
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2022

Autonomous Network Defence Using Multi-Agent Reinforcement Autonomous Network Defence Using Multi-Agent Reinforcement

Learning and Self-Play Learning and Self-Play

Roberto G. Campbell
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Campbell, Roberto G., "Autonomous Network Defence Using Multi-Agent Reinforcement Learning and
Self-Play" (2022). Master's Theses. 5253.
DOI: https://doi.org/10.31979/etd.8pey-takb
https://scholarworks.sjsu.edu/etd_theses/5253

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5253?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5253&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AUTONOMOUS NETWORK DEFENCE USING MULTI-AGENT REINFORCEMENT
LEARNING AND SELF-PLAY

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Roberto G. Campbell

May 2022

© 2022

Roberto G. Campbell

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

AUTONOMOUS NETWORK DEFENCE USING MULTI-AGENT REINFORCEMENT
LEARNING AND SELF-PLAY

by

Roberto G. Campbell

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

May 2022

Magdalini Eirinaki, Ph.D. Department of Computer Engineering

Younghee Park, Ph.D. Department of Computer Engineering

Brian Coltin, Ph.D. NASA Ames Research Center

ABSTRACT

AUTONOMOUS NETWORK DEFENCE USING MULTI-AGENT REINFORCEMENT
LEARNING AND SELF-PLAY

by Roberto G. Campbell

Early threat detection is an increasing part of the cybersecurity landscape, given the

growing scale and scope of cyberattacks in the recent years. Increasing exploitation of

software vulnerabilities, especially in the manufacturing sector, demonstrates the ongoing

need for autonomous network defence. In this work, we model the problem as a zero-sum

Markov game between an attacker and defender reinforcement learning agents. Previous

methods test their approach on a single topology or limit the agents to a subset of the

network. However, real world networks are rarely fixed and often add or remove hosts

based on demand, link failures, outages, or other factors. We do not confine our research

to a fixed network in terms of size and topology, but instead are interested in larger

networks and varied topologies to determine the scalability and robustness of the

approach. We consider additional topologies and a robust training curriculum that

incorporates network topologies to build more general, capable agents. We also use PPO

which offers a good balance of computational complexity and convergence speed.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Magdalini Eirinaki, for the guidance, feedback,

and support through this journey. I would also like to thank my co-advisor Dr. Younghee

Park, who has been reliable source of critical insights and feedback. And a big thanks to

Dr. Brian Coltin and Dr. Michael Furlong who if it weren’t for their unwavering belief in

me I might not be here typing this.

I would like to thank my family, who without their support at every step I wouldn’t

have made it this far. Thanks to David, Diane, Maggie, Goretti y’all were the anchor that

kept me grounded throughout this process. Y quiero agradecer a mis padres, que han

hecho sacrificios inumerables para hacer estos momentos posible.

And finally I’d like to thank my girlfriend, who’s remembered to feed the cats while

I’ve been lost in numbers and figures. Thanks for holding the fort down, I couldn’t have

done this without you.

v

TABLE OF CONTENTS

List of Tables . viii

List of Figures . x

List of Abbreviations. xi

1 Introduction. 1
1.1 General Trends . 1
1.2 Contribution . 2

2 Literature Review . 4
2.1 Reinforcement Learning . 4
2.2 Multi-agent Reinforcement Learning . 7
2.3 Software Defined Networks . 8
2.4 Reinforcement Learning for Software Defined Networks 8

2.4.1 Network Management . 9
2.4.2 Threat Detection . 10
2.4.3 Intrusion Prevention . 11

3 The RL Triad: Environment, Actions, Rewards . 14
3.1 Environment. 14

3.1.1 Vulnerability Scores . 15
3.1.2 Topology. 17

3.2 Observations . 18
3.3 Actions . 20

3.3.1 Action Space . 20
3.3.2 Action Masking . 24

3.4 Rewards . 25
3.4.1 Reward Shaping . 25

4 Training Process. 27
4.1 Self-play . 27

4.1.1 Opponent Selection . 28
4.1.2 Opponent Sampling . 28

4.2 Curriculum Learning . 28
4.2.1 Vulnerability Scores . 28
4.2.2 Network Topology . 29

4.3 Training Setup . 30

5 Experimental Evaluation. 32

vi

5.1 Rewards . 33
5.2 Threat Scenarios . 35
5.3 Network Size . 37
5.4 Training Curriculum . 38
5.5 Self Play . 39

5.5.1 Opponent Selection . 39

6 Conclusion. 42

7 Future Work . 44

Literature Cited . 45

Appendix A: Supplemental Material . 49
A.1 Network Size . 49
A.2 Opponent Sampling. 50

vii

viii

LIST OF TABLES

Table 1. CVSS Vulnerability Severity Ratings . 16

Table 2. Agent Action Overview . 20

Table 3. Reward Results. 34

Table 4. Threat Scenarios Results . 36

Table 5. Network Size Results . 38

Table 6. Training Curriculum Results . 38

ix

LIST OF FIGURES

Fig. 1. Win conditions example.. 14

Fig. 2. From left to right: Attacker and defender observation of game state. . . 15

Fig. 3. Network topologies. 18

Fig. 4. Ring environment with corresponding observations and state. From
left to right: Attacker observation, defender observation, global state . 19

Fig. 5. Color key and state value for node states. From left to right: Normal
(0), Vulnerability Scanned (1), Vulnerability Exploited (2), Critical
Node (3) . 19

Fig. 6. Example of attacker actions in clique topology. 21

Fig. 7. Example of defender actions in clique topology. 22

Fig. 8. Agent action masks. 25

Fig. 9. Self play overview. 27

Fig. 10. Increase of standard deviation for exploitability score over training
for sample experiment. Standard deviation for impact score follows a
similar increase from 0.01→ 1. 29

Fig. 11. Average defender win rate for one- and zero-clipped baseline reward
with confidence interval. The max and min values are highlighted for
each cell. 33

Fig. 12. Average defender reward for one- and zero-clipped baseline reward
with confidence interval. The max and min values are highlighted for
each cell. 34

Fig. 13. Average defender reward for mean impact ImpactScore ∈ [1,2.5,5]
and ExploitabilityScore ∈ [1,2.5,5]. The max and min values are
highlighted for each cell. 35

Fig. 14. Average defender win rate for ImpactScore ∈ [1,2.5,5] and Ex-
ploitabilityScore ∈ [1,2.5,5] with confidence interval. The max and
min values are highlighted for each cell. 36

x

Fig. 15. Average defender win rate over training for Network Size with
network size k ∈ [8,16,32,64]. Max and min values highlighted for
each cell. 37

Fig. 16. Average defender reward with confidence interval comparing clique
and linear topologies with dynamic topology curriculum. Max and
min values highlighted for each cell . 39

Fig. 17. Share of win rate over time for defender against attacker pool policies.
Results shown for clique and linear topologies across 4 win threshold
values. 40

Fig. 18. Agents added to respective agent pool over 100k steps for two
topologies: clique and linear. Results are further broken down by win
threshold. 41

Fig. 19. Average episode length for defender episodes. Results are averaged
over 15 runs. 49

Fig. 20. Average total cost for defender countermeasures. Results are averaged
over 15 runs. 50

Fig. 21. Sample opponent pool when precent = 0.8 and d = 0.2. Values are
probabilities for selecting respective agent. 51

LIST OF ABBREVIATIONS

A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
API Application Programming Interface
DPG Deterministic Policy Gradient
DDPG Deep Deterministic Policy Gradient
DQN Deep Q Network
DRL Deep Reinforcement Learning
IDS Intrusion Detection System
IPS Intrusion Prevention System
ISC Impact Subscore
MARL Multi-agent Reinforcement Learning
MDP Markov Decision Process
MBF Multiple Bloom Filter
MRP Markov Reward Process
RL Reinforcement Learning
OT Operational Technology
PPO Proximal Policy Optimization
POMDP Partially Observable Markov Decision Process
SAC Soft Actor Critic
SDN Software Defined Network
TCAM Ternary Content-Addressable Memory

xi

1 INTRODUCTION

1.1 General Trends

Early threat detection is an increasing part of the cybersecurity landscape, given the

growing scale and scope of cyberattacks in the recent years. This increased scope means

that integrating threat intelligence data from multiple feeds such as honeypots, open

source intelligence (OSINT), network monitoring, and DNS analytics is crucial to

understanding the threat landscape. It also means that threat analysts must sift through

data from a variety of sources in order to detect threat actors and malicious campaigns.

By automating some of these processes we free up analyst time to address high priority

threats.

According to a recent survey of the threat landscape, vulnerabilities in the cloud have

increased by 150% in the last five years [1]. Manufacturing leads as the most attacked

industry, with 47% of the attacks due to the exploitation of a vulnerability. Of the attacks

on manufacturing, 23% of those were ransomware. Operational technology (OT) used

throughout the industry is a frequent target in these attacks and the increasing adoption of

Internet of Things (IoT) devices has increased the attack surface available to threat actors.

In May 2021, the Colonial Pipeline Company was extorted by a ransomware group [2].

An analysis after the attack discovered that the attackers had used a single password to

gain access to a legacy VPN system. The attack demonstrated that the distributed nature

of OT and real time performance requirements make it an especially attractive target for

attackers. It can also be a matter of national security, as was the case in the Colonial

Pipeline attack.

Reinforcement learning (RL) is a rapidly growing sub-field of machine learning that

has found applications in gaming, robotics, autonomous vehicles, and finance. Unlike

supervised learning which learns from labeled data, RL allows an agent to learn from

interacting with an environment and receiving feedback in the form of rewards [3]. The

1

agent learns a policy which informs how it interacts with the environment, improving its

average reward over time. Agents can even cooperate with or compete in an environment

similar to the framework of generative adversarial networks in deep learning.

Cybersecurity, and in particular network defense, is a good candidate for applying

reinforcement learning agents [4], [5].

1.2 Contribution

In this work we propose a RL approach using proximal policy optimization (PPO) to

train an agent to choose countermeasures for defending a network. The goal of the

defender is to mitigate the intrusion while minimizing the impact on the network by the

attacker. We model both defender and attacker as RL agents. The agents compete in a

zero-sum game using self-play to improve convergence [6]. In addition, we evaluate the

agent in varying environments and with varying simulated threat scenarios in order to

determine the effect of observed vulnerabilities in the environment on defender

performance. Instead of training on a fixed topology/network size as previous work

does [4], [5], [7], [8] we instead evaluate our approach on larger networks and varied

topologies to determine the scalability and robustness of the approach. We unify the

topologies using a training curriculum to build more general, capable agents. And finally,

we choose PPO for training the agents which offers a good balance of computational

complexity and convergence speed.

Previous methods test their approach on a single topology or limit the agents to a

subset of the network . However, real world networks are rarely fixed and often add or

remove hosts based on demand, link failures, outages, or other factors.

In particular, our contributions can be summarized as follows:

1) Propose a modification of the base reward of Gabirondo-Lopez et al. [7] that

improves convergence.

2

2) Design and development of a training curriculum using threat scores and network

topology.

3) A training methodology that adds snapshots of agents to opponent pool for self-play

using an adaptive win rate threshold.

4) An extensive training and evaluation of the the agents in multiple network topologies.

5) An extensive training and testing of the agents in a variety of threat scenarios

The remainder of this work is organized as follows. A review of the state-of-the-art

for reinforcement learning, multi-agent reinforcement learning, and reinforcement

learning for software defined networks is given in Section 2. A breakdown of the

environment, state, and actions of the Markov game is given in Section 3. This section

also includes a discussion of rewards and observations per agent. In Section 4, we give an

overview of the training process which includes a discussion of self-play and the

curriculum for training. In Section 5, we present the results of our experimental

evaluation. In Section 6, we discuss the results and give concluding remarks. In Section 7,

we remark on future research directions of the work.

3

2 LITERATURE REVIEW

2.1 Reinforcement Learning

In reinforcement learning, the interaction of agent and environment is modeled as a

Markov Decision Process (MDP). A MDP is a collection of (st ,at) tuples which describe

the transition probabilities between states s in the environment given action a at timestep

t. The MDP can be augmented with rewards to describe the reward R for state action pair

(st ,at). This is known as a Markov Reward Process (MRP) [9].

A partially observable Markov decision process (POMPD) is a Markov decision

process with states s ∈ S that the agent cannot observe. Similarly to MRP, rewards can be

added to describe a partially observable Markov reward process (POMRP) [10].

Additionally the POMDP is described by an observation function st →Ot that maps states

s to observations O at time t [6].

Markov decision processes are further extended by increasing the possible agents

from 1 to n >= 2. These MDPs are known as Markov games [6]. Instead of simply

maximizing the sum of expected rewards, we are now interested in the set of policies that

characterize a Nash equilibrium between the competing agents. The learned Nash

equilibrium can be sub-optimal [11].

The expected sum of rewards in a Markov reward process can described using the

Bellman equation:

Q(s,a) = rs,a + γ maxQ(s′,a′) (1)

where Q(s,a) is the discounted sum of rewards when taking action a at time t in state s.

This quantity is also known as the Q value, or the value of action. The reward is

discounted by discount factor γ to account for future rewards [10]. In reinforcement

learning, we are interested in the distribution of actions, or policy π , that maximizes the

expected sum of rewards. The Bellman operator provides a guarantee for finding the

4

optimal policy through maximizing the value of action at each step. Since Markov

processes are memoryless, we only need to consider the current state; the history is

unnecessary [6], [11].

In recent years, RL has made advances in increasingly complex environments and

across domains. Value-based methods use the expected discounted sum of rewards to

choose actions as an approximation of the agent’s policy π [3]. In 2016, Mnih et al.

stabilized Q learning with deep reinforcement learning by using two separate Q networks,

the target network and the online network. The authors added a replay buffer to sample

past experience which lead to more sample efficiency, as the network can train on

previously seen samples. The online network predicts the Q value and is refreshed every t

time steps using the target network [12]. This also breaks the dependency between

samples which improves training with deep reinforcement learning (DRL). This approach

is referred to as Deep Q Networks, or DQN. Hessel et al. extended the approach by

combining improvements for DQN such as n-step DQN, double DQN, and distributional

DQN [13]. The method achieved state-of-the-art results on the Atari benchmark.

Policy gradient methods directly estimate policy instead of inferring actions indirectly

through Q values such as in value-based methods. The policy π is estimated by the policy

network as a distribution over the actions. In the policy gradient method REINFORCE,

the Q values and log of the policy define the loss of the policy [14]. However,

REINFORCE and similar policy gradient methods are sensitive to high variance [15].

Lillicrap et al. augment the deterministic policy gradient method (DPG) with DRL to

learn a distribution over a continuous action space [16]. This method, also known as deep

deterministic policy gradients, or DDPG, improves on the performance of benchmark

continuous tasks such as Cheetah and Cartpole [17]. Since actions are continuous, they

propose sampling from a random noise process instead of the common ε greedy approach

for exploration.

5

Actor-critic methods such as DDPG and advantage actor critic (A2C) use two

networks, an actor and critic, to better estimate the policy compared to methods such as

REINFORCE. The baseline, or the critic, predicts values that are used to improve the

actor’s estimate of the policy. This reduces variance but increases bias in the agent’s

actions [15].

Mnih et al. extend the actor-critic framework by training an actor-critc model

asynchronously with parallel environments collecting experience simultaneously on

multiple CPU threads. Instead of a replay buffer, the authors propose a different

exploration strategy for each agent. This removes the need for a replay buffer and allows

the training to converge faster. Additionally, the authors improve the critic’s baseline

estimate using the advantage A(s,a) = Q(s,a)−V (s) where A(s,a) is the advantage,

Q(s,a) is the Q value (value of action), and V (s) is the value of state. The advantage

represents the relative quality of the action when taking action a. The authors refer to this

approach as Asynchronous Advantage Actor-Critc (A3C) [18].

A3C and REINFORCE are susceptible to policy gradient updates that undo previous

learning. This can cycle into further incorrect policy updates as the policy takes actions

and makes further gradient updates with the bad network parameters. Proximal policy

optimization (PPO) attempts to solve this issue by constraining the gradient updates to a

region in the parameter space which should lead to favorable updates in the network’s

parameters. PPO clips the policy as shown in Equation 2.

L = ∑min(rt(θ)At ,clip(rt(θ),1− ε,1+ ε)At) (2)

Similar to PPO, Haarnoja et al. [19] set out to design a sample efficient model-free RL

approach without the need for extensive hyperparameter tuning. The authors propose

SAC, or soft-actor critic, which unlike PPO is off-policy. The results reported

6

state-of-the-art performance on continuous robotics tasks such HalfCheetah-v2 [17], with

PPO comparable in Humanoid-v2 but with slower convergence .

2.2 Multi-agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) extends the ideas in single-agent DRL

and applies them to Markov games which can be either cooperative or competitive. One

of the earliest works in multi-agent reinforcement learning, or MARL, was by Tampuu et

al. which trained two independent agents to play Pong. By adjusting the reward, they

were able to elicit either cooperative or competitive behavior from the agents [20].

A well known issue of MARL is the non-stationarity of the environment, which

violates the Markov property. This refers to the fact that from the each agent’s perspective

the actions of additional agents form part of the environment. As a result, the moving

policy distribution of the agents inhibit convergence [21]. Self-play using opponent pools

addresses this issue for competitive environments by freezing the agent’s parameters and

adding them to a pool of past opponents. Each episode, the opponent pool is sampled

from uniformly to ensure the agent does not forget how to play against previously seen

strategies [22].

Silver et al. [23] used self-play to train an agent achieve grandmaster level play in the

game of Go. The authors used Monte Carlo Tree Search (MCTS) to simulate games. The

MCTS tallys up the visit count for each action and updates the Q value for each. We can

then consider the policy π a vector of search probabilities proportional to the visit count

for each action.

In 2019, OpenAI [24] used PPO to outperform the top players in the world in Dota 2.

The group used self-play with a shared base feature extraction Long Short Term Memory

(LSTM) for both the policy and value networks. This is inspired by work done by

Hausknecht and Stone [25], where they used an LSTM to learn temporal dynamics of

Atari games like Pong. This eliminated the need for framestacking for Atari games.

7

Most recently, Schrittwieser et al. [26] expanded on the search based framework built

by AlphaZero in a work titled MuZero. MuZero is a model-based approach that outputs

three values at each step: actions, values, and rewards. The model uses a recurrent model

internally that takes the observation and possible future action as input. The authors

trained the model using self-play in a variety of environments such as chess, Go, and

Atari.

2.3 Software Defined Networks

Software Defined Networks (SDN) can be broken into three major architectural

components: the controller, the northbound interface, and the southbound interface. The

purpose of this design is to separate the data and control plane. The data plane is

implemented at the device level, which communicates to the controller through the

southbound interface. This allows the controller to add or modify rules that determine

how packets are routed dynamically. Each device maintains a table of rules called a flow

table which is managed by the controller.

This allows for more dynamic routing, as the devices forward packets to the controller

if there a packet does not match any rules in the current flow table. The device forwards

the packet to the controller and the controller can update the flow table of the device with

the appropriate rule. The northbound interface augments that flexibility by providing an

API for use by services and apps to communicate with the controller. By monitoring

events in the network from the southbound interface, apps built on the controller can

dynamically manage the network and respond to events in the network.

2.4 Reinforcement Learning for Software Defined Networks

RL in cybersecurity can be categorized into three major areas: intrusion detection,

game theory, and cyber-physical systems. In this work, we are interested in the game

theoretic application to cybersecurity defense. In particular, we plan to abstract an

8

attacker-defender interaction as a zero-sum game and search for the optimal defense

strategy.

2.4.1 Network Management

Since SDNs allow for dynamic updating of network routing rules, reinforcement

learning allows for autonomous network management. Network performance measures

such as bandwidth, control overhead, latency, and table-hit rate are especially useful when

managing the network.

Switches and other physical devices have a limit to the number of rules they can store

which is due to the capacity of the Ternary Content-Addressable Memory (TCAM). In an

OpenFlow switch, flow entries are stored in the flow table on the TCAM. However,

TCAM is limited and can be exceeded by adding an excess amount of entries to the flow

table. This can cause flow entries to be forwarded to the controller for processing. An

increase of forwarded flow entries increases overhead on the controller due to increased

table-miss scenarios for packets that match the entries on the controller. To address the

overhead due to network reconfiguration with this constraint, Mu et al. [27] propose a

reinforcement learning framework that moves which rules should be stored on device and

which should be processed by the controller to minimize table-miss scenarios .

This framework uses the parameters f low f requency and f lowrecent to select entries

from a pool and install the selected flow entries onto the OpenFlow device. These

parameters are sampled from OpenFlow and represent the flow match frequency and

duration of flow, respectively. Based on the agent’s prediction of flow frequency and flow

recentness, the controller splits the entry pool into two distinct sets: device rules and

controller rules. The device rules are installed on the corresponding devices and the

controller rules are maintained on the controller. For the results, the authors are interested

in reducing the control overhead which is the amount of table-misses in an episode. The

performance of the traditional reinforcement learning method Q learning is compared to

9

DQN. A 40% reduction in the control overhead is set as the target threshold over a

training session comprising 101 episodes. DQN reduced the overhead in the 5th episode

whereas Q learning reached the goal around the ∼60th episode.

The authors also compared the performance of the RL methods discussed with a

Multiple Bloom Filter (MBF) [27]. The comparison looks at the table-hit percentage of

the three methods. Q learning showed the lowest table-hit rate followed by the MBF. The

DQN approach had the highest table-hit rate at 65%, a roughly 10% increase over the

MBF .

2.4.2 Threat Detection

In addition to flow management, SDN controllers can leverage reinforcement learning

for detecting threats in a cybersecurity context. With the proliferation of Internet of

Things (IoT) devices, it has become more important to monitor outgoing traffic. Attackers

can compromise the devices and hide illicit activity as spikes in traffic which can lead to

packet loss. Dake et al. [28] propose a RL system to detect DDOS and other suspicious

activity in an IOT network. The authors focus on three types of attacks: traffic burst,

elephant flow, and DDOS in the network. An RL agent is applied to address traffic burst

and elephant flow while a second monitors potential DDOS. The two agents work to

normalize traffic by working through the controller to install flow rules on the device.

The controller monitors the network and sends information to the agents which the

use to modify the environment. Both agents use information such as the link occupancy

rate between the flow and the switches, channel link occupancy between packet-in

messages, and link occupancy between packet-out messages. Since the first agent is

responsible for monitoring traffic burst and elephant flows, it takes two actions in

response to the observed network environment. The first assigns the next hop to available

switches during packet-out messages. The second increases bandwidth of the affected

flow within the demand range of the network. The second agent, however, is responsible

10

for responding to DDOS in the network and as a result will add a packet drop rule if the

flow frequency is greater than a given threshold. To compare the multi-agent approach

against the single agent, the author’s setup a network using mininet and the SDN

controller Ryu with 5 and 8 Openflow switches. The network has 20 and 60 nodes,

respectively with traffic sent using TCP and link bandwidth set to 50-100 Mbps.

The authors measured bandwidth and intrusion detection rate in the network for both

single agent and multi-agent. For the 60 node scenario, multi-agent RL used 7% less

bandwidth by the end of the experiment. Overall, multi-agent consistently used less

bandwidth than the single agent approach over the time span measured. The intrusion

detection rate is measured as the number of DDOS packets. As the packet transmission

rate increases, the multi agent approach scales almost linearly with the packet

transmission rate. For the 20 node scenario, multi-agent RL has a 44% improvement in

packet detection compared to the baseline. The improvement is similar for the 60 node

scenario. In this case, the proposed approach improved the detection by 50%.

2.4.3 Intrusion Prevention

Intrusion prevention systems build on IDS by taking action within the SDN to prevent

an attacker from compromising resources. An intrusion prevention system running on an

SDN controller can delay or prevent an attacker given feedback from an intrusion

detection system.

Han et al. [8] consider a defense agent as well as possible adversarial attacks against

RL agents running on an SDN controller. The authors test the effectiveness of the

methods of attack and briefly consider potential countermeasures.

The defender can take one of four actions to defend the network: isolate a node and

patch, reconnect a node, migrate the critical server, or take no action for that timestep. In

response the attacker is modeled as a deterministic policy. The policy successively

attempts to compromise nodes in the backbone of the network. The goal of the attacker is

11

ultimately to compromise the critical server(s), whereas the goal of the defender is to

preserve as many critical servers and keep as much of the network available and

connected to the critical servers as possible.

The authors propose two types of adversarial attacks for poisoning the training

process: flipping reward signs and changing the observed state of the defense agent. The

first type of attack samples the training batches of the network and switches the sign of

the experience with the greatest value of the gradient of the loss with respect to the

reward. Based on experiment results this type of attack succeeds in slowing the training

process but eventually the agent’s policy does converge to the optimal solution. The

second attack attacks the observed state of the agent by changing the state of two nodes in

the network for each sampled experience tuple of state, action, reward, and next state.

When accounting for a limit on false positive and false negative nodes, the authors found

that less than 50% of the nodes were preserved after applying this black box attack.

Gabirondo-Lopez et al. [7] also consider training an intrusion prevention system using

reinforcement learning. However, they model the training as a competition between two

agents: an attacker and a defender agent. The authors model the environment as a fully

connected network of eight nodes. The defender sends messages to the controller in order

to interact with the SDN in response to the actions of the attacker. In addition to the main

network, there is also a honeynet. This separate network allows the agent to migrate

compromised nodes, potentially delaying the attacker.

The training can therefore be thought of as a zero-sum Markov game between the two

agents. In the scenario, the attacker has an incomplete view of the network that

progressively improves as more nodes are compromised. The attacker can survey a node’s

links, check for vulnerabilities, and attack a vulnerability once a vulnerability has been

detected. The defender can protect against these actions by checking a node’s status,

isolating a compromised node, migrating the critical node, or migrating a compromised

12

node to the honeynet. The authors fix the network size at 8 nodes and use MuZero for

both agents and train through self-play.

In this thesis we follow a similar approach in modeling the problem as a zero-sum

Markov game between the attacker and the defender. Previous methods test their approach

on a single topology or limit the agents to a subset of the network [4], [5], [7], [8].

However, real world networks are rarely fixed and often add or remove hosts based on

demand, link failures, outages, or other factors. We do not confine our research to a fixed

network in terms of size and topology, but instead are interested in larger networks and

varied topologies to determine the scalability and robustness of the approach. We consider

additional topologies and a training curriculum that incorporates network topologies to

build more general, capable agents. We also use PPO which offers a good balance of

computational complexity and convergence speed.

13

3 THE RL TRIAD: ENVIRONMENT, ACTIONS, REWARDS

The agents compete in a simulated network environment inspired by the work done by

Gabirondo-Lopez et al. [7]. The goal of the attacker is to compromise the critical node

while also compromising as many hosts in the network as possible. The goal of the

defender is to protect the critical node. At the same time, the defender should minimize

impact on the network by the attacker. The game ends when either agent wins or the

episode horizon is reached, in which case the episode is declared a tie. Figure 1

demonstrates the win conditions for each agent. Each agent takes turns performing an

action in the environment. The attacker acts first, followed by the defender. Following

each step, the win conditions for the environment are checked and the reward is allocated

accordingly.

Fig. 1. Win conditions example.

3.1 Environment

The environment is represented as a k× k graph G, where k is the number of nodes in

the network. Similar to an adjacency matrix, G encodes the neighbors of the nodes on the

off-diagonal. Additionally, the value on the diagonal hi ∈ G represents the node state,

where i ∈ [0,k−1].

14

Each agent has a corresponding observation of the environment’s state as the

environment is partially observable from the perspective of both the attacker and the

defender. Correspondingly, the environment also maintains a global state which is the

authoritative view of the environment. However, the defender has more information of the

environment’s true state since we assume the defender is interacting with the network

through the SDN controller.

We consider the example shown in Figure 2, where the left and right graphs depict the

attacker’s and defender’s observation of the same network respectively. The attacker has

compromised two nodes, as shown at the lower left in red. The attacker has also

discovered a vulnerability on a third host, the node in yellow at the top left. The colored

node in green represents the critical node. The defender’s observation on the right shows

that one of the compromised nodes has been isolated from the network. The attacker has

yet to discover this most recent action by the defender and may try to take an action that

will not succeed, based on the true state of the game.

Fig. 2. From left to right: Attacker and defender observation of game state.

3.1.1 Vulnerability Scores

Each node has a vulnerability that can be exploited by the attacker. We represent the

vulnerabilities using the NIST Common Vulnerability Scoring System (CVSS) [29],

based on work by Gabirondo-Lopez et al. [7]. The CVSS is a framework used by the

15

National Vulnerability Database (NVD) to categorize and rank vulnerabilities. The

scoring system rates vulnerabilities as none, low, medium, and high risk using a

vulnerability score with range 1-10 as shown in Table 1. This score, also known as the

base score, is what we use in lieu of early warning alerts from an intrusion detection

system (IDS). The base score and its subcomponents are used to determine the success of

certain actions performed by both the attacker and the defender.

Table 1
CVSS Vulnerability Severity Ratings

Rating Base Score Range
None 0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

The scoring system includes an additional component called the vulnerability

Scope [29]. Scope can belong in one of two states (Changed,Unchanged) where a

vulnerability with Changed scope affects the given host. Otherwise, if Scope is

Unchanged then another host has the affected vulnerability. For this work, we consider

the case where all vulnerabilities have Scope Changed.

The base score is composed of two subscores [30]: the impact score and the

exploitability score [29]. The impact score is defined as:

ImpactScore = 1− (1−C)(1− I)(1−A) (3)

where C is the confidentiality, I is the impact, and A is the availability. The components

measure the impact to confidentiality, impact, and availability as a result of the exploited

vulnerability. The exploitability is defined as:

ExploitabilityScore = 8.22×AV ×AC×PR×UI (4)

16

where AV represents the attack vector, AC the attack complexity, PR the required

privilege, and UI the user interaction to carry out the exploit.

With the impact and exploitability, the base score is then defined as:

BS =


0 ImpactScore = 0,

round(min((ImpactScore+ExploitabilityScore),10)) otherwise
(5)

As part of the global state there exists a mapping vi→VulnScores, where each entry

is a tuple of (ImpactScore,ExploitabilityScore,BaseScore). These scores are then used

to determine the success of certain actions for both agents. Instead of fixing the scores

throughout the environment, the Impact and Exploitability score are sampled using a

Gaussian distribution. This leads to forming part of a training curriculum, as we can

increase the standard deviation of the parameters to train the agents with progressively

more challenging environments [31] ranging from low severity (low exploitability-low

impact) up to critical severity (high exploitability-high impact). Using Table 1 as a guide,

the parameters of the distribution are modified to test various threat scenarios. Finally, the

BaseScore is calculated using Equation 5.

For this work, we assume the scores are provided by an intrusion detection system. In

a real world application, we can use the vulnerability scores as well as other systems

monitoring the network such as anomaly detection on network activity [32].

3.1.2 Topology

One of our objectives is to test our approach across multiple topologies. We model the

environment with four topologies as shown in Figure 3: clique, ring, linear, and 2D grid.

Each topology can also be scaled by increasing the number of nodes. The allows us to

compare across topologies and network sizes to determine the topologies that are most

biased in favor of either agent.

17

Fig. 3. Network topologies.

The defender’s observation is built using the specified topology as a template. The

defender’s observation is then used to initialize the global observation, with the addition

of the compromised node for the attacker. As such, the selected topology does not impact

the vulnerability scores in the environment.

3.2 Observations

As previously mentioned, both agents observe a partial observation of the environment

state as shown in Figure 4. We maintain a global state which is kept in sync as agents

perform actions in the environment. At the start of each new episode, the starting

positions for both agents are randomized. For the attacker, one of the nodes is set as

compromised and the corresponding observation is updated. For the defender, the starting

node is marked as the critical (flag) node. The random start positions prevent the agents

from overfitting on the specific hosts (nodes). Figure 5 shows a key for the node states.

At each step, we update the observation for the respective agent given action at . First

we decompose the action into the target node and target action as shown in Algorithm 1.

18

Fig. 4. Ring environment with corresponding observations and state. From left to right:
Attacker observation, defender observation, global state

Fig. 5. Color key and state value for node states. From left to right: Normal (0),
Vulnerability Scanned (1), Vulnerability Exploited (2), Critical Node (3)

For both agents, we validate the action given the observation and the action

subcomponents at,n,at,a. If the action is valid, the we perform the action (step).

Additionally for the attacker, we find a subset of nodes CN ∈V , where V is the set of

nodes in the network. CN is the set of nodes that are one hop away from a compromised

node whose vulnerabilities are not exploited (state 0 or 1). If either CN is not empty or

the target node is compromised then we take the action on the selected target node.

19

Algorithm 1 Update Agent Observation

1: procedure UPDATEOBSERVATION(Oa,A,at)

2: at,n,at,a = ProcessAction(at) ▷ Decompose action tuple into target node and target action
3: if A = attacker then
4: CN← FilterCandidateNeighbors(Oa,Og)
5: if ValidateAgentStep(at,n,at,a,Oa) then
6: Oa = AttackerStep(Oa,at)

7: if A = defender then
8: if ValidateAgentStep(at,n,at,a,Oa) then
9: Oa = De f enderStep(Oa,at)

3.3 Actions

3.3.1 Action Space

Similar to [7] we simplify the action space to three actions per agent. This allows us

to use the same neural network architecture for both agents while training both policies

separately.

The attacker’s objective is to compromise the critical node. As such, the agent’s

actions are directed at exploring the network and exploiting known vulnerabilities. The

attacker’s step in the environment is shown in Equation 2. An overview of the actions is

given in Table Table 2. Figure 6 shows an example of the actions in the environment in

the clique topology as well as the corresponding attacker observations.

Table 2
Agent Action Overview

Action Agent Description Cost
Explore Topology Attacker Update observation of compromised node N/A
Scan Vulnerability Attacker Scan host for vulnerabilities N/A
Exploit Vulnerability Attacker Exploit vulnerability on host N/A
Check Status Defender Update observation of target node 1
Isolate Node Defender Isolate compromised node 6
Migrate Node Defender Isolate compromised node 5

Explore Topology: Updates the attacker’s observation using the global state. A

deterministic action that updates neighbors of the targeted node to the attacker’s

20

Fig. 6. Example of attacker actions in clique topology.

Algorithm 2 Attacker Agent Step

1: procedure ATTACKERSTEP(Oa,at,n,at,a)

2: exploitabilityRatio = Og[exploitabilityScore][at,n]/10
3: if at,a = 0 then ▷ Explore Topology
4: setNeighbors(Oa,at,n,Og)

5: if at,a >= 0 then ▷ Scan or Exploit Vulnerability
6: actionSuccess = random()
7: if actionSuccess < exploitabilityRatio then
8: Oa[at,n][at,n]← at,a
9: Og[at,n][at,n]← at,a

observation. Since the attacker can only update the observation of exploited nodes, this

action will fail if attempted on other node states. If the node has been isolated by the

defender, this action has no effect.

Scan Vulnerability: Scans the target node for vulnerabilities. The success of this action

depends on the ExploitabilityScore of the node in question as demonstrated in Algorithm

2 line 2. Target node must be normal (state 0).

Exploit Vulnerability: Exploits the scanned vulnerability. Target node must be already

scanned (state 1) for action to succeed. If the critical node is exploited by the attacker, the

attacker wins and the game ends.

The defender’s objective is to protect the critical node while minimizing impact to the

network and its services. The defender’s action allow it to update its observation and

21

Algorithm 3 Defender Agent Step

1: procedure DEFENDERSTEP(Oa,at,n,at,a)

2: baseScore← Og[baseScore][at,n]
3: targetNodeState← Og[networkGraph][at,n]
4: actionSuccessT hreshold← baseScore

10×log2(k)
5: actionSuccess = random()
6: if at,a = 0 then
7: if targetNodeState = 0 then ▷ Check status
8: if actionSuccess < actionSuccessT hreshold then
9: Oa[at,n][at,n]← 2

10: addCountermeasureCost(at,a)

11: if at,a = 1 then ▷ Isolate compromised node
12: setNeighbors(Oa,at,n,0) ▷ Set edges for node to zero
13: addCountermeasureCost(at,a)

14: if at,a = 2 then ▷ Migrate critical node
15: if targetNodeState = 2 then
16: if actionSuccess < actionSuccessT hreshold then
17: Oa[at,n][at,n]← 2
18: addCountermeasureCost(at,a)

19: if targetNodeState ̸= 2 then
20: criticalNode← indexO f (Oa,3)
21: Oa[criticalNode][criticalNode]← 0
22: Oa[at,n][at,n]← 3

isolate known compromised nodes. The defender may also migrate the critical node to

another location in the network. Each action has a corresponding cost as shown in Table 2,

which is factored into the defender’s reward [7], [32]. An overview of the defender’s

actions is shown in Figure 7.

Fig. 7. Example of defender actions in clique topology.

22

Check Node Status: Updates the defender’s observation as shown in Algorithm 3 line

6. If a node is compromised, the likelihood of discovering the exploited vulnerability is

P[Od(hi) = 2|Og(hi) = 2] =
BaseScore
10log2(k)

(6)

where k is the number of nodes in the network, Od is the defender’s observation, Og is the

global state, and hi is the index of the host (node).

This formulation is a slight modification from the probability proposed in

Gabirondo-Lopez et al. [7]. We change the term in the denominator from 10k to

10log(k).This keeps the probability a function of the number of nodes while scaling

better to higher values of k. For example, for 16 hosts, the defender has a 6.25% chance

of identifying the vulnerability in the scenario with the highest BaseScore using the

probability proposed in [7]. With our proposed modified status check, it becomes 25%. In

a low risk scenario (BaseScore = 1), that drops to 0.625% and 2.5%, respectively.

Isolate Node: Once the defender has discovered an exploited vulnerability in the

network, it can act to mitigate the attack. The defender can do so by isolating the node,

cutting off the node from the rest of the network. This is a deterministic action that

removes the neighbors from the targeted host and updates the global observation Og.

Migrate Node: Finally, the defender can migrate the critical node to another node in

the network. First, the defender checks if its observation matches the observation in the

global state. This is the same check as in the Check Node Status action. If the target host

is compromised according to the global state and the check succeeds, the defender

updates its observation. If the target host is not compromised according to the global state,

then the node is migrated. Note that since the Check Node Status action is stochastic, the

check may fail to update the observation.

23

3.3.2 Action Masking

Early on in training, both agents may select invalid actions as part of the exploration

process. For example, the attacker may attempt to exploit a previously exploited node.

Similarly, the defender may attempt to isolate a node that has not been compromised

according to its observation.

Due to the zero-sum nature of the game, rewards are sparse, i.e. almost all rewards for

reward rt in the set of tuples (st ,at ,rt) over an episode are zero except for the reward

when the game ends. In environments with dense rewards, the agent will learn to avoid

invalid actions over time, as the value estimates converge. The sparse rewards contribute

to instability in value estimates. This is known as the credit assignment problem [33]. To

address this, we apply a mask to the agent’s actions as shown in Figure 8. The action

mask is a tuple of shape (k,3), where the values in the masks m ∈ [0,1]. If the action

mask value is zero then the probability of the invalid action is set to zero. Otherwise the

value is one and the agent can perform the action. The action mask is differentiable which

allows the agent to learn which actions are invalid [34].

The action mask does not completely prevent the agent from taking invalid actions.

Since the agent chooses both the target node and the target action independently, we only

consider invalid actions in each subcomponent of the action space. Therefore the agent

may choose a node-action tuple that is invalid but each sub-action can be valid. For

example, we can see in Figure 8 that the defender can perform an action on every node

except the node on the top right, which corresponds to the critical node. The defender can

also perform every action possible since it can Migrate or Check Status on a node with

status Normal or Isolate Node a compromised node. For the attacker, we can that nodes

that are not connected to a compromised node are masked. Additionally, the attacker can

perform all actions on the observed nodes.

24

Fig. 8. Agent action masks.

3.4 Rewards

3.4.1 Reward Shaping

We consider two rewards: the reward defined by Gabirondo-lopez et al. [7] and our

proposed, modified version of this baseline, defined in Equation 7:

Rw =


10×T I winner = attacker,

max(rmin,SR−10×T I−TC) winner = defender,

0 otherwise

(7)

25

where SR represents the steps remaining in the episode, T I is the sum of the impact scores

of the compromised nodes in the network, and TC is the total cost of the countermeasures

implemented by the defender. rmin is a parameter with values rmin ∈ [0,1], where rmin = 0

is the value for the baseline and rmin = 1 is the value for the modified reward.

The cost per countermeasure is specified in Table 2. The costs are derived from the

work by Chung et al. [32], which specified an intrusiveness and cost per countermeasure.

The total countermeasure cost specified in Table 2 is the sum of the equivalent action’s

intrusiveness and cost. For the Check Status defender action, we use the countermeasure

cost used in [7] since there is no equivalent action in the countermeasures used by Chung

et al. [32].

We modify the reward Rw to reward the defender to isolate the attacker at the early

stages of training [35]. Even if the defender’s reward term before clipping

SR−10×T I−TC is negative, some positive reward is useful feedback for the defender

in the early stages of training. High TC or high T I which might otherwise result in a tie

for the defender in the original reward would still be a win and a reward of Rw = 1, as

long as the defender has successfully isolated the attacker. This is also useful feedback for

the attacker as well, as it receives a reward of -1 instead of 0.

26

4 TRAINING PROCESS

4.1 Self-play

We use self-play to train the agents, similar to the work proposed in Bansal et al [22].

Instead of playing against the most recent opponent, we maintain, for each agent, an

opponent pool of previously seen opponents. The attacker and defender then take turns

playing games against an opponent in their respective opponent pools. We make a further

distinction here between agents and policy, one that’s useful in this context. The

environment has two agents: the attacker and defender. The environment only has two

agents but there can be many policies, each of which maps to a specific agent. We define

a policy mapping function π∗→ At . This allows us to map the opponents in the opponent

pool to agents in the environment.

Before training, opponent pools are initialized with one random policy for each

respective opponent pool. There are two main trainable policies: the attacker and the

defender. The two main trainable policies only play against the snapshot policies in the

opponent pools, as shown in the setup in Figure 9.

Fig. 9. Self play overview.

27

4.1.1 Opponent Selection

We consider two methods of adding new policies to the pools. The first is adding

policies uniformly every d timesteps [22]. The second is using a league-based play setup,

where policies are only added if they meet a threshold win rate [21].

Contrary to previous work, instead of setting a fixed threshold win rate throughout the

entirety of training, we set an initial win threshold WTa that adjusts to the performance of

the agent(s) a. At each evaluation interval, the agent’s win rate WRa is assessed. If

WRa >=WTa, then the agent’s policy is added to the respective opponent pool. We then

increase WTa by a fixed amount WinT hreshO f f set = 0.025.

4.1.2 Opponent Sampling

Instead of a uniform sample of opponents [22], we consider a split opponent pool

with a bias towards more recent agents similar to the approach in Oh et al [21]. First, we

define three quantities: the probability of sampling one of the top d% agents precent , and

the probability of sampling one of the (1−d)% agents ppast = 1− precent . Over training,

we decay the value of precent to gradually increase the chance to train against previously

policies. This is done to address the issue of catastrophic forgetting.

4.2 Curriculum Learning

4.2.1 Vulnerability Scores

As part of the curriculum for training, we gradually increase the standard deviation for

sampling both the Impact and Exploitability score. This allows the environment to sample

from vulnerabilities with increasingly varying Exploitability and Impact scores. Our

agents can then adapt to uncertainty in the vulnerability scores in the environment,

compared to overfitting to fixed vulnerability scores in the training environment. The

standard deviation starts at 0.01 and increases to a max value of 1 as shown in the Figure

10.

28

Fig. 10. Increase of standard deviation for exploitability score over training for sample
experiment. Standard deviation for impact score follows a similar increase from 0.01→ 1.

Colors represent different sample runs.

4.2.2 Network Topology

Beyond the four fixed topologies, we propose a dynamic network construction

strategy as shown in Algorithm 4 that builds progressively more dense networks during

training. The inspiration comes from the observation that the linear network is the least

dense, single connected component. If we continue to add edges, eventually we converge

to the fully connected network (clique). Also, the linear network is the least challenging

environment from the perspective of the defender. This means we can start training with a

linear network and progressively add topologies to the space of environments. Adding

denser and denser topologies allows the defender to learn in progressively more

challenging environments. And since we still sample the previous topologies, we address

the issue of completely forgetting what was learned on sparser networks (catastrophic

forgetting).

29

The strategy works as follows. At the start of each episode, an empty observation Od

is initialized with all zeros. For each node in the observation, we add the neighbors for a

linear topology which acts as a baseline. Then for each successive neighbor, the choice of

adding the edge is based on the result of sampling a binomial distribution with one trial

and the probability p = min(sampleT hreshold,Random()). The sampleT hreshold

parameter is then adjusted during training from 0→ 1 to raise the probability threshold

for adding edges in the network. And since Random() samples from a random uniform

distribution for values in the range (0,1), we sample from the entire space up to

sampleT hreshold.

This strategy, along with the previously mentioned threat randomization, creates a

robust curriculum for training the agents.

Algorithm 4 Build dynamic topology

1: procedure BUILDDYNAMICNETWORK(k,critPos,sampleT hreshold)

2: Od ← 0
3: for i ∈ Od do
4: if i+1 < k then
5: Od [i][i+1]← 1
6: if i−1 >= 0 then
7: Od [i][i−1]← 1
8: for j ∈ (i+2,k) do
9: edgeAddSuccess = Binomial(1,min(sampleT hreshold,Random()) ▷ Add edge based on

sample from binomial distribution
10: if edgeAddSuccess = 1 then
11: Od [j]← 1
12: Od [critPos][critPos]← 3 ▷ Set the critical node state

4.3 Training Setup

We use the RL framework Rllib with Ray which simplifies the training loop [36]. In

addition, we use the PettingZoo framework which allows us to use an OpenAI Gym-like

API to interact with the multi-agent environment [37] [38]. Since our environment has a

small memory footprint, we can create multiple environments and collect samples in

30

parallel. We use tensorflow as the deep learning backend and use 4 CPUs for training: 2

dedicated for model predictions and gradient updates and 2 for running the environment.

Each CPU dedicated for running the environment has 4 environments running

concurrently.

31

5 EXPERIMENTAL EVALUATION

As part of our evaluation, we compare the win rate and tie rate achieved by the agent

using the baseline reward demonstrated in Equation 7 against our proposed reward for the

clique and ring topologies. We set the network size to 8 and train for 300k steps.

The vulnerability scores play a large role in the success of the both the defender and

the attacker’s actions and as such we are interested in quantifying the affect of the Impact

and Exploitability on the defender’s performance. We investigate the effect of the

vulnerability scores on agent performance by modeling a variety of threat scenarios, using

the Severity Ratings in Table 1 as a guide.

To evaluate the scalability of the approach, we train the dynamic training curriculum

for varying network sizes. We use the network of size 8 as a baseline and train with sizes

16, 32, and 64.

As mentioned previously, real life networks are dynamic and we want to train the

network to account for that. Nodes are added to networks, removed from the network, and

links can change between nodes. We train agents on the discussed topologies and

compare against the proposed curriculum. The objective is to demonstrate the

effectiveness of the curriculum in training robust defensive agents.

Unless otherwise noted, we train all agents for a total of 300k timesteps. Agents are

added to the opponent pool every 20k steps and agents are sampled from the pool with

d = 0.2 and precent = 0.8. The default network size is set to 8 nodes. The mean

Impact = 4.31 and the mean Exploitability = 2.59, again unless otherwise noted. We

use the proposed one-clipped reward, except when comparing against the baseline

zero-clipped reward.

32

5.1 Rewards

We begin by comparing the modified reward against the baseline, zero-clipped reward

proposed by Gabirondo-Lopez et al. [7]. The performance of the two reward functions is

compared across the clique and the ring topologies.

Figure 11 shows the average of the win rate (in red) as well as the confidence interval

(in grey). For the proposed one-clipped reward, we can see that the win rate starts high

and ends slightly higher for the ring than for the clique. For the reward in Figure 12, there

is no appreciable significant difference for the clique between the two rewards. However,

we can see that the one-clipped reward significantly improved the reward for the ring

topology.

Fig. 11. Average defender win rate for one- and zero-clipped baseline reward with
confidence interval. The max and min values are highlighted for each cell.

We observe a similar result in Table 3, where the reward is the average of the max

value. For the one-clipped reward, we see a higher reward and lower tie rate for games

33

Fig. 12. Average defender reward for one- and zero-clipped baseline reward with
confidence interval. The max and min values are highlighted for each cell.

played by the defender. The attacker also has lower average reward for both the clique

and the ring with respect to the modified reward. Overall, we observe a lower tie rate and

greater defender win rate of the proposed one-clipped reward over the baseline

zero-clipped reward.

Table 3
Reward Results

Topology clique ring
Reward zero-clipped one-clipped zero-clipped one-clipped
Max Attacker Reward 14.99 11.66 -1.7 -10.45
Attacker Win Rate 22.2% 22.0% 14.6% 12.8%
Attacker Tie Rate 37.6% 30.8% 45.3% 33.0%
Max Defender Reward 56.85 56.37 64.42 66.57
Defender Win Rate 46.5% 53.2% 46.1% 59.3%
Defender Tie Rate 35.9% 29.8% 42.6% 31.0%

34

5.2 Threat Scenarios

For the threat scenarios, we are interested in evaluating the effect of the vulnerability

scores on the agent’s win rate and expected reward. We consider the

ImpactScore ∈ [1,2.5,5] and ExploitabilityScore ∈ [1,2.5,5]. This creates 4 risk

scenarios as showwn in Figure 13: Three in the low severity range, three in the medium

severity range, two in the high severity range, and the last when the BaseScore = 10 and

severity is critical. The BaseScore is calculated using Equation 5.

Fig. 13. Average defender reward for mean impact ImpactScore ∈ [1,2.5,5] and
ExploitabilityScore ∈ [1,2.5,5]. The max and min values are highlighted for each cell.

Figure 13 shows the reward trend downwards as the Exploitability increases. This

aligns with our understanding of the attacker’s actions, which are more likely to succeed

and therefore discover and exploit vulnerabilities when exploitability is higher, as shown

in Equation 2. As the Impact increases, we can see the defender reward increase when

Impact increases from 1→ 1.5. However, that increase is followed by a drop in reward

when Impact increases from 2.5→ 5. This is because the average total impact caused by

35

the attacker is much higher than the slight increase from 1→ 2.5 and factors into the

penalty term of the defender’s reward.

Even though the reward decreases, we can see in Table 4 that the defender win rate

increases for increasing values of Impact, with the exception when the

Severity =CRIT ICAL. Figure 14 shows the win rate categorized by severity. In summary,

we observe more wins for the defender as impact increases and more wins for the attacker

as exploitabililty increases.

Table 4
Threat Scenarios Results

Exploitability 1 2.5 5
Impact 1 2.5 5 1 2.5 5 1 2.5 5
Max Attacker Reward -7.9 -25.7 -11.4 -15.6 -12.2 -3.8 -6.8 -2.7 30.4
Attacker Win Rate 8.3% 5.2% 6.9% 14.1% 12.6% 10.5% 22.8% 18.0% 18.2%
Attacker Tie Rate 50.2% 37.2% 29.9% 45.3% 36.3% 34.2% 38.5% 31.2% 38.6%
Max Defender Reward 62.1 81.2 72.5 78.5 77.3 65.6 81.5 84.2 66.8
Defender Win Rate 45.5% 62.3% 65.4% 46.2% 55.9% 59.8% 46.1% 55.0% 47.4%
Defender Tie Rate 48.1% 33.8% 29.5% 42.7% 34.5% 32.4% 36.9% 30.8% 39.3%

Fig. 14. Average defender win rate for ImpactScore ∈ [1,2.5,5] and ExploitabilityScore
∈ [1,2.5,5] with confidence interval. The max and min values are highlighted for each
cell.

36

5.3 Network Size

For the size (number of nodes) of the network, we consider four values: 8, 16, 32, and

64. We use 8 as the baseline and use the same horizon (200 steps) for all episodes. We

increase the total steps to 400k and unlike the rewards, we use a single topology (the

dynamic topology curriculum) to train the agents. Table 5 shows a sharp drop in defender

reward when increasing k→ 16, with a smaller drop when k increases to 32. Similarly in

Figure 15 we can see the win rate follows a similar pattern, with the sharpest drop when

8→ 16 than when 16→ 32. However, the defender’s loss is not completely the attacker’s

gain, as the majority of games end in a tie when k > 16.

Fig. 15. Average defender win rate over training for Network Size with network size
k ∈ [8,16,32,64]. Max and min values highlighted for each cell.

By fixing the horizon across the experiments, we fix the total possible positive reward

based on Equation 7. With increased network sizes the penalty terms TI and TC increase.

This is due to the increased impact the attacker can achieve in the network and the total

costs of the countermeasures required to successfully respond.

37

Table 5
Network Size Results

Network Size 8 16 32 64
Max Attacker Reward -0.36 9.23 11.25 6.26
Attacker Win Rate 11.2% 8.5% 5.6% 3.1%
Attacker Tie Rate 40.3% 69.4% 87.3% 94.4%
Max Defender Reward 76.46 22.25 5.78 4.40
Defender Win Rate 52.4% 24.5% 8.6% 2.9%
Defender Tie Rate 38.6% 67.8% 86.9% 94.6%

5.4 Training Curriculum

We test the dynamic topology curriculum against two topologies: clique and linear. All

topologies also use the vulnerability (threat) randomization. Therefore, we are isolating

the dynamic topology from the threat score component of the curriculum. We compare

with clique and linear as the two are at either ends of the space explored by the dynamic

topology. Linear is seen early on in training and clique encountered as training progresses.

Figure 16 shows that the dynamic topology performs as well or better than the

benchmark topologies. In particular, it performs as well or better than the linear topology,

which as mentioned is the topology most biased in favor of the defender. This is supported

by the max defender reward in Table 6, where the reward and the win rate for the dynamic

topology is greater than for clique and linear. Also, less games end in a tie when the agent

is trained using the dynamic topology. This demonstrates that the curriculum leads to both

higher reward and higher win rate compared to training with a fixed topology.

Table 6
Training Curriculum Results

Topology clique linear dynamic
Max Attacker Reward 17.64 -4.75 -7.56
Attacker Win Rate 19.72% 12.34% 10.92%
Attacker Tie Rate 31.3% 29.8% 29.0%
Max Defender Reward 66.89 73.26 75.41
Defender Win Rate 54.08% 62.22% 64.47%
Defender Tie Rate 30.4% 28.3% 26.8%

38

Fig. 16. Average defender reward with confidence interval comparing clique and linear
topologies with dynamic topology curriculum. Max and min values highlighted for each
cell

5.5 Self Play

5.5.1 Opponent Selection

For the win threshold opponent selection, we set 4 initial threshold values

WT ∈ [0,0.25,0.5,0.75]. Similar to the network training curriculum experiment, we test

on the clique and linear topologies with the vulnerability randomization curriculum

enabled. For the opponent sampling, we set the initial d = 0.2 and precent = 0.8. We train

15 training runs for each set of parameters and each training run is trained for 100k steps.

In Figure 17, we see the reward is similiar for both topologies. This is likely due to the

fact that the attacker win rate hovers around 20%. When the initial win rate threshold is

too high then no new policies are added to the attacker pool. This can lead to high reward

39

Fig. 17. Share of win rate over time for defender against attacker pool policies. Results
shown for clique and linear topologies across 4 win threshold values.

and win rate for the defender, due to the agent overfitting on the single, initial policy in

the pool. We can see the policies added over time in Figure 18. Less policies are added

overall for the attacker in general. When the initial WT for the attacker is greater than 0.5,

no new policies are added.

40

Fig. 18. Agents added to respective agent pool over 100k steps for two topologies: clique
and linear. Results are further broken down by win threshold.

41

6 CONCLUSION

In this work, we have presented an intrusion prevention agent that learns how to select

defensive actions by playing a zero-sum Markov game against an attacker in a network

environment. Our method built on an existing approach to autonomous network defense

and modified the proposed reward to improve convergence. We focus on evaluating the

scalability of the approach by considering larger networks and varied topologies. This

reflects real world network conditions as links may fail, outages can occur, and the

number of hosts may change. To reflect these conditions, we unified the topologies as part

of a robust training curriculum.

Our results show that our proposed, modified reward improves both reward and win

rate for the defender. The characteristic high win rate and low reward in the beginning

demonstrates that the defender is winning games at a high penalty which otherwise would

be marked as a tie using the baseline reward. This is most likely due to the defender

taking many high cost actions in order to isolate the attacker. As training progresses, the

defender wins episodes by choosing actions more conservatively.

An important aim of this work was to quantify the effect of the vulnerability scores on

the defender’s performance. We show that the defender can generalize well across

different threat scenarios. An environment with higher Impact vulnerabilities, on average,

is more favorable to the defender. An environment wit higher Exploitability

vulnerabilities, on average, is more favorable to the attacker.

We also note that network size has a large impact on defender reward, with each node

increasing the action space of the agents and the potential impact of the attacker. In

addition, the increased node size increases the actions needed to win the game for the

defended which in turn increases the total cost (TC) term in the reward. We refer the

reader to the supplemental material in Appendix A for more information.

42

For the self-play implementation, we chose to select opponents at a fixed interval as a

baseline. We compared that approach with a selection strategy using the opponent win

rate. The greater the win rate threshold, the less policies added to the pool of attackers. To

address this, we set the initial win rate threshold and increased whenever the agent

successfully met the threshold. This allows the win rate to vary between the two agents

and we see that the lower the initial win rate threshold the lower the defender win rate as

more opponents are added to the pool of attackers.

And finally, we remark on the training curriculum. The dynamic topology curriculum

is a simple and powerful approach to gradually expose the defender agent to virtually all

the topologies in a network of a given size. With the addition of the vulnerability scores,

the agent learns in a challenging threat environment that works together to build a robust

curriculum.

43

7 FUTURE WORK

As part of the network size evaluation, we noted that the episode horizon led to most

games ending in a tie once the network size > 16. To remove the horizon as a bottleneck,

we can evaluate the setup with a higher horizon and additionally add more network sizes.

Recurrent networks can address the partial observability of the environment, which

could provide some benefit to the defender agent [25]. This may be helpful if the game

was modified to a more realistic simultaneous game, instead of the current sequential, turn

based approach.

We can expand the scope of the work by adding countermeasures to the action space

of the defender, similar to the work in [32]. A possible future direction in the near term

would be to align the agent observation more closely with information received from an

IDS. In that way, we can integrate information from additional sources that may be useful

for the RL agent for selecting defensive actions. The defender has a binary view of nodes

in the network, either Node Compromised or Normal: more information about suspicious

behavior and network activity would allow the agent to consider a wider set of

countermeasures. This could involve using the Impact and Exploitability as part of the

defender’s observation but that assumes that all vulnerabilities on the network are

previously seen and documented. Additionally, we are interested in implementing the

defensive countermeasures in an SDN framework such as Ryu.

44

Literature Cited

[1] I. Security, “Xforce threat intelligence index 2022.”
https://www.ibm.com/security/data-breach/threat-intelligence (Accessed April 3,
2022).

[2] U. D. of Energy, “Colonial pipeline cyber incident.”
https://www.energy.gov/ceser/colonial-pipeline-cyber-incident (Accessed April 1,
2022).

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[4] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber security,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–17, 2021.

[5] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and self-play,” in 2020 16th International Conference on
Network and Service Management (CNSM), pp. 1–9, 2020.

[6] A. DiGiovanni and E. C. Zell, “Survey of self-play in reinforcement learning.” 2021.

[7] J. Gabirondo-López, J. Egaña, J. Miguel-Alonso, and R. Orduna Urrutia, “Towards
autonomous defense of sdn networks using muzero based intelligent agents,” IEEE
Access, vol. 9, pp. 107184–107199, 2021.

[8] Y. Han, B. I. P. Rubinstein, T. Abraham, T. Alpcan, O. De Vel, S. Erfani,
D. Hubczenko, C. Leckie, and P. Montague, “Reinforcement learning for autonomous
defence in software-defined networking,” in Decision and Game Theory for Security
(L. Bushnell, R. Poovendran, and T. Başar, eds.), (Cham), pp. 145–165, Springer
International Publishing, 2018.

[9] R. Howard, Dynamic Programming and Markov Processes. Cambridge, MA:
Technology Press of Massachusetts Institute of Technology, 1960.

[10] M. Lapan, Deep Reinforcement Learning Hands-on. Birmingham, UK: Packt
Publishing Limited, 2018.

45

https://www.ibm.com/security/data-breach/threat-intelligence
https://www.energy.gov/ceser/colonial-pipeline-cyber-incident

[11] M. L. Littman, “Markov games as a framework for multi-agent reinforcement
learning,” in Machine Learning Proceedings 1994 (W. W. Cohen and H. Hirsh, eds.),
pp. 157–163, San Francisco, CA: Morgan Kaufmann, 1994.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. A. Riedmiller, “Playing atari with deep reinforcement learning.” 2013.

[13] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in
deep reinforcement learning,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, Apr. 2018.

[14] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn., vol. 8, p. 229–256, may 1992.

[15] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Is multiagent deep reinforcement
learning the answer or the question? A brief survey.” 2018.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” in 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.),
2016.

[17] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5026–5033, 2012.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
Proceedings of The 33rd International Conference on Machine Learning (M. F.
Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine Learning
Research, (New York, New York, USA), pp. 1928–1937, PMLR, 20–22 Jun 2016.

[19] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic algorithms and applications.”
2018.

46

[20] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and
R. Vicente, “Multiagent cooperation and competition with deep reinforcement
learning,” PLOS ONE, vol. 12, pp. 1–15, 04 2017.

[21] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating pro-level ai for a
real-time fighting game using deep reinforcement learning,” IEEE Transactions on
Games, vol. 14, no. 2, pp. 212–220, 2022.

[22] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent
complexity via multi-agent competition,” in International Conference on Learning
Representations, 2018.

[23] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis,
“Mastering chess and shogi by self-play with a general reinforcement learning
algorithm.” 2017.

[24] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki,
M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider,
S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang, “Dota 2 with large scale deep
reinforcement learning.” 2019.

[25] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable
mdps,” in 2015 AAAI Fall Symposium Series, 2015.

[26] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., “Mastering atari, go, chess and
shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609,
2020.

[27] T.-Y. Mu, A. Al-Fuqaha, K. Shuaib, F. M. Sallabi, and J. Qadir, “Sdn flow entry
management using reinforcement learning,” ACM Trans. Auton. Adapt. Syst., vol. 13,
nov 2018.

[28] D. K. Dake, J. D. Gadze, G. S. Klogo, and H. Nunoo-Mensah, “Multi-agent
reinforcement learning framework in sdn-iot for transient load detection and
prevention,” Technologies, vol. 9, no. 3, 2021.

47

[29] P. Mell, K. Kent, and S. Romanosky, “Common vulnerability scoring system,”
2006-12-29 2006.

[30] N. I. of Standards and Technology, “Common vulnerability scoring system.”
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator (Accessed Nov 1, 2021).

[31] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in
ICML ’09, 2009.

[32] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice: Network intrusion
detection and countermeasure selection in virtual network systems,” IEEE
Transactions on Dependable and Secure Computing, vol. 10, pp. 198–211, 2013.

[33] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the IRE, vol. 49,
no. 1, p. 8–30, 1961.

[34] S. Huang and S. Ontañón, “A closer look at invalid action masking in policy
gradient algorithms.” 2020.

[35] A. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML, 1999.

[36] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and
I. Stoica, “Ray rllib: A composable and scalable reinforcement learning library.”
2017.

[37] J. K. Terry, B. Black, A. Hari, L. Santos, C. Dieffendahl, N. L. Williams, Y. Lokesh,
C. Horsch, and P. Ravi, “Pettingzoo: Gym for multi-agent reinforcement learning.”
2020.

[38] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym.” 2016.

48

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Appendix A

SUPPLEMENTAL MATERIAL

A.1 Network Size

For the network size results, we are interested in the relationship between the episode

length and the resulting performance (defender win rate, defender reward). We can see in

Figure 19 that the average episode length increases as the network size increases, with

both k = 32 and k = 64 almost at the horizon length of 200. This shows that the horizon

is acting as a bottleneck and we can likely reduce the number of ties if the agents are

given more steps in the episode.

Fig. 19. Average episode length for defender episodes. Results are averaged over 15 runs.

In Figure 20, we can see the total cost term TC of the reward per network size. Values

are recorded when the defender wins an episode. The total cost converges for all network

size values, with some instability for size 64 which could be due to the low win rate.

49

Fig. 20. Average total cost for defender countermeasures. Results are averaged over 15
runs.

A.2 Opponent Sampling

When sampling opponents from an opponent, the pool is split into two pools and

sampling probability assigned to each agent based on the values of precent and d. In

addition, we decay precent over the training. Shown in Figure 21 is an example for a pool

with 10 opponents.

50

Fig. 21. Sample opponent pool when precent = 0.8 and d = 0.2. Values are probabilities
for selecting respective agent.

51

	Autonomous Network Defence Using Multi-Agent Reinforcement Learning and Self-Play
	Recommended Citation

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	General Trends
	Contribution

	Literature Review
	Reinforcement Learning
	Multi-agent Reinforcement Learning
	Software Defined Networks
	Reinforcement Learning for Software Defined Networks
	Network Management
	Threat Detection
	Intrusion Prevention

	The RL Triad: Environment, Actions, Rewards
	Environment
	Vulnerability Scores
	Topology

	Observations
	Actions
	Action Space
	Action Masking

	Rewards
	Reward Shaping

	Training Process
	Self-play
	Opponent Selection
	Opponent Sampling

	Curriculum Learning
	Vulnerability Scores
	Network Topology

	Training Setup

	Experimental Evaluation
	Rewards
	Threat Scenarios
	Network Size
	Training Curriculum
	Self Play
	Opponent Selection

	Conclusion
	Future Work
	Literature Cited
	Appendix A: Supplemental Material
	Network Size
	Opponent Sampling

