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a b s t r a c t

In this paper, we consider two species chemotaxis systems with Lotka–Volterra
competition reaction terms. Under appropriate conditions on the parameters in
such a system, we establish the existence of traveling wave solutions of the
system connecting two spatially homogeneous equilibrium solutions with wave
speed greater than some critical number c∗. We also show the non-existence of such
traveling waves with speed less than some critical number c∗

0, which is independent
of the chemotaxis. Moreover, under suitable hypotheses on the coefficients of the
reaction terms, we obtain explicit range for the chemotaxis sensitivity coefficients
ensuring c∗ = c∗

0, which implies that the minimum wave speed exists and is not
affected by the chemoattractant.
©2021 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Chemotaxis refers to the tendency of cells, bacteria, or organisms to orient the direction of their
movements toward the increasing or decreasing concentration of a signaling chemical substance. It has a
crucial role in a wide range of biological phenomena such as immune system response, embryo development,
and tumor growth (see [1,2]). Recent studies describe also macroscopic process such as population dynamics
or gravitational collapse, in terms of chemotaxis (see [3]). Because of its crucial role in the population
dynamics, it is important to investigate the effects of certain chemical substances on the dynamics of
populations of species.

There are many existing works on the dynamics of two competitive populations of biological species which
are attracted by a chemical stimulus on a bounded environment (see [4–11], etc.). For example, in [10], Tello
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and Winkler considered the following two species competitive chemotaxis system,⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1,t = d1∆u1 − χ1∇ · (u1∇v) + r1u1(1 − u1 − au2), x ∈ Ω

u2,t = d2∆u2 − χ2∇ · (u2∇v) + r2u2(1 − bu1 − u2), x ∈ Ω

0 = ∆v − λv + µ1u1 + µ2u2, x ∈ Ω
∂u1
∂n = ∂u2

∂n = ∂v
∂n = 0, x ∈ ∂Ω ,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded smooth domain; d1, d2, χ1, χ2, a, b, r1, r2, λ, µ1, µ2 > 0 are positive
constants; ui(t, x), i = 1, 2 denote the density functions of two mobile species living together in the same
habitat and competing for some limited resources available in their environment. These two competing
species also produce some chemical substance which affects their reproduction dynamics in the sense that
each mobile species has tendency to move toward its higher concentration. The density function of the
chemical substance is denoted by v(t, x) and is being produced at the rates µi by the species i, for each
i = 1, 2. The positive constant χi measures the sensitivity rate by the species i ∈ {1, 2} of the chemical
substance. The chemical substance has a self degradation rate given by the positive constant λ. The positive
constants a and b measure the interspecific competition between the mobile species. Assume 0 < a < 1
and 0 < b < 1. Among others, they proved that the spatially homogeneous positive equilibrium (u∗

1, u∗
2) =

( 1−a
1−ab , 1−b

1−ab ) is globally asymptotically stable for any d1, d2, χ1, χ2 > 0, µ1 = µ2 = 1, and r1, r2 in certain
nonempty range.

The current work is concerned with two species competitive chemotaxis systems on the whole space. In
particular, we consider the traveling wave solutions of the following two species competition chemotaxis
system on R, ⎧⎪⎨⎪⎩

u1,t = (u1,x − χ1u1vx)x + u1(1 − u1 − au2), x ∈ R
u2,t = (du2,x − χ2u2vx)x + ru2(1 − bu1 − u2), x ∈ R
0 = vxx − λv + µ1u1 + µ2u2, x ∈ R,

(1.2)

where a, b, d, r, λ > 0 and µi, χi > 0 (i = 1, 2) are positive constants. We assume that the first species diffuses
at a rate equal to one while the second species diffuses at a rate d > 0. The positive constant r is the intrinsic
growth rate of the second mobile species.

When χ1 = χ2 = 0, the dynamics of the chemotaxis model (1.2) is governed by the following classical
Lotka–Volterra diffusive competition system,{

u1,t = u1,xx + u1(1 − u1 − au2), x ∈ R
u2,t = du2,xx + ru2(1 − bu1 − u2), x ∈ R.

(1.3)

The asymptotic dynamics of (1.3) is of significant research interests and considerable results have been
established in the literature (see [12–16] and the references therein). It is well known that the large time
behavior of solutions to (1.3) is delicately related to the positive constants a and b. For example, consider
the kinetic system of ODEs associated with (1.3), that is,{

u1,t = u1(1 − u1 − au2)
u2,t = ru2(1 − bu1 − u2).

(1.4)

It is easily seen that (1.4) has a trivial equilibrium solution e0 = (0, 0), and two semi-trivial equilibrium
solutions e1 = (1, 0) and e2 = (0, 1). When 0 < a, b < 1, or a, b > 1, (1.4) has a positive equilibrium given by
e∗ = ( 1−a

1−ab , 1−b
1−ab ). The asymptotic dynamics of (1.4) depends on the strength of the competition coefficients

a and b. We say that the competition on the first species u1 (resp. on the second species u2) is strong if a > 1
(resp. b > 1). We say that the competition on the first species u1 (resp. on the second species u2) is weak if
0 < a < 1 (resp. 0 < b < 1). Based on the magnitudes of a and b, the following four important cases arise.
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(A1) 0 < b < 1 < a, which is referred to as the strong–weak competition case.
(A2) 0 < a < 1 < b, which is referred to as the weak–strong competition case.
(A3) 0 < a, b < 1, which is referred to as the weak–weak competition case.
(A4) a, b > 1, which is referred to as the strong–strong competition case

Due to biological applications, we are only interested in non-negative solutions of (1.2), (1.3), and (1.4).
Let (u1(t), u2(t)) be a solution of (1.4) with u1(0) > 0 and u2(0) > 0. The following results are well known
(see [17–19] and the references therein). In the case (A1), (u1(t), u2(t)) → e2 as t → ∞ and hence the
second population outcompetes the first. In the case (A2), (u1(t), u2(t)) → e1 as t → ∞ and hence the
first population outcompetes the second. In the case (A3), (u1(t), u2(t)) → e∗ as t → ∞ and hence both
species coexist for all the time. In the case (A4), the limit of (u1(t), u2(t)) depends on the choice of the
initial condition (u1(0), u2(0)).

Let
Cb

unif(R) = {u ∈ C(R) | u is uniformly continuous and bounded on R}

with norm ∥u∥∞ = supx∈R |u(x)|. The above results also hold for the solutions (u1(t, x), u2(t, x)) of (1.3)
with initial functions ui(0, ·) ∈ Cb

unif(R), infx∈R ui(0, x) > 0 (i = 1, 2). For example, in the case (A2), if
(u1(t, x), u2(t, x)) is a classical solution of (1.3) with ui(0, ·) ∈ Cb

unif(R), infx∈R ui(0, x) > 0 (i = 1, 2), then

lim
t→∞

(u1(t, x), u2(t, x)) = e1

uniformly in x ∈ R.
Consider (1.3). It is also interesting to know the asymptotic behavior of the solutions (u1(t, x), u2(t, x))

with front like initial functions (u1(0, x), u2(0, x)), that is, initial functions connecting two equilibrium
solutions of (1.4). This is strongly related to the so called traveling wave solutions. A traveling wave solution
of (1.3) is a classical solution of the form (u1(t, x), u2(t, x)) = (U1(x−ct), U2(x−ct)) for some constant c ∈ R,
which is called the speed of the traveling wave. A traveling wave solution is said to connect an equilibrium
solution e+ of (1.4) at the right end if

lim
x→∞

(U1(x), U2(x)) = e+. (1.5)

It is said to connect an equilibrium solution e− of (1.4) at the left end if

lim
x→−∞

(U1(x), U2(x)) = e−. (1.6)

The existence of traveling wave solutions of (1.3) has been extensively studied (see [12–16,20–25], etc.). For
example, assume 0 < a < 1. It is well known that there is a minimum wave speed cmin ≥ c∗

0 := 2
√

1 − a such
that (1.3) has a monotone traveling wave solution with speed c connecting the equilibrium solutions e and
e2 of (1.4) (at the left end and right end, respectively) if and only if c ≥ cmin, where e = e1 in the case (A2)
and e = e∗ in the case (A3). There is no explicit formula available for cmin in the literature and it is known
(see [26]) that it is possible to have the strict inequality cmin > c∗

0(= 2
√

1 − a). When cmin = c∗
0, it is said

that the minimum wave speed is linearly determinate. The works [15,27,28] provide sufficient conditions on
the parameters to ensure that cmin is linearly determinate. For example, it is proved in [15, Theorem 2.1]
that cmin = c∗

0 provided the following (A5) holds.

(A5) 0 < d ≤ 2 and (ab − 1)r ≤ (1 − a)(2 − d).
From application point of view, it is important to know whether the presence of the chemotactic substance

have some effect on the invasion process of a weaker competitor by a stronger one. In particular, it is
interesting to know if movement toward some chemoattractant by both species can slow down or speed
up the invasion speed of the weaker competitor by the stronger competitor. This question is closely related
to whether minimum wave speed, if exists, of the chemotaxis system (1.2) is greater or smaller that the
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minimum wave speed of the classical Lotka–Volterra system (1.3). Hence the objective of the current work
is two folds. First, we would like to investigate how far the traveling wave theory for (1.3) can be extended
to the two species chemotaxis system (1.2). Hence we hope to fill a gap in the literature concerning the
traveling wave theory for two species driven by a chemotaxis. Second, we would also like to understand
how the chemotaxis affects the minimum wave speed. It is clear that the space-independent solutions of the
chemotaxis system (1.2) are the solutions of the ODE system (1.4). Note that case (A1) and case (A2) can
be handled similarly. In the following, we focus on case (A2) and case (A3), and investigate the existence
of traveling wave solutions of (1.2) connecting the unstable equilibrium e2 of (1.4) at the right end and the
stable equilibrium e of (1.4) at the left end, where e = e1 in the case (A2) and e = e∗ in the case (A3) (see
the following subsection for the definition of traveling wave solutions of (1.2)).

1.1. Definition of traveling wave solutions of (1.2)

Similarly to (1.3), a traveling wave solution of (1.2) is a classical solution of the form (u1(t, x), u2(t, x),
v(t, x)) = (U1(x−ct), U2(x−ct), V (x−ct)) for some constant c ∈ R, which is called the speed of the traveling
wave. A traveling wave solution (u1(t, x), u2(t, x), v(t, x)) = (U1(x− ct), U2(x− ct), V (x− ct)) of (1.2) is said
to connect e2 at the right end if

lim
x→∞

(U1(x), U2(x)) = e2, (1.7)

and to connect e at the left end if
lim

x→−∞
(U1(x), U2(x)) = e. (1.8)

A traveling wave solution (u1(t, x), u2(t, x), v(t, x)) = (U1(x − ct), U2(x − ct), V (x − ct)) of (1.2) connecting
e2 at the right end is nontrivial if U1(x) > 0 for x ∈ R.

As far as the chemotaxis model (1.2) is concerned, very little is known about the existence of traveling
wave solutions. There are some recent works on the existence and non-existence of traveling wave solutions
and spreading speeds of the single species chemotaxis model. In this regard, we refer the reader to the works
in [29–34] and references therein.

We note that (u1(t, x), u2(t, x), v(t, x)) = (U1(x − ct), U2(x − ct), V (x − ct)) is a traveling wave solution
of (1.2) connecting e2 at the right end and e at the left end if and only if (U1(x), U2(x), V (x)) is a steady
state solution of the following system⎧⎪⎨⎪⎩

u1,t = u1,xx + (c − χ1vx)u1,x + u1(1 − λχ1v − (1 − χ1µ1)u1 − (a − χ1µ2)u2)
u2,t = du2,xx + (c − χ2vx)u2,x + ru2(1 − λχ2

r v − (1 − χ2µ2
r )u2 − (b − χ2µ1

r )u1)
0 = vxx − λv + µ1u1 + µ2u2

(1.9)

complemented with the boundary conditions

(u1(−∞), u2(−∞)) = e and (u1(∞), u2(∞)) = e2. (1.10)

Considering the densely defined closed and linear operator induced by the Laplace operator on Cb
unif(R),

that is ∆ : C2,b
unif(R) ∋ u ↦→ ∆u ∈ Cb

unif(R), it is well known that its spectrum is contained in the left half
plane {z ∈ C : Re(z) ≤ 0}. Hence the operator λI − ∆ : C2,b

unif(R) → Cb
unif(R) is invertible for every

λ > 0. Hence for any solution (u1(t, x), u2(t, x), v(t, x)) (respectively steady state (U1(x), U2(x), V (x))) of
(1.2) (respectively (1.9)), the third component v(t, x) (respectively V (x)) is uniquely determined by the first
two components. Hence for the sake of simplicity in the notations, we write u = (u1, u2) and U = (U1, U2)
for vectors and denote by u(t, x) = Uc(x − ct) traveling wave solutions of (1.2) with speed c ∈ R. In the
following, we always assume that ui(0, ·) ∈ Cb

unif(R) with infx∈R ui(0, x) ≥ 0 for i = 1, 2.
4
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1.2. Standing assumptions and notations

To state the main results of this paper, we introduce some standing assumptions and notations in this
subsection. It is well known that the solutions (u1(t, x), u2(t, x)) of (1.3) with initials ui(0, ·) ∈ Cb

unif(R) and
0 ≤ ui(0, ·) (i = 1, 2) exist for all t ≥ 0 and are bounded. The first standing assumption is on the global
existence and boundedness of classical solutions of (1.2).

(H1) 1 > χ1µ1, r > χ2µ2, a ≥ χ1µ2, br ≥ χ2µ1.
Note that, when χ1 = 0 and χ2 = 0, (H1) always holds. Note also that (1.2) can be written as⎧⎪⎨⎪⎩

u1,t = u1,xx − χ1vxu1,x + u1(1 − λχ1v − (1 − χ1µ1)u1 − (a − χ1µ2)u2)
u2,t = du2,xx − χ2vxu2,x + ru2(1 − λχ2

r v − (1 − χ2µ2
r )u2 − (b − χ2µ1

r )u1)
0 = vxx − λv + µ1u1 + µ2u2.

(1.11)

The assumption (H1) implies that the solutions (u1(t, x), u2(t, x)) of (1.2) with initials ui(0, ·) ∈ Cb
unif(R)

and 0 ≤ ui(0, ·) (i = 1, 2) exist for all t > 0 and, moreover, if 0 ≤ ui(0, ·) ≤ Mi (i = 1, 2), then
0 ≤ ui(t, ·) ≤ Mi (i = 1, 2) for all t ≥ 0, where

M1 = 1
1 − χ1µ1

and M2 := r

r − χ2µ2
. (1.12)

We point out that the existence of bounded classical solutions of (1.11) for arbitrary choice of positive
parameters of the PDE system still remains an interesting problem. Hypothesis (H1), which might not be
a necessary condition, is sufficient to ensure that all positive solutions of (1.11) are uniformly bounded in t

as well as for the existence of an explicit invariant rectangle. Throughout the rest of this paper, we assume
that (H1) holds, and that M1, M2 are the constants defined in (1.12), and

c∗
0 = 2

√
1 − a. (1.13)

As mentioned in the above, in the case (A2), that is, 0 < a < 1 < b, e1 is a stable equilibrium solution
of (1.3). The second standing assumption is on the stability of e1 for (1.2).

(H2) 1 > χ1µ1M1 + aM2 and b ≥ 1.
Note that (H2) implies that a < 1 and b ≥ 1, and when χ1 = 0 and χ2 = 0, (H2) reduces to a < 1 and

b ≥ 1. We will prove that (H2) implies that e1 is a stable solution of (1.2) (see Theorem 1.1(i)).
It is known that, in the case (A3), that is, 0 < a, b < 1, e∗ is a stable equilibrium solution of (1.3). The

third standing assumption is on the stability of e∗ for (1.2).

(H3) 1 > χ1µ1M1 + aM2 and r > brM1 + χ2µ2M2.
Note that (H3) implies that a < 1 and b < 1, and when χ1 = 0 and χ2 = 0, (H3) reduces to a < 1 and

b < 1. We will prove that (H3) implies that e∗ is a stable solution of (1.2) (see Theorem 1.1(ii)).
Consider (1.3). In the case (A2), it has traveling wave solutions connecting e2 at the right end and

connecting e1 at the left end. In the case (A3), it has traveling wave solutions connecting e2 at the right
end and connecting e∗ at the left end. The next standing assumption is on the existence of traveling wave
solutions of (1.2).

(H4) (1 − a) > r(M1a(b − χ2µ1
r ) − 1

M2
)+ + χ2(µ1M1 + µ2M2).

Note that, when χ1 = 0 and χ2 = 0, (H4) becomes (1 − a) > r(ab − 1)+. We will prove that (H2)+(H4)
(resp. (H3)+(H4)) implies the existence of traveling wave solutions of (1.2) connecting e2 at the right end
and connecting e1 at the left end (resp. connecting e2 at the right end and connecting e∗ at the left end)
for speed c greater than some number c∗(χ1, χ2)(≥ c∗

0) (see Theorem 1.2).
5
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As it is mentioned in the above, when (A5) holds, the minimal wave speed cmin of (1.3) is linearly
determinate, that is, cmin = c∗

0. The last standing assumption is on the existence and linear determinacy of
the minimal wave speed of (1.2).

(H5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − a)(1 + χ1µ1M1) < λ

(1 − a)(1 − (d − 1)+) ≥ r

(
M1

(
a + (1−a)

(
µ2M2+aµ1M1+(1−a)µ2/

√
λ
)

λ−(1−a)(1+χ1µ1M1)

)
(b − χ2µ1

r ) − 1
M2

)
+

+χ2

(
λ

λ−(1−a) + (
√

1−a)√
λ

)
(µ1M1 + µ2M2).

It is clear that (H5) implies (H4). When χ1 = χ2 = 0, the first two equations in (1.2) are independent
of λ (hence λ can be chosen large enough such that 1 − a < λ) and (H5) reduces to

r(ab − 1)+ ≤ (1 − a)(1 − (d − 1)+), (1.14)

which holds trivially if d < 2 and ab ≤ 1. It will be shown that (H2)+ (H5) (resp. (H3)+(H5)) implies
the existence and linear determinacy of the minimal wave speed of (1.2) connecting e2 at the right end and
e1 at the left end (resp. connecting e2 at the right end and e∗ at the left end) (see Theorem 1.4).

In the following, we introduce some standing notations. For every 0 < κ < κmax := min{
√

1 − a,
√

λ}, let

cκ = κ2 + 1 − a

κ
(1.15)

and

Bλ,κ =
∫
R

e−
√

λ|z|−κzdz = 1√
λ − κ

+ 1√
λ + κ

= 2
√

λ

λ − κ2 . (1.16)

It is clear that the maps (0,
√

λ) ∋ κ ↦→ Bλ,κ and (0,
√

λ) ∋ κ ↦→ κBλ,κ are monotone increasing. We define
κ∗

1(χ1, χ2) by
κ∗

1(χ1, χ2) := sup
{

κ ∈ (0, κmax) : κBλ,κ <
2

χ1µ1M1

}
. (1.17)

For every κ ∈ (0, κ∗
1(χ1, χ2)) we let f(κ, χ1, χ2) denote the positive solution of the algebraic equation

κBλ,κ

2

(
µ2M2 + µ1M1(a + χ1f)

)
+ µ2κ2Bλ,κ

2
√

λ
= f (1.18)

and define the function F by

F (κ, χ1, χ2) = r
(

M1(a + χ1f(κ, χ1, χ2))(b − χ2µ1

r
) − 1

M2

)
+

+ χ2(λBλ,κ + 2κ)(µ1M1 + µ2M2)
2
√

λ
− (1 − d)κ2. (1.19)

Let
κ∗

χ1,χ2 := sup
{

κ̃ ∈ (0, κ∗
1(χ1, χ2)) : 1 − a ≥ F (κ, χ1, χ2), ∀ 0 < κ < κ̃

}
(1.20)

and

c∗ =
(κ∗

χ1,χ2)2 + 1 − a

κ∗
χ1,χ2

. (1.21)

Observe that
F (0, χ1, χ2) = r

(
M1a(b − χ2µ1

r
) − 1

M2

)
+ + χ2(µ1M1 + µ2M2).

It is clear that κ∗
1(χ1, χ2) > 0 and is well defined. If hypothesis (H4) holds, then κ∗

χ1,χ2 and c∗ are well
defined as well.

6
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1.3. Statements of the main results

In this subsection, we state the main results of this paper. The first main result is on the stability of
spatially homogeneous equilibrium solutions of (1.2) and is stated in the following theorem.

Theorem 1.1. For given c ∈ R, let u(t, x; c) be a classical solution of (1.9) satisfying infx∈R u1(0, x; c) > 0.
Then the following hold.

(i) If (H2) holds, then
lim

t→∞
∥u(t, ·; c) − e1∥∞ = 0.

(ii) If (H3) holds, and infx∈R u2(0, x; c) > 0, then

lim
t→∞

∥u(t, ·; c) − e∗∥∞ = 0.

We have the following two theorems on the existence and nonexistence of traveling wave solutions of (1.2).

Theorem 1.2. Suppose that (H4) holds. Then for every c > c∗, (1.2) has a nontrivial traveling solution
u(t, x) = Uc(x − ct) = (U c

1 (x − ct), U c
2 (x − ct)) with speed c connecting e2 at right end and satisfying that

lim
x→∞

⏐⏐⏐U c
1 (x)

e−κx
− 1
⏐⏐⏐ = 0 and lim

x→∞

⏐⏐⏐U c
2 (x) − 1
e−κx

− (χ2µ2 − rb)
(1 − a) + r

M2
− (d − 1)κ2 − χ2µ2

√
λ

2 Bλ,κ

⏐⏐⏐ = 0, (1.22)

where κ ∈ (0, κ∗
χ1,χ2) satisfies c = cκ. Moreover, the following hold.

(i) If (H2) holds, then the traveling wave solution u(t, x) = Uc(x − ct) = (U c
1 (x − ct), U c

2 (x − ct)) of (1.2)
also connects e1 at the left end.

(ii) If (H3) holds, then the traveling wave solution u(t, x) = Uc(x − ct) = (U c
1 (x − ct), U c

2 (x − ct)) of (1.2)
also connects e∗ at the left end.

Theorem 1.3. For any choice of the positive parameters χi and µi, i = 1, 2, there is no nontrivial traveling
wave solution u(t, x) = Uc(x − ct) of (1.2) with speed c < c∗

0 and connecting e2 at the right end.

Observe that Theorem 1.3 provides a lower bound c∗
0(= 2

√
1 − a) for the speeds of traveling wave solutions

of (1.2). This lower bound is independent of the chemotaxis sensitivity coefficients χ1 and χ2. The following
theorem shows that this is the greatest lower bound for the speeds of traveling wave solutions of (1.2).

Theorem 1.4.

(i) If (H2) and (H5) hold, then for every c > c∗
0, there is a traveling wave solution of (1.2) with speed c

connecting e1 and e2. If, in addition, r > 2χ2µ2 then there is a traveling wave solution of (1.2) with speed
c = c∗

0 connecting e1 and e2.
(ii) If (H3) and (H5) hold, then for any c ≥ c∗

0, there is a traveling wave solution of (1.2) with speed c

connecting e∗ and e2.

We remark that under the conditions of Theorem 1.4, the minimum wave speed of (1.2) exists, is linearly
determinate, and is not affected by the chemotactic effect. In general, it is not known whether (1.2) has a
minimal wave speed, and if so, whether both systems (1.2) and (1.3) have the same minimum wave speed.
This question is related to whether the presence of the chemical substance slows down or speeds up the
minimum wave speed. Note that Theorem 1.3 shows that the presence of the chemical substance does not

7
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slow down the minimum wave speed of (1.3) whenever it is linearly determinate. Another interesting question
that is left open by the current work is whether the traveling wave solutions of (1.2) constructed are stable
and unique (up to space translation). This question also remains open for the traveling solutions of the single
species chemotaxis model. Recently Shen and Xue [35] present numerical simulations which suggest that the
single species traveling waves are unique and stable. But a rigorous theoretical proof is still not yet available
to support their work. We plan to continue working on this problem in our future works. We see from (1.14)
that Theorem 1.4 recovers [15, Theorem 2.1], which guarantees that the minimum wave speed of (1.3) is
linearly determinate under hypothesis (1.14).

We also remark that there are also several interesting works on the dynamics of solutions to (1.2) when
considered on bounded domains, see [6–8,10,36–41] and the references therein. For example, the works
in [6,10,36] studied the stability of the equilibria of (1.2) on bounded domains with Neumann boundary
conditions, while the works [7,37] considered (1.2) on bounded domains with some non-local term in the
reaction terms.

The rest of the paper is organized as follows. In Section 2 we present the proof of Theorem 1.1. In Section 3
we construct some super and sub-solutions to be used in the proof of Theorem 1.2. Section 4 is devoted to
the proof of Theorem 1.2. In Section 5 we present the proof of Theorem 1.3. The proof of Theorem 1.4 is
presented in Section 6.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Throughout this section c ∈ R is an arbitrary fixed number. We first
prove two lemmas, which are fundamental for the proofs of most of our results in the subsequent sections.

Lemma 2.1. Suppose that (H2) holds and let u(t, x; c) be a bounded classical solution of (1.9) defined for
every x ∈ R and t ∈ R. If infx,t∈R u1(t, x; c) > 0, then u(t, x; c) ≡ e1.

Proof. Following the idea in the proof of [42, Theorem 1.8], we introduce

l1 = inf
t,x∈R

u1(t, x; c), L1 = sup
t,x∈R

u1(t, x; c), l2 = inf
t,x∈R

u2(t, x; c) and L2 = sup
t,x∈R

u2(t, x; c), (2.1)

and prove that l1 = L1 = 1 and l2 = L2 = 0. Some new arguments are needed in the proof due to the
presence of a second species. For the completeness, we provide a proof in the following.

Let M1 and M2 be as in (1.12). Observe from the comparison principle for elliptic equations that
µ1l1 + µ2l2 ≤ λv(x; u(·, ·; c)) ≤ µ1L1 + µ2L2. Hence

u1,t =u1,xx + (c − χ1vx(·; u))u1,x + (1 − (1 − χ1µ1)u1 − (a − χ1µ2)u2 − χ1λv(·; u))u1

≤u1,xx + (c − χ1vx(·; u))u1,x + (1 − χ1µ1l1 − (1 − χ1µ1)u1)u1.

Then by the comparison principle for parabolic equations, we have

u1(t, x; c) ≤ M1(1 − χ1µ1l1)+, ∀ t, x ∈ R.

This implies that 1 > χ1µ1l1 and that

L1 ≤ M1(1 − χ1µ1l1). (2.2)

Similarly, observe that

u1,t ≥ u1,xx + (c − χ1vx(·; u))u1,x + (1 − χ1µ1L1 − aL2 − (1 − χ1µ1)u1)u1.

8
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Thus, as in the above, we conclude from the comparison principle for parabolic equations that

l1 ≥ M1(1 − χ1µ1L1 − aL2). (2.3)

Observe also that

u2,t =du2,xx + (c − χ2vx(·; u))u2,x + (r − r

M2
u2 − (br − χ2µ1)u1 − χ2λv(·; u))u2

≤du2,xx + (c − χ2vx(·; u))u2,x + r(1 − bl1 − 1
M2

u2)u2.

We conclude from the comparison principle for parabolic equations that

L2 ≤ M2(1 − bl1)+. (2.4)

From this point, we distinguish two cases and show that L1 = l1 = 1 and L2 = 0.

Case 1. (1 − bl1)+ = 0. In this case, by (2.4), L2 = 0. Thus, taking the difference of (2.2) and (2.3)
side-by-side yields

(1 − χ1µ1M1)(L1 − l1) ≤ 0.

Since 1 > χ1µ1M1 (see (H2)) and l1 ≤ L1, we obtain that L1 = l1, which combined with (2.2) and (2.3)
and the fact L2 = 0 yield l1 = L1 = 1.
Case 2. 1 − bl1 > 0. In this case, it follows from (2.2)–(2.4) that

l1 ≥ M1 (1 − χ1µ1M1(1 − χ1µ1l1) − aM2(1 − bl1)) = M1(1 − χ1µ1M1 − aM2) + M1((χ1µ1)2M1 + abM2)l1.

That is (
1

M1
− (χ1µ1)2M1 − abM2

)
l1 ≥ 1 − χ1µ1M1 − aM2.

Using the fact that χ1µ1 + 1
M1

= 1, a simple computation shows that 1
M1

− (χ1µ1)2M1 = 1 − χ1µ1M1, and
hence

(1 − χ1µ1M1 − abM2)l1 ≥ 1 − χ1µ1M1 − aM2.

This implies that l1 ≥ 1 since b ≥ 1 (since (H2) holds). Thus, we get from (2.4) that L2 = 0, so we can
proceed as in case 1 to show that l1 = L1 = 1 as well.

From both cases and the definition of l1, L1, and L2, we obtain u(t, x; c) ≡ (1, 0), which completes the
proof of the lemma. □

Lemma 2.2. Suppose that 0 < b < 1 and let u(t, x; c) be a bounded classical solution of (1.9) defined for
every x ∈ R and t ∈ R such that min{infx,t∈R u2(t, x; c), infx,t∈R u2(t, x)} > 0. If there holds

(1 − χ1µ1M1)+(r − χ2µ2M2)+ > abrM1M2, (2.5)

then u(t, x; c) ≡ e∗. In particular if (H3) holds then u(t, x; c) ≡ e∗.

Proof. Similarly, following the idea in the proof of [42, Theorem 1.8], we introduce li and Li, i = 1, 2, as
in (2.1) and prove that l1 = L1 = 1−a

1−ab and l2 = L2 = 1−b
1−ab . Again, for the completeness, we provide a proof

in the following.
First, note that (H3) implies that

1 − χ1µ1M1 > aM2 and r − χ2µ2M2 > brM1,

which implies (2.5). It then suffices to prove u(t, x; c) ≡ e∗ provided that (2.5) holds.
9
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Second, note that µ1l1 + µ2l2 ≤ λv(x; u) ≤ µ1L1 + µ2L2 for every x ∈ R. We can proceed as in the proof
of Lemma 2.1 by using comparison principle for parabolic equations and the fact that min{l1, l2, L1, L2} ≥ 0
to obtain the following inequalities:

L1 ≤ M1(1 − χ1µ1l1 − al2), (2.6)

l1 ≥ M1(1 − χ1µ1L1 − aL2), (2.7)

rL2 ≤ M2(r − χ2µ2l2 − brl1), (2.8)

rl2 ≥ M2(r − χ2µ2L2 − brL1). (2.9)

Taking difference side-by-sides of inequalities (2.6) and (2.7) yields

(1 − χ1µ1M1)(L1 − l1) ≤ aM1(L2 − l2). (2.10)

Similarly, it follows from inequalities (2.8) and (2.9) that

(r − χ2µ2M2)(L2 − l2) ≤ rbM2(L1 − l1). (2.11)

The last two inequalities imply that

(1 − χ1µ1M1)(r − χ2µ2M2)(L1 − l1)(L2 − l2) ≤ abrM1M2(L1 − l1)(L2 − l2)

since (2.5) implies that 1−χ1µ1M1 > 0 and r−χ2µ2M2 > 0. Since (2.5) holds, we must have from the above
inequality that (L1 − l1)(L2 − l2) = 0, which combined with (2.10) and (2.11) yields l1 = L1 and l2 = L2.
Therefore, recalling the identities (1 − χ1µ1)M1 = 1 and (r − χ2µ2)M2 = r, it follows from (2.6)–(2.9) that{

L1 = 1 − aL2

L2 = 1 − bL1.

It then follows that l1 = L1 = 1−a
1−ab and l2 = L2 = 1−b

1−ab . That is u(t, x; c) ≡ e∗, which completes the proof
of the lemma. □

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Let c ∈ R be given and u(t, x; c) be a classical solution of (1.9) satisfying
infx∈R u1(0, x; c) > 0. It is easy to see that

lim sup
t→∞

∥ui(t, ·; c)∥∞ ≤ Mi ∀i = 1, 2.

Hence without loss of generality we may suppose that ∥ui(t, ·; c)∥∞ ≤ Mi for every t ≥ 0 and i = 1, 2.
(i) Suppose that hypothesis (H2) holds. Observe that u1(t, x; c) satisfies

u1,t ≥ u1,xx + (c − χ1vx)u1,x + u1(1 − (χ1µ1M1 + aM2) − (1 − χ1µ1)u1), ∀ t > 0, x ∈ R.

Hence, since (H2) holds, we may employ the comparison principle for parabolic equations to conclude that

u1(t, x; c) ≥ m1 := min
{

inf
x∈R

u1(0, x; c), 1 − (χ1µ1M1 + aM2)
1 − χ1µ1

}
> 0, ∀ t ≥ 0, x ∈ R. (2.12)

Now, if we suppose by contradiction that the statement of Theorem 1.1 (i) is false, then there exist a
sequence tn → ∞ and xn such that

inf
n≥1

|u(tn, xn; c) − e1| > 0. (2.13)

10
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By a priori estimates for parabolic equations, without loss of generality, we may suppose that there is some
u∗ ∈ C1,2(R × R) such that u(t + tn, x + xn; c) → u∗(t, x) as n → ∞ in C1,2

loc (R × R). Note that u∗(t, x) is
an entire solution of (1.9) and it follows from (2.12) that

u1(t, x) ≥ m1, ∀ t, x ∈ R.

Thus, by Lemma 2.1, we conclude that u∗(t, x) ≡ e1. This contradicts with (2.13) since u∗(0, 0) =
limn→∞ u(tn, xn; c). Hence limt→∞ ∥u(t, ·; c) − e1∥∞ = 0, which completes the proof of (i).

(ii) Suppose that hypothesis (H3) holds. The proof follows similar arguments as in (i). Indeed, note that
in addition to (2.12), it also holds that

u2,t ≥ du2,xx + (c − χ2vx)u2,x + u2(r − (χ2µ2M2 + brM1) − (r − χ2µ2)u2), ∀ t > 0, x ∈ R.

Hence, since (H3) holds, we may employ the comparison principle for parabolic equations to conclude that

u2(t, x; c) ≥ m2 := min
{

inf
x∈R

u2(0, x; c), r − (χ2µ2M2 + brM1)
r − χ2µ2

}
> 0, ∀ t ≥ 0, x ∈ R. (2.14)

Therefore, similar arguments used to prove (i) together with Lemma 2.2 yield that limt→∞ ∥u(t, ·; c) −
e∗∥∞ = 0. This completes the proof of the theorem. □

3. Super- and sub-solutions

In this section, we construct some super- and sub-solutions to some elliptic equations related to (1.9).
These super- and sub-solutions will be used in the proof of Theorem 1.2 in the next section.

We first introduce some notations. For fixed 0 < κ < κmax = min{
√

1 − a,
√

λ}, D1, D2, D̃2 > 0 and
0 < ε1 ≪ 1, we define

uκ
1 (x) = min{M1, M1D2e−κx}, uκ

1 (x) = M1D2
(
1 − D1e−ε1x

)
+ e−κx,

uκ
2 (x) = min{M2, 1 + M2D̃2e−κx} and uκ

2 (x) =
(
1 − D̃2e−κx

)
+ ,

where (m)+ = max{m, 0} for every real number m ∈ R, and M1 and M2 are as in (1.12), that is,
M1 = 1

1−χ1µ1
and M2 = r

r−χ2µ2
. We shall provide more information on how to choose the positive constants

D1, D2, D̃2 and ε1 in Lemma 3.3 below. Define the convex set

E(κ) := {u ∈ Cb
unif(R) × Cb

unif(R) | uκ
i (x) ≤ ui(x) ≤ uκ

i (x) ∀ x ∈ R, i = 1, 2}. (3.1)

Observe that for every u ∈ Cb
unif(R) × Cb

unif(R), the scalar valued function

v(x; u) = 1
2
√

λ

∫
R

e−
√

λ|x−y|(µ1u1(y) + µ2u2(y))dy, x ∈ R, (3.2)

is twice continuously differentiable and solves the elliptic equation

0 = vxx − λvx + µ1u1 + µ2u2, x ∈ R.

Next, we present some lemmas.

Lemma 3.1. Let u ∈ E(κ) and v(x; u) be given by (3.2). Then for any x ∈ R,

v(x; u) ≤ µ1 min{M1

λ
,

M1D2Bλ,κ

2
√

λ
e−κx} + µ2 min{M2

λ
,

1
λ

+ M2D̃2Bλ,κ

2
√

λ
e−κx} (3.3)

and
v(x; u) ≥ µ1M1D2e−κx

2
√

λ

(
Bλ,κ − D1Bλ,κ+ε1e−ε1x

)
+ + µ2

(
1
λ

− D̃2Bλ,κ

2
√

λ
e−κx

)
+

, (3.4)

where Bλ,κ is as in (1.16).
11
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Lemma 3.2. Let u ∈ E(κ) and v(x; u) be given by (3.2). Then

| d

dx
v(x; u)| ≤ µ1 min{M1D2Bλ,κ

2 e−κx,
M1√

λ
} + µ2 min

{D̃2M2Bλ,κ

2 e−κx,
M2√

λ

}
, ∀ x ∈ R, (3.5)

where Bλ,κ is introduced in (1.16).

We delay the proofs of Lemmas 3.1 and 3.2 to the Appendix. For every u ∈ E(κ), we associate the
differential operator Fu(U) = (Fu

1 (U1), Fu
2 (U2)) defined by

Fu
1 (U1) = U1,xx + (cκ − χ1vx(·; u))U1,x + (1 − (a − χ1µ2)u2 − λχ1v(·; u) − (U1)+

M1
)U1 + R(u1 − U1), (3.6)

Fu
2 (U2) = dU2,xx + (cκ − χ2vx(·, u))U2,x + (r − (br − χ2µ1)u1 − λχ2v(·; u) − r(U2)+

M2
)U2 + R(u2 − U2) (3.7)

with (Ui)+ = max{Ui, 0}, U = (U1, U2), where cκ = κ2+1−a
κ and R ≫ 1 is a positive constant satisfying

R > max{1 − (a − χ1µ2)M2 − χ1(µ1M1 + µ2M2), r − (br − χ2µ1)M1 − χ2(µ1M1 + µ2M2)}. (3.8)

In the rest of this section, we assume that (H4) holds. Let κ∗
χ1,χ2 be defined as in (1.20). By the definition

of κ∗
χ1,χ1 , for every 0 < κ < κ∗

χ1,χ2 , it holds that

κχ1µ1M1Bλ,κ

2 < 1 (3.9)

and
1 − a ≥ F (κ, χ1, χ2), (3.10)

where F (κ, χ1, χ2) is as in (1.19). Our aim is to prove Theorem 1.2 in the next section by showing that
there is u∗ ∈ E(κ) such that Fu∗(u∗) = 0 for 0 < κ < κ∗ := κ∗

χ1,χ2 .
Observe that ūk

i and uk
i are analogues of U+

µ (·) and U−
µ (·) in [33] (see (2.4) and (2.6) in [33]), and the

following lemma is the analog of [33, Theporem 2.1]. Some new arguments are needed due to the presence
of a second species. For the completeness, we provide a proof of the following lemma.

Lemma 3.3. Let 0 < κ < κ∗, 0 < ε1 < min{κ, cκ − 2κ}, D2 = 1
M1

, and D̃2 = D2/(a + χ1f(κ, χ1, χ2)),
where f(κ, χ1, χ2) is the positive solution of the algebraic equation (1.18). Then there is D1 ≫ 1 such that
for every u ∈ E(κ) and i ∈ {1, 2} the following hold.

(i) Fu
i (Mi) ≤ 0 and Fu

i (0) ≥ 0 for every x ∈ R.
(ii) Fu

i (uκ
i ) ≤ 0 on the open interval {uκ

i < Mi}.
(iii) Fu

i (uκ
i ) ≥ 0 on the open interval {uκ

i > 0}.

Proof. Let u ∈ E(κ).
(i) Note that Fu

i (0) = Rui(x) ≥ 0 for every x ∈ R and

Fu
1 (M1) = −M1((a − χ1µ2)u2(x) + χ1λv(x; u)) − R(M1 − u1(x)) < 0, ∀ x ∈ R

since v(·; u) > 0, ∥u1∥∞ ≤ M1 and u2(·) ≥ 0. Similarly

Fu
2 (M2) = −M2((br − χ2µ1)u1(x) + χ2λv(x; u)) − R(M2 − u2(x)) < 0, ∀ x ∈ R

since v(·; u) ≥ 0, ∥u2∥∞ ≤ M2 and u1(·) ≥ 0.
12
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(ii) Recalling inequalities (3.4) and (3.5), with uκ
1 = M1D2e−κx, we get

Fu
1 (uκ

1 ) =
(
(a + κχ1vx(; u) − D2e−κx − (a − χ1µ2)u2 − χ1λv(·; u))

)
uκ

1 − R(uκ
1 − u1)

≤

(
a − χ1µ2 + κχ1vx(; u) − D̃2

(D2

D̃2
− D2χ1µ2

√
λBλ,κ

2

)
e−κx − (a − χ1µ2)(1 − D̃2e−κx)

)
uκ

1

=
(

κχ1vx(; u) − D̃2

(D2

D̃2
− χ1µ2

√
λBλ,κ

2 − (a − χ1µ2)
)

e−κx

)
uκ

1

≤D̃2

(
χ1κBλ,κ

2 (µ1M1D2

D̃2
+ µ2M2) −

(D2

D̃2
− χ1µ2

√
λBλ,κ

2 − (a − χ1µ2)
))

uκ
1 e−κx

=χ1D̃2

(κBλ,κ

2
(
µ1M1(a + χ1f) + µ2M2

)
+ µ2κ2Bλ,κ

2
√

λ
− f

)
uκ

1 e−κx = 0.

Note that we have used (1.18). Similarly, for uκ
2 (x) = 1 + M2D2e−κx ≤ M2, by Lemmas 3.1 and 3.2,

Fu
2 (uκ

2 ) =M2(dκ2 − κ(cκ − χ2vx(·; u))) D̃2

eκx

+ (r − ruκ
2

M2
− (br − χ2µ1)u1 − χ2λv(·; u))uκ

2 + R(u2 − uκ
2 )

≤M2(dκ2 − κ(cκ − χ2vx(·; u)))D̃2e−κx

+
(

r − r

M2
(1 + M2D̃2e−κx) − χ2µ2

(
1 − D̃2

√
λBλ,κ

2eκx

))
uκ

2

=D̃2

(
(dκ2 − κ(cκ − χ2vx(·; u)))M2 −

(
r − χ2µ2

√
λBλ,κ

2

)
uκ

2

)
e−κx

≤D̃2

(
(dκ2 − κcκ + κχ2√

λ
(µ1M1 + µ2M2))M2 −

(
r − χ2µ2

√
λBλ,κ

2

)
uκ

2

)
e−κx

≤M2D̃2

eκx

(
(d − 1)κ2 − (1 − a) + κχ2√

λ
(µ1M1 + µ2M2) + χ2µ2

√
λBλ,κ

2 − r

M2

)
≤ 0,

whenever (3.10) holds. This completes the proof of (ii).
(iii) For x ∈ {uκ

2 > 0} and recalling Lemmas 3.1 and 3.2, we obtain

Fu
2 (uκ

2 ) + R(uκ
2 − u2)

=
(

r − r

M2
(1 − D̃2e−κx) − (br − χ2µ1)u1 − χ2λv(·; u)

)
× uκ

2 + (1 − a + (1 − d)κ2 − κχ2vx(·; u))D̃2e−κx

≥
(

r − r

M2
(1 − D̃2e−κx) − (br − χ2µ1)u1 − χ2λv(·; u)

)
× uκ

2 +
(

1 − a + (1 − d)κ2 − κχ2(µ1M1 + µ2M2)√
λ

)
D̃2

eκx

≥
(

r − r(1 − D̃2e−κx)
M2

−
(

M1D2

D̃2
(br − χ2µ1) + χ2

√
λBλ,κ(µ1M1 + µ2M2)

2

)
D̃2

eκx
− χ2µ2

)
uκ

2

+
(

1 − a + (1 − d)κ2 − κχ2(µ1M1 + µ2M2)√
λ

)
D̃2e−κx

≥
(

1 − a − (d − 1)κ2 − r
(

M1
(
a + χ1f(κ, χ1, χ2)

)(
b − χ2µ1

r

)
− 1

M2

)
+

− χ2(λBλ,κ + 2κ)(µ1M1 + µ2M2)
2
√

λ

)
D̃2

eκx

=((1 − a) − F (κ, χ1, χ2))D̃2e−κx ≥ 0

13
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since (3.10) holds. On the other hand, for x ∈ {uκ
1 > 0}, it holds

Fu
1 (uκ

1 ) =(a − 1)uκ
1 + D2M1e−κx

(
D1ε1(cκ − ε1 − 2κ)e−ε1x + χ1(κ − D1(ε1 + κ)e−ε1x)vx(·; u)

)
+ (1 − 1

M1
uκ

1 − (a − χ1µ2)u2 − χ1λv(·; u))uκ
1 + R(u1 − uκ

1 )

≥(a − 1)uκ
1 + D2M1e−κx

(
D1ε1(cκ − ε1 − 2κ)e−ε1x + χ1(κ − D1(ε1 + κ)e−ε1x)vx(·; u)

)
+
(

1 − 1
M1

uκ
1 − (a − χ1µ2)(1 + M2D̃2e−κx) − χ1µ2 − D2χ1

2 (µ2M2
D̃2

D2
+ µ1M1)

√
λBλ,κe−κx

)
uκ

1

=D2M1e−κx
(
D1ε1(cκ − ε1 − 2κ)e−ε1x + χ1(κ − D1(ε1 + κ)e−ε1x)vx(·; u)

)
−
( 1

M1
uκ

1 + D2

(
(a − χ1µ2)M2D̃2

D2
+ χ1

2 ( µ2M2D̃2

D2
+ µ1M1)

√
λBλ,κ

)
e−κx

)
uκ

1

≥D2M1e−κx
(
D1ε1(cκ − ε1 − 2κ)e−ε1x + χ1(κ − D1(ε1 + κ)e−ε1x)vx(·; u)

)
− D2

(
1 + (a − χ1µ2)M2D̃2

D2
+ χ1

2 ( µ2M2D̃2

D2
+ µ1M1)

√
λBλ,κ

)
M1D2e−2κx,

where we have used uκ
1 (x) ≤ D2M1e−κx and Lemma 3.1. Using Lemma 3.2 and the fact that D1e−ε1x ≤ 1

and e−ε1x > e−κx for x ∈ {uκ
1 > 0} and D1 > 1, the last inequality is improved to

Fu
1 (uκ

1 ) ≥D2M1e−2κx

(
D1ε1(cκ − ε1 − 2κ) − D2χ1(2κ + ε1)

2 (µ1M1 + µ2M2D̃2

D2
)Bλ,κ

)
− D2

(
1 + (a − χ1µ2)M2D̃2

D2
+ χ1

2 (µ2M2D̃2

D2
+ µ1M1)

√
λBλ,κ

)
D2M1e−2κx. (3.11)

Hence with the choice of D1
D2

= D1M1 ≫ 1 satisfying

D1

D2
ε1(cκ − ε1 − 2κ) ≥ 1 + (a − χ1µ2)M2D̃2

D2
+ χ1(

√
λ + 2κ + ε1)

2 (µ2M2D̃2

D2
+ µ1M1)Bλ,κ (3.12)

we conclude from (3.11) that
Fu

1 (uκ
1 )(x) ≥ 0 ∀ x ∈ {uκ

1 > 0},

which completes the proof of (iii). □

4. Existence of traveling wave solutions for c > c∗

In this section, we investigate the existence of traveling wave solutions of (1.2) and prove Theorem 1.2.
Throughout this section, we assume that (H4) holds and that the constants ε1, D2, D̃2 and D1 are fixed

and satisfy the hypotheses of Lemma 3.3. Recall that c∗ = (k∗)2+1−a
k∗ , where κ∗ = κ∗

χ1,χ2 is as in (1.20). Our
idea to prove Theorem 1.2 is to prove that, for any 0 < κ < κ∗, there is u∗ ∈ E(κ) such that Fu∗(u∗) = 0.

To this end, for every y > 0 and 0 < κ < κ∗, and u ∈ E(κ), consider the following elliptic system{
0 = Fu

i (Uu,y
i ), |x| < y, i = 1, 2

Uu,y
i (x) = uκ

i (x), x = ±y, i = 1, 2.
(4.1)

Lemma 4.1. For every y > 0 and 0 < κ < κ∗, and u ∈ E(κ) there exists a unique Uu,y satisfying (4.1).

Proof. Let u ∈ E(κ) and y > 0 be given. We first show the uniqueness. Observe that system (4.1) is
decoupled, hence the theory of elliptic scalar equations applies for each equation. Since the equations of
(4.1) are of the same type for both i = 1 and i = 2, we shall only provide the arguments for the proof of
Uu,y

1 .
Observe from the choice of the positive constant R, see (3.8), and Lemma 3.1 that

1 − (a − χ1µ1)u2(x) − λχ1v(x; u) < R, ∀ x ∈ R.

14
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Whence for each x ∈ R fixed, the function

R ∋ U1 ↦→ Au
1 (x, U1) := (1 − (a − χ1µ2)u2(x) − λχ1v(x, u) − (U1)+

M1
)U1 + R(u1(x) − U1) (4.2)

is monotone decreasing. Thus by [43, Theorem 10.2, page 264 ] we deduce that a solution Uu,y(x), if exists,
is unique.

Now, we show the existence of solution to (4.1). Again, we note from the choice of R (see (3.8)) and
Lemma 3.1 that

Au
1 (x, M1) ≤ 0 and Au

1 (x, −M1) ≥ 0

for every x ∈ R. We also note, by Lemma 3.2,

|cκ − χ1vx(x; u)| ≤ cκ + χ1√
λ

(µ1M1 + µ2M2) , ∀ x ∈ R.

Since ∥uκ
1 ∥∞ ≤ M1, it follows from [44, Theorem 5.1, Corollary 5.2, page 433] that there is at least one

classical solution to the elliptic equation{
0 = Fu,y

1 (U1) |x| < y

U1(x) = uκ
1 (x) x = ±y.

□

For later reference, we introduce the function

Au
2 (x, U2) = (r − (br − χ2µ1)u1 − λχ2v(x, u) − r

M2
(U2)+)U2 + R(u2(x) − U2). (4.3)

Then (4.1) can be rewritten as{
0 = diU

u,y
i,xx + (cκ − χivx(·; u))Uu,y

i,xx + Au
i (Uu,y

i ) |x| < y

Uu,y
i (x) = uκ

i (x) x = ±y,
(4.4)

with d1 = 1 and d2 = d. For every y > 0, 0 < κ < κ∗, and u ∈ E(κ) we define Uu,y(x) = (uκ
1 (x), uκ

2 (x)) for
every |x| > y. With this extension, we have the following lemma. For convenience we let y0 > 1 such that
uκ

i (−y) = Mi for each i ∈ {1, 2} and y ≥ y0.

Lemma 4.2. Let 0 < κ < κ∗, u ∈ E(κ), and y ≥ y0 be given. The following hold for every i ∈ {1, 2}.

(i) For every x ∈ R, uκ
i (x) ≤ Uu,y

i (x) ≤ uκ
i (x)

(ii) If (H2) holds and Uu,y
1 (x) ≡ u1(x), then there exist 0 < m∗

1 ≪ 1 and x1 > 0 such that Uu,y
1 (x) ≥ m∗

1 for
every −y ≤ x ≤ x1 whenever y > x1.

(iii) If (H3) holds, and Uu,y
2 (x) ≡ u2(x), then there exist 0 < m2 ≪ 1 and x2 > 0 such that Uu,y

2 (x) ≥ m2
for every −y ≤ x ≤ x2 whenever y > x2.

Proof. (i) Let i ∈ {1, 2}. Since for every x ∈ R fixed, the function Ui ↦→ Au
i (Ui) is monotone decreasing,

then it follows from Lemma 3.3 and the comparison principle for elliptic equations (see [43, Theorem 10.1,
page 263]) that

uκ
i (x) ≤ Uu,y

i (x) ≤ uκ
i (x), ∀ − y < x < y,

which together with the fact that Uu,y(x) = uκ
1 (x) for every |x| ≥ y, completes the proof of (i).

(ii) Suppose that (H2) holds and that Uu,y
1 (x) = u1(x) for every |x| ≤ y. Hence u1(x) satisfies{

0 = u1,xx + (cκ − χ1vx(·; u))u1,x + (1 − (1 − χ1µ1)u1 − (a − χ1µ2)u2 − χ1λv(·; u))u1 |x| < y

u1(x) = uκ
1 (x) x = ±y.

(4.5)

15
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Since u1(x) ≥ uκ
1 (x) ≥ 0 and u1(±y) > 0, then the Harnack’s inequality for elliptic equations implies that

u1(x) > 0 for every |x| ≤ y. Observe that with x1 := 1
ε1

ln
(

D1(ε1+κ)
κ

)
, it holds that

0 < m1 := max
x∈R

uκ
1 (x) = uκ

1 (x1) = D2M1ε1κ
κ
ε1

(κ + ε1) κ
ε +1 D

− κ
ε1

1 = ε1κ
κ
ε1

(κ + ε1) κ
ε +1 D

− κ
ε1

1 ≤ u1(x1)

and that
1 > η1 := 1 − (a − χ1µ2)M2 − χ1(µ1M1 − µ2M2) = 1 − aM2 − χ1µ1M1 > 0.

Now we take m∗
1 := min{η1M1, m1}. We claim that for every y > max{y0, x1} it holds that m∗

1 ≤ u1(x) for
every x ∈ [−y, x1]. Indeed, let y > max{x1, y0} and suppose that u1(x) attains its minimum at some point,
say x̃1 ∈ [−y, x1]. If x̃1 is a boundary point, then the claim easily follows. On the other hand, if x̃1 is an
interior point then u1,x(x̃1) = 0 and u1,xx(x̃1) ≥ 0. This along with (4.5) and the fact that 0 ≤ ui ≤ Mi for
each i = 1, 2 imply that

0 ≥ (1 − (1 − χ1µ1)u1(x̃1) − (a − χ1µ2)u2(x̃1) − χ1λv((x̃1); u))u1(x̃1) ≥ (η1 − (1 − χ1µ1)u1(x̃1))u1(x̃1).

This clearly implies that u1(x̃1) ≥ η1
1−χ1µ1

= η1M1 ≥ m∗
1 since we have shown in the above that

u1(x̃1) = min|x|≤y u1(x) > 0. So, the claim holds and the result follows.
(iii) Suppose that (H3) holds and Uu,y

2 (x) = u2(x) for |x| ≤ y. The proof follows similar arguments as
in (ii) by observing that

η2 := r − (br − χ2µ1)M1 − χ2(µ1M1 + µ2M2) = r − rbM1 − χ2µ2M2 > 0

and with x2 = ln(D̃2+ε2)
κ ,

u2(x2) > m2 = uκ
2 (x2) = 1 − D̃2

D̃2 + ε2
= ε2

D̃2 + ε2
→ 0 as ε2 → 0+.

Hence we can take 0 < ε2 ≪ 1 such that we take m∗
2 = m2 = min{m2, η2M2, M2} and then proceed as in

the proof of (ii) to show that u2(x) ≥ m∗
2 for every x ∈ [−y, x2] with y > max{x2, y0}. □

Theorem 4.3. Let 0 < κ < κ∗ and y ≥ y0 be given. Then Uu,y ∈ E(κ) for every u ∈ E(κ). Moreover,
the mapping E(κ) ∋ u ↦→ Uu,y ∈ E(κ) is continuous and compact with respect to the compact open topology.
Therefore, by Schauder’s fixed point theorem, it has a fixed point, say u∗,y.

Proof. Let y > y0 be fixed. It follows from Lemma 4.2(i) that Uu,y ∈ E(κ) for every u ∈ E(κ). Since
∥Uu,y

i ∥∞ ≤ Mi for every i = 1, 2 and u ∈ E(κ), by a priori estimates for elliptic equations and the uniqueness
of solution to (4.1) guaranteed by Lemma 4.1 and the Arzela–Ascot’s theorem, it follows that the mapping
E(κ) ∋ u ↦→ Uu,y ∈ E(κ) is continuous and compact with respect to the compact open topology. Therefore,
by Schauder’s fixed point theorem, it has a fixed point, say u∗,y. □

Fix 0 < κ < κ∗. For every y > y0, let u∗,y be a fixed point of the mapping E(κ) ∋ u ↦→ Uu,y ∈ E(κ).
Since ∥u∗,y

i ∥∞ ≤ M1 + M2, i = 1, 2, and by Lemmas 3.1 and 3.2 it holds that

∥v(·; u∗,y)∥
C

2,b
unif(R) ≤ λ∥v(·; u∗,y)∥ + µ1∥u∗,y

1 ∥∞ + µ2∥u∗,y
2 ∥∞ ≤ 2(µ1M1 + µ2M2)

for every y > y0. By a priori estimates for elliptic equations and Arzela–Ascoli’s theorem, there are a sequence
{yn}n≥1 with yn → ∞ as n → ∞ and a function u∗ ∈ C2,b

unif(R) × C2,b
unif(R) such that u∗,yn → u∗ locally

uniformly in C2(R) × C2(R). Moreover, the function u∗ satisfies the elliptic system⎧⎪⎨⎪⎩
0 = u∗

1,xx + (cκ − χ1v∗
x(·))u∗

1,x + (1 − (1 − χ1µ1)u∗
1 − (a − χ1µ2)u∗

2 − χ1λv∗)u∗
1, x ∈ R

0 = du∗
1,xx + (cκ − χ2v∗

x(·))u∗
1,x + (r − (r − χ2µ2)u∗

2 − (br − χ2µ1)u∗
1 − χ2λv)u∗

1, x ∈ R
0 = v∗

xx − λv∗ + µ1u∗
1 + µ2u∗

2, x ∈ R
(4.6)

16
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where v∗(·) = v(·; u∗). Since u∗ ∈ E(κ), then

lim
x→∞

u∗
1(x)

e−κx
= 1

D2M1
= 1 and lim

x→∞
|u∗

2(x) − 1| = 0. (4.7)

Whence
lim

x→∞
u∗(x) = e2. (4.8)

In fact u∗(x) satisfies the following.

Lemma 4.4. It holds that

lim
x→∞

⏐⏐⏐u∗
1(x)

e−κx
− 1
⏐⏐⏐ = 0 and lim

x→∞

⏐⏐⏐u∗
2(x) − 1
e−κx

− (χ2µ2 − rb)
(1 − a) + r

M2
− (d − 1)κ2 − χ2µ2

√
λ

2 Bλ,κ

⏐⏐⏐ = 0, (4.9)

where Bλ,κ is as in (1.16).

Proof. It is clear that the first limit in (4.9) is established in (4.7). So, it remains to show that the second
limit in (4.7) holds. We proceed by contradiction and suppose that there is a sequence {xn}n≥1 with xn → ∞
as n → ∞ such that

inf
n≥1

⏐⏐⏐u∗
2(xn) − 1
e−κxn

− (χ2µ2 − rb)
(1 − a) + r

M2
− (d − 1)κ2 − χ2µ2

√
λ

2 Bλ,κ

⏐⏐⏐ > 0. (4.10)

Consider the functions

wn
2 (x + xn) = u∗

2(xn + x) − 1
e−κ(xn+x) and wn

1 (x) = u∗
1(xn + x)

e−κ(xn+x) , x ∈ R

and note that
∥wn

1 ∥∞ ≤ 1 and ∥wn
2 ∥∞ ≤ M2D̃2 ∀ n ≥ 1,

since u∗ ∈ E(κ). A simple computation shows that {(wn
1 , wn

2 )}n≥1 satisfy

0 =d(κ2wn
2 − 2κwn

2,x + wn
2,xx) + (cκ − χ2vx(· + xn; µ1u∗

1 + µ2u∗
2))(wn

2,x − κwn
2 )

−
(

rwn
2

M2
+ (br − χ2µ1)wn

1 + χ2λṽ(· + xn; µ1wn
1 + µ2wn

2 )
)

u∗
2(· + xn) (4.11)

where the linear and bounded operator Cb
unif(R) ∋ g ↦→ ṽ(·; g) is given by

ṽ(x; g) = 1
2
√

λ

∫
R

e−
√

λ|z|−κzg(z + x)dz ∀ g ∈ Cb
unif(R). (4.12)

By a priori-estimates for parabolic equations, we may suppose that (wn
1 (x), wn

2 (x)) → (w∞
1 (x), w∞

2 (x)) as
n → ∞ locally uniformly in C2

loc(R). Furthermore, we note from (4.7) that limn→∞ v(x+xn; µ1u∗
1 +µ2u∗

2) =
µ2
λ and w∞

1 (x) = 1 for every x ∈ R. Hence w∞
2 (·) ∈ C2,b

unif(R) and satisfies

0 =d(κ2w∞
2 − 2κw∞

2,x + w∞
2,xx) + cκ(w∞

2,x − κw∞
2 ) − rw∞

2
M2

− (br − χ2µ1) − χ2λṽ(x; µ2w∞
2 )

=dw∞
2,xx + (cκ − 2κd)w∞

2,x −
(
(1 − a) − (d − 1)κ2 + r

M2

)
w∞

2 − χ2µ2λṽ(x; w∞
2 ) − (br − χ2µ1). (4.13)

We denote by W (·; g) the solution of the elliptic equation

0 = dWxx + (cκ − 2κd)Wx −
(
(1 − a) − (d − 1)κ2 + r

M2

)
W + g(x), x ∈ R,

17
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for every g ∈ Cb
unif(R). Since (1−a)−(d−1)κ2+ r

M2
> 0, it follows from standard theory of elliptic operators,

that W (·; g) ∈ C2,b
unif(R) is uniquely determined by g. Moreover, the maximum principle implies that

∥W (·; g)∥∞ ≤ 1
(1 − a) − (d − 1)κ2 + r

M2

∥g∥∞ ∀ g ∈ Cb
unif(R). (4.14)

Now, observe from (4.13) that

w∞
2 (·) = −χ2µ2λW (·; ṽ(·; w∞

2 )) − W (·; (br − χ2µ1)).

Equivalently, we have
w∞

2 (·) + χ2µ2λW (·; ṽ(·; w∞
2 )) = −W (·; (br − χ2µ1)) (4.15)

Observe from (4.12) that

∥ṽ(·; g)∥∞ ≤ ∥g∥∞

2
√

λ

∫
R

e−
√

λ|z|−κzdz = Bλ,κ

2
√

λ
∥g∥∞ ∀ g ∈ Cb

unif(R), (4.16)

where Bλ,κ is as in (1.16). Hence, by (4.14) and (4.16),

∥χ2µ2λW (·; ṽ(·; g))∥∞ ≤ χ2µ2
√

λBλ,κ

2
(
(1 − a) − (d − 1)κ2 + r

M2

)∥g∥∞ ∀ g ∈ Cb
unif(R).

We remark from (3.10) that χ2µ2
√

λBλ,κ

2
(

(1−a)−(d−1)κ2+ r
M2

) < 1. Hence 1 belongs to the resolvent set of the linear

bounded operator Cb
unif(R) ∋ g ↦→ −χ2µ2λW (·; ṽ(·; g)). As a result, we obtain that the solution of Eq. (4.15),

equivalently solution of (4.13), is uniquely determined in C2,b
unif(R). However, it is easily verified that the

constant function
w(x) = (χ2µ2 − rb)

(1 − a) + r
M2

− (d − 1)κ2 − χ2µ2
√

λ
2 Bλ,κ

∀ x ∈ R

is a solution of (4.13) in C2,b
unif(R). Thus we conclude that w∞

2 (x) ≡ (χ2µ2−rb)

(1−a)+ r
M2

−(d−1)κ2− χ2µ2
√

λ
2 Bλ,κ

, in

particular we obtain

(χ2µ2 − rb)
(1 − a) + r

M2
− (d − 1)κ2 − χ2µ2

√
λ

2 Bλ,κ

= w∞
2 (0) = lim

n→∞
w2(xn),

which contradicts with (4.10). Therefore (4.9) must hold. □

Thanks to Lemma 4.4, to complete the proof of Theorem 1.2, it remains to study the asymptotic behavior
of u∗(x) and x → −∞, which we complete in next two lemmas.

Lemma 4.5. Suppose that hypothesis (H2) holds. Then

lim
x→−∞

u∗(x) = e1.

Proof. We prove this result by contradiction. Suppose that there is a sequence {xn} with xn → −∞ such
that

inf
n≥1

|u∗(xn) − e1| > 0. (4.17)

Consider the sequence u∗,n(x) = u∗(x + xn) for every x ∈ R and n ≥ 1. By a priori estimates for elliptic
equations and Arzela–Ascoli’s theorem, without loss of generality, we may suppose that there is some ũ ∈ C2
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such that u∗,n → ũ as n → ∞ locally uniformly in C2(R). Moreover, ũ also satisfies (4.6). Recalling m∗
1 and

x1 given by Lemma 4.2 (ii), we deduce that

m∗
1 ≤ ũ1(x) ≤ M1, ∀ x ∈ R (4.18)

since xn → −∞ as n → ∞. Therefore by Lemma 2.1, we obtain ũ(x) ≡ (1, 0). In particular, ũ(0) = e1,
which contradicts with (4.17), since ũ(0) = limn→∞ u∗(xn). □

Lemma 4.6. Suppose that hypothesis (H3) holds. Then

lim
x→−∞

u∗(x) = e∗.

Proof. We proceed also by contradictions. The ideas are similar to that of the proof of Lemma 4.5. Suppose
that there is a sequence {xn} with xn → −∞ such that

inf
n≥1

|u∗(xn) − e∗| > 0. (4.19)

Consider the sequence u∗,n(x) = u∗(x + xn) for every x ∈ R and n ≥ 1. By a priori estimates for elliptic
equations and the Arzela–Ascoli’s theorem, without loss of generality, we may suppose that there is some
ũ ∈ C2 such that u∗,n → ũ as n → ∞ locally uniformly in C2(R). Moreover, ũ also satisfies (4.6). Recalling
the positive constants m∗

i and xi, i = 1, 2, and given by Lemma 4.2 (ii)–(iii), we deduce that

m∗
i ≤ ũi(x) ≤ Mi, ∀ x ∈ R, i = 1, 2 (4.20)

since xn → −∞ as n → ∞. Therefore by Lemma 2.2, we obtain ũ(x) ≡ e∗. In particular, ũ(0) = e∗, which
contradicts with (4.19), since ũ(0) = limn→∞ u∗(xn). □

Now we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. For every c > cκ∗ , there is a unique 0 < κc < κ∗ satisfying c = cκc = κ2
c+1−a
κκc

.
This implies that u(t, x) = u∗(x − ct) is a traveling solution of (1.2) with speed c. Moreover, it follows from
(4.8) that u∗ connect e2 at right end. Since u∗ ∈ E(κ), then u∗

1(x) > 0 by comparison principle for elliptic
equations. This in turn implies that ∥u∗

2 − 1∥∞ > 0. Thus u∗ is not a trivial solution of (1.2). Assertion (i)
and (ii) of the theorem follows from Lemmas 4.5 and 4.6 respectively. □

5. Proof of Theorem 1.3

In this section, we present the proof of nonexistence of nontrivial traveling wave solutions of (1.2) with
speed c < c∗

0(= 2
√

1 − a) connecting e2 at right end. Our first step toward the proof of the non-existence is
to show that, for any nontrivial traveling solution u(x − ct) of (1.2) connecting u(∞) = e2 at the right end,
there holds u1,x ≤ 0 for x ≫ 1.

Lemma 5.1. Let u(t, x) = u(x − ct) be a nontrivial traveling wave solution of (1.2) connecting e2 at the
right end. Then there is X0 ≫ 1 such that u1,x(x) ≤ 0 for every x > X0.

Proof. We proceed by contraction. Suppose that the statement of the lemma is false. Then, since u1(∞) = 0
and u1(x) > 0 for every x ∈ R, then there is sequence of local minimum points {xn}n≥1 of u1(x) satisfying
xn → ∞ as n → ∞. Since u2(∞) = 1, then limn→∞ u2(xn) = 1. From the representation formula

v(x; u) = 1
2
√

λ

∫
R

e−
√

λ|z|(µ1u1(z + x) + µ2u2(z + x))dz,
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it follows from the dominated convergence theorem that

lim
n→∞

v(xn; u) = µ2

λ
.

Hence
lim

n→∞
(1 − (1 − χ1µ1)u1(xn) − (a − χ1µ2)u2(xn) − λχ1v(xn; u)) = 1 − a.

Thus there is n0 ≫ 1 such that

u1,xx(xn) + (c − χ1vx(xn; u))u1,x(xn) = ((1 − χ1µ1)u1(xn) + (a − χ1µ2)u2(xn)
+ λχ1v(xn; u) − 1) u1(xn)

<
−(1 − a)u1(xn)

2 < 0, ∀ n ≥ n0. (5.1)

Since {xn} is a sequence of local minimum points, we have that u1,xx(xn) ≥ 0 and u1,x(xn) = 0 for every
n ≥ 1, which clearly contradicts with (5.1). Thus the statement of the lemma must hold. □

Now, we present the proof of Theorem 1.3.

Proof of Theorem 1.3. We prove this result by contradiction. Suppose that (1.2) has a nontrivial traveling
wave solution u(t, x) = u(x − ct) with speed c < c∗

0 connecting e2 at the right end. Choose q > 0 and
0 < ε ≪ 1 satisfying max{c, 0}+ε < q < 2

√
1 − a − ε. By Lemma 5.1, there is X0 ≫ 1 such that u1,x(x) ≤ 0

for every x > X0. Moreover, since u(+∞) = e2, we deduce that

lim
x→∞

(1 − (1 − χ1µ1)u1(x) − (a − χ1µ2)u2(x) − χ1λv(x; u)) = 1 − a and lim
x→∞

vx(x; u) = 0.

Thus, there is X1 ≫ X0, such that

|χ1vx(x; u)| < ε and 1 − (1 − χ1µ1)u1(x) − (a − χ1µ2)u2(x) − χ1λv(x; u) > 1 − a − ε ∀ x ≥ X1.

Hence, it holds that the function u(t, x) = u1(x − (c + ε)t) satisfies that

ut =u1,xx − (ε + χ1vx)u1,x + (1 − (1 − χ1µ1)u1 − (a − χ1µ2u2) − λχ1v(x − (x + ε)t; u))u
≥u1,xx + (1 − a − ε)u, x ≥ X1 + (c + ε)t, t > 0. (5.2)

A simple computation shows that the function

u(t, x) = σe− q
2 (x−x1−l−qt) cos

(β

2
(
x − x1 − l − qt

))
, x1 + qt ≤ x ≤ l + x1 + qt

where l = π
β , β =

√
4(1 − a − ε) − q2 and σ = e− lq

2 minx1≤x≤x1+L u(0, x), satisfies{
ut = uxx + (1 − a − ε)u, x1 + qt ≤ x ≤ l + x1 + qt,

u(t, x) = 0 x = x1 + qt, x = l + x1 + qt.

Thus, since q > c + ε, then (c + ε)t < qt for every t > 0. Moreover the choice of σ guarantees that
u(0, x) ≤ u(0, x) for every x1 ≤ x ≤ x1 + l and u(t, x) > 0 for x ∈ {x1 + qt, x1 + l + qt} for every
t > 0. We now infer to the comparison principle for parabolic equations to conclude that

u(t, x) ≤ u(t, x), ∀x1 + qt < x < x1 + l + qt, t > 0.

In particular, taking x = x1 + l
2 + qt, we get

σe
ql
4 cos

(π

4
)

= u(t, qt + x1 + l

2) ≤ u(t, x1 + qt + l

2) = u1

(
(q − c − ε)t + x1 + l

2

)
, ∀ t > 0.

Letting t → ∞ yield 0 < σe
ql
4 cos

(
π
4
)

≤ u1(∞), which is impossible since u1(∞) = 0. Therefore, we conclude
that the statement of the theorem must hold. □
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6. Proof of Theorem 1.4

In this section, we present the proof of Theorem 1.4. To this end, we first recall some results on the
spreading speeds and stability for single species chemotaxis model.

Lemma 6.1 ([31,34]).
Consider the single species chemotaxis model{

ut = d̃uxx − χ(uwx)x + u(ã − b̃u) x ∈ R, t > 0
0 = wxx − λ̃w + µu x ∈ R, t > 0,

(6.1)

where all the parameters are positive, and let (u(t, x; u0), w(t, x; u0)) denote the unique nonnegative classical
solution of (6.1) for every u0 ∈ Cb

unif(R) with u0 ≥ 0 defined on a maximal interval of existence [0, tmax,u0).
Then the following hold.

(i) If χµ < b̃, then tmax,u0 = +∞ and ∥u∥∞ ≤ max{∥u0∥, ã
b̃−χµ

} for every t ≥ 0. Moreover, if ∥u0∥∞ > 0
then

lim inf
t→∞

inf
|x|≤(2

√
ãd̃−ε)t

u(t, x) > 0 ∀ 0 < ε ≪ 1.

(ii) If 2χµ < b̃ and infx∈R u0(x) > 0 then

lim
t→∞

∥u(t, ·) − ã

b̃
∥∞ = 0.

Throughout the rest of this section, we assume that (H5) holds. Note that (H5) implies (H4). By the
definition of the function F2(κ, χ1, χ2), we have

1 − a > (d − 1)+(1 − a) + F2(κ, χ1, χ2) + (1 − d)κ2 ≥ F2(κ, χ1, χ2) ∀κ ∈ (0,
√

1 − a),

which means that inequality (3.10) also holds for every κ ∈ (0,
√

1 − a). Hence c∗ = c∗
0.

As a result, to complete the proof of Theorem 1.4, it remains to show the existence of a non-trivial
traveling wave connecting e2 at the right end with minimum speed c∗

0 = 2
√

1 − a.

Proof of Theorem 1.4.
(i) Suppose that hypotheses (H2) and (H5) hold and r > 2χ2µ2. Choose a decreasing sequence {cn}n≥1

such that cn → c∗
0 as n → ∞. For every n ≥ 1, let ũn = Ũcn(x − cnt) be a traveling wave solution of (1.2)

connecting e1 and e2 given by Theorem 1.2. Let

x̃n = min{x ∈ R : Ũ cn
1 (x) = 1

2} (6.2)

and define Ucn = Ũcn(x + x̃n) for every x ∈ R and n ≥ 1. Note that U cn
1 satisfies

U cn
1 (x)

{
≥ 1

2 if x ≤ 0
= 1

2 if x = 0
(6.3)

for every n ≥ 1. Recall that ∥U cn
i ∥∞ < Mi for every n ≥ 1 and i = 1, 2. Hence, by a priori estimates for

elliptic equations, if possible after passing to a subsequence, we may suppose that there is some U ∈ C2,b(R)
such that (Ucn , V (·; Ucn)) → (U, V (·; U)) as n → ∞ in C2,b

loc(R). Moreover, U(x) satisfies⎧⎪⎨⎪⎩
0 = U1,xx + (c∗

0 − χ1Vx(·; U))U1,x + U1(1 − (1 − χ1µ1)U1 − (a − χ1µ2)U2 − χ1λV (·; u)) x ∈ R
0 = dU2,xx + (c∗

0 − χ2Vx(·; U))U2,x + U2(r − (r − χ2µ2)U2 − (br − χ2µ1)U21 − χ2λV (·; u)) x ∈ R
0 = Vxx − λV + µ1U1 + µ2U2 x ∈ R.

(6.4)
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We note that U1(·) also satisfies properties (6.3). From this point, we complete the proof of the spatial
asymptotic behavior of U(x) in the following six steps.

Step 1. In this step, we prove that U2(x) > 0 for every x ∈ R. Suppose not. Then u(t, x) = U1(x − c∗t)
is a solution of the single species chemotaxis model (6.1) with (ã, b̃, µ, λ̃, d̃) = (1, 1, µ1, λ, 1). Since u(0, x) =
U1(x) ≥ 1

2 for every x ≤ 0 (by (6.3)), then it follows from Lemma 6.1(i) that

lim inf
x→∞

U1(x) = lim inf
t→∞

u((2 − ε)t − c∗
0t) > 0, ∀0 < ε ≪ 1.

Hence we conclude that infx∈R U1(x) > 0, which yield that inft,x∈R u(t, x) > 0. It then follows from
Lemma 2.1 that U1(x) ≡ 1. Clearly, this contradicts with (6.3) since U1(0) = 1

2 . Thus we must have that
U2(x) > 0 for every x ∈ R.

Step 2. In this step, we prove that lim infx→∞ U1(x) = 0. If not, since U1(·) satisfies (6.3), we would have
that infx∈R U1(x) > 0. And hence since (H2) holds, it follows from Lemma 2.1 that U(x) ≡ e1, so U2 ≡ 0,
which contradicts with Step 1. Hence lim infx∈R U1(x) = 0.

Step 3. In this step, we prove that lim supx→∞ U1(x) = 0. Suppose not. According to Step 2, there
would exist a sequence of minimum points {xn}n≥1 of the function U1 satisfying xn → ∞ and U1(xn) → 0
as n → ∞ with U1,x(xn) = 0 and U1,xx(xn) ≤ 0 for every n ≥ 0. Hence, we deduce from (6.4) that

0 ≥ U1(xn)(1 − (1 − χ1µ1)U1(xn) − (a − χ1µ2)U2(xn) − χ1λV (xn; u)) ∀ n ≥ 1.

In particular, we obtain that

1 ≤ (1 − χ1µ1)U1(xn) + (a − χ1µ2)U2(xn) + χ1λV (xn; u) ∀ n ≥ 1,

since U1(xn) > 0 for n ≥ 1. Letting n → ∞ in the last inequality and using the facts that ∥U2∥∞ ≤ M2 and
∥V (·, U)∥∞ ≤ 1

λ (µ1M1 + µ2M2), we obtain that

1 ≤ (a − χ1µ2)M2 + χ1(µ1M1 + µ2M2) = χ1µ1M1 + aM2.

This clearly contradicts with hypothesis (H2). Thus we must have that lim supx→∞ U1(x) = 0.
Step 4. In this step, we prove that lim supx→∞ U2(x) > 0. If not, then a slight modification of the

proof of Theorem 1.3 shows that c∗
0 ≥ 2

√
1 − aU2(∞) = 2, which is absurd. Hence, we must have

lim supx→∞ U2(x) > 0.
Step 5. In this step, we prove that lim infx→∞ U2(x) > 0. Suppose not. In this case, since U1(∞) = 0

and lim supx→∞ U2(x) > 0, we can repeat the arguments used in Step 3 for the equation satisfied by U2(x)
to end up with the inequality r ≤ χ2µ2M2. This clearly contradicts the fact that r > 2χ2µ2.

Step 6. In this step, we prove that limx→∞ U2(x) = 1. Suppose not. Then there is sequence {yn}n with
yn → ∞ as n → ∞ such that

inf
n≥1

|U2(yn) − 1| > 0. (6.5)

By a priori estimates for elliptic equations, without loss of generality, we may suppose that there is some
U∗ ∈ C2,b

unif(R) such that U(x + yn) → U∗(x) as n → ∞ in C2,b
loc(R). Note by Step 5 (respectively Step 3)

that infx∈R U∗
2 (x) > 0 (respectively U∗

1 ≡ 0). Hence, by Lemma 6.1 (ii), we conclude that U∗
2 (x) ≡ 1 since

r > 2χ2µ2. This contradicts with (6.5). Hence U2(∞) = 1.
Finally, we can employ Lemma 4.5 together with the fact that U1(x) ≥ 1

2 for every x ≤ 0 to conclude
that limx→−∞ U(x) = e1. This completes the proof of (i).

(ii) Suppose that (H3) and H(5) hold. Note that hypothesis (H3) implies that r > 2χ2µ2. The proof
of the minimal wave in this case follows similar arguments as in (i). So, we shall provide general ideas of
the proof. As in (i), choose a sequence {cn}n≥1 such that cn → c∗

0+ as n → ∞. For every n ≥ 1, let
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ũn = Ũcn(x − cnt) be a traveling wave solution of (1.2) connecting e1 and e2 given by Theorem 1.2. Next,
we let

x̃i
n = min{x ∈ R : Ũ cn

i (x) = min{1 − a, 1 − b}
2(1 − ab) }, i = 1, 2 and x̃n = min{x̃1

n, x̃2
n}, (6.6)

and define Ucn(x) = Ũcn(x + x̃n) for every x ∈ R and n ≥ 1. Note that U cn
1 satisfies

U cn
i (x) ≥ min{1 − a, 1 − b}

2(1 − ab) ∀ x ≤ 0, i = 1, 2, n ≥ 1. (6.7)

By a priori estimates for elliptic equations, if possible after passing to a subsequence, we may suppose that
there is some U ∈ C2,b(R) such that (Ucn , V (·; Ucn)) → (U, V (·; U)) as n → ∞ in C2,b

loc(R). Moreover U(x)
satisfies (6.4). It is clear from (6.7) that Ui(x) ≥ min{1−a,1−b}

2(1−ab) for every x ≤ 0 and j = 1, 2. Hence we may
employ Lemma 4.6 to conclude that limx→−∞ U(x) = e∗. Since c∗

0 = 2
√

1 − a < 2, we can proceed as in
the proof of Step 5 to conclude that lim supx→∞ U2(x) > 0. Now, we can proceed as in the proof of Step
6 by using the fact that (H3) to conclude that lim infx→∞ U2(x) > 0. Next, observe from (6.7) that there
is some i0 ∈ {1, 2} such that Ui0(0) = min{1−a,1−b}

2(1−ab) . Hence U(x) ̸≡ e∗. Hence, we can proceed as in the
proof of Step 2 using the stability of e∗ to conclude that lim infx→∞ U1(x) = 0. This in turn, as is Step 3
yields that U1(∞) = 0. As result, since lim infx→∞ U2(x) > 0 and r > 2χ2µ3, we may use Lemma 6.1 (ii)
to conclude that limx→∞ U2(x) = 1. This completes the proof of (ii). □
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Appendix

In this section we present the proof of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Observe that for every x ∈ R∫
R

e−
√

λ|x−y|uκ
2 (y)dy ≥

∫
R

e−
√

λ|x−y| (1 − D̃2e−κy
)

dy = 2√
λ

− D̃2

∫
R

e−
√

λy−κydy = 2√
λ

− D̃2Bλ,κe−κx.

It is clear that
∫
R e−

√
λ|x−y|uκ

2 (y)dy > 0 for all x ∈ R. Hence∫
R

e−
√

λ|x−y|uκ
2 (y)dy ≥

(
2√
λ

− D̃2Bλ,κe−κx

)
+

. (A.1)

Similarly for every x ∈ R∫
R

e−
√

λ|x−y|uκ
1 (y)dy ≥ M1D2

∫
R

e−
√

λ|x−y| (1 − D1e−ε1y
)

e−κydy

= M1D2e−κx
(
Bλ,κ − D1Bλ,κ+ε1e−ε1x

)
.

Hence, since
∫
R e−

√
λ|x−y|uκ

1 (y)dy > 0 for every x ∈ R, we deduce that∫
R

e−
√

λ|x−y|uκ
1 (y)dy ≥ M1D2e−κx

(
Bλ,κ − D1Bλ,κ+ε1e−ε1x

)
+ ,

which together with (A.1) yields (3.4) since

v(x; u) ≥ µ1

2
√

λ

∫
R

e−
√

λ|x−y|uκ
1 (y)dy + µ2

2
√

λ

∫
R

e−
√

λ|x−y|uκ
2 (y)dy. □
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Proof of Lemma 3.2. . For every x ∈ R, observe from (3.2) that

d

dx
v(x; u) = 1

2

∫
R

sign(y − x)e−
√

λ|y−x|(µ1u1(y) + µ2u2(y))dy, ∀ x ∈ R. (A.2)

Hence, since 0 ≤ u1(x) ≤ uκ
1 (x) = min{M1, M1D2e−κx}, we obtain⏐⏐⏐⏐∫

R
sign(y − x)e−

√
λ|y−x|u1(y)dy

⏐⏐⏐⏐ ≤
∫
R

e−
√

λ|y−x|uκ
1 (y)dy ≤ min

{
2M1√

λ
, M1D2Bλ,κeκx

}
, ∀ x ∈ R. (A.3)

On the other hand using the fact that
∫
R sign(z)e−

√
λzdz=0, and that |u2(x) − 1| ≤ M2D̃2e−κx, we obtain⏐⏐⏐⏐∫

R
sign(y − x)e−

√
λ|y−x|u2(y)dy

⏐⏐⏐⏐ =
⏐⏐⏐⏐∫

R
sign(y − x)e−

√
λ|y−x|(uκ

1 (y) − 1)dy

⏐⏐⏐⏐
≤ M2D̃2Bλ,κeκx, ∀ x ∈ R,

which combined with the fact that⏐⏐⏐⏐∫
R

sign(y − x)e−
√

λ|y−x|u2(y)dy

⏐⏐⏐⏐ ≤
∫
R

e−
√

λ|y−x|∥u2∥∞dy ≤ 2M2√
λ

, ∀ x ∈ R

yields ⏐⏐⏐⏐∫
R

sign(y − x)e−
√

λ|y−x|u2(y)dy

⏐⏐⏐⏐ ≤ min
{

2M2√
λ

, M2D̃2Bλ,κeκx

}
∀ x ∈ R. (A.4)

The statement of Lemma 3.2 follows from (A.2)–(A.4). □
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