ) ≥ W (pi , t j ). During the firing
of an enabled transition t j ,W (pi , t j ) tokens are consumed from each pi ∈ In(t j ), and
W (t j , pk) tokens are added to each pk ∈ Out(t j ).

The dynamical behaviour of a Petri net is characterized by the sequence of transi-
tions from an initial marking μ0. Obviously, several transitions may be enabled at the
same time which can fire in any order. Therefore, the execution (simulation) of Petri
nets is generally nondeterministic.

It can be seen from the above, that Petri nets can be assigned in a straightforwardway
to kinetic systems. In such a modeling framework, places correspond to species, and
transitions represent reactions. The input and output places of a transition correspond
to the species of the reactant and the product complexes, respectively. The weights
of the input and output edges of a transition are the stoichiometric coefficients of
the species of the reactant and product complexes, respectively. For each place, the
number of tokens show the actual number of molecules of the corresponding species.
The Petri net representation of the CRN in Example 1 is shown in Fig. 1, where species
(places) and reactions (transitions) are denoted by circles and rectangles, respectively.

A non-empty set of places σ ⊂ P is called a siphon if each input transition asso-
ciated to σ is also an output transition associated to σ . A siphon is minimal if it does
not contain (strictly) any other siphons. Naturally, the union of siphons is a siphon,
too. With some abuse of notation, a set of species � in a CRN will also be called a
siphon if the places associated to the species of � form a siphon in the Petri net of the
reaction network.

We will use a fundamental result from [7] which can be re-written as follows.

Theorem 2.1 (Sufficient persistence conditions from [7]) The dynamics of a CRN of
the form (2) is persistent if

(1) There exists a positive linear conserved quantity cT x for the dynamics, where
c ∈ R

n+.
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(2) Each siphon of the CRN contains a subset of species which define a positive linear
conserved quantity for the dynamics.

The practical difficulty in applying Theorem 1 is that the number of siphons gen-
erally grows exponentially with the network size [36], although there exist several
computational approaches for the enumeration of all (minimal) siphons [19].

Let us revisit Example 1 to illustrate the conditions of Theorem 2.1. It is easy to
see that condition (1) is fulfilled, since I0 = ∑6

i=1 xi is a positive conserved quantity
for the system as it was written in Sect. 2.1. For condition (2), it can be checked from
Fig. 1 that five minimal siphons exist in the Petri net, namely �1 = {X1, X2, X3},
�2 = {X4, X5, X6}, �3 = {X1, X4}, �4 = {X2, X5}, and �5 = {X3, X6}. Since
I1 = x1 + x2 + x3, I2 = x4 + x5 + x6, I3 = x1 + x4, I4 = x2 + x5, and I5 = x3 + x6
are also positive linear first integrals containing the state variables of �1, �2, �3, �4,
and �5, respectively, condition (2) is fulfilled, too.

3 The studied compartmental model class

In this paper, we consider a subclass of flowmodels equippedwith a network structure.
In such models, we have interconnected compartments and items (e.g., molecules,
particles, or vehicles) moving between them. The compartments have finite capacities,
i.e. we assume that there are well-defined upper limits for the number of items placed
in the compartments at any time instant. The transition rate of items between two
compartments depend on the number of particles in the source compartment and on
the amount of available space in the target compartment.

3.1 Directed graph of the compartmental structure

The structure of a compartmental model showing the possible directions of flows
between the compartments can be described by a directed graph as follows.

Definition 3.1 The directed graph D = (Q, A) called compartmental graph
describes the structure of the compartmental model, where the set Q = {q1, . . . , qm}
of vertices correspond to the compartments, and the possible transitions are repre-
sented by directed edges of the set A ⊆ Q×Q. The directed edge ai j := (qi , q j ) ∈ A
represents the transition from the compartment qi into q j .

Naturally, loop edges are not allowed in the compartmental graph, since the immedi-
ate transition from a compartment into itself does not induce any change. Furthermore,
multiple identically directed edges are also not allowed between two compartments.
If there exists a directed edge (qi , q j ) in the compartmental graph, then qi is called
the donor of compartment q j , and q j is the recipient of compartment qi .

The directed graph of a strongly connected triangular compartmental model with
Q = {q1, q2, q3}, and A = {(q1, q2), (q2, q3), (q3, q1)} = {a12, a23, a31} is shown in
Fig. 2.
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Fig. 2 Directed graph of a
simple triangular compartmental
model

3.2 Kinetic representation of compartmental models

We assign a CRN to a compartmental model D = (Q, A) containingm compartments
as follows. The set of species is � = N ∪ S, where N = {N1, . . . Nm} and S =
{S1, . . . Sm}, where Ni and Si represent the amount of particles and the available
space in compartment qi , respectively. To each transition (directed edge) ai j in D we
assign the following reaction

(8)

Eq. (8) shows that during an elementary step of the transition from compartment qi
to q j , the amount of content (e.g., particles, material) in compartment qi is decreased
by one unit, and the number of particles in compartment q j is increased by one unit.
Parallelly, the amount of free space is increased in compartment qi and decreased
in compartment q j . It is also visible that a necessary condition for any transition is
that there is at least one particle in compartment qi and at least one available space
in q j . The rate (velocity) of the transition is determined by the rate function Ki j .
Let us denote the continuous amount (or concentration) of particles and free space in
compartment qi by ni and si , respectively. Moreover, let Di and Ri denote the index
sets of the donor and recipient compartments of qi , respectively. Then, using Eq. (2),
the dynamics of ni and si can be written as

ṅi =
∑

j∈Di

K j i (n j , si ) −
∑

j∈Ri

K j i (ni , s j )

ṡi = −
∑

j∈Di

K j i (n j , si ) +
∑

j∈Ri

K j i (ni , s j )
(9)

It is visible from Eq. (9) that ci := ni + si is constant for any compartment qi ,
therefore, ci will be called the capacity of qi for i = 1, . . . ,m. From the CRN defined
by the species and reactions in Eq. (8), we can give the Petri net representation of a
compartmental model as it is described in Sect. 2.2.
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Consider the compartmental model shown in Fig. 2. The associated CRN model is
the following

(10)

It is easy to see that the CRN (10) is identical to (5) in Example 1 with Ni = Xi

and Si = Xi+3 for i = 1, 2, 3, and K̄12 = K1, K̄23 = K2, K̄31 = K3. Therefore,
the corresponding Petri net is the same as the one shown in Fig. 1. Note that both
the compartmental graph and the Petri net of the model are strongly connected. How-
ever, as it is visible from the disjoint complexes of the reactions listed in Eq. (10),
the corresponding reaction graph is not weakly reversible and therefore not strongly
connected.

It is important to remark that the model class introduced in this section includes
as special cases certain finite volume discretizations of hyperbolic partial differential
equations applied e.g., in (traffic) flow modeling [23, 25], and popular kinetic models
for the description of simultaneous mRNA translation and competition for ribosomes
[31, 32].

4 Persistence analysis

Proposition 4.1 If the compartmental graph D of a model is strongly connected then
the corresponding Petri net P(D) as a directed graph is also strongly connected.

A directed graph is strongly connected if for any two vertices v and w there is
a directed path from v to w. The idea of the proof is that if there are two paths
P1 = v1v2 . . . vk and P2 = vkvk+1 . . . vn , then by concatenating P2 after P1 we get
a walk from v1 to vn . It will be a walk, and not necessarily a path, since there might
be identical vertices in the two concatenated paths. In this case by omitting the loop
created between the first and last occurrences of a vertex we can get a shorter walk
between the same endpoints. By a series of such steps the repeated occurences can be
eliminated, and we get a path. Consequently, if there exists a walk from v to w, then
there exists a path from v to w as well, and for a graph to be strongly connected, it is
enough to show the existence of walks instead of paths between any two vertices.

Proof Recall from Sect. 3 that the Petri net corresponding to the CRN representation
of a compartmental model contains two types of vertices, Ni and S j representing the
number of molecules in compartment qi and the empty spaces in compartment q j ,
respectively. The transition between the compartments qi and q j also corresponds to
a vertex, but this is a different, reaction type vertex called Ri j .

If in the compartmental graph D there is a transition from compartment qi to q j ,
then in the Petri net P(D) there exists a corresponding reaction vertex Ri j , which is
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Fig. 3 Representations of the same transition in the compartmental graph D and in the Petri net P(D)

incident to directed edges from vertices Ni and S j , and to vertices N j and Si . It can
be seen in Fig. 3 that a transition in the compartmental graph induces a path in the set
N of the Petri net in the same direction, and in the set S in the opposite direction.

We will examine the existence of paths between different types of vertices of the
Petri net separately, i.e. there will be four cases:

1. Path from Ni to N j

Since the compartmental graph D is strongly connected, it contains a directed path
from qi to q j :

qi → qk1 → qk2 → . . . → qkl → q j

This implies a directed path in the Petri net P(D) from Ni to N j with twice the
length of the path in the compartmental graph:

Ni → Rik1 → Nk1 → Rk1k2 → Nk2 → . . . → Nkl → Rkl j → N j

2. Path from Si to S j

The existence of such a path can be proven similarly as in the previous case.
Because of the strong connectivity of the compartmental graph D there exists a
directed path from q j to qi :

q j → qm1 → qm2 → . . . → qmp → qi

This implies a directed walk in the Petri net P(D) from Si to S j :

S j ← R jm1 ← Sm1 ← Rm1m2 ← Sm2 ← . . . ← Smp ← Rmpi ← Si

3. Path from Ni to S j

The strong connectivity of the compartmental graph D implies that for every vertex
there is at least one directed edge starting there, consequently theremust be a vertex
qk to which there is a transition from qi . Through the reaction vertex in the Petri
net there is a path Ni → Rik → Si . By concatenating this path with the existing
path from Si to S j we get a walk from Ni to S j .

4. Path from Si to N j

The strong connectivity of the compartmental graph D also implies that for every
vertex there is at least one directed edge going there, consequently there must be a
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Fig. 4 Strongly connectedPetri netP(D) corresponding to a not strongly connected compartmental graph D

vertex ql from which there is a transition to qi . It follows that in the Petri net there
is a path Si → Rli → Ni . By concatenating this path with the existing path from
Ni to N j we get a walk from Si to N j .

It can be seen that since there exist paths connecting the type N and type S vertices,
then there are paths between the reaction type vertices as well. ��
Remark 4.2 The implication in the other direction is not true. It is possible that the
Petri net is strongly connected but the corresponding compartmental graph is not. Such
an example can be seen in Fig. 4.

In the following part of this section we will examine the structure of siphons in the
Petri net. According to the definition it is a subset of � = N ∪ S for which every
input reaction is also an output reaction.

Proposition 4.3 If the compartmental graph D is strongly connected and N ′ ⊆ N is
a siphon in the Petri net P(D), then N ′ = N must hold.

In other words, if a siphon of the Petri net contains vertices only from the set N ,
then it contains all of them.

Proof Let us assume by contradiction that N ′ is a siphon in the Petri net, which is a
real subset of the vertex set N .

This set corresponds to the set Q′ = {qi | Ni ∈ N ′}, which is a real subset of the
vertex set Q of the compartmental graph D, i.e. Q′ �= ∅ and Q \ Q′ �= ∅ hold. Since
the compartmental graph D is strongly connected, there must be vertices qi ∈ Q′ and
q j ∈ Q \ Q′ so that there is a directed edge in D from q j to qi .

This edge represents the transition corresponding to the reaction R ji in the Petri
net, which connects the vertices N j , S j , Ni and Si . Since the vertex Ni is in the siphon
N ′, the reaction R ji is an input reaction of the siphon N ′, so by the definition of
siphons, R ji must be an output reaction toN ′ as well. For this to hold Si or N j should
be in the set N ′. However, Si /∈ N ′ since by its definition N ′ contains only type N
vertices, and N j /∈ N ′ since q j /∈ Q′. The original assumption leads to contradiction,
meaning that the siphon N ′ cannot be a real subset of N .

However, N itself is a siphon, since every reaction Rkl is an input reaction to the
vertex Nl and an output reaction from the vertex Nk .

��
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A similar property is true for the species set S, and the proof is based on the same
idea.

Proposition 4.4 If the compartmental graph D is strongly connected and S ′ ⊆ S is a
siphon in the Petri net P(D), then S ′ = S must hold.

If a siphon in the Petri net contains both types of vertices, a different type of
structural property can be formulated.

Proposition 4.5 If the compartmental graph D is strongly connected and T ⊆ N ∪S
is a siphon in the corresponding Petri netP(D) for which T ∩N �= ∅ and T ∩S �= ∅,
then there is an index i ∈ {1, 2, . . . ,m} for which Ni ∈ T and Si ∈ T .

In other words, if a siphon in the Petri net P(D) of a strongly connected compart-
mental graph D contains type N and type S vertices as well, then there is a vertex
qi in the compartmental graph D for which the corresponding vertices Ni and Si are
both contained by the siphon.

Proof Let us assume by contradiction that there is no such index. In this case the siphon
T is of the formN ′ ∪S ′, where the corresponding vertex subsets Q1 = {qi | Ni ∈ N ′}
and Q2 = {q j | S j ∈ S ′} of the compartmental graph D are disjoint. Consequently,
the sets Q1, Q2 and Q \ (Q1 ∪ Q2) form a partition of the vertices of D. (The set
Q \ (Q1 ∪ Q2) might be empty, in this case we have a partition with two class instead
of three.)

Since the compartmental graph D is strongly connected, there must be an edge
going into the set Q1 from either or both of the other sets, i.e. there exist vertices
q j ∈ Q1 and qi ∈ Q \ Q1 so that qiq j is a directed edge in D. The corresponding
reaction Ri j in the Petri net P(D) is an input reaction to N j in the siphon T , therefore
it must be an output reaction as well. For this to be fulfilled, S j or Ni should be in
the siphon T . By the assumption T cannot contain S j since N j ∈ T , and T cannot
contain Ni since the corresponding vertex qi is not in the set Q1. This is a contradiction,
consequently there must be an index i for which Ni ∈ T and Si ∈ T hold. ��
Corollary 4.6 A siphon in the Petri net of a strongly connected compartmental graph
either contains the Ni and Si vertices corresponding to the same compartment qi , or
it contains all the vertices of the same type N or S.
Proposition 4.7 In the Petri netP(D′) of any compartmental graph D′ the set {Ni , Si }
is a siphon for all i ∈ {1, 2, . . . ,m}.
Proof If R is an input reaction to the set {Ni , Si }, then it corresponds to a transition
to or from the compartment qi .

If R is an input reaction to the vertex Ni in the Petri net P(D′), then it represents a
transition a ji from some compartment q j to the compartment qi in the compartmental
graph D′. In this case R = R ji , and in the Petri net P(D′) this reaction is also an
output reaction from the vertex Si .

If R is an input reaction to the vertex Si in the Petri net P(D′), then it represents a
transition aik from the compartment qi to some compartment qk in the compartmental
graph D′. In this case R = Rik , and in the Petri net P(D′) this reaction is also an
output reaction from the vertex Ni (Fig. 5). ��
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Fig. 5 The vertex set {Ni , Si } is a siphon in the Petri net P(D′)

Corollary 4.8 Among the siphons contained by the Petri net of a strongly connected
compartmental graph the ones that are minimal with respect to containment are only
the sets N , S and the sets {Ni , Si } for all indices i ∈ {1, 2, . . . ,m}.

Proof Let T refer to a siphon in the Petri net of a strongly connected compartmental
graph.

If the siphon T contains just type N or just type S vertices, then by Propositions
4.3 and 4.4 it must contain all the vertices of that type. Consequently, the sets N and
S are siphons that are minimal with respect to containment.

If the siphon T contains both type N and type S vertices, then by Proposition 4.5
there must be an index i ∈ {1, 2, . . . ,m} for which {Ni , Si } ⊆ T holds. In Proposition
4.7 it was proven that the set {Ni , Si } for all indices is a siphon in the Petri net of a
strongly connected compartmental graph. Consequently, if T is not equal to {Ni , Si }
for some index i , then it is not minimal with respect to containment.

A vertex Ni in itself cannot be a siphon in the Petri net of a strongly connected
compartmental graph, it follows fromProposition 4.3. Similarly, Si in itself cannot be a
siphon there, basedonProposition 4.4.Consequently, for every index i ∈ {1, 2, . . . ,m}
the set {Ni , Si } is a minimal siphon with respect to containment.

��

Corollary 4.9 The dynamics given in Eq. (9) is persistent if the corresponding com-
partmental graph D = (Q, A) is strongly connected.

Proof The statement is an immediate consequence of Theorem 2.1 and Corollary 4.6.
��

5 Stability results

Consider a system given by (9) with strongly connected compartmental structure.
Using the fact that for each qi compartment ni = ci − si we can rewrite the system in
the reduced state-space as

ṅi =
∑

j∈Di

K j i (n j , ci − ni ) −
∑

j∈Ri

Ki j (ni , c j − n j ). (11)
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The state-space of the above system is C := [0, c1] × [0, c2] × · · · × [0, cm] and let
∂C denote the boundary of C ; that is, ∂C = C\int(C).

The Jacobian of (11) is given by

[
J (n)

]
ik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∑
j∈Di

∂K j i (n j ,ci−ni )
∂ni

− ∑
j∈Ri

∂Ki j (ni ,c j−n j )

∂ni
if i = k,

∂Kki (nk ,ci−ni )
∂nk

if k ∈ Di and k /∈ Ri ,

∂Kik (ni ,ck−nk )
∂nk

if k /∈ Di and k ∈ Ri ,

∂Kki (nk ,ci−ni )
∂nk

+ ∂Kik (ni ,ck−nk )
∂nk

if k ∈ Di and k ∈ Ri ,

0 otherwise.

(12)

The (A2) property of the rate functions imply that each diagonal entry is nonpositive
and each off-diagonal entry is nonnegative. Since the sum of each column is zero, we
conclude that the system is compartmental in the sense of [22]. Systems satisfying the
latter property are also called cooperative.

The following lemmata and proofs will adapt the ideas of [27] and [32] for the
studied more general system class. Moreover, we will also use the persistence result
of Corollary 4.9.

Lemma 5.1 Consider a compartmental system of the form (11) with a strongly con-
nected compartmental structure. Then, for any n(0) ∈ int(C) the solution satisfies
n(t) ∈ int(C) for any t ≥ 0.

In other words, int(C) is an invariant set of such a system.

Proof To obtain a contradiction, suppose that there exists a (minimal) time τ > 0 such
that n(τ ) ∈ ∂C . We need to consider the following two cases.

1. There exists an empty compartment. In this case, due to the strongly connected
structure, theremust exist an empty compartmentwith at least one non-empty donor
compartment as well. To see this, consider a directed path from any non-empty
compartment to any empty compartment. Stepping backwards from the empty
compartment along this path until we reach a non-empty compartment establishes
our assertion.
Let i be an index such that ni (τ ) = 0 and nk(τ ) > 0 holds for some k ∈ Di .

Then (11) takes the form

ṅi (τ ) =
∑

j∈Di

K j i (n j , ci ) ≥ Kki (nk, ci ) > 0 (13)

which means that ṅi (t) > 0 on the interval [τ − σ, τ ] for some σ > 0. This
leads to a contradiction with ni (τ ) = 0, further implying that there are no empty
compartments altogether.

2. There exists a full compartment. In this case, by a similar argument, there must
exist a full compartment with at least one non-full recipient compartment as well;
that is, there exists an index i such that ni (τ ) = ci and nk(τ ) < ck holds for some
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k ∈ Ri . Then (11) takes the form

ṅi (τ ) = −
∑

j∈Ri

Ki j (ci , c j − n j ) ≤ −Kik(ci , ck − nk) < 0 (14)

which means that ṅi (t) < 0 on the interval [τ − σ, τ ] for some σ > 0. This
leads to a contradiction with ni (τ ) = ci , further implying that there are no full
compartments altogether.

��
Let 0(m), c(m) ∈ R

m be defined by

0(m) =

⎡

⎢⎢⎢⎣

0
0
...

0

⎤

⎥⎥⎥⎦ c(m) =

⎡

⎢⎢⎢⎣

c1
c2
...

cm

⎤

⎥⎥⎥⎦ .

Lemma 5.2 Consider a compartmental system of the form (11) with a strongly con-
nected compartmental structure. Then, for any n(0) ∈ ∂C, n(0) �= 0(m), n(0) �= c(m)

the solution satisfies n(τ ) ∈ int(C) for some τ > 0.

Proof First we define the following boundary-repelling property.

(BR) For each δ > 0 and sufficiently small � > 0, there exists K = K (δ,�) > 0
such that for each t ≥ 0

1. the conditions

(a) ni (t) ≤ �,
(b) there exists k ∈ Di such that nk(t) ≥ δ

imply ṅi (t) ≥ K , and
2. the conditions

(a) ni (t) ≥ ci − �

(b) there exists k ∈ Ri such that nk(t) ≤ ck − δ

imply ṅi (t) ≤ −K .

(11) satisfies the above property. To see this, consider any compartment qi . Without
the loss of generality we can assume that Di contains at least one index, let this be k.
In this case

ṅi (t) ≥ Kki (δ, ci − �) −
∑

j∈Ri

Ki j (�, c j ) := K1. (15)

Similarly, we can assume thatRi contains at least one index, let this be l. In this case

ṅi (t) ≤
∑

j∈Di

K j i (c j ,�) − Kil(ci − �, cl − δ) := −K2. (16)
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The properties of the rate functions imply that for a sufficiently small � we have
K1 > 0 and −K2 < 0, thus taking K = min {K1, K2} concludes our assertion.

Next, we will show that for each compartment ni (τ ) > 0 holds for some τ > 0.
Without the loss of generality we can assume that there exists an index i such

that ni (t) ≥ ε0 on the interval [0, τ ] for some ε0 > 0 and τ > 0. Define τm = τ
m

and proceed by induction. For k = 1, 2, . . . ,m we will define an appropriate εk >

0 and show that the kth generation recipients of the compartment qi have particle
concentration of at least εk on the interval [kτm, τ ].

Pick any j ∈ Ri (first generation recipient) and sufficiently small � > 0, define
K = K (ε0,�) and ε1 = min {�, K τm} and let t0 ∈ [0, τm] such that n j (t0) ≥ ε1.
Such a t0 must exist, since assuming n j (t) < ε1 ≤ � for each t ∈ [0, τm]would imply
via (BR) that ṅ j (t) ≥ K for each t ∈ [0, τm]. This further implies that n j (τm) ≥
n j (0) + K τm ≥ ε1. This leads to a contradiction with n j (τm) < ε1.

Our next claim is that n j (t) ≥ ε1 for each t ∈ [t0, τ ] and in particular [τm, τ ].
Conversely, suppose that there exists some t1 ∈ (t0, τ ] such that ξ := n j (t1) < ε1 and
define σ = min

{
t ∈ (t0, τ ) : n j (t) ≤ ξ

}
. Since n j (σ ) ≤ ξ < ε1 ≤ �, (BR) shows

that ṅ j (σ ) ≥ K ; that is, ṅ j (t) > 0 on the interval [σ − ν, σ ] for some ν > 0. But this
would imply that n j (σ − ν) < n j (σ ), contradicting the minimality of σ .

Define K = K (ε1,�) and ε2 = min {�, K τm} and repeat the above steps for the
setR j for j ∈ Ri (second generation recipients). In subsequent induction steps define
K = K (εk,�) and εk+1 = min {�, K τm} and repeat the above for the kth generation
recipients of the compartment qi . Since the compartments are strongly connected after
at most m induction steps we conclude that ni (τ ) > 0 for each i = 1, 2, . . . ,m.

To show that ni (τ ) < ci holds aswell, consider the complementary system obtained
by rewriting (9) using si = ci − ni as

ṡi = −
∑

j∈Di

K j i (c j − s j , si ) +
∑

j∈Ri

Ki j (ci − si , s j ). (17)

Repeating the above steps for (17) shows that si (τ ) > 0, further implying that ni (τ ) <

ci ; that is, indeed n(τ ) ∈ int(C). ��
Remark 5.3 The proof also shows that for each τ > 0 there exists ε(τ ) > 0 with
ε(τ ) → 0 as τ → 0, such that n(τ ) ∈ [ε, c1 − ε] × [ε, c2 − ε] × · · · × [ε, cm − ε];
that is, even if the initial value is on ∂C the orbit enters int(C) after an arbitrarily short
time.

Remark 5.4 A similar argument shows that ∂C only contains the two trivial equilibria
corresponding to an empty and a full network.

To see this, let us first assume that n∗ is an equilibrium and for a compartment qi
we have n∗

i = 0. Then, by (11)

ṅ∗
i =

∑

j∈Di

K j i (n
∗
j , ci ) = 0

which is only possible if n∗
j = 0 for each j ∈ Di . Induction shows that n∗ = 0(m).
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Next, let us assume that for a compartment qi we have n∗
i = ci . Then, by (11)

ṅ∗
i = −

∑

j∈Ri

Ki j (ci , c j − n∗
j ) = 0

which is only possible if n∗
j = c j for each j ∈ Ri . Induction shows that n∗ = c(m).

For a given initial condition a ∈ C , let �(t, a) denote the solution at time t with
�(0, a) = a; that is �(t, a) = n(t) with n(0) = a. Since the total number of particles
is conserved, the function I : Rm �→ R defined by I (y) = ∑m

i=1 yi is a first integral.

For s ∈
[
0, I (c(m))

]
let Ls ⊂ C be the level set of I ; that is,

Ls = {
a ∈ C : I (a) = s

}
. (18)

Using the terminology of CRN theory [16], the level sets defined in Eq. (18) are also
called stoichiometric compatibility classes.

Proposition 5.5 Consider a compartmental system of the form (11) with a strongly

connected compartmental structure. Then, for any s ∈
[
0, I (c(m))

]
the set Ls contains

a unique steady state es satisfying limt→∞ �(t, a) = es for any a ∈ Ls.

Proof Since L0 = {0(m)} and �(t, 0(m)) = 0(m), the statement holds for an empty
network with e0 = 0(m). Similarly, since L I (c(m)) = {c(m)} and �(t, c(m)) = c(m), the
statement holds for a full network with eI (c(m)) = c(m).

Choose s ∈
(
0, I (c(m))

)
and a ∈ Ls . By the strongly connected compartmental

structure the Jacobian J (n) is irreducible on int(C) but may become reducible on ∂C .
However, Lemmas 5.1 and 5.2 along with Remark 5.3 show that (11) has repelling
boundary; that is, �(t, a) ∈ int(C) after an arbitrarily short time even if a ∈ Ls ∩ ∂C .
As a consequence, (11) is a cooperative irreducible systemevolving in int(C) admitting
a first integral with positive gradient. The result [28,Theorem 10.] shows that Ls either
has precisely one equilibrium that attracts the whole level set or has zero equilibria
and each ω-limit set of the level set is empty. However, by the boundedness of the
sequence {�(k, a) : k = 1, 2, . . . } ⊂ int(C) the Bolzano-Weierstrass theorem implies
that there is a convergent subsequence; that is, the ω-limit set of a cannot be empty.
Furthermore, Corollary 4.9 implies that ω(a) ∩ ∂C = ∅ and the proof is complete. ��

In the proofs above we used the notion of cooperative systems directly, however,
the underlying theory involves so-called (strongly) monotone systems, which in our
case, is a direct consequence of cooperativity, as shown by our next result.

For two points x, y ∈ R
m , let

x ≤ y if xi ≤ yi for i = 1, 2, . . . ,m, (19)

x < y if x ≤ y and x �= y, (20)

x � y if xi < yi for i = 1, 2, . . . ,m. (21)
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Proposition 5.6 Consider a compartmental system of the form (11) with a strongly

connected compartmental structure. Then, for any s ∈
[
0, I (c(m))

]
and a, b ∈ Ls,

the relation a ≤ b implies �(t, a) ≤ �(t, b) and a < b implies �(t, a) � �(t, b) for
any t > 0.

Proof If x or y is equal to 0(m) or c(m), then the statement trivially holds. In any other
case, use the proof of Proposition 5.5 to conclude that (11) is a cooperative irreducible
system evolving in a convex and open set, namely, int(C). The statement is a direct
consequence of [28,Theorem 1., Theorem 3.]. ��

Our final result in this topic gives further insight into the qualitative behaviour of
(11).

Proposition 5.7 Consider a compartmental system of the form (11) with a strongly
connected compartmental structure. Then, for any a, b ∈ C initial values and t ≥ 0

‖�(t, a) − �(t, b)‖
1(Rm) ≤ ‖a − b‖
1(Rm ) .

In other words, using the usual 
1(Rm) norm, the distance of two trajectories at
any given time cannot be larger than the distance of the initial values. In particular, if
b = eI (a), then we find that the convergence to eI (a) is monotone.

Proof By [35,Chapter 2.2] the induced matrix measure by the 
1 vector norm is

μ(A) = max
i

{
[A]i i +

∑

j �=i

∣∣[A] j i
∣∣
}
. (22)

Sinceμ
(
J (n)

) = 0, the result [34,Theorem1.] implies the assertion of the proposition.
��

Remark 5.8 It is straightforward to extend our persistence and stability results to sys-
tems with a weakly reversible compartmental graph, when the dynamics unfold into
isolated subsystems having strongly connected compartmental graphs. Furthermore,
some of the above results on the qualitative behaviour, for example the monotonicity
in Propositions 5.6 and 5.7 can be extended to systems with arbitrary compartmental
topology.

6 Conclusions

The fundamental dynamical properties of a class of kinetic compartmental systems
having finite capacities were studied in this paper. The transition of particles between
compartments was described by a kinetic model. For persistence analysis, the Petri net
representation of the CRN model was used. We showed that the Petri net of models
having a strongly connected compartmental graph is also strongly connected. It was
also shown that the dynamics of models with a strongly connected compartmental
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graph is persistent for a wide class of rate functions. This result is based on the char-
acterization of siphons in the Petri net of the system and the corresponding conserved
quantities. The persistence property was then used in the stability analysis of com-
partmental models. It was shown that for strongly connected compartmental models, a
unique equilibriumpoint exists within each stoichiometric compatibility class, and this
equilibrium is asymptotically stable within each compatibility class even if the initial
conditions are on the boundary of the nonnegative orthant (except for the two trivial
boundary equlibria). Further work will be focused on the control related application
of our results.
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