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Bioconversion of rice straw agro-
residues by Lentinula edodes and 
evaluation of non-volatile taste 
compounds in mushrooms
Shuangshuang Gao1,2, Zhicheng Huang1, Xi feng3, Yinbing Bian2, Wen Huang1 & Ying Liu1*

Rice straw was substituted for sawdust at five different ratios of 0, 20%, 40%, 60%, and 80% (Control, 
RS20, RS40, RS60 and RS80, respectively) to obtain five kinds of Lentinula edodes. The effects of adding 
cropped rice straw to substrate formulas on the proximate composition and non-volatile taste compounds 
in mushrooms were investigated. The control group had the highest level of MY and BE among the five 
formulations. the protein levels in mushrooms decreased with the addition of rice straw and the ash levels 
increased. We found that trehalose, mannitol, and arabitol were the main soluble sugars in the five kinds 
of mushrooms. The contents of total free amino acids varied from 16.29 to 24.59 mg/g and the highest 
level of free amino acids was found in mushrooms cultivated from RS20 and RS40. Moreover, the addition 
of rice straw improved the contents of monosodium glutamate (MSG)-like amino acids in mushrooms. 
The 5′-Nucleotide levels ranged from 1.66 to 4.48 mg/g and equivalent umami concentration (EUC) value 
increased with the addition of rice straw. our results suggest that rice straw is a potential substitute for 
sawdust to cultivate L. edodes with more non-volatile taste compounds.

The white rot basidiomycete (Berk.) Pegler, commonly termed as Lentinula edodes or shiitake mushroom, is 
highly popular with consumers for its great medicine properties and unique flavor in some Asian countries1–3. 
The desirable flavor of the shiitake mushroom consists of volatile and non-volatile components. The former is the 
basis for the special aroma of L. edodes, while the latter includes soluble sugars, organic acids, free amino acids, 
and 5′-nucleotides, which are responsible for a variety of tastes.

Protein-rich mushrooms can be produced from many lignocellulosic substrates4. One of the most popular 
basal substrates for L. edodes production is sawdust. Previous reports have shown that the amount of sawdust 
in the prescription ranged from 45% to 79%5,6. The decreasing forest area is one of the ecological problems all 
over the world7. In order to alleviate the contradiction between the growing shortage of forestry resources and 
the increasing demand of people in wood products, rice straw, wheat straw, barley straw, vineyard pruning, and 
hazelnut husk have been used to cultivate L. edodes8–12. Rice straw is highly available in the world, with about 731 
million tons being produced in Africa, Asia, Europe and America every year13. In China, the largest agricultural 
by-product is rice straw, amounting to 184 million tons in 200914. Therefore, evaluation of the use of rice straw for 
cultivating L. edodes is of a great significance for the sustainable development of the forestry resource.

As reported by Zhang, Venkitasamy, Pan, & Wang15, in edible mushrooms, the umami ingredients can be 
affected by several factors, such as species type, part of mushroom, maturity stage, quality grade, processing 
methods and storage time. To date, the effects of different rice straw/sawdust combinations on the chemical com-
position of shiitake mushroom, especially non-volatile taste components, are poorly understood.

Therefore, this study also aimed to (1) investigate the effects of different rice straw/sawdust combinations on 
main tasty components and proximate composition of L. edodes, (2) cultivate stronger umami-taste mushroom 
to meet eating habits in Asia where strong flavors are prized, (3) test the feasibility of rice straw for its application 
in mushroom production. These results would facilitate the substitution of rice straw for sawdust in mushroom 
production and provide useful information for improving the non-volatile components in mushrooms.
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Material and Methods
Mushroom cultivation. The L. edodes strain WX1 (ACCC 50926) was cultivated in Mushroom Science and 
Education Center, Huazhong Agricultural University, Wuhan, China. Five mushroom cultivation substrates were 
prepared as follows: Control (80% oak sawdust; wheat brane 18%; lime 1%; saccharose 1%), RS20 (20% rice straw; 
60% oak sawdust; wheat brane 18%; lime 1%; saccharose 1%), RS40 (40% rice straw; 40% oak sawdust; wheat brane 
18%; lime 1%; saccharose 1%), RS60 (60% rice straw; 20% oak sawdust; wheat brane 18%; lime 1%; saccharose 1%), 
RS80 (80% rice straw; wheat brane 18%; lime 1%; saccharose 1%). The mixture of rice straw and sawdust were wetted 
for 12–16 h, and then supplemented with 18% wheat brane, 1% lime and 1% saccharose. Based on their dry weight 
(w/w), all materials were mixed, placed in polypropylene bags (15 × 30 cm) and sterilized at 121 °C for 3.5 h (40 repli-
cates per formulation). After cooling to room temperature, the bags were inoculated along their central vertical axis.

The mushroom house was managed as described by Gong, Xu, Xiao, Zhou, & Bian5. Mushroom samples were 
collected every day from the culture substrates, with the veil being broken and the gill being fully exposed. The 
biological efficiency (BE) was estimated by the equation: (mushroom fresh weight/substrate dry weight) × 100. 
Mushroom yield (MY) was recorded for only one flush as follows: mushroom fresh weight/substrate fresh weight. 
For proximate composition and non-volatile components analysis, the whole fresh L. edodes were freeze-dried 
and then crushed into a powder (80 mesh).

proximate composition analysis of fruiting body. The analyses consisting of ash, total nitrogen, and 
fat were carried out through AOAC (1995) procedures16. The total carbohydrate content was estimated as follows: 
carbohydrates = 100 − (ash + fat + protein). The correlation factor 4.38 was used to obtain the total protein from 
the total nitrogen content.

Assay of soluble sugars and polyols. The extraction of polyols and soluble sugars from the samples was 
performed as previously described17. The Agilent 1100 high performance liquid chromatography (HPLC) system 
consisted of a Hi-Plex H column (7.7 × 300 mm, 8 μm, Agilent) and a refractive index detector (RID). Main sou-
ble sugars in samples were completely separated in 25 minutes with isocratic elution. The column was operated 
at 65 °C, using deionized water as the mobile phase at a flow rate of 0.6 mL/min, with an injection volume of 
5 μL. Each product was compared with the authentic sample (Aladdin, Shanghai) and quantified by the authentic 
compound calibration curve.

Assay of organic acids. The extraction and analysis of organic acids were performed as reported by Chen et al.18.  
The HPLC system consisted of an InertSustain AQ-C18 column (4.6 × 250 mm, 5 μm) (Shimadzu, Shanghai, 
China). Authentic standards were used to identify and quantify each organic acid according to the retention time 
(Sinopharm Chemical Reagent Co. Ltd, Shanghai, China). Each sample was further quantified by comparing its 
peak area with the related standard compound calibration curve.

Assay of free amino acids. The extraction and analysis of free amino acids were performed as reported by 
Chen et al.18. The free amino acids were analyzed by loading the filtrate onto an L-8900 high-speed amino acid 
analyzer (Hitachi High-Tech. Corp., Japan).

Assay of 5′-nucleotides. The extraction and analysis of 5′-Nucleotides were conducted as reported by 
Chen et al.18. The HPLC system consisted of an InertSustain AQ-C18 column (4.6 × 250 mm, 5 μm) (Shimadzu, 
Shanghai, China). 5′-nucleotide standards were used to identify and quantify each 5′-nucleotide (Sigma, U.S.A.).

Equivalent umami concentration. The equivalent umami concentration [mg MSG per 100 g] represents 
the monosodium glutamate (MSG) concentration equivalent to the umami intensity given by the mixture of 
MSG-like amino acids and the flavor 5′-nucleotides (Yamaguchi, Yoshikawa, Ikeda, & Ninomiya)19.

Data analysis. All data were analyzed using ANOVA (analysis of variance) with IBM SPSS Statistics 20. 
Results were shown as mean ± standard deviation using Duncan’s test (P < 0.05). Correlation coefficients (R) 
between rice straw content in medium and chemical constituents of L. edodes fruiting body were computed using 
commercial software (IBM SPSS Statistics 20, SPSS, Chicago, Illinois, USA).

Results and Discussion
Mushroom yield. Spawn run time, yield and BE are shown in Table 1. Artificial logs produced using rice 
straw-containing substrates were too soft in consistency to be cultivated compared with Control group, and one 
crop was obtained with all five formulas. After a fifty-day incubation period, five formulas all started to fruit. 
MY varied between 155.08 and 202.03 g/kg substrate with the highest yield in the Control group. For L. edodes 
cultivation, Morais, Ramos, Matos, & Oliveira20 used rice straw to cultivate shiitake but failed to produce any 
fruiting bodies. Yang et al.12 determined the effects of substituting different amounts of rice straw (10%, 20%, 30% 
and 40%) for sawdust in a conventional cultivation substrate formula consisting of 80% oak sawdust, 18.8% bran, 
1% gypsum and 0.2% lime and successfully obtained shiitake fruiting bodies. The BE values fluctuated between 
36.09% and 49.66%. In our study, the BE value of RS60 is slightly higher than that of Control group. The BE values 
reported in this study were lower than those obtained by Royse & Sanchez (80.4–98.9%)21, but similar to those 
obtained by Yang et al. (36.4–56.6%)12 and Gaitán-Hernández & Mata (24.8–55.6%)10. Based on the method and 
substrate used in this study, our BE values were acceptable relative to those mentioned above. Our work shows 
that a considerable yield and BE can be obtained by replacing up to 80% of oak sawdust with chopped rice straw. 
Since the rice straw can be available in the cultivation of L. edodes, and therefore could pilot a so-called white 
agricultural revolution in the world.

https://doi.org/10.1038/s41598-020-58778-x
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proximate composition. In Fig. 1, L. edodes fruiting bodies were shown to have a high content of protein 
and a low content of fat. The decrease of protein levels and increase of ash levels were resulted from the supple-
mentation of rice straw to substrate. Fat and carbohydrates in L. edodes of the five groups showed no significant 
difference (P < 0.05). Based on the study by Manzi, Gambelli, Marconi, Vivanti, & Pizzoferrato22, the protein 
(15.19%) and ash (7.08%) contents showed proximate levels to the sample from RS60. Similar findings were 
obtained in Pleurotus sapidus as follows: the mushroom grown on paddy straw mixed with vegetable wastes 
had a higher protein content in the fruiting bodies than that grown on paddy straw alone23. Shiitake reported by 
Carneiro et al.24 showed lower contents of proteins (12.76%) and ash (4.29%), but higher contents of fat (1.01%) 
and Carbohydrates (81.94%). Overall, the nutrition value results have shown that rice straw can decrease protein 
and increase ash without significant effect on fat and carbohydrate contents of L. edodes.

Soluble sugars and polyols. The perceived sweet taste of certain species can be enhanced by soluble sug-
ars/polyols present in mushrooms. Table 2 shows the contents of polyols and soluble sugars in various mushroom 
samples from the five different substrates. Mannitol, trehalose and arabitol are reported to be the main soluble 
sugars or polyols in mushrooms18,25 and they were found to be dominant in the five mushroom samples. Their 
total levels ranged from 177.18 mg/g in the RS20 group to 203.08 mg/g in the RS80 group. The total soluble sugar/
polyol concentrations (177.18–203.08 mg/g) of L. edodes in the present study are obviously higher than the 78.65–
126.1 mg/g obtained by Chen et al.18, 82.98–127.30 mg/g by Li et al.25, 169.80 mg/g by Naknaen, Itthisoponkul, 
& Charoenthaikij26, and 141.55–152 mg/g by Yang, Lin, & Mau27. The different results are most likely due to the 
varied mushroom strains and cultivation substrates27–29.

Generally, the content of trehalose decreased with the addition of rice straw. The content of trehalose of the 
control group (73.70 mg/g) was about 2.0 times higher than that of RS80 group (37.14 mg/g). However, both 
mannitol and arabitol increased with the addition of rice straw in culture substrates. The contents of arabitol and 
mannitol in RS80 group were 1.7 and 1.3 times higher than those of control group, respectively.

organic acids. In Table 3, the total level of organic acids was shown to range from 41.67 mg/g to 64.76 mg/g in 
the five kinds of mushrooms. The total organic acid level (41.67–64.76 mg/g) for the freeze-dried L. edodes in this 
study was obviously lower than 85.40–374.7 mg/g reported by Chen et al.18 and 121.69–260.00 mg/g by Li et al.25.  
Additionally, the contents of total organic acids in the groups of RS40, RS20 and control were higher than those 

Control RS20 RS40 RS60 RS80

Spawn run time (day) 49.87 ± 4.22 a 49.83 ± 4.43 a 50.53 ± 2.98 a 49.10 ± 2.43 a 49.57 ± 2.46 a

MY (g/kg substrate)a 202.03 ± 17.40 a 190.42 ± 8.66 ab 155.08 ± 13.94 d 181.20 ± 9.45 bc 164.61 ± 6.94 cd

BE (%)b 48.68 ± 4.19 a 36.09 ± 1.64 b 36.61 ± 3.29 b 49.66 ± 2.59 a 39.94 ± 1.68 b

Table 1. Important agronomic traits of every formula in L. edodes. Values (mg/g dry weight) are the 
means ± SD (n = 3). Means with different letters with a row are significantly different (P < 0.05). MY: mushroom 
yield calculated as the ratio of mushroom fresh weight/substrate fresh weight. BE: biological efficiency 
calculated as the ratio of mushroom fresh weight/substrate dry weight) × 100.

Figure 1. Nutritional value of L. edodes harvested in different culture substrates.

Sugar/polyols Control RS20 RS40 RS60 RS80

Trehalose 73.70 ± 0.74 a 62.92 ± 2.47 c 65.43 ± 0.59 b 40.16 ± 0.61 d 37.14 ± 0.37 e

Mannitol 59.27 ± 0.28 d 60.02 ± 1.74 d 62.26 ± 0.17 c 72.49 ± 1.50 b 79.43 ± 0.55 a

Arabitol 51.45 ± 0.55 e 54.25 ± 1.97 d 63.40 ± 0.35 c 67.13 ± 1.29 b 86.51 ± 0.72 a

Total sugar 184.42 ± 1.00 c 177.18 ± 5.82 d 191.09 ± 0.52 b 179.78 ± 3.38 cd 203.08 ± 1.50 a

Table 2. Soluble sugars and polyols of L. edodes harvested in different culture substrate. Values (mg/g dry 
weight) are the means ± SD (n = 3). Means with different letters with a row are significantly different (P < 0.05).

https://doi.org/10.1038/s41598-020-58778-x
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of RS80 and RS60 groups. Furthermore, the main organic acids in RS80 and RS60 groups were found to be malic, 
acetic and fumaric acids, in contrast to the major organic acids of acetic, malic and succinic in RS40, RS20 and 
control group. Similar to the total organic acid level, RS80 and RS60 groups were lower than RS40, RS20 and 
control group in the level of acetic, succinic and tartaric acids. The succinic acid level was found to decrease with 
addition of rice straw in culture substrates, and it was 9.0-fold higher in the control group than in the RS80 group.

In addition, the five kinds of mushrooms had the lowest level of ascorbic acid among the detected organic 
acids, which accorded with the result reported by Chen et al.18. Our results revealed malic acid as the main 
organic acid in both RS80 and RS60 groups, whereas acetic acid was the main organic acid in RS40, RS20 and 
control groups. However, previous studies have identified succinic acid as the main organic acid in L. edodes 
at different growth stages (Chen et al.18). Yang, Gu, Liu, Zhou, & Zhang30 have reported citric acid as the main 
organic acid in L. edodes with a content of 24.45 mg/g. Our results indicated that rice straw as a substitute for 
sawdust influenced the organic acids compounds in cultivated L. edodes.

free amino acids. In Table 4, it can be seen that the content of total free amino acids ranged from 16.29 mg/g 
in RS60 group to 24.59 mg/g in RS20 group. A total of seven essential amino acids were identified in the five kinds 
of mushrooms, but tryptophan failed to be detected in all the samples. The essential amino acids showed a similar 
diversification trend with that of total amino acids. In the five kinds of mushrooms, the major free amino acids 
consisted of threonine (4.82–8.08 mg/g), glutamic acid (2.00–3.90 mg/g), alanine (0.86–3.38 mg/g) and ornithine 
(1.07–3.93 mg/g). Additionally, the biologically active compound of γ-aminobutyric acid (GABA) was detected 
in each of the five groups, with the highest content (1.26 mg/g) in RS20 group, which was higher than 0.35 mg/g 
(Chen et al.) and lower than 2.74 mg/g31. Our results suggested that RS20 group could serve as a potential culture 
substrate to cultivate GABA-rich L. edodes.

In previous studies, MSG-like, sweet, bitter and tasteless have been determined as the four taste features of free 
amino acids27,32. A comparison analysis of the data indicated that the five kinds of mushrooms had the highest 
sweet components and the lowest tasteless components. However, Mau, Lin, & Chen33 found that the bitter com-
ponents were dominated in several medicinal mushrooms, including Sung Shan Ling Chih (Ganoderma tsugae), 
Ling Chih (Ganoderma lucidum) and Yun Chih (Coriolus versicolor). The MSG-like components consisted of 
aspartic and glutamic acids, which were characterized by the taste of MSG and 5′-nucleotide and thus gave the 
umami taste or the most typical mushroom taste34. The content of MSG-like components was 2.09–6.17 mg/g in 
our study. Previous studies have divided the contents of MSG-like amino acids into three levels: high (>20 mg/g), 
middle (5–20 mg/g) and low (<5 mg/g)27. In the present study, the content of MSG-like amino acids was at the 
middle level in the RS80 and RS60 groups (5.12 and 6.17 mg/g, respectively), but at low levels in RS40, RS20 and 
control groups (3.62, 2.87 and 2.09 mg/g, respectively). Similar to its level in total free amino acids, the RS20 
group had the highest contents of sweet amino acids (12.36 mg/g), bitter amino acids (3.12 mg/g) and tasteless 
amino acids (2.32 mg/g) among the five groups.

5′-nucleotides. The 5′-nucleotides in mushrooms have been reported as a potential contributor to the 
umami taste19. Five 5′-nucleotides (5′-AMP, 5′-CMP, 5′-GMP, 5′-IMP and 5′-UMP) were detected in the five 
kinds of mushrooms (Table 5). The total 5′-nucleotide contents varied from 1.66 mg/g in RS20 group to 4.48 mg/g 
in RS80 group, indicating the increase of the total 5′-nucleotides with the addition of rice straw. Furthermore, 
5′-AMP (1.18–2.78 mg/g) and 5′-CMP (0.16–1.29 mg/g) were found as the main 5′-nucleotides in the five differ-
ent mushroom samples.

Yang, Lin, & Mau27 defined flavor 5′-nucleotides in three ranges: high (>5 mg/g), medium (1–5 mg/g) and 
low (<1 mg/g). In the present study, the content of flavor 5′-nucleotides was 0.09–0.76 mg/g and thus in the low 
range for all the L. edodes samples from the five different substrates. Interestingly, flavor 5′-nucleotides showed a 
sudden decrease in RS60 when we added sawdust into L. edodes cultivation medium, and remained at the same 
level in RS60, RS40, RS20 and control group (P < 0.05). Overall, a high proportion of rice straw in medium might 
contribute to increase the 5′-nucleotides content in L. edodes.

Equivalent umami concentration. Figure 2 shows the equivalent umami concentration (EUC) values 
for the umami taste based on the synergistic effects of MSG-like components and 5′-nucleotides. The results 
showed that the EUC values of the five kinds of mushrooms ranged from 10.42 to 84.49 g MSG/100 g, which were 

Organic acids Control RS20 RS40 RS60 RS80

Tartaric acid 2.79 ± 0.07 a 2.78 ± 0.05 a 2.69 ± 0.17 a 2.00 ± 0.12 b 1.97 ± 0.25 b

Malic acid 18.81 ± 0.32 cd 18.35 ± 0.82 d 19.50 ± 0.24 c 23.75 ± 0.84 a 21.74 ± 0.37 b

Ascorbic acid 1.80 ± 0.40 a 1.89 ± 0.16 a 1.26 ± 0.03 b 0.98 ± 0.04 bc 0.81 ± 0.02 c

Acetic acid 20.64 ± 4.91 a 22.09 ± 2.12 a 25.19 ± 0.52 a 8.79 ± 1.78 b 5.91 ± 1.04 b

Citric acid 2.26 ± 0.32 b 2.90 ± 0.63 ab 2.97 ± 0.17 ab 3.48 ± 0.56 a 2.73 ± 0.27 ab

Fumaric acid 4.23 ± 0.02 d 3.62 ± 0.02 e 5.20 ± 0.04 c 8.23 ± 0.30 a 7.26 ± 0.07 b

Succinic acid 11.31 ± 2.65 a 8.81 ± 3.10 a 7.95 ± 3.20 a 1.86 ± 0.32 b 1.25 ± 0.05 b

Total 61.84 ± 7.66 a 60.43 ± 5.98 a 64.76 ± 3.95 a 49.09 ± 2.93 b 41.67 ± 0.48 b

Table 3. Contents of organic acids of L. edodes harvested in different culture substrate. Values (mg/g dry 
weight) are the means ± SD (n = 3). Means with different letters within a row are significantly different 
(P < 0.05).

https://doi.org/10.1038/s41598-020-58778-x
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mostly lower than those reported in earlier studies25,26,32. Previous studies defined the EUC values at four levels: 
10% (<0.1 g MSG/g), 10%-100% (0.1–1 g MSG/g), 100%-1000% (1–10 g MSG/g), and >1000% (>10 g MSG/g)35. 
Accordingly, the EUC values were at the second level for all samples (10–100 g MSG/100 g). The EUC value of 
RS80 group was 2.7-, 5.5-, 6.7- and 8.1-fold higher than those of RS60, RS40, RS20 and control group, mainly due 
to the high level of 5′-GMP in RS80 group. Moreover, the EUC value increased with the addition of rice straw, 
indicating that rice straw as a substitute for sawdust improved the umami taste components of L. edodes.

The correlation analysis between rice straw ratios and chemical components is shown in Fig. 3. The results 
showed that rice straw ratios in substrate had a significant negative relationship with the contents of trehalose, 
leucine, ascorbic acid, proline, succinic acid, tartaric acid, isoleucine, alanine, lysine, GABA, cystine, arginine, 
acetic acid, histidine, ornithine, valine, and organic acids in L. edodes fruiting bodies (P < 0.01). One the con-
trary, rice straw ratios had a significant positive correlation with the contents of ash, arabitol, mannitol, MSG-like 
amino acids, fumaric acid, aspartic acid, glutamic acid, malic acid, GMP, UMP, EUC, 5′-nucleotides and flavor 

Amino acids Control RS20 RS40 RS60 RS80

Aspartic acid 0.08 ± 0.01 d 0.10 ± 0.02 d 0.45 ± 0.07 c 2.27 ± 0.12 a 1.69 ± 0.06 b

Threonine 6.09 ± 1.00 b 7.83 ± 0.83 a 8.08 ± 0.30 a 4.82 ± 0.27 c 5.90 ± 0.18 bc

Serine 0.24 ± 0.03 bc 0.27 ± 0.02 a 0.26 ± 0.00 ab 0.29 ± 0.01 a 0.23 ± 0.01 c

Glutamic acid 2.00 ± 0.29 d 2.76 ± 0.29 c 3.16 ± 0.21 b 3.90 ± 0.13 a 3.43 ± 0.09 b

Glycine 0.50 ± 0.06 c 0.68 ± 0.01 a 0.68 ± 0.01 a 0.56 ± 0.02 b 0.54 ± 0.02 bc

Alanine 2.63 ± 0.38 b 3.38 ± 0.02 a 2.60 ± 0.04 b 0.86 ± 0.03 c 0.87 ± 0.03 c

Cystine 0.68 ± 0.02 ab 0.71 ± 0.03 a 0.63 ± 0.07 b 0.60 ± 0.02 bc 0.54 ± 0.04 c

Valine 0.49 ± 0.07 a 0.55 ± 0.01 a 0.54 ± 0.01 a 0.41 ± 0.01 b 0.38 ± 0.01 b

Methionine 0.07 ± 0.01 a 0.06 ± 0.01 ab 0.07 ± 0.01 a 0.07 ± 0.02 a 0.05 ± 0.01 b

Isoleucine 0.21 ± 0.03 a 0.22 ± 0.01 a 0.20 ± 0.01 a 0.15 ± 0.01 b 0.13 ± 0.00 b

Leucine 0.36 ± 0.03 a 0.35 ± 0.03 a 0.33 ± 0.01 a 0.24 ± 0.01 b 0.23 ± 0.01 b

Tyrosine 0.14 ± 0.04 a 0.07 ± 0.02 c 0.08 ± 0.00 bc 0.10 ± 0.01 abc 0.11 ± 0.01 ab

Phenylalanine 0.34 ± 0.19 a 0.30 ± 0.02 a 0.26 ± 0.01 a 0.20 ± 0.02 a 0.21 ± 0.00 a

GABA 0.82 ± 0.19 b 1.26 ± 0.18 a 0.68 ± 0.12 b 0.09 ± 0.01 c 0.09 ± 0.00 c

Ornithine 3.03 ± 0.54 b 3.93 ± 0.30 a 2.82 ± 0.18 b 1.07 ± 0.04 d 1.90 ± 0.05 c

Lysine 0.31 ± 0.04 a 0.28 ± 0.01 a 0.30 ± 0.01 a 0.21 ± 0.01 b 0.21 ± 0.01 b

Proline 0.19 ± 0.01 a 0.18 ± 0.01 a 0.17 ± 0.01 a not detected not detected

Histidine 0.36 ± 0.06 a 0.39 ± 0.01 a 0.35 ± 0.01 a 0.24 ± 0.01 b 0.28 ± 0.01 b

Arginine 0.88 ± 0.11 b 1.24 ± 0.03 a 0.76 ± 0.03 c 0.21 ± 0.02 e 0.34 ± 0.00 d

Essential AA 7.88 ± 1.04 b 9.59 ± 0.78 a 9.79 ± 0.32 a 6.10 ± 0.31 c 7.11 ± 0.21 bc

Total AA 19.43 ± 2.52 b 24.59 ± 0.63 a 22.44 ± 0.29 a 16.29 ± 0.69 c 17.14 ± 0.52 c

MSG-like 2.09 ± 0.30 e 2.87 ± 0.32 d 3.62 ± 0.28 c 6.17 ± 0.24 a 5.12 ± 0.15 b

Sweet 9.64 ± 1.40 b 12.36 ± 0.83 a 11.80 ± 0.26 a 6.53 ± 0.33 c 7.54 ± 0.23 c

Bitter 2.72 ± 0.38 b 3.12 ± 0.06 a 2.52 ± 0.05 b 1.52 ± 0.08 c 1.62 ± 0.04 c

Tasteless 1.95 ± 0.19 b 2.32 ± 0.18 a 1.69 ± 0.15 c 1.00 ± 0.03 d 0.95 ± 0.05 d

Table 4. Amino acids of L. edodes harvested in different culture substrate. Values (mg/g dry weight) are the 
means ± SD (n = 3). Means with different letters with a row are significantly different (P < 0.05). GABA, 
γ-aminobutyric acid. Essential amino acids, Thr + Val + Met + Ile + Leu + Phe + Lys + Trp, while Trp was not 
detected in this study. MSG-like, monosodium glutamate-like, Asp + Glu; Tasteless, Cys + Tyr + Lys + GABA; 
Sweet, Thr + Ser + Gly + Ala + Pro; Bitter, Val + Met + Ile + Leu + Phe + His + Arg + Trp.

Control RS20 RS40 RS60 RS80

5′-CMP 0.40 ± 0.11 b 0.30 ± 0.05 bc 0.22 ± 0.01 bc 0.16 ± 0.08 c 1.29 ± 0.19 a

5′-UMP 0.07 ± 0.00 b 0.05 ± 0.01 b 0.06 ± 0.00 b 0.02 ± 0.01 b 1.04 ± 0.20 a

5′-GMP 0.02 ± 0.01 b 0.02 ± 0.00 b 0.01 ± 0.00 b 0.01 ± 0.01 b 0.72 ± 0.16 a

5′-IMP 0.07 ± 0.01 bc 0.11 ± 0.01 a 0.05 ± 0.00 cd 0.08 ± 0.01 b 0.05 ± 0.02 d

5′-AMP 1.67 ± 0.03 bc 1.18 ± 0.06 d 1.75 ± 0.01 b 2.78 ± 0.02 a 1.37 ± 0.39 cd

Total 2.23 ± 0.13 c 1.66 ± 0.02 d 2.09 ± 0.01 c 3.06 ± 0.12 b 4.48 ± 0.35 a

Flavor 5′-nucleotide 0.09 ± 0.01 b 0.13 ± 0.01 b 0.06 ± 0.00 b 0.10 ± 0.02 b 0.76 ± 0.16 a

EUC value 10.42 ± 1.94 c 12.61 ± 1.50c 15.34 ± 1.16 c 30.93 ± 1.26 b 84.49 ± 11.72 a

Table 5. 5′-Nucleotide levels of L. edodes harvested in different culture substrate. Values (mg/g dry weight) are 
the means ± SD (n = 3). Means with different letters with a row are significantly different (P < 0.05). 5′-AMP, 
5′-adenosine monophosphate; 5′-CMP, 5′-cytosine monophosphate; 5′-GMP, 5′-guanosine monophosphate;  
5′-UMP, 5′-uridine monophosphate; 5′-IMP, 5′-inosine monophosphate. Flavor 5′-nucleotide, 5′-GMP + 5′-IMP.
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5′-nucleotides (P < 0.01). Similar results have also been reported in previous studies, such as the effect of the com-
position of culture substrates on the nutritional value of mushrooms23,36. Gaitán-Hernández, Esqueda, Gutiérrez, 
& Beltrán-García37 have reported that substrate composition is correlated with the growth of L. edodes. During 
the growth, mushrooms would use the most accessible lignocellulosic components of the substrate38. The ligno-
cellulose degradation capacity of L. edodes was influenced by the culture substrates (such as wheat straw, barley 
straw, and vineyard pruning)9. When grown under different culture substrates, cultures of white-rot basidiomy-
cetes varied largely in the yield of lignocellulolytic enzymes39,40. These hydrolytic enzymes were required for the 
conversion of the major components in substrate (cellulose, hemicellulose and lignin) into low-molecular-weight 
compounds and their assimilation for mushroom nutrition41. We suggested that rice straw as a substitute for saw-
dust at different ratios would change the lignocellulose composition to affect the non-volatile taste compounds 
in cultivated L. edodes. However, little information can be obtained concerning the relationship between ligno-
cellulosic biomass and non-volatile taste composition. Thus, the effects of lignocellulosic biomass (rice straw or 
sawdust) on the degradation of lignin and carbohydrates need to be elucidated in future studies.

conclusion
In summary, rice straw was substituted for sawdust at five different ratios of 0, 20%, 40%, 60%, and 80% to culti-
vate L. edodes and five kinds of mushrooms were successfully obtained with a considerable mushroom yield and 
biological efficiency. Adding rice straw into substrates could decrease protein content but increase the EUC values 
in L. edodes (P < 0.05). Our results suggested the possibility that up to 80% of oak sawdust can be replaced with 
chopped rice straw to cultivate L. edodes with more non-volatile taste compounds.

Figure 2. Equivalent umami concentration (EUC) values of L. edodes harvested from different culture 
substrate. Values were expressed as mean ± SD (n = 3).

Figure 3. Correlation between rice straw content in culture substrate and chemical constituents of L. edodes. 
**P < 0.01; *P < 0.05; ns, not significantly.
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