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Featured Application: All solid-state lithium batteries, all solid-state thin-film lithium batteries.

Abstract: All-solid-state batteries (SSBs) are one of the most fascinating next-generation energy storage
systems that can provide improved energy density and safety for a wide range of applications from
portable electronics to electric vehicles. The development of SSBs was accelerated by the discovery of
new materials and the design of nanostructures. In particular, advances in the growth of thin-film
battery materials facilitated the development of all solid-state thin-film batteries (SSTFBs)—expanding
their applications to microelectronics such as flexible devices and implantable medical devices.
However, critical challenges still remain, such as low ionic conductivity of solid electrolytes, interfacial
instability and difficulty in controlling thin-film growth. In this review, we discuss the evolution of
electrode and electrolyte materials for lithium-based batteries and their adoption in SSBs and SSTFBs.
We highlight novel design strategies of bulk and thin-film materials to solve the issues in lithium-based
batteries. We also focus on the important advances in thin-film electrodes, electrolytes and interfacial
layers with the aim of providing insight into the future design of batteries. Furthermore, various
thin-film fabrication techniques are also covered in this review.

Keywords: lithium-ion batteries; solid electrolytes; all solid-state batteries; all solid-state thin-film
batteries; nanostructured thin films; interfacial buffer layers; thin-film techniques; thin-film electrodes;
thin-film electrolytes

1. Introduction

Lithium-ion batteries (LIBs) are one of the great successes of electrochemical energy storage
devices utilized in diverse applications such as portable electronics, hybrid automobiles and even
large-scale electrical power storage systems [1–4]. Since the first market emergence of LIBs in the
1990s, the performance of LIBs has been remarkably improved to meet the increasing demand for
new energy storage systems with high energy density, high power density, long cycle life and a wide
range of operating temperatures [5,6]. Moreover, rechargeable batteries are rapidly expanding to
drivetrains [7,8], as can be seen from the quadrupled global sales of plug-in light vehicles from 0.55
to 2.21 million cars annually from 2015 to 2019 [9]. Thus, developing revolutionary energy storage
systems is a critical task in today’s energy-dependent society.

LIBs are composed of a cathode and an anode separated by an electrolyte. During discharging, the
lithium ions (Li+) migrate through the electrolyte from the anode to the cathode and a discharging current
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flows through the external circuit, whereas the use of electrical energy pushes the electrons and Li+

back to the anode during the charging process. Most of the commercial LIBs employ liquid electrolytes
owing to their large electrochemical voltage windows, high ionic conductivities and great wettability
with the internal components of LIBs [10]. Generally, the liquid electrolyte is a mixture of linear and
cyclic carbonate-based organic solvents such as diethyl carbonate (DEC) [11], ethyl methyl carbonate
(EMC) [11–13], dimethyl carbonate (DMC) [11,12], ethylene carbonate (EC) [12–14], propylene carbonate
(PC) [11], and lithium salt such as lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate
monohydrate (LiAsF6), lithium perchlorate (LiClO4) and lithium tetrafluoroborate (LiBF4) [13,15,16].
However, these liquid electrolytes have severe drawbacks [17], including high flammability, narrow
electrochemical stability windows, limited operating temperatures and irreversible decomposition.
Due to their high flammability, organic liquid electrolytes are believed to be the main reason for
fires and explosions in LIBs [18]. In addition, the formation of lithium dendrites with organic liquid
electrolytes [19] leads to internal short circuits causing catastrophic failure of lithium-based batteries [20].
Therefore, developing alternative battery systems to prevent such issues of the liquid electrolytes as
well as to provide high energy density and power is indispensable.

All-solid-state batteries (SSBs), which use non-volatile solid electrolytes, have emerged as
an alternative battery system to replace the conventional LIBs with liquid electrolytes [21–23]. Not only
are SSBs inherently safer owing to the lack of flammable organic components, SSBs also have a large
electrochemical stability window, thus enabling a dramatic improvement in the energy density [24–26].
Furthermore, the SSBs have much higher power and energy characteristics compared with various
batteries which are currently being developed as next-generation batteries [27,28]. The electrodes are
required to have the following features in order to achieve high energy density: (i) high gravimetric
capacity (in Ah/kg) and volumetric capacity (in Ah/L), i.e., a high number of electrons transferred per
unit of reaction; (ii) high (cathode) and low (anode) standard redox potential of the respective electrode
redox reaction, leading to high cell voltage. Moreover, electrochemical reactions in rechargeable cells
at both anode and cathode electrodes must be highly reversible to maintain the capacity for thousands
of cycles. Recent studies, therefore, have focused on developing new electrode materials [29,30] or
engineering electrode architectures [31,32] to increase the energy density of SSBs. Among various
attractive candidate materials for electrodes, the selection of cathode materials depends on the battery
type, i.e., Li+ or Li-metal batteries. In the case of LIBs, air-stable lithium-based intercalation compounds
should be used as a cathode due to the absence of lithium in the anode [33–35]. On the contrary,
for Li-metal batteries, the cathode does not need to be lithiated before cell assembly owing to the
use of metallic lithium as an anode [36]. Among a large number of materials proposed for the
cathode in LIBs, transition metal oxides have been recognized as one of the most promising cathode
materials [37–39]. For the anode, graphitic carbon allotropes were mostly used in LIBs, but the use
of lithium metal can significantly increase the volumetric energy density by up to 70% with respect
to graphite (Figure 1) [40,41]. However, lithium metal electrodes encounter formidable challenges
such as uncontrollable dendrite growth and high reactivity with solid electrolytes, which hampers
the use of lithium metal electrodes [20]. Alternatively, recent studies of anode materials have focused
on lithium transition metal oxides, vanadium oxides or lithium metal nitrides [42–44]. One of the
key features of SSBs is replacing liquid electrolytes with solid electrolytes, which can dramatically
enhance the safety of batteries. In order to replace the current organic liquid electrolytes, solid-state
electrolytes need to possess high ionic conductivity, negligible electronic conductivity and good
stability in contact with the anode and cathode electrodes [45,46]. Many different types of inorganic
solid electrolytes—Na superionic conductor (NASICON) [47], perovskite [48], lithium phosphorous
oxy-nitride (LiPON) [49–51], sulfide [27,52,53] and garnet [54–56]—are widely studied in SSBs.

With the development of SSBs, all-solid-state thin-film batteries (SSTFBs) have received significant
attention in recent years [57–59] that can be used for low power microelectronic devices (e.g., implantable
medical devices) and energy harvesting technologies [60]. Similar to conventional LIBs, SSTFBs consist
of a cathode, an anode and an electrolyte. Owing to the difference in chemical potentials of lithium



Appl. Sci. 2020, 10, 4727 3 of 50

in the two electrodes, the transfer of Li+ from the anode through the electrolyte into the cathode
(discharge) delivers energy, whereas the reverse lithium transfer (charge) consumes energy. One unique
feature of SSTFBs is the usage of nanostructured thin films and thus SSTFBs can significantly reduce the
transport distance of charge carriers, enhancing the kinetics of lithium storage [61,62]. Furthermore, the
overall performance of SSTFBs can be controlled by modulating the physical and chemical properties of
thin films. In order to make SSTFBs, all the battery components need to be fabricated into multilayered
thin films by suitable thin-film techniques.

1 
 

 
Figure 1. Capacities and voltage windows of various cathode and anode materials [40,41,63–74]. 
Battery potential is the relative difference between the voltage of the positive electrode and the 
negative electrode. 

 

 
Figure 12. Conductivity summary of bulk [405] and thin-film Li2O–V2O5–SiO2 (LVSO) deposited via 
PLD [404,405] and RF sputtering [319]. 

 

Figure 1. Capacities and voltage windows of various cathode and anode materials [40,41,63–74].
Battery potential is the relative difference between the voltage of the positive electrode and the
negative electrode.

While SSBs and SSTFBs have shown their potential as the next major advances beyond LIBs,
their performances have not yet been reached the practical level mainly due to the limits of intrinsic
material properties. Therefore, understanding and controlling the properties of electrode and electrolyte
materials will provide insight into the enhancement of the next-generation battery performances.
Despite several available reviews of SSBs, most efforts have primarily focused on progress in the
solid-state electrolytes [55,75–79]. Indeed, only a few comprehensive reviews [80–82] on thin-film
electrodes and electrolytes for SSTFBs are available. In this review, we aim to provide a synopsis
of the major developments and achievements in electrode and electrolyte materials in both bulk
and thin-film forms for SSBs and SSTFBs, which can facilitate the development of high-performance
electrochemical energy storage systems. First, we discuss recent progress in bulk-based cathodes,
anodes and electrolytes for lithium-based batteries. We then cover in detail the interfacial phenomena
between the two electrodes and the electrolyte, followed by approaches to resolve the interfacial issues
by thin-film technologies. We also briefly review recent advances in SSTFBs, focusing thin film-based
components. Finally, we conclude with an outlook on the opportunities in future research.

2. Electrodes and Electrolytes for Lithium-Based Batteries

As described earlier, the alleviation of safety concerns by using solid electrolytes is the key feature
of SSBs. Moreover, solid electrolytes exhibit a large electrochemical window (up to five volts), which can
enable the utilization of high voltage cathode materials as well as lithium metal anode. In this section,
we discuss the merits and challenges of the bulk-based electrode and electrolyte materials for the
next-generation SSBs. Electrode engineering and solid electrolyte development strategies are explained
in detail.
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2.1. Electrodes

Selecting electrode materials for the next generation of batteries needs careful considerations
with regards to safety, energy density, cost, cyclability, crustal abundance and recyclability.
Electrode chemistries which rely on the mining of rare elements and the utilization of complex
ceramic processing greatly diminish the sustainability of an electrode material [83]. In addition to the
extraction and processing of raw materials, a holistic approach considering the electrode synthesis and
device fabrication must be taken into the actual energy cost of battery fabrications.

2.1.1. Anodes

Lithium is the most attractive anode material because of its high theoretical capacity (3860 mAh/g)
and its lowest negative electrochemical potential (–3.040 V vs. SHE). Despite these advantageous
intrinsic properties, there are massive challenges to the successful incorporation of lithium metal
anodes into commercialized lithium-based batteries. The foremost obstacle is the formation of lithium
metal dendrites during cycling, which can cause thermal run-away [84]. Since the first patent for
a dichalcogenide lithium metal battery was awarded to Moli Energy in 1980, numerous strategies
have been developed to manage the formation of dendrites [85]. Approaches such as electrolyte
additives [86], artificial solid electrolyte interface (SEI) layers [87] and engineering of the interfacial
layers and lithium host [88,89] have offered moderate successes. A very appealing solution is the
use of a solid electrolyte mechanical barrier to inhibit dendrite growth, which will be discussed in
detail later. With increasing interest in SSBs, recent investigations into lithium-metal anodes have
focused on the nucleation kinetics, flow behavior and host–matrix type electrode supports in SSBs.
For example, using conductive atomic force microscopy, Lushta et al. [90] described the characteristic
temperature-independent energy barriers to lithium nucleation and growth on a Li1+xAlxTi2−x(PO4)3

(LATP) type solid conductive glass substrate. Interestingly, the nucleation was shown only to occur on
the LATP and not on the interspersed insulating AlPO4.

Silicon (Si) with a specific capacity (3580 mAh/g) similar to lithium metal anode is an attractive
anode material for the next generation of batteries [91]. The primary challenge to further implementation
of the Si anode is the volume expansion in excess of 300% when fully intercalated with lithium.
The associated stresses induce structural failure causing pulverization of the particles, which results
in poor capacity retention and inferior coulombic efficiency [92]. Strategies to improve this
bottleneck such as surface engineering (pores) [93], size and shape control (nanowires/tubes) [94–96],
surface modification [97], component modulation (M–Si alloying) and encapsulation in a carbon-rich
matrix (graphene, graphdiyne) are widely studied. Throughout these strategies, maintenance of
mechanical and conductive networks and interfacial contact are the thematic challenges. Here, we
introduce recent works on Si engineering to improve the performance of LIBs. Shang et al. [98] recently
synthesized 2D-graphdiyne-wrapped silicon nanoparticles (Si–NPs), which showed a capacity of
4122 mAh/g at 0.2 A/g and 1988 mAh/g at 10 A/g. Zhou et al. [99] used a different approach to ensure
transport across the carbon support by using an N-doped graphite coating (8–12 nm) of Si-NPs to
facilitate Li+ mobility. Xu et al. [100] reported the encapsulation of Si-NPs in a spiderweb-like carbon
structure by using graphene oxide anchors. Hwang et al. [101] synthesized porous silicon nanowires
by metal-assisted chemical etching of boron-doped p-type Si(100) wafers with Ag nanoparticles.
By controlling the doping concentration through an acid-mediated synthesis, the authors achieved
high surface area silicon nanowires (up to 260 m2/g) with a low charge transfer resistance of 9 Ohms.
Li et al. [102] demonstrated the creation of a Si–NP/C composite anode with high tap-density (~1.0 g/cm3)
anchored onto flake graphite.

Graphitic carbon is the most widely used anode material for commercial LIBs. Energy is stored
via lithium intercalation between constituent graphene sheets with a fully lithiated formula of
LiC6. Studies on the insertion of Li in carbon are still active. The super-dense phase of lithium
intercalated between a graphene bilayer was reported by Kühne et al. [103]. Using in situ TEM imaging,
they revealed an in-plane lattice constant of 3.1 Å, which is an unexpected result, compared to the
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ordinarily required very low temperatures and high pressures for such dense packing. Although it
may be thermodynamically unfavorable for ions with larger radii than lithium to form intercalation
compounds in bulk graphite, Nandi and Das reported the use of exfoliated graphite (foam) used with
Cu and Al cathodes in an aqueous electrolyte [104]. Yang et al. [105] reported the use of a graphite
anode for use with a water-in-salt electrolyte. A specific capacity of 243 mAh/g at 4.2 V vs. Li/Li+ was
reported for mixed lithium halide (Br, Cl). Graphdiyne with natural pores could be a high capacity
carbon-based alternative to graphene-based anodes. Mortazavi et al. [106] predicted that P- and
N-doped triphenylene–graphdiyne nanosheet monolayers could yield capacities well above graphite.
From first principle calculations, they suggested capacities of 1979 mAh/g and 2664 mAh/g for P–TpG
and N–TpG, respectively.

Ti-based compounds are promising anode materials known for their outstandingly high-rate
capacity, negligible volume change and cycling stability, as well as improved safety over graphite [107].
Ti-based materials, however, suffer from low specific capacity, low electronic/ionic conductivity
and relatively low gravimetric/volumetric energy density. To compete with commercial anode
materials, several approaches have been studied including morphologic control, doping, surface
modification, increasing the working voltage by using high-voltage cathodes and maximization of
electroactive materials [108]. Among TiO2-based anodes that exist as eight different phases (Figure 2),
the predominant three phases of interest for lithium insertion anodes are rutile, anatase and bronze
phase (TiO2(B)) with typical operating potentials ~1.3–1.8 V vs. Li/Li+. Li et al. [109] reported the
synthesis of porous nanospheres of TiO2 (anatase and B phase) coated with graphene nanoribbons
to have a high initial charge capacity of 390 mAh/g and 79.5% coulombic efficiency. Spinel Li4Ti5O12

(LTO) has also received considerable attention because of its excellent cycling stability originating
from small volume changes during Li insertion/extraction reactions. However, its low electronic
and ionic conductivities required further engineering to enhance the power performance of batteries.
For example, Bai et al. [110] reported the enhanced performance of batteries by substituting Cu for
Li in LTO in which Cu0.8LTO showed a capacity of 138.5 mAh/g at 40 C rate. Furthermore, capacity
retention of 90.4% (132.3 mAh/g) was obtained after 2500 cycles at 10 C with Cu0.8LTO.
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Figure 2. TiO2 crystal structures of (a) rutile, (b) anatase, (c) bronze, (d) brookite, (e) columbite,
(f) hollandite, (g) baddeleyite and (h) ramsdellite phases. Reprinted from ref. [111] with permission
of Elsevier.

Recent progress on Ti-based anode was achieved by porosity control, structural water removal
or composite formation. Liu et al. [112] studied the interface between a dual anatase/(B) phase
nanoflower heterostructure (pore size < 10 nm) formed by a one-step hydrothermal processing method.
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According to this study, TiO2(B) doping of anatase can effectively improve the pseudocapacitive behavior
lowering polarization. Using density functional theory calculations, the authors also suggested that
the interface can act as a cationic site reservoir. The highest reported discharge capacity was 343.9
mAh/g attributed to vacancies in the Ti3+–O bonds, Ti–C bonds and high porosity. Wang et al. [113]
reported a low-temperature (190 ◦C) multi-phase synthesis of layered lithium titanate hydrate
(Li1.25H1.63Ti2O5.44−σ) by removing loosely bound water (such as adsorbed and crystallographic)
but keeping tightly bound pseudohydrates (hydroxides and hydronium ions or -OH, -H surface
terminations). This method avoided detrimental structural coarsening. Xu et al. [114] reported
a strategy to extend the ion-insertion channels within a titanate anode by doping Li1.81H0.19Ti2O5·nH2O
with 3 nm MoS2 quantum dots. A strong heterointerfacial effect between LTO and the coupled MoS2

quantum dots created a space charge layer near the interface, reducing the diffusion distance due to
the significantly altered redox potential distribution near the surface. Christensen et al. [115] reported
that disordered nano-rutile transforms into a composite of ~5 nm domains of a layered LixTiO2

α-NaFeO2-type structure with ~1 nm LixTiO2 grain boundaries with a columbite-like structural motif.
Yang et al. [116] reported the synthesis of a TiO2@α–Fe2O3 core-shell nanostructure to deliver a high
capacity of 820 mAh/g after 1000 cycles at 500 mA/g.

Han et al. [117] reported a new insertion type anode material, TiNb2O7 (TNO), in 2011. TNO has
a monoclinic structure (C2/m) utilizing the Ti (IV)/Ti (III), Nb (V)/Nb (IV) and Nb (IV)/Nb (III) redox
couples to insert 5 Li+ per formula (theoretical capacity: 387.6 mAh/g). It is a high potential anode
(1.3–1.5 V vs. Li/Li+); additionally, TNO has excellent cycling stability and its volumetric capacity
is twice (1680 mAh/cm3) compared to that of graphite (837 mAh/cm3). Despite its high theoretical
capacity, poor electronic and ionic conductivities [118] of TNO require additional materials engineering
approaches such as doping [119], conductive layer coating [120] or nanomaterials formation [121]
to improve the performance of batteries. Increasing the electrochemically active surface area by
creating porous structures was effective in maintaining a long cycle life. Park et al. [122] synthesized
porous TNO nanotubes by electrospinning. These nanotubes maintained a capacity of 210 mAh/g
after 700 cycles at 1 C. Guo et al. [123] formed a porous TNO structure by using a sol–gel method and
achieved a capacity of ~200 mAh/g after 1000 cycles at 5 C. Jo et al. [124] synthesized mesoporous TNO
crystals using poly(ethylene oxide)-b-poly(styrene) block copolymers reporting 190 mAh/g of capacity
after 2000 cycles at 10 C. Summary of the discharge capacity among anode materials are provided in
Table 1.

Table 1. Comparison of the discharge capacity among different anode materials.

Material Discharge Rate (C) Current Density
(mA/cm2)

Initial Discharge
Capacity (mAh/g) Ref.

Si 0.05 2834 [93]
Si 0.2 2433 [95]
Si 0.2 3000 [96]
Si 200 4122 [98]
Si 0.5 4021 [100]
Si 0.05 3400 [101]

Li1.25H1.63Ti2O5.44−σ 35 130 [113]
TiO2 10 131 [109]
TiO2 0.1 343 [112]
TiO2 0.1 320 [115]

TiO2@α–Fe2O3 100 800 [116]
Cu0.8LTO 0.1 209 [110]

TNO 100 184 [119]
TNO 1 195 [121]
TNO 50 230 [122]
TNO 0.1 281 [123]
TNO 0.1 289 [124]
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2.1.2. Cathodes

Lithium transition metal oxides have an α-NaFeO2-type structure, which is a distorted rock salt
superstructure. The general formula of lithium transition metal oxides can be written as LiMO2 (M = V,
Cr, Fe, Co and Ni). With a theoretical capacity of 274 mAh/g, lithium cobalt oxide (LiCoO2, LCO)
is the first layered transition metal oxide cathode successfully commercialized. The success of this
material as a cathode for LIBs is easily evidenced by its utilization in most portable electronic devices.
Unfortunately, the theoretical capacity is unrealized due to the presence of phase transitions during the
lithiation and delithiation processes [125–127].

Doping has been widely employed to suppress the order–disorder transitions of LCO, the transition
from hexagonal to monoclinic structure [128]. Predominantly, Mg, Zr, Al, La, Ni, Fe, Cr, Mn and
Ti have been used to suppress detrimental phase transitions which lead to crack formation due to
the associated large mechanical stresses. Liu et al. [129] demonstrated that doping with La and Al
enhances the capacity (190 mAh/g at 0.1 C) of LCO and maintains a 96% capacity retention after
50 cycles. According to this study, La doping increases the c-axis distance and the doped Al acts as
a positive charge center, which is expected to suppress the order–disorder transition. The Li+ diffusion
coefficients were shown to improve from 6.5 × 10−11 cm2/s (pristine) to 1.2 × 10−10 cm2/s (doped LCO)
during the initial charge stage.

Manganese-based oxide (LiMnO2 or LiMn2O4) cathodes are widely seen as an economical
replacement of Co. Although these materials have merits in abundance, they suffer from first
cycle irreversible capacity, low discharge capacity retention, low rate capability and substantial
charge–discharge voltage hysteresis. Recently, Uyama et al. [130] reported a tetragonal phase of
LiMnO2 synthesized at high pressures (5–12 GPa) that shows a dramatic capacity increase during
the initial cycles to 185 mAh/g. Tian et al. [131] showed that the Mn-ion migration into the Li layer
significantly blocks Li+ diffusion in monoclinic LiMnO2 by first-principle calculations. The cubic spinel
LiMn2O4 (LMO) received more attention than other phases because the layered LiMnO2 is shown to
be a metastable phase [132]. However, manganese dissolution from the spinel phase is a challenge
to achieve long cycle life batteries [133,134]. Using the LMO planar structure, Hirayama et al. [135]
showed that the (111) surface is more stable than (110) in carbonate-based electrolytes. Tang et al. [136]
observed the formation of the Mn3O4 phase, a good source of soluble Mn2+, on the LMO surface after
cycling. Doping of the spinel phase with Al [137], Yt [138], Ce [139], Nb or PO4 [140] is useful for
stabilizing capacity and mitigating the discharge voltage decay (Figure 3).
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In 1994, a high voltage cathode, LiNiVO4 (LNVO) with an inverse spinel structure and space
group Fd-3 m (Oh

7) (Figure 4), was introduced, exhibiting an operating potential of 4.8 V (vs. Li/Li+)
with 1 M LiPF6 PC/EC/DMC (25/25/50) electrolyte [141,142]. These high voltage materials are good
candidates for SSBs cathodes as some of the solid-state electrolytes presented an electrochemical
stability limit higher than 5 V [143]. A similar class of high voltage inverse spinel vanadate cathodes
includes LiCoVO4 and LiMnVO4 [144]. LNVO has been prepared in several different ways [145].
Thongtem et al. [146,147] developed a synthesis method using malic and tartaric acid complexes to
prepare nanocrystallites. The inverse-spinel structure has been prepared by a sol–gel method [148,149].
Qin et al. [150] reported the synthesis of porous LNVO powder using solution combustion.
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Similar to LMO, LiNi1−x−yMnxCoyO2 (NMC) type cathodes are widely seen as alternatives to
LCO. The first study of these cathode types reported by Ohzuku et al. [152] with stoichiometry
LiNi1/3Mn1/3Co1/3O2 (NMC-333) exhibited good rate capability and practical capacity about 160 mAh/g.
In alloys that maintain an equimolar ratio between Ni and Mn, only Ni and Co are electroactive,
with Mn generally serving as a structural stabilizer [153,154]. Xu et al. [155] reviewed several nickel rich
cathode phases with reduced cobalt content. Across 35 unique NMC stoichiometries from 47 different
literature reports, the mean cutoff voltage range is 2.7–4.4 V vs. Li/Li+ with an average first cycle
discharge capacity of 173 mAh/g. At higher operating voltages (3.0–4.5 V vs. Li/Li+), Jung et al. [156]
reported the degradation of rhombohedral NMC-523 to be covered in a spinel phase Ni0.45Mn0.2Co0.3

with spots of cubic NiO. The electrochemically inactive NiO rocksalt phase is shown to cover the NMC
particles entirely when operating at 3.0–4.8 V. Most recent work to maintain the surface integrity of NMC
particles has been focused on surface modification/doping [157], regulation of crystallinity [158,159]
and addition of electrolyte additives [160–163]. Lv et al. [164] reported the doping of a nickel rich
LiNi0.83Co0.12Mn0.05O2 phase by co-precipitation and sintering with Mg. The sample sintered at 770
◦C demonstrated an initial discharge capacity of 201.8 mAh/g, with 74% capacity retention after 200
cycles. Wu et al. [165] reported NMC-811 doped with Ga3+ (Figure 5) to partially replace Mn4+ by
co-precipitation, demonstrating that the Ga3+ doping contributed to the reduced polarization, lowered
charge transfer resistance and increased diffusion coefficient. They observed that the best initial
discharge capacity was lower than the undoped samples, but all doped samples showed much better
capacity retention (~90%) after 100 cycles.
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Zhang et al. [166] reported doped NMC-811 with Ti using a solid-state synthesis method,
demonstrating high initial discharge capacity (214.9 mAh/g at 0.1 C and 165.02 mAh/g at 1 C,
136.9 mAh/g at 5 C) and improved cyclic stability (77.01% after 150th at 1 C and 86.54% after 50th
at 5 C) by increasing the interlayer spacing. They also reported a lithium diffusion coefficient of
6.8 × 10−12 cm2/s. Fluorine doping has also been used to achieve better performance with NMC cathode
material. Calcination with LiF was shown to increase the initial discharge capacity of NMC-811 to
213.5 mAh/g with an 87.7% capacity retention after 50 cycles at 1 C [167]. Better retention was obtained
after ball milling and annealing the fluoride-doped particles. After annealing, the initial discharge
capacity slightly decreased (200.8 mAh/g), but the capacity retention was greatly improved (95.7% after
50 cycles at 1 C). Wang et al. [168] used the co-doping of La and F to improve surface stability. In this
study, the capacity retention was 86.63% and 80.79% after 200 cycles and 300 cycles at 1 C and 8 C,
respectively, with an initial discharge capacity of 205 mAh/g at 0.1 C. The highest discharge capacity
was achieved by doping NMC with tungsten. Zhang et al. [169] report an initial high discharge capacity
of 259.2 mAh/g for W-doped Li1.2Mn0.54Ni0.13Co0.13O2 through a sol–gel method. The valence state of
tungsten was determined to be 6, and the resulting structure was identified as hexagonal α-NaFeO2.
Hashigami et al. [170] reported high capacity retention of 92.4% after 100 cycles with an initial discharge
capacity of 186 mAh/g at 0.1 C rate for NMC-811 impregnated with 2% wt. lithium silicate. A summary
of the discharge capacities among cathode materials is provided in Table 2.

Table 2. Comparison of the discharge capacity among different cathode materials.

Material Doping Discharge Rate (C) Initial Discharge
Capacity (mAh/g) Ref.

LCO Ba, Ti 0.2 190.5 [128]
LCO La, Al 0.1 190 [129]
LMO Y 0.5 120 [138]
LMO Ce 1 101 [139]

LNVO 0.02 80 [141]
LNVO 0.1 30 [142]

NMC-811 Ta 0.067 212 [157]
LiNi0.83Co0.11Mn0.6O2 1 200 [158]

NMC-811 LiPO4-AlPO4-Al(PO3)3 0.1 218 [171]
Li1.14Ni0.14Co0.14Mn0.54O2 La(PO3)3 0.1 286 [172]

NMC-811 LiTa2PO8 0.1 231 [173]

2.2. Solid Electrolytes

Due to the lack of liquid electrolytes with electrochemical windows above 5 V, until now,
the selection of electrode materials has been limited. However, recent advances in developing inorganic
solid electrolytes have demonstrated the possibility of using other electrode materials. Ideal inorganic
solid electrolytes are required to have thermal/chemical stability, high ionic conductivity and long
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cycle life. Table 3 shows a summary of ionic conductivities for several solid inorganic electrolytes.
In particular, oxide materials, which present excellent stability in ambient conditions, are promising
solid electrolytes for SSBs. In this section, we mainly focus on the chronological research progress
of oxide electrolytes from their introduction to the field, in addition to two representative non-oxide
solid-state electrolytes, anti-perovskites and sulfides.

Table 3. Comparison of the ionic conductivities of different solid electrolytes.

Category Electrolyte
Ionic

Conductivity
(S/cm)

Activation
Energy (eV)

Temperature
(◦C) Ref.

NASICON Li1+xAlxTi2−x(PO4)3 (x = 0.2) 3.4 × 10−3 0.28 RT [174]
NASICON Li1+xAlxGe2−x(PO4)3 (x = 0.2) 10−4 0.38 RT [175]
NASICON Li1+xAlxGe2−x(PO4)3 (x = 0.5) 4.22 × 10−3 0.51 27 [176]
LISICON Li3.6Ge0.6C0.4O4 4 × 10−5 0.44 RT [176]
LISICON Li10.42Ge1.5P1.5Cl0.8O11.92 3.7 × 10−5 0.39 27 [177]

Thio-LISICON Li3.25Ge0.25P0.75S4 2.2 × 10−3 0.21 RT [178]
LIPON Li3.3PO3.9N0.17 2.6 × 10−6 0.56 25 [179]
LIPON Li3.2PO3.0N1.0 3.1 × 10−6 0.57 RT [180]
LIPON Li3.13PO1.69N1.39 4.9 × 10−6 0.55 22 [181]

Perovskite Li0.34La0.51TiO2.94 2 × 10−5 0.42 RT [182]
Perovskite Li0.27Sr0.063La0.54TiO3 4.84 × 10−4 0.29 RT [183]
Perovskite Li0.43La0.56Ti0.95Ge0.05O3 1.2 × 10−5 RT [184]
Perovskite Li0.38Sr0.44Ta0.75Zr0.25O3 2.0 × 10−4 0.26 30 [185]
Perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 2.7 × 10−4 0.36 27 [186]
Perovskite Li3/8Sr7/16Hf1/4Ta3/4O3 3.8 × 10−4 0.36 25 [187]
Perovskite Li3/8Sr7/16Ta3/4Hf1/4O3 5.2 × 10−4 0.33 25 [188]

Garnet Li7La3Zr2O12 2 × 10−5 0.26 30 [189]
Garnet Li5La3Nb2O12 10−6 0.43 25 [190]
Garnet Li5La3Ta2O12 10−6 0.56 25 [191]
Garnet Li7La2Zr2O12 7.74 × 10−4 0.32 RT [55]
Garnet Li6.75La3Zr1.75Ta0.25O12 8.7 × 10−4 0.22 25 [191]
Garnet La3Zr2Li6.55Ga0.15O12 1.3 × 10−3 0.3 24 [192]
LiRAP Li3OCl0.5Br0.5 1.94 × 10−3 0.2 RT [193]
LiRAP Li2(OH)0.9F0.1Cl 3.5 × 10−5 0.52 RT [194]
Sulfide Li10GeP2S12 1.7 × 10−2 0.18 RT [51]
Sulfide Li9.54Si1.74P1.44S11.7Cl0.3 2.5 × 10−2 0.24 25 [27]
Sulfide Li6PS5I 2.2 × 10−4 0.26 RT [195]
Sulfide Li22SiP2S18 3 × 10−3 [196]

Argyrodite Li5.3PS4.3Br1.7 1.1 × 10−2 0.18 25 [197]
Argyrodite Li5.5PS4.5Cl1.5 10−2 0.27 25 [198]

RT = room temperature.

The NASICON structure, standing for Na+ superionic conductors, was reported by Hangman et al.
in 1968 [199]. It has a rhombohedral structure (space group R-3c) made of the framework of octahedra
(MO6, M = divalent to pentavalent transition metal ions) and tetrahedra (XO4, X = P, Si, As).
Two MO6 octahedra and three PO4 tetrahedra share oxygen atoms, which are assembled to form
a 3D network structure. This structure provides a 3D interconnected conduction pathway for
mobile ions, most commonly Na+ or Li+ [200]. The NASICON structure can have a wide range of
compositional varieties, leading to varied ionic conductivities. The most promising NASICON-type
Li+ conductors are LiTi2(PO4)3 and LiGe2(PO4)3 with Al substitutions. Arbi et al. [174] reported the
synthesis of Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) conductors (0 ≤ x ≤ 0.5)
giving conductivities of 3.4 × 10−3 S/cm (LATP, x = 0.2) and 10−4 S/cm (LAGP, x = 0.2) at room
temperature. By enhancing the crystallization of LAGP, Thokchom et al. [175] reported a conductivity of
4.22 × 10−3 S/cm at room temperature. Although its high ionic conductivity is attractive, the instability
of LATP in contact with Li metal due to the reduction of Ti4+ requires an additional protective
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layer. Furthermore, expensive precursors to synthesize LAGP would require the substitution of Ge.
As prototype cells, LAGP was used for a Li protection membrane for aqueous Li–air batteries [201,202].

By the 1980s, a considerable amount of work had been done on inorganic solid lithium superionic
conductors, Li4±xSi1−xXxO4 (X = P, Al or Ge, LISICON) [203]. LISICON is based on the γ-Li3PO4

structure that is expected to diffuse Li+ through the vacancy mechanism in its pure state. The ionic
conductivity of Li14ZnGe4O16 was limited to 10−7 S/cm at room temperature and had reactivity with Li
anode or atmospheric CO2 [204]. Kuwano and West in 1980 reported much higher ionic conductivity
for Li4GeO4–Li3VO4 systems with a total ionic conductivity of 4 × 10−5 S/cm at 18 ◦C with the addition
of an interstitial diffusion mechanism [176]. The introduction of V5+ (e.g., Li3+xGexV1−xO4) contributed
to stabilizing the structure in the presence of CO2 in air. It is also reported that the Li4SiO4–Li3PO4

solid solution presented the ionic conductivity 10−6 S/cm at room temperature and had better stability
against Li due to the absence of transition metal ions [75]. While maintaining the chemical stability in
Li4Si/GeO4–Li3PO4 solid solution, the ionic conductivity could be further improved to ~10−5 S/cm
by substituting O with Cl, enlarging the four oxygen bottleneck size and lowering the diffusion
barriers [177]. The most significant conductivity improvement of the LISICON structure was achieved
with O replacement with larger and better polarizing ions, S, to form thio-LISICON. For example,
the Li2S–GeS2–P2S5 system (Li3.25Ge0.25P0.75S4, called LGPS) reached a high ionic conductivity of
2.2 × 10−3 S/cm at room temperature [178]. However, the high sensitivity to moisture in air and
difficulties in the synthesis of sulfide electrolytes remain as challenges.

In 1992, Bates et al. [179] reported the synthesis of lithium phosphorus oxynitride (LiPON,
Li3.3PO3.9N0.17) by RF-magnetron sputtering of Li3PO4, which showed conductivity of 2 × 10−6 S/cm at
25 ◦C. Different from other electrolytes, LiPON has an amorphous structure, and its ionic conductivity
is significantly affected by the amount of nitrogen [180,181,205]. Another route to improve the ionic
conductivity of LiPON is to increase the Li concentration, as can be seen by the conductivity increase
to 6.4 × 10−6 S/cm at 25 ◦C when LiPON was deposited with Li2O in addition to Li3PO4. Because of its
easy deposition in thin films, LiPON can present a low resistance in the form of a thin film. Thus, LiPON
is commonly used as the electrolyte for thin-film microbatteries (1–10 mAh) that can be used for smart
cards, wearable devices, MEMS or implantable medical devices [205–207]. The deposition of LiPON
and prototype battery performance will be discussed in detail later.

Among perovskite-type solid electrolyte materials, LixLa2/3−1/3xTiO3 (LLTO) exhibited very high
bulk ionic conductivity. The LLTO is composed of the ideal structure cubic phase α-LLTO with Pm3 m
symmetry and tetragonal phase β-LLTO with a P4/mmm space group. In 1993, Inaguma et al. [182]
showed the improved ionic conductivity of Li0.34La0.51TiO2.94 compared to LISICON. The bulk and grain
boundary activation energies of the cubic perovskite structure were reported to be Eb = 0.40 eV and
Egb = 0.42 eV, respectively. Importantly, the bulk ionic conductivity was reported to be 1 × 10−3 S/cm
at room temperature, but the total ionic conductivity was 2 × 10−5 S/cm due to the high grain boundary
resistance. Alonso et al. [208] identified the position of Li+ in Li0.5La0.5TiO3 using the neutron powder
diffraction and suggested the Li+ conduction pathway in LLTO. Jay et al. [209] proposed an additional
diffusion pathway in the c-direction via a computational study that aligned more directly with
experimental data. Lu et al. [183] synthesized Li2x−ySr1-x−yLayTiO3 to enhance the Li+ diffusion by
increasing A site. With the composition of Li15/56Sr1/16La15/28TiO3 a total conductivity of 4.84 × 10−4

S/cm was achieved with an activation energy of just 0.29 eV.
Although its high bulk ionic conductivity is attractive, LLTO suffers from high grain boundary

resistance and reactivity with Li metal. LLTO variants showed distinct discoloration when in contact
with Li metal, and the Li intercalation at 1.7 V vs. Li/Li+ into LLTO was observed, limiting their use
with low potential anode materials [210–212]. To resolve the instability issue of LLTO with Li, Ti4+ was
substituted with Ge4+ [184] or Zr4+ and Ta5+ [185] extending the cathodic stability limit of perovskites
to 0–1 V vs. Li/Li+.

Studies that substitute Ti4+ were able to stabilize the electrolyte but showed lower ionic
conductivities [75]. Inada et al. [185] managed to achieve viable ionic conductivities by Zr-substitution
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with the composition of Li3/8Sr7/16 Ta3/4Zr1/4O3 (LSTZ). The newly formulated LSTZ produced a total
conductivity value of 2.7 × 10−4 S/cm at 27 ◦C. The enhancement in conductivity relative to similar
Ti-substitution studies can be attributed to the use of powder bed sintering. Powder bed sintering
produced samples with fewer impurities, less Li+ loss during high-temperature reactions and denser
structure with larger grains. One unfortunate attribute of this LSTZ material is that it requires
a sintering temperature of 1300 ◦C, which is too high to be compatible with electrode materials in
cases of co-sintering. In an effort to reduce the processing temperature, Yu et al. [213] formulated
Li3/8Sr7/16Nb3/4Zr1/4O3 (LSNZ), which can be sintered at 1200 ◦C, but showed reduced total conductivity
(2 × 10−5 S/cm at 30 ◦C). La doping to Sr sites could lead to a slight increase in the conductivity.
For Li3/8Sr7/16−3x/2LaxZr1/4Nb3/4O3 (x = 0.05) the ionic conductivity reached to 3.33 × 10−5 S/cm at 30 ◦C.
However, this value was still an order of magnitude lower than that of LLTO [183] and LSTZ [186].
Huang et al. [187] prepared Li3/8Sr7/16 Ta3/4Hf1/4O3 using a solid-state reaction, which exhibited a total
conductivity of 3.8 × 10−4 S/cm at room temperature. Recently, the same authors prepared a sample
with the same composition but used spark plasma sintering at 1250 ◦C for 10 min [188]. As opposed to
conventional sintering methods, this sintering method improved the mechanical strength, enhanced
the conductivity to 5.2 × 10−4 S/cm, and lowered the activation energy to 0.33 eV at room temperature.

Recently, oxides with garnet related structures have gained considerable attention as the potential
solid-state electrolyte. The general chemical formula of garnet is A3B2(XO4)3 (A = Ca, Mg, Y, La or
rare-earth; B = Al, Fe, Ga, Ge, Mn, Ni or V; X = Si, Ge, Al) where A, B and X are 8-, 6- and 4-fold
coordinated cation sites, which forms a face-centered cubic structure with the space group Ia-3d. Li+ can
diffuse through interconnected 3D pathways in the garnet structure [214]. Thangadurai et al. [190]
reported a garnet-type electrolyte made with similar elements to LLTO but replacing Ti4+ to form
Li5La3M2O12 (M = Nb, Ta). Its bulk conductivity was reported as 10−6 S/cm at 25 ◦C with activation
energies of ENb = 0.56 and ETa = 0.43 eV. In 2007, garnet conductors with bismuth Li5La3Bi2O12

and Li6SrLa2Bi2O12 was reported to have comparable activation energies (0.4–0.5 eV) and total ion
conductivity of 2.0 × 10−5 S/cm at room temperature [55]. In the same year, Murugan et al. [55]
reported the synthesis of Li7La3Zr2O12 (LLZO) that has high ionic conductivity (10−4 S/cm at room
temperature) as well as relatively good thermal and chemical stability compared to perovskite
electrolytes. LLZO exhibits two crystallographic phases, a low conductive tetragonal phase and a high
conductive cubic phase shown in Figure 6 [215,216]. Thus, it is essential to stabilize the cubic phase to
maintain a high conductivity.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 49 
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Allen et al. [191] reported that Ta substitution for Zn (Li6.75La3Zr1.75Ta0.25O12) could stabilize cubic
LLZO, resulting in a conductivity of 8.7 × 10−4 S/cm at 25 ◦C. Li et al. [217] also reported 10−3 S/cm
of conductivity at room temperature with the specific composition of x = 0.6 in Li7-xLa3Zr2-xTaxO12.
Ga-substituted LLZO, Li6.55Ga0.15La3Zr2O12, also presented a similar conductivity 1.3 × 10−3 S/cm
at 24 ◦C by introducing lithium vacancies through the substitution of Li by Ga [192]. These levels of
ionic conductivities are close to that of the carbonate-based liquid electrolyte, making LLZO attractive
enough to be used for SSBs. Although it was believed that garnets are stable in air previously,
several studies indicated their sensitivity to moisture and CO2 in air [189,218–221]. Even after 24 h
of exposure in air, Al-substituted LLZO (~150 µm grain size) showed one order magnitude increase
of area-specific resistance due to the Li2CO3 formation on the surface [189]. When in contact with
Li metal, Ta containing LLZO was stable with Li, whereas Nb containing LLZO was discolored to
black [222]. With cathodes, the garnet structure was stable with LCO up to 900 ◦C but became unstable
when in contact with Mn, Ni, (Fe, Mn) and (Co, Mn)-based cathodes [223,224].

The anti-perovskite (Li3OX, X = Cl, Br, I) has a general perovskite structure, but the positions
of cations are filled with anions. In 2012, lithium-rich anti-perovskite (LiRAP) structures were
reported by Zhao et al. by a molten salt synthesis method, showing a conductivity of 1.94 × 10−3 S/cm
of conductivity with Li3OCl0.5Br0.5 at room temperature [193]. The higher conductivity of the
mixed-halogen phase (Li3OCl0.5Br0.5) than Li3OCl or Li3OBr can be due to its topological property
providing enough free space for Li+ to move compared to the anti-perovskites with solely Cl− or
Br−. Furthermore, Li et al. [194] showed an extended electrochemical stability window up to 9 V vs.
Li/Li+ with fluorine-doped anti-perovskites, Li2(OH)0.9F0.1Cl, that can be used in ultrahigh energy
density storage systems. The high ionic conductivity, low cost, low melting temperature, and large
electrochemical stability windows are the merits of anti-perovskites; however, their highly hygroscopic
nature requires extreme care during sample fabrications and handling.

Minimizing the interaction between the mobile charge carriers and the anion framework is
important to enhance the ionic conductivity of solid-state electrolytes. Sulfides generally offer higher
ionic conductivities than oxides because the interaction between S2− and Li+ is weaker than that of
O2− and Li+. Another merit of sulfide electrolytes is that the grain boundary resistance is lower than
that of the oxide-based electrolytes. There are glass, glass–ceramic and crystalline sulfide electrolytes
(thio-LISICON and argyrodites). Many remarkable ionic conductivities at room temperature were
reported with sulfide electrolytes including Li2S–P2S5 glass–ceramic (1.7 × 10−2 S/cm) [52], Li10GeP2S12

(1.2 × 10−2 S/cm) [53] and Li9.54Si1.74P1.44S11.7Cl0.3 (2.5 × 10−2 S/cm) [27]. Argyrodites, named for the
mineral Ag8GeS6, are the class of solids that have F-43 m or P213 structure. Deiseroth et al. [225]
reported lithium argyrodites (Li6PS5X, X = Cl, Br, I) that have conductivities ranging 10−2–10−3 S/cm at
room temperature. Crystalline Li6PS5Br samples prepared by mechanical milling followed by annealing
showed the conductivity up to 6.8 × 10−3 S/cm at ambient temperature [195]. However, some concerns
were raised with halogen atoms because they can potentially cause the corrosion of current collectors,
in particular, Al. Schneider et al. [196] replaced the halogen atom with Si to form lithium argyrodite,
Li22SiP2S18, that presented a conductivity of 3 × 10−3 S/cm. Recently, based on the fact that the ionic
conductivity of argyrodite largely depends on the S2−/X− mixing at 4d sites, Wang et al. synthesized
Br rich argyrodite to enhance S2−/Br− mixing and achieved a conductivity of 1.1 × 10−2 S/cm with
Li5.3PS4.3Br1.7 at room temperature [197]. In this work, the S2−/Br− mixing at 4d sites was confirmed
with 31P NMR. Another type of halogen-rich lithium argyrodite, Li5.5PS4.5Cl1.5, made by a rapid
thermal annealing process also presented ionic conductivity of 10−2 S/cm at 25 ◦C [198]. With such
a high ionic conductivity, argyrodite-type electrolytes (Li6PS5Cl) were used as a solid electrolyte in
a prototype pouch cell [226] of all solid-state lithium metal batteries—presenting higher than 900 Wh/L
of energy density and long cycle life (1000 cycles). Despite their high ionic conductivity comparable
to a liquid electrolyte, sulfide electrolytes showed severe performance degradation when they are
exposed to air, requiring an inert environment for their handling and cell assembly.
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3. Interfacial Phenomena between Solid-State Electrolytes and Electrodes

As described in previous sections, substantial effort has been devoted to developing high energy
and power density electrodes, solid-state electrolytes with high ionic conductivity, good chemical
stability and large electrochemical stability windows. However, the performance enhancement
of batteries can be insignificant despite the dramatically enhanced performance of an individual
component, i.e., electrodes or electrolytes. More importantly, the power density and cycle life of SSBs still
have not met the requirements for practical applications. Such poor performances are mainly attributed
to the large interfacial resistance between solid electrolytes and electrodes [227–230] that originates
from the mechanical force development or chemical composition changes. These configurational
and chemical changes driven by electrochemical reactions are summarized in Figure 7 [231,232].
We will discuss mechanical and chemical factors associated with the large interfacial resistance in the
following section.
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Mechanically driven interfacial resistance between solid electrolytes and electrodes originates
from poor contact between two rigid materials and the volume changes of electrodes during the
charge–discharge process [233]. This poor contact eventually leads to the formation and propagation
of cracks [234] as well as the delamination of interfaces [235,236]. Sulfide-based electrolytes possess
good mechanical ductility, thus can maintain good contact with electrodes without the degradation
of the interfacial contact resistance [237]. In contrast, oxide-based electrolytes suffer from the poor
adhesion of interfaces with electrodes as most ceramics are vulnerable to cracking due to the low
ductility [238,239]. The insufficient mechanical contact results in the delamination or “dead” area
induced by isolated electrode contact points from solid electrolytes. Due to the lack of conduction
paths, neither electrons nor Li+ can be transferred across the dead areas, which in turn leads to the
growth of interfacial resistance and capacity fading [240]. Furthermore, the large volume changes of
electrode materials during repeated charge–discharge processes could also lead to the loss of effective
contact between electrodes and solid electrolytes [241]. Zhang et al. [233] first demonstrated changes in
the pressure and height of LCO/Li10GeP2S12/In and LCO/Li10GeP2S12/LTO under galvanostatic cycling
where the volume expansions of LCO, LTO and In were found to be 2%, 0.2% and 105.6%, respectively.
Due to the significant volume change of In, the LCO/Li10GeP2S12/In cell showed severe capacity fading.
Similarly, Koerver et al. [235] detected the increased interfacial resistance and capacity fading caused
by the contact loss at the NCM-811/β-Li3PS4 interface.

The occurrence of the interfacial resistance by the formation of interlayers is a well-known
phenomenon in SSBs. One of the main reasons for the interfacial resistance is the formation of space
charge regions (SCRs). SCRs originate from the depletion of lithium near the interface between the
cathode and the electrolyte in SSBs due to the high potential gradient [242]. The potential difference at this
interface causes Li+ to move toward a higher potential region, causing lithium depletion and increasing
the ionic resistance at the interface. Sulfide-based electrolytes exhibit a weaker interaction with Li+ and
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lower chemical potential of Li+ compared with those of oxide cathodes, such as LCO. Thus, the Li+ in
sulfide-based electrolytes will migrate into the oxide cathode easily, resulting in the redistribution of
Li+ at the interface which forms lithium depletion layers, SCRs [243]. Unlike sulfide-based electrolytes,
the influence of SCRs is smaller in oxide-based electrolytes because the chemical potential of Li+ in
oxide electrolytes is comparable with that in the cathode [244]. At the interface between LCO and
Li1+x+yAlyTi2−ySixP3−xO12, the thickness of SCRs in the sulfide-based electrolyte was thicker than
1 µm determined by measuring the electric potential profile with transmission electron microscopy
(TEM) [245]. A similar SCR thickness was also reported in LiCoPO4/Li1+xAlxTi2−x(PO4)3 using Kelvin
probe force microscopy (KPFM) [246]. On the contrary, the thickness estimated from the resistance
(~10 Ω cm2) at the LiPON/LCO interface was found to be in the range of nanometers [247]. De Klerk
et al. [248] also estimated the nanometer-thick SCRs based on the interfacial resistance (17 Ω cm2)
between the solid electrolytes, i.e., garnet and NASICON (LLZO and Li1.2Al0.2Ti1.8(PO4)3) and the
cathode (LCO) or anode (graphite).

Interfacial chemical reactions derived from the interdiffusion between electrodes and solid
electrolytes can also contribute to high interfacial resistance [249]. These interfacial reactions can form
an interphase layer known as SEI at the electrode/electrolyte interface by consuming Li+ and electrons
from electrodes. The electrical properties of the SEI layer play a role in determining how the reaction
between electrolytes and electrodes continues [250–252]. This SEI layer continues to grow until it
blocks the Li+ transport over the electrolyte/electrode. Park et al. [253] showed that an approximately
50-nm-thick layer forms in the vicinity of the LCO/Garnet interface due to the mutual diffusion of Co,
La and Zr which leads to capacity fading. In addition, Wenzel et al. [254] also revealed that Li3P, Li2S
and Li–Ge alloys form a SEI layer upon the reaction of Li10GeP2S12 solid electrolyte with Li metal by in
situ X-ray photoemission spectroscopy.

As a general strategy to resolve the aforementioned issue at the electrode/electrolyte interface,
nanometer-thick interfacial buffer layers have been grown to enhance the performance of the
SSBs [255,256]. Consequently, it is critical to employ thin-film growth techniques that can provide high
purity and desired crystallinity of target materials in SSBs’ assembly processes. Furthermore, the growth
of thin films is a key success factor in building SSTFBs that have dramatically reduced charge-transfer
resistance throughout the device. Therefore, understanding the precise control of thin-film growth
and determining the impact of thin films on battery performances are requisite. In the following
sections, we first review the most widely used thin-film deposition techniques. Then, we focus on
the representative thin-film materials applied to buffer layers, evaluating the influence of deposition
methods on the properties of thin films and the subsequent SSB performances.

3.1. Deposition Techniques

Technical advances in synthesizing thin films have facilitated the development of SSBs. In general,
there are two main types of thin-film deposition methods: (i) physical deposition methods such as
thermal evaporation, pulsed laser deposition and sputtering; (ii) chemical deposition methods such as
chemical vapor deposition, atomic layer deposition and sol–gel deposition.

3.1.1. Physical Deposition Methods

One of the most common physical deposition techniques is thermal evaporation owing
to its simplicity. This technique is utilized in multiple applications such as memory-switching
applications [257,258] and solar cells [259]. In particular, this method is commonly applied to the
fabrication of anode materials for LIBs [260,261]. In a vacuum chamber, a solid material is heated
to a temperature that produces a vapor pressure sufficient to raise a vapor cloud inside the vacuum
chamber [262]. Then, these evaporated particles are free to traverse the chamber and stick to a substrate
as a film. The deposition materials can be pure atomic elements including metals, oxides and nitrides.
The thickness, uniformity and adhesion strength of the film can be adjusted by controlling a number
of deposition parameters such as voltage, pressure and substrate temperature. Two main heating
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sources—resistive filament and electron beam (e-beam) are widely used for heating the source material.
Depending on the temperature required for evaporating the material, resistive filament heating is
generally used for the materials with the evaporation temperature below 1500 ◦C, in contrast to the
e-beam heating for the materials with the evaporation temperature above 1500 ◦C [262].

Pulsed laser deposition (PLD) which is a widely used method for growing epitaxial thin films
consists of a target holder and a substrate holder housed in a vacuum chamber (Figure 8). A high-power
laser is used as an external energy source to vaporize materials and to deposit thin films. A set of
optical components are used to focus and raster the laser beam over the target surface. The decoupling
of the vacuum hardware and the evaporation power source makes this technique so flexible that it is
easily adaptable to different operational modes without the constraints imposed by the use of internally
powered evaporation sources. In PLD, a pulsed-laser beam rapidly ablates oxide from a solid ceramic
disc target to form an energetic plasma plume, which then propagates and condenses onto a substrate
that is held at a particular temperature. Generally speaking, the target determines the composition
of the thin film, but the codeposition of different targets is possible to create a new composition
of the film [263]. In addition, a single target composition can be used to create films of different
stoichiometry due to the coupling between target composition, PLD chamber pressure, laser fluence,
substrate temperature and the resultant film composition. Compared to other deposition techniques,
PLD can provide unique advantages—stoichiometric transfer of materials, capability for reactive
deposition in ambient gases, growth of two-dimensional nanostructures, growth of multilayered
epitaxial heterostructures, high instantaneous growth rate and uniform thickness films. Furthermore, it
represents a clean, simple and inexpensive process.
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Figure 8. Schematic representation of the main components in a standard pulsed laser deposition
(PLD) process.

Sputter deposition is a conventional physical vapor deposition (PVD) technique that uses
accelerated inert gas ions to transfer matter from a solid target onto a substrate surface (Figure 9).
Sputter deposition usually utilizes a vacuum chamber, in which there sits a target, a substrate and
two electrodes. The vacuum chamber is filled with low-pressure inert gas (mostly Ar), which can be
used to ignite the plasma. The plasma is a combination of ions, neutrals and electrons. During the
sputtering process, an electric field is introduced between the substrate and the target by applying
a high negative voltage on the target connected with the cathode while the substrate connected with
the anode is applied with a positive voltage or grounded. The inert gas atoms will then start to depart
and emit ions and electrons in a small amount. Those electrons will be accelerated from the cathode
to the anode. In the case that the electrons hit the atoms and the electron energies are high enough
to break the atomic bonds, the ionized gas atoms will emit electrons in the plasma. Once the plasma
is formed, the charged particles will move in different directions, negatively charged particles will
move towards the anode, and the positively charged particles will move towards the cathode [264,265].
When the ions attracted by the cathode have high enough energy to knock away the atoms on the
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target surface, the sputter deposition process will occur. There are several types of sputtering systems
including direct current (DC) sputtering, radio frequency (RF) sputtering and magnetron sputtering.
The DC and RF sputtering systems are used for sputtering conductive materials and non-conductive
materials, respectively [266]. As the magnetron sputtering system can increase the sputtering rate,
combined sputtering systems, i.e., DC magnetron and RF magnetron are widely used for the fabrication
of thin films.
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3.1.2. Chemical Deposition Methods

Sol–gel deposition which is a wet chemical method was originally used for the synthesis of
metal oxide nanoparticles [267]. The conventional sol–gel process undergoes three stages, namely the
hydrolysis, the condensation and the drying stage. In the hydrolysis stage, a metal precursor undergoes
a chemical reaction, forming a hydroxide colloidal suspension (sol). In the condensation stage,
centrifugation or normal sedimentation can be used to form a gelatinous network (gel). In the drying
stage, the remaining solvent in the “gel” network is removed by a thermal treatment. For thin-film
deposition, the “sol” matter was deposited onto the substrate via dip-coating/spin coating process,
followed by the condensation at room temperature than a firing process [268]. Owing to its simplicity,
flexibility and low deposition temperature, the sol–gel process has gained much attention with
applications in different fields, including piezoelectric devices [269], superconductors [270] and
synthesis of nanoparticles [271].

Chemical vapor deposition (CVD) is a chemical deposition technique that utilizes a chemical
reaction of vapor phase precursors (Figure 10) [272]. In the CVD process, the chemical reactions of
precursors occur both in the gas phase and on the substrate. A precursor is controlled by balancing
flow regulators and control valves. Precursor molecules are drawn into the boundary layer and then
deposited on the surface of the substrate. The deposition process occurs in three successive stages:
(i) introduction of the volatile precursor by carrier gas to the reactor chamber; (ii) adsorption of precursor
vapors on the substrate surface and the formation of intermediate products; (iii) decomposition of
these products on the heated substrate followed by nucleation and growth of the solid layer/grains
and the formation of volatile byproducts and their removal from the chamber by the carrier gas [273].
CVD can be applied for obtaining diverse thin-film materials such as metals, semiconductor III-V
compounds, dielectric oxides, perovskite heterostructures, magnetics and conductors [274].
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Atomic layer deposition (ALD) is a surface controlled thin-film deposition technique based on the
sequential pulsing of the vapors of precursor chemicals in which one atomic layer is formed for each
pulse. Generally, two precursors (A and B) are used in the ALD process [275]. Each of the precursors
makes up half of the reactions that yields the desired materials. First, precursor A is pumped into the
chamber for their own half-reaction for a certain amount of time to fully cover the substrate surface
with a monolayer of precursor A. It is worth mentioning that the precursor A does not stack on top of
deposited A molecules due to the surface termination, which makes the single monolayer coverage
possible. Then, the unreacted precursor A is purged out of the chamber via inert gas. Lastly, the
precursor B is pumped into the chamber, forming a layer of the desired material, followed by another
purging to remove the byproduct from the reaction between precursor A and B. This deposition cycle
of precursor A and B continues until the film reaches the desired thickness [275]. Therefore, precise
thickness control can be enabled by controlling the number of reaction cycles. It is also possible to
initiate the growth of materials by ALD on the specific position of the substrate, such as defect sites that
can have a significant impact on the device performance improvement. In addition, the conformality
of thin films is also a unique feature of ALD, which leads to the formation of thin films with high
aspect ratios and three-dimensional substrates.

3.2. Buffer Layers

In principle, either the electrode or the electrolyte can be coated with a buffer layer to stabilize
the electrode/electrolyte interface. Oxide materials are known as good candidates to be used as
a buffer layer at the electrode/electrolyte interface in SSBs [276]. The materials choices for buffer layers
include, Al2O3 [277], ZrO2 [249,278,279], ZnO [88], LiNbO3 [27,280], Li2CO3 [281,282], Li3BO3 [238],
Li3PO4 [283–285], LiAlO2 [286], Li2SiO3 [287], LTO [288] and Li2MoO4 [289]. The most commonly
used deposition techniques for coating buffer layers are sputtering, ALD and PLD. As several
reviews [290–292] about the effects of the buffer layers on stabilizing the electrode/electrolyte interface
can be found, this study will focus on recent progress of buffer layers introduced in SSBs. The buffer
layers introduced at the electrolyte/electrode interface will also be discussed in terms of two aspects:
the electrolyte/cathode interface and the electrolyte/anode interface.

3.2.1. Buffer Layers at the Electrolyte/Cathode Interface

Most solid electrolytes react with cathode materials and therefore they need to be protected by
buffer layers in SSBs. The buffer layer at the solid electrolyte/cathode interface should provide
a good ionic conduction path and also reduce the strain/stress. An ideal buffer layer at the
electrolyte/cathode interface is required to have the following properties [293,294]; (i) excellent
Li+ mobility, (ii) low interfacial stress variation by forming a conformal contact between the electrolyte
and the cathode, (iii) a wide electrochemical window that can span the cathode’s operating voltage and
the electrochemical window of the electrolyte and (iv) low chemical reactivity with the electrolyte and
the cathode. One of the most commonly used materials as a buffer layer is Li3BO3 [295] which is a Li+

conductor (2 × 10−6 S/cm at room temperature) with a low melting temperature (700 ◦C) that easily
forms a conformal coating between the electrolyte and the electrode by annealing. Ohta et al. [238]
employed Li3BO3 as a buffer layer on LCO to overcome the poor contact between the electrolyte
and the electrode. The authors claimed that the Li3BO3 buffer layer could act as a bonding material.
During the annealing process of Li3BO3-coated Nb-doped LLZO (LLZO–Nb), Li3BO3 melts and
forms a continuous contact that enhances the adhesion between the solid electrolyte and the cathode.
Li3BO3 was also used as a buffer layer by Park et al. [253] to provide sufficient interfacial contact
between LCO and garnet solid electrolyte. Another method to decrease the interfacial resistance is
to modification the cathode to form Li+ conductors on the surface. Liu et al. [296] coated a Li–Ti–O
precursor on the surface of NMC-523, which in turn formed a Li(Ti0.1Mn0.9)2O4 layer by sintering.
In this work, Li(Ti0.1Mn0.9)2O4 buffer layer improved the interfacial contact between the cathode
and Li6.75La3Zr1.75Ta0.25O12 (LLZO–Ta) solid electrolyte, showing the reduced interfacial resistance
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from 12.5 kΩ to 9.5 kΩ. Improved contact led to an enhanced initial specific discharge capacity
to 123.3 mAh/g and increased capacity retention to 62% after 5 cycles. The authors also suggested
that sputtering electrode or electrolyte materials as a buffer layer to form a cohesive interface are
effective to enhance the contact of the interface. Lee et al. [297] prepared a buffer layer of common
solid electrolyte material Li5La3Ta2O12 between LCO and Li5La3Ta2O12 by RF magnetron sputtering.
According to this work, the Li5La3Ta2O12 buffer layers reduced the contact resistance between LCO
and Li5La3Ta2O12 and increased the ion path between the cathode and the electrolyte. Bai et al. [298]
designed a LCO buffer layer on a Li7(Al0.1)La3Zr2O12 (LLZO–Al) electrolyte. The authors demonstrated
that the LCO buffer layer possesses a large interfacial specific surface area and an excellent interfacial
stability which reduces the interfacial resistance of NMC-523/LLZO–Al by 1279 Ω compared to the
unmodified interface.

To suppress the formation of SCRs in SSBs with sulfide-based electrolytes, Ohta et al. [256]
introduced a pure ionic conducting LTO buffer layer between electrolytes and electrodes. The authors
claimed that the SCRs were less developed because of the similar chemical potential of LTO
buffer layer and LCO and the poor electronic conduction between the Li3.25Ge0.25P0.75S4 and LTO
buffer layer. In order to suppress the SCRs and have good ionic conductivity at the interface,
LiNbO3 (10−5–10−6 S/cm) [299] was also commonly used as a buffer layer for sulfide electrolytes.
Using ab-initio calculation, Haruyama et al. [300] utilized a buffer layer of LiNbO3 between LCO
and β-Li3PS4 (LPS) demonstrating the electronic properties of the interfacial regions. The authors
predicted that the introduction of LiNbO3 layers could relieve the structural disorder at the interface,
balance the lithium distribution and suppress the growth of SCRs to boost Li+ conduction through
the interface. Experimental data by other groups confirmed that the LiNbO3 buffer layer between the
electrolyte and the cathode could weaken the space–charge effect. Takada et al. [301] showed that
the LiNbO3 buffer layer with a thickness of 20 nm on LMO could reduce the interfacial resistance
from 10,000 Ω to 200 Ω by suppressing the SCRs formed at the high-voltage cathode/sulfide electrolyte
interface. Recently, Vinado et al. [302] studied the interfacial behavior of Li3NbO4-coated LCO with
Li10SnP2S12 (LSPS) solid electrolyte. According to the experimental results in this study, the SSBs with
Li3NbO4-coated LCO cathode was found to maintain its low interfacial resistance (210 Ω cm) after
10 cycles in contrast to the uncoated LCO SSBs showing the increased interfacial resistance (680 Ω cm).

To reduce the interfacial reaction and prevent the formation of the SEI layer in SSBs,
Takahashi et al. [303] investigated the effect of Li3PO4, LiNbO3 and Al2O3 as buffer layer between
LCO and LiBH4 solid electrolyte on the interfacial properties. Li3PO4 and LiNbO3 were selected
due to their relatively high chemical and thermal stabilities and high ionic conductivity but low
electron conductivity. Al2O3, however, is a poor ionic conductor relative to these two materials.
The authors found that all the buffer layers can reduce the interfacial resistance with Li3PO4 giving
the lowest interfacial resistance (21 Ω). Similarly, a nanoscale Al2O3 buffer layer deposited on LCO
by PLD also enhanced the cyclic performance of SSBs by reducing the SEI layer formation [304].
Using PLD, Chen et al. [305] introduced the Li3PO4 buffer layer at the interface between LCO and
80Li2S·20P2S5 solid electrolyte reporting the improved cyclability and decreased interfacial resistance.
The authors claimed that these enhancements could be attributed to suppressing the degradation of
the sulfide electrolyte during cell cycling. According to the experimental results, SSBs with Li3PO4

buffer layer showed higher discharge capacities (172 mAh/g) than those without the buffer layer
(155 mAh/g). Recently, Kim et al. [306] reported a dramatically reduced interfacial resistance (~10 times
lower than pristine cell without the buffer layer) with a 5-nm-thick LiNbO3 buffer layer on LCO
leading to a discharge capacity of 109 mAh/g. To effectively enhance the interfacial stability and
electrochemical performances, Li et al. [307] constructed a novel NMC@LCO@LiNbO3 cell by using
a sol–gel method. According to their fabrication method, NMC-811 was first coated with LCO to
form core-shell NMC@LCO with a Ni-deficient surface. The authors claimed that the LCO layer
provides interfacial stability with Li10GeP2S12 sulfide electrolyte while maintaining the high specific
capacity from the NMC core. Then, in view of their previous work [308], the surface of NMC@LCO
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was coated with a LiNbO3 buffer layer to optimize the interface further. According to the experimental
results, the NMC@LCO@LiNbO3 cathode showed high initial discharge capacity, outstanding rate
and especially improved cycle stability (capacity retention of 80% after 585 cycles). The summarized
interfacial resistances of the SSBs with buffer layers on cathode/electrolyte are listed in Table 4.

Table 4. Comparison of the interface resistance with (w/) and without (w/o) buffer layer on solid-state
electrolyte/cathode.

Electrode Electrolyte Buffer Layer Coating
Method

Interface
Resistance w/
Buffer Layer

(Ω·cm2)

Interface
Resistance
w/o Buffer

Layer (Ω·cm2)

Ref.

LCO LLZO–Nb Li3BO3
Screen

printing 230 [238]

LCO Li3.25Ge0.25P0.75S4 LTO Spray
coating 34.56 714.71 [256]

LCO Li10SnP2S12 Li3NbO4 ALD 790 [302]
LCO LiBH4 Li3PO4 PLD 8 3850 [303]
LCO LiBH4 LiNbO3 PLD 47.36 [303]
LCO LiBH4 Al2O3 PLD 599.45 [303]
LCO 80Li2S·20P2S5 Li3PO4 PLD 250 [305]

LMO Li3.25Ge0.25P0.75S4 LiNbO3
Spray

coating 157.08 7854 [301]

NMC-532 Li7(Al0.1)La3Zr2O12 LCO Sputtering 1004.53 [298]

NMC-811/LCO Li10GeP2S12 LiNbO3
Solution
coating 39.82 95.93 [307]

NMC-532 Li6.75La3Zr1.75Ta0.25O12 Li–Ti–O Solution
coating 7461.3 9817.5 [296]

NMC-811 Li10GeP2S12 LiNbO3
Solution
coating 125.6 204.2 [308]

3.2.2. Buffer Layers at Solid-State Electrolyte/Anode

As discussed earlier, Li metal is an ideal anode for SSBs owing to its high theoretical specific
capacity, lowest negative electrochemical potential and low density. However, the high chemical
reactivity between solid electrolytes and Li metals results in the formation of uncontrolled dendrites
which leads to large volume change during cycling [86]. The lithium dendrite growth is known to cause
the internal short circuits and the deterioration of SSBs. Han et al. [309] visualized the lithium dendrite
growth in LLZO and Li3PS4 solid electrolytes by time-resolved operando neutron depth profiling,
revealing that lithium dendrites nucleate and grow directly inside LLZO and Li3PS4. Wu et al. [310]
showed that lithium dendrites can extend along the cracks and boundaries of solid electrolytes such as
LLZO and can also lead to capacity fading and short-circuiting. To overcome these issues, an ideal
buffer layer material on the electrolyte/anode is indispensable. The buffer layers should exhibit the
following properties: (i) enhance the wettability between the lithium metal/electrolyte to stabilize the
interface and (ii) suppress the growth of lithium dendrite.

Han et al. [255] effectively addressed the large interfacial resistance due to poor wettability
between the lithium metal and the garnet Li7La2.75Ca0.25Zr1.75Nb0.25O12 electrolyte by using ALD
deposited Al2O3 buffer layers which can facilitate the molten Li metal coating of the garnet surface
with no interfacial void space. The authors argued that the Al2O3 buffer layer enhanced the wettability
between lithium metal and the garnet electrolyte, which allowed effective Li+ transport through
the interface. According to the experimental results, a significant decrease of interfacial resistance
from 1710 Ω cm2 down to 1 Ω cm2 was observed at room temperature due to the Al2O3 buffer layer.
Later, interfacial layers of ZnO proposed by the same group [88] increased the wettability and reduced
the interfacial resistance between garnet electrolytes and the Li metal anode. Liu et al. [311] also
demonstrated that Al2O3 buffer layer on LATP (Li1.3Al0.3Ti1.7(PO4)3) solid electrolyte could increase
the wettability with the Li metal anode. The authors explained that the Al2O3 buffer layer acts as
the lithium transport pathway at the LATP/Li metal interface which largely reduces the interfacial
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resistance. Recently, Alexander et al. [312] proposed an effective buffer layer of LiNbO3 on LLZO–Al
(Li6.28Al0.24La3Zr2O12) solid electrolyte, showing the drastically reduced interface resistance from
1078 Ω cm2 to 91 Ω cm2. Furthermore, the authors confirmed that the buffer layer could assist
Li+ conduction at the interface and provide good adhesion based on the stable voltage profile of
LiNbO3-coated LLZO–Al/Li metal SSBs.

Considerable progress was achieved to prevent lithium dendrite formation by introducing a buffer
layer at the interface of solid electrolyte and Li metal anode. A porous-dense bilayer of LLZO garnet
solid electrolyte as a 3D ionic framework for Li metal anode was developed by Liu et al. [313] where
the framework consists of one porous layer as a volume-stable host of Li metal with a large contact
area and one dense buffer layer as a solid-state separator preventing short-circuits. In this work,
the cell was found to completely suppress dendrite formation due to the LLZO buffer layer after
150 h of cycling. Lou et al. [314] modified the surface of the LLZO–Ta (Li6.4La3Zr1.4Ta0.6O12) solid
electrolyte with an indium tin oxide (ITO) buffer layer. According to the authors, the lithiated ITO
buffer layer ensures tight contact between the Li metal and LLZO–Ta which leads to a uniform local
current distribution of the interface, preventing lithium dendrite formation. The experimental results
revealed that the ITO buffer layer reduced the interfacial resistance of Li/ITO–LLZO-Ta from 1192 to
32 Ω cm2. The summarized interfacial resistance of the SSBs with buffer layers on anode/electrolyte
are listed in Table 5.

Table 5. Comparison of the interface resistance with (w/) and without (w/o) buffer layer on solid-state
electrolyte/anode.

Electrode Electrolyte Buffer Layer Coating
Method

Interface
Resistance
w/ Buffer

Layer
(Ω·cm2)

Interface
Resistance
w/o Buffer

Layer
(Ω·cm2)

Ref.

Li metal Li7La2.75Ca0.25Zr1.75Nb0.25O12 Al2O3 ALD 1 1710 [255]
Li metal Li5La3Ta2O12 ZnO ALD 20 2000 [88]
Li metal Li1.3Al0.3Ti1.7(PO4)3 Al2O3 ALD 117,810 314,160 [311]
Li metal Li6.28Al0.24La3Zr2O12 LiNbO3 sputtering 91 1078 [312]
Li metal Li6.4La3Zr1.4Ta0.6O12 ITO sputtering 32 1192 [314]

4. Electrodes and Electrolytes for SSTFBs

To meet the increasing demand for portable (micro-)electronic applications in today’s
information-rich and mobile society, developing rechargeable battery systems with high energy
density and reduced dimensions is crucial. For such battery systems, SSTFBs are one of the
most attractive battery systems owing to their shape, versatility, flexibility and lightness [315–317].
Since being first introduced in 1983 [318], SSTFBs have been continuously studied over the
past four decades [317,319–324]. In recent years, considerable progress has been made in the
development of SSTFBs along with advances in thin-film technologies [325,326]. SSTFBs provide
unique advantages such as outstanding cycle life and safety compared to conventional LIBs [327,328].
Moreover, SSTFBs enable the miniaturization of LIBs [317,323,324] required for applications,
including implantable medical devices, wireless microsensors, microelectromechanical system devices
and flexible electronics [318,329,330].

SSTFBs are composed of multiple micron-sized electrochemical cells consisting of a cathode and
an anode electrode separated by an electrolyte. A thin-film electrochemical cell is generally fabricated
on a solid substrate like glass, ceramic or even polymer. The first layer is usually a current collector,
then followed by the electrode, electrolyte, electrode and another layer of a current collector [317].
Generally, the thickness of thin films in SSTFBs is in the range of nanometers to microns. Such thin layers
can significantly enhance the charge transfer kinetics [59,331] which prevents the local overcharging and
discharging issue reported in conventional battery systems [317,331]. In addition, SSTFBs use dense
thin films without a polymeric binder and thus can be used as an ideal system for the fundamental
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understanding of energy storage mechanisms. Furthermore, SSTFBs have higher volumetric and
gravimetric power density (Figure 11) compared to other battery systems [332]. The use of thin-film
electrochemical cells is therefore a promising and practical strategy to fully utilize the advantage of
lithium-based batteries for diverse applications.Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 49 
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4.1. Thin-film Electrodes

The materials for the electrodes in SSTFBs play a crucial role in determining the overall performance
of the battery. Thus, discovering new electrode materials and improving conventional electrode
materials by structural engineering are critical to develop high-performance SSTFBs. To date, significant
performance improvements in electrode materials were accomplished with the development of materials
in thin-film form. For example, thin-film electrodes are capable of accommodating the strain induced
by lithium insertion and removal, improving the cycle life. Thin-film electrodes also provide the
increased contact area between the electrode and the electrolyte, resulting in high charge and discharge
rates. However, the cathode materials still need to be further developed due to the lower theoretical
capacity compared to the anode materials.

4.1.1. Anodes

Amorphous Li-metal thin films were previously deposited by thermal evaporation to serve as the
anode for Li–V2O5 cells and Li–LMO cells [336]. According to this work, the Li–V2O5 cell was found to
show a discharge capacity of 118 and 86 µAh/cm2 µm at room temperature with a current density of 2
and 40 µA/cm2, respectively. Compared to the Li–V2O5, the Li–LMO cell showed a discharge capacity
of 60 and 26 µAh/cm2 µm at room temperature with a current density of 2 and 40 µA/cm2, respectively.

A couple of studies have shown the growth of amorphous silicon (α-Si) thin films via PLD and
sputtering [337–340]. Ohara et al. [339] reported the growth of amorphous Si thin films on Ni foils
with a capacity of 3000 mAh/g at a 12 C charge rate with 1000 cycles. Park et al. [338] also grew
an amorphous thin-film Si on stainless steel with PLD. The authors achieved a 96.7 µAh/cm2 first
discharge capacity and a 52.6 µAh/cm2 first charge capacity. PLD-deposited amorphous Si thin films
on stainless steel were also found to yield ~20 µAh/cm2 of capacity between 1 and 4 V up to 20 cycles
by Xia et al. [337].

Multiple attempts have shown that graphene thin films can be deposited via CVD [341–343],
sputtering [344] and PLD [345]. Reddy et al. [342] prepared N-doped graphene thin films for the anode
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via CVD. According to the authors, the films exhibited a reversible discharge capacity of 0.05 mAh/cm2

under the current density of 5 µA/cm2 after 50 cycles. Saulnier et al. [341] fabricated a multilayered
graphene (MLG) anode via CVD showing a discharge capacity of 250 mAh/g under the rate of 5 C.

LTO thin films have been grown via PLD [346–349], sputtering [350,351], sol–gel [352,353] and
CVD processes [354]. Deng et al. [348] reported the growth of the (111)-oriented LTO thin films on
Pt/Ti/SiO2/Si substrates via PLD, showing a discharge capacity of 157 mAh/g after 10 cycles with
a constant current density of 10 µA/cm2. Cunha et al. [349] also used PLD to grow (001)-, (110)- and
(111)-oriented epitaxial LTO thin films on (001), (110) and (111) SrTiO3 (STO) substrates, respectively.
The LTO films showed pyramidal, rooftop and flat surface morphology with <111> crystal facets,
respectively. According to the authors, all three epitaxial thin films were found to exhibit high
discharge capacities ranging from 280 to 310 mAh/g, which exceeds the theoretical value of 175 mAh/g.
Among these three films with different crystallography orientations, the (100)-oriented films were
found to show the highest discharge capacity due to its highest surface area. Using ion beam sputtering,
Wunde et al. [350] reported the growth of the (111)-oriented LTO thin films, which showed a capacity
ranging from ~18 to 26 µAh/cm2 µm with different current density. The averaged diffusion coefficient
for Li+ was also reported as 3.27 × 10−16 m2/s. Thin films fabricated by sol–gel and CVD methods were
polycrystalline with the (111) preferred orientation [353,354]. The CVD thin films were found to have
a better discharge capacity (~110 mAh/g) than the sol–gel thin films (~60 µAh/cm2 µm) under the
current density of 10 µA/cm2. This result indicates that the performance of SSTFBs may also depend
on the quality of thin films determined by the deposition technique.

LNVO thin films with a reverse spinel structure were deposited via PLD [355–357] and RF
sputtering [358]. Tang et al. [355] grew amorphous LNVO thin films via PLD on stainless steel
substrates. According to the authors, the thin-film electrodes showed a 410 µAh/cm2 µm after 50 cycles.
Lee et al. [359] evaluated the effect of sputtering target compositions on battery performance. Using RF
sputtering, the authors grew amorphous LNVO thin films with two different target compositions,
namely LNVO and L1.1NiVO4 (L1.1NVO), representing that the thin-film electrode deposited with the
L1.1NVO target showed the higher reversible capacity of 871 µAh/cm2 µm compared with the reversible
capacity of 787 µAh/cm2 µm for the thin films deposited with the LNVO target. The post-annealing
process may also influence the battery performance. Reddy et al. [358,360] tested how the post-annealing
temperature affects the discharge capacity of LNVO thin films sputtered on stainless steel. The authors
applied four different post-annealing temperatures to the LNVO thin films, demonstrating that the
as-deposited film and the film post-annealed at 300 ◦C were amorphous while post-annealed samples
at higher temperatures such as 450, 600 and 700 ◦C showed a polycrystalline structure. According to
the discharge capacity measurements, the discharge capacity of the as-deposited film was found to be
~800 mAh/g and increase with the post-annealing at 300 ◦C up to ~1100 mAh/g. However, further
increases in the post-annealing temperature resulted in a decrease in the discharge capacity of the films.
For example, the film post-annealed at 600 ◦C showed a decreased discharge capacity of ~850 mAh/g.

TNO thin films can be deposited via PLD [361–363] and sol–gel method [364]. Using PLD,
Daramalla et al. [361] deposited polycrystalline TNO thin films, which showed a discharge capacity of
176 and 143 µAh/cm2 µm at 35 and 50 µA/cm2 current density, respectively. Chang et al. [364] deposited
TNO on ITO and Si substrates via sol–gel method. According to this work, the XRD result showed that
TNO thin films on ITO substrates stay amorphous even after the post-annealing treatment at 500 ◦C.
On the contrary, the TNO thin films on Si substrates started to crystalize after the post-annealing above
600 ◦C and the TNO films post annealed at 900 ◦C were found to have the best crystallinity and a (110)
preferred orientation.

Table 6 summarizes the discharge capacities of different thin-film anodes. Among LTO, LNVO and
TNO, the LNVO thin-film anode showed a better performance with a discharge capacity of 800–1000
mAh/g for both polycrystalline and amorphous thin films.
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Table 6. Comparison of the discharge capacity among different anode materials.

Materials Crystalline
Structure

Discharge
Rate (C)

Current
Density

(µA/cm2)

Discharge
Capacity
(mAh/g)

Density
(g/cm3)

Discharge
Capacity

(µAh/cm2

µm)

Ref.

LTO a (111)-Oriented 10 157 3.38 53 [348]
LTO a (111)-Oriented 60 146 3.38 49 [348]
LTO a (100) Epitaxial 3 313 3.38 106 [349]
LTO a (110) Epitaxial 3 277 3.38 94 [349]
LTO a (111) Epitaxial 3 283 3.38 96 [349]
LTO b (111)-Oriented 0.5 7 3.38 25 [350]
LTO b (111)-Oriented 95 62 3.38 21 [350]
LTO c (111)-Oriented 10 110 3.38 37 [354]

LNVO a Amorphous 100 979 4.19 410 [365]
LNVO b Amorphous 100 1878 4.19 787 [359]
LNVO b Amorphous 75 1100 4.19 461 [358,360]
LNVO b Polycrystalline 75 850 4.19 356 [358,360]
TNO a Polycrystalline 35 398 4.42 176 [361]
TNO a Polycrystalline 50 324 4.42 143 [361]

Bold discharge capacity values in (mAh/g) are back-calculated from the data in (µAh/cm2 µm). Materials with
superscript a, b and c represent the corresponding thin films deposited by PLD, radio frequency (RF) sputtering and
CVD, respectively.

4.1.2. Cathodes

LCO is one of the most widely studied cathode materials as discussed in the bulk electrode
section [366]. Many efforts have been devoted to the usage of the LCO thin-film cathode fabricated
by PLD [367–373], RF sputtering [366,374–376], ALD [377,378] and CVD [379,380]. In contrast to
the bulk materials, the physical and chemical properties of thin films can be controlled by the
deposition conditions, which is beneficial for enhancing the performance of SSTFBs. Nishio et al. [373]
demonstrated the growth of the (104)-oriented epitaxial LCO thin films on (100) STO substrates by PLD
achieving a discharge capacity of 90 mAh/g at a low discharge rate of 0.01 C and a 23 mAh/g discharge
capacity at a high discharge rate of 100 C. Compared to the previous work about polycrystalline
thin films by Nishio et al. [381], epitaxial thin films showed a higher discharge capacity at 0.01 C
(75 mAh/g for polycrystalline LCO thin film) and slightly lower discharge capacity at 100 C (26 mAh/g
for polycrystalline LCO thin film). Polycrystalline thin films with (001) and (104) preferred orientations
were also grown by Xie et al. [374] in which the (104)-oriented thin films were found to have the best
discharge capacity of ~120 mAh/g, higher than the (001)-oriented thin films with a discharge capacity
of ~110 mAh/g. Zhu et al. [375] demonstrated that the discharge capacity of the (001)-oriented LCO
thin films depends on the deposition temperature. According to this work, the discharge capacity
varied from 24.7 µAh/cm2 µm for the thin film deposited at room temperature to 60.5 µAh/cm2 µm for
the thin film deposited at 500 ◦C. The authors also found that the performance of the film deposited
at 500 ◦C compromised by crack formation during the deposition at high temperature was dropped
from 60.5 µAh/cm2 µm to 23.1 µAh/cm2 µm after 50 cycles. Similarly, Donders et al. [377] used ALD
to deposit LCO thin films on Si substrates. Interestingly, the authors observed that a post-annealing
process at 700 ◦C could change the orientation of the LCO thin films, leading to a discharge capacity
ranging from ~10 to 25 µAh/cm2 µm with different Li stoichiometry. Overall, polycrystalline LCO
films with preferred orientations showed a better performance than epitaxial LCO thin films.

Being a promising cathode material for SSTFBs, LMO thin films have been studied with different
deposition techniques, including PLD [382–385], RF sputtering [386–388], sol–gel [389,390] and
CVD [391]. Hendriks et al. [384] reported the growth of epitaxial LMO thin films with (100),
(110) and (111) orientations with pyramidal, rooftop and flat surface morphology, respectively.
According to this work, (100) oriented films were found to have the best discharge capacity and cycle
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life. Sonoyama et al. [383] grew (111)-oriented LMO thin films on both STO and alumina substrates
showing that the discharge capacity of the LMO films on STO was smaller than that of the LMO
films on Al2O3. Most films grown by RF sputtering, sol–gel, and CVD showed polycrystalline
structures [386–391]. The discharge capacity ranged from 43 to 80 mAh/g, depending on the deposition
method and the crystallinity of the films.

NMC thin films were mainly deposited via PLD and RF sputtering [392–396]. Prathibha et al. [394]
grew polycrystalline Li(Ni0.5Co0.25Mn0.25)O2 thin films with mainly (001) and (104) orientations on
Au-coated Si substrates via RF sputtering, obtaining a good discharge capacity of 57.5 µAh/cm2

µm. Tan et al. [392] reported the orientation control of NMC sputtered thin films with different
post-annealing temperatures ranging from 400 ◦C to 700 ◦C. In this work, the dominant orientation of
the films changed from (104) to a mixture of (110) and (104). The authors demonstrated that the thin
film annealed at 700 ◦C showed the best performance with the highest percentage of (110) oriented
grain. Highly (001)-oriented NMC thin films were also synthesized on Au-buffered stainless steel
substrates at 750 ◦C by Jacob et al. [393] in which the films showed a discharge capacity of 187 mAh/g.

Table 7 summarizes the discharge capacities of different thin-film cathodes. Among LCO, NMC
and LMO, the NMC cathode showed the best performance (~120 mAh/g) at a discharge rate of 0.1 C.
In terms of the crystalline structure effect, epitaxial thin films showed a superior performance relative
to polycrystalline and amorphous thin films.

Table 7. Comparison of the discharge capacity among different cathode materials.

Materials Crystalline
Structure

Discharge
Rate (C)

Current
Density

(µA/cm2)

Discharge
Capacity
(mAh/g)

Density
(g/cm3)

Discharge
Capacity

(µAh/cm2

µm)

Ref.

LCO a (104) Epitaxial 100 23 5.03 13 [373]
LCO a (104) Epitaxial 0.01 90 5.03 45 [373]
LCO b Amorphous 30 49 5.03 25 [375]
LCO b (100)-Oriented 30 120 5.03 61 [375]
LCO c Polycrystalline 0.5 50 5.03 25 [377]

LiNi0.5Mn0.25Co0.25O2
b Polycrystalline 117 4.9 58 [394]

LiNi0.3Mn0.3Co0.3O2
b Polycrystalline 0.1 127 4.9 62 [392]

LiNi0.5Mn0.3Co0.2O2
a Polycrystalline 0.5 125 4.9 61 [393]

LMO a (100) Epitaxial 0.7 129 4.32 56 [384]
LMO a (100) Epitaxial 13 100 4.32 43 [384]
LMO a (100) Epitaxial 33 84 4.32 36 [384]
LMO a (110) Epitaxial 0.7 113 4.32 49 [384]
LMO a (110) Epitaxial 13 50 4.32 22 [384]
LMO a (111) Epitaxial 0.1 95 4.32 41 [384]
LMO a (111) Epitaxial 13 50 4.32 22 [384]
LMO d Amorphous 0.1 61 4.32 26 [101]
LMO d Polycrystalline 0.1 70 4.32 30 [101]
LMO e Polycrystalline 100 88 4.32 38 [390]
LMO f Polycrystalline 50 80 4.32 35 [391]

Bold discharge capacity values in (mAh/g) are back-calculated from the data in (µAh/cm2 um). Materials with
superscript a, b, c, d, e and f represent the corresponding thin films deposited by PLD, RF sputtering, atomic layer
deposition (ALD), blade coating, sol–gel and CVD, respectively.

4.2. Thin-film Electrolytes

As discussed earlier, the use of solid electrolytes can resolve the safety issues caused by liquid
electrolytes in conventional LIBs. Furthermore, the use of thin-film solid electrolytes can provide
the low ionic resistance by controlling material orientations, crystallinity and strain to build high
power lithium-based batteries. Here, we mainly focus on progress in research on four thin-film solid
electrolytes: NASICON, LiPON, perovskite and garnet electrolytes.

LAGP and LATP are two of the most commonly used NASICON-type solid electrolytes in
LIBs, due to their high ionic conductivities. Using various deposition techniques including RF
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sputtering [397–399], sol–gel [400] and aerosol deposition [401], LAGP and LATP thin films were
implemented into SSTFBs. However, thin-film electrolytes fabricated by sol–gel cannot be fully
densified due to the solution-based sol–gel method. Therefore, ionic conductivity for the pores in
sol–gel-synthesized thin films also needs to be taken into account. Sun et al. [397] deposited LAGP
thin films using RF sputtering with different deposition temperatures ranging from 50 to 600 ◦C,
demonstrating an increase in ionic conductivity with increasing deposition temperatures up to 200 ◦C.
In this study, the conductivity of the film deposited at 200 ◦C was found to be 1.29 × 10−6 S/cm at
room temperature. Later, using a sol–gel method they also synthesized polycrystalline LAGP thin
films. In particular, the sample sintered at 900 ◦C for 8 h showed the highest bulk (material itself)
and total (material + pores) conductivity of 7.76 × 10−4 and 4.18 × 10−4 S/cm, respectively, at room
temperature. Further increases in the sintering temperature and time led to the deterioration of the
conductivity of films due to the formation of an impurity phase and the increase of the interspace
within grains [400]. Polycrystalline LAGP thin films were also synthesized via aerosol method without
the post-annealing treatment and showed much lower total conductivity (5 × 10−6–2 × 10−7 S/cm)
relative to the samples with the post-annealing treatment [401]. Using RF-sputtering, Ling et al. [398]
and Chen et al. [399] fabricated amorphous LATP thin films. Ling et al. reported an ionic conductivity
of 6.47 × 10−6 S/cm for LATP films deposited at 500 ◦C, while Chen et al. reported a higher ionic
conductivity (2.46 × 10−5 S/cm) for LATP films deposited at 300 ◦C.

Li2O–V2O5–SiO2 (LVSO), one of the LISICON type material systems, has also been deposited as
thin films with PLD [402–406] and RF sputtering [319,407,408]. Kuwata et al. [404] deposited LVSO
thin films on top of Pt-coated quartz glass substrates using PLD. According to this study, the LSVO
thin films were found to be amorphous with a conductivity of 3 × 10−7 S/cm at room temperature.
Kawamura et al. [406] also reported the deposition of LVSO thin films via PLD. The authors utilized
three different post-annealing temperatures (200, 400 and 600 ◦C), which resulted in the increased
crystallinity of LVSO films. The conductivity of the as-deposited amorphous LVSO thin films was
a 10−7 S/cm, which is ~2 order of magnitudes lower than the bulk value. Ohtsuka et al. [319,407,408]
reported the growth of crystalline LVSO thin films via RF sputtering. The films were grown on multiple
substrates including sapphire, SiO2 glass, Pt–Pd-coated SiO2 glass, SnO2-coated SiO2 glass and stainless
steel. Thin films on SiO2 glass, sapphire, and stainless steel showed a dominant (002) orientation.
The LSVO|sapphire samples were then annealed at different temperatures of 410, 510 and 610 ◦C.
As annealing temperature goes up, (011), (020) and (220) orientations started to show up. The major
XRD peak of (002) has an increase in peak intensity and a decrease in peak width, which indicates
better film crystallinity and larger grain size. The influence of deposition temperature was also
investigated. The peak intensity of the (002) LVSO plane first increased as the deposition temperature
increases. However, the (002) LVSO peak was not observed in samples deposited at temperature
higher than 300 ◦C, showing very minor (011) and (210) peak with the deposition temperatures of
300 and 390 ◦C, respectively. As for conductivity, the as-deposited films at 60 and 200 ◦C showed
~10−6 S/cm of conductivity at room temperature. The films annealed at 600 ◦C (samples deposited at
60 and 200 ◦C) showed a higher conductivity of 10−5 S/cm, which is one order magnitude higher than
the bulk conductivity value of LVSO, as shown in Figure 12.

LiPON is the most widely used electrolyte for SSTFBs due to its good stability, easy growth of
thin films and good ionic conductivity at room temperature. There have been extensive studies on
LiPON thin films prepared by RF sputtering [179,409,410], PLD [411,412] and ALD [413]. The nitrogen
to phosphorus (N/P) ratio can be controlled by the N2 gas pressure during the deposition for RF
sputtering and PLD [179,409–412]. The N/P ratio can also be varied by controlling the dose of N2

during the ALD process [413]. Similar to LLZO, LiPON thin films are also amorphous after the
deposition. The ionic conductivity was found to increase with increasing the N/P ratio ranging from
10−4 to 10−7 S/cm [409,413]. As shown in Figure 13, most the thin films showed a similar or higher
conductivity value than the bulk polycrystalline reference, ranging from 10−2 to 10−7 S/cm.
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LLTO is one of the most commonly used perovskite-based solid electrolyte materials in SSBs due
to its high bulk ionic conductivity [182]. Many attempts have been made to control the performance of
SSTFBs with LLTO by modulating dopant concentration and film morphology [414–425]. While various
deposition methods can be applied to synthesize epitaxial LLTO thin films, PLD is the most preferred
method. Ohnishi et al. [416] grew both a-axis and c-axis oriented epitaxial Li0.33La0.56TiO3 thin films
on (001) STO and (110) NdGaO3 (NGO) single crystalline substrates, respectively. The conductivity of
(001)-oriented LLTO thin film was found to be ~3.5 × 10−5 S/cm, which is ~2 orders of magnitudes
lower than the bulk conductivity of LLTO. The author proposed that the lower conductivity of LLTO
thin films is attributed to the lithium-deficient LLTO film composition and the compressive strain
induced by the lattice mismatch between the film and the substrate. Wei et al. [414] also grew epitaxial
Li0.33La0.56TiO3 thin films with different strain states induced by the lattice mismatch between the



Appl. Sci. 2020, 10, 4727 28 of 50

substrate and the film, demonstrating the strain-dependent ionic conduction behavior of LLTO thin
films. The ionic conductivity of LLTO films in LLTO|NGO along the perpendicular to the b–c plane
(6.7 × 10−4 S/cm) was higher than that along the perpendicular to the a–c plane (4.3 × 10−4 S/cm).
The authors proposed that the strain-dependent ionic conductivity is due to the larger compressive
strain along the perpendicular to the b–c plane. (111)-oriented epitaxial Li0.17La0.61TiO3 thin films
were successfully synthesized on the (111) LMO|(111) SrRuO3 (SRO)|(111) Nb–STO electrode by
Kim et al. [415]. Ohta et al. [417] demonstrated the conductivity of (100)-oriented Li3xLa2/3−xTiO3

(x = 0.1, 0.167) thin films on (001) STO substrate with an atomically flat surface. According to the
authors, the conductivity of LLTO thin film (x = 0.1) was found to be 2.5 × 10−2 S/cm at 190 ◦C, which is
in good agreement with the bulk conductivity of single-crystalline LLTO 3 × 10−2 S/cm. Although the
PLD process tends to yield epitaxial thin films with good crystallinity and atomically flat surface,
it is worth mentioning that the PLD process requires a target material with an excess amount of Li to
balance the Li lost during the target sintering and deposition processes [424]. Besides PLD, deposition
processes such as sol–gel method and RF sputtering were also used for the growth of LLTO thin
films [421,422]. In particular, Teranishi et al. [421] reported the growth of a polycrystalline LLTO thin
film with a sol–gel process and Xiong et al. [422] used RF sputtering to fabricate an amorphous LLTO
thin film. However, the ionic conductivity of these thin films was orders of magnitudes lower than
that of the bulk and PLD-deposited thin films, as shown in Figure 14.
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LLZO is one of the commonly used garnet-based electrolyte materials for SSBs. LLZO exhibits good
ionic conduction in addition to good structural stability, which makes LLZO a promising electrolyte
material for SSTFBs [427,428]. The ion-transport properties of LLZO thin films have been intensively
studied with different deposition techniques such as PLD [324,365,429–431], RF sputtering [59,432],
sol–gel [433–435] and CVD [57,436]. One of the features of LLZO is that as-deposited LLZO thin
films tend to be amorphous [324,365,430–432,434–436]. Depending on the post-annealing conditions,
different phases could form during the annealing process, resulting in a variation in conductivity,
ranging from 10−2 to 10−6 S/cm at room temperature, as shown in Figure 15. Furthermore, it has been
reported that deposition temperatures also play a role in the phase evolution [324]. Garbayo et al. [324]
reported that LLZO films were found to be a mixture of an amorphous lithiated network and a cubic-type
LLZO in the case of the deposition temperature between 50–500 ◦C. In contrast, the crystallized La2Zr2O7

phase was found to become the major phase with a noticeable amount of cubic type LLZO at a deposition
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temperature of 750 ◦C. The authors also demonstrated that LLZO thin films deposited at 300 ◦C showed
the highest ionic conductivity and lowest activation energy, while the film deposited at 750 ◦C showed
the lowest ionic conductivity and highest activation energy. These results imply that the amorphous
structure could be better for Li+ conduction compared to the crystallized structure.
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[324,430,431,437], RF sputtering [59,432], sol–gel [433–435] and CVD [57]. 
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5. Conclusions

Replacing liquid electrolytes with solid counterparts allows SSBs to exhibit excellent safety,
electrochemical stability and high energy density. Despite these advantages, further enhancement of
the current SSBs is required to be used in practical applications. Improving the material properties
of electrodes and electrolytes may accelerate the development of the next-generation energy storage
systems. This review discussed key advances in battery materials and possible solutions to solve their
issues. Surface modification, doping and nanostructuring have been successfully used to improve the
electrode performance. For the solid electrolyte, many efforts have been devoted to improving the
ionic conductivity by doping or altering the crystal structures. Indeed, several studies have improved
the thermal and chemical stability of the solid electrolytes by replacing sensitive elements, such as
transition metals. While we mainly focused on oxide-based solid electrolytes, LiRAP and sulfide-based
solid electrolytes are becoming increasingly attractive owing to their outstanding ionic conductivity.
However, the highly air sensitive nature of these electrolytes remains a substantial obstacle.

The interfacial problems discussed in this review—insufficient mechanical contact between the
electrode and the electrolyte, significant volume changes of electrodes and formation of SCRs and
lithium metal dendrites—cause large interfacial resistances leading to the performance degradation of
SSBs. Introducing thin films as buffer layers is a promising approach to overcome these interfacial
issues. We discussed how to control the growth of thin films with various thin films deposition
methods such as thermal evaporation, PLD, sputtering, CVD, ALD and sol–gel. Recent studies on the
successful suppression of dendrites, SCRs and SEI layers by having thin-film buffer layers were also
discussed systematically.

Nanostructured thin films also play a key role in constructing high-performance SSTFBs, which can
be implemented in wearable/flexible electronics and microelectronic devices. We summarized recent
advances in thin-film electrodes and electrolytes and their impact on the SSTFB performances.
While most thin films can be fabricated by different deposition methods, the film growth techniques
may need to be carefully chosen depending on the material systems. Nevertheless, PLD has shown
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its unique advantage in controlling the physical properties of thin films, which directly influence the
performance of SSTFBs. RF sputtering and sol–gel are also commonly used to synthesize thin-film
electrodes for SSTFBs. To improve the performance of SSTFBs, a couple of different approaches
such as applying epitaxial thin films, introducing the lattice strain and changing the crystallographic
orientation of films have been utilized. However, the effect of changing the physical properties of thin
films on the SSTFB performance is not yet fully understood as SSTFBs are still in their infancy.

Apart from the topics covered in this review, we propose two promising approaches for
the investigation to achieve further advances in SSBs and SSTFBs. Over the last few decades,
the development of oxide thin films has led to many technological breakthroughs for energy and
electronic devices. In particular, 2D planar heterostructures have been prevailingly investigated as
they lead not only to improved functionalities but even to the occurrence of novel properties that do
not belong to the bulk [438,439]. For instance, the discovery of the formation of a conducting interface
between two insulators [438], STO and LaAlO3 (LAO), brought the breakthrough in the field of oxide
electronics while also becoming the pole of attraction and inspiration for numerous studies [440,441].
Recently, a couple of attempts have been made to utilize heterostructure thin films in lithium-based
batteries [395,442–444]. In addition, developing new forms of materials with tailored properties
could bring technological breakthroughs in the next-generation energy storage systems. For example,
3D nanostructures can offer an extremely large number of interfaces and surface area, which are
beneficial for enhancing the electrochemical performance and ion transport in materials [445,446].
To date, a few studies have been investigated the influence of 3D nanostructures on the performance of
lithium-based batteries [447,448]. Exploring new forms of materials will bring new opportunities to
develop high-performance electrodes and electrolytes for SSBs and SSTFBs.
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