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Abstract

The multiple indicator multiple causes (MIMIC) model has been proposed as a powerful 

technique for the identification of partial measurement noninvariance (pMnI). Typically MI has 

been explored by comparing response patterns across groups using techniques such as the 

multiple group confirmatory factor analysis technique. The MIMIC model allows for the 

exploration of pMnI to be performed in relation to continuous covariates, however the specificity

and sensitivity of the MIMIC to identify instances of continuous influenced pMnI is unexplored. 

This study first explores the bias that instances of continuous pMnI introduce in both formative 

and reflexive models when estimated within a MIMIC model framework using simulated data. 

Notable parameter estimation error is observed in extreme instances of both the formative and 

reflexive models. Next, the ability for the MIMIC model to identify and remove items which 

possess continuous pMnI are explored, high accuracy is obtained when instances of low and 

moderate MnI exist although performance degrades as the MnI increases in both magnitude  and 

frequency. Finally, after removing items identified as MnI, parameter bias is again reevaluated in

a similar framework noting reductions in parameter estimation bias in the formative model.

Keywords: Measurement invariance, Structural Equation Modeling, Multiple indicator multiple 

cause model
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Introduction

The existence of reliable and valid data is a founding principle for any corpus of 

scientific knowledge. The behavioral sciences evaluate measurement invariance (MI) to ensure 

the validity and comparability of latent trait estimates across individuals. An example of an 

instance where MI is not satisfied is frequently observed in depression studies where biased 

response patterns exist when comparing male and female participants and their endorsement for 

questions such as, “I cry frequently,” (Steinberg & Thissen, 2006; Teresi et al., 2009). Within 

this example even with equivalent levels of depression there are frequently observed instances 

where females are more likely to endorse this item than their male counterparts. When such 

patterns arise in studies the latent trait of interest is obfuscated reducing both the validity and 

reliability of any statistical claims. 

          One of the most popular models used to assess the presence of MI is the multiple group 

confirmatory factor analysis model (Jöreskog, 1971). This model requires the participants to be 

categorized into several a priori groups (i.e. race or gender), and for the fit of theorized models to

be explored across these groups. Other techniques afford the opportunity to explore instances of 

MI in relation to continuous variables, such as the moderated nonlinear factor analysis (Bauer, 

2017), as well as the focus of this study–the multiple indicator multiple causes (MIMIC) model 

(Joreskog & Goldberger, 1975). While these techniques allow for the exploration of MI with 

continuous covariates, studies exploring the impacts of continuous covariates remain an inchoate

methodological direction for psychometrics. 

The multiple group confirmatory factor analysis remains one of the most popular 

techniques used to assess MI as this technique allows for models to be computed in parallel and 
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utilizes easily computed statistics to assess invariance across groups. For instance the chi-square 

statistic, a well behaving asymptotic statistic, can be computed when comparing fit across 

various degrees of invariance. This is performed by comparing nested models where a model is 

fitted with increasingly strict parameterization and compared to a more flexible model to assess 

changes in model performance within and across groups. Elements of the multiple group 

confirmatory factor analysis have received prominent attention but several limitations have been 

addressed by more contemporary approaches, such as the inability to explore interactions across 

groups or continuous covariates when exploring MI, something both the moderated nonlinear 

factor analysis and the MIMIC model can incorporate into how the presence of MI is assessed.

The moderated nonlinear factor analysis technique was devised as a method to perform 

integrative data analysis (Bauer & Hussong, 2009). The goal of integrative data analysis is to 

synthesize datasets from multiple studies using unique measurement tools which measure a 

single theorized latent trait. This in turn leads to distinct MI issues: does the tool and the 

granularity of measurement bias the results; furthermore, some behavioral screeners are better 

positioned to identify lower or higher instances of a latent trait and combining across these tools 

introduces distinct methodological concerns. Sampling practices further influence the integration

as studies may be focused on participants within a distinct range of ability. Motivated by all of 

these potential confounders, the moderated nonlinear factor analysis can incorporate studies of 

MI when using multiple group factors, and continuous covariates (Bauer, 2017). While this 

approach is appropriate when working with integrative data analysis, and has been used to 

explore MI in tasks similar to a multiple group factor analysis, the MIMIC model is 

distinguished from the moderated nonlinear factor analysis because of its ability to model 

instances of MI in relation to specific causal variables of interest.
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The MIMIC model was originally derived to map a set of causal variables onto a set of 

indicator variables through one theorized latent variable (Joreskog & Goldberger, 1975). It was 

later utilized to explore instances of differential item functioning (DIF), a form of MI where a 

single item’s characteristics are explored (Muthén, 1985). The benefits of the MIMIC model for 

such explorations is the ability to identify instances of when and how MI may or may not be 

satisfied in specific items. Such explorations are in line with the “third generation” of invariance 

studies where the focus extends from identifying if MI exists, towards the goal of explaining why

MI may or may not exist (Zumbo, 2007). The MIMIC model is uniquely positioned, when 

contrasted against the multiple group confirmatory factor analysis and the moderated nonlinear 

factor analysis techniques, given its ability to incorporate causal modeling into MI explorations.

Understanding the capabilities of these techniques to identify MI in relation to continuous

covariates is important for applied researchers. This study explores the MIMIC models 

vulnerability to instances of measurement non invariance (MnI); followed by the models ability 

to identify and remove MnI items. First background on prototypical MI approaches including 

historical approaches is introduced, followed by an introduction to the MIMIC model and its 

extension to identify instances of MnI. Next,  a stimulation study exploring parameter estimation 

error when MnI is ignored in a MIMIC model, and the MIMIC model’s ability to identify and 

remove MnI items is performed. This is then followed by a discussion detailing the importance 

of a closed system which can identify and remove instances of MnI for applied researchers.

3



Background on Measurement Invariance

The APA defines measurement invariance as “the situation in which a scale or construct 

provides the same results across several different samples or populations” (APA, 2014, p. 211). 

The basis of  MI can be formulated in the following equation:

P (Y❑∨η ,V )=P (Y ∨ η ) (1) 

where Y  reflects a response to an item or set of items, P(Y ) reflects the probability of Y  

occurring, η reflects an individual’s latent trait, and finally V  reflects a matrix of individual 

traits. The above formula distinguishes that the probability of observing a response pattern is 

independent of an individual's traits. Studies exploring MI using a multiple group confirmatory 

factor analysis approach typically employ a hierarchy detailing specific levels of congruence 

across factor models. Studies first typically explore configural invariance, which is present when 

the factor structure, or the existence of the latent traits is equivalent across groups, followed by 

assessments of weak, strong, and strict factorial invariance (Meredith, 1993). In order to further 

expand on these concepts, the multiple group confirmatory factor analysis will be displayed 

using the following formula:

E ( y i ∨ηi , g )=νg+ Λg ηi (2)

V ( y i∨ηi , g )=Σ g (3)

E (ηi ∨g )=α g(4)

V (ηi ∨g )=Ψ g(5)

Here y iis a p × 1 vector which contains the item responses for individual i, ηi is a r × 1 vector of 

latent traits, and g represents a group factor indexing the group membership. The intercepts and 

slopes (or factor loadings) from the regression of the items on the factors within group g are 
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contained in the p× 1 vector νg and p× r matrix Λg respectively, whereas the group-specific 

residual variances and covariances of the indicators are contained in the p× p matrix Σg. Usually, 

Σg is assumed to be diagonal, consisting only of the residual variance parameters. Finally, the r×1

vector αg contains the group means for the factors, whereas the r×r matrix Ψg contains the group-

specific factor variances and covariances.

Using Meredith’s hierarchy when weak invariance is present, only the factor loadings are 

equivalent across groups i.e. Λg=Λ. When weak factorial invariance is present mean group 

comparisons should be avoided, but comparisons of variance or covariance are permissible. The 

next form is strong invariance where both the loadings and intercepts i.e. νg=ν are equivalent 

and permits the exploration of group mean differences. Finally, strict invariance exists when  the 

loadings, intercepts, and residual variance is equivalent across groups i.e. Ψ g=Ψ❑. These 

explorations are typically performed by fitting a model across an entire battery, allowing for the 

item parameters to be explored across an entire behavioral battery; distinct from this are 

explorations of partial measurement invariance which explore individual item characteristics 

within a battery. 

Partial measurement invariance (pMI) is typically explored when batteries perform well, 

but specific subsets of items display biased response patterns. The absence of partial MI can be 

formulated as:

P ( y ij ∨η ,V )=P ( y ij ∨η ) (6)

In this representation y ij represents an individual's probability to endorse a specific item. This 

formula extends the formulation of equation (1) but focuses on a specific item within a battery. 

Similar to Meredith's hierarchy for levels of MI, there are specific subsets of partial measurement

invariance where only an item's intercept or an item's loading display biases. When items do not 

5



satisfy partial measurement invariance it suggests configural invariance may not be present. 

Literature suggests this phenomenon manifests when latent factors that influence response 

patterns are not being accounted for in the model (K. A. Bollen, 1989b). Previous research has 

detailed the issues ignoring pMnI can introduce in both the measurement model and downstream 

statistical models. When pMnI is ignored within a measurement model it increases parameter 

estimation error across the entire measurement model; furthermore, when pMnI is included 

downstream statistical tests become muddled and this is more pronounced in nonlinear tests such

as a moderation test (Guenole & Brown, 2014; Hsiao & Lai, 2018; Li & Zumbo, 2009). Specific 

to this study, analyses will explore the impact of continuous partial Measurnment nonInvariance 

(cpMnI) when the group covariate variable ( ) is continuous in nature as opposed to the 

typically used group factor. 

Historical approaches for the assessment of pMI

The presence of partial pMI is typically assessed in a post-hoc manner and has 

historically required group assignment. For instance, the Mantel Haenszel (MH) approach 

assesses pMI by exploring systematic differences of contingency tables across ranges of ability 

as estimated from a battery (Holland & Thayer, 1986; Mantel & Haenszel, 1959). For example, 

participants can be discretized into the number of items answered correctly and the group factor 

of interest forming a set of two-by-two contingency tables. Next, the Mantel Haenszel chi-

squared statistic can be calculated by calculating biases in contingency tables across the range of 

correct answers. The major appeal of this approach is that it yields metrics which can be used 

similar to effect sizes, in the form of odds ratios, so the magnitude and significance of pMI can 

6



be obtained; furthermore, the output statistic follows a chi-squared distribution allowing for 

easily testing null and alternative hypotheses. One prominent limitation of the MH approach is 

the strict requirement of group membership, as well the ability to only explore differences in 

intercept (Andre A. Rupp & Bruno D. Zumbo, 2006; Li & Zumbo, 2009). An example of a 

method which can forgo group assignment is a logistic regression based approach (Swaminathan 

& Rogers, 1990). The logistic based approach requires predicting the probability of endorsement 

when modeled by overall test score, or an ability estimate, and including the predictors which 

might indicate pMI. The benefits of this approach are that interpreting the presence of pMI is 

equivalent to testing for moderation, and can be performed using either a t-statistic or parameter 

magnitude to identify levels of bias which are unacceptable. Limitations of the logistic approach 

include those inherent to logistic regression: for extremely difficult items, maximum likelihood 

has a difficult time obtaining interpretable coefficients when an item has perfect fit and when an 

item is rarely endorsed (Kleinbaum & Klein, n.d.). 

The MIMIC model

The MIMIC model reflects a suite of tools derived from structural equation modeling 

(SEM). The MIMIC model extends attractive components of SEM modeling such as latent 

variable estimation and path analysis and incorporates these into a system of formative and 

reflexive models (see Figure 1A). The appeal of a formative and reflexive relationship is the 

ability to map a set of causal variables onto a set of indicator variables through a theorized causal

system. A benefit of the systems of equations approach is the ability to incorporate error from 

both the formative and reflective model in order to emphasize this benefit, both the formative 

and reflexive models, and the system will be described.
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Beginning with the reflexive model, a measurement model’s distinctions will be 

described using language and formulation similar to that of item response theory (IRT)

(Embretson & Reise, 2000): 

 (7)

In the above model, pi (θ ) is the probability of endorsement for an item given an 

individual’s latent score estimate,  is the item discrimination (i.e. factor loading), and b i is the 

item difficulty (i.e. factor intercept). The above formula highlights how, given a set of manifest 

variables, IRT estimates a probability to endorse an item given an item’s discrimination and 

difficulty estimates. Items which can better discriminate across groups at a specific trait level 

have higher discrimination parameters; difficulty reflects the location of the probability of 

endorsement being a 50% chance for a binary item. When working with binary data, the logic of 

IRT extends beyond the formula to read as:

(8)

Where is a threshold parameter for y i
❑

, and assuming that:

y i
❑
= λi η+ϵ i (9)

Where λ iis a loading parameter, and η reflects an individual’s latent ability and ϵ ireflects the 

residual variable. This formulation highlights how, when provided with a set of binary manifest 

variables, a theorized normally distributed latent trait can be estimated (Joreskog & Goldberger, 

1975; Muthén, 1984). 
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The formative model adheres to the following formulation:

η=γ x+ζ  (10)

Where  is a vector of the regression coefficients, x is a q x 1 vector of manifest random 

variables, where q is the number of observed variables and ζ  reflects the residual term. While 

this takes the form of a causal model, previously it has been suggested that this moreso reflects a 

linear relationship between the independent and dependent variables (Muthén, 1985; Pearl, 

2012).

The MIMIC model combines these into a system of equations resulting in the following 

formulation:

 (11)

From this system of equations approach, error from both sets of manifest variables is 

incorporated, which improves the predictive and inferential nature of the model. Via the joint 

estimation of these two formative and reflexive models, the maximal relationship between the 

sets of manifest variables is obtained.

The MIMIC model for pMI assessment

The MIMIC model assesses for pMI by the inclusion of a direct path from the causal 

variables onto the response patterns of an individual indicator variable (see Figure 1B). By 

allowing for a direct path between the covariates of interest (i.e. socioeconomic status) and the 

response patterns (i.e., correctly endorsing an item), it allows for differences in the item’s 

characteristics to be modeled after controlling for the latent ability estimate. Through a mediation

framework, pMI is present when this direct effect is not fully mediated (Montoya & Jeon, 2020, 

see figure 1B). Other components of the mediation model can be used to explore for patterns of 
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interest; for instance, a significant path from the covariates of interest on the latent variable 

suggests differences in the latent ability. Beyond the ability to use mediation model techniques, 

the MIMIC model also reduces the sample size required to perform a DIF exploration. When 

compared to the MH technique, where participants are binned into discrete performance bins, the

MIMIC model imposes a probabilistic distribution across an entire range of the covariates 

distribution. This increased sensitivity has previously been a source of study (Montoya & Jeon, 

2020; Woods & Grimm, 2011). As the MIMIC model is using a mediation framework to explore 

instances of partial MI, the causal variables can assume either a group or a continuous form, 

allowing for the exploration of cpMnI, distinguishing the MIMIC model from the prominent MI 

techniques. 

In order to ensure an entire behavioral screener is MI, a purification procedure is 

performed. The purification procedure is an iterative and exhaustive process which requires 

fitting a mediated MIMIC model for every indicator variable (see figure 1B). After all mediated 

MIMIC models are estimated, any item where the relationship between the causal variable and 

the item’s response pattern is not fully mediated is excluded. Following this exclusion, a new 

round of mediation models are trained for every item remaining in the item bank (see figure 1C). 

Previous research has suggested this to be best practice when implementing the MIMIC model 

for scale purification (Wang et al., 2009). 

The MIMIC model for MI testing with continuous covariates

Studies which have examined cpMnI using the MIMIC model can be found in 

developmental literature (Le et al., 2019) and clinical literature (Stevens et al., 2022). Le et al. 

sought to validate parental hopes for their children; cpMnI was explored using parental age, child
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age, and socioeconomic status. Results indicated distinct differences in response patterns in 

relation to both age and socioeconomic status. An example from the clinical literature explored 

differences in alcohol use amongst an adolescent pediatric sample; item characteristics for 

differences in expectations in relation to alcohol use were explored across participants’ age, sex, 

race, and socioeconomic status (Stevens et al., 2022). Results suggested differences in response 

patterns based on an individual’s socioeconomic status and age. This brief literature review 

suggests several facts: first, instances of cpMnI do exist in relation to demographic variables 

such as socioeconomic status and second, the extant literature for instances of cpMnI is limited. 

One possible contributing factor for this pattern is the limitation of studies exploring impacts of 

cpMnI, and second, studies detailing the ability to identify and remove instances of cpMnI are 

limited.

Current Study

The current study seeks to fill several gaps in the extant cpMnI literature. These include 

exploring the impacts that the inclusion of cpMnI items introduced in formative relationships; 

second, how well can the MIMIC model perform item purification when working with cpMnI 

items; and third, how much does item purification impact parameter estimates. Furthermore, this 

study represents a unique direction for MI research: identifying purified itemsets within a 

specific causal mechanism of interest. As previously described, the typical MI study is 

performed in a post-hoc fashion attempting to remove bias contributed by potential nuisance 

variables in a study. Extending this research to identify itemsets free from bias in relation to the 

causal variable of interest is critical, as one potential mechanism creating item bias is an 
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unmodeled latent trait (K. A. Bollen, 1989b). When such instances exist, the parsimony of reported

findings may be impacted. 

Methods

Approach overview

The goals of this simulation study were multifaceted and included: first, exploring the 

impact instances of cpMnI have on formative and reflexive relationships within a MIMIC model,

second, exploring the capabilities of the MIMIC model to identify instances of cpMnI, and third, 

exploring how item purification procedures impact parameter estimates. This process required 

several discrete tasks. First, binary indicators and continuous causal variables were simulated 

under various population-wide parameters. Second, MIMIC models were trained ignoring all 

instances of cpMnI, and estimation bias is explored from these models in both the formative and 

reflexive components. Third, the identification of DIF is explored following an iterative 

purification procedure using the MIMIC model; the results of this process are explored using 

both item-wise and model-wise methods. Fourth and finally, MIMIC models are re-estimated, 

removing items identified as cpMnI from the third step, and parameter estimation error is again 

explored as in step one. The following subsections of the Method section detail each of these 

steps in full. All code can be found online in a GitHub repository 

(https://github.com/adrose/mastersThesis). 
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Simulation Conditions

Simulation factors were varied in 6 ways, for a total of 576 conditions. The factors included:

1 The number of examinees. This number varied the sample size of the simulated study 

ranging between a sample size, which meets a minimum recommended sample size 

standard for a structural equation model exploration (n=200) to a moderately powered 

exploration (n=500). The minimum recommended sample size follows recommendations 

from Bollen (1989) where it is recommended to have 5 observations per freely estimated 

parameter. The moderately powered sample size follows more contemporary 

recommendations for roughly 10 observations for freely estimated parameters 

(Christopher Westland, 2010).

2 The magnitude of the indicator variables. The magnitude of the relationship between the 

binary indicator variables and the theorized latent variable (i.e., reflexive model) varied 

between weak (Beta = .4) and strong (Beta = .8). The strength of the indicator was 

selected for the even and odd valued indicators separately so in total four permutations of

the indicator strength were possible.

3 The number of cpMnI items. The number of items varied between 2 (10%), 4 (20%), and 

6 (30%) of items which were modeled to include a direct relationship between the causal 

variable and the indicator. These values were taken from similar MIMIC explorations 

(Wang et al., 2009); however, the ceiling was lowered as this is where previous reports 

indicated extremely poor performance for DIF identification. 
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4 The magnitude of cpMnI. The magnitude of the direct effect from the causal variable to 

the indicator variable after controlling for the latent variable ranged between 0, .2, .4, and

.6. 

5 Item intercept. This condition type varied the item intercept thresholds—i.e. how high on 

the latent trait an examinee has to be to have a 50% probability of endorsement. 

Difficulties of screen items were drawn randomly from a uniform distribution ranging 

from [-1 to 1] or [0 to 2].

6 The magnitude of the causal relationship. The strength of the formative model included 

values from .2, .4, and .6.

Across all conditions the number of indicator and causal variables were held constant at 20 and 1

respectively. Across all permutations 100 datasets were simulated, in total 57600 datasets were 

simulated. All simulation was performed using MPlus (Linda K., Muthén & Bengt O., Muthén, 

2017). 

Error in parameters ignoring cpMnI

In order to explore the impact that cpMnI has on parameter estimation a single MIMIC 

model was estimated ignoring the potential existence of cpMnI items. This was performed by 

estimating a MIMIC model using all indicators (p=20) and causal (p=1) variables (see figure 

1A). The model outcome was the root of the squared error, this allows for any deviations from 

the true parameter to be highlighted in a consistent fashion. Separate models were estimated for 
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both the formative and the reflexive models. All results were explored using ANOVA, all factors

were included and up to all four-way interactions were included as predictor variables.

Model purification accuracy

In order to identify indicator variables which exhibit cpMnI an iterative approach is 

applied, this approach follows previously described methodology (Wang et al., 2009) and is 

described briefly here. Through a mediation framework, the goal of using the MIMIC model to 

identify instances of cpMnI is to map response patterns onto a causal variable after controlling 

for a theorized latent variable. Within this framework the mediating variable is the latent trait, 

the independent variable is the causal variable, and the dependent variable is the response pattern

of a single indicator variable (see figure 1B). The iterative nature of the item purification is 

twofold (see figure 1C): first, a MIMIC model is trained for every indicator variable as the 

independent variable, second instances of cpMnI are identified and removed from further 

models, step one is then repeated after removing any item which is identified as possessing 

cpMnI. The presence of cpMnI is identified when the relationship between the causal variable 

and an indicator variable is not fully mediated by the latent variable. The presence of this 

relationship is identified by a significant path at a predetermined  of .05. The outcomes for this 𝛂

exploration explored model-wise classification performance within an individual dataset across 

all possible iterations of the purification procedure.

15



Parameter recovery after purification

In order to explore parameter recovery after the purification procedure is performed 

MIMIC models were estimated removing any item that was identified as possessing cpMnI from 

the previous step. The goal here is to compare estimation error from the MIMIC models which 

were estimated ignoring the presence of cpMnI from those that underwent the purification 

procedure. These models build upon the previous set of analyses exploring estimation error in 

models ignoring instances of cpMnI by including an additional factor detailing if the model 

estimate is derived from a purified MIMIC model. 

Results

Error in parameters ignoring cpMnI

Table 2 shows the results of an ANOVA relating the simulation conditions (plus all

interactions) to estimation error between the true and estimated formative model parameters 

when ignoring impacts of cpMnI. All results are statistically significant but note that significance

of effects is confounded by the number of simulations. Therefore, meaningful interpretation of 

the ANOVA results requires effect sizes; table 2 includes eta-squared values. Of the main 

effects, the largest eta squared is for the sample size (eta squared = 0.045) and the smallest was 

for the minimum item difficulty (eta squared = 0.003). The main effects are displayed 

graphically in figure 2A. The largest two-way interaction was between the magnitude of the 

cpMnI and the number of cpMnI items (eta squared = .013; see figure 2B); the interaction 

suggests that the estimation error increases faster as greater, and more instances of cpMnI are 

16



introduced. The largest three-way interaction was observed across the magnitude of the cpMnI, 

the magnitude of the indicator variables, and the number of cpMnI items (eta squared = 0.009). 

The interaction indicates the lowest error is observed in datasets with strong indicator variables 

where even under strong instances of cpMnI estimation error remains similar to those itemsets 

without cpMnI; however, when low magnitude indicator variables are present estimation error 

increases very rapidly when both magnitude of cpMnI increases and frequency of cpMnI items 

increases (see figure 2C). The four-way interaction with the largest eta squared included the 

variables from the three-way interaction and the magnitude of the formative relationship  (eta 

squared < 0.001) and indicted that models with weak instances of causal relationships and large 

number of and strong magnitude of cpMnI show slightly reduced error but these effects are 

washed away as the magnitude of the indicator variable increases (see figure 2D).

The next set of analyses explored parameter estimation error from the reflexive model 

when ignoring cpMnI, table 3 displays the results of an ANOVA relating the simulation 

conditions (plus all interactions) to estimation error within these models. The largest main effect 

was for the strength of the indicator set (eta squared = 0.071) suggesting that as the magnitude of

the indicator increases the estimation error decreases (see figure 3A). The strongest two-way 

interaction was observed between the magnitude of the indicators and the indicator factor (eta 

square = 0.030); further underscoring that the estimation error is lower in models with strong 

indicators (see figure 3B). The strongest three-way interaction extended the previous two-way 

interaction with the magnitude of the cpMnI (eta square = 0.009); suggesting that estimation 

error increases faster in those items which have greater instances of cpMnI (see figure 3C). The 

strongest four-way interaction extended the three-way interaction to include the number of items 
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with cpMnI (eta-squared = 0.002), highlighting how estimation error increases in itemsets with 

larger and more frequent instances of cpMnI (see figure 3D).

Model purification accuracy

Next the model wise classification performance was explored, table 3 displays an 

ANOVA relating the simulation conditions (plus all interactions) to the classification 

performance for the model wise results. Of the main effects the largest eta squared value was 

observed for the magnitude of cpMnI (eta squared = 0.364), results indicate that models perform 

extremely well at identifying instances where cpMnI is not present but nonlinearities are 

observed where when increasing the magnitude of cpMnI. The greatest accuracy is seen in the 

0.4 magnitude condition and lower accuracy was observed in the 0.2 and 0.6 instances (see 

figure 4A). The largest two-way interaction was observed between the magnitude of the cpMnI 

and the number of items which had cpMnI (eta squared = 0.170). The two-way interaction 

indicates greater accuracy when fewer and weaker instances of cpMnI exist, accuracy decreases 

faster when stronger instances of cpMnI are introduced (see figure 4B). The largest three-way 

interaction extends the previous two-way to include sample size (eta squared = 0.040). This 

interaction indicates that as the magnitude of the cpMnI increases the accuracy increases within 

the smaller sample size (see figure 4C). Finally, the largest four-way interaction extends the 

previous three-way to include the magnitude of the causal relationship (eta squared 0.003), this 

interaction indicates that greater accuracy is observed in models with stronger causal 

relationships (see figure 4D). In order to further elucidate the driving factor behind this decrease 

in accuracy true positive, true negative, false positive, and false negative rates were modeled in 
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an additional ANOVA model. Results indicate decreminates in performance were driven 

primarily by increases in false positive rates (see figure 6).  

Error in parameters removing cpMnI

Table 4 shows the strength of the additional purification factor (and all possible 

interactions) in an ANOVA modeling formative parameter estimation error. The table suggests a 

strong main effect of purification status (eta squared = 0.065) with the direction of the effect 

suggesting lower estimation error in the post-purification model (see figure 7A). There were two 

two-way interactions which also had large eta squared values these were: the interaction between

purification status and the magnitude of the cpMnI (eta squared = 0.065; see figure 7B), and the 

interaction with the purification status and the number of cpMnI items (eta squared = 0.065). 

These two-way interactions both suggested lower error from the model which had undergone 

purification. This pattern of lower estimation error continues to extend through a three-way 

interaction which includes the purification status, the magnitude of the cpMnI, and the number of

cpMnI items (eta squared = 0.026; see figure 7C). Finally the largest four-way interaction 

extends the three-way interaction to include the strength of the indicator variables (eta squared = 

0.006) suggesting that the estimation error is the lowest in a purified item set, with a strong 

indicator set, and fewer instances of cpMnI items; however, when working with weak itemsets, 

with strong and frequent instances of cpMnI estimation error increases rapidly for models which 

have not undergone purification whereas in the purified model the estimation error remains 

lower (see figure 7D).

Table 5 shows the strongest interactions between the original simulation parameters and 

the additional parameter indicating if the parameter was estimated from a model which had 
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undergone the purification procedure for the reflexive model. The eta-squared values from the 

ANOVA suggest small main effects for purification status (eta squared < 0.001; see figure 8A); 

however the direction of the effect suggests increased estimation error after the purification 

procedure is performed. The largest two-way interaction between the purification status and the 

magnitude of the cpMnI (eta squared < 0.001; see figure 8B) suggests a similar trend where the 

estimation error is larger in the models which have undergone the purification procedure. The 

largest three-way interaction extends the two-way interaction to include the individual indicator 

variables (eta squared = 0.001; see figure 8C) indicating that variables where cpMnI exists have 

considerably greater estimation error than those which were never modeled to include cpMnI. 

Finally, the largest four-way interaction extends the three-way interaction to include the number 

of cpMnI items: suggesting that the models with more frequent instances of cpMnI items have 

greater estimation error, although this pattern is much more exaggerated in the specific items 

which were model to include cpMnI (eta-squared = 0.001; see figure 8D). 

Discussion

In this study the issues surrounding the inclusion of cpMnI items in a MIMIC model are 

highlighted. This paper highlights how estimation error increases in both formative and reflexive 

models as the frequency and magnitude of cpMnI items increases. The next set of analyses 

explored the accuracy of item purification performed in an iterative and exhaustive manner using

the MIMIC model. Modelwise accuracy is inline with previous reports identifying the MIMIC 

model as a technique with very good purification capabilities. Following item purification 

estimation error was again explored by removing any item identified as cpMnI and estimating 

the MIMIC model in a reduced indicator variable itemset. Results from this model  suggested 

20



decreased estimation error in the formative model but increased estimation error in the reflexive 

model. Taken together this simulation study offers an insight into potential estimation error and a

technique which can alleviate the presence of poor performing items.

Estimation error in formative models

Through a causal modeling framework a formative model is used to specify the cause of 

an unobserved latent trait in the MIMIC model. Compared to the reflexive (measurement) model,

parameter estimation error has received sparse attention. This is potentially motivated by some of

the inherent limitations regarding parameter estimation and formative models such that for a 

formative model to be accurately identified all of the causes of the latent trait should be present 

in the model (Diamantopoulos, 2006; Diamantopoulos et al., 2008). In fact, it has been proposed 

that omission of items is similar to restricting the domain of the latent trait (MacKenzie, 2003). 

Further issues surrounding the implementation of formative models include the inability to 

include measurement error on the indicator variables within the model (Edwards & Bagozzi, 2000).

The results of this simulation study offer an additional issue surrounding the formative model 

utilized in a MIMIC model: susceptibility to bias in the estimation of the latent trait. The results 

highlighted in Figure 2 indicate in the most extreme cases the root of the squared estimation to 

be 0.20, which underscores the ability for issues in the reflexive model to cause issues in the 

formative model. While isolated measurement and formative models were not explored within 

this study previous research exploring impacts of MnI on latent trait estimation indicate greatest 

bias introduced into an individual’s latent score as more frequent instances of pMnI are 

introduced (Andre A. Rupp & Bruno D. Zumbo, 2006). This finding offers one explanatory mechanism 

21



for the cause of the formative model estimation error, increasing error in the estimation of the latent score 

further increases error of models using this latent score as a dependent variable.

Another key takeaway from the ANOVA models was that the stronger the population 

formative model, the larger the parameter estimation error. This is in contrast with previous 

studies exploring Type-1 error in downstream statistical conclusions. One such example exists 

where data were simulated without group differences, however when latent traits were estimated 

in the presence of MnI t-tests were used to compare the simulated equivalent group and Type-1 

error rate was greater than the a priori alpha (Li & Zumbo, 2009). One further aspect identified 

by the Zumbo & Li study is the frequency of, the direction, and the magnitude all impact 

downstream statistical conclusions, in this study all instances of cpMnI were aligned in both 

magnitude and direction, potentially inflating the parameter estimation error. Regardless, the 

results of this study should suggest to applied researchers the dangers that cpMnI can introduce 

in causal models.  

Estimation error in reflexive models 

Researchers employ reflexive models given their ability to obtain unbiased estimates for 

relations across indicator variables (K. Bollen & Pearl, 2012). Importantly, methodologists have 

advocated for the use of latent variable models whenever possible as they reduce the influence of

measurement error (Borsboom, 2008). While these are a powerful modeling technique there are 

limitations when improperly specified. Previous work has detailed how parameter over and 

underestimation can manifest in improperly specified measurement models (Cole & Preacher, 

2014; Ledgerwood & Shrout, 2011). Furthermore, in relation to instances of pMnI there exists 

distinct issues of parameter estimation error when such instances are ignored (Guenole & Brown,

2014). These findings underscore how when models are agnostic to MnI parameter estimation 

22



bias reaches undesirable levels as more frequent instances of pMnI are introduced. Asimilar 

narrative is displayed in this study. The largest three-way interaction observed when exploring 

parameter estimation error in the reflexive model was between the indicator, the strength of the 

loading, and the magnitude of cpMnI (see figure 3). This interaction displays two distinct 

findings: the first, a strong indicator set protects against parameter estimation error, and second 

in line with previous reports, more frequent and greater magnitude cpMnI increases parameter 

estimation error across the entire model.

Accuracy of itemset purification procedures using the MIMIC model 

With the impacts of cpMnI clearly identified, the next set of analyses sought to explore 

the MIMIC model as a tool to identify and remove impacted items. This process used an iterative

and exhaustive procedure as previously detailed (Wang et al., 2009). Model Wise accuracy 

metrics at minimum require a total of 20 models, in this simulation study the maximum number 

required to perform the purification process was 105 models. Interestingly, even with the 

increase in statistical comparisons the family wise error rate was similar to the prespecified alpha

level. Such results are convergent with previous implementations of this purification procedure 

(Kim et al., 2012; Wang et al., 2009; Woods & Grimm, 2011). While instances of Type-2 error 

are well controlled under these practices, Type-I errors reach unacceptable rates under various 

conditions. In the worst case scenarios when cpMnI items were both frequent and possessed 

large magnitudes the MIMIC model displayed an accuracy of 60% when identifying cpMnI 

items. The reduction in accuracy appeared to be driven predominantly by an increase in the false 

positive rate (see figure5). These results were further compounded by increasing sample size 

offering a cautionary note regarding the null hypothesis significance testing procedure these 

analyses are reliant upon. Specifically the MIMIC model quickly becomes overpowered when 
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attempting to identify significant relationships between indicator and causal variables. An 

adaptive significance threshold could be considered to mitigate this concern. 

Comparison of unpurified with purified MIMIC models

Next, using models which had undergone the purification procedure parameter estimation

error was again calculated using a purified itemset. Results suggest model purification 

consistently reduces estimation error in the formative model irregardless of the frequency or the 

magnitude of cpMnI items. In the most extreme instances where the formative models had weak 

indicators and large magnitude of cpMnI the greatest error was observed (rmse = 0.4) but the 

purification procedure reduced estimation error by more than half (rmse = .18). In fact, across the

entire subset of formative models with weak indicators estimation error is reduced across all 

instances of cpMnI frequency. Furthermore, the estimation error is comparable when purification

is performed in datasets without any cpMnI items. These results suggest item purification is a 

low risk preprocessing step for itemsets even with desirable characteristics. 

In stark contrast with the encouraging results from the formative model, estimation error 

increases in the reflexive model following item purification. This effect is best highlighted in the 

four-way interaction in which items which were not modeled to include cpMnI also displayed 

elevated estimation error (see Figure 8D: items 7 & 8). One explanation for this effect is that  

poor performing items were more likely to remain in the model when in the worst case scenarios:

weak indicator sets and large frequency of cpMnI items. Furthermore, in these undesirable 

conditions the removal of properly performing items becomes more frequent as the number of 

false positive cases increases (see figure 5). These combinations together make for instances 
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where the estimation error in the reflexive model increases as a result of the purification 

procedure.

Implications for applied researchers

The predominant MI testing techniques rely upon group splits (i.e. high versus low 

socioeconomic status) in order to explore the quality of behavioral data. While the binarization 

of continuous covariates is a common practice it offers several limitations and is often advised 

against in the behavioral sciences (Altman & Royston, 2006). Not only would such a practice 

introduce researcher degrees of freedom (i.e. mean versus median split), but it is inherently less 

sensitive to differences which exist along a continuum: when using a median split the cost of 

power is equivalent to removing one third of all observations (Cohen, 1983). The methodology 

proposed and explored within this simulation study details a modeling technique which can 

accurately identify and remove poor performing items in relation to a continuous gaussian 

variable.

Another prominent feature of this study is the item purification procedure is performed in

relation to a specific causal variable of interest. The typical MI exploration is performed in a 

post-hoc manner which explores response bias in potential confounding variables. While this is 

an important practice to reduce potential bias of demographic variables, it does not ensure the 

latent variable of interest is properly tuned to a causal variable. As instances of pMI are theorized

to be introduced by unmodeled latent traits it is important to ensure a closely coupled  

relationship between the cause and indicators (Millsap, 2007). By performing item purification 

with the MIMIC model it allows researchers to use specific causal variables of interest to ensure 

tightly coupled theoretical explorations.

25



Limitations

This study has several prominent limitations that include: only a single causal variable 

was simulated, all instances of cpMnI were simulated in an identical direction and equivalent 

magnitude, the reliance of the null hypothesis significance test framework. The use of only a 

single causal variable was selected in relation to how item purification is typically performed 

with the MIMIC model (Montoya & Jeon, 2020) typically when the MIMIC model is used in an 

applied setting many causal variables are used. Previous researchers have explored how multiple 

instances of pMnI impact factor scores (Edwards & Bagozzi, 2000; Li & Zumbo, 2009), these 

studies have explored how differences in magnitude and direction of pMnI impact these scores. 

The results of these previous studies suggest that impacts when items are in opposite directions 

reduces the impact of pMnI on factor scores estimates. This study chose to only simulate 

identical magnitude and direction in impacted items which may have increased the effects of 

formative model and reflexive model parameter estimation error. Finally, and most importantly, 

the reliance of the null hypothesis significance testing framework certainly contributed to some 

issues as illustrated by the high false positive case count for models with the higher sample size. 

One of the biggest limitations and concerns about pMI explorations are the multitude of manners

items can be identified as performing satisfactory here a strict nominal p-value was utilized when

it is known that there are many alternatives albeit, no clear predominant technique (Borsboom, 

2006). Other methods should be considered such as model fit statistics or nonparametric 

statistics. 

Conclusions

This study highlighted the issues cpMnI can introduce in both formative and reflexive 
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relationships in a MIMIC model. Importantly, formative and reflexive relationships become error prone 

as large and frequent instances of cpMnI are introduced but this effect is mitigated by strong indicators. 

Item purification represents a low cost technique researchers can apply in order to reduce parameter 

estimation error in formative relationships; however, caution should be applied if the goal is to identify 

reflexive relationships as this can potentially increase error.
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Tables

Table 1: Predictors with the largest eta-squared from an ANOVA modeling estimation error from

formative models ignoring cpMnI.
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Table 2: Predictors with the largest eta-squared from an ANOVA modeling estimation error from

reflexive models ignoring cpMnI.
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Table 3: Predictors with the largest eta-squared from an ANOVA modeling accuracy of model 

wise identification of cpMnI.
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Table 4: Predictors with the largest eta-squared from an ANOVA comparing pre- and post-

purification reflexive model parameter estimation error.
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Table 5: Predictors with the largest eta-squared from an ANOVA comparing pre- and post-

purification reflexive model parameter estimation error.
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Figures:

Figure 1: An overview of the MIMIC model, and how it is applied to study cpMnI

A: The composition of the formative and reflexive model is displayed, importantly the indicator 
variables are connected through a single latent variable. B:The formulation of the MIMIC model 
to explore instances of MnI is highlighted, when the path from the indicator variable XP to YP  is 
significant then an item is noninvariant. C: The iterative purification process is displayed, at the 
highest level the iterative procedure stops when no more noninvariant items are detected, 
nonivaraint items are detected within the for loop, where every item is modeled with a direct 
path from a causal variable. After all models are trained, items which are identified as 
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noninvaraint are removed, and the process is repeated until no items are flagged as noninvaraint.
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Figure 2: Estimation error from formative model ignoring instance of cpMnI

A: Mean estimation error values (+/- S.E.M.) for all main effects modeled in the ANOVA. 
B:Mean estimation error values (+/- S.E.M.) from the largest two-way interaction in the model 
which included the number of cpMnI items (x-axis) and the magnitude of cpMnI (facets). C: 
Mean estimation error values (+/- S.E.M.) from the largest three-way interaction in the model 
which included the number of cpMnI items (x-axis) and the magnitude of cpMnI (horizontal 
facets) and also the strength of the indicator variables (vertical facets). D: Mean estimation error 
values (+/- S.E.M.) from the largest four-way interaction in the model which included the 
number of cpMnI extends the three-way interaction to include the magnitude of the causal 
relationship described by the colors. 
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Figure 3: Estimation error from reflexive model ignoring instance of cpMnI

A: Mean estimation error values (+/- S.E.M.) for all main effects modeled in the ANOVA. 
B:Mean estimation error values (+/- S.E.M.) from the largest two-way interaction in the model 
which included the indicator variable (x-axis) and the strength of the indicator variable (facets). 
C: Mean estimation error values (+/- S.E.M.) from the largest three-way interaction in the model 
which included the indicator variable (x-axis) strength of the indicator variable (horizontal 
facets) and also the magnitude of cpMnI (vertical facets). D: Mean estimation error values (+/- 
S.E.M.) from the largest four-way interaction in the model which extends the three-way 
interaction to include the number of cpMnI items described by the colors. 
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Figure 4: Model Wise accuracy for cpMnI Identification

A: Mean accuracy (+/- S.E.M.) for all main effects modeled in the ANOVA. B:Mean accuracy 
(+/- S.E.M.) from the largest two-way interaction in the model which included the number of 
cpMnI items (x-axis) and the magnitude of cpMnI (facets). C: Mean accuracy (+/- S.E.M.) from 
the largest three-way interaction in the model which included the number of cpMnI items (x-
axis), sample size (horizontal facets), and the magnitude of cpMnI (vertical facets). D: Mean 
accuracy (+/- S.E.M.) from the largest four-way interaction in the model which extends the 
three-way interaction to include the magnitude of the causal relationship described by the colors 
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Figure 5: Model Wise cell counts for cpMnI Identification

Displayed are the true negative (tn), false positive (fp), false negative (fn), and the true positive 
(tp) average counts faceted by the magnitude of cpMnI. The x-axis represents the number of 
items which were modeled to include cpMnI, colors illustrate the sample size of the simulated 
datasets. 
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Figure 7: Comparison of estimation error from formative model between models 

ignoring and following the purification procedures

A: Mean estimation error values (+/- S.E.M.) for all main effects modeled in the ANOVA.
B:Mean estimation error values (+/- S.E.M.) from the largest two-way interaction in the 
model which included the purification status (x-axis) and the strength of the causal 
relationship (facets). C: Mean estimation error values (+/- S.E.M.) from the largest 
three-way interaction in the model which included the purification status (x-axis) 
strength of the causal relationship (horizontal facets) and also the strength of the 
indicator variables (vertical facets). D: Mean estimation error values (+/- S.E.M.) from 
the largest four-way interaction in the model which extends the three-way interaction to 
include the number of cpMnI items described by the colors. 
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Figure 8: Comparison of estimation error from reflexive model between models ignoring 

and following the purification procedures

A: Mean estimation error values (+/- S.E.M.) for all main effects modeled in the ANOVA.
B:Mean estimation error values (+/- S.E.M.) from the largest two-way interaction in the 
model which included the indicator (x-axis) and the purification status (facets). C: Mean 
estimation error values (+/- S.E.M.) from the largest three-way interaction in the model 
which included the indicator (x-axis) magnitude of the cpMnI (horizontal facets) and also
the purification status (vertical facets). D: Mean estimation error values (+/- S.E.M.) from
the largest four-way interaction in the model which extends the three-way interaction to 
include the number of cpMnI items described by the colors. 
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