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Abstract 

The advances in technology have brought in a lot of changes in the way humans go about their 

lives. This has enhanced the significance of Artificial Neural Networks and Computer Vision-

based interactions with the world. Gesture Recognition is one of the major focus areas in 

Computer Vision. This involves Human Computer Interfaces (HCI) that would capture and 

understand human actions. In this project, we will explore how Neural Network concepts can be 

applied in this challenging field of Computer Vision. By leveraging the latest research for 

Gesture Recognition, we researched on how to capture the movement across different frames of 

the gestures in videos. We experimented on preprocessed 2D and 3D data by applying various 

Neural Network models such as Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM) using Time Series Classification Technique to recognize the Gesture. 

Index Terms – Neural Networks, Computer Vision, Gesture Recognition, Time-Series 

Classification. 
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1 Problem Statement 

Computer Vision is defined as the capacity of the said system to arrive at a decision or 

responsive action based on analysis of information derived from visual data that is perceived 

from the environment. This provides the computer and/or computer-controlled devices like 

automobiles the intelligence akin to human beings by being able to perceive and perform actions 

based on the perceived data. This part of the Artificial Intelligence helps to identify and classify 

objects. Earlier approaches were efficient in this process in general but failed to identify when 

new data is given as input. This is because these approaches were based on deterministic logic 

and algorithm which fail due to uncertainty of prediction when faced with uncertainty in data 

coming in from new surroundings and situations [1]. With internet explosion, there was a big 

change in the amount of data available and data driven methods were preferred over logic-based 

methods with the drastic increase in raw data (images and videos) due to heavy usage of internet 

[2]. Statistical Modeling Techniques were introduced to provide a highly approximate results of 

the real-world datasets instead of traditional deterministic techniques [3]. Yann LeCun [4] 

proposed a new approach to categorize each pixel in an image to the object it can belong to by 

using Convolutional Network Feature Extractor. Though this approach used Deep Learning 

Unsupervised Methods, it was not a great approach to learn low level features of an image. A 

Neural Network Model called AlexNet provided impeccable results with the advent of GPUs a 

decade later. This significantly overcame the top 5 errors in ImageNet ILSVRC challenge in 

2012 and ever since, every ImageNet challenge has been won by model based on Convolutional 

Neural Nets (CNNs) [5]. 

A wide range of applications can be found under Computer Vision such as video surveillance, 

tracking, Human-Computer Interaction. Basic foundation of Computer Vision falls under 
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image/video analysis and pattern recognition. However, accurate vision recognition system 

continues to be a challenging area of research in Artificial Intelligence. Various techniques have 

been explored to leverage the power of Neural Network and with coupling with digital sensors to 

improve the accuracy of the system. In this project, we will explore various techniques and 

related problems in the field of Computer Vision. We will focus on different Neural Network 

methods for Gesture Recognition. With this, we address the questions: How accurate does 

Neural Network-based Computer Vision models predict identify Gesture Pattern? How Time 

Series Classification using Neural Network helps to recognize the Gestures? which Neura; 

Network models will help to enhance the Gesture Recognition? what are the limitations to for 

Neural Network to perform better in identifying Gesture? 

We will explore methodologies to identify Objects and Gestures in an image with the goal of 

imitating the Human Visual System and also, we will look at how Time Series Classification can 

be applied using Neural Network to improve the accuracy of the said system. 
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Fig. 1 Overview of Computer Vision Techniques 

 

2 Prior Work 

In this section, we will look at some of the important aspects of Gesture Recognition namely, 

Image Segmentation, Image Classification and Object Detection. Before we dive into classifying 

and detecting the image, we divide the image into segments so that we process the object 

information instead of processing the whole image. Image Classification refers to classifying the 

image to the class it belongs to. 

Computer Vision 
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2.1 Object Detection 

For Object Detection, Viola-Jones[6] proposed Rapid Object Detection using Critical Visual 

features which is a fast yet efficient machine learning approach for object detection. This process 

has three steps including integral image representation of a frame, selecting the best visual 

features using AdaBoost learning algorithm and cascading complex classifiers so that the object 

is given more attention than the background and the noise. While this approach works well for 

facial recognition, it is difficult to detect other objects/gestures with this technique.  

Qian Li[7] proposed an approach to improve Viola-Jones Object Detector by training the 

classifier with multiple feature images, changing the predefined threshold for classifier training 

and improving the algorithm by use of Support Vector Machine. 

Region Convolution Neural Network (R-CNN) is a simple Deep Learning Object Detection 

scheme which makes use of selective search and CNN-based classification and scoring to detect 

a particular object among multiple objects [8][9]. A bounding box is created for Image 

Classification followed by feature vector computation using convolutional and connected layers. 

Scoring is done by using Support Vector Machines (SVMs) and the model is tuned until 

satisfactorily good prediction is obtained.  

 

Fig. 2 RCNN with CNN Features [8] 
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An alternate approach which is not dependent on selecting segments of image for processing is 

YOLO (You Only Look Once) [10]. Since this is based on regression, this is better suited for 

Real Time Object Detection. This is also called Single Shot Object Detection. But due to the 

regression, this can be computational intensive. Zihan ni [11] proposed a Light YOLO model for 

hand Gesture Recognition. They strengthen the existing base YOLOv2 model by spatial 

refinement (They down- sampled the convolutional layers from Conv6 to Conv4). These changes 

increased the accuracy of the model from 96.8% to 98.6%.  

2.2 Human Pose Estimation 

Extending the Object Detection approach to detect the gesture of the human body, given an 

input data such as images and videos, Human Pose Estimation approaches help to build the 

human body representation from the input data. Over the last decade, this approach has had an 

increased focus from the research community and has a wide range of applications such as 

Human-Computer Interaction, motion analysis and many more. The critical parameter here is to 

detect only those human poses which involve movement in the body. To detect motion, images 

should be framed in order with moments apart. Hence, Human Pose Estimation can be done by 

comparing object position with respect to sequence of images. Below are a few of the great 

approaches to detect 2D and 3D Human Pose Estimation. 

2.2.1 Silhouette-Based 2D Human Pose Estimation 

All traditional approaches for the Human Pose Estimation were based on predefined framework 

for a pose or a standard template which is not dependent on the image data. These approaches 

limited the expressiveness of the estimation.  Hence, Meng Li[12] proposed a new silhouette 
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based model to estimate 2D Human Pose. This base model is composed of 15 joints and 14 

segments. Gaussian Mixture Background Model (GMM) was used to extract the silhouette from 

the image and they used techniques such as Distance Transform (DT) and Principle Component 

Analysis (PCA) to decide base joint for the model to estimate the human pose. They made joint 

A to be the base point for whole model and the length of each segment is also considered 

constant. It is feasible to apply this approach in real time as the number of iterations for each 

frame stands 1.8 on an average. This shows that the model can perform faster computational 

complexity but as this approach takes one point to be the base point for the whole model, the 

approach may not be feasible for scenarios where there is a change in the position of the object. 

 

      

Fig. 3 Estimating 2D Human Pose using Silhouette Structure [12] 

 

2.2.2 Deep Pose: Human Pose Estimation via Deep Neural Networks 

The techniques used for Human Pose Estimation changed drastically by using Convolutional 

Neural Network (CNN)[13]. Here, they consider pose estimation to be a joint regression problem 

where the location of each body joint is regressed and then passed through 7 CNN layers-each 
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being a linear transformation followed by a non-linear transformation. This process is repeated to 

refine the predictions from previous stage. The last layer outputs 2k joint coordinates of each 

body joint. The main advantages of this approach are that it captures all the details about each 

joint and it is a much simpler method when compared to graphical models such as silhouette or 

usage of any heatmaps. This model doesn’t require any detectors explicitly. This approach has 

proven that CNN can be used for both classification and localization tasks. 

 

Fig. 4 Human Pose Estimation using CNN [13] 

 

3 Time Series Classification on Neural Networks 

3.1 Artificial Neural Network (ANN) 

There has been an explosion in the amount of data being collected in the modern world. The aim 

of this is to make a sense of the data and the understanding of the domain and help in arriving at 

decisions. The collected data is subjected to data exploration for data analysis followed by 

identification and summarizing the main features of the data. Many times, these datapoints are 

needed to be visualized in real or spatial dimensions in order to make sense of the data. This is 

followed by feature engineering and feature selection which are used to derive better 

representations of the features with respect to the underlying problem. Since this process 
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involves a significant amount of time and effort, there is a need to develop a more efficient 

means to aid with the process of feature engineering. Artificial Neural Networks (ANNs) provide 

the means to do most of the feature engineering and feature selection by self-learning the model 

with respect to the target outcome.  

Artificial Neural Networks derive their inspiration from the brain and the nervous system and 

comprise of computing nodes called neurons and network of interconnections between neurons 

with weights assigned to them. Convolutional Neural Network are a special kind in this which 

excel in Pattern Recognition tasks in images, video frames etc. 

A typical Artificial Neural Network consists of an input layer, any number of hidden layers and 

an output layer. Input layer is where a single vector input is loaded and gets propagated to the 

hidden layer with a weight. The hidden layer consists of a set of neurons with each neuron 

connected to every other neuron (node) in the previous layer. The neurons are independent 

without sharing connection to any other connections within the layer. Neurons consist of a 

computational unit which receives input from previous layer and performs dot products of inputs 

with weights and adds the bias to generate the output Y [14]. A Neural Network is said to be 

fully connected if every node in the layer is connected to every other node in the previous layer. 

Depth of the network is the number of hidden layer along with the output layer. The output is 

passed to an activation function to add non-linearity to the model. Removing a connection in the 

network amounts to setting the weight of a particular connection to zero. 

Y = ∑(input × weight) + bias 
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Fig. 5 Simple Neural Network [14] 

 

One important point to note is that the Artificial Neural Networks can be quite compute hungry 

due to the sheer volume of data that they need to handle. Since the weights scale with each 

hidden layer, the number of weights can easily scale up to thousands and millions.  
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Fig. 6 A Neuron Node in an Artificial Neural Network [14] 

 

There are 3 main types of Activation Functions which can be used to add non-linearity to the 

model [15]. These Activation Functions decide when the neurons show fire or not fire.  

3.1.1 Sigmoid Function 

 A Sigmoid Function can be thought of as having the basic shape of a step function except that it 

has a smooth transition resulting in various gradient at various points in the function. This leads 

to the non-linear nature of the function. The Sigmoid Function can take inputs between 

(−∞,+∞) but leads to a finite output that ranges between [0,1]. The Sigmoid Function does take 

more time to train the model to converge since at the bookends, the output doesn’t change as 

quickly as the input. In spite of this, the bounded output of the Sigmoid Function fits perfectly 

well in giving a binary classification and makes it well suited to model the probability.  

𝑓(𝑥) =
1

1 + 𝑒−𝑥
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3.1.2 ReLU Function 

The Rectified Linear Unit Function addresses the issue of large convergence training time and is 

quite simple and fast. It also does not have the issue of vanishing gradients. However, it is prone 

to the issue of knockout called dying ReLU problem when many neurons only output the value 

of 0.  This can happen due to learning large negative bias term for weights. This issue can 

however be solved by employing Leaky ReLUs with a small positive gradient for negative 

inputs. 

𝑓(𝑥) = max (0, 𝑥) 

3.1.3 Tanh Function 

Tanh Function is quite similar to the sigmoid function with the difference being that the output 

can range from [-1,1] and is quite frequently used in conjunction with the Sigmoid Function. In 

terms of the gradients, it is important to note that the tanh function has stronger gradient than 

sigmoid function. Both Tanh and Sigmoid Functions are better at recovering from similar issue 

as dying ReLU due to the gradients. 

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

 

 

3.2 Neural Networks and Time Series Classification 

Time series data is the information collected successfully in time. Since processes are often 

measured with respect to time, temporal data has increased significantly and has many real-world 

applications such as detecting stock anomalies, medical tests. Time Series Classification is being 
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one of the challenging problems in the field of Computer Vision. Given a set of time series with 

class labels, we check if we can train a model to correctly predict the class of new time series 

[16]. As Gesture Recognition is a problem of classifying sequences of movements, using Deep 

Learning methods for Time Series Classification provides state-of-the-art results with little or no 

data feature engineering. 

  

Fig. 7 Predicting Class Labels in Time Series [16] 

 

Below are the different Neural Network models for the Time Series Classification: 

3.2.1 Feed Forward Network 

In Feed Forward Network, the input is fed to the network where they map the data to different 

categories/labels. This will eventually help to recognize the pattern in the data to identify the 

correct label. With supervised training, a Feed Forward Network is trained until the error is 

minimized. Convolutional Neural Network is a Feed Forward Network. Using CNN for Time 

Series Classification [17] has major advantages such as highly noise resistant, feature 

engineering without any manual intervention but Feed Forward Networks usually do not have 

time order. It can provide the prediction results just based on the current pattern it has been 

exposed to and doesn’t remember the recent past. A trained CNN model can be exposed to any 
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random classification tasks, but decisions taken to classify the first image doesn’t alter on how 

the model classifies the second image, hence CNN model is best used for spatial data more than 

Time Series data. 

          

Fig. 8 Internal Representation of CNN [17] 

 

3.2.2 Long Short-Term Memory Recurrent Neural Network   

This is a type of Artificial Neural Network designed to recognize the patterns in the sequential 

input. RNN have memory to store temporal information available in time series data. Below is a 

simple example of a Recurrent Neural Network proposed by Elman [18]. Here, the box of letters 

labelled as “BTSXVPE” represent the current input data and the box labeled as “Context Units” 

shows the previous output. Both are deciding factors for the model. Hence, decision made by the 

network at time step (t-1) has an impact on the decision made at time step (t).  
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Fig.9 Concept of Long Short-Term Memory [18] 

 

 

Recurrent Neural Network stand different when compared to Feed Forward Network due to this 

feedback loop. But due to this loop, whenever a cost function is calculated to improve the 

network, they need to be propagated all the way back through time to the neurons. Due to the 

temporal loops, same weight gets multiplied multiple times resulting to either an exploding 

gradient or the Vanishing Gradient [19]. Due to this problem, whole network will be not trained 

properly. 

 

Fig.10 Vanishing Gradient Problem [19] 
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To overcome the problem of Vanishing Gradient, in mid-90’s, LSTM (Long-Short Term 

Memory) Recurrent Neural Network was introduced by German researchers Sepp Hochreiter and 

Juergen Schmidhuber [20]. LSTMs maintain a constant error that can be back propagated 

through times and layers. This technique allows the network to continue to learn over many time 

steps without getting affected by the temporal loops. 

3.2.3 Convolutional Neural Network Long Short-Term Memory Network (CNN-LSTM) 

Model   

This approach makes use of the Convolutional Neural Network layers for feature extraction on 

input data and the Long-Short Term Memory to support sequence prediction [21]. Since these 

are both spatially and temporally deep, they can be used to sequence a variety of vision task 

related inputs and outputs. Especially, they can be used to address the following problems: 

1. Activity Recognition – Process a sequence of images to generate textual description of 

the activity in the image sequence (video). 

2. Image Recognition – This involves processing a single image and developing a 

description of the image input. 

3. Video Recognition – This involves processing a sequence of images to generate a 

description of the video. 

Also called the Long-Term Recurrent Convolutional Network (LRCN), CNN-LSTMs use a CNN 

pretrained for image classification problem and repurpose it for caption generating problem 

through feature extraction. 
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Fig. 11 Structure of CNN-LSTM Model [21] 

 

The CNN-LSTM model is well suited for applications which involve 2D data structure or pixels 

in their input like images or 1D structure of words. It is also well suited for inputs that have 

temporal structure such as order of images in a video or words in a text. Consequently, CNN-

LSTMS also find applications in speech recognition and natural language processing where 

CNNs are used for feature extraction for LSTMs on audio and textual input data. 
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3.2.4 Convolutional Long Short-Term Memory Recurrent (Conv-LSTM) Network Model   

The Conv LSTM is an extension of the CNN-LSTM model and is used for spatio-temporal data. 

Unlike the CNN-LSTM which uses output of the CNN models for interpretation, Conv-LSTM 

uses convolutions directly as part of reading inputs into LSTM inputs themselves. The Conv-

LSTM is a Recurrent Layer just like the LSTM. However, in Conv-LSTM, the internal matrix 

multiplications are replaced with convolution operations on the inputs. Hence, the data that flows 

through a Conv-LSTM cell keeps the input dimension (3D/2D) instead of being just a 1D vector 

with features. The future state of a cell in the grid is determined by inputs and past states of local 

neighbor cells by a process of convolution in the state-to-state and input-to-state transitions [22] 

 

 

Fig. 12 Internal Working of Conv-LSTM Model [22] 

 

A Conv-LSTM with a larger kernel should be able to capture faster motions while one with a 

smaller kernel would be able to capture slower motions in the spatio-temporal data. Since this 

needs the number of rows and columns to be the same in states and inputs, padding might be 

necessary before performing the convolution operation. 
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4 Dataset 

After going through all the approaches mentioned above, we experiment on implementing a 

Deep Learning model combining visual features and temporal features in the data.  

To train the model, we used a Gesture Commands for Robot Interaction Dataset (GRIT) Dataset 

created by Tsironi et al [23]. This is one of the popular datasets for the Gesture Recognition. 

This corpus contains nine Human-Robot Interaction (HRI) command gestures. The nine 

activities are as follows: Abort, Circle, Hello, No, Stop, Turn Right, Turn Left, and Warn. Six 

different subjects participated to gesture. Each of them performed the same gesture at least 10 

times. A total of 543 sequences were recorded. With each of the gesture sequence being 

segmented and labeled with one of the nine activities.  

Gesture Description is as follows: 

 Gesture Name Gesture description 

1.  Abort – 57 Samples This gesture requires the motion of the hand in front of 

the throat with palm facing downwards. 

2.  Circle – 60 Samples This gesture is a cyclic movement starting from the 

shoulder with the arm and the index finger being 

stretched out. The movement is taking place in front of 

the body of the user while he/she is facing the direction 

of the capturing sensor. 

3.  Hello - 59 Samples As its name denotes, it is the typical greeting gesture, 

with the hand waving while facing the direction of the 

robot. The waving starts from the elbow rotation. 
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4.  No - 62 Samples To perform this gesture the arm and the index finger 

need to be stretched out towards the direction of the 

robot and then the repeating wrist rotation alternately to 

the right and the left. 

5.  Turn Left - 62 Samples As the name of gesture denotes, the arm is pointing to 

the left. 

6.  Turn Right - 60 Samples In the same sense as Turn Left, this gesture consists of 

the arm pointing to the right. 

7.  Stop - 60 Samples The gesture includes raising the arm in front of the 

body with the palm facing the robot. 

8.  Turn - 63 Samples This gesture is a cyclic movement starting with a 

rotation from the elbow including the simultaneous 

rotation of the wrist with the index finger stretched 

pointing downwards. The signature of this movement 

seems like a circle. 

9.  Warn - 60 Samples This gesture firstly requires raising the hand in front of 

the body having an angle between the upper and the 

lower arm greater than 90 degrees and then rotating the 

elbow while the palm is being stretched out. 
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Fig. 13 Gestures in GRIT Dataset [23] 

 

5 Gesture Recognition with 2D Data 

5.1 Data Pre-Processing 

The structure of the dataset is that there are 9 gestures, and each gesture has approximately 60 

samples and each sample has approximately 24 timesteps [60X24X9]. 
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5.1.1 Understanding 2D (2-dimensional) points on the image 

First part of the project was to check on how to represent an image as a input data to the model. 

We used a technique proposed by Zhe Cao[24] where we can estimate how a subject is showing 

gestures by identifying 17 joints of the body parts referred as “key points” as shown in the below 

image.  

 

Fig. 14 Key-points of each Frame in Gesture Data [25] 

 

The dataset has array representation of each frame. From these, we were able to extract the 

coordinate points and draw the ellipse points on the image as shown below: 



Gesture Recognition using Neural Networks Ashwini Kurady      

22 

 

 
Fig. 15 Representing Key-points on a Sample Gesture Image [23] 

 

 

Fig. 16 Labels for each of the Key-points from the above sample gesture image 

 

5.1.2 Finding the Origin for all the Key-points in a Gesture 

Initially, we aimed to find the origin for all the key-points in a gesture because origin can act as a 

relative measure between different timesteps. In order to find the origin, it was important to 

understand how each ellipse point traverses in time. We performed an experiment by picking the 
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left elbow point and looped through different time frames. Below is the graph which shows that 

all the data points are referred relative to the top left. From this, we inferred that the origin is set 

to the top left corner. 

 

Fig. 17 Movement of Left Elbow Key-points across Different Timeframe 

 

5.1.3 Storing Coordinates relative to a Joint position 

The origin was shifted to ‘0’ key point – Nose as origin and all other joint positions are 

calculated based on this origin. By making this change, though the relative measure remains the 

same, calculating with respect to the object position can be easy to refer back while applying 

complex methods.  

Here, we take origin as Nose point as it remained approximately constant for all gestures and 

then stored the coordinates of 17 joint positions of each image frame in an array representative 

form. 
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5.1.4 Using Temporal Difference Method 

Once we have the coordinates of the joint positions ready, it is important to know how to identify 

motion between the sequence of frames. Temporal difference [26] is a frame differencing based 

method where we extract the difference between two successive frames using any mathematical 

measures to get a relation between successive frames.  

There are other methods such as optical flow which are better for dynamic environment, but they 

have high computation complexity with more noise data.  Considering our method to work fast 

for dynamic and real time environment, we decided to go with temporal difference method. 

5.1.5 Calculating Polar Coordinates and Angular Velocity 

The movement data can be determined by velocity. Next step in the project was to check how we 

can relate different time steps of each gesture with accurate prediction.  

As we know that, In a rectangular coordinate system, we plot points based on an ordered pair of 

(x,y) but in Polar Coordinate System, the ordered pair will now be (r,𝜃) where each point in the 

plane is determined by a radical distance from the reference point and polar angle(𝜃) from the 

reference direction. 

Below is the graph illustrating the relationship between Polar Coordinates and Cartesian 

Coordinates [27] 
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Fig. 18 Representation of Polar Coordinates  

To convert from Cartesian to Polar Coordinates, we use: 

     Radical distance: r = √𝑥2+y2  

  Polar Angle: 𝜃 = tan-1(y/x) 

Angular Velocity is the rate of change of Polar Angle of each point with respect to time. It is 

represented as below: 

    Angular Velocity: 𝜔 = 
𝛿𝜃

𝛿𝑡
 

Below is plot for ‘frame_id’ (number of frames in each gesture) with respect to ‘Angular 

Velocity’(rate of change in polar angle between successive frames) of Right shoulder, Right 

elbow, and Right Wrist joint positions for a sample of Abort Gesture.  
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Fig. 19 Change in Joint Positions across Different Gesture Frames using Angular Velocity 

 

We can see from the graph that the right shoulder and right elbow’s positions remains almost the 

same, but the right wrist movement stands different from the other two. This example shows that 

calculating Polar Angle and Angular Velocity help to predict the gesture correctly. 

Next step is to calculate and replace just the (x,y) pair of coordinates to  (x,y, 𝜃 , 𝜔) – x,y, Polar 

Angle and Angular Velocity for joint positions of all sequence of image from each gesture. 

For our experiments, we modify values of 6 joint positions:  

‘left-shoulder’, ‘left-elbow’, ‘left-wrist’ 

‘right-shoulder’, ‘right-elbow’, ‘right-wrist’ 

As we calculate Polar Angle and Angular Velocity for each joint positions, we get 12 features for 

6 joint positions: 
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'left-shoulder polar angle’, 'left-shoulder velocity' 

'left-elbow polar angle’, 'left-elbow velocity' 

'left-wrist polar angle', 'left-wrist velocity' 

'right-shoulder polar angle’, 'right-shoulder velocity' 

'right-elbow polar angle’, 'right-elbow velocity' 

'right-wrist polar angle', 'right-wrist velocity' 

 

 

Fig. 20 Selected Joint Position (Key-points) for Experiment [25] 

 

Frame # Polar Angle Change in Polar Angle 

(Angular Velocity) 

0 1 - 

1 1.5 ((1.5-1) / 1) = 0.5 

2 2.2 ((2.2-1.5) / 1) = 0.7 
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3 1.8 ((1.8-2.2)/1) = -0.4 

4 2.9 ((2.9-1.8)/1) = 1.1 

5 3.3 ((3.3-2.9)/1) = 0.4 

 

5.1.6 Calculating Angular Velocity and Acceleration 

Though we can approximately predict the movement of the data using Polar angle and Angular 

velocity, it is proven that the movement can be accurately captured if we can predict using 

acceleration data [28]. Hence, this next experiment is about calculating Acceleration using 

Angular Velocity.  

‘Acceleration’ is the rate of change of Angular Velocity of each point with respect to time. It is 

represented as below: 

𝑎 = 
𝛿𝜔
𝛿𝑡

 

Now, we store data as (x,y, 𝜃 , 𝜔) – [x-coordinate, y-coordinate, Polar Angle, Angular Velocity] 

to (x,y, 𝜔, 𝑎) – [x-coordinate, y-coordinate, Angular Velocity, Angular Acceleration] for joint 

positions of all sequence of image from each gesture. 

For our experiments, we modify values of 6 joint positions:  

‘left-shoulder’, ‘left-elbow’, ‘left-wrist’ 

‘right-shoulder’, ‘right-elbow’, ‘right-wrist’ 

As we calculate Polar Angle and Angular Velocity for each joint positions, we get 12 features for 

6 joint positions: 
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‘left-shoulder velocity’, ‘left-shoulder acceleration’ 

‘left-elbow velocity’, ‘left-elbow acceleration’ 

‘left-wrist velocity’, ‘left-wrist acceleration’ 

‘right-shoulder velocity’, ‘right-shoulder acceleration’ 

‘right-elbow velocity’, ‘right-elbow acceleration’ 

‘right-wrist velocity’, ‘right-wrist acceleration’ 

 

Frame # Polar Angle Change in Polar Angle 

(Angular Velocity - 𝜔) 

Change in Angular Velocity 

(Acceleration - 𝑎) 

0 1 - - 

1 1.5 ((1.5-1) / 1) = 0.5 - 

2 2.2 ((2.2-1.5) / 1) = 0.7 ((0.7-0.5)/1) = 0.2 

3 1.8 ((1.8-2.2)/1) = -0.4 ((-0.4-0.7)/1) = -1.1 

4 2.9 ((2.9-1.8)/1) = 1.1 ((1.1-(-0.4))/1) = 1.5 

5 3.3 ((3.3-2.9)/1) = 0.4 ((0.4-1.1)/1) = -0.7 

 

5.2 Experiments 

 

1. Using an interactive environment called a Google Colaboratory Notebook [29] 

2. Language used: Python 3.6 

3. Following packages are used: sklearn, pandas, NumPy, matplotlib, Keras, Tenserflow. 
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5.2.1 Experiment 1 – LSTM-Only Model on 2 gestures with Polar Angle and Angular 

Velocity 

We initially focus on using LSTM for Gesture Recognition. The main advantage of using LSTM 

[30] is that they can learn from raw time series data directly without any domain expertise to 

feature engineering.  

5.2.1.1 Architectural Setup: 

Architecture setup of the LSTM model using Kera’s Deep Learning library are as follows: 

Experiment on 2 Gestures ‘abort’ and ‘stop’. 

1. Input Layer:  A single 3D array with input as [samples, timesteps, features (Polar 

Angle, Angular Velocity)]  

2. Hidden Layer1: Single LSTM hidden layer. 

3. Hidden Layer2: Dropout Layer with a dropout rate 0.5 

4. Hidden Layer3: Dense Fully Connected Layer with an output size 100, a ‘ReLU’ 

Activation Function. 

5. Output Layer: Dense Fully connected layer with two-element vector containing the 

probability of a given window to each of the 2 gesture types, a Softmax Activation 

Function. 

6. Categorical_crossentropy and ‘adam’ stochastic gradient descent parameters to 

optimize the network. 

7. The model is fit for 20 epochs per iteration and total sample (117) as a batch size. 

Batch size was not divided as input data range is small. 
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5.2.1.2 Results: 

1. Current results are only for 'Abort' and 'Stop' gestures and for 6 joint positions of each 

of the gestures as mentioned in data pre-processing steps. Abort =>57 samples and 

stop => 60 samples. Here, we keep the frame length to 24 as average number of 

frames in each sample is ~ 24. 

2. Auto train/test split of the 2 gestures data with 75% for training and 25% for testing 

using train/test split technique. 

3. Training was done with repeats – 3. 

4. We got 62% average test accuracy as shown below with classification report. 
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5.2.1.3 Observations: 

1. The obtained accuracy looks good, but we cannot guarantee the correctness as the input 

data range is very small. 

2. We can also see that the range of difference in accuracy is also high (+/- 5.66). This is 

due to high frequency of biased input. As the test data is less, they can be more correct 

predictions for one gesture than the other which gives biased results. 
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5.2.2 Experiment 2 – LSTM-Only Model on 2 gestures with Angular Velocity and 

Acceleration 

5.2.2.1 Architectural Setup 

Experiment on 2 gestures ‘abort’ and ‘stop’: 

1. Input Layer:  A single 3D array with input as [samples, timesteps, features (Angular 

Velocity, Acceleration)]  

2. Hidden Layer1: Single LSTM hidden layer. 

3. Hidden Layer2: Dropout Layer with a dropout rate 0.5 

4. Hidden Layer3: Dense Fully Connected Layer with an output size 100, a ‘ReLU’ 

Activation Function. 

5. Output Layer: Dense Fully Connected Layer with two-element vector containing the 

probability of a given window to each of the 2 gesture types, a Softmax Activation 

Function. 

6. Categorical_crossentropy and ‘adam’ stochastic gradient descent parameters to 

optimize the network. 

7. The model is fit for 20 epochs per iteration and total sample (117) as a batch size. 

5.2.2.2 Results 

1. Current results are only for 'Abort' and 'Stop' gestures and for 6 joint positions of each 

of the gestures as mentioned in data pre-processing steps. Abort =>57 samples and 

stop => 60 samples. Here, we keep the frame length to 24 as average number of 

frames in each sample is ~ 24. 

2. Auto train/test split of the 2 gestures data with 75% for training and 25% for testing 

using train/test split technique. 
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3. Training was done with repeats – 3. 

4. We got 76% average test accuracy as shown below with classification report. 

 

5.2.2.3 Observations 

1. We experimented by taking the same parameters as in Experiment 1 but considered 

features as Angular Velocity and Acceleration instead of Polar Angle and Angular 

Velocity. 
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2. The obtained accuracy might not guarantee the correctness due to small dataset range, 

but the biased result is reduced by 3% when compared to our first experiment 

because, Angular Velocity and Acceleration are more related to each other when 

compared to Polar Angle and Angular Velocity. 

5.2.3 Experiment 3 – LSTM-only Model on 9 gestures with Angular Velocity and 

Acceleration 

5.2.3.1 Architectural Setup 

Experiment on all the 9 gestures: 

1. Input Layer:  A single 3D array with input as [samples, timesteps, features 

(Angular Velocity, Acceleration)]. 

2. Hidden Layer1: Single LSTM hidden layer (543 samples) 

3. Hidden Layer2: Dropout Layer with a dropout rate 0.5 

4. Hidden Layer3: Dense Fully Connected Layer with an output size 100, a ‘ReLU’ 

Activation Function. 

5. Output Layer: Dense Fully Connected Layer with nine-element vector containing 

the probability of a given window to each of the 9 gesture types, a Softmax 

Activation Function. 

6. Categorical_crossentropy and ‘adam’ stochastic gradient descent parameters to 

optimize the network. 

7. The model is fit for 50 epochs per iteration and batch size (271). Total sample size 

(543) is divided into 2 batches before getting updated in network. 
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5.2.3.2 Results 

1. Results are for 9 gestures [‘Stop’, ‘Abort’, ‘Warn’, ‘Circle’, ‘hello’, ‘turn’, ‘turn-

right’, ‘turn-left’, ‘no’] and for 6 joint positions of each of the gestures as mentioned 

in data pre-processing steps. Here, we keep the frame length to 24 as average number 

of frames in each sample is ~ 24. 

2. Stratified shuffle train/test split of the 9 gestures data with 75% for training and 25% 

for testing. 

3. Run experiments with repeats – 10 

4. We got 26% average test accuracy as shown below with classification report. 
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5.2.3.3 Observations 

LSTM is applied for all 9 gestures. We can see that the accuracy dropped drastically. 

This drop is accuracy is due incapability for the model to adapt for large dataset and 

also, we need a Convolutional Model to capture spatial features along with temporal 

features for each timeframe. We can also see that there are a few labels which are not 

predicted. This is due to large number of gestures without adequate size of dataset for 

LSTM only model. 

5.2.4 Experiment 4 – CNN LSTM Model on 9 gestures with Angular Velocity and 

Acceleration 

5.2.4.1 Architectural Setup 

Experiment on all the 9 gestures: 

1. A single 3D array with input as [samples, timesteps, features (Angular Velocity, 

Acceleration)]. 

2. Hidden Layer1: Time Distributed Layer to read sequence of timesteps. 

3. Hidden Layer2: Flattening Layer before sending output from CNN to LSTM 

model 

4. Hidden Layer3: Dropout Layer with a dropout rate 0.5 

5. Hidden Layer4: Dense Fully Connected Layer with an output size 100, a ‘ReLU’ 

Activation Function. 
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6. Hidden Layer 5: One CNN layer with a max pooling layer. 

7. Output Layer: Dense Fully Connected Layer with nine-element vector containing 

the probability of a given window to each of the 9 gesture types, a Softmax 

Activation Function. 

 

5.2.4.2 Results 

1. Results are for 9 gestures and for 6 joint positions of each of the gestures as mentioned in 

data pre-processing steps and keeping frame length to be 24. 

2. train/test split of the 9 gestures data with 75% for training and 25% for testing. 

3. Run experiments with repeats – 3 

4. We got 69% average test accuracy as shown below with classification report. 
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5.2.4.3 Observations 

We see that the model achieved a performance of 69% with a standard deviation of about 

3%. Here, CNN layer helped to extract spatial features for sequence of timesteps and then 

LSTM layer interprets the feature extracted. This approach gave good results but instead 

of running CNN over frames and send the feature sequence to LSTM, we can make the 

LSTM to perform convolutional operations within itself using ConvLSTM method. This 

method can help to correctly extract the features and reduce errors due to any numerical 

precisions internally. 

5.2.5  Experiment 5 – ConvLSTM Model on 9 gestures with Angular Velocity and 

Acceleration 

5.2.5.1 Architectural Setup 

Experiment on all the 9 gestures: 

1. Input Layer: 5D tensor with shape [samples, time, rows, cols, channels] 

i. Samples: number of samples in the dataset (543) 

ii. Time: split of the timesteps (1) 

iii. Rows: shape of each sequence (1) 

iv. Columns: 24 timesteps for input sequence (24) 

v. Channels: input features (12)  

2. Hidden Layer1: ConvLSTM 2D Layer with two dimensional kernel size (1 row 

and 1 column of the timesteps) 

3. Hidden Layer2: Dropout Layer with a dropout rate 0.5 

4. Hidden Layer3: Flattening Layer before passing to Dense Layer 
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5. Hidden Layer4: Dense Fully connected Layer with an output size 100, a ‘ReLU’ 

Activation Function. 

6. Hidden Layer 5: Compile Layer with loss function as categorical cross entropy 

and adam optimizer. 

7. Output Layer: Dense Fully Connected Layer with nine-element vector containing 

the probability of a given window to each of the 9 gesture types and a Softmax 

Activation Function. 

5.2.5.2 Results 

1. Results are for 9 gestures and for 6 joint positions of each of the gestures as 

mentioned in data pre-processing steps and keeping frame length to be 24. 

2. Train/test split of the 9 gestures data with 75% for training and 25% for testing. 

3. Run experiments with repeats – 3 

4. We got 70% average test accuracy as shown below with classification report. 
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5.2.5.3 Observations 

In ConvLSTM model, convolutional operations take place instead of matrix multiplication 

within the LSTM. We can see that the accuracy improved by 1% with reduce in standard 

deviation by 2%. 

5.2.6 Experiment 6 – LeakyReLU + ConvLSTM Model 

For all the models above, we used ReLU activation function. This function is linear for all 

positive values and zero for all negative values. If the slope of the ReLU is negative, it ends up 

being zero which makes it a dead neuron. These situations occur when there are big jumps in the 

slope due to high learning rate. To overcome these errors, we can use LeakyRelu which sets 

small slopes in negative range. This makes the training process balanced and much faster. 

5.2.6.1 Architectural Setup 

Experiment on all the 9 gestures: 

5. Input Layer: 5D tensor with shape [samples, time, rows, cols, channels] 

i. Samples: number of samples in the dataset (543) 

ii. Time: split of the timesteps (1) 

iii. Rows: shape of each sequence (1) 

iv. Columns: 24 timesteps for input sequence (24) 

v. Channels: input features (12)  

6. Hidden Layer1: ConvLSTM 2D Layer with two-dimensional kernel size (1 row and 1 

column of the timesteps) 

7. Hidden Layer2: Dropout Layer with a dropout rate 0.5 

2. Hidden Layer3: Flattening Layer before passing to Dense Layer 
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3. Hidden Layer4: Dense Fully Connected Layer with an output size 100, a 

‘LeakyReLU’ Activation Function. 

4. Hidden Layer 5: Compile Layer with loss function as categorical cross entropy and 

adam optimizer. 

5. Output Layer: Dense Fully Connected Layer with nine-element vector containing the 

probability of a given window to each of the 9 gesture types and a Softmax 

Activation Function. 

5.2.6.2 Results 

1. Results are for 9 gestures and for 6 joint positions of each of the gestures as 

mentioned in data pre-processing steps and keeping frame length to be 44. 

2. Train/test split of the 9 gestures data with 75% for training and 25% for testing. 

3. Run experiments with repeats – 3 
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5.2.6.3 Observations 

Testing Accuracy of 70%. Though we do not see any major change in accuracy, this experiment 

was performed on 44 timesteps than the previous experiment where we used 24 timesteps. 

Increase in timesteps can raise noisy data as most of the timesteps will be padded with zero at the 
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end. Hence, even with the noise data, the model was able to produce approximately same testing 

accuracy. 

We performed many experiments on 2D data and found that, by using CNN-LSTM and 

ConvLSTM models improved the accuracy. Hence, we now apply these models on 3D data to 

achieve real time Gesture Recognition. 

6 Gesture Recognition on 3D Data 

6.1 Data Pre-Processing 

6.1.1  Understanding 3D points on the image 

As in 2D data, we can estimate gestures by identifying 17 joints of the body parts referred 

as “Key-points”. Here, the position of each joint is represented by (x,y,z) coordinates. We 

store the coordinates of each frame relative to one of its joint positions (Nose) as in 2D 

data.  

6.1.2 Calculating Angular velocity and Acceleration 

To represent 3 coordinates(x,y,z) to calculate the movement, we use Spherical Coordinate 

system[31].  

 

Fig. 21 Representation of Spherical Coordinates [31] 
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 In the above figure, Point P (r, ø, 𝜃) has distance(r) from the origin(O) to the point(p), 

Theta (𝜃) – angle measured on the XY plane and phi(ø) is an angle to rotate around the x-axis to 

get to the point(p). It is measured on the Z-axis. [32] 

We apply the relation between Spherical Coordinates and Cartesian Coordinates as follows: 

    r = √(𝑥2 + 𝑦2 + 𝑧2) 

𝜃 = {
tan−1 (

𝑦

𝑥
) , 𝑥 ≠ 0

𝜋

2
, 𝑥 = 0

 

𝜙 =

{
 
 

 
 
tan−1 (

√𝑥2 + 𝑦2

𝑧
) , 𝑧 ≠ 0

𝜋

2
, 𝑧 = 0

 

 

There are many different conventions for Spherical Coordinates. The convention used here is 

common in mathematics. To calculate the movement in gestures, we store (r, 𝜙, 𝜃) for each joint 

instead of (x,y,z) coordinates. 

To capture the dynamics, we consider two velocities in 3D data: 

Angular Velocity(𝜃) is the rate of change of Polar Angle of each point with respect to time. This 

is same as in Polar Coordinates and is represented as below: 

    𝜔 = 
𝛿𝜃

𝛿𝑡
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Phi Velocity (𝜙) is the rate of change of Phi Velocity of each point with respect to time. 

    𝛽 = 
𝛿𝜙

𝛿𝑡
 

Acceleration is the rate of change of Phi Velocity of each point with respect to time. It is 

represented as below: 

𝑎 = 
𝛿𝛽
𝛿𝑡

 

For our experiments, we modify values of 6 joint positions:  

‘left-shoulder’, ‘left-elbow’, ‘left-wrist’ 

‘right-shoulder’, ‘right-elbow’, ‘right-wrist’ 

As we calculate Angular Velocity and Acceleration for each joint positions, we get 18 features 

for 6 joint positions: 

'left-shoulder velocity, 'left-shoulder phi-velocity', ‘left-shoulder acceleration’ 

'left-elbow polar angle’, 'left-elbow velocity', 'left-elbow acceleration' 

'left-wrist polar angle', 'left-wrist velocity', 'left-wrist acceleration' 

'right-shoulder polar angle’, 'right-shoulder velocity', 'right-shoulder acceleration' 

'right-elbow polar angle’, 'right-elbow velocity', 'right-elbow acceleration' 

'right-wrist polar angle', 'right-wrist velocity', 'right-wrist acceleration' 

6.2 Experiments 

6.2.1 Experiment 1 – ConvLSTM Model on 2 gestures 

6.2.1.1 Architectural Setup 

Experiment on 2 gestures: 
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1. Input Layer: 5D tensor with shape [samples, time, rows, cols, channels] 

i. Samples: number of samples in the dataset (543) 

ii. Time: split of the timesteps (1) 

iii. Rows: shape of each sequence (1) 

iv. Columns: 24 timesteps for input sequence (24) 

v. Channels: input features (18)  

2. Hidden Layer1: ConvLSTM Layer with 1 filter of 11 X 11 dimension.  

3. Hidden Layer3: Dropout Layer with a dropout rate 0.5 

4. Hidden Layer4: Dense Fully Connected Layer with an output size 100, a ‘ReLU’ 

Activation Function. 

5. Hidden Layer 5: One CNN Layer with a max pooling layer. 

6. Output Layer: Dense Fully Connected Layer with nine-element vector containing the 

probability of a given window to each of the 9 gesture types, a Softmax Activation 

Function. 

7. The model is fit for 60 epochs per iteration and total sample (60) as a batch size. 

6.2.1.2 Results 

1. Results are for 2 gestures for 3D data and for 6 joint positions of each of the gestures as 

mentioned in data pre-processing steps and keeping frame length to be 24. 

2. train/test split of the 2 gestures data with 75% for training and 25% for testing. 

3. Run experiments with repeats – 3 

4. We got 75% average test accuracy as shown below with classification report. 
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6.2.1.3 Observations 

Testing Accuracy is 75%. The increase in the testing accuracy is due to the addition of the 3D 

information in the form of Angular Velocity for both Theta and Phi Coordinates. We used the 

same ConvLSTM model applied for 2D data with few changes in numeric precisions and hyper 

parameters such as batch size, epoch, number of filters, number of steps and length of the input 

shape. This model is better suited to handle the spatial-temporal data and is able to make 

predictions better.  
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6.2.2 Experiment 2 – ConvLSTM Model on 9 gestures 

6.2.2.1 Architectural Setup 

Experiment on data of 9 gestures: 

1. Input Layer: 5D tensor with shape [samples, time, rows, cols, channels] 

i. Samples: number of samples in the dataset (543) 

ii. Time: split of the timesteps (1) 

iii. Rows: shape of each sequence (1) 

iv. Columns: 24 timesteps for input sequence (30) 

v. Channels: input features (18)  

2. Hidden Layer1: ConvLSTM Layer with 1 filter of 8 X 8 dimension. 

3. Hidden Layer2: Dropout Layer with a dropout rate 0.5 

4. Hidden Layer3: Flattening Layer before passing to Dense Layer 

5. Hidden Layer4: Dense Fully Connected Layer with an output size 1000, a 

‘LeakyReLU’ Activation Function. 

6. Hidden Layer 5: Compile Layer with loss function as categorical cross entropy and 

adam optimizer. 

7. Output Layer: Dense Fully Connected Layer with nine-element vector containing the 

probability of a given window to each of the 9 gesture types, a Softmax Activation 

Function. 

6. The model is fit for 50 epochs per iteration and total sample (60) as a batch size. 

6.2.2.2 Results 

5. Results are for 9 gestures for 3D data and for 6 joint positions of each of the gestures as 

mentioned in data pre-processing steps and keeping frame length to be 30. 
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6. train/test split of the 9 gestures data with 75% for training and 25% for testing. 

7. Run experiments with repeats – 3 

8. We got ~49% average test accuracy as shown below with classification report. 

6.2.2.3 Observation 

Testing accuracy is ~50%. We can see that there is a drop in accuracy. This can be 

considered as a normal behavior because of increase in the input size for the model. We 

tuned the model by changing its hyperparameters like changing to ‘Tanh’ Activation 

Function and reducing the filter size. This behavior may also be due to a smaller number of 

datapoints for the predicting labels. Being able to reduce the noise in the data and 

experimenting the model with different parameters can still outperform 2D model. 
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7 ANALYSIS 

For 2D data, we started with LSTM only model using Polar Angle and Angular Velocity as 

features in Experiment-A and we were able to achieve 62% testing accuracy with high range of 

deviation. In the next experiment-Experiment B, we replaced the features from Polar Angle , 

Angular Velocity to Angular Velocity , Acceleration as acceleration helps to capture movement 

data in a better way. we were able to achieve a better testing accuracy of 76%. we extended our 

next experiment by adding more data. Instead of 2 gestures, we calculated features for 9 gestures. 

In this experiment, the accuracy dropped by 50%. This is due to applying same model on the 

large dataset. By applying Only LSTM model in these three experiments, we came to know that 

it captures temporal changes in sequential data, but it is incapable of handling spatial features. To 

overcome this problem, in our next experiment, we combined CNN and LSTM model i.e., 

running Conv1D layer on 24 timesteps to capture spatial features and then sending the output to 

the LSTM improved testing accuracy to 69% for all the 9 gestures. By applying CNN LSTM 

model on the data gave good accuracy but the internal computation for CNN LSTM is complex. 

To overcome this problem, we experimented our data on ConvLSTM model which replaces 

matrix multiplication with convolutional operations without keeping CNN as a separate layer. 

This experiment resulted in 70% accuracy. Though the computation was easy, we couldn’t find 

any major changes in the results. To improve the validation accuracy, we performed next 

experiment to change activation function from "ReLU" to "LeakyReLU". This function helps to 

reduce generating high slopes for learning, thereby balancing the biased weights in the network. 

For this experiment, we increased noise and the data by increasing timesteps to its maximum 

(from 24 to 44). Even with added disturbance, the model was able to achieve 70% testing 

accuracy. From all these experiments on 2D data, we came to know that running ConvLSTM 
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model on the data yield better results. For the next experiment, we applied ConvLSTM on 2 

gestures 'Abort' and 'stop' of 3D data which has 18 features instead of just 12 features. we found 

that the testing accuracy raised to 75%. Though the accuracy dropped with large dataset, by 

experimenting with calculated velocity and acceleration of 3D data, even with variable frame 

length and padded zeros, we were able to extract and predict the features efficiently.  

8 CONCLUSION 

Computer Vision [33] is a scientific discipline in the Artificial Intelligence field which trains 

computers to gain high level understanding from digital images or videos and has a wide range 

of application in various field such as Gesture Recognition, Automatic Inspections, Visual 

Surveillance, Object Detection, Medical Image Analysis and many more. This project explores 

the various existing techniques along with their limitations to arrive at the best suited technique 

for Gesture Recognition.  

Long-Short Term Memory along with its enhancements in Convolutional Neural Network-

LSTM (CNN-LSTM) and Convolutional LSTM have exhibited best accuracy for handling 

spatio-temporal data and hence, these techniques were further explored upon. Hyper parameter 

tuning such as modifying activation functions, varying filter size and appropriate data 

preparation was employed in order to help improve the model prediction. Experiments on both 

2D & 3D data conform with our hypothesis that Conv-LSTM is better suited to handle complex 

data due to the convolution operations. However, it is to be noted that varying data length can be 

somewhat of a limitation since convolution needs the size of states to be the same as the size of 

the input data stream.  
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8.1 Future Work 

Below is the scope of improvements that can be made to the model developed here to enhance its 

prediction accuracy. 

1. Update the model to handle Angular Velocity and Acceleration for both theta and phi 

Polar Coordinates. 

2. Reduce the noise introduced by zero padding of the input sequences due to variable frame 

length. 

3. Improve the model to accept variable frame length for correct accuracy. 

4. Enable the model to handle all joint positions instead of the 6 joints used presently. 

5. Perform more experiments on the 3D joint data and better correlate the results obtained to 

the parameters. 
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