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ABSTRACT 

 Noise residue detection in digital images has recently been used as a method to 

classify images based on source camera model type. The meteoric rise in the popularity 

of using Neural Network models has also been used in conjunction with the concept of 

noise residuals to classify source camera models. However, many papers gloss over 

the details on the methods of obtaining noise residuals and instead rely on the self-

learning aspect of deep neural networks to implicitly discover this themselves. For this 

project I propose a method of obtaining noise residuals (“noiseprints”) and denoising an 

image, as well as a Generative model that can learn how to reproduce noise resembling 

a target digital camera model’s noise noiseprint. Applying a noiseprint generated by this 

model onto a denoised image will be able to fool a discriminating model into classifying 

the wrong digital camera model. To the best of my knowledge, this is the first work that 

will explicitly detail denoising methods and noiseprint generation in a 128 by 128 

resolution for specific camera models and individual cameras for the goal of fooling a 

classification model.  

 

Keywords – Machine learning, computer vision, image forensics, Generative 

Adversarial Network (GAN), noise residual spoofing, denoising  
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I. INTRODUCTION 

 The rise in availability of cameras in this digital age has led to copious amounts 

of pictures being taken that can be used as forensic evidence. Pictures taken of crimes 

and other events from the cellphones of bystanders could be used as evidence in court. 

However, with the widespread availability of picture and video alterations, the 

authenticity of images must be investigated before they can be used in court. One 

method that is recently being developed and has been used to authenticate images in 

some states is sensor noise fingerprint identification. The goal of this project is to study 

and attack sensor noise fingerprint classification models.  

 Before noiseprints were introduced [1], there were attempts to reliably identify 

source camera models. EXIF headers data was a common distinguishing feature, 

however these data can be easily erased, as it is not tied to the image pixel data itself. 

Digital camera companies also made attempts to include digital signatures in the form of 

watermarks, biometric data of photographer, and hashes of images. These attempts did 

ensure integrity and/or authenticity of the image, however they required to be taken by 

special cameras. Most images won’t have these properties and thus will not be secure 

enough to use in the court of law. Several other methods that analyze picture features 

were also proposed, but they lacked the accuracy or failed to hold up under jpeg 

compression. Then the paper by Lucas et al. [1] that revolutionized source camera 

model identification was created. This paper was very influential to the point where most 

papers that about source camera model identification reference that paper. This project 

that I propose also makes use of camera sensor noise. 
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 The digital camera imaging pipeline introduces noise that is specific to each 

camera model. Scene invariant noise is captured by models and used for classification. 

This type of authentication is useful for verifying images being taken by certain phones 

owned by different witnesses, defenders, or accusers in court. The methods for 

denoising an image vary, but the most common method found in research papers has 

been using wavelet transformations. These are chosen over their Fourier transform 

counterpart as they can detect more local features, which is imperative to detecting 

noise which is very small-scale differences between neighboring pixels. 

 This master’s project will attempt to create and GAN that trains a discriminator 

and a generator. The discriminator will determine whether the images are fake, and the 

generator will try to trick the discriminator with a generated image. The goal of this 

project is to use the GAN to take images from a certain camera, remove the noise and 

imprint noise that detection model would think it was sourced from a different camera. If 

spoofing of noise proves to be robust, this points out serious flaws in the sensor noise-

based classification models. 

 This report is structured in the following order: The background will provide 

preliminary information that is required to understand the concepts that model attempts 

to incorporate. The preliminary work section acknowledges previous research papers 

that discuss topics related to sensor noise and source camera identification. The model 

design and implementation section discuss the details and reasoning behind the design 

choice for my model. The experiments and results section discuss the dataset and the 

results of my experiments. To conclude the report, future works are discussed along 

with concluding remarks.  
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II. BACKGROUND 

This section will discuss various background material related to sensor noise and 

camera model identification. An overview of the digital imaging pipeline will be given. 

Various denoising methods and their intended results will be discussed in the context of 

obtaining sensor noise and denoising an image. Popular methods for image 

classification will be discussed. Methods for preprocessing data for images to increase 

speed, accuracy and robustness will also be discussed. The concept of GANs will be 

introduced including, how to train them, and what they provide to my project.  

 

A. Digital Camera Pipeline 

Digital Cameras have an image processing pipeline that converts incoming rays 

of that that pass through the lens of the digital camera into digital bits of 0’s and 1’s for 

computers to interpret and display. However, this process cannot convert rays of light 

perfectly into bits and will introduce noise. This noise has been claimed to be 

deterministic and unique to a specific camera model. The pipeline first starts off with the 

scene in the real-world reflecting rays of light and some of those rays pass through the 

camera lens of the digital camera. Light rays that pass through the lens of the camera 

encounter mosaic of color filters that cover the imaging sensor. These sensors do not 

differentiate between wavelengths and are more sensitive to intensity. Therefore, each 

pixel sensor is only able to interpret the intensity of one specific color. The pattern and 

selection of colors in this mosaic are placed in a strategic fashion so that the digital 

processing pipeline can convert these single-color pixels into a full color image. The 

digital processing of the output of the color filter array includes, lens distortion 
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correction, white balancing, brightness and gamma correction, jpeg compression, and 

demosaicing. At every step of this pipeline noise can be introduced. This noise has 

been determined to be manufacturing specific and therefore has been the focus of 

utilization for classification models. 

 

Figure 1. Digital Camera Pipeline. Sources from left to right and top to bottom [9][10][11][12] 

 

B. Noiseprints 

While there is noise in every image, it is important to note that for classification 

purposes, scene specific noise is not desirable to capture for classification models. 

Requiring each camera to take pictures of the same image at the same exact lighting, 

angle, and camera settings are very restrictive conditions for a model. Data would have 



FAKING SENSOR NOISE INFORMATION 

 

 

 5 

to be specifically gathered from phones with this purpose in mind. Capturing only scene 

invariant noise allows the model to accept a much larger range of data as input data 

and will increase robustness. Pattern noise can be classified as Fixed Pattern Noise 

(FPN) and Photo-Response Non-Uniformity (PRNU). FPN are caused by dark currents. 

Dark current is the flow of electrons through the imaging sensor in the absence of light. 

The flow of electrons cause noise in the image and is also scene variant due to the 

scene requiring to located in a dark location. PRNU is generated from light sensitivity 

variations between each pixel. Slight variations occur between the silicon wafers that 

make up the sensors. PRNU noise is more consistent between all pictures and is not 

affected by environmental factors like FPN, such as temperature and humidity. Pixel 

non-uniformity is responsible for most of these qualities of PRNU and defective pixels 

make up the rest of PRNU. There are other sources of PRNU such as dust particles on 

the lens and zoom settings, however these are not consistent sources of noise and 

should not be considered by the model. PRNU noise patterns also tend to have a 

vignette shaped pattern, where the edges of the pictures are noisier than the center. 

While researching about the capture of noiseprints, tests where conducted on my own 

phone that confirmed and illustrated qualities of PRNU. A sample of a noiseprint is 

shown in Figure 3. 
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Figure 2. Pattern Noise Types 

 

 

Figure 3. Noiseprint for iPhone X 
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C. Denoising Filters 

Denoising is the reconstruction of an image that does not contain small 

neighboring pixel fluctuations that are attributed to noise. This concept can be traced 

back all the way to a simple approximation function called Taylor series. Fourier 

transforms are another more advanced version of approximation functions and finally 

people settled on wavelet transforms to be the golden standard. These techniques were 

first used for signal analysis with the purpose of representing discontinuous functions as 

a very similar function that is easier to differentiate. Being able to differentiate a function 

was crucial for the analysis of the function. Taylor series takes non polynomial functions 

and represents then with a similar looking polynomial function. Fourier transforms 

attempt to model waveforms with sinusoidals to decompose signals into tones of 

various frequencies. The disadvantage of both Taylor and Fourier is that they capture 

global frequency information and might not represent the original signal well.  

Wavelet decomposition was an appropriate solution to capture local information 

since wavelets are not global functions and can capture local features of varying 

degrees. It can be seen as sliding a window across an image and capturing the essence 

of the image in each new section the window slides over. This technique can also be 

called wavelet denoising as the resulting wavelet transform does not contain small 

fluctuations that would be considered noise. The image that has been denoised will look 

smoother but still retain details of varying degree.  
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Median filters are also used in image smoothing because of their simplicity and 

their ability to preserve edges during the removal of noise. This filter assigns pixel 

values based on the median of the surrounding neighboring pixels. However, this type 

of filter has been known to leave scene related traces around edges that result in the 

misclassification of images. Many other filters are also considered by various 

researchers, however most papers often default to using Wavelet based filters as they 

produce the best results. 

 

Figure 4. Examples of different types of Wavelets 
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D. Local Binary Pattern (LBP) 

LBPs are an image texture descriptor that processes data to convert specific 

textures to more distinguished numerical features. This technique is also commonly 

combined histogram oriented gradients into order classify images based on histogram 

similarity. An example of a LBP method can be described as thresholding of 

neighboring pixels. If a pixel had a value of 100, all adjacent pixels would have a binary 

digit associated with that position. All adjacent pixels that are greater than the center 

pixel of 100 would get a their binary digit value flag to be 1. Adjacent pixels less than 

100 would have a binary value of 0. The resulting binary number would require little 

space to store and contain a compressed representation of the nearby pixel texture. 

The histogram of LBP windows on an image can classify certain features within an 

image, for example classifying the nose in a picture of a face. The LBP window could 

also be the whole image if classifying the whole image is the desired outcome. This 

texture operator is analogous to a Convolutional Neural Network’s (CNN’s) sliding 

window filters. Sliding windows look for local textures to classify the image. However the 

power of the method of LBPs is that they are faster and can be used as a preprocessing 

step to augment data prior to being entered into a model. 
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Figure 4. Examples of LBP calculation for a pixel [13] 

 

E. Convolutional Neural Networks (CNNs) 

A CNN is a network that uses the concept of sliding windows to analyze data. 

These windows are convolutional filters that analyze input features in batches as they 

move across the data. These filters can be seen as a form of regularization that prevent 

overfitting like fully connected multilayer perceptrons. This type of network is very 

effective and efficient at analyzing the local spatial patterns. Images typically require a 

more localized analysis for pattern recognition. CNNs are a very popular model for 

situations where the input data are images due to the network determining the optimal 

filters automatically, compared to other models needed engineers to custom make 
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filters. In the case of RGB images, each color channel is treated with a different 3D 

convolution layer. 

 

Figure 5. Example of a Convolutional Neural Network [14] 

 

F. Generative Adversarial Networks (GANs) 

The GAN model architecture can be divided into two different sub-models: the 

generator and the discriminator. Research has shown that generative models are an 

excellent method to train a model from smaller training sets, while discriminative models 

are more accurate in classification if the training set is large [3]. GANs are trained in 

tandem using the improvements of one model to train the other. The generative model’s 

goal during training is the increase the rate at which the discriminative network 

incorrectly classifies the fake sample data that the generative network feeds into the 

discriminative network. The discriminative network’s goal is the minimize the error rate 

at which the fake data is classified. Each network takes turns training once one of them 

reaches a certain level of success they switch. 
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Figure 6. Visual Depiction of a GAN 

 

III. RELATED WORK 

A. Sensor Pattern Noise discovery 

The paper “Digital Camera Identification from Sensor Pattern Noise” by Lucas et 

al. [1] was the first paper to approach the issue of digital camera identification through 

sensor noise and made a strong enough impact in this problem scope where almost 

every paper regarding camera identification references this paper. The authors of that 

paper only mentioned one other paper that discussed using sensor noise and they was 

a paper by Kurosawa et al [4]. In that paper they extracted dark current noise to classify 

camera models. However, this research required the datasets to contain images with 

large amounts of dark pixels. In addition, PRNU is a more robust component of sensor 

noise that is more pronounced and is more constant from a variety of scenes, leading to 

a more robust classification model. The discussion of noise print extraction largely goes 

unexplained in most papers regarding camera identification, while Lucas et al. [1] does 

go in depth. Instead of neural network models, which in 2005 probably wasn’t as 

popular to use as currently, detection by correlation was used. Different denoising 
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methods were used to extract noise and they found that wavelet based denoising does 

the best job. They modified a wavelet denoising package called wavelab produced by 

Stanford that is not publicly accessible. The noise residuals extracted from each class of 

images are averaged to create a noiseprint for a camera model. 

 

B. Insertion of camera noiseprints onto artificially generated images 

Cozzolino et al. uses a GAN is used to generate images that are very similar to a 

photo that would be taken with a digital camera [5]. Then he inserts camera fingerprints 

from a specific camera model onto artificially generated images to fool a camera model 

identifier. This is the first instance of superimposing spoofed sensor noise onto 

artificially generated images and provides insight on the weakness of deepfake 

detection models. 

 

C. Arbitrary attacks on discriminative networks 

Chen et al. [6] discovers that modern camera model identification is weak to 

adversarial perturbations. Anti-forensic networks are created using GANs with the goal 

of confusing CNN-based classification models. Through a series of experiments, both 

white box and black box attacks on these classification models are proven to be 

successful at dramatically lowering it’s accuracy while still maintaining reasonable 

PSNR and Structural Similarity Index levels (SSIM). PSNR and SSIM are similarity 

scores that can be given to compare two images. While this paper does not conduct 

targets attacks designed to spoof a camera model, attacks that render a model to 

misclassify a model are still an important flaw to highlight. 
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D. Tests in robustness of camera identification 

In the paper “Robustness in Blind Camera Identification”, Samaras et al. [7] 

analyses the effect that image alterations have on these models. Certain post 

processing methods images are applied and ran through the classification model. Some 

examples of these image manipulations are changes in white balance, gamma 

correction, contrast enhancement, and histogram equalization. The results of tests 

proved that models do hold up to these global image alterations, however the authors 

warn of the PRNU related manipulations, such as removing the PRNU factor, that are 

undetectable by human judgement drastically lowers accuracy. The model was also 

tested for training sample size requirements for good PRNU estimates. A 

recommendation of 100 sample images per class was advised for average wavelet-

based denoising. 

 

E. PCA based denoising of noiseprints 

Li et al. [2] applies PCA-based denoising to the noiseprints themselves. This is 

expected to reduce the computation time of classification by reducing dimensionality. 

PCA-based denoising also has the effect of making the model more robust by 

suppressing irrelevant parts of the noiseprint and allowing the significant information to 

be valued more by classification models. They use a similarity measure based on 

simple correlation estimates, however these discoveries should hold up to neural 

network classification based approaches. 
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IV. DATASET 

For this project, the goal was to simulate an attack on someone’s personal 

device. The attacker would download the victim’s images off of their phone and attempt 

to model the noiseprint for that particular phone. With this goal in mind, the total images 

available for training and testing had to be withing a reasonable number of images that 

would be on user’s phone at any given time. 

Three sets of phones were used to gather data. One Apple iPhone X and two 

different Samsung Galaxy S8s. Some of the data was gathered from images existing on 

the phone already and some extra pictures were taken to even out the sample sizes of 

all classes. A wide variety of images were taken in different conditions. Some images 

were taken outside in low and high levels of scene brightness. Scenes that were 

captures indoors were also taken. Pictures were taken in scenes of various 

temperatures and humidity as well since they are both known to affect noise. Pictures 

were taken with the base zoom level on all phones, but also were taken at varying 

physical distances from the subjects. Subjects of images differed from humans, 

animals, trees, buildings, etc. This also guaranteed that the distribution of colors within 

pixels were varied ensuring an accurate model of noise, since noise is also known to be 

affected by light source color. It is important to note that there were no image altering 

filters applied to these images.  

 In an attempt to follow the guideline set by Samaras et al., each model would 

have over 100 images per class to train on. The GAN and the classification network 

also did not share datasets to prevent possible cross contamination or overfitting. The 
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GAN had 240 images to train the generator and the discriminator on. The classifier used 

275 images for its training set and 30 images were reserved for the test set.  

   

Figure 7. Examples of images from each camera (left to right: iPhone X, Galaxy8c, Galaxy8l) 

V. MODEL DESIGN AND IMPLEMENTATION 

A. Preprocessing for the GAN 

The GAN’s generator is designed to model the noiseprint for each class, so the 

input images would need to have their noiseprints extracted to feed into the 

discriminator as training data. Each image had a center crop of 128 by 128 pixels taken 

from it. Previous works have also worked well with small crops taken from larger 

images. The center crop was put through a denoising filter. The original image was then 

subtracted from the denoised image to obtain the noiseprint for that particular image. 

The nose prints are arrays of 128 by 128 by 3 and are small negative and positive 

floats. These arrays are saved to be use for training the GAN. Multiple crops per image 

do result in higher accuracies for classification but each generator would have to train 

on crops respective to their position, thus greatly increasing training time. Typically, data 
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is scaled before being used in models, however in order for the GAN to accurately 

reconstruct sensor noise, any scaling would produce a noiseprint that is magnitudes 

larger or smaller than the original image. This difference would cause the spoofing of 

the camera model to be unsuccessful as there would be a difference in the noiseprints 

between the training set and the spoofed testing set of the classifier. 

 

B. Training the GAN 

Each camera model would have its own GAN due to the need for three distinct 

generators. The 240 noiseprints for each class were stored as NumPy arrays in the npz 

format and can be fed into the GAN’s discriminator as NumPy arrays. Random noise is 

the input for the discriminator portion of the model. The generator has three alternating 

layers of 2D convolutional layers, batch normalization, and leaky ReLU. The final output 

shape would be a 128 by 128 by 3 array that simulates attempts to emulate a noiseprint 

of that respective class. The discriminator  has two alternating layers of 2D 

convolutional layers, leaky ReLU, and dropout. After those two alterting layers, the 

output is flattened and put through a 1-dimensional dense layer for classification of real 

or fake. The loss function for the discriminator rewards high accuracy of the real and 

fake images. The loss function for the generator penalizes correct classification of the 

generated fake samples. 50 epochs and a batch size of 20 are used in this model. 

When the model is finished training, their weights are saved so the generator can 

generate fake noiseprints for classification. 
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Figure 8. Diagram of the generator component of the GAN  

 

 

Figure 9. Diagram of the discriminator component of the GAN  

 

C. Preprocessing the Classifier 

Preprocessing the training data for the classifier involves taking a center crop of 

128 by 128 for each image. The test data contains a mix of real and fake images. The 

real test images are also 128 by 128 crops. However, the fake images must be created 

by denoising the image, loading the GANs, and using the respective generator to apply 

a noiseprint to the denoised image. Various tests were done at this stage that will be 

covered in the next section. The 128 by 128 crops went through additional 

preprocessing that involved converting the 3D RGB pixel arrays into 3D LBP data. For 
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histograms were generated for each color channel for 26 buckets creating a 78 element 

long array. Then the image is put through a wavelet denoising method (haar) and for 

each color channel. Three coefficients (arrays of 64x64) per moment per color channel 

are saved. Then the nth moment of the mean of those three coefficient arrays are 

calculated for 9 different moments and appended. This generates an additional 3 (RGB)  

* 3 (coefficients) * 9 (moments) = 81 element long array. The 78 elements and 81 

element long array are concatenated and fed into the classifier to represent features for 

that image. 

 

D. Training and testing the Classifier 

Multiple models were used to classify the data. However, the MLP model and the 

1D-CNN model produced the best results. The MLP has two layers the first layer being 

256 nodes and the second layer being 128 nodes. The 1D-CNN consisted of 2 1D 

convolution layers with a kernel size of 3 by 3. They are followed by a dropout, max 

pooling, and dense layers. 

 

Figure 10. Diagram of 1D-CNN classifier 

Logistic regression and K-means models were also tested and produced decent 

results. Hyperparameters for those models weren’t analyzed in great detail and 

therefore the structure of these models won’t be discussed as they were very simple. 
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A 2D-CNN model was also used as a classifier but, the preprocessing techniques 

for the input data of this model were different. They will be described in more detail in 

the experiments section of this report. there are 3 repetitions of 2D convolutional, ReLU, 

and max pooling layers. These are followed by the last flatten and dense layers. 

 

Figure 11. Diagram of 2D-CNN classifier 

 

VI. EXPERIMENTS AND RESULTS 

Most experiments were conducted on 2 classes, iPhone X and Galaxy8c and 

unless specifically mentioned, the experiments below were conducted on this basis. 

 

A. Core set of experiments for performance metric 

The results were fed into a variety of core experiments that determined the 

quality of the changes. The experiments are listed below: 

 

Experiment 1: non-spoofed images 

Experiment 2: denoised images with no noise spoofing 
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Experiment 3: iPhone noise spoofing on all denoised images from both classes 

Experiment 4: galaxy noise spoofing on all denoised images from both classes 

Experiment 5: iPhone noise spoofed images only for denoised galaxy images 

Experiment 6: galaxy noise spoofed images only for denoised iPhone images 

 

Expected results are listed below: 

Symbols in table are ideal results: 

⋀ means a high number 

⋁ means a low number 

- means they are all equal 

cropped: normal image that is unaltered 

denoised (dn): denoising filter applied but no noiseprint applied 

in-iphone: iPhone denoised image with iPhone spoofed noise added 

in-galaxy: galaxy denoised image with iPhone spoofed noise added 

gn-iphone: iPhone denoised image with galaxy spoofed noise added 

gn-galaxy: galaxy denoised image with galaxy spoofed noise added 

 
 Actual  

 

 cropped-iphone cropped-galaxy8c 

Predicted iphone ^ v 

 

galaxy8c v ^ 
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 Actual  

 

 denoised-iphone denoised-galaxy8c 

Predicted iphone - - 

 

galaxy8c - - 

 
   

 

 Actual  

 

 in-iphone in-galaxy8c 

Predicted iphone ^ ^ 

 

galaxy8c v v 

 
   

 

 Actual  

 

 gn-iphone gn-galaxy8c 

Predicted iphone v v 

 

galaxy8c ^ ^ 

    

 
 Actual  

 

 cropped-iphone in-galaxy8c 

Predicted iphone ^ ^ 

 

galaxy8c v v 

 
   

 

 

 

 

 

 



FAKING SENSOR NOISE INFORMATION 

 

 

 23 

Actual 

 

 cropped-galaxy8c gn-iphone 

Predicted iphone v v 

 

galaxy8c ^ ^ 

 

Table 1. Experiment ideal outcomes 

 

Experiment 1 is the baseline that that determines how well the model performs 

on unaltered images. Experiment 2 was designed to show that once in image is 

denoised the classifier would have equal difficulty in classifying each class. The rest of 

the experiments should have high values for their corresponding spoofed class or high 

values for their correct class is not spoofed. 

 

B. Double JPG compression 

When the original image is cropped and saved as a jpg, the image undergoes jpg 

compression twice. This had an adverse effect on the accuracy of the training, 

validation, and test set of the classifier. To prevent from further altering the image, the 

cropped image was saved as a PNG file. The lossless compression should prevent the 

altering of any noiseprints. For example, the accuracy of the training set of the neural 

network classifier rose from 87% to 93% and the validation accuracy rose from 78% to 

89%. Due to the nature of using a small sample size and a simple model, it would have 

a harder time ignoring small image alterations. 
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C. Denoising metrics 

Various denoising methods were applied to test images and the trained classifier 

was tasked to classify them. The ideal outcome would be an even split between all 

classes due to the noise print being wiped out. Therefore, the denoising method closest 

to 50% accuracy with the least biased would be the ideal denoising method. From the 

table below. The denoise_tv_chambolle() method from the skimage library was chosen. 

This code in this library used the paper by Chambolle et al. [8] as reference. 

  Actual    

   cropped-iphone cropped-galaxy8c  Accuracy 

Predicted iphone 26 7  0.816667 

 galaxy8c 4 23   

      

  Actual    

   dn-bi-iphone dn-bi-galaxy8c   

Predicted iphone 23 6  0.783333 

 galaxy8c 7 24   

      

  Actual    

   
dn-bior35-
iphone 

dn-bior35-
galaxy8c   

Predicted iphone 25 6  0.816667 

 galaxy8c 5 24   

      

  Actual    

   
dn-bior44-
iphone 

dn-bior44-
galaxy8c   

Predicted iphone 23 5  0.8 

 galaxy8c 7 25   

      

  Actual    

   dn-coif4-iphone dn-coif4-galaxy8c   

Predicted iphone 23 6  0.783333 

 galaxy8c 7 24   
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  Actual    

   dn-coif8-iphone dn-coif8-galaxy8c   

Predicted iphone 24 7  0.783333 

 galaxy8c 6 23   

      

  Actual    

   dn-db4-iphone dn-db4-galaxy8c   

Predicted iphone 23 5  0.8 

 galaxy8c 7 25   

       

  Actual    

   dn-db8-iphone dn-db8-galaxy8c   

Predicted iphone 23 3  0.833333 

 galaxy8c 7 27   

      

  Actual    

   dn-gaus-iphone dn-gaus-galaxy8c   

Predicted iphone 17 24  0.383333 

 galaxy8c 13 6   

      

  Actual    

   
dn-median-
iphone 

dn-median-
galaxy8c   

Predicted iphone 25 25  0.5 

 galaxy8c 5 5   

      

  Actual    

   dn-n1-iphone dn-n1-galaxy8c   

Predicted iphone 27 25  0.533333 

 galaxy8c 3 5   
 

   Actual    

   dn-sym4-iphone dn-sym4-galaxy8c   

Predicted iphone 23 3  0.833333 

 galaxy8c 7 27   

      

  Actual    

   dn-sym8-iphone dn-sym8-galaxy8c   

Predicted iphone 23 4  0.816667 

 galaxy8c 7 26   
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  Actual    

   dn-tv-iphone dn-tv-galaxy8c   

Predicted iphone 20 21  0.483333 

 galaxy8c 10 9   

 

Table 2. Denoising method comparisons 

 

D. Rounding 

The data type for images are stored in integers. This makes operations inherently 

lossy when the altered image, which is a float, needs to be saved again. When floats 

are converted to integers, the rounding function performed better than the flooring floats 

to integers. 

 

E. Weighting the noiseprints 

To explain why the model wasn’t behaving ideally, varying levels of noise 

strength were tested. There was a strong trend where the model better classified 

iPhone noise when a small multiplier was applied to the noise. Galaxy8c noise had the 

opposite result with the model classification being more ideal the stronger the noise is. 

These findings alluded to the fact that the model associates a less noisy image with 

iPhone and noisy images with galaxy. The number after the header represents the 

noise multiplier. 
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  Actual            

   

in-
ipho
ne 

in-
galax
y8c 

in-
ipho
ne0.0
1 0.05 0.1 0.3 0.5 0.7 1.05 1.1 1.25 1.5 2 2.2 

Predicted iphone 12 8 20 21 20 19 15 14 10 11 12 12 13 15 

 galaxy8c 18 22 10 9 10 11 15 16 20 19 18 18 17 15 

                

  

Actu
al              

   

gn-
ipho
ne 

gn-
galax
y8c 

gn-
galax
y8c0.
01 0.05 0.1 0.3 0.5 0.7 1.05 1.1 1.25 1.5 2 2.2 

Predicted iphone 16 8 21 21 20 19 18 16 10 10 7 4 5 5 

 galaxy8c 14 22 9 9 10 11 12 14 20 20 23 26 25 25 

                

  

Actu
al              

   

crop
ped-
ipho
ne 

in-
galax
y8c 

in-
galax
y8c0.
01 0.05 0.1 0.3 0.5 0.7 1.05 1.1 1.25 1.5 2 2.2 

Predicted iphone 26 8 21 20 20 16 13 10 9 7 5 5 8 6 

 galaxy8c 4 22 9 10 10 14 17 20 21 23 25 25 22 24 

                

  

Actu
al              

   

crop
ped-
galax
y8c 

gn-
ipho
ne 

gn-
ipho
ne0.0
1 0.05 0.1 0.3 0.5 0.7 1.05 1.1 1.25 1.5 2 2.2 

Predicted iphone 7 16 20 20 20 20 18 17 15 15 13 11 12 10 

 galaxy8c 23 14 10 10 10 10 12 13 15 15 17 19 18 20 

 

Table 3. Noise weight gradient comparisons 
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F. Random Noise Injection 

Random noise was also added to the images at different magnitudes to see how 

the model interprets random noise. The cropped image was not denoised before noise 

injection in this experiment. The range of noise is denoted by the tuples in the headers 

with the first number being inclusive and the last number being exclusive. The noise 

was uniformly distributed. As more noise was applied, the iPhone class was chosen 

substantially more than the galaxy8c. This result can be interpreted as the iPhone 

image sensor introduces noise in a more uniformly. 

  Actual      

   
cropped-
iphone 

cropped-
galaxy8c 

iphone 
(-1,2) 

galaxy8c 
(-1,2) 

iphone 
(-2,3) 

galaxy8c 
(-2,3) 

Predicted iphone 26 7 20 4 18 5 

 galaxy8c 4 23 10 26 12 25 

 

  Actual        

   
cropped-
iphone 

cropped-
galaxy8c 

iphone 
(-65,66) 

galaxy8c 
(-65,66) 

iphone 
(-78,79) 

galaxy8c 
(-78,79) 

iphone 
(-88,89) 

galaxy8c 
(-88,89) 

Predicted iphone 26 7 24 27 25 28 26 29 

 galaxy8c 4 23 6 3 5 2 4 1 

 

Table 4. Random noise injection comparisons 

 

    

Figure 12. Images with different ranges of noise (original, pixel delta 16, 130, 200) 
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G. Random Pixel Test 

Randomly generated pixels were generated to create a 128 by 128 by 3 image 

for this experiment. This test was created to analyze how the classification model would 

handle purely random pixels. All test images were classified as iPhone. The 

classification model seems to lean very heavily towards iPhone images when detecting 

a uniform distribution of pixels. This also confirms that the model thinks iPhone noise is 

uniform. 

 

H. Inter-Model Classification 

While the results were less than stellar for 2 class classification, it was still 

insightful to test three class classification. Two different phones of the same model 

(galaxy8) were used along with iPhone images. The results that were obtained were 

surprisingly good, as neither class was too dominant. The experiment 1 showed very 

promising results that suggest specific digital camera identification may not be too far 

into the future. 

  Actual   

   
cropped-
iphone 

cropped-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 18 3 3 

 galaxy8c 8 20 13 

 galaxy8l 4 7 14 

      

  Actual   

   
denoised-
iphone 

denoised-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 7 4 8 

 galaxy8c 9 9 6 

 galaxy8l 14 17 16 
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  Actual   

   in-iphone in-galaxy8c in-galaxy8l 

Predicted iphone 4 2 3 

 galaxy8c 13 15 17 

 galaxy8l 13 13 10 

 
 

     

  Actual   

   8cn-iphone 8cn-galaxy8c 8cn-galaxy8l 

Predicted iphone 3 3 4 

 galaxy8c 12 10 10 

 galaxy8l 15 17 16 

      

  Actual   

   8ln-iphone 8ln-galaxy8c 8ln-galaxy8l 

Predicted iphone 12 4 2 

 galaxy8c 2 8 6 

 galaxy8l 16 18 22 

 

Table 5. Results of inter-model classification 

 

I. Random Noise Injection into Training Set 

Random noise was added onto the training set of the classifier to make the 

model more robust and improve results on the testing set. The results did not differ very 

much from the original experiments. The lower accuracy and misclassification of data in 

the original classifier trained on original images could have been attributed toward the 

overfitting of the model, due to the high training accuracy and the low test accuracy. 

This required augmenting the training data to add random noise. Two different 

magnitudes of randomness were applied, one with a delta range of 6 and one with a 

range of 2. Each range involved a uniform distribution with a mean of 0. This was an 

attempt to make the model more robust. The MLP model was chosen for this 
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experiment. The results are shown in the figures below in this section. Noise injection 

that had delta variants of 6 point values for each color channel was typically higher than 

the standard noise print and thus gave us results that were not as accurate for non-

altered test images. It also made the model more biased toward the galaxy8l class for 

the spoofed data. Noise injection with the 2 pixel delta experiment showed more 

accurate results for non-spoofed images and a bias towards iPhone  images in spoofed 

data. 

  Actual   

   
cropped-
iphone 

cropped-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 11 4 3 

 galaxy8c 8 15 7 

 galaxy8l 11 11 20 

     

  Actual   

   
denoised-
iphone 

denoised-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 3 2 1 

 galaxy8c 12 9 12 

 galaxy8l 15 19 17 

     

  Actual   

   in-iphone in-galaxy8c in-galaxy8l 

Predicted iphone 7 11 6 

 galaxy8c 11 8 9 

 galaxy8l 12 11 15 

     

  Actual   

   8cn-iphone 8cn-galaxy8c 8cn-galaxy8l 

Predicted iphone 5 6 2 

 galaxy8c 10 8 9 

 galaxy8l 15 16 19 
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   Actual   

   8ln-iphone 8ln-galaxy8c 8ln-galaxy8l 

Predicted iphone 7 5 2 

 galaxy8c 6 7 8 

 galaxy8l 17 18 20 

Table 6. Results of training on images with random noise injections (pixel range [-3,3] 

  Actual   

   
cropped-
iphone 

cropped-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 18 7 6 

 galaxy8c 6 15 7 

 galaxy8l 6 8 17 

     

  Actual   

   
denoised-
iphone 

denoised-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 13 16 10 

 galaxy8c 6 4 5 

 galaxy8l 11 10 15 

     

  Actual   

   in-iphone in-galaxy8c in-galaxy8l 

Predicted iphone 15 13 10 

 galaxy8c 7 7 6 

 galaxy8l 8 10 14 

      

  Actual   

   8cn-iphone 8cn-galaxy8c 8cn-galaxy8l 

Predicted iphone 14 16 14 

 galaxy8c 4 6 6 

 galaxy8l 12 8 10 

  

 
Actual   

   8ln-iphone 8ln-galaxy8c 8ln-galaxy8l 

Predicted iphone 18 10 3 

 galaxy8c 2 5 5 

 galaxy8l 10 15 22 

Table 7. Results of training on images with random noise injections (pixel range [-1,1] 
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J. PCA denoising on noiseprints 

Following the path of Li et al. [2], PCA based denoising methods were also 

applied to noiseprints to see if results improved. Results of this experiment were not 

good, however with a larger sample size results may improve.  

 

K. Cross validation 

This project involves using a dataset that is small compared to modern machine 

learning models. The size of the data was supposed to be representative of the number 

of images taken off a user’s phone to spoof their noiseprint. However, to ensure that the 

test and training set have distributions that are representative of the other and to not 

overfit the model during training, we employ cross validation. Analyzing the results of 

the highest scoring model and our original score showed that there was not a significant 

improvement created by cross validation. 

  Actual   

   
cropped-
iphone 

cropped-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 15 3 7 

 galaxy8c 5 18 9 

 galaxy8l 10 9 14 

     

  Actual   

   
denoised-
iphone 

denoised-
galaxy8c 

cropped-
galaxy8l 

Predicted iphone 5 4 2 

 galaxy8c 4 6 3 

 galaxy8l 21 20 25 
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  Actual   

   in-iphone in-galaxy8c in-galaxy8l 

Predicted iphone 13 4 7 

 galaxy8c 8 15 13 

 galaxy8l 9 11 10 

     

  Actual   

   8cn-iphone 8cn-galaxy8c 8cn-galaxy8l 

Predicted iphone 8 4 8 

 galaxy8c 9 15 10 

 galaxy8l 13 11 12 

     

  Actual   

   8ln-iphone 8ln-galaxy8c 8ln-galaxy8l 

Predicted iphone 13 6 3 

 galaxy8c 2 4 4 

 galaxy8l 15 20 23 

 

Table 8. Results of best performing model from cross validation 

 

L. 2D-CNN model classification 

Since most recent models used for camera model classification are CNNs, a 

variety of experiments with CNNs as a classifier were also conducted. The 

preprocessing pipeline of the MLP converted a 2D image into a 1D input array. For the 

2D-CNN, the input shape for the features were in 2 dimensions. Three different 

preprocessing modes were tested: raw images, noiseprints, LBP data. None of 

experiments used spoofed images in the testing set, only the capability for basic camera 

model classification was tested. Only two classes were used to test the 2D-CNN. 

Raw images were tested as input as a test to see if the model could generate 

filters that automatically detect the noiseprint of the images. The experiment showed 

that currently the 2D-CNN is not able to classify to a high degree of accuracy. The 
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preprocessing step that the MLP had contributed greatly towards the success of the 

model. While the training accuracy had an increasing trend, the validation accuracy 

revealed that the rise was just the model overfitting the training data. 

 

Figure 9. Accuracy vs Epochs for 2D-CNN with original images 

 

Next, noiseprints were extracted from training images and used to train the 2D-

CNN classifier. A variety of denoising methods were tested for the extraction of 

noiseprints of the training data. The best result is shown in Figure 10, however the 

validation accuracy was far below accuracy for the MLP classifier. 
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Figure 10. Accuracy vs Epochs for 2D-CNN with noiseprints 

 

The last experiment with 2D-CNN’s was to use LBP image data from the training 

images as input for the 2D-CNN. Each pixel in each training image was converted into a 

LBP number. The LBP array for each image was use for training. The accuracy was 

very poor. The differences in noiseprints were so small that even a CNN wasn’t able to 

tell the difference between the two classes. These tests demonstrate the necessity and 

the strength of the preprocessing techniques used in the MLP model. 
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Figure 11. Accuracy vs Epochs for 2D-CNN with LBP data 

M. 1D-CNN model classification 

With the desire to use the preprocessing techniques used in the MLP model and 

the convolution filters of a CNN, a 1D-CNN was created for this purpose. The same 159 

length array used for input into the MLP model was fed into the 1D-CNN model. Very 

similar results were generated. While there was no improvement over the MLP, this 

potentially demonstrated that the behavior of a 1D-CNN was similar to an MLP for this 

type of classification.  

  Actual  

   cropped-iphone 
cropped-
galaxy8c 

Predicted iphone 26 7 

 galaxy8c 4 23 

 

 

 

 

    



FAKING SENSOR NOISE INFORMATION 

 

 

 38 

  Actual  

   
denoised-
iphone 

denoised-
galaxy8c 

Predicted iphone 18 19 

 galaxy8c 12 11 

    

  Actual  

   in-iphone in-galaxy8c 

Predicted iphone 17 10 

 galaxy8c 13 20 

    

  Actual  

   gn-iphone gn-galaxy8c 

Predicted iphone 17 12 

 galaxy8c 13 18 

    

  Actual  

   cropped-iphone in-galaxy8c 

Predicted iphone 26 10 

 galaxy8c 4 20 

    

  Actual  

   
cropped-
galaxy8c gn-iphone 

Predicted iphone 7 17 

 galaxy8c 23 13 

 

Table 9. Results of 1D-CNN classification 

 

VII. CONCLUSION AND FUTURE WORK 

Neural Network models are a powerful tool towards the classification of camera 

models. However, numerous papers in addition to these experiments show that camera 

identification networks are not well equipped to deal with simple image augmentation-

based attacks, and even less equipped to deal with adversarial based attacks. While not 
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obtaining results that were expected coming into this experiment, I’ve determined that 

denoising methods play an integral role in the classification model that many papers 

overlook and standard measure of well performing denoising method should be 

established.  

There are many areas for future work that build upon my research. A machine 

learning based method for PRNU extraction could be very powerful instead of a simple 

denoising filter. The most novel aspect of my research involves interclass model 

identification and with more powerful networks and denoising methods, high accuracy 

for this problem should be obtainable. 

An AC-GAN could have also been used to train and spoof noiseprints. Using an 

AC-GAN would have reduced the complexity of the network of models need to spoof 

noiseprints. In my project, each camera model and noiseprint required a dedicated GAN 

to generate noiseprints. With an AC-GAN, there would have been only one model 

needed to spoof all types of camera models. It may have also generated noiseprints 

that fool the classifier better. 

Advice towards attacking and fooling sensor noise classification models while 

maintaining high fidelity of the original image could be something as simple as 

denoising the image. These results show that denoised images, as well as random 

noise, reveal the models do have bias. A denoised image will have more coarsely 

patterned noise and classification models will likely pick one class more than another. 

Adding random noise at different degrees is a more effective way to skew the model to 

pick one class at a much larger rate. However, the SSIM of the noisy image and the 

original could reveal signs of a malicious attack that are obvious to the human eye. 
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Therefore, the level of noise injected should be discrete enough to avoid detection but 

large enough to make an impact on the network. Based on current tests, sensor noise 

captured is not very large and therefore is susceptible to attacks. 
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