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a b s t r a c t

Alcohol is a known teratogen, and developmental exposure to ethanol results in fetal alcohol spectrum
disorder (FASD). Children born with FASD can exhibit a range of symptoms including low birth weight,
microcephaly, and neurobehavioral problems. Treatment of patients with FASD is estimated to cost 4
billion dollars per year in the United States alone, and 2 million dollars per affected individual's lifetime.
We have established Drosophila melanogaster as a model organism for the study of FASD. Here we report
that mutations in Dementin (Dmtn), the Drosophila ortholog of the Alzheimer's disease-associated protein
TMCC2, convey sensitivity to developmental ethanol exposure, and provide evidence that Dmtn
expression is disrupted by ethanol. In addition, we find that flies reared on ethanol exhibit mild climbing
defects suggestive of neurodegeneration. Surprisingly, our data also suggest that flies reared on ethanol
age more slowly than control animals, and we find that a number of slow-aging mutants are sensitive to
developmental ethanol exposure. Finally, we find that flies reared on ethanol showed a persistent
upregulation of genes encoding antioxidant enzymes, which may contribute to a reduced rate of central
nervous system aging. Thus, in addition to the well-documented negative effects of developmental
alcohol exposure on the nervous system, there may be a previously unsuspected neuroprotective effect
in adult animals.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Alcohol consumption is a double-edged sword. There is evi-
dence for its having both harmful and beneficial effects on human
health. Most research has focused on the negative health effects of
excessive alcohol consumption; however, in recent years there has
also been some focus on the benefits of moderate alcohol
consumption.

One highly studied negative effect of alcohol consumption is its
effect on development. Ethanol is a known teratogen that causes a
range of symptoms, including neurobehavioral problems, micro-
cephaly, and psychiatric comorbidities. These symptoms are
collectively known as fetal alcohol spectrum disorder (FASD)
(Banakar, Kudlur, & George, 2009).

In addition to effects on brain development and behavior,
developmental alcohol exposure (DAE) causes oxidative stress via a
variety of mechanisms, including increased production of reactive
oxygen species (ROS) (Brocardo, Gil-Mohapel, & Christie, 2011;
Heaton, Mitchell, & Paiva, 2000), dysregulation of fat metabolism
(Harris, Trudell, & Mihic, 2008; Logan-Garbisch et al., 2015), and
the downregulation of genes involved in ROS detoxification. In flies,
these genes include Peroxidase (Pxd) and two glutathione-S-
transferase (GST)-encoding genes (GstD4 and GstD8). These
changes diminish the fly's ability to respond to increased stress and
contribute to an overall increase in sensitivity to oxidative stress
(Logan-Garbisch et al., 2015). In response to this stress, Drosophila
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larvae undergoing DAE upregulate the oxidative stress response
genes Catalase (Cat), Glutathione synthetase 1 (Gss1), and Superoxide
dismutase 1 (Sod1) (Logan-Garbisch et al., 2015).

Oxidative stress is also known to be a contributor to aging. In
animal models, decreased production of ROS contributes to
increased longevity and decreased aging (Barja, Cadenas, Rojas,
Perez-Campo, & Lopez-Torres, 1994; Dr€oge & Schipper, 2007;
Sohal, 2002). There is considerable evidence that oxidative stress
occurs in neurodegenerative diseases. In Alzheimer's disease,
amyloid-beta peptides spontaneously generate ROS and free radi-
cals, causing neuronal cell death and damage (Bennett, Grant, &
Aldred, 2009; Gackowski et al., 2008). In addition, oxidative dam-
age seems to precede the onset of symptomatic dementia. The
isoprostane 8,12-iso-iPF2a-VI, a specific marker of in vivo lipid per-
oxidation that is elevated in Alzheimer's disease (AD), has been
found to be a good predictor of AD in patients with mild cognitive
impairment (Pratic�o, Clark, Liun, Lee, & Trojanowski, 2002).

Light-to-moderate ethanol consumption has also been shown to
have neuroprotective effects. In epidemiological studies, the asso-
ciation between ethanol consumption and Alzheimer's disease
(AD) and vascular dementia decreases with low levels of con-
sumption and exponentially increases after a certain level, leading
to a J-shaped curve. Compared to nondrinkers, light-to-moderate
drinkers showed a decreased risk of Alzheimer's disease, vascular
dementia, and cognitive decline regardless of the source of alcohol.
Conversely, high alcohol consumption increased the risk of de-
mentia, but not AD (Anstey, von Sanden, Salim, & O'Kearney, 2007;
Luchsinger, Tang, Siddiqui, Shea, & Mayeux, 2004; Solfrizzi et al.,
2007). Light-to-moderate alcohol consumption was found to be
most strongly associated with reduced risk of dementia in in-
dividuals aged 55 or older (Ruitenberg et al., 2002).

From a genetic screen for mutations altering sensitivity to DAE
(Lafler, 2015), we identified a loss-of-function allele of Dementin
(Dmtn). Dmtn is an ortholog of the human TMCC2 protein. In cultured
human cells, TMCC2 and apolipoprotein E work together to affect the
metabolism of amyloid beta precursor protein (APP) by increasing the
levels of amyloid beta (Ab) and both Ab40 and Ab42 fragments
(Hopkins, S�ainz-Fuertes, & Lovestone, 2011). This relationship is
conserved in flies, where Dmtn also alters the processing of the
Drosophila APP homolog APP-like (APPL) (Hopkins, 2013). Adult flies
homozygous for Dmtn1 exhibited Alzheimer's disease-like pathology.
They exhibited all of the disease's hallmarks, including accumulation
of abnormal APPL fragments, mislocalized microtubule-binding pro-
teins, synaptic defects, neurodegeneration, and early death. In addi-
tion, Dmtn is required for normal brain development: Dmtn1

homozygotes exhibit developmental neurodegeneration, as well as
AD-like pathology and adult neurodegeneration (Hopkins, 2013).

Here we show that flies mutant for Dmtn are sensitive to the
lethal effects of DAE, and that Dmtn expression is a target of DAE. In
addition, we find that DAE in wild-type flies results in reduced
climbing ability, suggesting that DAE causes central nervous system
dysfunction in flies. Further, we show evidence that DAE is pro-
tective against age-related declines in negative geotaxis behavior,
suggesting a previously unsuspected neuroprotective effect of
developmental ethanol exposure. We show persistent upregulation
of oxidative stress genes after DAE, and hypothesize that this could
result in protection against neurological aging.

Materials and methods

Fly strains and genetics

Fly stocks were maintained at 25 �C on standard cornmeal/
molasses medium. All mutant alleles and transgenes were intro-
gressed for five generations into our standard lab background

(w1118; Wild Type Berlin [w; WTB]), which is also our control strain,
except for climbing assays, where we used WTB flies with wild-
type eyes (because white-eyed flies do not see well and their
defective phototaxis can interfere with normal negative geotaxis).
y1 w1118; DmtnA181/TM3, Sb Ser, y1 w67c23; DmtnEY08071, w1118; Indy206

andw; mth1 were obtained from the Bloomington Drosophila Stock
Center (Bloomington, Indiana, United States) (stock numbers
16060, 22314, 27901, and 27896).

Survival assays

Flies were acclimated for 24 hours at 25 �C in egg collection
bottles capped with a petri dish lid filled with fly food. Flies were
allowed to lay eggs for 24 hours, then 100 eggs per vial were
transferred from the plates into vials containing either food with no
ethanol (control conditions) or food containing 7% ethanol
(experimental conditions). The vials were placed in baths of cor-
responding ethanol concentration (0 or 7%). The use of baths en-
sures that flies are exposed to a constant concentration of ethanol
during development (10e16 days), as ethanol is volatile.

After vials had been in their corresponding water baths for 7
days, they were examined daily for wing spots (indicating that the
flies are near to eclosion). All vials that contained at least one pupa
with wing spots were retrieved from the bath and placed in a tray
in a 25 �C incubator. At 10 days after egg laying, the number of flies
that eclosed was recorded daily.

Negative geotaxis (climbing) assays

Climbing assays were performed according to Barone &
Bohmann, 2013. The climbing assay was performed on 1e14-day-
old flies (depending on the specific assay) in a dark room with
artificial lighting placed directly above the vials. The apparatus used
in the climbing assay was constructed by inserting half of a cotton
vial plug into the bottom of one standard food vial. Adult flies were
placed inside this vial, and a second vial was placed over it and
secured with transparent tape. To quantify climbing, flies were
tapped gently to the bottom of the apparatus, and climbing was
recorded in a 1-minute iPhone video.

To analyze the videos, flies that had crossed the line of demar-
cation between the two vials (and had thus climbed half the dis-
tance from the bottom to the top of the apparatus) were counted at
10-second intervals. To assess the effect of aging, we repeated the
assay every 2 days until the flies were 14 days old. Upon completion
of the assay, the flies were placed in fresh vials containing food and
kept at 25 �C until the next climbing assay. The flies were not
anesthetized prior to the assay.

Quantitative RT-PCR

Total RNA was extracted from 2e5-day-old adults or early third
instar larvae using Trizol reagent (Life Technologies, Carlsbad, Cal-
ifornia, United States) according to the manufacturer's instructions,
resuspended in RNase-free water, and stored at �80 �C until use.
For qRT-PCR, 2 mg of total RNA was reverse-transcribed using the
High Capacity RNA-to-cDNA Kit (Applied Biosystems, Carlsbad,
California), according to the manufacturer's instructions. The
resulting cDNAwas analyzed in triplicate by quantitative, real-time
PCR using MxPro QPCR software version 4.10 (Stratagene, LaJolla,
California). Both no-template and DNAse-treated non-reverse-
transcribed mRNA samples were used as negative controls. No
significant amplification was observed in these samples. Rp49
transcript levels were used as a normalization control for RNA
samples. Relative mRNA abundance was calculated using the
comparative DCt method (Schmittgen & Livak, 2008).
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Primer sequences

Ethanol absorption assay

To test ethanol absorption, 25 young male flies per genotype
were placed into empty standard food vials. The vial plugswere then
replaced with plugs to which 1 mL of 80% ethanol had been added.
Flies were exposed to evaporating ethanol for 5 minutes (sufficient
to induce behavioral changes including hyperactivity, but not long
enough for flies to sedate). At the end of the exposure period, flies
were transferred to a 1.5-mL microcentrifuge tube and snap frozen
on dry ice. For processing, flies were homogenized in 250 mL of
50 mM TriseHCl (pH 7.5), and samples were then spun at 15,000 g
for 20 minutes at 4 �C. 5 mL of supernatant (equivalent to ½ fly) was
then prepared for colorimetric assay using the SigmaeAldrich
Ethanol Assay Kit (SigmaeAldrich; St. Louis, Missouri, United
States, catalog #MAK076), according to manufacturer's instructions.

Statistical analysis

Statistics were performed using Student's t test, one-way
ANOVA, or one-way ANOVA with repeated measures as indicated.

Results

Dmtn mutant flies are sensitive to ethanol-induced developmental
lethality

We carried out a P-element mobilization screen and generated
approximately 850 novel autosomal P{GawB} insertions, which
were screened for altered sensitivity to the lethality and develop-
mental delay caused by developmental alcohol exposure (Lafler,
2015). From this screen, we recovered an allele of Dementin
(Dmtn), the Drosophila ortholog of the human gene TMCC2. This
allele, which we have designated DmtnRF61, results from an inser-
tion of P{GawB} 86 base pairs into the 50UTR of Dmtn (Fig. 1A). This
allele displayed significantly reduced survival to eclosion when
reared on ethanol-containing media (64% survival, compared to
80% survival of wild-type animals reared on ethanol, Fig. 1B). To
determine whether ethanol sensitivity was a general phenotype
associated with loss of function of Dmtn, we tested three additional
Dmtn alleles (Fig. 1B). We found that homozygosity for both
DmtnEY08071 and DmtnMI08519 led to ethanol sensitivity (26% and 51%
relative survival, respectively), and, further, that heterozygosity for
the lethal alleleDmtnA181 resulted in amean relative survival of 20%,
suggesting that reduced Dmtn can lead to dominant ethanol
sensitivity during development.

We confirmed that mutation of Dmtn is responsible for the
ethanol sensitivity we observe through non-complementation. Flies
of the genotype DmtnEY08071/DmtnRF61 show the same sensitivity to
ethanol as homozygotes for each allele (36% relative survival
compared with 68e74% relative survival in heterozygotes) (Fig. 1C).

DAE causes a developmental delay in addition to increased
developmental mortality (McClure, French, & Heberlein, 2011), and
many mutant alleles that show increased lethality also display an
increased development time relative to wild-type controls (Lafler,
2015), so it was a formal possibility that increased time spent in
ethanol-containing media could explain the increased lethality.
However, we have three lines of evidence indicating that Dmtn
mutants do not display increased lethality due to longer exposure
to ethanol. First, Dmtn mutants do not display increased develop-
ment time relative to wild-type controls when reared on ethanol.
Wild-type flies grown in control media had a median development
time of 10.5 days, and this was increased to 12.9 days in ethanol-
reared animals, for a delay of 2.4 days. Dmtn-mutant animals had
average delays ranging from 2.9 to 3.1 days (Supplementary
Figure 1A). While this shows a consistent small increase in devel-
opment time in Dmtn flies reared on ethanol, none of these in-
creases were statistically significant (p ¼ 0.18, one-way ANOVA).

Second, there is no consistent relationship between increased
development time and increased mortality in ethanol-reared mu-
tants. In fact, the two phenotypes are completely separable, as
described in Lafler, 2015. Supplementary Fig. 1B and 1C show two
examples of mutations isolated from our screen, both of which
display significant increases in development time when ethanol-
reared, but no increase in ethanol-induced lethality. In this exper-
iment, the relative survival of control animals was 70.3% when
reared on ethanol, while the ethanol-reared survival rates of flies
homozygous for RF534 and RF831 were 77.2% and 64.2%, respec-
tively (p ¼ �0.092, one-way ANOVA). However, while ethanol
rearing caused a 3.3-day delay in development of control flies, the
ethanol-induced delay in RF534 mutants was 4.5 days, while RF831
mutants had a 5.7-day developmental delay (p ¼ 0.00014, one-way
ANOVA with Tukey HSD post hoc analysis). Thus, increased ethanol
exposure due to increased developmental delay is insufficient to
cause an increase in lethality.

It is unlikely that increased development time is responsible for
increased developmental lethality, because the two phenotypes
map to different developmental stages, suggesting independent
causes (McClure et al., 2011).

Lastly, we tested the ethanol absorption of flies homozygous for
DmtnRF61, DmtnEY08071, and DmtnMI08519 and found them to be indistin-
guishable fromwild-type animals (Supplementary Figure 2), indicating
that the observed ethanol sensitivity is likely not due to changes in
ethanol absorption or metabolism.

Developmental alcohol exposure alters Dmtn expression

Since mutation of Dmtn increases ethanol-induced develop-
mental lethality, we decided to test whether DAE affects Dmtn
transcript levels. We performed reverse transcriptase-mediated
quantitative PCR (RT-qPCR) to assess transcript levels in third-
instar larvae and adult w; WTB flies reared on ethanol. In larvae,
we found that DAE results in a 4-fold decrease in third-instar larval
Dmtn transcript levels (Fig. 2A) (n ¼ 6; p < 0.0001, Student's t test).
Intriguingly, we saw the opposite effect on adult transcript levels. In
adult flies previously exposed to DAE (but not exposed to any ethanol
for at least 2 days prior to RNA extraction), Dmtn transcript levels are
increased 4.6-fold (Fig. 2B) (n ¼ 3, p < 0.0001, Student's t test). This
suggests a complex interaction between DAE and Dmtn expression.

Developmental alcohol exposure causes central nervous system
dysfunction

In animal models, DAE causes abnormally high levels of
apoptosis in the developing CNS, resulting in reduced brain mass

Cat: Left primer: 50-GAATTCTCGACGCAGTCACA-30

Right primer: 50-CTGCAGCAGGATAGGTCCTC-30

Gss1: Left primer: 50-AGTTCACGGCCAATCTGTTC-30

Right primer: 50-ATCCTGACCACGATCCTCAC-30

Sod: Left primer: 50-TTGCCATACGGATTGAAGTG-30

Right primer: 50-CGAACAGGAGGTGAGAATCC-30

Dmtn1: Left Primer: 50-TGCCAATGCCGATGTTTTGG-30

Right primer: 50-ATTCGCTGCCATTGTCACTG-30

Dmtn2: Left Primer: 50- TCTCGCAGCTGCAGAAAAAG-30

Right primer: 50-TCGTCTGGAACTGGTGATTCTG-30

Rp49: Left primer: 50 - ACGTTGTGCACCAGGAACTT - 30

Right primer: 50 - CCAGTCGGATCGATATGCTAA - 30
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(Ikonomidou et al., 2000). In addition, small head size is observed
in severe cases of fetal alcohol syndrome, suggestive of reduced
brain size in infants, and this has been confirmed with brain
imaging studies (Spadoni, McGee, Fryer, & Riley, 2007). We have
previously shown that, in Drosophila, DAE leads to reduced larval
brain size (McClure et al., 2011). In order to investigate whether
this reduced brain size translates into altered CNS function in
adult animals, we tested the climbing behavior of ethanol-reared
flies. Negative geotaxis (climbing) assays have been established as
a reliable assessment of central nervous system (CNS) health in
flies (Ali, Escala, Ruan, & Zhai, 2011; Barone & Bohmann, 2013). In
addition, climbing assays can also be used to assess aging by

allowing the measurement of the natural loss of climbing ability
in flies due to age (He & Jasper, 2014; Sun et al., 2013). Thus,
negative geotaxis can be used as a proxy for age-induced
neurodegeneration.

Dmtn is expressed in both neurons and glia, and mutations in the
gene are reported to trigger neurodegeneration. Dmtn is also required
for normal brain development (Hopkins, 2013). Because DAE alters
Dmtn transcript levels, and Dmtn mutants are sensitive to the dele-
terious effects of ethanol on development (Fig. 2), we decided to test
the climbing behavior of Dmtn-mutant animals as well.

We performed climbing assays on control flies, flies reared on
ethanol, and Dmtn-mutant flies. We repeated the assay every 2 days

Fig. 1. Dmtn mutant flies are sensitive to ethanol-induced developmental lethality. A) Schematic diagram of the Dmtn gene. This figure was modified from the “collapsed” Dmtn
J-Browse map on Flybase.org (Larkin et al., 2021). Dmtn encodes five transcripts and three polypeptides that differ in their amino termini. All five transcripts are shown in this
format, compacted into a single representative map. P{GawB}RF61 is inserted in the Dmtn 50 UTR, 86 base pairs from the 50 end of all five transcripts. Solid boxes represent exons;
lines represent introns. Gray boxes represent UTR; orange boxes represent translated sequence. 7500 base pairs of elided intron sequence are represented by the hash marks. B)
Multiple alleles of Dmtn display sensitivity to DAE. Relative survival in DAE of flies homozygous for DmtnRF61, DmtnEY08071, and DmtnMI08519 is reduced to 37e83% of that of wild-type
flies, while survival of flies heterozygous for the lethal DmtnA181 heterozygotes is reduced to 25% of wild type (n ¼ 4e24; *p < 0.05, **p < 0.01, one-way ANOVA with Tukey's HSD
post hoc analysis). Survival has been normalized to genotype-matched controls reared on ethanol-free food. C) DmtnRF61 fails to complement DmtnEY0807. The relative survival in DAE
of DmtnEY0807/DmtnRF61 compound heterozygotes is 36%, compared to 68% in DmtnEY0807/þ heterozygotes and 74% in DmtnRF61/þ heterozygotes (n ¼ 4; *p < 0.05, **p < 0.01, one-
way ANOVA with Tukey's HSD post hoc analysis). Centerlines show the sample median; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers
extend 1.5 times the interquartile range from the 25th and 75th percentiles.
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for 12 days to observe the effect of aging on the animals' climbing
abilities. Our results demonstrate that DAE causes climbing defects
in young flies. While 82% of 1e4-day-old wild-type flies were able
to climb above the center line of the test apparatus (approximately
95 mm) within 20 seconds of the start of the assay, only 66% of age-
matched ethanol-reared animals were able to do so (Fig. 3) (n ¼ 12,
p < 0.0001, Student's t test). This suggests that DAE results in CNS
dysfunction in young Drosophila.

We found that homozygosity for DmtnEY08071 had no effect on
climbing behavior. Eighty-four percent of 1e4-day-old DmtnEY08071

mutant flies were able to climb at least halfway up the test appa-
ratus within 20 seconds, making them indistinguishable fromwild
type (Fig. 3). Thus, it appears that the reported neurodegeneration
associated with mutation in Dmtn does not affect adult climbing
behavior as a measure of CNS function. These results and their
connection to neurodegeneration must be interpreted with
caution, however, as our climbing assays were performed on a
different allele of Dmtn (DmtnEY08071) than the one for which
neurodegenerative phenotypes were reported Dmtne01970 (Hopkins,
2013). We were unable to test climbing in Dmtne01970 flies, as there
are no publicly available stocks of this allele, and wewere unable to
obtain it from the original source.

Developmental ethanol exposure slows down age-related declines in
climbing ability

Normally, flies' ability to climb diminishes with age (He& Jasper,
2014; Sun et al., 2013). We find that climbing ability begins to
decline in wild-type flies at around 1 week of age, and consistently
diminishes through 2 weeks of age (Fig. 4A). Intriguingly, we find
that wild-type flies reared on ethanol do not lose climbing ability as
rapidly as control flies (Fig. 4B). More than 81% of young (1e6-day-
old) control flies climbed above the centerline within 20 seconds of
the start of the assay (Fig. 4A). By 7e10 days of age, this had
diminished to approximately 54% of flies (n¼ 4; p < 0.002, one-way
repeated-measures ANOVA with Tukey's HSD post hoc analysis),
representing a 33% loss in climbing ability. However, flies reared on
ethanol fully retain their climbing ability at that age, with no sig-
nificant declines until at least 11 days of age (Fig. 4B, n¼ 3; one-way
repeated-measures ANOVAwith Tukey's HSD post hoc analysis). We
found no consistent effect of Dmtn mutation on climbing ability at
any age (not shown).

Slow-aging mutants are sensitive to ethanol-induced developmental
lethality

Because of our data suggesting that ethanol rearing can lead to
slower aging, we asked whether altered sensitivity to DAE is a
common feature of slow-aging mutants, which would suggest a
common molecular mechanism underlying both slow aging and
ethanol sensitivity. We tested loss-of-function mutations in two
additional genes: I'm not dead yet (Indy), which encodes a mem-
brane protein that transports Krebs cycle intermediates, and, when
mutant, functions as a caloric restriction mimetic; and methuselah
(mth), a G protein-coupled receptor that triggers insulin release
coupled to nutrient status in flies (Araújo et al., 2013; Delanoue
et al., 2016). Mutation of both Indy and mth result in extended
longevity in flies (and, for Indy, in C. elegans; Rogina & Helfand,
2013), due at least in part to reduced insulin signaling and

Fig. 2. DAE alters Dmtn expression. A, B) Dmtn transcript levels are reduced in ethanol-reared third-instar larvae (A, n ¼ 6, p < 0.0001, Student's t test), but increased in ethanol-
reared adult flies 2e5 days after removal from ethanol-containing media (B, n ¼ 3, p < 0.0001, Student's t test). Centerlines show the sample median; box limits indicate the 25th
and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles.

Fig. 3. DAE causes CNS dysfunction in wild-type, but not Dmtn, flies. Ethanol-reared
wild-type flies (2e4 days old) exhibit reduced ability to perform negative geotaxis,
compared to age-matched controls that were not reared on ethanol, while flies ho-
mozygous for DmtnEY08071 (not ethanol-reared) show climbing ability indistinguishable
fromwild-type controls (n ¼ 12; p ¼ 0.0089, one-way ANOVAwith Tukey HSD post hoc
analysis). Centerlines show the sample median; box limits indicate the 25th and 75th
percentiles as determined by R software; whiskers extend 1.5 times the interquartile
range from the 25th and 75th percentiles.
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concomitant reductions in the production of reactive oxygen spe-
cies. Because DAE results in changes to both insulin signaling and
the production of reactive oxygen species (Logan-Garbisch et al.,
2015; McClure et al., 2011), these seemed like good candidates for
mutations that might alter DAE sensitivity.

Flies homozygous for loss-of-function mutations in both genes
(Indy206 and mth1) were sensitive to developmental ethanol-
induced lethality (Fig. 5A). Only 25% of Indy206 homozygotes and
45.6% ofmth1 homozygotes survived DAE, compared to 71% of wild-
type control animals (n ¼ 7e8, p < 0.0001, Student's t test). As with
the Dmtn mutant alleles, neither of these mutations shows any
changes in ethanol absorption (Supplementary Figure 2).

Developmental ethanol exposure results in persistent upregulation
of antioxidant genes

We previously showed that the antioxidant genes Superoxide
dismutase-1 (Sod1), Glutathione synthetase 1 (Gss1), and Catalase
(Cat) were upregulated as a result of ethanol exposure during
development (Logan-Garbisch et al., 2015). Because aging is exac-
erbated by accumulation of oxidative stress (Barja et al., 1994;
Dr€oge & Schipper, 2007; Sohal, 2002), we hypothesized that the
slower aging we observed in flies reared on ethanol could be due to
sustained upregulation of the same genes into adulthood.

We performed RT-qPCR to examine the expression of Sod1, Gss1,
and Cat in adult flies after ethanol rearing and found that both Sod1
and Gss1 showed persistent upregulation (3.2-fold for Sod1 and 3-
fold for Gss1; Fig. 5B, n ¼ 3 biological replicates, p < 0.01 for both
Sod1 and Gss1, one-way ANOVA with Tukey post hoc analysis). Cat
expression was also elevated (1.8-fold over control levels), but this
did not achieve statistical significance. These results provide

support for the hypothesis that slow aging in ethanol-reared flies is
due to persistent upregulation of antioxidant enzymes.

Discussion

Here we report that mutation of Dmtn, the Drosophila ortholog
of TMCC2, leads to sensitivity to the lethal effects of ethanol during
development. In addition, we find that DAE causes CNS dysfunction
in flies: young ethanol-reared wild-type animals show an 18%
reduction in climbing ability relative to unexposed, age-matched
control flies. Unexpectedly, we also found that, despite the initial
CNS dysfunction, flies that have been exposed to ethanol during
development do not lose their ability to climb as rapidly as control
animals, suggesting that DAE may delay some aspects of CNS aging.
We attribute this protective effect of ethanol to an upregulation of
antioxidant genes during development that persists during adult-
hood. In addition, we find that two slow-aging mutants, Indy and
mth, are sensitive to ethanol-induced developmental mortality,
suggesting a general connection between DAE sensitivity and slow
aging. We found a persistent increase in expression of antioxidant
genes in ethanol-reared animals, which may explain their slowed
aging. There is a complex relationship between DAE and Dmtn
transcript levels: Dmtn transcripts are downregulated in ethanol-
reared larvae, but Dmtn expression is increased in adult flies after
ethanol rearing.

In humans, alcohol intake shows a complex relationship with
dementia and cognitive decline, with high consumption increasing
the risk of dementia, while light-to-moderate intake is associated
with a decreased risk of Alzheimer's disease and general cognitive
decline (Anstey et al., 2007; Luchsinger et al., 2004; Solfrizzi et al.,
2007). Here, we describe the first evidence for a protective effect of
ethanol on CNS aging in Drosophila, while also demonstrating the
complex relationship between CNS health and ethanol exposure.

We hypothesize that the persistent upregulation of Superoxide
dismutase-1 (Sod1) and Glutathione synthetase 1 (Gss1) (Fig. 5)
contribute to the retention of climbing ability seen in ethanol-reared
animals. Evidence from mammals shows that superoxide dismutase
(SOD), catalase, and glutathione peroxidase (GPx) activity are lower in
the brains of mammals compared with other organs (reviewed in
Brocardo et al., 2011), while overexpression of human Sod1 in motor
neurons, but not muscles, has been shown to extend lifespan in
Drosophila (Parkes et al., 1998). However, a more recent study showed
that ubiquitous overexpression of Sod1, rather than expression in
neurons or muscle, resulted in lifespan extension but not age-related
locomotor impairment (Martin, Jones, & Grotewiel, 2009). Thus, it
remains unclear whether antioxidant upregulation due to DAE is
sufficient to confer neuroprotective effects against aging. This hy-
pothesis can be tested by evaluating the climbing abilities of Sod1 and
Gss1 mutant flies after ethanol rearing. If upregulation of Sod1 and
Gss1 are responsible for the slow-aging phenotype, then flies mutant
for these genes should not display slowagingwhen reared on ethanol.
In addition, if the effects of DAE on aging are due to persistent upre-
gulation of Sod or Gss1 in the nervous system, we would expect that
expressing RNAi constructs targeting these genes specifically in adult
animals (through the use of a GAL-80ts transgene combined with the
pan-neuronal elav-GAL4 driver and UAS-RNAi constructs targeting
Sod1 or Gss1) should reduce the anti-aging effects of DAE. These ex-
periments are underway.

Indy flies are thought to age slowly due to reduced production of
reactive oxygen species (Neretti et al., 2009), and mth flies are
resistant to paraquat, suggesting enhanced antioxidant capabilities
(Lin, Seroude,& Benzer, 1998), and both strains are sensitive to DAE.
However, this coupling of oxidative stress resistance with sensi-
tivity to DAE is unexpected, given that we have previously shown
that transgenic upregulation of antioxidant genes results in

Fig. 4. DAE reduces age-related declines in negative geotaxis. A) Wild-type flies
show significant reductions in their ability to perform negative geotaxis by 7e10 days
of age (n ¼ 11e12, p ¼ 0.013, one-way repeated measures ANOVAwith Tukey HSD post
hoc analysis). B) Wild-type flies reared on ethanol do not climb as well as control flies
when young (see also Fig. 3), but do not begin to lose climbing ability until 9 to 12 days
of age, and do not show a significant decline until 11 to 14 days of age (p ¼ 0.63 for
7e10-day-old flies; p ¼ 0.077 for 9e12-day-old flies; p ¼ 0.00021 for 11e14-day-old
flies, n ¼ 11e12, one-way repeated-measures ANOVA with Tukey HSD post hoc anal-
ysis). Centerlines show the sample median; box limits indicate the 25th and 75th
percentiles as determined by R software; whiskers extend 1.5 times the interquartile
range from the 25th and 75th percentiles.
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resistance to the lethal effects of DAE (Logan-Garbisch et al., 2015).
However, it should be noted that we have previously seen a similar
effect with mutation of the gene urate oxidase (uro) (Logan-
Garbisch et al., 2015), so these results may hint at a complex rela-
tionship between DAE, oxidative stress, and cellular antioxidant
pathways.

There are two potential confounding factors that influence
interpretation of our negative geotaxis data. First, it is possible that
the climbing ability of ethanol-reared flies does not decline rapidly
as they age because they already have a mild climbing deficit at
eclosion e it is not necessarily the case that the overall rate of
decline should be the key measurement, as opposed to a finite
“amount” of climbing ability. In that case, we would expect to see
ethanol-reared animals begin to decline only after they have aged

to the point where control animals are equivalent to ethanol-reared
animals. While we cannot definitively rule out this possibility,
7e10-day-old ethanol-reared animals perform better than their
control counterparts (Fig. 4B), which would never be expected.
Thus, we think it is reasonable to conclude that there is a delay in
the onset of declining negative geotaxis.

Second, as described previously (McClure et al., 2011), ethanol
rearing results in a developmental delay due to increased time
spent in early larval stages, which, in this study, means that
ethanol-reared animals were an average of 2.4 developmental days
“older” than their age-matched controls. Aging studies in
Drosophila typically describe the flies’ age in terms of number of
days since eclosion, i.e., adult life, but it is possible that the climbing
deficiencies we see in young (1e4-day-old) ethanol-reared flies are
due to aging that took place before eclosion (that is, it is possible
that a 4-day-old ethanol-reared fly is equivalent to a 6-day-old
control fly). We think that this is unlikely, as 3e6-day-old control
animals show no diminishment in climbing ability, as would be
expected if the deficiencies seen in ethanol-reared animals were
due to their being the equivalent of 2 days older than control ani-
mals (Fig. 4A). We acknowledge that this argument is weakened by
the overlap in age between the two “bins”, however.

In addition, as noted above, by the time ethanol-reared ani-
mals are 7e10 days old, they are performing better than their
control counterparts (Fig. 4A & B). However, as these differences
are not statistically significant, we cannot formally rule out the
possibility that the CNS dysfunction we see in young ethanol-
reared flies is due to their being developmentally older as a
result of increased time in larval development. We are currently
testing developing larvae for markers of cellular aging in order to
determine whether these markers begin to change prior to
eclosion.

The persistent upregulation of Sod and Gss1 in adult animals
after ethanol rearing is suggestive of an epigenetic effect of DAE on
the regulation of these genes. In support of this hypothesis, several
recent studies in mammals show that DAE results in epigenetic
changes to gene regulation. For example, in rats, maternal alcohol
consumption for a short period right at the time of conception is
sufficient to impair glucose tolerance and decrease insulin sensi-
tivity in male and female adult offspring. In the same study, DNA
methyltransferases1, 3a, and 3b were shown to be upregulated in
fetal livers exposed to DAE, consistent with epigenetic down-
regulation of genes involved in insulin sensitivity (Gårdebjer,
Anderson, Pantaleon, Wlodek, & Moritz, 2015).

Another study found that expression of genes downregulated by
DAE was restored by the administration of metformin, a diabetes
drug that appears to influence the activity of a number of epigenetic
modifying enzymes (Tunc-Ozcan, Wert, Lim, Ferreira, & Redei,
2018). Metformin rescued the expression of several genes that
were downregulated by DAE and restored fetal alcohol exposure-
induced fear memory deficit in rats, which are specifically associ-
ated with Dnmt1 (Tunc-Ozcan et al., 2018).

In Drosophila, many epigenetic regulators are affected by
ethanol exposure, though these effects have been demonstrated
only in adult animals. The H3K9 histone methyltransferase G9a
(dG9a) functions as a key regulator for starvation-induced behav-
iors. Sucrose sensitivity in response to starvation conditions in-
creases when dG9a levels are low. DG9a was also found to regulate
the locomotion activity by controlling the expression of insulin-like
peptide genes (Shimaji et al., 2017). In addition, Sirt1 (a histone
deacetylase), the histone acetyltransferase Nej/CBP, and the histone
demethylases NO66, KDM3, LID, and HSPBAP1 all appear to regu-
late long-term gene expression changes in response to ethanol
exposure. Sirt1 is downregulated by ethanol exposure, and
mutations in Sirt1 cause insulin resistance in flies (Engel et al., 2016;

Fig. 5. Slow-aging mutants are sensitive to ethanol-induced developmental
lethality, and antioxidant genes are persistently upregulated after DAE. A) Flies
mutant for Indy and mth are sensitive to DAE. Relative survival of ethanol-reared
Indy206 homozygotes is reduced to 25%, compared with 71% in wild-type flies. Simi-
larly, only 45.6% of mth1 homozygotes survive when reared on ethanol (n ¼ 7e12,
**p < 0.01, one-way ANOVA with Tukey's HSD post hoc analysis). Survival has been
normalized to genotype-matched controls reared on ethanol-free food. B) Sod1 and
Gss1 transcript levels remain elevated in ethanol-reared adult flies for at least 5 days
after removal from ethanol. Cat also shows a consistent but statistically insignificant
increase (n ¼ 3, **p < 0.01, NS: not significant, one-way ANOVA with Tukey's HSD post
hoc analysis). Centerlines show the sample median; box limits indicate the 25th and
75th percentiles as determined by R software; whiskers extend 1.5 times the inter-
quartile range from the 25th and 75th percentiles. Diamonds represent outliers.
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Palu & Thummel, 2016; Pinz�on et al., 2017; Ramirez-Roman, Billini,
& Ghezzi, 2018).

It is of particular interest that most of the epigenetic effects
described above affect insulin signaling and sensitivity. We have
previously shown that DAE reduces insulin signaling in flies
(McClure et al., 2011), and reduced insulin signaling leads to
increased longevity in flies, C. elegans, and mice (Blüher, Kahn, &
Kahn, 2003; Lin, Hsin, Libina, & Kenyon, 2001; Tatar et al., 1988).
It is therefore possible that an additional effect of reduced insulin
signaling in DAE-exposed larvae is slowed aging in adult animals.
We are currently examining the role of Sirt1, dG9a, and other
epigenetic regulators in mediating the developmental response to
ethanol and the long-term changes in gene expression we see in
ethanol-reared flies.

In conclusion, we have demonstrated that DAE causes CNS
dysfunction in flies, which had not been shown previously. We also
find that DAE results in resistance to at least one measure of CNS
aging, and this is accompanied by long-term changes in gene
expression. In addition, we show that flies mutant for Dmtn, a gene
implicated in the health of the central nervous system, are sensitive
to ethanol during development. Finally, we show that at least two
slow-aging mutants are sensitive to ethanol during development,
raising the possibility that ethanol sensitivity is a general feature of
such mutants. We propose that flies may be aging more slowly due
to the complex epigenetic regulation of antioxidant genes.
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