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In many supervised computer vision tasks such as object
detection, manual annotation crowdsourcing platforms are
widely used for acquiring large-scale labeled data. However,
the annotation quality may suffer low quality that can se-
verely affect the training of models. As a result, the evalu-
ation of the annotations within the dataset is critical, yet it
has seldom been addressed in object detection. In this paper,
we present a fine-grained annotation quality assessment
(FGAQA) framework for evaluating the quality of object
detection datasets. First, we formulate a generic annotation
quality assessment framework based on the core general-
purpose data quality dimensions, using the bounding box
and the label. Second, cognition theory in terms of hierarchy
and continuity is utilized to refine the basic framework,
including the consistency of the bounding box, complete-
ness of the category, hierarchical accuracy of the label, and
the consistency of the label. Comprehensive experiments on
the two object detection datasets are used for performance
evaluation. It is found that the ground truth annotations of
the Urban Traffic Surveillance dataset have more quality
issues than the ones of the PASCAL VOC 2007 detection
dataset. (e proposed FGAQA framework performs an
effective fine-grained evaluation of the annotations, which is
significant for quality assurance of annotations from
crowdsourcing platforms and the subsequent model’s
training.

1. Introduction

In supervised learning, annotation quality plays a vital role
in training and assessment of the models for several com-
puter vision tasks such as object classification [1, 2], de-
tection [3–6], and segmentation [7–9].(e training of object
detection models relies on accurate and sufficient annota-
tions. For large-scale object detection datasets, annotations
are usually obtained through crowdsourcing platforms,
which results from anonymous participants, and can be
collected for efficiency [10–12]. However, due mainly to the
untrained participants involved in the professional and
time-consuming annotation tasks, this has inevitably led to
subjective inconsistency and relatively low quality of the
collected annotations. As a result, the annotation quality
cannot be guaranteed, where the quality assessment of such
annotations becomes a challenge in this context.

Annotation quality in object detection is a specialized-
purpose data quality problem. Data quality has been widely
studied since the 1980s [13]. According to [14], data quality
can be defined as the degree to which a set of characteristics
of data fulfills the requirements. Data with high quality
should represent the real-world entities accurately in the
structure and fit for their intended uses. Besides, data quality
is of multidimensional characteristics. By reviewing the
related literature [14–19], a core set of data quality
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dimensions is defined, including the completeness, accuracy,
and consistency. Moreover, there are a fair number of re-
searches about annotation quality. Regarding the annotation
quality in classification, accuracy is employed generally [20],
not considering the hierarchy of categories. For annotation
quality in object detection, quality is evaluated by Inter-
section-over-Union (IoU) [21]. IoU is the ratio of the in-
tersection area of the ground truth and human annotation to
the total area, only considering the quality of the bounding
box [22]. (ere are few systematic researches about anno-
tation quality of object detection. Consequently, we refer to
general-purpose data quality and construct an annotation
quality framework.

To date, there are relatively few works reported on this
topic. (is is only addressed from the perspectives of the
object category and IoU [21]. However, a few general-
purpose metrics can also be applied for annotation quality
assessment. And we should perform annotation quality
assessment from various aspects of the two attributes:
bounding box and label.

Evaluation measures for object classification, detec-
tion, and segmentation could serve as a reference for
annotation quality in object detection. Regarding flat
object classification, precision and recall are employed to
assess the performance [23–26]. As for hierarchical object
classification, distance in the tree or the directed acyclic
graph (DAG) is used to assess the performance [27–30].
(e distance can treat the prediction errors differently. In
terms of object detection, the mAP is usually employed
[31–36], integrating precision, recall, and IOU. (e mAP
is calculated according to the predicted results and
confidence scores. However, for annotations, reasonable
confidence scores are hard to obtain. As a result, in this
paper, we employ the metrics of precision and recall.
Regarding object segmentation, evaluation measures can
be categorized into three types: area-based measures,
location-based measures, and combined measures
[37–41]. (ese image segmentation measures pay more
attention to the details and the intrinsic visual charac-
teristics. Consequently, the idea of image segmentation
evaluation is introduced into the annotation quality as-
sessment framework.

In this paper, we propose a fine-grained framework for
annotation quality assessment of object detection datasets,
containing three dimensions: accuracy, completeness, and
consistency. First, we construct the basic quality assessment
framework based on the core general-purpose data quality
(DQ) measurement, including accuracy and completeness,
which considers the characteristics of annotation. For
consistency, we find that it is difficult to give a strict defi-
nition. Further, the relationship of classes should be con-
sidered. Previous literature indicates that the cognition of
humans is hierarchical in concept [42, 43] and consistent in
space-time representations [44–46]. Inspired by these ob-
servations, the consistency of bounding box, completeness
of category, hierarchical accuracy of label, and consistency of
label are extracted as four additional elements for annotation
quality assessment. (e main contributions of this paper are
as follows:

(1) We present a fine-grained annotation quality as-
sessment (FGAQA) framework for evaluating the
quality of object detection datasets. By analyzing the
characteristics of the attributes of the bounding box
and the corresponding label, the annotation quality
contains three dimensions: accuracy, completeness,
and consistency.

(2) To tackle the limitations of the basic quality as-
sessment framework, we introduce the theory of
cognitive perception to analyze the annotation
quality and add four elements of annotation quality,
including the consistency of bounding box, com-
pleteness of category, hierarchical accuracy of the
label, and consistency of label. Specifically, the hi-
erarchical accuracy of the label can treat annotation
errors distinctively and softly.

(3) Comprehensive case studies on the Urban Traffic
Surveillance (UTS) dataset and the PASCAL VOC
2007 detection dataset verify the effectiveness of the
proposed annotation quality assessment framework.
We find that the ground truth annotations of the
UTS dataset have more quality issues, compared to
the ones of the PASCAL VOC 2007 detection
dataset.

(e rest of this paper is organized as follows. In Section
2, the proposed cognitive-driven FGAQA framework is
presented in detail. Section 3 discusses experiments as two
case studies on the UTS and PASCAL VOC datasets. Finally,
concluding remarks and future work are given in Section 4.

2. Annotation Quality Assessment Framework

A novel annotation quality assessment framework in object
detection is given in this section, which is shown in Figure 1.
(e annotation has two attributes: bounding box and label.
Annotation quality depends on its characteristics. For the
bounding box, the size, location, and quantity could have
some quality issues. Regarding the label, there may exist the
quality problems of value and quantity. And the annotation
quality serves reference for the training of the object de-
tection model. (erefore, we define the quality dimensions
according to the quality problems and the use of annotation.
Inspired by some existing work [14–19], the dimensions of
completeness, accuracy, and consistency are selected as the
core set of the data quality dimensions. By considering the
theory of cognitive perception, we redefine some elements
based on annotation characteristics. As a result, a fine-
grained annotation quality assessment framework is pro-
posed, as shown in Figure 1. (e framework is constructed
from the views of the bounding box and label. Regarding the
quality of the bounding box, completeness, accuracy, and
consistency are defined. (e completeness of the bounding
box can be divided into the completeness of the bounding
box’s quantity and the completeness of the bounding box’s
size. In terms of the quality of the label, we define com-
pleteness, accuracy, and consistency. (e completeness of
the label consists of the completeness of the bounding box’s
label and the completeness of the category. (e accuracy of
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the label contains flat and hierarchical accuracy. Andmost of
these dimensions are computed for every object and are
averaged for an image and the total dataset.

2.1. Annotation Quality of Bounding Box’s Quantity

2.1.1. Completeness of Bounding Box. (e dimension can be
defined as the extent to which bounding boxes are of
sufficient quantity and coverage degree for the object. (e
dimension of completeness focuses on the null values. As
for the completeness of the bounding box’s quantity, the
null values correspond to unannotated objects. In an
object detection dataset, small objects are often be
neglected. During the modeling process of object detec-
tion, the unannotated objects would be regarded as
background. For the completeness of the bounding box’s
size, the null values correspond to the uncovered areas of
the bounding boxes.

(1) Completeness of bounding box’s quantity: for image
i, completeness of bounding box’s quantity is a
metric that can be defined as follows:

CBQuantity
i �

nHu
i

ni

, (1)

where ni is the true object number and nHu
i is the

number of human annotations, namely, the number of
bounding boxes. For the dataset, CBQuantity is

CBQuantity
�


N
i�1,...,N CBQuantity

i

N
, (2)

where N is the number of images in the dataset.
(2) Completeness of bounding box’s size: the com-

pleteness of the bounding box’s size is a pixel-count-
based metric and can be defined as follows. For the
jth object in image i, the metric is

CBSize
ij �

SIntij

S
Obj
ij

, (3)

where SIntij is the intersection area of the object and
bounding box, and S

Obj
ij is the area of the object. For

image i, CBSize
i is

CBSize
i �


nHu

i

j�1,...,nHu
i

CBSize
ij

nHu
i

. (4)

For the dataset, CBSize is

Quality of
bounding

box 

Quality of
label 

Completeness of 
bounding box

Accuracy of bounding 
box

Consistency of 
bounding box

Completeness of 
bounding box’s quantity

Completeness of 
bounding box’s size

Consistency of label

Accuracy of label

Completeness 
of label

Flat accuracy of label

Hierarchical accuracy 
of label

Completeness of 
bounding box’s label

Completeness of 
category

Annotation
quality

of object
detection

dataset

Figure 1: Annotation quality evaluation framework.

Discrete Dynamics in Nature and Society 3



CBSize
�


N
i�1,...,N CBSize

i

N
. (5)

2.1.2. Accuracy of Bounding Box. (edimension is intended to
measure the closeness of the bounding box to the object.When the
accuracy is low, the bounding box contains toomuch background
affecting the distinction between the object and the background.
For the bounding box of jth object in image i, the accuracy is

AccBij �
SIntij

SBBij

, (6)

where SBBij is the area of the bounding box. In image i, the
accuracy is

AccBi �


nHu
i

j�1,...,nHu
i

Acc Bij

nHu
i

. (7)

For a dataset, the accuracy can be given as follows:

AccB �


N
i�1,...,N AccBi


N
i�1,...,N nHu

i

. (8)

2.1.3. Consistency of Bounding Box. (edimension focuses on
the violation of spatiotemporal continuity of size and location. In
crowdsourcing platforms, bounding boxes in adjacent frames
may be drawnbydifferentworkers. As a result, they could conflict
in size and location. Facedwith the case, we can perform a quality
assessment of the consistency of the bounding box during the
corresponding postprocessing. Afterward, the annotations would
satisfy the constraints. Concretely, for example, if an objectmoves
toward the camera parallelly, the constraints are as follows:

x
previous
center ≈ xcurrent

center ≈ xnext
center,

y
previous
center ≤ycurrent

center ≤ynext
center,

wprevious ≤wcurrent ≤wnext,

hprevious ≤ hcurrent ≤ hnext,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where xcenter and ycenter are the coordinates for the center of
the bounding box, and w and h are the width and height of
the bounding box.When the jth object in image i satisfies the
constraints, the metric ConBij = 1. Otherwise, ConBij = 0.
For image i, the consistency is

ConBi �


nHu
i

j�1,...,nHu
i

ConBij

nHu
i

. (10)

For the dataset, ConB is

ConB �


N
i�1,...,N ConBi

N
. (11)

2.2. Annotation Quality of Label

2.2.1. Completeness of Label. (e dimension can be split into
two types. (e completeness of the bounding box’s label is

employed to measure if each box has a label. (e completeness
of category describes the completeness for the category’s
quantity from the aspect of computational learning theory. In
the common benchmarks for object detection, there exist
minority categories. For a category, if the metric does not meet
the requirement, the detection accuracy would be affected.

(1) Completeness of bounding box’s label: for image i,
the completeness is

CLi �
nLabel

i

nHu
i

, (12)

where nLabel
i is the number of labels. For a dataset, the

metric is

CL �


N
i�1,...,N CLi

N
. (13)

(2) Completeness of category: the completeness of cat-
egory is a metric that measures whether the number
of samples can meet the training for the object de-
tection model. As for a dataset, the classes are usually
organized in a semantic hierarchy tree. Regarding a
leaf node, if it meets the condition nleaf > nlowbound,
the completeness is 1. Otherwise, the completeness is
0. For a parent node, the completeness is

CCLabel
parent �


nchild

k�1,...,nchild CCLabel
k

nchild , (14)

where nchild is the number of the corresponding child
nodes. As a result, we can have the completeness of the
category for a dataset.

2.2.2. Accuracy of Label. (e dimension is employed to
measure the closeness of the human and ground truth
annotations. Regarding a dataset collected by a crowd-
sourcing annotation platform, the label noise is the most
common error and has a direct influence on the training of
the object detectionmodel.(e dimension has two elements:
flat accuracy and hierarchical accuracy. (e flat accuracy of
the label is the usual element. However, the label space is
often hierarchical. (e hierarchical element can treat an-
notation errors distinctively and is the foundation of the
utilization of annotation errors. As a result, we introduce
these two kinds of elements for label accuracy evaluation.

(1) Flat accuracy of label: the flat accuracy of the label
includes two metrics: precision and recall. (e
precision and recall of class t are

Pt �
tpt

tpt + fpt

,

Rt �
tpt

nGTr
t

,

(15)

where nGTr
t is the number of ground truth annotations

for class t, and tpt and fpt are the numbers of true
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positive objects and false-positive objects, respectively.
For a dataset, precision can be calculated as follows:

P �


M
t�1,...,M Pt

M
, (16)

which treats each class equally. And similarly, the
recall is obtained.

(2) Hierarchical accuracy of label: the element also has
two metrics. (e metrics of class t are

HPt �


nHu
i

k�1,...,nHu
i

ans Ck( ∩ ans Ck
′( 


/ ans Ck

′( 


 
1/p

nHu
i

,

HRt �


nGTr
i

k�1,...,nGTr
i

ans Ck( ∩ ans Ck
′( 


/ ans Ck( 


 

1/p

nGTr
i

,

(17)

where nHu
i and nGTr

i are the corresponding numbers of
human and ground truth annotations, Ck and Ck

′ denote
the ground truth and human annotation labels, and ans(C)
is the operation for computing ancestors for class C, p> 0.
(en, via macroaveraging the metrics for all classes, the
hierarchical precision and recall can be calculated.

2.2.3. Consistency of Label. Similar to the consistency of the
bounding box, consistency of label concentrates on the
confliction of spatiotemporal continuity of label. In the
crowdsourcing platform, the labels in the adjacent frames
often conflict due to the existence of low-level workers. If the
label of an object is consonant with the labels in the previous
and next frames, the metric Con Lobject is 1; otherwise,
Con Lobject is 0. For image i, the consistency is

Con Li �


nLabel
i

j�1,...,nLabel
i

ConLij

nLabel
i

. (18)

For the dataset, ConL is

Con L �


N
i�1,...,N Con Li

N
. (19)

3. Case Study

To verify the effectiveness of the quality framework, two case
studies are conducted based on the UTS dataset [47] and
PASCAL VOC 2007 detection dataset [48]. UTS dataset is a
video dataset with varying illumination conditions and
viewpoints. PASCAL VOC 2007 dataset is an image dataset
and contains twenty categories. Note that a few dimensions
of the quality assessment framework are not fit for the
dataset. To acquire the annotations, we let a group of stu-
dents fulfill the annotation work. Generally, ground truth
annotations are employed as golden standard annotations.
However, in the evaluation process, we find that, to a certain
extent, the ground truth annotations have quality problems,
especially for the UTS dataset. Consequently, ground truth
annotations are evaluated, where human annotations are
regarded as “ground truth annotations.” Additionally, to
verify the completeness of category, the relationship between

this metric and detection performance is studied by con-
ducting object detection experiments.

3.1. Case Study for UTS Dataset. In this case study, the UTS
dataset is utilized for verification. To reduce the amount of
annotation labor, four shots are selected, and we annotate an
image for every four or five images. Finally, the numbers of
images in the four shots are 75, 120, 100, and 120 with 1166,
686, 639, and 919 objects, respectively. (e evaluation is
presented from the aspects of an image and a dataset. We
find that the ground truth annotations have quality prob-
lems, especially for the completeness of the bounding box’s
quantity and the flat recall of the label.

3.1.1. Annotation Quality of an Image. For the clarity of the
description of annotation quality, an image is selected for
evaluation, which is given in Figure 2. (e semantic hier-
archy tree we defined is presented in Figure 3. (e quality
evaluation results for an image are given in Table 1. (e
accuracy of the bounding box for each object is shown in
Figure 4.

Now, the analysis is given below. According to Table 1,
the flat precision of hatchback is 0.25. However, it is because
of the quality problems of ground truth annotations.
Reviewing the annotations, we find that there are two small
unannotated objects as shown in Figure 2. Hierarchical
measures can reflect the relation of the classes. For instance,
hierarchical precision for the hatchback is 0.42, while the flat
precision is 0.25. Further, the consistency of the label is less
than 1. It shows that there are inconsistent labels with the
labels in adjacent frames. In Table 1, four metrics are equal to
1, reflecting that there is no error from these aspects.

3.1.2. Annotation Quality of Human and Ground Truth
Annotations. Afterward, we show the annotation quality of
the UTS dataset for the human and ground truth annota-
tions. (e annotation accuracies of the label are given in
Tables 2 and 3. (e completeness of the category of the
ground truth annotations for each class and the original
vehicle dataset is given in Figure 3, where the threshold is set
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to 1000. (e results of other quality dimensions are pre-
sented in Table 4.

(e quality of human annotations is analyzed first.
According to Tables 2 and 4, the overall annotation quality of

the bounding box is good, while the annotation quality of the
label is relatively poor. Accordingly, it can be inferred that
the label’s annotation is a more difficult task. In particular,
for SUV and MPV, the accuracy and recall are too low. (e
hierarchical accuracy is higher than the flat accuracy,
treating errors distinctively. According to Table 4, compared
with other dimensions, the consistency of the label is lower
on account of the own property.

(e quality of ground truth annotations is evaluated here.
According to Tables 2–4, the completeness of bounding box’s
quantity, flat and hierarchical recall of label, and consistency of
label for ground truth annotations are lower than those for
human annotations. When reviewing ground truth annota-
tions, we find that ground truth annotations neglect some small
and incomplete objects. But these small and incomplete objects
can be annotated properly by experience. (ere are more
inconsistent labels in ground truth annotations than in human
annotations. Figure 3 shows that the completeness of category
for MPV and pickup is 0, as the corresponding category’s
quantities do not reach the threshold. Generally, the quality
problem exists in the ground truth annotations. (erefore, it is
significant to perform a quality assessment in the process of
annotation and ground truth inference.

3.1.3. Relationship between the Completeness of Category and
Detection Performance. For the sake of exploring the rela-
tionship between the completeness of category and detection
performance, the following experiment is conducted, which
implies the effectiveness of the dimension. (e object de-
tection experiment on the UTS dataset is performed on the
original dataset and downsampled dataset. As for down-
sampling, we just select images for every two images. (e
detection algorithm we use is Faster RCNN [3]. Table 5
presents the corresponding result.

Hatchback
Minibus

MPVSedan

Minibus
Hatchback

Hatchback

HatchbackHatchback

SUV

Figure 2: Human and ground truth annotations from the UTS dataset (ground truth and human annotations are shown in red and yellow,
respectively).

Car:
0.75 Bus: 1 Truck: 0

Vehicle:
0.58

Hatchb
ack: 1 SUV: 1Sadan:

1 MPV: 0 Minibus
e:1

Pickup:
0

Figure 3: Semantic hierarchy tree and completeness of category of
ground truth annotations for the original UTS training dataset.

Table 1: Results of other quality dimensions for an image.

Annotation quality dimension Value
Completeness of bounding box’s quantity 1
Completeness of bounding box’s size 0.64
Accuracy of bounding box 0.67
Consistency of bounding box 1
Completeness of bounding box’s label 1
Flat precision/recall of label –/0.5
Hierarchical precision/recall of label 0.69/0.79
Flat precision/recall of hatchback 0.25/1
Hierarchical precision/recall of hatchback 0.42/0.83
Consistency of label 0.84
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0.71
0.46

0.79
0.71

Figure 4: Accuracy of the bounding box in an image (note that two small objects are missed by the image instance segmentation algorithm.).

Table 2: Annotation accuracy of human annotations for the downsampled UTS dataset.

Class
Flat accuracy of label Hierarchical accuracy of label

Precision Recall Precision Recall
Hatchback 0.79± 0.02 0.55± 0.14 0.92± 0.01 0.81± 0.07
Sedan 0.58± 0.08 0.78± 0.12 0.86± 0.03 0.88± 0.07
Minibus 0.93± 0.10 0.57± 0.33 0.95± 0.06 0.70± 0.22
SUV 0.20± 0.06 0.27± 0.10 0.69± 0.03 0.74± 0.04
MPV 0.19± 0.14 0.26± 0.14 0.62± 0.14 0.72± 0.08
Pickup 0.57± 0.41 1± 0 0.72± 0.27 1± 0
On average 0.55± 0.11 0.57± 0.07 0.79± 0.07 0.81± 0.05

Table 3: Annotation accuracy of ground truth annotations for the downsampled UTS dataset.

Class
Flat accuracy of label Hierarchical accuracy of label

Precision Recall Precision Recall
Hatchback 0.57± 0.13 0.57± 0.04 0.85± 0.06 0.67± 0.05
Sedan 0.79± 0.12 0.44± 0.04 0.91± 0.08 0.65± 0.02
Minibus 0.58± 0.34 0.77± 0.17 0.72± 0.23 0.79± 0.17
SUV 0.27± 0.10 0.15± 0.05 0.75± 0.04 0.53± 0.09
MPV 0.26± 0.14 0.17± 0.15 0.72± 0.08 0.51± 0.18
Pickup 1± 0 0.28± 0.19 1± 0 0.28± 0.19
On average 0.58± 0.07 0.40± 0.07 0.83± 0.04 0.57± 0.07

Table 4: Results of other quality dimensions for the downsampled UTS dataset.

Annotation quality dimension Human annotations Ground truth annotations
Completeness of bounding box’s quantity 0.98± 0.02 0.75± 0.05
Completeness of bounding box’s size 0.96± 0.02 0.99
Consistency of bounding box 0.977± 0.002 0.96
Completeness of bounding box’s label 0.52± 0.11 0.58
Consistency of label 0.86± 0.01 0.71

Discrete Dynamics in Nature and Society 7



According to Table 5, we argue that the detection result is
closely related to the completeness of category. Overall, for
the complete class whose training samples’ quantity is over
1000, the corresponding mAP is high, while the detection
mAPs of other classes are quite low. However, for SUV in the
downsampled dataset, the quantity is about 880. (e de-
tection performance is still acceptable. It is due to its salient
visual feature. (us, the threshold varies with the class.
Additionally, for the incomplete class, the performance
declines with downsampling.

3.2. Case Study for PASCAL VOC 2007 Detection Dataset.
In the case study, PASCAL VOC 2007 detection dataset is
utilized for verification. To save labor, we select twenty images
for each class as annotation samples. Finally, a random-selected
dataset containing 353 images is obtained. (e PASCAL VOC
2007 dataset is an image dataset. Consequently, a few quality
dimensions are not fit for the dataset.

3.2.1. Annotation Quality for Human and Ground Truth
Annotation. (e quality of human and ground truth
annotations for the PASCAL VOC 2007 dataset is given
below. Accuracies of the label for the human and ground
truth annotations are given in Tables 6 and 7. (e se-
mantic hierarchy tree and completeness of category
quantity are given in Figure 5, where the threshold is set as
400. (e results of other quality dimensions are provided
in Table 8.

According to Tables 6 and 8, we can see that the human
annotation quality for the dataset is good overall. However,
the accuracies of the chair, potted plant, and dining table are
relatively poor. For instance, the average flat recall for the
potted plant is 0.54. (is is because the potted plant is small
and tends to be neglected. And for the other dimensions of
human annotations, quality is relatively reliable.

Afterward, we evaluate the annotation quality of ground
truth annotations. According to Tables 6–8, we find that the
quality of ground truth annotations is slightly worse than that
of human annotations. Specifically, the completeness of the
bounding box’s quantity and the flat recall of the label are
relatively low. (ese dimensions indicate that there are more
unannotated objects. As there are not enough images in the
random-selected dataset, we calculate the completeness of
category according to the original training set. (e total
completeness of category is 0.62, as 38% of the classes do not
have enough samples.

3.2.2. Relationship between the Completeness of Category and
Detection Performance. To explore the relationship between
the completeness of category and detection performance, an
experiment is conducted in the sameway as the previous section.
We conduct object detection experiments on the original dataset
and downsampled dataset of which the sampling ratio is 0.5.
And the major classes of person, car, and chair are not
downsampled. Table 9 presents the detection results, where
classes are in descending order of quantity of training samples.

According to Table 9, on the whole, the detection per-
formance declines after the dataset is downsampled. For the
majority classes of person, car, and chair, there are no
obvious declines of mAPs, as we do not make downsampling
on these classes. As for the minority classes, mAPs for the
bottle and potted plant decline a lot, which can be regarded

Table 5: Comparison of detection results based on the original training dataset and downsampled dataset.

Class Object number in the training dataset mAP (original) mAP (downsampled)
Hatchback 12165 0.669 0.744
Sedan 5484 0.573 0.565
Minibus 3220 0.663 0.601
SUV 1761 0.560 0.576
MPV 898 0.154 0.142
Pickup 263 0.020 0.0001
On average 3965.2 0.440 0.438

Table 6: Annotation accuracy of human annotations for the se-
lected images of the PASCAL 2007 dataset (the average values are
computed for the twenty classes).

Class
Flat accuracy of label Hierarchical accuracy of

label
Precision Recall Precision Recall

Person 0.98± 0.01 0.92± 0.05 0.99± 0.01 0.92± 0.04
Car 0.99± 0.02 0.94± 0.04 0.99± 0.01 0.94± 0.03
Chair 0.96± 0.03 0.74± 0.08 0.98± 0.01 0.82± 0.07
Bottle 0.98± 0.01 0.81± 0.08 0.99± 0.01 0.82± 0.07
Potted plant 1± 0 0.54± 0.31 1± 0 0.57± 0.29
Cow 0.99± 0.01 0.95± 0.01 0.997± 0.005 0.96± 0.01
Dining table 0.75± 0.16 0.59± 0.18 0.91± 0.06 0.64± 0.15
Bus 1± 0 0.94± 0.04 1± 0 0.96± 0.03
On average 0.96± 0.01 0.89± 0.04 0.983± 0.005 0.90± 0.04

Table 7: Annotation accuracy of ground truth annotations for the
selected images of the PASCAL 2007 dataset (the average values are
computed for the twenty classes).

Class
Flat accuracy of label Hierarchical accuracy

of label
Precision Recall Precision Recall

Person 0.97± 0.01 0.79± 0.11 0.98± 0.01 0.81± 0.1
Car 0.94± 0.02 0.82± 0.08 0.96± 0.01 0.83± 0.08
Chair 0.90± 0.02 0.81± 0.09 0.96± 0.01 0.84± 0.08
Bottle 1± 0 0.74± 0.10 1± 0 0.81± 0.09
Potted plant 0.98± 0.02 0.77± 0.02 0.99± 0.01 0.78± 0.03
Cow 0.99± 0.01 0.81± 0.10 1± 0 0.83± 0.10
Dining table 0.68± 0.16 0.63± 0.11 0.87± 0.06 0.65± 0.09
Bus 0.91± 0.09 0.89± 0.08 0.94± 0.05 0.90± 0.07
On average 0.94± 0.02 0.84± 0.05 0.97± 0.01 0.87± 0.05
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as hard classes. But mAPs for the other classes of the mi-
nority are relatively high and change little, which should be
regarded as easy classes. (e hard classes are usually of small
scale and have nonsalient visual features, hindering the
learning of the object detection model. (erefore, the
threshold for hard classes is relatively high. In the future
process of constructing a dataset, the training samples’
quantity for hard classes should be added.

4. Conclusion

Annotation quality is essential for the object detection model’s
training. In this paper, conceptual cognitive modeling for fine-
grained annotation quality assessment is proposed. (e an-
notation quality is calculated from the perspectives of the
bounding box and label. To begin with, a generic framework
based on general-purpose data quality dimensions is con-
structed from two aspects: the bounding box and the class label.

(is framework is used to assess the completeness and accuracy
from the corresponding aspects. Nonetheless, the basic
framework has limitations in assessing the consistency, the
category’s quantity, and the annotation errors. (ereupon, the
cognitive theory is introduced, and we add the corresponding
elements, including consistency of bounding box, hierarchical
accuracy of label, consistency of label, and completeness of
category. Case studies on the Urban Traffic Surveillance dataset
and PASCAL VOC 2007 detection dataset indicate the validity
of the framework. Currently, the annotation quality framework
is constructed in an ideal condition. Future research is required
to consider more practical factors.

Data Availability

(e Urban Traffic Surveillance dataset and PASCAL VOC
2007 detection dataset used to support the findings of this
study are included within the article.
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Figure 5: Semantic hierarchy tree and completeness of category for original PASCAL VOC 2007 training dataset.

Table 8: Results of other quality dimensions for the selected images and its original training dataset of the PASCAL VOC 2007 dataset.

Annotation quality dimension Human annotations Ground truth annotations
Completeness of bounding box’s quantity 0.90± 0.04 0.88± 0.05
Completeness of bounding box’s size 0.84± 0.02 0.85
Completeness of bounding box’s label 0.9991± 0.0008 1

Table 9: Comparison of detection results based on the original training dataset and downsampled dataset (the average values are computed
for the twenty classes).

Class Object number in the training dataset mAP (original) mAP (downsampled)
Person 5447 0.779 0.778
Car 1644 0.831 0.807
Chair 1432 0.520 0.511
Bottle 634 0.576 0.519
Potted plant 625 0.459 0.376
Cow 356 0.767 0.721
Dining table 310 0.682 0.671
Bus 272 0.772 0.776
On average 783.1 0.714 0.678
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