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ABSTRACT

The phylum Porifera includes the aquatic organisms known as sponges. Sponges are classified into
four classes: Calcarea, Hexactinellida, Demospongiae, and Homoscleromorpha. Within Demospongiae and
Hexactinellida, sponges’ skeletons are needle-like spicules made of silica. With a wide variety of shapes and
sizes, these siliceous spicules’ morphology plays a pivotal role in assessing and understanding sponges'
taxonomic diversity and evolution. In marine ecosystems, when sponges die their bodies disintegrate over
time, but their spicules remain in the sediments as fossilized records that bear ample taxonomic information
to reconstruct the evolution of sponge communities and sponge phylogeny.

Traditional methods of identifying spicules from core samples of marine sediments are
labor-intensive and cannot scale to the scope needed for large analysis. Through the incorporation of
high-throughput microscopy and deep learning, image classification has made significant strides toward
automating the task of species recognition and taxonomic classification. Even with sparse training data and
highly specific image domains, deep convolutional neural networks (DCNNs) were able to extract taxonomic
features among morphologically diverse microfossils. Using transfer learning, training a classifier on
pretrained DCNNs has achieved recent successes in classifying similar microfossils, such as diatom frustules
and radiolarian skeletons.

In this project, I address the reliability of pretrained models to perform spicule identification and
class-level classification. Using FlowCam technology to photograph individual microparticles, our dataset
consists of spicule and non-spicule types without additional image segmentation and augmentation. Our
proposed method is a pre-trained model with a custom classifier that performs two different binary
classifications: a spicule vs non-spicule classification, and a taxonomic classification of Demospongiae vs.
Hexactinellida. We evaluate the effect of implementing different DCNN architectures, data set sizes, and
classifiers on image classification performance. Surprisingly, MobileNet, a relatively new and small
architecture, showed the best performance while still being the most computationally efficient.

Other studies that didn’t involve MobileNet had similar high accuracies for multi-class classifications
with fewer training images. The reliability of DCNNs for binary spicule classification implicates the
promising approach of a more nuanced multi-class/taxonomic classification. Future work should build
multi-class classification that ranges more biogenic materials for the identification or more sponge
taxonomic levels for species classification.

Keywords: Convoluted neural networks (CNN) ∙ Sponge Spicules ∙ Porifera ∙
Microorganisms ∙ Transfer learning ∙ Deep Learning ∙ FlowCAM ∙ Feature extraction ∙ SVM
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1. Introduction

Sponges (Phylum Porifera) are aquatic animals that come in a wide range of colors, shapes,

and sizes. With approximately 8,550 species, sponges encompass four classes: Calcarea,

Hexactinellida, Demospongiae, and Homoscleromorpha, of which Demospongiae is by far the

most speciose, and Hexactinellida dominate in the deep sea [1].  Depending on a clade- or

species-level taxon, their skeletal elements, namely spicules, are genetically unique in

composition, shape, and size [2]. Their material composition is either calcium carbonate (a

Calcarea characteristic) or silica (the remaining 3 classes) [1].

Numerous studies have focused on the assessment of sponge communities over time [3].

Acting as paleoenvironmental markers, siliceous spicules can help to reconstruct the geographic

ranges of sponge taxa and infer new environmental conditions for a historical period [3]. This

domain of research can range from how sponges play a role in the biogeochemical cycling of

silica (due to their silica dependence) to discovering how their populations may have responded

to past climate change events to help forecast global warming implications [3,4]. In recent years,

the classification of demosponges and hexactinellids has gone through many modifications with

various proposed morphological intermediates [5]. This difficulty of morphological classification

originates in part from data gathering being too time-consuming and requiring thorough expertise

beforehand. This is true of a variety of microfossils such as diatom frustules and radiolarian

skeletons [6].

Given the laborious nature of taxonomic practices, state-of-the-art image classification has

potential as a method for reliably extracting and classifying various morphology features. In

particular, the recent application of deep convolutional neural networks (DCNNs) has shown
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significant promise across various species-labeled datasets. Compared to previous traditional

machine learning models, pre-trained models benefit from their ability to extrapolate new

features from a sparse dataset. Known as transfer learning (TL), a pre-trained model from an

image domain can be repurposed for a new problem+dataset [7].

In DCNN terminology, “feature extraction” refers to the process of transforming raw pixel

values into preservable, higher-level image representations. After feature extraction, DCNNs can

be configured for different types of classification problems. For taxonomic identification, Ahmed

et al. achieved an accuracy of 96% on microscopic bacterial images using an  Inception-V3

model and a support vector machine (SVM) [8]. Blaschko. et al. acquired accurate classification

results through a similar method. Their image dataset consists of plankton species like diatoms

and dinoflagellates [30]. As with their project’s image gathering, their plankton dataset was

collected via an image segmentation hardware called FlowCam, which produces a digital

photograph of each individual particle in a sample. Given DCNNs’ successes in similar

image-based microscopic domains, the utilization of DL on spicule images is a promising

approach.

Through model evaluation, this study seeks to demonstrate the reliability of DCNNs for

spicule-based image recognition & taxonomic identification. This paper covers two binary

classifications: a spicule to non-spicule (diatoms, radiolarians, inorganic sediments, etc.)

approach, and taxonomic classification of  Demospongiae vs. Hexactinellida. I evaluated 4

pre-trained model types through several evaluation protocols to assess their computational

differences. These evaluation protocols used different dataset sizes, classifiers, and architecture

variants. Different dataset sizes to derive what relevance the number of training images has on

spicule identification and/or classification. In machine learning, there is no one classifier that is
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always better than the others. Thus, this study makes statistical comparisons to know the best

algorithm for its respective pre-trained model. Architecture variants were implemented to

observe any disparity in either using an older or newer model version.To conclude, Section 7

discusses the generally high-performing variant of our proposed method and the possible

workflow of future sponge taxonomists using DCNNs for multi-label sponge taxonomy.

2. DCNN for image classification

For many image classification problems, a typical CNN model architecture consists of a

convolutional base, a pooling layer, and a classifier (Figure 1) [10]. Most of the network’s

computational load and user-specified parameters will be in the convolutional layer. This

convolutional layer is designed to apply filter kernels to images or pre-existing feature maps. In

essence, a feature map is the output of one filter applied to the previous layer. The layer’s

kernel-based filters introduce translation invariance and parameter sharing via convolutions.

Translation invariance means that the system produces exactly the same response, regardless of

how its input is shifted. Simply put, convolutions are an element-wise multiplication and

summation of the input and kernel/filter elements.When feature maps are produced, padding is

applied to ensure the output has the same size as the original image. This event highlights the

presence of a feature in an image [10]. From the human perspective, this idea is akin to

distinguishing a microorganism's body shape as either needle-like, rectangular or circular.

By typically performing max-pooling, the pooling layer reduces the image dimensionality

by taking the maximum value for patches of a feature map and using it to create a downsampled

(pooled) feature map [10]. This step preserves important information while shrinking the data

[7]. As the architecture’s last output, the classifier is usually composed of fully connected layers
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(FCL) with a softmax function. FCL with a softmax function is explained in detail in Section 3.

However, there are plenty of classifier alternatives that include global average pooling, SVMs,

and other traditional machine learning classifiers. The classifiers used in this paper were selected

based on their prevalence in other taxonomic studies. Other supervised machine learning

algorithms like K-nearest neighbors, Random Forests, and Decision Trees should be explored but

currently tend to underperform in taxonomic studies.

A CNN’s main goal is to generate feature vectors to see whether an input image belongs to a

particular class or another. As additional layers are added for more complex functions, more

hidden layers/neurons deepen the CNN to recognize specialized features like complex shapes

toward the end of the architecture [11]. However, the first few layers would focus on learning

feature detectors like corners, edges, bends, etc.

Figure 1: CNN Architecture

This architecture has the concept of hierarchical feature extractors. It learns highly abstract

features from the diatom image and identifies its characteristics efficiently [7].
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Deep learning (DL) models have an advantage in automatically learning hierarchical feature

representations. This is because the general features of their first layer can be reused in different

image domains in technical fields such as microscopy. Once applied, the last few layers

concatenate already known features with new features specific to the task at hand [12]. Trained

on larger image sets, DCNNs’ concatenated features can facilitate the classification of spicules

with sparse datasets. In turn, this alleviates the previous barriers to investing human resources to

acquire large amounts of training data.

2.1. ML-based research in microorganism image recognition

ML-based methodologies have been applied to many different microbes for image analysis.

Recent techniques have been implemented on different types of microorganisms including fungi,

bacteria, algae, and protozoa (Figure 2). Since 2015, researchers have proposed hybrid systems

based on CNNs for feature extraction and an SVM as their most accurate classifier (Figure 3)[9].

Figure 2: Impact of ML techniques on Microorganism Research

This pie chart spans 100 publications from the following online databases and digital libraries:

IEEE Xplore, Science Direct, Springer Link, Google Scholar, ACM Digital library, and PubMed.,

Their yearly distribution was from 1995 to 2021 [9].
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Figure 3: Distribution of 100 ML-based papers in Microorganism Research

This bar chart was reproduced from a meta-analysis of ML methods using the following search

terms: “Microorganism classification” OR “Detection”, “Bacteria identification” OR

“classification”, “algae”, “protozoa”, “fungi”, “ML”, “neural networks” “DL” [9]

3. Methods

This project will exhibit the 4 types of DCNNs described above for spicule image

recognition and taxonomic classification. This group of pre-trained models is selected due to

their applications in previous studies and the coexistence of newer versions amongst them. A

convolutional base is generated from these specific models: VGG16, VGG19, ResNet50,

ResNet152V2, InceptionV3, InceptionResNetV2, MobileNetV1 and MobileNetV2. With no

potential complications, there are to be three 3 different classifiers for each base: Fully

Connected Layers, Global Average Pooling + Sigmoid, and a Linear SVM.

The DCNN Architectures listed above are trained, validated, and tested for two main binary

classifications: “NonSpicule or Spicule'' (NS) and “Demospongiae or Hexactinellida'' (DH). For

file clarity, these classifications' nomenclature have followed this format of identification:

“FirstClassInitial+SecondClassInitial_ModelName_datasetsize.ipynb”. Upon instantiating the

convolutional base, we set our model parameters as the following:
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● Weights to equal “ImageNet”

● Configure include-top as false for training our classifier

● A different input shape (image tensor shapes) akin to the pre-trained model’s defaults

Through a python script call, the data for our convolutional base is already divided into

“train”, “validation”, and “test” folders with each image’s name as “ClassName (current #).png”.

The flow_from_directory method automatically infers image labels from the directory structure

to be fed into feature extraction [36]. At model compilation, we set the optimizer to Adam and

the loss to Binary Cross Entropy (BCE). Adam is an optimization algorithm that can be used

instead of the classical stochastic gradient descent procedure to update network weights iterative

based on training data. We use the Adam optimizer because it tends to require fewer parameters

for tuning and faster computation time. Binary cross entropy compares each of the predicted

probabilities to the actual class output which can be either 0 or 1. It then calculates the score that

penalizes the probabilities based on the distance from the expected value. That means how close

or far from the actual value.  For binary classification, the range of the output value is 0 to 1

when we pass it through a sigmoid activation instead of a softmax activation (Figure 4).

Figure 4: Binary-Cross Entropy Loss

This diagram sets up a binary classification problem between C” = 2 classes for every class

in C. The long formula of Cross Entropy Loss is often used when using this loss. [37]
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3.1. Convolutional base Models

The ImageNet Large Scale Visual Recognition Challenge, or ILSVRC for short, is an annual

competition held between 2010 and 2017 in which challengers are tasked to use subsets of the

ImageNet dataset. ImageNet is an image database organized according to the WordNet hierarchy

(only applicable to nouns). Each node of the hierarchy is portrayed by hundreds and thousands of

images. The subset of the ImageNet dataset, ILSVRC, has become the most popular subset of the

dataset consisting of 1000 object classes to benchmark image classification algorithms. ILSVRC

has resulted in a range of state-of-the-art DCNN models for image classification, the

architectures and configurations of which have become heuristics and best practices in the field.

The models used in this study still have their pretrained weights when the models were initially

trained on the ImageNet dataset. There is a need for model evaluation because of the differences

in model architecture and the number of parameters will likely have varying results in accuracy.

3.1.1 Visual Geometry Group Networks

Deep Learning-based taxonomic identification of bacteria and algae has recently been

revolving around using Visual Geometry Group networks (VGG) for feature extraction. This

CNN model uses only 3x3 convolutional layers and two fully-connected layers, each with 4,096

nodes followed by a softmax classifier (Figure A1, [13]). While still considered one of the most

popular image recognition architectures for this practice, VGG networks are not as desirable as

other smaller networks. A prominent reason is that VGG networks have model sizes of 533MB

and 574MB for VGG16 & VGG19 respectively [14]. Large model sizes are time-consuming to

implement, but the models’ architecture outperforms previous models with its depth and number

of fully-connected layers. In 2013, They rose to fame as the winning submissions of the
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ILSVRC, surpassing GoogleLeNet by ~0.9% in test error [19]. Unlike other networks assessed in

this study, VGG networks cannot be augmented with more layers without resulting in a

vanishing gradient problem and increasing the training time significantly. The vanishing gradient

problem when early layers are almost ignored in the learning process. Specifically, the network is

unable to propagate the output’s useful gradient information back to its earlier layers to tune their

parameters. Thus, the network will not learn and prematurely converge to a poor solution. As the

sensitivity to training error increases, adding layers may also result in a loss of accuracy due to

performing optimizations on huge parameter space [16]. However, these networks have a

defining trait of being a uniform architecture and straightforward to implement (Figure A2, [16]).

3.1.2. Residual Networks

When a network’s depth increases, there are other non-accuracy issues to look out for while

accounting for overfitting. Through the introduction of residual blocks, Residual Networks

(ResNet) these issues like the vanishing gradient problem with identified mappings of two

shortcut connection types: identity shortcuts and projection shortcuts. ResNet is a

micro-architecture that is an accumulation of “building blocks” (standard CONV, POOL, etc.

layers) (Figure A3, [17]). ResNet50 and ResNet152 are 50-layer and 152-layer deep CNNs,

respectively.  Comparing models to manual inspection, Mitra et al. applied ResNet50

Classification of six foraminifera species and comparative testing of the pre-trained architecture

VGG16 [18]. For species classifications, both architectures were less sensitive/biased to

specimen orientation than the humans’ expert or novice selection. For visual comparison, Figure

A4 shows an early layer synthesis between VGG19 and ResNet152, both of which mainly

consists of 3x3 filters. When compared to VGG16 and VGG19, residual networks are
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significantly smaller in model size (120 MB). This is attributed to the use of global average

pooling (similar to GoogLeNet) instead of a fully connected layer [19].

3.1.3. Inception Networks and Inception-Residual Networks

In contrast to other pre-trained deep models, Inception networks are “wider” and heavily

engineered to improve performance speed and accuracy [38]. Essentially, these networks are

wider because they compute multiple different conversions in parallel and concatenate them into

a simple output. Primarily, the Inception framework seeks to tackle common deep learning

hurdles like overfitting and high computation expenses [38]. Overfitting means the training has

focused on the particular training set so much that it has missed the point entirely.  When this

happens, the algorithm, unfortunately, cannot perform accurately against unseen data, defeating

its purpose.With this in mind, Inception Network’s neural architecture is built with a

dimension-reduced module that has kernels of multiple sizes operating on the same level.

Initially called GoogLeNet, Inception-v1 had 9 linearly stacked modules and two auxiliary

classifiers to also prevent the vanishing gradient problem [20].

Inception-v2 and Inception-v3 focused on updates to the inception module to further

increase ImageNet classification accuracy and reduce computational complexity [21].

Inception-v3 updates the following: the batch norm in the auxiliary classifiers, label smoothing,

and factorized 7x7 convolutions [21]. Coming in at 92MB, the network’s weights are smaller

than previously shown VGG weights and ResNet weights (Figure A5, [21]). Using the

Environmental Microorganism dataset, Liang et al. optimized this network for image

classification via fine-tuning its dropout rate and neuron number to yield a 92.9% accuracy [22].

InceptionResNetV2 (215 MB) has a hybrid inception module that simulates the performance
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of ResNet by introducing residual connections [23]. At its conception, this Inception-v3 variant

was significantly deeper, thus being more accurate than its previous state-of-art models.

InceptionResNetV2 has its inception blocks recast, with fewer parallel towers than its

predecessor Inception-v3 (Figure A6, [24]).

3.1.4. MobileNet & MobileNetV2

MobileNet networks are particularly useful for mobile and embedded vision applications

due to applying the concept of Depthwise Separable Convolution (a depthwise convolution

followed by a pointwise convolution). These networks have a lighter computational complexity,

and smaller model size (17 or 14 MB). Their architecture’s computation reduction stems from

applying Batch Normalization and Relu after each depthwise separable convolution (Figure A7,

[-]). Compared to Visual Geometry Group and Inception Networks’ convolutions, this type of

convolution results in only a 1% loss in accuracy with significant increases in computational

efficiency. This difference in computation is also due to compiling fewer multiple additions

(multiply and add calls) and parameters. In general, MobileNet networks are at least up to par

with networks like VGGNet and Inception-v3 (which were 1st Runner Up of ILSVRC 2014 &

1st Runner respectively in ILSVRC 2015) [26].

No image classifications using MobileNet networks have been applied to microorganisms to

date; however, these networks are noteworthy to include because of their computational

efficiency. MobileNetV2 has a noteworthy rendition of two types of blocks with 3 distinct layers.

With this architecture, MobileNetV2 could outperform MobileNetV1 in model size,

computational cost, and inference time (Figure A8, 35).
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3.2. Classifiers

3.2.1 Fully-connected layers (FCL)

To avoid the model from overfitting, FCL classifiers were built with 4 layers: a flattening

layer, 2 dense layers, and a dropout layer. Through a flattening layer, the feature maps’

multidimensional output is configured to a single long feature vector. Succeeding the flatten

layer, two dense layers ensure every neuron receives inputs from all the neurons of the previous

layer. Finally, we also used a dropout rate of 50% that randomly discards some sets of neurons

between the dense layers. Overall, Fully Connected layers in neural networks are those layers

where all the inputs from one layer are connected to every activation unit of the next layer.

3.2.2. Global average pooling (GAP)

As a more extreme type of dimensionality reduction, GAP was made to potentially replace a

standard stack of fully-connected layers that are still overfitting. We embed a global average

pooling layer that takes the average of each feature map as the resulting vector.  As proposed by

Lin et al., this strategy explicitly enforces feature maps as confidence maps of the intended

categories [39]. In general, a confidence map is a probability density function on the new image,

assigning each pixel of the new image a probability, which is the probability of the pixel color

occurring in the object in the previous image.With the absence of optimizable parameters,

overfitting is less likely to occur. Instead of the softmax function, the sigmoid function is

included as an additional parameter to the activated layer for better binary classification.

18



3.2.3. Linear support vector machines (SVM)

A simple linear SVM finds a hyper-plane that creates a boundary between the types of

data but this hyperplane is a line in 2-dimensional space. That means all of the data points on one

side of the line will represent a category and the data points on the other side of the line will be

put into a different category. While our FCL and GCP classifiers both use hold-out validation,

our linear SVM classifier uses five-fold cross-validation to estimate the error of the classification

[40]. Hold-out validation has the dataset split into ‘train’ and ‘test’ sets while cross-validation

has the dataset randomly split into ‘k’ groups. Each ‘k’ group becomes the ‘test’ set while the

rest are used in training. While regarded to be more supportive of insight for performance on

unseen data than hold-out validation, cross-validation is expected to also have more

computational power and runtime [41]. Tao et al. implemented threefold cross-validation on a

linear SVM to classify six known algal species and two unknown algae. The proposed method

exhibits better performance than alternative methods such as the K-NN classifier and radial basis

function-based SVM [28].

4. Data Preparation & Experiments

4.1 Data Description

This study used sediment core samples collected during the International Ocean Discovery

Program Expedition 323 to the Bering Sea (IODP Exp 323). Provided by the Aiello research

group at Moss Landing Marine Laboratories (MLML), these Bering Sea sediment samples date

back to the Pliocene warm period. This period includes global climate events like the Northern

Hemisphere glaciation and glacial-interglacial climate cycles [29]. Four exemplary samples were
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sent to Nicole Gill (at Yokogawa Fluid Imaging Technologies, Inc.) to be run at 4x and 10x

magnification levels on their automated particle analysis instrument, the FlowCam. In our data

gathering, larger spicule types (“megascleres”) are visible via the instrument’s  4x objective

while smaller spicules (“microscleres”) are visible in its 10x objective. Individual particles, such

as biogenic materials, were also imaged in the flow of water sediments and were considered a

non-spicule dataset for the project. Dr. Amanda Kahn of MLML assessed and supervised the

FlowCam methods of 4x/600 FOV, 4x/300 FOV, and 10x/100 FOV (here FOV refers to “field of

view” - the depth of field of the flow cells used at each magnification). Subsequently, Sydney

McDermott, a graduate student in the MLML Invertebrate Ecology Lab, performed image

preprocessing and categorized the directory structure of produced FlowCam images by filter

scheme, non-spicule type, and spicule type.

For the purposes of this project, 10x focused spicule/nonspicule datasets are used as shown

in Table I. As for image preprocessing, all images were filtered by edge gradient (a measure of

fuzziness), filtered on compactness (“fluffy” particles were removed), and finally filtered based

on circularity (how round or elongated they are). Within this imageset, the spicule images clearly

identifiable as Demospongiae or Hexactinellida are considered exemplary based on their image

quality (Figure 4). Since each FlowCam image consists of a single particle, no additional

segmentation protocols were needed for image pre-processing.
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Figure 5: Nonspicule & Spicule, Spicules of Demospongiae & Hexactinellida
(top two, and bottom two respectively)

No feature vectors around differential, contour representation, moment, texture, and shape

were fed as input to the pre-trained models in this project. In particular, contour detection and

grayscale, which were found to be beneficial for algal image classification studies, were

excluded from the experiments but were used instead for image pre-processing [10]. Similar to

the ML-based approach proposed by Blaschko et al., our project aims to primarily achieve

satisfactory classification results by implementing mixed, DCNN-derived features with a simple

ML algorithm [30].

TABLE I. OVERALL 10x FOV SAMPLE 1 DISTRIBUTION OF DATASET

Dataset Biogenic Material Type Total Number of Images

Positive Spicules 2205

Negative NonSpicules (ie diatoms and
radiolarians)

33644

Spicule Class Demospongiae 3481

Spicule Class Hexactinellida 1377

Total - 40707
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4.2. Training-Test-Validation Split (TTV)

For non-spicules or spicule classification, I first ran a small dataset of 400 images that splits

into training, testing, and validation sets for the input of a designated pre-trained model. The

complete dataset of exemplar spicules/non-spicules was then trained following each small data

set trail run. The small dataset had a 50-25-25 percent TTV split. For Demospongiae vs

Hexactinellida classification, Tables 3 and 4 show the complete dataset distribution of a 70-15-15

percent TTV split (Table 2).

TABLE II. SPICULE IDENTIFICATION SMALL DATASET DISTRIBUTION

Dataset Biogenic Material Type Training Images Testing Images Validation Images

Positive Spicules 100 50 50

Negative NonSpicules (ie diatoms
and radiolarians)

100 50 50

Total 200 100 100

TABLE III. SPICULE IDENTIFICATION COMPLETE DATASET DISTRIBUTION

Dataset Biogenic Material Type Training Images Testing Images Validation Images

Positive Spicules 1542 332 331

Negative NonSpicules (ie diatoms
and radiolarians)

23549 5047 5048

Total 25091 5379 5379

22



TABLE IV. DEMOSPONGIAE  & HEXACTINELLIDA DATASET DISTRIBUTION

Dataset Biogenic Material Type Training Images Testing Images Validation Images

Sponge Class Demospongiae 2435 524 522

Sponge Class Hexactinellida 962 207 208

Total - 3397 730 731

4.3. Metrics for Model Evaluation

Comparisons of the four different models were based on six performance metrics. Primarily,

testing accuracy on unseen data is calculated with the number of correctly classified images over

the number of all classified images. Computation cost and evaluation protocol runtime

differences were also observed with each type of accuracy. Neural network depth and a number

of epochs were also charted with each experiment run to numerically compare computation

complexity and training time.

The amount of overfitting in our models can be tracked with training/validation accuracies

and losses. When the fluctuating accuracies are charted on the accuracy vs epoch scale, the size

of the gap between the maximum and minimum shows how much overfitting might be taking

place. As shown in Figure 5, the green validation accuracy curve illustrates good tracking and the

training accuracy avoids overfitting. Given that this project is primarily about model evaluation,

evaluating how our DL models adapt to new training/validation data is critical for proper

performance checks. Hence, training/validation losses are plotted together to assess a model’s

ability to fit the training/validation data. Any divergence from the plotting of Figure 5’s

Training/validation losses suggests underfitting or overfitting.
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Figure 6: Training/Validation accuracy [31] & Training/Validation loss plots [32]

5. Results

5.1. Spicule Identification (SI)
For Spicule Identification, Table 5 summarizes the cross-validated accuracy scores of

applying SVMs to the pretrained models’ extracted features when using the small dataset of

spicules and non-spicules. There are no metric-based differences when training, testing, and

validating with only 400 images on a 50-25-25 TTV split. Training accuracies were near 100%

across the board but models that used SVM and cross-validation took more epochs to reach the

same level of accuracy when evaluated against the models that did not use SVM and

cross-validation.
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TABLE V. SI SMALL SVM CLASSIFICATION TEST RESULTS (FCL, GAP EXEMPTED)

Pretrained Model Accuracy Standard deviation

VGG16 0.99 0.01

VGG19 0.99 0.01

ResNet50 1.00 0.00

ResNet152V2 1.00 0.00

Inception-v3 0.99 0.01

InceptionResNetV2 1.00 0.00

MobileNetV1 1.00 0.00

MobileNetV2 1.00 0.00

Using the complete dataset, SI models with classifiers of FCL and GAP showed no apparent

accuracy differences when running through the training, validation, and test datasets (Table 6 &

7). Aside from certain ResNet outputs, test accuracies were all above 95% for all experiments

while corresponding training accuracies were near 100% (Figures 7 & 8). This extends to

validation accuracies not straying far from the training accuracies when plotted for possible

overfitting. Though, ResNet50 was the exception to this observation.
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Figure 7: Test Accuracies of Spicule Identification on Older models

TABLE VI. SI ON COMPLETE DATASET OF OLDER VERSIONS

Pretrained
Model

Classifier # of
epochs

Test
Accuracy

Training
Accuracy

Epoch w/
Earliest Highest

Training Accuracy

VGG16 FCL 20 .996 1.0 9

GAP 100 .993 .9980 73

SVM - .993 .99 -

ResNet50 FCL 20 .938 .7168 3

GAP 50 .910 .8524 43

SVM - .932 .99 -

Inception-v3 FCL 100 .978 1.0 83

GAP 100 .979 1.0 3

SVM - .979 .99 -

MobileNetV1 FCL 20 .998 1.0 6

GAP 10 .999 1.0 8

SVM - .999 .99 -
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Figure 8: Test Accuracies of Spicule Identification on Newer models

TABLE VII. SI COMPLETE OF NEWER VERSIONS

Pretrained Model Classifier # of
epochs

Test
Accuracy

Training
Accuracy

Epoch w/
Earliest Highest

Training Accuracy

VGG19 FCL 20 .995 1.0 8

GAP 100 .967 .9900 50

SVM - .967 .99 -

ResNet152V2 FCL 100 .968 1.0 5

GAP 100 .968 1.0 2

SVM - .978 .99 -

InceptionResNetV2 FCL 20 .997 1.0 3

GAP 100 .996 1.0 3

SVM - .996 .99 -

MobileNetV2 FCL 20 .981 0.99 4

GAP 100 .973 1.0 4

SVM - .973 .99 -
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5.2. Demospongiae vs Hexactinellida (DH) Classification

Though not mentioned in the previous section, we did try to run DH classifications using a

small dataset but concluded to discard these experiments after several poor model performances

(data not shown). The models were unable to increase training/validation accuracy past 30%.

Irrespective of the DCNN+classifier model involved, there were not enough images to accurately

extrapolate enough distinct features. Given Demospongiae’s plethora of spicule morphologies

against those of Hexactinellida, the amount of training data heavily influenced how well a model

extracts enough features to distinguish one class from another.

Regardless of the model components, spicule classification (DH) models with complete

datasets had mostly high training/validation accuracies. As shown in Table 8 & 9, testing

accuracies were above 90% for all models and classifiers, with the lowest average of the 3

classifiers being ResNet50 and the highest being MobileNetV2. SVM-based models had

significantly highest cross-validated accuracies of 99%. The k-folds for this cross-validation only

included training and validation datasets.

Figure 6: Test Accuracies of DH Classification on Older models
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TABLE VIII. DH CLASSIFICATION ON OLDER VERSIONS

Pretrained
Model

Classifier # of
epochs

Test
Accuracy

Training
Accuracy

Epoch w/
Earliest Highest

Training Accuracy

VGG16 FCL 15 .983 1 6

GAP 15 .953 1 15

SVM - .987 .99 -

ResNet50 FCL 20 .716 0.9 3

GAP 100 .904 0.87 87

SVM - .934 .99 -

Inception-v3 FCL 15 .977 0.9 15

GAP 15 .986 0.94 8

SVM - .976 .99 -

MobileNet FCL 15 .982 1 11

GAP 15 .971 1 15

SVM - .981 .99 -

Figure 7: Test Accuracies of DH Classification Newer models
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TABLE IX. DH CLASSIFICATION ON NEWER VERSIONS

Pretrained Model Classifier # of
epochs

Test
Accuracy

Training
Accuracy

Epoch w/
Earliest Highest

Training Accuracy

VGG19 FCL 20 .945 1 4

GAP 100 .934 1 17

SVM - .956 .99 -

ResNet152V2 FCL 20 .957 1 12

GAP 20 .967 1 14

SVM - .973 .99 -

InceptionResNetV2 FCL 20 .983 0.96 15

GAP 100 .975 0.94 4

SVM - .985 .99 -

MobileNetV2 FCL 15 .979 1 11

GAP 15 .990 1 15

SVM - .990 .99 -

6. Discussion

In this paper, this deep learning methodology circumvented the traditional need for feature

descriptors and image augmentation to generate adequate training data. Owing to our near 99%

correct classifications for most of our models, there was no need for additional fine-tuning for

possible accuracy gains. While models like ResNet50+GAP could benefit from fine-tuning, the

time investment to compute unique parameter optimization through additional experiments still

makes it not a preferable model for real-time application.

Despite this complete dataset being smaller than the Imagenet dataset (with 1000 classes),
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our dataset size was still sufficient for binary classifications. However, the equally high

classification accuracies of our small dataset came from how deep and complex the pre-trained

models were compared to traditional ML models. In addition to other animals’ complex shapes,

ImageNet weights can reliably generate vital feature descriptors such as the contour, perimeter,

area, and mean pixel intensity of microbes. Another cause can be the high visual quality of the

FlowCAM images of both spicule and non-spicule types. In the future, an image’s composition

could have indistinguishable shapes of microorganisms when it includes unwanted artifacts and

low resolution/focal depth. In experiments around this possible concern, data quality correlations

should be further explored based on less focused and exemplary images.

6.1  Influence of dataset reduction

Using a smaller dataset did not significantly affect the overall accuracy of spicule

identification. Aside from needing more epochs to reach maximum accuracy, SI small-data

models with FLC or GAP ran in much shorter runtimes compared to running the SVM Classifier

(20 minutes vs 40 minutes on average). As previously mentioned in related studies,

DCNN+SVM accuracy became a reliable DL technique to perform well on sparse datasets. For

example, Arredondo-Santoyo et al. shown the ResNet-C-SVM combination has the best accuracy

on an imbalanced dataset of 1024 fungal assay images [33]. They were able to overcome the

class imbalance problem and overfitting problem through image augmentation and Synthetic

Minority Over-sampling Technique (SMOTE) [33]. Further image augmentation did not seem

necessary in our case due to the precedent of our spicule identification being based on binary

classifiers. This is subject to change for future closely related levels of taxonomic complexity

come to play with binary/multi-class distinctions. Aside from those of residual networks, test and
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cross-validation accuracies of over 90% give a good indication of how well our models

performed on data exempted from training or validation upon compiling.

For taxonomic classification, we often needed to use all available images for good

performance metrics. Nonetheless, the computational complexity and runtime differences for

building this task’s SVM classifiers were much larger than their FCL and GAP counterparts.

While FCL and GAP were computed approximately within 2 hours, SVM classifiers need more

than ten gigabytes of memory and ran for five more hours to build their model and commute

their cross-validated accuracies. When performing the final model evaluation, this disparity was

enough to deduce SVM-based models as the most expensive classifiers to compute. Irrespective

of other taxonomic studies’ reliability of SVMs, the higher performance of other classifiers with

various pre-trained models and more computational expense have now led us to eliminate SVMs

in our final model selection.

6.2. Comparative Analysis of Different Pretrained Models

Within our model evaluation, the relationship between computational complexity and

runtime performance is best observed by how efficient the DCNNs were in automatically

extracting features. MobileNet neural networks were the fastest of the 4 pretrained model types

regardless of the classification, classifier (SVM, FCL, GAP), and data size. This response was

due to their feature extraction and training stages being significantly faster. Irrespective of their

architectural differences, MobileNetV1 and MobileNet2 had insignificant differences in

performance and accuracy (by only 1%).

The ResNet networks were by far the slowest, least accurate, and computationally heavy

32



models to train, regardless of the classification application (SI or TC). As shown in Tables 7 & 9,

global average pooling does exhibit some ResNet50 accuracy improvements, but at the cost of

more epochs and longer runtimes. With a significant improvement over ResNet50, ResNet152V2

had nearly perfect accuracy on most evaluations but was still significantly slower than VGG,

MobileNet, and Inception networks.

VGG16 and Inception-v3 had a near inverse relationship in the overall model evaluation due

to the differences in how they tackled feature extraction and training. After the ResNet model,

the VGG16 model was the second slowest in feature extraction but trained faster when using

FCL. Proving the inverse relationship between them, Inception-v3 trained less efficiently by

needing higher epochs but was faster than VGG16 in extracting features. As shown in Table 9,

the accuracy of using VGG19 could improve if the VGG-FCL is implemented. The table also

exhibits Inception-FCL models taking a significant amount of training time to reach 97%

accuracy when compared to their other Inception counterparts. This was positively correlated

with the reduction in training time when using InceptionResNetV2. However,

InceptionResNetV2 took more time to extract features than other Inception networks.

To conclude, while some models were slower, all had an accuracy of at least 90%

demonstrating that further image preprocessing was not needed at this stage of SI and SC.

However, the selection of only 3 classifiers does limit the scope of classification error. If a

multiclass classification is done later, there may be more false negatives and false positives

between closely-correlated classes. When it came to MobileNet and ResNet networks, the depth

and model size still played a role in model evaluation but not as much when it's between VGG

networks vs Inception networks. In Table 5 & 6’s, 100 epochs was a default epoch number for

bigger networks but weren’t necessary for most cases of Earliest Highest Accuracy where we
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received desired training and validation accuracies on specific epochs. Based on the metrics

shown in this study, MobileNet+Any Classifier and MobileNet+GAP were the best models for

spicule identification and taxonomic classification respectively.

6.3 Performance Metrics

Given the high performance of the image recognition and classification tasks, numerical

performance metrics like accuracies and losses did not shed much light on additional model

evaluation. This may stem from the prior image segmentation and collection outputting

FlowCam images of high quality and quantity. These images exclude other artifacts in each

microscopic image. The high performance on our FlowCam images was consistent with other

FlowCam studies that used supervised learning approaches like single classifiers but their own

segmentation procedure [30]. Ranging from 1% to 3%, some test accuracy gains were achieved

when using FCL over the other classifiers when it came to spicule identification.

As shown in Figure 5, these DL experiments had a very similar relationship between the

accuracies and losses of training/validation sets to further reassure the TL models’ performance

were not overfitting. Corresponding test accuracies and cross-validated accuracy scores

demonstrate how reliably the models performed on unseen data and how well the model was

enriched given ample training data. This fact extended to all classification tasks, 4 DCNN

architectures, and subsequent classifier types accordingly.
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Figure 6: 4 Training/Validation Accuracies DH Classification & SI Classification

Taken from our Mobilenet+GAP experiment (left) & Mobilenet+GAP experiment (right)

7. Conclusion
In this paper, we demonstrate 4 DCNN architectures as convolutional bases for extracting

image features for spicules recognition and classification. To keep the procedure simple and

efficient, we employ transfer learning by implementing pre-existing ImageNet weights before

our own ML classifier. FCL, GAP, and SVM are the traditional classifiers used in the

experiments to systematically test overall architectural differences. FCL and GAP-orientated

models had mostly insignificant trade-offs depending on the convolutional base. Meanwhile,

SVM-orientated models had problems running on smaller datasets and had longer training times.

These SVM issues are subject to change with future improvements like better parameter

optimization, larger datasets with more categorical features, and performing PCA. As for

computational runtime, these experiments illustrate the importance of data size for taxonomic
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identification and how reliable the pre-trained weights were for image recognition.

With high-performance metrics across the board, there were no major improvements in

using newer ImageNet architectures over their predecessors (except, notably, InceptionResNetV2

and ResNet152V2 in certain cases). In both spicule recognition and classification, most

ImageNet-pretrained DCNNs exhibit great classification performance. The MobileNet network

has the best computational efficiency, showing great potential for real-time in-vehicle analysis of

sponge spicules. Generally, FCL came out to be the most accurate classifier in most experiments

but GAP had some higher accuracies for certain pre-trained models.

Our general model winner, MobileNet with GAP, can be customized for multiclass

classification if provided with a large number of spicules images identified at the taxonomic level

of order, family, genus, or species. As shown in many taxonomic studies on plankton, a large

quantity of training data is not easily obtainable and available. This issue is due to the low

number of available taxonomic specialists needed to collect and label enough images for each

species for training purposes. To prevent this from affecting our classification accuracy, future

classification tasks using pre-trained DL models may still rely on image preprocessing. Like our

experiments, Michael et al. obtained similar results of high classification accuracy for diatoms

using VGG16 with an FCL 256 neuron layer and a softmax classification layer. They instead

annotated their input images with object contours using SHERPA, a diatom morphometric

software. They performed this preprocessing around virtual slide scans [7] along with their own

segmentation model like our FlowCam approach. Unlike our binary classification task, they train

a classifier to classify 10 species-level categories, each with relatively few (100-300) images [7].

With limited investment in data collection, SHERPA has the key for later multiclass

classifications to preprocess spicule images for classification improvements.
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We show 10 images (Figure A1- Figure A8) of the architecture of the VGG16, VGG19, ResNet50,

ResNet152, InceptionResNetV2, InceptionV3, MobileNet, MobileNetV2

Figure A1: VGG16 ConvNet Configuration [13]
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Figure A2. VGG16 Architecture [16]

Figure A3: ResNet50 Architecture [17]
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Figure A4. Resnet152 compared to VGG-19 [19]

43



Figure A5: Inception-v3 basic architecture [21]

Figure A6: Inception-Resnet-v2 basic architecture [24]
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Figure A7:  Standard convolution and depthwise separable convolution
[https://arxiv.org/abs/1610.02357v3]

Figure A8: MobileNet & MobileNetV2 Differences [35]
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