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Abstract. Most plants derive their water and nutrient needs
from soils where the resources are often scarce, patchy, and
ephemeral. It is not uncommon for plant roots to encounter
mismatched patches of water-rich and nutrient-rich regions
in natural environments. Such an uneven distribution of re-
sources necessitates plant reliance on strategies for explor-
ing and acquiring nutrients from relatively dry patches. We
conducted a laboratory study that elucidates the biophys-
ical mechanisms that enable this adaptation. The roots of
tomato (Solanum lycopersicum) seedlings were laterally split
and grown in two adjacent, hydraulically disconnected pots,
which permitted precise control of water and nutrient appli-
cations to each compartment. We observed that the physi-
cal separation of water-rich and nutrient-rich compartments
(one received 90 % water and 0 % nutrients and the other
received 10 % water and 100 % nutrients) does not signifi-
cantly stunt plant growth and productivity compared to two
control treatments (control 1: 90 % water and 100 % nutri-
ents versus 10 % water and 0 % nutrients; control 2: 50 %
water and 50 % nutrients in each compartment). Specifically,
we showed that soil dryness does not reduce nutrient uptake,
vegetative growth, flowering, and fruiting compared to con-
trol treatments. We identified localized root proliferation in
nutrient-rich dry soil patches as a critical strategy that en-
abled nutrient capture. We observed nocturnal rewetting of
the nutrient-rich but dry soil zone (10 % water and 100 % nu-
trients) but not in the nutrient-free and dry zone of the con-
trol experiment (90 % water and 100 % nutrients). We inter-
preted the rewetting as the transfer of water from the wet
to dry zones through roots, a process commonly known as
hydraulic redistribution (HR). The occurrence of HR likely
prevents the nutrient-rich soil from drying due to permanent

wilting and the subsequent decline of root functions. Sus-
taining rhizosphere wetness is also likely to increase nutrient
mobility and uptake. Lack of HR in the absence of nutrients
suggests that HR is not entirely a passive, water-potential-
gradient driven flow. The density and size of root hairs ap-
peared to be higher (qualitative observation) in the nutrient-
rich and dry compartments than in the nutrient-free and dry
compartments. We also observed organic coating on sand
grains in the rhizosphere of the nutrient-rich and dry com-
partments. The observations are consistent with prior obser-
vations that root hairs and rhizodeposition aid rhizosphere
wetting. These findings were synthesized in a conceptual
model that explains how plants of dry regions may be adapted
to mismatched resources. This study also suggests that sep-
arating the bulk of applied nutrients from the frequently ir-
rigated soil region can increase nutrient use efficiency and
curtail water pollution from intensive agricultural systems.

1 Introduction

Root response to either water or nutrient deficiency signals
is a persistent question at the intersection of plant biology
and soil science (Robbins and Dinneny, 2015; Hodge, 2004;
Robinson et al., 1999). In water-limited areas, rooting depth
generally coincides with infiltration depth (Fan et al., 2017).
Locally, roots also respond by increasing the water reten-
tion capability of their immediate surroundings (the rhizo-
sphere) by releasing a cocktail of organic compounds (rhi-
zodeposits) that sorb water and promote soil aggregation
(Carminati et al., 2010, 2011; Moradi et al., 2011; Albal-
asmeh and Ghezzehei, 2014; Ghezzehei and Albalasmeh,
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2015). Similarly, roots employ diverse strategies for nutrient
foraging in response to local soil nutrient deficiencies and
macroscopic heterogeneities. Roots can enlarge the surface
area for nutrient sorption and acquisition by increasing root
branching, clustering, and growing dense root hairs (Lam-
bers et al., 2011; Bates and Lynch, 2001). Legumes associate
with N-fixing bacteria and mycorrhizae that support N fix-
ation and acquisition (Linderman, 1991), while non-legume
plants forage by growing their roots towards their N-fixing
legume neighbors (Weidlich et al., 2018). Root exudation
(release of low-molecular-weight rhizodeposits Oburger and
Jones, 2018) can increase nutrient availability and accessibil-
ity by freeing tightly bound nutrients (e.g., McKay Fletcher
et al., 2020) and priming the microbial mineralization of nu-
trients (e.g., Keiluweit et al., 2015).

However, the adaptation of roots to mismatched distribu-
tions of water and nutrients has not received as much atten-
tion. Spatial and temporal mismatch of water and nutrient
availability within the soil profile is a frequent occurrence
confronting plants in regions with pronounced wetting–
drying cycles (Bengough et al., 2011). A recent review (Fan
et al., 2017) of global rooting depth data in well-drained up-
land environments and drought-prone regions revealed that
soil moisture distribution within the soil profile is the primary
determinant of root architecture. Plants that grow in such ar-
eas meet the bulk of their transpiration demand with sub-
surface soil moisture storage because the shallow soil layers
tend to dry up quickly by evaporation and drainage. Coarse-
textured soils that dominate most arid and semiarid soil soils
(Rodell et al., 2004) experience particularly pronounced sur-
face drying. In contrast, organic matter and plant-available
essential macro- and micronutrients, including N, P, K, Zn,
and Mn, are preferentially concentrated in the shallow soil
horizons (Li et al., 2013; Jobbágy and Jackson, 2001; Fran-
zluebbers and Hons, 1996; Apostolakis and Douka, 1970).
This mismatched distribution of water and nutrients neces-
sitates nutrient uptake from relatively dry, but nutrient-rich,
soil patches (Nambiar, 1976; Rose et al., 2008; Wang et al.,
2009). Moreover, the release of nutrients bound in the or-
ganic matter of the shallow soil layers requires mineraliza-
tion to occur under suboptimal moisture conditions (Stanford
and Epstein, 1974). The adaptation of many plants to these
environments suggests the existence of nutrient and water ac-
quisition strategies that allow root architecture and functions
to respond to mismatched spatial and temporal nutrient and
water distributions. In addition to natural systems, such an
adaptation is likely to play a critical role in dryland farming
and rangelands.

The conditions responsible for mismatched resource dis-
tributions are also favorable for the transport of water from
the wet subsurface layers to dry shallow layers via the
root system, commonly referred to as hydraulic lift or hy-
draulic redistribution (HR; Caldwell and Richards, 1989; Bo-
gie et al., 2018). Studies have found that water released by
HR can elevate ammonification, N mineralization, and plant

Table 1. Total quantity of water and N applied to each compart-
ment of the three treatments. Note that the nutrient solution applied
includes other macro- and micronutrients. The composition of the
nutrient solution is provided in Table A2.

Treatment Code
Applied Water Applied N

(mm) (mgN)

Wet Dry Wet Dry

Distributed D 588 77 0 120
Control 1 C1 580 73 120 0

Control 2 C2
Left Right Left Right

338 338 60 60

inflorescence N uptake (Cardon et al., 2013) and enhance the
overall nutrient mobility in dry soil patches (Matimati et al.,
2014). The objective of this study was to test the hypothesis
that HR is a key biophysical response that allows plants to
thrive when resource availabilities are spatially mismatched.
Specifically, the laboratory experiments were designed to an-
swer the following questions: does the mismatched distribu-
tion of water and nutrients within a soil profile adversely af-
fect plant performance? To what extent are roots able to ac-
quire nutrients from dry soil patches provided that water is
available elsewhere? What is the role of HR in nutrient up-
take from dry patches?

2 Methods

2.1 Experimental setup

Tomato plants (Solanum lycopersicum) were grown in cus-
tom pots (W ×D×H = 200 × 100 × 300mm) that were
laterally split into two equal (3L each) compartments (see
Fig. 1). The pots were filled with 8kg silica sand of ap-
proximate median particle size of 600µm (Laguna Clay Co.,
City of Industry, CA) and packed to a mean bulk density of
1.4gcm−3. The sand was free of nutrients and organic mat-
ter to ensure that all the nutrient supply was accounted for.
Nylon tubing for water and nutrient solution injection were
installed in each compartment at 140mm below the surface.
Dielectric water content sensors (5TE; METER Group, Inc.,
Pullman, WA) were placed at the center of each compart-
ment (center of sensors was at 140mm below the surface) to
capture the bulk-scale soil moisture dynamics. At the same
soil depth, the dry compartments of the treatment (see below
for treatment descriptions) were outfitted with pairs of ther-
mocouple psychrometric water potential sensors (PSYPRO;
Wescor, Inc., Logan, UT) to measure the localized soil water
potential with a high degree of sensitivity (Brown and Bar-
tos, 1982; Andraski and Scanlon, 2002; Whalley et al., 2013).
The combination of the two sensor types allows quantifica-
tion of water dynamics with a high degree of fidelity from the
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Figure 1. Schematic illustration of the experimental design. Each pot consists of two isolated compartments, fused together by glue, that
were supplied with water and nutrients via buried nylon tubing. The relative amounts of applied water and nutrients are shown. Roots of
seedlings were roughly divided into two equal parts during transplantation. The experiment consisted of one treatment in which the bulk
quantity of water and nutrients was distributed separately (treatment D) and two control treatments in which nutrients were applied with
most of the water. In control 1 (C1), water was applied nonuniformly as in D, whereas, in control 2 (C2), water and nutrients were applied
uniformly to both compartments. Placement of sensors and water and nutrient delivery tubes are illustrated. The diagram is not to scale.

wet to dry moisture range. The dielectric sensors were pro-
grammed to log data every 15min, while the psychrometers
were programmed to log data every 2h. The experiment was
conducted indoors (in a dark room) under artificial fluores-
cent lighting (6500 K spectrum and 10000 lm intensity) that
was programmed to be on for 12h and off for 12h.

2.2 Experimental treatments

The experimental design consisted of one primary treatment
and two control treatments that were replicated three times
each. While the total amounts of resources applied to the
three treatments were identical, the treatments differed in the
distributions of water and nutrients between the two com-
partments. The relative amounts of water and nutrients sup-
plied to each compartment, along with the treatment names
and codes, are depicted in Fig. 1. In the primary treatment,
the distribution of water and nutrients between the two com-
partments was mismatched (labeled as distributed or D). One
compartment (wet) received ≈ 90% of the irrigation water
and 0% of the nutrients, while the second compartment (dry)
received 100% of the nutrient supply delivered along with
the remaining 10% water. The first control treatment (labeled
as control 1 or C1) consisted of an identical distribution of
water to treatment D. But the nutrients were added to the wet

compartment along with the ≈ 90% irrigation water, while
the dry compartment remained nutrient free. In the second
control experiment (labeled as control 2 or C2), both com-
partments (left and right) received equal amounts of water
and nutrients. The contrast between treatments D and C1 was
intended to reveal plant response and adaptation mechanisms
to the mismatched distribution of resources, whereas the con-
trast between the mismatched distribution in treatment D and
the ideal uniform resource availability in treatment C2 was
intended to identify possible adverse effects of the former.
Deionized water was used for irrigation. The nutrient so-
lution was prepared by diluting a commercial hydroponic
nutrient solution (General Hydroponics, Santa Rosa, CA)
that consisted of NH4NO3, Ca(NO3)2, Mg(NO3)2, MgSO4,
KH2PO4, KNO3, K2SO4, and Na2MoO4. The relative mass-
based elemental composition of the nutrient solution (Gen-
eral Hydroponics, Santa Rosa, CA) normalized against the
total N content is provided in Table A2. The total amounts
of water and nutrients supplied to each compartment are re-
ported in the Appendix (Table 1), while the detailed record is
provided in the data sets in the Supplement.

The tomato seedlings used for the study were germinated
in potting mix and grown for about 3 weeks until they
reached 50–100 mm in height. The healthiest seedlings were
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then removed from the pots, and the roots were thoroughly
washed to remove any residual nutrients from the potting
mix. The roots of individual seedlings were then physically
separated into two roughly equal parts that were placed in
the separate compartments, which were half-filled with soil.
Afterward, the remaining sand was carefully poured around
and over the roots. We did not differentiate the taproots from
the fibrous roots during the root splitting. A photographic
depiction of the key steps of the experiment, including root
splitting, sensor installation, and irrigation outfitting, is pro-
vided in the Supplement (Figs. S1–S4). After the transplanta-
tion, the pots were irrigated with 560mL of deionized water
(equivalent to 0.2 v/v). The plants were allowed to adjust to
the new environment for around 2 weeks with no additional
irrigation or fertilization. Subsequently, the prescribed appli-
cation of the water and nutrient solution commenced on day
18 after transplantation. The experiment lasted for 140 d after
transplantation.

2.3 Plant and soil characterization

The plants were harvested on days 138 to 140 after trans-
plantation and multiple indicators of plant performance were
measured. Shoot dry mass was determined separately for
each branch of every plant. The number of flowers, number
of fruit, and fruit dry mass were determined for each plant.
Leaf greenness within individual plant canopy was evalu-
ated in terms of the normalized difference vegetation index
(NDVI) captured by hyperspectral analyses of leaf samples
(ASD spectroradiometer; Malvern Panalytical, Cambridge,
UK) as follows:

NDVI=
R800−R670

R800+R670
, (1)

where R670 and R800 are the reflectance intensity at 670 and
800nm and represent red and near-infrared lights, respec-
tively.

Shoot and fruit N content across the canopy were deter-
mined using a high-temperature combustion elemental an-
alyzer (Thermo Fisher Scientific, Waltham, MA). The total
plant N uptake by the aboveground biomass was calculated
by integrating the dry-mass-weighted N content for each
plant. Total N uptake was corrected by subtracting the ini-
tial plant total N mass of representative seedling. The N use
efficiency (NUE) of the aboveground biomass was calculated
as the ratio of net plant N uptake to total N addition during
the experiment. The N content of the sand medium before
and after the experiment was below the detection limit.

After harvest, the soil compartments were allowed to air-
dry until the water content reached 3.5% to 4% by volume.
A uniform soil drying condition was established by subject-
ing the pots to constant airflow inside a fume hood. Then,
the soil from one replicate of each treatment was carefully
scooped out at 20mm depth intervals. The coarse root pieces
in each interval were kept in place by cutting. Roots were

removed by gentle sieving (4mm mesh) and subsequent and
manual picking. The dry root mass in each compartment is
reported. In separate replicates, the sand-coated roots (rhi-
zosheaths) were preserved by removing roots with minimum
agitation and were used for microscopic analysis. Confocal
images were obtained using a ZEISS LSM 880 Airyscan con-
focal microscope and an EC Plan-Neofluar 10× / 0.30 nu-
merical aperture (NA) objective lens (Carl Zeiss Microscopy,
LLC, White Plains, NY). We used 405 and 488nm lasers to
excite and identify autofluorescent organic compounds from
the nonfluorescent soil matrix. A transmitted light detector
(T-PMT) was used to acquire transmitted light images. A de-
tailed morphology of the roots and root hairs was acquired
using scanning electron microscopy (SEM; ZEISS Gemini
SEM 500, Carl Zeiss Microscopy, LLC, White Plains, NY).
SEM images were acquired at 3 kV after coating the samples
with gold (E5000 sputter coater; Quorum Technologies Ltd,
East Sussex, UK). A homogenized gold coating was used
to provide a conductive layer of metal that enhances image
quality by preventing the charging and damage of biological
tissues (Kim et al., 2010; Golding et al., 2016). Image analy-
sis and processing was done using ImageJ (Schneider et al.,
2012).

2.4 Soil hydraulic properties and fluxes

The water retention curve of silica sand was determined by a
water potentiometer (WP4C; METER Group, Pullman, WA).
To account for the osmotic effect of the nutrients on wa-
ter potential, we used a nutrient solution of 520mgN/L that
was consistent with the nutrient solution added to the dry
compartment of treatment D). The resulting water retention
curves were fitted with a Brooks–Corey model (Brooks and
Corey, 1966, 1964) as follows:

θ/θS = (ψ/ψ0)
λ, (2)

where ψ0 is air entry water potential, θS is the saturated wa-
ter content, and the residual water content was assumed to
be zero. The fitted water retention curve was used to con-
vert the psychrometric water-potential readings to equiva-
lent volumetric water content. The water potential range nec-
essary for HR calculations is ψ ≤−100kPa. Because the
water-potential-derived moisture dynamics is more sensitive
to small changes than the dielectric sensors, it was used for
estimating HR.

The magnitude of the HR flux was defined as the water
flux released from the root surface to the soil (mm/d). The
gain in volumetric water content was calculated by subtract-
ing the minimum daily root zone water content from the sub-
sequent daily maximum values (Meinzer et al., 2004). The
volumetric water content was then scaled to an equivalent
soil moisture depth by multiplying it by the thickness of the
layer where the roots were concentrated. Only the data after
the plants were well established and the effect of the initial
moisture has disappeared were used for this estimation. The
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Figure 2. Comparison of plant physiological indicators, including
(a) total dry biomass, (b) fruit dry mass, (c) number of flowers,
(d) total N uptake, (e) N uptake in fruit, and (f) N use efficiency
in treatments D, C1, and C2. The orange dots represent values of
individual replicates. The white diamonds and whiskers represent
the mean and standard deviation within each treatment. Distribution
of N content along the canopy length is shown in Fig. 3. One of the
replicates in treatment C1 did not produce fruits, resulting in larger
deviations in fruit dry mass and N update in treatment C1.

mean soil water potential corresponding to the observed HR
was calculated as the arithmetic average of the data recorded
between noon of the preceding day and the day HR occurred.

2.5 Statistical and data analysis

Plant physiological indicators were compared across treat-
ments using Welch’s analysis of variance (ANOVA) to avoid
interference from the heteroscedasticity of those indicators
(Welch, 1947). Post hoc multiple comparisons were per-
formed using the Games–Howell test (Games and How-
ell, 1976). Similarly, NDVI and N content at the whole-
plant scale were compared across treatments using Welch’s
ANOVA test. Mature leaf samples, i.e. the third to sixth
leaves from the growing tip (equivalent to the normalized
plant height of 0.8 to 0.9) were further selected to assess the
greenness of a mature leaf as suggested by Kalra (1998, re-
ported as leaf NDVI 0.8–0.9 in Table A1).

3 Results

3.1 Aboveground plant characteristics

The means of total aboveground biomass, fruit mass, num-
ber of flowers, N uptake by total biomass and fruit, and NUE
within each treatment are reported in Fig. 2. Error bars indi-
cate the standard deviations of three replicates. The means,

Figure 3. Leaf NDVI as a function of normalized plant height at the
end of the experiments in treatments D (b), C1 (b), and C2 (c). N
content (%) of stem and leaf samples across the canopy at the end of
the experiments in treatments D (d), C1 (e), and C2 (f). The green
dots represent leaf samples, while the red dots represent stem sam-
ples. The dots include three replicates within each treatment. The
diamonds and whiskers represent the mean and standard deviation
of replicates at the normalized plant height. Note: mean and stan-
dard deviation of leaf NDVI was calculated within an incremental
height of 0.1. N content (%) of stem and leaf samples was sepa-
rated into three portions across the canopy and thus reported as the
normalized height of 0.17, 0.5, and 0.84.

standard deviations, and p values of Welch’s ANOVA test of
these variables and other whole-plant-scale indicators of per-
formance are reported in Table A1. None of the indicators
had statistically significant differences between treatment
means determined by Welch’s one-way ANOVA (p > 0.05).
Distributions of tissue N content and leaf greenness across
the plant canopy are reported in Fig. 3. The vertical axis rep-
resents the normalized plant heights. In Fig. 3a, the distance
of the leaf stem from the soil surface is rounded to the near-
est incremental height; then, the NDVI of leaves of the same
height are grouped to calculate the mean and standard devia-
tion. The N content of leaves and stems were similarly pooled
into three height groups. Within each height group, there
were no statistically significant differences between treat-
ment means of N content determined by Welch’s one-way
ANOVA (p > 0.05). There was a statistically significant dif-
ference in whole-plant NDVI between the treatments means
determined by Welch’s one-way ANOVA (p < 0.001). Fur-
thermore, a pair-wise post hoc comparison showed that the
whole-plant NDVI in treatment D was not significantly dif-
ferent from the other controls, but there was a significant dif-
ference between the means of the two controls (p < 0.001).
Additional details are reported in Table A1. N concentration
and NDVI varied considerably with plant height within each

https://doi.org/10.5194/bg-17-6377-2020 Biogeosciences, 17, 6377–6392, 2020
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Figure 4. Incremental root mass distribution and distribution of to-
tal mass of root and rhizosheath along the soil profile in treatments
D (a, d), C1 (b, e), and C2 (c, f). The root mass and total mass of
root and rhizosheath within each interval was extracted and normal-
ized to the total root or root and rhizosheath mass from the two iso-
lated compartments. Each step in the plot represents the normalized
mass distribution within the 20mm soil depth. Note: wet and dry
compartments (compartments with 90% versus 10% water, respec-
tively, in Fig. 1) were defined operationally to distinguish water sup-
ply for treatments D and C1 mainly; in treatment C2, the water was
supplied uniformly in the disconnected compartments, and they are
labeled as left or right compartments. Detailed schemes of water and
nutrient supply are provided in Fig. 1. In addition, we set the range
of root mass distribution and distribution of total mass of root and
rhizosheath within 0 %–35 % for proper visualization and consis-
tency. However, the root and rhizosheath mass within 240–260 mm
in the wet compartment of treatment C1 accounted for ∼ 67 % of
the total distribution (e), which was beyond the plotting range. De-
tailed results of root and rhizosheath distribution are provided in the
data set in the Supplement.

treatment. Generally, the younger leaves at the top of the
canopy have a higher N content and NDVI than the oldest
leaves at the base (Fig. 3). Such nutrient translocation dur-
ing plant growth is typical. Therefore, we did not perform a
statistical test of height-based differences.

3.2 Root distribution and rhizosphere characteristics

Root mass distributions in the two compartments of the three
treatments are shown in Fig. 4. The values represent the root
mass in each 20mm layer as a percentage of the total root
mass of the whole plant. The top row is from replicates
in which all the sand was removed from the rhizospheres,
whereas the bottom row is from replicates in which the sand
particles that tightly adhered to the roots (rhizosheath) were
kept intact. For treatments D and C1, the wet and dry labels
refer to the compartments that received ≈ 90% and ≈ 10%

Figure 5. SEM images of representative rhizosheaths collected
from the wet and dry compartments of treatments D, i.e., (a) and (b),
respectively, and C1, i.e., (c) and (d), respectively. All the SEM im-
ages have identical magnification (all four subfigures used a 100µm
scale bar) that permits a visual qualitative comparison.

irrigation water, respectively. Note that there were no such
differences in applied irrigation water between the two com-
partments of treatment C2 (see Fig. 1). The roots in the
nutrient-free wet compartment of treatment D (marked as wet
in Fig. 4a) were distributed mostly uniformly throughout the
depth profile, with a slight increase near the bottom. In con-
trast, the roots grown in the nutrient-rich dry compartment
were mainly concentrated in the midsection, coinciding with
the depth at which the nutrient solution was supplied using
a subsurface injector (Fig. 1). Overall, 60% of the total root
mass was observed in the nutrient-rich dry compartment of
treatment D, where only ≈ 10% of the irrigation water was
available (dry compartment in Fig. 4a). In contrast, the root
mass distribution in the nutrient-rich wet compartment of the
first control treatment C1 increased with depth, with a no-
table accumulation of root biomass at the base (wet compart-
ment in Fig. 4b). However, the root mass in the nutrient-free
dry compartment was stunted and accounted for only 20%
of the total root mass (dry compartment in Fig. 4b). There
was no considerable difference in root mass distribution be-
tween the two compartments of the second control treatment
C2 where water and nutrient were supplied equally to both
compartments. There was a slight accumulation of roots at
the base of both compartments.

The replicates with rhizosheaths exhibited similar gen-
eral patterns to the roots, but two regions showed more pro-
nounced root and rhizosheath accumulation than roots alone.
First, the midsection (140 to 160mm) of the nutrient-rich dry

Biogeosciences, 17, 6377–6392, 2020 https://doi.org/10.5194/bg-17-6377-2020
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compartment of treatment D (Fig. 4d) contained one-third of
the roots and rhizosheaths of the entire plant. Visually, more
roots appeared to be covered by sand in this layer than any
other in the entire compartment. Fewer roots exhibited rhi-
zosheaths in the nutrient-free dry compartment of treatment
C1 (Fig. 4e). Therefore, both the root density and intensity
of rhizosheath formation appear to be correlated to nutrient
availability in the dry soil.

Similarly, the bottom layer of the wet compartment in
treatment C1 accounted for two-thirds of the roots and rhi-
zosheaths of the entire plant. The roots at this depth visually
exhibited the highest amount of rhizosheath than any other
layer by far. This is partly due to the ponding of water at
the base of this compartment and possible differences in the
degree of drying.

The roots in all the treatments exhibited the formation of
rhizosheath. There were no differences in the visual appear-
ance of rhizosheaths collected from the wet and dry com-
partments in the three treatments. However, notable differ-
ences were observed in the microscopy images. Representa-
tive SEM images of the rhizosheaths of treatments D and C1
are shown in Fig. 5. Overall, the dry compartments (Fig. 5b
and d) exhibited denser and longer root hairs than their wet
counterparts (Fig. 5a and c) within the same treatments.
There was little noticeable difference between the two wet
compartments (Fig. 5a and c). The nutrient-rich dry com-
partment (Fig. 5b) exhibited visually thicker and more dense
root hairs compared to the nutrient-free dry compartment
(Fig. 5d). Confocal microscopy images of the sand grains in
the rhizosheath of the nutrient-rich dry compartment of treat-
ment D showed extensive amorphous organic coating that ap-
peared to be distinct from the roots and root hairs (Fig. S5).

3.3 Water dynamics

A representative water content dynamic measured by the di-
electric sensors during a typical week is shown in Fig. 6. This
pattern occurred consistently throughout the experiment. The
complete data set is shown in Fig. S6. The different shades of
blue and red represent the replicates of the wet and dry com-
partments. Recall that there was no distinction in wetness in
treatment C2. The observed differences between replicates
are likely due to variations in the proximity of sensors to
roots and the irrigation tubing or random differences in soil
packing and plant growth patterns. Overall, the wet compart-
ments irrigated on a daily cycle remained at a higher moisture
level most of the time. The most striking difference was ob-
served between the dry compartments of treatment D and C1.
Specifically, in the presence of nutrients, the water content
in the dry compartment of treatment D was depleted within
1 d after each application of the nutrient solution (Fig. 6a),
whereas the water content of the nutrient-free dry compart-
ment of treatment C1 declined slowly over 1 week (Fig. 6b).
This difference in water uptake rate is consistent with the

Figure 6. Changes in the dielectric soil volumetric water content
(v/v) during days 113 to 121 after transplantation in the wet and
dry compartments of treatments D and C1 and in left and right com-
partments of treatment C2 (a, b, c). The different shades of red and
blue in these figures are used to distinguish between replicates. Note
that the wet compartments were irrigated daily, while the dry com-
partments were irrigated once a week for the majority of the ex-
periments (days 40 to 140 after transplantation). The results plotted
represent a typical cycle of soil water content changes. The long-
term results of dielectric soil volumetric water content can be found
in the Supplement.

differences in root mass distribution between the dry com-
partments shown in Fig. 4a and b, respectively.

Psychrometers were installed only in the dry compart-
ments of treatments D and C1. The sensors in treatment
C1 did not register meaningful data because the soil never
dried to within the measurement range of the psychrometers
(ψ <−50kPa). Also, one of the three pairs of psychrometers
installed in treatment D failed. A representative 3-week range
of data from the functioning five sensors is shown in Fig. 7a.
The full data set, including the unphysical readings of the
relatively wet soils, is provided in the Supplement (Fig. S7).
The soil water potential increased with each nutrient solution
application and dried to the preirrigation levels within 1 d,
consistent with the water content data shown in Fig. 6a. A
total of 1 d after applying the nutrient solution, the water po-
tential exhibited a diurnal fluctuation with a daytime decline
and a nighttime increase, but the average water potential re-
mained stable during this period. The variation remained be-
tween −100 and −1000kPa and did not dry to the level of
permanent wilting (ψ − 1500kPa).

The water potential data were converted to volumetric wa-
ter content using a water retention curve of the same soil
(Fig. A1). The resulting water content dynamics are shown
in Fig. 7b (see Fig. S7 for the full range). Notice that this
water content dynamic reveals more detailed diurnal fluctu-
ation than the dielectric sensors with limited sensitivity to
small daily changes between 0.01 and 0.12 v/v. The noctur-
nal water release increased the root zone water content by
≈ 0.01 v/v, and a similar amount was taken up by the roots
during the daytime.
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Figure 7. Changes in soil water potential (a), water content con-
verted from soil water potential (b), and root zone wetting flux
(c) from HR and irrigation as a function of time in the dry compart-
ment of treatment D during days 106 to 126 after transplantation.
HR outflow magnitude is a function of water potential (ψ), where
HR, described by a power law model, is shown as a solid line (d).
In (a) and (b), the solid black lines and gray shading represent the
average and the standard deviation of the soil water potential and
converted water content from five sensors distributed in three repli-
cate compartments. Similarly, in (c), solid dots represent the calcu-
lated water flux from five sensors, and the diamonds and whiskers
show the average and standard deviation of the water flux. In (d),
the water flux from HR during the whole experiment was used. The
long-term results of soil water potential and converted water content
are provided in the Supplement.

The gain in volumetric water content was multiplied by
50mm, which represents the approximate depth of root con-
centration in the nutrient-rich dry compartment (Fig. 4a).
The gain in water content during nutrient application (irri-
gation) was also calculated similarly but marked differently.
The magnitudes of the root zone wetting by HR and irriga-
tion fluxes, which were recorded by each of the five working
sensors, are reported in Fig. 7c. HR flux remained consistent
for most of the study duration, with slight increases observed
on the day after each irrigation event. The HR flux was 1 or-
der of magnitude lower than the intermittent irrigation (0.1–
1.0 versus 1.0–10mm/d). The relationship between the ab-
solute magnitude of HR and the daily mean water potential

Figure 8. Mechanisms, functions, and applications of root uptake
under mismatched distributions of water and nutrients in the root
zone. (a) Schematic representation of how HR supports nutrient up-
take under our experimental conditions. (b) Hypothesized function
of HR as an adaptation mechanism in natural systems, where nu-
trients are concentrated in shallow layers that are prone to frequent
drying. (c) A proposed management practice that can reduce nutri-
ent leaching from irrigated agriculture by capitalizing on the mech-
anisms elucidated in this study.

is shown in Fig. 7d. A statistically significant positive trend
(p < 9.8× 10−22) described by a power law was observed.

4 Discussion

The above results directly address the following three crucial
questions we set out to answer: does the mismatched distri-
bution of water and nutrients within a soil profile adversely
affect plant performance? If not, to what extent are roots able
to acquire nutrients from dry soil patches provided that wa-
ter is available elsewhere? What is the role of HR in nutrient
uptake from dry patches?
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4.1 Aboveground plant performance

We did not observe a measurable difference in reproductive
success (number of flowers, fruit, and fruit mass) and nutrient
acquisition by the aboveground parts (leaf greenness, nutri-
ent content, and uptake) between any of the treatments, ex-
cept for a small but significant difference in the mean whole-
plant NDVI between the two control treatments. These re-
sults showed that a nearly complete separation of water and
nutrients does not significantly impact the overall perfor-
mance of tomato plants. Intermittent irrigation could possi-
bly have alleviated root stress in the dry compartments. Nev-
ertheless, it is noteworthy that the plants subjected to mis-
matched resource allocation derived all their nutrients from
soil patches that undergo pronounced drying conditions with-
out showing any aboveground signs of stress. These soils per-
sistently remained at−900 to−500kPa for 85% of the grow-
ing period. This moisture status is close to the wilting point,
as indicated by the water retention curve (Fig. A1). This in-
distinguishable aboveground performance suggests the exis-
tence of a belowground adaptation mechanism. Our results
indicate that the tomato plants subjected to mismatched re-
source distribution employed strategies of root functions that
are distinct from plants grown with matched resource avail-
ability. Specifically, we suggest three interacting mechanisms
that support nutrient acquisition from dry soil, which are
schematically illustrated in Fig. 8. These include matching
root distribution with resource distribution, capitalization on
HR water for nutrient acquisition and root support, and HR
facilitation via modification of rhizosphere.

4.2 Root distributions

The markedly higher concentration of roots in the nutrient-
rich dry soil compartment (Fig. 4a and d) than in the sim-
ilarly irrigated but nutrient-free compartment indicates that
these roots were foraging for nutrients. Due to frequent irri-
gation and the coarse texture of the soils, the highest nutrient
leaching to the bottom of the pots likely occurred in treatment
C1, where nutrients were supplied with ≈ 90% of the irri-
gation water, followed by treatment C2, where nutrients and
water were equally divided between the two compartments.
Likewise, there was a distinct accumulation of roots at the
base of the wet compartment of treatment C1 (Fig. 4b), fol-
lowed by significant but less pronounced accumulation at the
bases of both compartments of treatment C2 (Fig. 4c). The
above observation suggests that a substantial proportion of
root growth is driven by nutrient availability. It also indicates
the existence of root growth regulation mechanisms tied to
the sensing of resource availability signals (Bao et al., 2014;
Weidlich et al., 2018). If the pots were deeper, it is likely that
the roots in the wet compartment of treatment C1 and both
compartments of treatment C2 would have grown deeper as
well. Therefore, our conclusion that nutrient availability dic-

tates root distribution is not necessarily limited to the specific
pot’s dimensions used in this study.

4.3 Role of HR

Attributing the water content and water-potential dynamics
reported in Figs. 6 and 7, respectively, to the HR flux requires
eliminating other possible mechanisms that may result in
similar fluctuations. In principle, a lateral redistribution from
relatively moist parts to dry parts of the same compartment
can result in a signature that resembles the observed trend.
However, this is highly unlikely because all five working psy-
chrometers across the three replicates recorded synchronized
dynamics of a nightly increase and a daily decrease in water
potential (Figs. 7a and S7). Lateral redistribution would re-
quire some parts of the soil to lose water at night and gain
water during the day, which was not recorded by any sensor.
Furthermore, the slow decline in water content (measured by
the dielectric sensors) in the dry compartment of treatment
C1 (Fig. 6b) suggests that vertical water redistribution is a
relatively slow process that does not match the rapid water
potential fluctuation in the much drier, nutrient-rich compart-
ment of treatment D. Finally, the dielectric sensors captured
a trace of the diurnal pattern in the dry compartment of treat-
ment D that is consistent with HR (Figs. 6a and S6). But the
magnitude of the latter fluctuations is close to the detection
limit of the dielectric sensors and could not be relied upon
for quantitative analysis.

How can only 10% of the irrigation water support 60% of
the root growth and be responsible for 100% of nutrient up-
take in treatment D? A trivial explanation could be that root
growth and nutrient uptake occurred only during the short
pulses of nutrient injection. However, the occurrence of HR
only in this treatment suggests a substantial role of HR in the
adaptation to the mismatched distribution of resources. We
propose two possible functions of HR.

First, HR prevents root stress and loss of function by pre-
venting excessive drying (Boyer et al., 2010; Bauerle et al.,
2008). After every weekly nutrient application in treatment
D, the water content (Figs. 6a and 7b) and water potential
(Fig. 7a) declined rapidly. However, HR allowed the water
potential to remain at a stable dynamic equilibrium with-
out ever approaching permanent wilting point (−1500kPa;
Fig. 7a).

Second, HR allows nutrients to remain in a solution and be
mobile, thereby facilitating nutrient uptake by roots. The role
of HR in supporting enhanced nutrient cycling and uptake
has been previously noted in field conditions (Bogie et al.,
2018; Cardon et al., 2013; Matimati et al., 2014).

4.4 Facilitation of HR

The above observations lead to the following critical ques-
tion: do roots have agency in regulating HR or is their uti-
lization of HR for nutrient uptake merely capitalization of
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a sweet accident passively governed by physical conditions
of the environments (Caldwell et al., 1998; Horton and Hart,
1998; Ryel, 2004)? We argue that roots indeed play some
role in triggering and regulating HR, and we submit three
complementary points of evidence to support this argument.

First, HR was detected only in the nutrient-rich dry com-
partment of treatment D but not in the identically wetted
nutrient-free dry compartment of treatment C1. Roots drive
HR by drying the rhizosphere and creating the necessary wa-
ter potential gradient to pull water from the wet compart-
ment. In addition, extensive root growth provides the neces-
sary flow channel and surface area to carry and release HR
water. However, the presence of essential nutrients in the dry-
ing soil appears to be an additional condition for HR.

Second, drying also counters HR by dropping the hy-
draulic conductivity of the rhizosphere (van Genuchten,
1980), which restricts the ability of water to diffuse away
from root surfaces. Evidence for the role of hydraulic con-
ductivity in controlling HR is indicated by the positive corre-
lation between water potential and HR depicted in Fig. 7d.
Decline in HR magnitude has been previously attributed
to the loss of hydraulic conductance in soil–plant systems
(Meinzer et al., 2004; Prieto et al., 2010; Scholz et al., 2008).
At first glance, this observation appears to contradict the
commonplace observation of rapid and spontaneous imbibi-
tion during infiltration into dry soils. However, it is crucial
to recognize that, unlike the wetting front of infiltration, the
surface of roots during HR typically remains at a low wa-
ter potential and is more susceptible to a drop in hydraulic
conductivity (see Appendix A for detailed explanation).

Thirdly, therefore, it appears that the modification of that
aspect of the rhizosphere that increases hydraulic conductiv-
ity would benefit plants by enhancing the benefits of HR.
There is a growing consensus on the importance of root hairs
for nutrient uptake (Zhang et al., 2018; Bates and Lynch,
2001), which includes the suggestion that denser and thicker
root hairs alter the soil porosity and hydraulic connectivity at
the root–soil interfaces (Keyes et al., 2017; Koebernick et al.,
2017, 2019). Evidence of this role of root hairs was present in
our study, as shown by the pronounced density and thickness
of root hairs observed in the nutrient-rich dry compartment
of treatment D (Fig. 5b). Moreover, roots can enhance the
rhizosphere’s water retention by accumulating rhizodeposits
(Carminati et al., 2010; Moradi et al., 2011; Albalasmeh and
Ghezzehei, 2014; Ghezzehei and Albalasmeh, 2015). Rhi-
zodeposition released from root tips has been found to de-
crease the local soil water potential (McCully and Boyer,
1997) and facilitate soil aggregation, and it is often cred-
ited for facilitating water and nutrient extraction (Pang et al.,
2017; Watt et al., 1994). We observed, albeit in a small scope,
organic coatings of sand in the rhizosphere of the nutrient-
rich dry compartment of treatment D (see Fig. S5), which
further supports the agency of roots in enhancing HR.

4.5 Broader implications of findings

Although our experiments focused on only one plant bred
for agricultural purposes in an artificial environment, we can
make educated conjectures on how plants can adapt to a mis-
matched resource environment. The deliberate imposition of
the extreme separation of resources used in our experiments
gives credence to the broader applicability of the proposed
mechanisms. The above evidence allows us to propose a con-
ceptual model of how HR plays a central and critical role
in plant adaptation to mismatched resource distributions, as
illustrated in Fig. 8b. The condition presented in this dia-
gram represents a soil profile in an arid or semiarid envi-
ronment that experiences frequent and extreme drying of the
shallow layers, while soils at depth retain sufficient amounts
of water to support transpiration. Moreover, organic matter
and plant-available nutrients are preferentially concentrated
in the shallow soil. This soil profile resembles most of the
natural (Caldwell and Richards, 1989; Cardon et al., 2013;
Dawson, 1993) and agricultural (Kizito et al., 2007; Bogie
et al., 2018; Wang et al., 2009) field conditions under which
HR has been observed. The plant roots are shown to tap both
resources by using the HR water to mobilize nutrients that
would otherwise remain biologically unavailable.

We also argue that HR is triggered and facilitated to aid in
nutrient uptake. The fact that we observed HR in a shallow-
rooted herbaceous plant (tomato) suggests that the mismatch
of resources rather than climate and plant type are the pri-
mary drivers of HR. Increasing water uptake is not necessar-
ily the primary function of HR, as has been postulated else-
where (Ghezzehei and Albalasmeh, 2015; Carminati et al.,
2016; Meinzer et al., 2004). Indeed, our observations of root
zone water dynamics (Fig. 7b) suggest that the net contribu-
tion of HR to transpiration at the whole-plant scale is small.
In our experiment, nutrients were delivered with low weekly
pulses of irrigation. In real conditions, precipitation events in
arid and semiarid regions can be less frequent. Therefore, our
conceptual model suggests that HR is critical for the suste-
nance of root functions during extended drought spells.

Furthermore, maintaining the soil water status above a
detrimental threshold via HR would permit soil microbes to
carry out essential nutrient cycling functions in the rhizo-
sphere. Nutrient cycling was likely less critical in the cur-
rent study because the sand lacked organic matter, and all
nutrients were delivered in a plant-available form. However,
the effects of HR on microbial functions in the shallow dry
soil layers can be substantial under field conditions (Cardon
et al., 2013) where the bulk of plant nutrients are likely to ex-
ist in nonavailable forms that are affixed to mineral surfaces
and part of organic matter (Keiluweit et al., 2015; Li et al.,
2004). The HR-facilitated microbial activities can be exten-
sive at the ecosystem scale through interaction with the rhi-
zodeposition dynamics (Williams and de Vries, 2020). This
hypothesis is consistent with the frequent occurrence of HR
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in deep-rooted shrubs of arid and semiarid regions (Kizito
et al., 2007; Bogie et al., 2018).

4.6 Implication for sustainable agriculture

In this study, we used relatively shallow and closed pots to
eliminate differences in total nutrient and water availability.
However, had the bases of the pots been open or deeper, a
fraction of the nutrient supply could have leached below the
rooting depth in the control treatments C1 and C2. Higher
root density at the bases of the pots in these treatments sug-
gests that the roots were able to utilize the leached nutrients.
This finding highlights a persistent curse of modern irrigated
agriculture in which a substantial fraction of applied fertiliz-
ers leach below the rooting depth (Bowles et al., 2018). As
a result, while the NUE in many industrialized countries has
been increasing at a modest rate, the yield gains achieved in
most developing countries over the past half-century came
at a significant decline in NUE (Zhang et al., 2015) and en-
vironmental and ecological degradations, including air and
water pollution and the accumulation of potent greenhouse
gases (Bowles et al., 2018; Balmford et al., 2018). Meeting
the 2050 global food demand while safeguarding environ-
mental quality would require harvested N to increase by 45%
whereas NUE would need to increase from 40% to 70%
(Zhang et al., 2015). Our findings suggest that the coloca-
tion of nutrients and water, which is the main driver for N
loss by leaching and volatilization (Bowles et al., 2018), is
not necessary for maintaining productivity. Thus, spatially
isolating the bulk of irrigation water from the applied N can
be effective in drastically cutting N losses. In Fig. 8c, we
propose one such approach. The scheme involves meeting
the transpiration demand of crops by irrigating every other
row while using the rest of the rows to deliver nutrients in
small quantities. The approach resembles a well-established
partial root drying (PRD) method of irrigation practiced in
arid regions, including Israel and Australia (Bielorai, 1982;
Dry et al., 2000). In PRD, every other row is irrigated in an
alternating schedule, whereas our proposed scheme requires
that nutrients and water be delivered to dedicated rows. This
proposal is consistent with a recent recommendation by Vet-
terlein et al. (2020) to utilize the integrative function of plant
decision-making and self-regulation in the sustainable man-
agement of agricultural systems.

5 Conclusions

Our findings demonstrated that tomato plants can utilize het-
erogeneously distributed resources without adverse impact
on their performance. Specifically, we showed the ability of
plants to acquire 100% of their nutrient needs under the ex-
treme mismatch of water and nutrient distributions. We pro-
vided evidence that suggests that a successful adaptation to
such an environment involves coordination between the com-

ponents of the root system that inhabit environments with
contrasting resource availability. Critical to this mechanism
is a reliance on multiple strategies, including extensive root
proliferation, that allow rapid nutrient capture from imme-
diate windows of availability under favorable moisture con-
ditions and sustained HR to support an active root system
and facilitate nutrient transport under unfavorable or drought
stress conditions. It appears that the overall plant nutrient
demands drive the occurrence of HR because of HR’s role
in supporting the acquisition of nutrients. Regulation mech-
anisms that control HR occurrence and magnitude include
root adaptations at different spatial and temporal scales, in-
cluding the extensive proliferation of root branches, thick
root hairs, and rhizodeposition formation. Finally, we pro-
vided a conceptual model of how HR may play an integral
role in plant adaptation to mismatched resource distributions
and suggested a nature-inspired irrigation scheme to mini-
mize nutrient losses and environmental pollution.
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Appendix A: Effect of wetness on HR

The pattern of HR reported in Fig. 7d appears to contradict
the analogy with infiltration, where flux density is expected
to rise with a decrease in initial wetness. The observed pat-
tern can be explained assuming the water flux at the root–soil
interface is governed by a flux law that is analogous to the
Buckingham–Darcy law as follows:

q =
ψr −ψ

δ
K(ψ). (A1)

The first term denotes the water potential gradient, i.e., dif-
ference between the value at the root surface (ψr ) and the
rhizosphere (ψ), δ denotes the thickness of the rhizosphere,
and K is the hydraulic conductivity of the rhizosphere. The
relationship between ψ and HR flux depends on both hy-
draulic conductivity and hydraulic gradient. Notice that dry-
ing of the rhizosphere soil affects these two factors in oppo-
site directions by increasing the gradient and decreasing the
conductivity. Therefore, the net effect should be dependent
on the relative magnitudes of these effects. For simplicity, if
we assume that K is described by K =Kseα(ψ−ψ0) based
on Gardner (1958), where Ks is the saturated hydraulic con-
ductivity, ψ0 is air entry water potential, and α is a fitting
parameter related to soil pore size characteristics, then the
above flux law can be simplified as follows:

δq

Ks
= (ψr −ψ)e

α(ψ−ψ0). (A2)

It can be shown that the above scaled flux has a maxima at
ψ∗ = (αψr − 1)/α. Above this threshold (ψ > ψ∗), flux in-
creases with the drying of the rhizosphere, while below the
threshold (ψ < ψ∗) the opposite would occur. In the range
of measurements observed in this study (−1000kPa≤ ψ ≤
−100kPa), the latter appears to dominate.

Figure A1. Water retention as a function of water potential de-
rived from independent soil characterization. The points represent
the measurement of water content and water potential using the po-
tentiometer, and the solid line is the best-fit Brooks–Corey model.
The measurement points adequately cover the range of water poten-
tial at which HR was observed using psychrometers. These curves
were used for the conversion of water potential to water content
and the calculation of HR water flux, as shown in Fig. 7b, c, and d.
The fitted parameters of the curve are the air entry water potential
(ψ0 : −6.51kPa) and the dimensionless shape factor (λ : −0.63).
The saturated water content was estimated from the bulk density as
saturated water content, θs : 0.47 v/v, and the residual water con-
tent was assumed to be zero.
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Table A1. The mean, standard deviation of physiological indicators, and the p value of Welch’s ANOVA test across treatments. Note:
comparison of leaf NDVI was performed both at the third to sixth branches (equivalent to the normalized plant height of 0.8 to 0.9) and the
whole-plant scale. Values with different letters indicate significant difference (p < 0.05).

Variables Treatments p value

D C1 C2

Total dry mass (g) 6.23± 0.41 6.57± 1.01 6.84± 0.34 0.30
Shoot dry mass (g) 5.37± 0.54 5.87± 0.87 6.19± 0.43 0.28
Initial dry mass (g) 1.43± 0.34 1.26± 0.02 1.05± 0.12 0.16
Flowers 3.67± 2.08 4.00± 2.65 2.67± 1.53 0.73
Fruit 2.00± 1.00 1.67± 1.53 2.00± 1.00 0.95
Fruit dry mass (g) 0.85± 0.13 0.70± 0.61 0.65± 0.36 0.70
Fruit N content (%) 2.23± 0.21 1.36± 1.23 1.87± 0.09 0.28
Fruit N uptake (mgN) 19.21± 4.9 14.37± 13.57 12.22± 6.8 0.48
Shoot N content (%) 1.35± 0.10 1.32± 0.11 1.16± 0.21 0.21
Shoot N uptake (mgN) 69.67± 6.11 80.11± 6.65 76.32± 8.15 0.28
Total N uptake (mgN) 70.73± 6.71 78.63± 6.42 77.01± 2.94 0.43
N usage efficiency (%) 59.04± 5.60 65.63± 5.36 64.28± 2.45 0.43
Leaf NDVI (0.8–0.9) 0.88± 0.01 0.86± 0.04 0.89± 0.01 0.10
Leaf NDVI (whole plant) 0.84± 0.10ab 0.82± 0.06b 0.86± 0.05a < 0.001

Table A2. The elemental composition of essential macro- and mi-
cronutrients in the irrigating nutrient solution. Note: the elemental
concentration was reported as the normalized concentration to the
nitrogen level. The calculated results were based on the information
from the product manufacturer’s label.

Macro- and Normalized
micronutrients concentration

Nitrogen 1.00
Phosphorus 0.46
Potassium 1.45
Calcium 0.55
Magnesium 0.15
Sulfur 0.18
Boron < 0.01
Copper < 0.01
Iron 0.01
Manganese 0.01
Molybdenum < 0.01
Zinc < 0.01

Note: commercial hydroponic nutrient
solution (General Hydroponics, Santa Rosa,
CA) derived from ammonium nitrate,
calcium nitrate, magnesium nitrate,
magnesium sulfate, monopotassium
phosphate, potassium nitrate, potassium
sulfate and sodium molybdate was diluted
accordingly for nutrient application.
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