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PREFACE 

Mathematical models are used extensively to predict contamination and design 

cleanup of polluted aquifers. Such computer methods are generally sophisticated and 

theoretically accurate. The difficulty in applying these models, however, comes from the 

complexity of the subsurface environment. All the differential equations in the world are 

ofno use if the modeler does not know the properties of the aquifer. The ultimate goal of 

this research is to start the development of methods that allow practitioners to analyze the 

complex properties of the subsurface from small cores using computer tomography (CT) 

and to then project those properties to predict the characteristics of a larger aquifer. 

Those projections can then be used as input in mathematical flow and transport models. 

A significant contribution toward completion of this goal is described within. This is 

accomplished while addressing many of the basic theoretical questions and concerns 

associated with this type of analysis, which heretofore had gone unanswered. 

How big is big enough? When are objects larger than they appear? These questions 

are addressed in the context of rock and soil materials in Chapter 2. A method is 

developed to determine the size of sample needed for a particular problem. this 

methodology also results in a method of rock and soil classification based upon 

uniformity of size of the material. Image resolution is also shown to affect the size of an 

object that is detected so that objects may not be as large as they appear. 
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Are the objects that are seen really there? Soil and rock could be thought of as a mass 

of relatively large and small objects that are clumped together. Chapter 3 explores this 

question and develops a way to detect actual size of features within soil and rock 

materials, as opposed to current methods that basically match curves to assign size to the 

objects. 

Are all objects created equal? Can we take measurements on something small and 

make something big? Chapter 4 shows that all objects within a soil and rock sample are 

not created equal. Methods are developed to determine the size and amount of features of 

different materials within the soil. Using this information, a larger projection of the soil 

or rock materials can be generated from a small sample. These projections have the 

potential to be used in mathematical models for pollution prediction and cleanup. 

A contemporary publication format is followed in this dissertation. Chapter 1 

introduces the problem and objectives of the entire dissertation along with providing 

recommendations for future research. Chapters 2, 3, and 4 are structured as individual 

refereed publications. The reference format follows that of Water Resources Research, to 

which much of this research will be directed. Finally, additional information and the 
. 

Fortran computer codes used for these analyses are provided in the appendices. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Stochastic Subsurface Modeling and Geostatistics 

Stochastic modeling of subsurface flow and transport has been a subject of intensive 

research over the past twenty-five years. The word "stochastic" derives from the Greek 

word stochos, for a target stake, reflecting the uncertainty of the aim of an archer. 

Likewise, stochastic modeling considers the uncertainty and natural variability associated 

with hydrogeologic materials. In principle, this approach recognizes that hydrogeologic 

variables are affected by uncertainty and regards them as random (Dagan, 1997). 

Geostatistics is a term first coined by the French statistician G. Matheron of the Ecole 

des Mines Superiur, Paris, France in the 1950s, and deals with the estimation of variables 

that depend on spatial location and exhibit a stochastic spatial structure. Classical 

geostatistics was developed for applications in mining applications and are not 

necessarily adequate for groundwater studies. Data availability and the scale of variation 

which influences flow and transport in subsurface hydrology is orders of magnitude 

smaller than in mining applications. Moreover, variables such as hydraulic conductivity 

· and transmissivity can represent average values over the entire thickness of an aquifer 

and are subject to measurement and interpretation errors. For this reason, hydrologists 

have concentrated on methods for parameter estimation for spatial characterization of the 
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subsurface at these smaller scales of interest. Geostatistical parameter estimation 

involves quantification of the spatial correlation function (semivariogram), and analysis 

of the structure through trend detection, transformations, semivariogram modeling, and 

histogram analysis. The development of geostatistical parameter estimation methods has 

in tum led to simulation techniques that allow for equiprobable realizations of a variable 

for use in hydrologic flow and transport models (Calvete, 1997). Examples of simulation 

techniques include conditional simulation and simulated annealing (Goovaerts, 1997). 

1.2 The Problem 

The application of geostatistically estimated parameters to subsurface hydrologic 

modeling faces a number of obstacles. Structural analysis is highly subjective. The 

decision on what is actual statistical structure of a variable is arguable. There are also no 

geostatistical tests to check for stationarity of the variable (Calvete, 1997). Gelhar (1993) 

discusses the importance of the scale associated with the heterogeneity of a variable in a 

subsurface flow system. The scale of heterogeneity of media in which dispersion and 

diffusion are the dominant transport pathways will be different than that of media in 

which advection or macropore flow is the dominant transport pathway. In addition, the 

relatively small-scale processes are extremely variable in time and space, making it 

difficult to use local measurements directly and extrapolate them to large scale behavior. 

Finally, distinguishing individual structure characteristics of more than two phases within 

a media is difficult with current geostatistical methods. 
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1.3 Objectives 

The overall objective of this dissertation is to develop geostatistical methods for more 

reliable estimation of spatial parameters associated with porous media using 

computerized tomography (CT) images. CT images provide high-quality, high-quantity 

data sets that are used to develop geostatistical methods for more reliable estimation of 

the spatial parameters associated with porous media. These parameters can then in the 

future be applied in simulation models for improved prediction of flow and transport in 

subsurface media. 

Specific objectives of this study are: 

1. Compare the geostatistical properties of similar cores at two different 

resolutions (CHAPTER Two). 

2. Determine the disparity of scale required for ergodicity of a sample through the 

use of relative elementary volume (REV) concepts (CHAPTER Two). 

3. Determine the effect of resolution on correlation lengths by addressing the 

modifiable areal unit problem (CHAPTER Two). 

4. Determine the maximum reliable lag on a semivariogram by analyzing the 

variance of the semivariogram families at each lag (CHAPTER THREE). 

5. Automatically detect actual structure by analyzing the distribution of 

semivariogram families (CHAPTER THREE). 

6. Determine structure size of components of different bulk density ranges using a 

conditional semivariogram (CHAPTER FOUR). 

7. Create a stochastic representation of a porous media utilizing the conditional 

semivariogram and phantom images (CHAPTER FOUR). 
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1.4 Overall Conclusions 

This research makes a significant contribution towards the ultimate goal of 

allowing practitioners to analyze small cores and to then create a large representation of 

an aquifer with similar spatial properties. Each of the results are original and without 

precedent in the literature. Likewise, each may be directly applied toward the goal of 

creating reasonable synthetic input data for computer modeling. This will provide an 

improvement over the arbitrary practices used today. Thus, the prediction of 

groundwater contamination at a site or the development of remediation strategies for 

environmental cleanup will be greatly enhanced. 

1.5 Recommendations for Future Research 

Many implications of these studies to future research are apparent. Specifically, the 

scale disparity factor can be explored and developed as a way to classify the 

heterogeneity of porous media. It is hypothesized that similar types of soil will have 

similar scale disparity factors. Furthermore, the inherent range can be investigated at 

scales larger and smaller than those addressed here by using different types of imaging 

such as scanning electron microscopes and different porous media. Additional analysis 

should be carried out on uniformly packed beads of a single size to confirm that predicted 

and measured correlation lengths are in agreement. Analysis should also be completed 

with conditional semivariogram families to determine if automatic correlation length 

detection is possible on conditional semivariograms. Simulated annealing or another 
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simulation technique can be performed to see how using the stochastic representation 

from conditional semivariograms as an initial image compares to using a random image, 

both in flow and transport results and computational time. Flow and transport studies on 

stochastic representations can be also completed and compared to field data to determine 

possible effects of changing scales on model results. 

The methodology developed here has the potential to be applied to image analysis of a 

variety of materials such as concrete, fruits and vegetables, and wood products. Possible 

results of these analyses could include new ways of characterizing, classifying, and/or 

sorting of these materials. Application to remotely sensed images could also be used to 

characterize structure of variables on the earth's surface and detect large-scale changes in 

global variables. 
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CHAPTER TWO 

GEOSTATISTICS OF COMPUTERIZED TOMOGRAPHY IMAGES OF THE 
CULEBRA DOLOMITE 

2.1 Abstract 

The three-dimensional geostatistical properties of samples of Culebra Dolomite have 

been determined at two different resolutions using computer tomography images of 

gamma ray attenuation. By fitting models to semivariograms, small-scale and large-scale 

correlation lengths are determined for four samples. Different geostatistical properties 

were found for adjacent cores at both resolutions. Relative elementary volume concepts 

are related to the stationarity of the sample. A scale disparity factor is defined and is used 

to determine sample size required for intrinsic stationarity with a specified correlation 

length. This allows for comparison of geostatistical measures and representative 

elementary volumes. The modifiable areal unit problem is also addressed. By changing 

resolution, a range of correlation lengths can be determined for the same sample. 

Comparison of voxel volume to the correlation length of a single sample at different 

resolutions reveals a linear scaling effect. Using this relationship, the inherent range is 

defined. This is the range approached as the voxel size goes to zero. This analysis shows 

the resolution and sample size should be a function of the scale of the intended data use. 
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2.2 Introduction 

Computerized tomography (CT) is being increasingly used in porous media research 

as a nondestructive tool for measurement of interior properties of solid cores. Petrovic et 

al. [1982], Crestana et al, [1985], Tollner and Verma [1989], Phogat et al. [1991], 

Brown et al., [1993], Hsieh et al. [1998b], and others have met with increasing success in 

producing images of the spatial distribution of solids, fluids, and voids within porous 

media columns. These images have been used to analyze many porous media phenomena 

such as permeability, pore space distribution, connectivity, and relative elementary 

volume [Coskun and Wardlaw, 1993; Grevers and de Jong, 1994; Ioannidis et al., 1999; 

Brown et al., 2000]. 

CT images characterize porous media content at a scale smaller than is possible with 

most physical sampling methods. This data provides a unique opportunity to use 

geostatistics, specifically the semivariogram, to determine the spatial structure and 

anisotropy of porous media at these smaller scales. Schafmeister-Spierling and Pekdeger 

[1989] have shown that dispersion can be modeled more accurately when small-scale 

spatial variability is considered. Fluhler et al. [2001] also shows that mixing processes in 

the millimeter scale exert a pronounced effect on flow and transport behavior of water 

and solutes. For porous media in which macropore dispersion is a significant pathway of 

contaminant transport, such as Culebra Dolomite, this small-scale geostatistical 

characterization of the rock may yield improved aquifer characterization. 

The large amount of spatial data provided by CT images also allows for investigation 

of the effect of resolution and scale on correlation lengths. Gelhar [1986] states that 

"spatial correlation scales should not be viewed in any absolute sense, but rather will 
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depend on the problem at hand." Openshaw and Taylor [1979] also show that 

aggregating fixed observations on small areas in various ways can produce a large range 

of correlation coefficients. 

This paper uses CT images to characterize the geostatistical properties and anisotropy 

of Culebra Dolomite structure at core scales. With this information, the geostatistical 

properties of adjacent cores and cores at two different scales are compared. Through 

relative elementary volume concepts, the disparity scale required for stationarity of 

spatial data is quantified. Finally, the modifiable areal unit problem is addressed and the 

scaling factor associated with increasing scanning resolution is determined. 

2.3 Theory 

2.3 .1 Semivariograms 

The semivariogram measures the average degree of dissimilarity between an 

unsampled value and a nearby data value [Deutsch and Journel, 1998]. The traditional 

semivariogram is defined as half of the average squared difference between two data 

points approximately separated by a vector h: 

1 N(h) 2 

y(h) = 2N(h) ~(x; -y;) (2.1) 

where r(h) is half of the average squared difference; N (h) is the number of pairs; Xi is the 

data value at the start, or tail; and y; is the data value at the end, or head. 
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A sill and range characterize the semivariogram. The sill is a plateau m the 

semivariogram values that corresponds to the variance of the sampled data. If the 

semivariogram is standardized, the r(h) value is divided by the variance and the sill value 

will be equal to one. The range, or correlation length, is the separation distance at which 

the semivariogram reaches a plateau. A non-zero intercept on the semivariogram may 

exist and is termed the nugget effect. It may result from sampling error or variability at 

scales less than the smallest sampling interval [ Cressie, 1991]. Another possible 

semivariogram characteristic is the hole effect, which is described as a semivariogram 

that peaks and dips, suggesting that at greater distances samples are more related. The 

hole effect may be seen as the rough spacing between adjacent lenses or bedding planes. 

Semivariograms are fit by a number of analytical relationships to ensure that the 

semivariograms model is positive definite. The exponential model is often utilized by 

researchers in stochastic hydrology [Woodbury and Sudicky, 1991]. The model is given 

by 

(2.2) . 

where a is the range and h is the lag distance. The exponential model reaches its sill 

asymptotically, with the practical range a defined as that distance at which the variogram 

value is 95% of the sill. Another common semivariogram model is the spherical model, 
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if h < a, 

elsewhere. 

(2.3) 



the spherical model has a linear behavior near the origin, flattens out at larger distances, 

and reaches the sill at a [Isaak.S' and Srivastava, 1989]. 

Multiple, or nested, sills in the semivariogram may be associated with physical 

phenomena occurring at different scales. Detection of ranges nested within larger ranges 

requires sample spacing shorter than the minimum detected range. In general, nested sills 

are only considered when they can be associated with physical phenomena [Solie et al., 

1999]. Nested sills can be modeled by using a linear combination of positive definite 

semivariogram models with positive coefficients. This property results in the family of 

positive definite models 

n 

r(h) = Ilw;lr;(h) (4) 
i=I 

which are positive definite as long as the n individual models are all positive definite. A 

n 

weighting function, w;, is defined for each individual model subject to L W; = 1 [Isaak.S' 
i=I 

and Srivastava, 1989]. 

Interpretation of 3-D sem1vanograms of geologic data will yield information on 

subsurface anisotropy. Geometric anisotropy exists when the directional semivariograms 

show the same shape and sill, but different range values. An anisotropy factor may be 

. used to characterize the geometric anisotropy and is defined as the ratio of the ranges in 

the major and minor direction. Another type of anisotropy is zonal anisotropy, where 

both the sill and range change with direction. A lower horizontal sill represents 

anisotropy due to geologic strata. The distance between the horizontal (lower) and 

vertical (upper) sills represents the variability between different geologic strata and may 

be related to laterally continuous sedimentary features. When the vertical semivariogram 
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reaches a lower sill than the horizontal semivariogram, zonal anisotropy is present and is 

due to areal trends. Geometric and both types of zonal anisotropy typically exist 

simultaneously in the field and complicate analysis [Kupfersburger and Deutsch, 1999; 

Goggin et al., 1988]. 

Recent studies have also shown that the size of the sampled area ( or volume) causes a 

scaling effect on semivariogram correlation lengths. The size of the sampled area 

influences the correlation scale in the sense that the sampled area might actually be too 

small to capture a long-range structure [Kupfersburger and Deutsch, 1999]. Gelhar 

[1986] and Schafmeister and Pekdeger [1993] show that correlation length increases with 

increasing scale. Thus, it is not an absolute property of the subsurface, but rather related 

to the size of the investigated area. Larger scales generally lead to an increased 

anisotropy ratio. Comparison of semivariograms should therefore be done with caution if 

similarly sized sampling and investigated areas are not used. 

2.3.2 Geostatistics and the REV 

Conditions required for geostatistical interpretation can be related· to the relative 

elementary volume (REV) region. Brown et al. [2000] uses REV concepts to evaluate 

CT images. The REV is defined as the volume range, Vmin<Vo<Vmax, where 

8Z(x,V;)I =O 
av ' 

V;=Vo 

(2.5) 

where Z(x, V;) is the value of a hydrologic property measured on a volume V; with a 

centroid at x, with a given domain 91. Bear and Bachmat [1990] state that a volume size 

V; that falls within the REV region can be treated as an ergodic stationary random 
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function in 91. A stationary random function is said to be ergodic if any statistical 

characteristic of the function, taken over a sufficiently large volume in a single 

realization, is an unbiased and consistent estimate of the same characteristic over the 

entire data set. Functions that are ergodic for the mean and covariance are a subset of 

second-order stationary functions. By definition, a function is second-order stationary in 

91 if 

E[Z(x,v;)]= constant (2.6) 

and 

Cov[Z(x+h,v;),Z(x,v;)]= f(h) (2.7) 

where E[Z(x, VJ] is the expected value of Z, and Cov[Z(x+h),Z(x)J is the covariance of 

two points and is a function of the separation distance, h, only, for all xe91. Then, 

Var(Z(x)) = f(O) = constant. (2.8) 

In a strict sense, (2.6) may be met by a linear function in space. However, as 

discussed by Brown et al. [2000], the limited scanning domains possible in CT preclude 

random, stationary volume averaging procedures. Thus, in the practical sense, any V 0 

within the REV range will correspond to the volume required for ergodicity. This 

ensures a complete sample for the realization and makes it possible to make inferences 

from the semivariogram. 

2.3.3 Scale Disparity 

.Gelhar [ 1986] states that " ... to be meaningful and estimable, the correlation scale 

must be small compared with the scale of the problem. Essentially, a disparity in scale is 
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required." To quantify this scale disparity, A, I define the standard element volume 

(SEV) as the volume represented by the product of the correlation length in the x, y and z 

directions. By considering a REV min with the same proportional dimensions as the SEY 

such that 

(2.9) 

where ax, ay, and az are the correlation length in the x, y, and z direction, respectively. 

The scale disparity factor, A, is defmed as 

A=VREVmin. 
SEV 

(2.10) 

Clausnitzer and Hopmans [1999] show that CT scanning of uniformly packed beads 

produces an REV min with side length about two times the bead diameter, d. That implies 

a REV volume of &f. A semivariogram of that packing would produce a correlation 

length equal to d, and thus a A of 2. This is probably the minimum A that can be 

expected in porous media. A can be seen as the ratio of the characteristic length of the 

porous media's features, (in that cased) to the geometric mean length of the REV mm, 

REV analysis is based on volume averaging concepts, which are traditionally scalar in 

nature and based upon a cubic volume. Conversely, semivariograms are fundamentally 

based on vector analysis. In highly anisotropic porous media, therefore, a REV 

dimensionally proportional to the SEY would give lower Vmin values than Vmin calculated 

using traditional volume averaging concepts. 
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2.4 Materials and Methods 

2.4.1 Culebra Dolomite 

Core samples were taken from the Culebra Dolomite Member of the Rustler 

Formation from drill holes near the Waste Isolation Pilot Plant (WIPP) site in 

southeastern New Mexico. The WIPP is a U.S. Department of Energy research and 

development facility designed to demonstrate safe disposal of transuranic radioactive 

waste resulting from the United States' defense programs. These samples were obtained 

because the Culebra Dolomite is the most transmissive confined unit above the waste 

repository and therefore is considered the most likely transport path by which 

radionuclides could be transported to the accessible environment over time spans of 

interest to regulatory agencies [Lappin et al., 1989]. 

The Culebra is a finely crystalline, vuggy dolomite (CaMg(C03)z) which is often 

argillaceous and fractured. Kelley and Saulnier, 1990, report that the mean horizontal 

and vertical hydraulic conductivity for the Culebra Dolomite at this site is 6.2 x 10-9 mis 

and 5.1 x 10-9 mis, respectively. These estimates, however, exhibit a six order-of­

magnitude variation in the vicinity of the sampling site. Density frequency analysis by 

Hsieh et al. [1998b] divides Culebra Dolomite into four components: solid dolomite, 

gypsum infills, silty dolomite and mixed regimes (dolomite, gypsum, and/or voids), and 

voids. 
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2.4.2 Sample Description 

Three horizontal cores were imaged and analyzed. C2611A had a diameter of 147 mm 

and length of 450 mm. The barrel size for sample collection was selected to so that the 

core was representative with respect to heterogeneity [Lucero et al., 1997]. C2611A had 

been used in numerous actinide transport experiments and was scanned saturated for 

operational reasons. The other two samples (ClAV and C2AV) were scanned dry and 

had diameters of37 mm and lengths of 52 mm. These two samples were subsamples ofa 

larger core that visually appeared to have different compositions. 

2.4.3 Computerized Tomography 

Each core was scanned in a three dimensional grid using the custom pencil-beam 

gamma ray CT scanner of Brown et al. [1993]. The x, y, and z axes on the horizontal 

cores are defined as shown in Figure 2.1. Cores ClAV and C2AV were imaged at 71 

uniformly spaced slices, while C2611A was imaged at 150 positions, not all of which 

were used here. The z direction voxel spacing was double the spacing in the x and y 

direction for these cores. The images from ClAV and C2AV have also been used for 

analyses in Hsieh et al. [1998b] and Brown et al. [2000]. 

2.4.4 Semivariogram Analysis 

Deutsch and Journel [1998] provides a package of FORTRAN 77 geostatistical 

programs that was used here. The GAM code was recompiled using Visual Fortran 6.6 to 

increase the maximum number of data points that could be analyzed. Semivariogram 
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generation was then completed for gamma ray attenuation of core samples using the 

recompiled GAM program. 

2.5 Results and Discussion 

2.5.1 CT Measurements 

CT scanning parameters are listed in Table 2.1. For the analysis here, core C2611a 

has been separated into two different sections to illustrate differences in slices 30 to 90 

and 90 to 150 of the same core. Core samples are cylinders, but for ease of computation, 

semivariograms are completed on data in rectangular prisms in the center of the 

cylinders. The bulk density in Table 2.1 is calculated by 

Pb(x,y,z) = Cµ(x,y,z) (2.11) 

where C is the calibration factor and µ(x,y,z) is the point attenuation value [Luo and 

Wells, 1992]. Brown et al. [1999] reported a calibration coefficient of 147.8 g mL-1 mm-1 

for core C2611A. The calibration coefficient for cores ClAV and C2AV is 127 g mL-1 

-1 mm. 

Cores Clav and C2av are the smaller resolution cores (0.10 mm3 voxel spacing) and 

the two samples from core C2611a are larger resolution (6.8 mm3 voxel spacing). The 

two samples from core C261 la exhibit larger bulk density means due to their being 

scanned wet, but smaller standard deviations than cores Clav and C2av. Core Clav has 

the smallest mean dry bulk density and highest standard deviation. As a demonstration of 

the variability in the cores, the mean bulk density along the z axis of each sample is 

shown in Figure 2.2. 
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Table 2.2 uses four structural components and the statistical segregation threshold of 

Hsieh et al. [1998a] to differentiate components of the bulk density frequency 

distribution in each of the cores. The two samples from core C2611A indicate 

predominantly silty and solid dolomite. Core ClAV is similar to samples C2611A, 

except there is a detectable percentage of solid gypsum. Core C2A V is different from the 

other cores, being mostly solid dolomite with a smaller percentage of silty dolomite 

areas. Core C2A V also has the largest percentage of solid gypsum areas. 

2.5.2 Geostatistics 

A reconstruction of a x-y slice from each of the cores and standardized 

semivariograms for each direction are shown in Figures 3 and 4, and geostatistical 

properties of each are listed in Table 2.3. For the two larger resolution samples (C261 la) 

the small-scale correlation lengths ranged from 3.3 to 17.3 mm and the large-scale 

correlation lengths ranged from 24.0 to 52.0 mm. For the two smaller resolution samples 

(ClAV and C2AV) the small-scale correlation lengths ranged from 1.6 to 3.1 mm and the 

large-scale correlation lengths ranged from 13.7 to 28.7 mm. Two semivariograms were 

best fit with exponential semivariogram models. The rest of the semivariograms were 

best fit with a combination model, indicating the presence of nested sills. Best fit models 

were chosen by maximizing the coefficient of determination, ,J, between predicted and 

measured values. The best fit semivariogram models all show a ,J value of 0.98 or 

greater from h=O to the lag indicated, denoting good fit for all the semivariograms. The 

best fit model was not determined for the entire semivariogram because as the 

semivariogram lag approached the far end of the sample, the semivariogram often begins 

17 



to drift up of down. This is a result of . a smaller number of comparisons in the 

sem1vanogram mean squared difference near the edges of the sample and is not 

necessarily considered representative of the geostatistical properties of the media. The 

best fit model was also not determined for the entire semivariogram ifa hole effect was 

exhibited. None of the semivariograms for the cores shown in Figure 2.3 and 2.4 and 

described in Table 2.3 have been modeled with a nugget. This indicates that at these 

resolutions, the spatial variability in the cores is fully represented in the semivariogram. 

Large scale correlation lengths in the x and z direction of core C2A V have values 

approached the sample length. This may be indicative of a large-scale trend in the mean 

[Gelhar, 1986]. The C2AV curve in Figure 2.2 may indicate a slight trend in the mean 

along the z direction. Core C261 la (30-90) exhibits a hole effect in they direction. This 

cannot be modeled by nested sills, but is estimated from the semivariogram and listed in 

Table 2.3. 

The three-dimensional anisotropy ratios and anisotropy in the large and small scale are 

characterized in Table 2.4. The anisotropy characterizations are based on the definitions 

of Kupfersberger and Deutsch [1999] for well-log analysis. Anisotropy ratios have been 

defined to describe the geometric anisotropy of a sample (ie. sill values are equal). 

Therefore, the ratios listed in Table 2.4 for cores where geometric anisotropy does not 

exist, are not true anisotropy ratios, but simply a ratio of the range values in the two 

directions of interest. Because nested ranges have been modeled on these cores, a small 

scale and large scale anisotropy ratio has been calculated corresponding to the small scale 

and large scale structure within the core. 
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Three anisotropy characterizations are provided for each core to demonstrate if the 

samples are isotropic or geometrically anisotropic in the x-z plane (two horizontal 

directions) as expected. Core C261 la (90-150) and C2AV exhibit these anisotropies, 

while C261la (30-90) and ClAV exhibit zonal anisotropy in the x-z plane. The zonal 

anisotropy is not further defined in this instance because neither direction is vertical. 

Core C261 la (30-90) was zonal because of different sill values between the x- and z­

directions. The x direction of core ClAV was modeled by a basic model and did not 

exhibit a large-scale structure. Nearly all of the x-y and z-y (horizontal-vertical) 

anisotropy characterizations are zonal due to strata, with the exception of ClAV in the x­

y direction, which is zonal due to areal trends, and core C2A V, which exhibits isotropy 

and geometric anisotropy. 

2.5.3 Geostatistical Comparisons of Adjacent Cores 

Two adjacent sections of core C261 la have been analyzed for geostatistical properties 

with a resolution of 1.5 mm per voxel. For these cores, range values differ in all three 

primary directions. A nested sill is indicated in the y direction of core c2611 a, slice 90-

150, while a hole effect is shown in the slice 30-90 core. The hole effect phenomenon 

may be representative of strata or horizontal bedding planes in the core and this 

difference is likely a result of a change in stratification between the two core subsections. 

These results indicate that different geostatistical properties can be easily identified for 

adjacent cores at this scanning resolution. 

Cores ClAV and C2AV were extracted from visually different sections of a larger 

core and were located within 70 mm of each other. The main structural difference 
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between these two samples is the absence of a nested sill in the x-direction on core 

CIAV. A higher percentage of silty dolomite in CIAV (Table 2.2) could be partially 

responsible for this result. If there is more silty dolomite (mixed voxels), there 

conversely will be smaller continuous regions of solid dolomite. This would account for 

the absence of a larger-scale range in this core, and may also explain the anisotropy 

differences exhibited by these two cores. As with the larger resolution, these results 

indicate that at this resolution samples obtained next to each other can exhibit clearly 

different geostatistical properties. 

2.5.4 Geostatistical Comparisons at Different Resolutions 

In general, when comparing the geostatistical properties of smaller resolution cores 

(CIAV and C2A V) to the larger resolution cores (C2611a), the two resolutions show 

similar range values in the vertical direction when comparing the nested ranges in the 

large resolution to the ranges indicated in the smaller resolution. In the horizontal, the 

ranges are larger when comparing equal scales of the large resolution to the small 

resolution. However, the smaller resolution cores have larger ranges than the nested 

ranges in the larger resolution. This could be a result of changing horizontal geologic 

structure of the Culebra Dolomite, comparison of semivariograms from differing sample 

sizes and resolutions, and/or axes of anisotropy that may not be exactly horizontal. The 

larger range values associated with the larger scales are not detected in the smaller 

resolution cores because of the smaller sample size used in the smaller resolution 

analysis. Nested range values on the smaller scale cores are not detectable in the larger 

resolution because the values approach the resolution limit in the CT images. 

20 



Comparison of the small-scale and large-scale anisotropy ratios on these cores shows the 

ratio increasing at increasing scales. The results reinforce the results of Gelhar [1986] 

and Schafmeister and Pekdeger [1993] that increasing scales show increasing ranges and 

anisotropy ratios. 

2.5.5 Scale Disparity Quantification 

Table 2.3 lists the small-scale correlation lengths for cores CIAV and C2AV ranging 

from 1.6 mm to 3.1 mm. SEY volumes were thus 9.4 mm3 and 8.5 mm3 for these two 

cores, respectively. Brown et al., 2000, reports a REV min of I 000 mm3 and 2200 mm3 for 

cores CIAV and C2AV, respectively. Therefore, A is 4.7 and 6.4 for cores CIAV and 

C2A V, respectively. Since the REV min corresponds to the volume required for ergodicity, 

the sample length should be at least five or six times larger than the correlation lengths to 

detect the spatial structure of the Culebra Dolomite at this small scale. The analyzed 

sample volume is also larger than the minimum REV for both samples. 

The SEV can be viewed as the characteristic size of the density features (pore, solid 

dolomite, or silty regions) within the core. Conversely, the REYmin is the minimum 

volume required to obtain a statistically significant average of all these dominant 

features. The A measured for the cores thus imply that A3 density features are within 

Vmin, or 104 and 262 features for CIAV and C2AV, respectively. 
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2.5.6 Modifiable Areal Unit Problem and the Inherent Range 

Comparison of CT images at different resolutions also lends itself to an analysis of the 

modifiable areal unit problem. Cressie [1991] discusses the situation where averaging, or 

aggregating, of regionalized variables leads to larger sample correlation lengths. 

Openshaw and Taylor [1979] show that by averaging fixed observations on small areas in 

various ways, a large range of correlation coefficients can be produced. 

Gamma ray CT is similar to the modifiable areal unit problem, as the image 

attenuation value is simply the average attenuation through the area encompassed by the 

voxel. Therefore, semivariograms were calculated for CT images of core C2A V with 

voxels modified by increasing voxel lengths by 2x, 3x, 4x, and 5x, and averaging the 

attenuation values within these new volumes. This increased the voxel volume by a 

factor of 8, 27, 64, and 125, respectively. The results of these exercises are shown in 

Figure 2.5 and Table 2.5. 

As the voxel size increases, the correlation length increases in all directions. All of 

these semivariograms become more linear as voxel size increases. Larger resolution 

semivariograms would likely be best fit with a nugget. Figure 2.6 summarizes the scaling 

effect caused by increasing voxel volume. A linear trend is indicated between the 

correlation length and voxel volume. I propose that the intercept of the trend line with 

the y-axis (range) in this graph could be said to represent the inherent range, or the range 

that is unaffected by the scaling effect of increased scanning resolution. The slope of the 

trend line indicates the scaling effect caused by increasing voxel volume. Figure 2.6 also 

demonstrates that multiple inherent ranges may exist in a particular direction. 
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2.6 Summary and Conclusions 

Geostatistics has been used to determine the spatial structure and anisotropy of 

Culebra Dolomite at very small scales. This analysis was possible because of 

characterization of the rock from CT images utilizing gamma ray attenuation. Horizontal 

range values for the four samples ranges from 1.6 to 17.3 mm for small-scale structure 

and from 13.7 to 52.0 mm for large-scale structure. The smaller-resolution analysis did 

not detect the largest-scale structure because the total sample size was smaller than the 

range values associated with this structure. Likewise, the larger-resolution analysis did 

not detect the smallest-scale structure because the correlation lengths approached the 

resolution limit. 

Results suggest that cores sampled adjacent to each other can show different 

geostatistical properties at these resolutions. In general, correlation lengths were similar 

at different resolutions in the vertical direction. These vertical direction results could be 

a result of fairly uniform stratification in the Culebra Dolomite. However, since four 

different samples are being compared, this is not conclusive enough evidence to discount 

a scaling effect in the vertical direction. Correlation lengths in the horizontal, however, 

changed with resolution and sample size. Possible reasons for these changes include 

comparing geostatistical properties for differ size samples with different resolutions, 

changing horizontal geologic structure of the Culebra Dolomite, and/or axes of 

anisotropy that may not be exactly horizontal. 

Relative elementary volume (REV) concepts have been shown to be analogous to the 

ergodic property of second-order stationarity. Using the REV and standard element 

volume (SEV), a scale disparity factor has been quantified to determine sample size 
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necessary to determine a meaningful and estimable sem1vanogram with specified 

correlation lengths. 

The modifiable areal unit problem has also been addressed with this data. By 

changing resolution, one can estimate a range of correlation lengths. A linear 

relationship between voxel volume and correlation length has been determined for all 

directions. The y-intercept of the linear relationship has been defined as the inherent 

range. This is the range unaffected by the scaling affect of increasing resolution. 

Multiple inherent ranges can exist in a given direction. Therefore, based on these results, 

sample size and resolution selection for future core analysis should be a function of the 

scale of interest for the intended data use. 
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Table 2.1. Summary of gamma ray attenuation statistical properties of Culebra Dolomite 
1 samp es. 

Sample Dimensions, Voxel Attenuation Bulle Density 
Sample 

XxYxZ, Length (mm-I) (g/ml) 
Name 

(Voxels) (mm) (I) Mean St. Dev. Mean St. Dev. 

C2611a, 61x61x81 
1.5 0.0174 0.0013 2.57 0.19 slice 30-90 (301,401) 

C2611a, 61x61x81 
1.5 0.0171 0.0013 2.53 0.19 slice 90-150 (301,401) 

Clav 
71 X 71 X 46 

0.37 0.0183 0.0030 2.32 0.38 (231,886) 

C2av 
71 X 71 X 46 

0.37 0.0192 0.0024 2.44 0.30 (231,886) 
llJ z direction voxel spacmg 1s double the x and y direction voxel spacmg, x and y direction 1s hsted. 
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Table 2.2. Bulk density frequency distributions of Culebra Dolomite samples. 
Sample Name % Voids % Silty Dolomite % Solid Gypsum % Solid Dolomite 

C261 la, slice 30-90 <l 38 <l 62 
C261 la, slice 90- <1 46 <1 54 

150 
Clav <l 30 4 66 
C2av <l 9 9 82 
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T bl 2 3 P f d d" d fi h I b d I (l) a e .. roperties o stan ar 1ze sem1vanograms or t e cu e ra o om1te samp es. 

Sample Name and Direction Semivariogram Model 
Range 

Sill, W; r2,mm (3) 

(mm) 

C261 la, 30-90 
x (nested) Combination of 6.6 0.49 

0.992 to 90 
X Two Spherical 52.0 0.47 
y Exponential 17.3 1.02 0.997 to 18 

y (hole) Visually estimated 60 0.84 
z (nested) Combination of 4.8 0.41 

0.997 to 72 z Two Exponential 52.0 0.44 

C261 la, 90-150 
x (nested) Combination of 3.5 0.37 

0.999 to 63 
X Spherical and Exponential 35.0 0.52 

y (nested) Combination of 24.0 0.40 
0.995 to 35 

y Spherical and Exponential 7.4 0.72 
z (nested) Combination of 3.3 0.43 

0.997 to 66 
z Spherical and ~xponential 37.4 0.51 

Clav X Exponential 3.1 0.86 0.981 to 16.3 
y (nested) Combination of 1.9 0.58 

0.997 to 14.1 y Spherical and Exponential 13.7 0.48 
z (nested) Combination of 1.6 0.12 

0.983 to 15.5 
z Two Spherical 20.1 0.81 

C2av 
x (nested) Combination of 2.3 0.83 

0.991 to 13.0 
X Spherical and Exponential 25.9 <2) 0.22 

y (nested) Combination of 9.1 0.17 . 0.992 to 15.9 y Spherical and Exponential 2.3 0.85 
z (nested) Combination of 28.7 lZ) 0.16 

0.993 to 14.8 
z Spherical and Exponential 1.6 0.83 

l'J None of the cores were modeled with a nugget 
<2l Range approaching sample width 
<3l In this column, the coefficient of determination and the largest lag value used for calculation of the 
coefficient of determination is reported. 
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T bl 2 4 An. a e .. isotropy o f C I b D I u era o om1te samp es. 
Anisotropy Ratio Anisotropy 

Sample Name Direction Small Scale Large Scale Small Scale Large Scale 
C261 la, slice 30-90 x-y: 0.38 0.87 ll) Zonal due to Strata na 1"1 

z-y: 0.28 0.87 (I) Zonal due to Strata na 
x-z: 1.38 1.00 Zonal <3> Zonal <3> 

C26lla, slice 90- x-y: 0.47 1.46 Zonal due to Strata Zonal due to Strata 
150 z-y: 0.45 1.56 Zonal due to Strata Zonal due to Strata 

x-z: 1.06 0.94 Isotropic Isotropic 
Clav x-y: 1.63 na Zonal Areal Trends na 

z-y: 0.84 1.47 Zonal due to Strata Zonal due to Strata 
x-z: 1.94 na Zonal <3> na 

C2av x-y: 1.00 2.84 Isotropic Geometric 
z-y: 0.65 3.15 Geometric Geometric 
x-z: 1.53 0.90(4) Geometric Isotropic <4> 

llJ - -The range of the hole effect 1s used to calculate the large scale x y and z y anisotropy ratio for this 
sample. 
<2> na = not available 
<3> Further characterization of zonal anisotropy is not included in this characterization because neither 
direction is vertical. 
<4> Range approaching sample width 
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Table 2.5. Properties of standardized semivariograms for the culebra dolomite core 
C2A V using different aggregations based upon voxel volume to address the modifiable 
area unit problem. The initial sample spacing was 0.37 mm in the x and z directions and 
0.74 mm in the z direction.<1) 

Resolution, Volume, 
Semivariogram Model 

Range 
Sill, W; r2,mm (3) 

Direction (mm) 

lx (0.101 mm3) 
x (nested) Combination of 2.3 0.83 

0.991 to 13.0 
X Spherical and Exponential 25.9 <2> 0.22 

y (nested) Combination of 9.1 0.17 
0.992 to 15.9 

y Spherical and Exponential 2.3 0.85 
z (nested) Combination of 28.7 l~) 0.16 

0.993 to 14.8 
z Spherical and Exponential 1.6 0.83 

2x (0.810 mm3) 
x (nested) Combination of 2.3 0.46 

0.994 to 13.3 
X Spherical and Exponential 21.2 <2> 0.58 

y (nested) Combination of 2.3 0.64 
0.996 to 14.1 

y Two Spherical 9.1 0.40 
z (nested) Combination of 2.4 0.69 

0.992 to 14.8 
z Two Spherical 25.9 0.32 

3x (2.74 mm3) 
x (nested) Combination of 3.1 0.47 

0.964 to 15.5 
X Spherical and Exponential 25.9 <2> 0.54 

y (nested) Combination of 3.1 0.60 
0.998 to 14.4 

y Spherical and Exponential 9.7 0.47 
z (nested) Combination of 3.1 0.53 

0.997 to 11.1 
z Two Spherical 25.9 <2> 0.41 

4x (6.48 mm3) 
x (nested) Combination of 3.9 0.46 

0.999 to 14.8 
X Two Spherical 22.6 <2) 0.51 

y (nested) Combination of 4.6 0.29 
0.997 to 13.3 

y Spherical and Exponential 10.5 0.83 
z (nested) Combination of 3.7 0.53 

0.978 to 14.8 
z Two Spherical 25.9 <2> 0.41 

5x (12.66 mm3) 
x (nested) Combination of 4.3 0.36 

0.999 to 13.0 
X Two Spherical 20.2 <2> 0.56 

y (nested) Combination of 5.6 0.48 
0.998 to 14.8 

y Two Spherical 12.6 0.63 
z (4) -- -- -- -- --

(!) None of the cores were modeled with a nugget 
<2> Range approaching sample width 
<3> In this column, the coefficient of determination and the largest lag value used for calculation of the 
coefficient of determination is reported. 
<4> Not enough points in the semivariogram to fit a meaningful model at this lag distance. 
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Figure 2.1. Orientation of Culebra Dolomite cores. 
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Figure 2.2. Individual slice average.bulk density along each core. 
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CHAPTER THREE 

CHARACTERIZATION OF POROUS MEDIA CT IMAGES USING 
SEMIV ARIOGRAM FAMILIES 

3 .1 Abstract 

A semivariogram family is the collection of directional slice semivariograms from a 

three-dimensional sample. Analysis using semivariogram families of computerized 

tomography (CT) images of Culebra dolomite provides improved methods for 

determining the spatial correlation structure of the bulk density of porous media. The 

largest reliable lag in a semivariogram is quantified by analyzing the variance of the 

semivariogram values within the semivariogram family at each lag. This improves on 

previous methods for determining the largest reliable lag that rely on rules of thumb. In 

addition, the distribution of the semivariogram values within a semivariogram family at 

each lag is analyzed to automatically .determine the correlation length (range) values for 

the porous media. Such a procedure provides range values that are representative of 

actual structure, as opposed to values determined from best-fitting empirical 

semivariogram models that may or may not be representative of the actual morphology. 
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3.2 Introduction 

The use of geostatistics is an important tool for characterizing spatial properties of 

porous media. Applications have included investigations of the spatial variability of 

subsurface hydraulic conductivity [Schafmeister-Speirling and Pekdeger, 1989; 

Woodbury and Sudicky, 1991], soil geochemical properties [Miesch, 1975; Solie et al., 

1999], rock fractures [Tavchandjian et al., 1993], soil temperature [Yates et al., 1988], 

permeability [Goggin et al., 1988], and soil water content [Greenholtz et al., 1988; 

Bardossy and Lehmann, 1998]. Geostatistical image analysis also allows for micro-scale 

non-destructive characterization of the spatial variability of porous media bulk density, 

which can in turn be used for a variety of predictive transport models. Grevers and de 

Jong [1994] used x-ray computer tomography (CT) images to analyze soil macroporosity 

and ground-penetrating radar images were analyzed by Tercier et al. [2000] to compare 

the correlation structure of different depositional environments. Ioannidis et al. [1999] 

used geostatistical analysis of scanning electron micrographs (SEM) to evaluate various 

transport and capillary properties of rock samples and gamma ray CT has been used to 

quantify the spatial variability of soil properties in soil cohimns [Rasiah and Aylmore, 

1998] and rock cores [Vogel andBrown, 2001]. 

All of these applications depend on reliable determination of the spatial structure of 

the variable of interest. Gelhar '[1986] discusses " ... the key role that the spatial 

correlation structure of the input processes plays in the behavior of all the stochastic 

solutions ... " of subsurface hydrologic models. In addition, Gelhar states that " ... there is 

a need to find better methods to determine the input spatial correlation structure of 

hydraulic parameters. This should include the use of prior information on geologic and 
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geomorphic conditions as well as improved methods of statistical analysis to estimate 

these parameters." This need is reiterated by Gelhar [1993] and Calvete [1997]. 

Two questions addressed here concerning the reliability of spatial characterizations 

are: What is the maximum reliable lag on a semivariogram that should be used, and 

which correlation lengths determined from best fit empirical models are representative of 

actual structural features? In this paper the large data set provided by gamma ray CT 

analysis of Culebra Dolomite cores is utilized to introduce semivariogram families and 

show how they can be used (I) to identify the maximum lag for reliable semivariogram 

estimates, and (2) to automatically detect correlation lengths (ranges) representative of 

actual structure for semivariograms derived from computer tomography images of porous -

media. Combined, these two methods greatly improve the statistical analysis for 

estimating the spatial structure of porous media properties. 

3.3 Geostatistical Theory 

3.3.1 Semivariograms 

The semivariogram is one of the most important tools in geostatistics. For an 

intrinsically stationary random function Z(x), the semivariogram is the plot of the 

semivariogram value, 'Y(h), vs. lag distance, h. The semivariogram value for each lag 

distance is represented by 

y(h) = .!._ Var[Z(x)-Z(x+h)l 
2 

(3.1) 

for each lag distance. Because 'Y(h) cannot be calculated directly, an unbiased estimator 

for the semivariogram of a random function is used and is given by 
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1 N(h) 

y(h)= I[Z(x;+h)-Z(x;)]2 

2N(h) i=I 
(3.2) 

where N(h) is the number of pairs of variables at h distance apart [Olea, 1999]. 

A sill and range characterize the semivariogram. The sill is a plateau in the 

semivariogram values that corresponds to the variance of the sampled data. If the 

semivariogram is standardized, the r(h) value is divided by the variance and the sill value 

will be equal to one. The range, or correlation length, is the distance at which the 

semivariogram reaches a plateau. One possible semivariogram characteristic is the hole 

effect, which is described as a semivariogram that peaks and then dips, suggesting that at 

greater distances samples are more related. The hole effect may be seen as the rough 

spacing between adjacent lenses or bedding planes. Another characteristic similar to the 

hole effect is pseudocycling. This is the apparent periodic cycling or oscillation of the 

magnitude of the semivariogram over distance and is common in minerals. However, 

unless they can be attributed to a physical phenomenon, these changes should be 

considered random even though they appear periodic [Solie, 1999]. 

Semivariograms are fit by a number of analytical relationships to ensure that the 

semivariograms model is positive definite. One of the most common semivariogram 

fittings used in hydrology is the exponential model [Woodbury and Sudicky, 1991]. The 

model is given by 

r(h) = 1-)-3
:)_ 

(3.3) 

The exponential model reaches its sill asymptotically, with the practical range a defined 

as that distance at which the variogram value is 95% of the sill [Isaab and Srivastava, 
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1989]. Agterberg [1970] has shown that a continuous random variable in three-

dimensional space has an exponential autocorrelation function if it is subject to a property 

analogous to the Markov property in time series analysis. 

Multiple, or nested, sills in the semivariogram may be associated with physical 

phenomena occurring at different scales. Detection of ranges nested within larger ranges 

requires sample spacing shorter than the minimum detected range. As with 

pseudocycling, nested sills are only considered when they can be associated with physical 

phenomena [Solie et al., 1999]. Nested sills can be modeled by using a linear 

combination of positive definite semivariogram models with positive coefficients. This 

property results in the family of models 

n 

r(h) = I:lw;lr;(h) (3.4) 
i=I 

which are positive definite as long as the n individual models are all positive definite. A 

n 

weighting function, Wi, is defined for each individual model subject to L w; = 1 [Isaaks 
i=I 

and Srivastava, 1989]. 

3.3.2 Semivariogram Families 

Chiles and De/finer [1999] describe the semivariogram cloud as introduced by Gandin 

[1963] and used by Chauvet [1982] for meteorological fields. The semivariogram cloud 

is a plot of all sample pairs (a,/J) showing hap= lxp -xalon the x-axis and the half 

squared increment, .!..(z(xp )-z(xJJ, on the y-axis. An example of a semivariogram 
2 
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cloud as demonstrated by Vogel and Haan [2001] is shown in Figure 3. la. I introduce 

the semivariogram family as an extension of the semivariogram cloud for use with three­

dimensional CT data. A semivariogram family is a plot of the semivariograms for each 

CT image slice. It is similar to the semivariogram cloud, except that the semivariogram 

curve for each slice is plotted. Each point that makes up a semivariogram family 

"member" therefore represents the mean of all the half squared increments at that lag 

distance in that slice, as opposed to the point difference represented by the semivariogram 

cloud. A hypothetical semivariogram family is shown in Figure 3.lb. 

3.3.3 Semivariogram Estimate Reliability 

Besides rules of thumb, there are currently no tests to determine the reliability of 

semivariogram estimations at large lags [Olea, 1999]. Because the accuracy of estimates 

is proportional to the number of pairs, at greater lags (where there are fewer pairs) the 

estimates are less reliable. A common practice is to limit semivariogram estimation to 

lags with a minimum of 30 pairs [Journal and Huijbregts, 1978]. Another practical 

guideline is to limit the lag of the experimental semivariogram to half the extreme 

distance in the sampling domain for the direction to be analyzed [Journal and Juijbregts, 

1978; Clark, 1979]. 

I determine the largest reliable lag for semivariogram estimation by analyzing the 

variance of the semivariogram families at each lag distance. A breakpoint exists at which 

the variance (s2) starts to increase at a larger rate from that point to the end of the sample 

than before that point. This could be said to be the point where the variance goes from 

being a result of structural di_fferences to being a result of too few sample pairs. For 
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relatively homogeneous media, this point can be determined by breaking the lag distance, 

h, versus s2 plot into two parts and minimizing the sum of the squared differences 

between the actual s2 values and a linear approximation of the two parts. However, as 

demonstrated by the results, this method may not be adequate when analyzing samples 

with stratification or other irregularities. In these cases the breakpoint is determined 

visually from the plot. 

3.3.4 Automated Range Detection 

The correlation length, or range, a, is currently estimated by best-fitting 

semivariogram models to the estimated semivariogram. However, a method to determine 

correlation length directly from the data would be more desirable than this empirical 

curve-fitting method. Estimated semivariogram values from equation 3.2 are distributed 

by a chi-square distribution [Cressie, 1991]. Davis and Borgman [1982] show that the 

distribution approaches a normal distribution as the number of data pairs goes to infinity 

for a random, second-order stationary function: 

L{[f(h)-y(h)]} ~ N(O l)as n ~ oo 
a[i(h)] ' ' 

(3.5) 

where L(X) denotes the law, or distribution of a random variable, f(h) is the estimated 

semivariogram value, a is the standard deviation, n is the number of data points, and 

N(O, 1) is the standard normal distribution. 

Using this property on semivariogram families of CT images, which provide hundreds 

of thousands of data points, the expected distribution of 

U(h) = [i(h)-y(h)] 
a[f(h)] 
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at each lag distance h, would be the standard normal. However, if there is significant 

structure corresponding to correlation length h, the resulting distribution will be a multi­

modal and not normally distributed. Similarly, the distribution of the f(h) values at a 

particular lag distance can be tested for normality since the r(h) and a[f(h)] values can 

be considered constant at each lag distance. Therefore, by testing the normality of the 

f ( h) values at each lag I determine if there is structure occurring at that lag. In other 

words, the range of the semivariogram can be. detected based on the distribution of the 

semivariogram family, instead of by empirical curve-fitting of semivariogram models. 

To determine normality of the f(h) distributions, the Shapiro-Wilk W test [Shapiro 

and Wilk, 1965], the Anderson-Darling test [Anderson and Darling, 1954], the Martinez­

Iglewicz test [Martinez and Iglewicz, 1981], and the D'Agostino skewness test 

[D'Agostino et al., 1990] have all been employed with a five percent decision criteria. A 

decision to reject normality from any one of these tests is considered sufficient to 

determine non-normality. 

3 .4 Materials and Methods 

3.4.1 Sample Description 

Three horizontal cores were collected from the Culebra Dolomite Member of the 

Rustler Formation from the Waste Isolation Pilot Plant (WIPP) site in southeastern New 

Mexico and are listed in Table 3.1. Core C2611A had a diameter of 147 mm and length 

of 450 mm. The barrel size for sample collection was selected to so that the core was 

representative with respect to heterogeneity [Lucero et al., 1997]. Vogel and Brown 
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[2001] show that the two halves of this sample have different anisotropy and therefore it 

was analyzed in two sections (slices 30-90 and slices 90-150). C2611A had been used in 

numerous actinide transport experiments and was scanned saturated for operational 

reasons. The other two samples (CIA V and C2A V) had diameters of 37 mm and lengths 

of 52 mm and were subsamples of a larger core that visually appeared to have different 

compositions and differing geostatistical properties. C2A V contains a higher percentage 

of solid dolomite than ClAV [Vogel and Brown, 2001]. Hseih et al. [1998] and Brown et 

al. [2000] have also completed analyses of these core samples. 

3.4.2 Computerized Tomography Imaging 

A three-dimensional grid using the custom pencil-beam gamma ray CT scanner of 

Brown et al. [1993] has been used to scan the four samples. While much slower than x­

ray CT, gamma CT does not suffer from beam hardening and photon scattering that 

distort x-ray images and would make geostatistical analysis problematic. The x and z 

axes on these samples are defined as horizontal, while they axis is vertical. Cores ClAV 

and C2AV were imaged at 71 uniformly spaced slices with a voxel size of 0.37 mm by 

0.37 mm by 0.75 mm, while core C2611A was imaged at 150 uniformly spaced slices, 

not all of which were used here, with voxel size of 1.5 mm by 1.5 mm by 3.0 mm, The z 

direction voxel spacing was double the spacing in the x and y direction. 
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3.4.3 Semivariogram Analysis 

The FORTRAN 77 package of geostatical programs of Deutsch and Journel [1998] 

was used for these analyses. However, the GAM code was recompiled using Visual 

Fortran 6.6 to increase the maximum number of data points that could be analyzed. 

TableCurve 2D was used for best-fitting semivariogram models [TableCurve 2D, 1996] 

and NCSS 2000 was used for the normality tests. 

3.5 Results and Discussion 

3.5.1 Semivariogram Families 

Semivariogram families have been plotted in the x and y direction for the four core 

samples (Figures 2 and 3). The number of members in each family corresponds to the 

number of voxels in the z direction as shown in Table 3.1. Analysis was not completed 

in the z direction along the core axis because of the initial slice groupings of the data, but 

would be possible with further data manipulation to group the slices perpendicular to the 

x or y direction. These samples do not exhibit a nugget effect in either the x or y 

direction at these resolutions. Sample C2611A (slice 30-90) (Figure 3.2b) exhibits 

pseudocycling in they direction. A hole effect is shown for sample C2611A (slice 90-

150) (Figure 3.2d) in they direction. Sample C2611A (slice 90-150) in the x direction 

(Figure 3.2c) and C2AV in the y direction (Figure 3.3d) show slices that may be 

considered outliers. Further analysis of these slice semivariograms, however, indicates 

that these semivariograms are for sequential slices. Therefore, these outlier 
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semivariograms are a result of actual sample structure and not a result of operator error 

during scanning of that slice. 

3.5.2 Semivariogram Estimate Reliability 

In practice, rules of thumb have been generally applied to determine the largest lag on 

the semivariogram that constitutes a reliable estimate and therefore should be used for 

modeling and characterization purposes. The largest lag of reliable semivariogram 

estimates can also be determined from plots of the variance of the semivariogram 

families. Figures 3.4 and 3.5 show the sample variance (s2) values of the semivariogram 

families at each lag and the break point where the variance goes from being a result of 

sample structure to being a result of too few lags and being at the extreme edges of the 

sample. The breakpoint is determined by minimizing the sum of the squared differences 

between the actual s2 values and a linear approximation of the two parts. In directions 

where the plots are irregular (Figures 4b, 4d, and Sc), however, the break point cannot be 

selected by optimizing the linear models, but rather must be chosen by visually detecting 

the break point. 

Table 3.2 summarizes these results. The percentage of reliable semivariogram 

estimates for these samples ranges from 54% to 78% and is generally larger in the x 

direction than the y direction. This is likely a result of greater heterogeneity from 

stratification in the vertical direction. As a check, the sum of the percentage of reliable 

estimates plus the percentage of pairs needed for a reliable estimate should be slightly 

greater than 100%. This check is not equal to exactly 100% because the maximum 

number of pairs will be slightly smaller than the total number of data points compared. 

49 



These results show more reliable lags than the rule of thumb that considers half of the 

extreme distance in the sampling domain for that direction as reliable. If the rule of 

thumb that 30 pairs were used as an estimate of reliable values, all semivariogram values 

from these CT images would be considered reliable. 

3.5.3 Automated Range Detection 

By analyzing the distribution of the f(h) values at each lag, range values for each 

Culebra dolomite sample have been determined. Complete results of the normality tests 

at each lag for sample C2611A (slice 30-90) are shown in Figure 3.6. Of note are the 

groupings of non-normal semivariogram family distributions. These groupings could be 

said to represent elliptical structure within the porous media. Jupp et al. [1989] and Swan 

and Garratt [1995] discuss the use of ellipsoids to represent structure in geostatistical 

image analysis, and Agterberg [1970] describes a three-dimensional autocorrelation 

function as a hypersurface with an ellipsoid contour. As an example, a directional 

semivariogram of an ellipsoid with a major axis diameter of 11 lags would result in a 

grouping of correlation lengths similar to those exhibited in Figure 3.6, lag= 6 to lag= 

11. The directional diameter of this ellipsoid corresponds to the largest value in this 

range. Single non-normal semivariogram family distributions may be a result of 

directional cracks or an anomaly of the normality tests at that lag. Examples of the 

normality plots for a normal and a non-normal lag distance from C2A V in the y direction . 

are shown in Figure 3.7. 

Each of the composite estimated semivariograms has been fitted with ~ combination of 

exponential semivariograms models using the detected range values. Table 3.3 lists the 
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ranges detected from analysis of semivariogram families, the number of consecutive non­

normal semivariogram family distributions contributing the detected range, the sill values 

(wi) and the R2 value between the semivariogram model and the estimated 

semivariogram. All semivariograms have been fit with an R2 value of at least 0.94. The 

number of consecutive non-normal semivariogram family distributions is generally 

proportional to the Wi values to the extent that a large number of consecutive non-normal 

distributions corresponds to larger Wi values. The exceptions to this are at small lag 

distances (h < 4 lags) and in the x direction of C2611A (30-90) at h = 40.5 mm. In this 

last case, the detected range at h = 22.5 mm may represent a slight hole and offset the 

next effect of additional structure at h = 40.5 mm in the best fit semivariogram model. 

Hole effects .were also detected using this method for C2611A (30-90) in the y direction 

and C2611A (90-150) in they direction. 

The normality tests do not always detect ranges at small lag distances (h < 4 lags). 

Non-normality is probably not an indicator of a correlation at h = 1 lag, as demonstrated 

by the wi = 0.00 values at that lag for samples C2611A (30-90) in the y direction, 

C2611A (90-150) in they direction, and C2AV in they direction. These results occur 

because of dependency due to the structure of the porous media and due to artifacts 

created by the back-projection reconstruction algorithm and filter function used for CT 

images (Brown et al., 1993). To offset the lack of automatic detection at these small lags, 

an additional exponential model is best fit to the estimated semivariogram with a 

maximum value equal to four lags. This method detected small-scale nested sills in 

samples C2611A (30-90) in the x direction, ClAV in the x direction, and C2AV in the x 

and y directions. 
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3.5.4 Semivariogram Comparisons 

By determining the extent of reliable estimates on a semivariogram, one is tempted to 

compare semivariograms from two samples with statistical tests to that point to determine 

if the samples possess similar geostatistical characteristics. Snedecor and Cochran 

[1967] describe a method for comparing paired samples which may be applicable if the 

paired samples are normally distributed. However, as shown earlier in this paper, the 

sample pairs are not normally distributed at lag distances corresponding to the correlation 

lengths. A nonparametric test such as the Wilcoxon matched-pairs signed-ranks test as 

described by Sheskin [2000] could therefore be attempted. This test is completed by 

ranking the absolute values of the difference scores ~DI) and summing the ranks of the 

positive scores {IR+) and negative rank scores {IR-) from h = 0 to the largest lag 

distance of a reliable semivariogram estimate. The smallest of these two values is then 

assigned to the Wilcoxon T test statistic and compared to the critical T value. However, 

this method fails as well since it discounts obvious trends if one semivariogram contains 

all values slightly less than the first (Figure 3.8a), while identifying two semivariograms 

that cross at the midpoint as similar even though the magnitude of the differences is large 

(Figure 3.8b). Comparisons of structure from semivariogram analysis should therefore 

continue to follow the classical procedure of comparing ranges, sills, and anisotropy. 
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3.6 Summary and Conclusions 

Semivariogram families have been introduced and shown to provide improved 

methods for determining the spatial correlation structure of porous media. By analyzing 

the variance of the semivariogram values within the semivariogram family at each lag, 

the maximum reliable lag has been determined. The maximum reliable lag could be said 

to be the point of the semivariogram where the variance of the semivariogram values at 

that lag goes from being a result of structural differences to being a result of too few 

sample pairs. This quantification is an improvement on past methods that rely on rules of 

thumb to determine the maximum reliable lag on the semivariogram. 

By testing the normality of the semivariogram values at each lag within a 

semivariogram family, range values are automatically detected that represent actual 

porous media structure. Current methodology is to best-fit empirical semivariogram 

models that result in range values, which may or may not correspond to actual structure. 

Finally, the tempting proposition of using the increased characterization of 

geostatistical properties to apply a statistical test to compare semivariograms from two 

samples is explored. Because of normality concerns and the inherent nature of 

nonparametric tests, however, the classical procedure of comparing ranges, sills, and 

anisotropy is still recommended to compare the spatial correlation structure of two 

different samples. 
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T bl 3 I C 1 b D I t I d a e .. u era o om1 e samp e f escnp 10ns. 
Sample Dimensions, Bulk Density 

Sample Name XxYxZ, (!!/ml) 

(Voxels) Voxel Size (mm) Mean St. Dev. 

C2611A, slice 30-90 
61 X 81 X 61 

1.5 X 1.5 X 3.0 2.57 0.19 (301,401) 

C2611A, slice 90-150 
61 X 81 X 61 

1.5 X 1.5 X 3.0 2.53 0.19 (301,401) 

Clav 
71 X 71 x46 

0.37 X 0.37 X 0.75 2.32 0.38 
(231,886) 

C2av 
71 X 71 X 46 

0.37 X 0.37 X 0.75 2.44 0.30 
(231,886) 
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Table 3.2. Summary of s2 breakpoint data for determining maximum lag at which a 
1· bl b d re ia e sem1vanogram. can e estimate . 

Max# % of Pairs 
Break- % # of Pairs Pairs for 
point Reliable in y(h) at (Pairs at Reliable 

Sample Direction (mm) Estimates Breakpoint h = 1) Estimate 

C2611A (30-90) X 70.5 78 69,174 296,460 23 
y 64.5 54 141,398 297,680 48 

C2611A (90-150) X 66.0 73 83,997 296,460 28 
y 78.0 65 107,909 297,680 36 

ClAV X 17.4 67 78,384 228,620 34 
y 16.7 64 84,916 228,620 37 

C2AV X 18.l 70 71,852 228,620 31 
y 15.2 59 97,980 228,620 43 

59 



Table 3.3. Range and semivariogram model parameters determined from semivariogram 
family analysis for Culebra dolomite samples. Lag distance is 1.5 mm for core C26a and 
0.37 mm for cores CIA V and C2A V. 

# of Consecutive 
Range, a Non-normal Lag R2 

Sample Direction (mm) Distributions Sill, W; 

C2611A (30-90) X 4.2 I -- 0.27 0.97 
16.5 6 0.03 
31.5 1 0.00 
52.5 11 0.23 
69.0 7 0.38 

y 1.5 1 0.00 0.99;, 
4.5 1 0.35 
24.0 6 0.84 
37.5 5 hole 2 

57.0 7 pseudocycling 
64.5 2 hole 

C2611A X 3.0 2 0.31 0.99 
(90-150) 22.5 2 0.39 

40.5 7 0.00 
66.0 19 0.21 

y 1.5 1 0.00 0.99 ~ 
6.0 1 0.46 
18.0 6 0.38 
43.5 8 0.38 
64.5 4 hole 3 

ClAV X 3.1 I -- 0.86 0.98 
11.1 3 0.00 

y 4.1 1 0.73 0.96 
9.3 1 0.00 
10.0 1 0.30 

C2AV X 1.4 I -- 0.58 0.94 
4.1 9 0.11 
10.4 3 0.00 
11.1 1 0.07 
12.6 2 0.22 

y 0.4 1 0.00 0.98 
1.4 I -- 0.53 
5.6 12 0.32 
10.0 2 0.13 
11.8 3 0.06 
13.3 3 0.00 

l .. 
These ranges are not detected from sem1vanogram families because they occur at small 

lags. They are determined from the best fit of the semivariogram model. 
2 R2 calculated only for range values up to 24 mm because of pseudocycling for this 
sample in this direction. 
3 R2 calculated only for range values up to 43.5 mm because of the hole effect for this 
sample in this direction. 

60 



7000 
+ 

6000 a 
+ 

5000 + * + + + + 

+ + + + + 
4000 + + + :j: * - + + + + .c + + - :j: + + + 

...... 3000 :j: + + + + sill + + + 

+ 
* + + 

2000 + 

* :j: :j: + + 
+ :j: :j: + 

+ + + + + + :j: + + * :j: 
1000 + + + :j: + + 

:j: 
range + 

0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

distance, h (miles} 

2.5 

b 
2.0 

1.5 -.c ........ 
c"-

1.0 

0.5 

0.0 --+----~--~---~---~------, 

0 5 10 15 20 25 
h (mm) 

Figure 3.1. A semivariogram cloud from Vogel and Haan [2001] (a) and a 
semivariogram family (b). The pluses and diamonds on (a) represent the semivariogtartl 
cloud and composite semivariogram, respectively. The dashed lines and squares on (b) 
represent the semivariogram family members and the composite sample semivariogram, 
respectively. 
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Figure 3.6. Results of normality tests for each lag of the semivariogram families of 
C2611A (slice 30-90). One lag is equal to 1.5 mm. 
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Figure 3.8. Example semivariograms for the Wilcoxon matched-pairs signed-ranks test. 
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CHAPTER FOUR 

HETEROGENEOUS POROUS MEDIA STRUCTURE ANALYSIS WITH A 
CONDITIONAL SEMIV ARIOGRAM AND COMPUTER TOMOGRAPHY IMAGES 

4.1 Abstract 

A conditional sem1vanogram has been introduced to characterize the structural 

properties of porous media features that fall within in discrete bulk density bins. In 

addition, artificial images, or phantoms, are used to identify semivariograms associated 

with several characteristic rock features. The conditional semivariogram and phantom 

image analysis is then combined with histograms and traditional semivariograms to 

create a realistic stochastic representation of the porous media. 

4.2 Introduction 

Soil and groundwater research is increasingly using computerized tomography (CT) 

images for analysis of porous media properties. Anderson and Hopmans [1994] describe 

many of these applications. Geostatistical analysis of these images provides a non-

destructive method for obtaining small-scale structural properties of porous media. 

Rasiah and Aylmore [1998] and Vogel and Brown [2001] use CT images of gamma ray 

attenuation for geostatistical characterization of Culebra dolomite and soil cores, 

respectively. Tercier et al. [2000] uses ground-penetrating radar images to compare the 
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correlation structure of different depositional environments. Two dimensional 

geostatistical image analysis and three dimensional reconstruction is used by Ioannidis et 

al. [1999] to predict aquifer properties for use flow and transport models. 

Geostatistical analysis can also be used for recognition of the shape the structure 

within images. Jupp et al. [1989] uses semivariogram analysis of remote-sensed images 

to show that overlapping disks can represent spatial structure. Semivariogram analysis of 

a moving window on radar images was used to classify land use [Miranda et al., 1992], 

and ice crevace patterns are characterized using geostatistics by Herzfeld and Zahner 

[2001]. Swan and Garratt [1995] uses semivariance of digitized images of thin rock 

sections to classify texture. CT images can also be used for density frequency analysis 

[Hsieh et al., 1998; Clausnitzer and Hopmans, 1999]. Indicator semivariograms have 

also been used for strict linear two-phase geostatistical characterization by Grevers and 

De.Jong [1994] and Tavchandjian et al. [1993] for analysis of soil and rock fractures. 

Semivariograms can be used as a significant tool to identify major features in a rock 

formation. By combining pattern recognition, density frequency analysis for phase 
\, 

differentiation, and semivariograms, the major features in the porous media can be 

identified to create a stochastic representation of the media. This stochastic 

representation could then be applied to a flow and transport model or used as an initial 

image for a simulation model such as simulated annealing [Goovaerts, 2000]. Goovaerts 

[ 1997] states that the initial image for simulated annealing which is realistic and meet 

target constraints will improve the optimization process. The stochastic representation 

generated using these methods that is used an initial image would be more realistic than a 

random image that only matches the histogram. 
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This paper uses semivariogram analysis of artificial images, or "phantoms", to identify 

dominant features of Culebra dolomite. A conditional semivariogram is also introduced 

to characterize geostatistical properties of different structures for three different types of 

heterogeneous porous media. These different structures are identified by a strict linear 

differentiation of the bulk density to define phase bins. Finally, by combining the 

phantom image analysis with the results of the conditional semivariogram, a stochastic 

representation of the porous media is generated incorporating the geostatistical structure 

in each of the phase bins. 

4.3 Theory 

4.3 .1 Semivariograms 

Semivariograms measure the degree of dissimilarity between an unsampled value and 

a nearby data value. Also called the structure function by Gandin (1963), Traditional 

semivariograms are defined as 

1 N(h) 2 

y(h) = 2N(h) ~(x; - Y;) (4.1) 

where r(h) is half of the average squared difference; N (h) is the number of pairs; Xi is the 

value at the start, or tail; Yi is the value at the end, or head, and h is the vector between the 

two data points. 

A sill and range characterize the semivariogram. The sill is a plateau in the 

semivariogram values that corresponds to the variance of the sampled data. If the 

setnivariogram is standardized, the r(h) value is divided by the variance and the sill value 
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will be equal to one. The range, or correlation length, is the distance at which the 

semivariogram reaches a plateau. A non-zero intercept on the semivariogram may exist 

and is termed the nugget effect. It may result from sampling error or variability at scales 

less than the smallest sampling interval [Cressie, 1991]. Another possible semivariogram 

characteristic is the hole effect, which is described as a semivariogram that peaks and 

dips, suggesting that at greater distances samples are more related. The hole effect may 

be seen as the rough spacing between adjacent lenses or bedding planes. 

Semivariograms are fit by a number of analytical relationships to ensure that the 

semivariogram model is positive definite. The exponential model is often used by 

researchers in stochastic hydrology [Woodbury and Sudicky, 1991], and is given by 

r( h) = 1-)-3
:) 

(4.2) 

where a is the range and h is the lag distance. The exponential model reaches its sill 

asymptotically, with the practical range a defined as that distance at which the 

semivariogram value is 95% of the sill. Another common semivariogram model is the 

Gaussian model, which is given by 

( 3h2
) 

r(h)=l-e -7 (4.3) 

and is parabolic in shape. It is often representative of highly regular phenomenon such as 

elevation of gently undulating hills [Goovaerts, 1997]. The final model used is the 

spherical model, 
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if h < a, 
(4.4) 

elsewhere. 

The spherical model has a linear behavior near the origin, flattens out at larger distances, 

and reaches the sill at a [Isaaks and Srivastava, 1989]. 

Multiple, or nested, sills in the semivariogram may be associated with physical 

phenomena occurring at different scales. Detection of ranges nested within larger ranges 

requires sample spacing shorter than the minimum detected range. In general, nested sills 

are only considered when they can be associated with physical phenomena [Solie et al., 

1999]. Nested sills can be modeled by using a linear combination of positive definite 

semivariogram models with positive coefficients. This property results in the family of 

positive definite models 

n 

r(h) = Ilwilr;(h) (4.5) 
i=I 

which are positive definite as long as the n individual models are all positive definite. A 

n 

weighting function, Wi, is defined for each individual model subject to L W; = 1 [Isaaks 
i=I 

and Srivastava, 1989]. 

4.3.2 Conditional Semivariograms 

The ability to differentiate between rock features with different densities would 

simplify the task of interpreting the semivariogram. The indicator semivariogram allows 

for differentiation into two phases [Goovaerts, 1997]. However, I introduce a conditional 
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semivariogram to determine the structure of multiple rock features that fall in specified 

density ranges. A conditional semivariogram is defined as 

1 N(h) 2 

r/h) = 2N/h) ~(x; - y;) if X; e}(j (4.8) 

where the value (xi - yJ2 is included in n(h) if and only if the value of xi is in the range of 

bin ){_j, and lvj(h) is the number of pairs included in the calculation. 

Using this conditional semivariogram, only the spatial characteristics in the density 

range represented by that bin are included in the calculation. In effect, the average 

structure size of that "phase" can be determined. If intrinsic stationarity were assumed 

for the traditional semivariogram calculation, the intrinsic assumption would be 

appropriate within each bin for this calculation as well. 

4.3.3 Phantom Images 

Computer tomography uses phantom images for algorithm testing and calibration. 

Phantom images are artificial "scans," which are theoretically generated to see if the 

reconstruction algorithm can reproduce the original data. A similar approach is used here 

to shown how the characteristic of semivariograms are influenced by various ideal rock 

geometries. Semivariogram analysis of phantom images containing properties common 

in the Culebra dolomite formation indicates distinct shapes in the semivariogram, which 

can be used in interpreting the major characteristics of the rock. 

Holt [1997], Hsieh et al. [1998], Brown et al. [2000], and visual inspection of Culebra 

dolomite cores indicate that solid dolomite; bedding planes made up of a large number of 
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vugs; vertical gypsum-filled cracks; gypsum infilling; silty dolomite outcrops, and 

dissolution voids are the major features of this rock formation. The distribution of bulk 

density of each of these features except mixed voxels is normally distributed and 

summarized in Table 4.1. Mixed voxels, which are primarily areas with voids smaller 

than the scanning resolution, are approximated by a beta distribution 

J;* Pm = Pm 1_ Pm f'(a+ P) ( J [( Ja-1( Jp-1] 
m Pmax Pmax Pmax f'(a)f'(fi) 

f; (.J!!!LJ = 0 
Pmax 

0:::;; Pm :::;; 1 
Pmax 

elsewhere 

(4.6) 

where J; ( Pm J is the true mixed voxel distribution, r is the gamma function, a and p 
Pmax 

are fitting coefficients, and Pmax is the largest density in the distribution. The range of the 

beta distribution (Equation 4.6) for mixed voxels is from zero to 2.52, the bulk density of 

solid dolomite. The fitting parameter ais estimated to range from 3.30 to 7.80.and fitting 

parameter p from 0.41 to 1.73 for Culebra dolomite Hsieh et al. [1998]. Using these 

properties, two-dimensional, 100 x 100 pixel phantom images were constructed. Random 

values for the beta distribution are generated by 

2a 2 
L,RN 

I 
I i=l 

Y = 2a 2a+2P 
"'f,RN_2+ L RN2 
i=l I i=2a+l I 

(4.7) 

where a and pare integers, and RNi is a random value from a normal distribution withµ= 

0 and a= 1 (Hahn and Shapiro, 1967). Clausnitzer and Hopmans [1999] describe a 

additional scheme for phase volume differentiation in two-phase systems which fits two 
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normal probability density functions and analytical expression to account for mixed 

voxels. 

4.3.4 Semivariogram Interpretation 

Knowledge of the semivariograms representative of characteristics associated with 

rock characteristics can aid in determining features in specific rock formations. The use 

of semivariograms, however, is not an absolute, as one semivariogram could be 

representative of numerous combinations of features. The more complex the rock, the 

harder it is to apply these principles. Larger resolution allows for larger scans with the 

same number of data points and therefore increases the possibility of larger-scale 

variability represented in the scan, but may not detect smaller resolution variability. 

Resolution selection should be based upon the scale of the problem being investigated. 

4.4 MATERIALS AND METHODS 

4.4.1 Sample Description 

A rock core sample (C2A V) was taken from the Culebra Dolomite Member of the 

Rustler Formation from drill holes near the Waste Isolation Pilot Plant (WIPP) site in 

southeastern New Mexico. The WIPP is a U.S. Department of Energy research-and­

development facility designed to demonstrate safe disposal of transuranic radioactive 

waste resulting from the United States' defense programs. The rock sample was obtained 

because the Culebra Dolomite is the most transmissive confmed unit above the waste 

repository [Lappin et al., 1989]. 
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The large number of mixed voxels in the Culebra makes it problematic to recreate in a 

stochastic representation. As such, a simpler material, concrete was used. Four concrete 

cores (AlA, A2A, A3A, A4A) were obtained from the same bridge deck. Major features 

of the concrete cores include small voids, aggregates, and cement. 

4.4.2 Semivariogram Analysis 

Deutsch and Journel [1998] provides a package of Fortran 77 geostatistical programs. 

The GAM code for semivariogram analysis with a regular grid was recompiled using 

Visual Fortran 6.0 to increase the maximum number of data points which could be 

analyzed. Semivariogram generation was then completed using the recompiled GAM 

program. An additional Fortran code called CONY AR was developed and used for 

conditional semivariogram analysis. 

4.5 Results And Discussion 

4.5.1 Geostatistics of Phantom Images 

Figures 4.1-4.5 show the phantom images and sem1vanograms for several 

characteristic properties ofCulebra dolomite. The uniform phantom image in Figure 4.la 

is solid dolomite. The bulk density is normally distributed with a mean and standard 

deviation as indicated in Table 4.1. The standardized results indicate a horizontal 

semivariogram with a sill and nugget at 1.0. The range is smaller than the smallest lag 

interval of I pixel. 
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The mean trend phantom image in Figure 4.1 b represents solid dolomite with a 

normally distributed bulk density. The mean increases from 2.63 g/ml to 2. 73 g/ml from 

left to right. The standardized semivariogram indicates this with an increasing r(h) value 

at larger lag distances. The nugget is approximately 0.85. 

Figure 4.1 c represents bedding planes found in solid dolomite. These are voids caused 

by layers of trapped gases in the sedimentary material. The phantom image has bedding 

planes in rows 19 and 45. The peaks on the semivariogram at approximately 19, 45, 55, 

and 81 pixels. These distances correspond to the distances to each bedding plane from 

the edges of the scanned area. In regards to the peak locations, the semivariogram is a 

mirror image at the center (50 pixels). For lags larger than 81 pixels, the semivariogram 

is linear because this represents comparisons of uniform regions. The semivariogram 

associated with bedding planes is an example of zonal anisotropy with strata, as the 

vertical semivariogram reaches a higher sill than the horizontal variogram because of 

larger average differences in the vertical direction. 

Gypsum outcrops are also common in this rock formation. Phantom images of 

rectangular and oval-shaped gypsum outcrops have been generated and analyzed. The 

rectangular gypsum outcrop in Figure 4.2a extends from pixel (60, 30) to pixel (90, 80) 

on the 100. The x-direction semivariogram shows peaks at lags of 30 and 60 pixels, 

which correspond to the width of the uniform regions in that direction. The slope of the 

x-direction semivariogram also changes at a lag of 10 pixels, which represents the width 

of the smaller uniform region on the right side of the image. The y-direction 

semivariogram shows a peak at a lag of 50 pixels, which corresponds to height of the 

outcrop on the phantom image. Changes of the slope of the semivariogram are also 
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indicated at lags of 20 and 30 pixels, corresponding to the heights of the dolomite areas 

above and below the outcrop. Figure 4.2b represents an oval-shaped gypsum outcrop 

with a major axis length of 35 pixels in the y-direction and a minor axis length of 30 

pixels in the x-direction and uniform dolomite surrounding. Results similar to the 

rectangular outcrop with regard to correlation expected ranges were found for the oval 

gypsum outcrop. 

Figures 4.2c-4.3b represent uniform dolomite with one, two, or three small oval 

gypsum outcrops, respectively. The outcrops have a major axis of 17 pixels in the y­

direction and 10 pixels in the x-direction. The semivariograms for all three of these 

representations have similar ranges of 17 and 10 pixels in the y and x-direction, 

respectively. For lags larger than the range in each semivariogram, the three 

semivariograms vary and are dependent on the physical location of the outcrops in each 

phantom image. The normalized nugget for the image with one small gypsum outcrop is 

approximately 0.8, compared to 0.7 for two gypsum outcrops and 0.6 for three outcrops. 

This indicates that the nugget decreases as the number of outcrops increases. 

Another prominent characteristic of the Culebra dolomite is hollow voids, or vugs, 

spaced randomly throughout the sample. Figures 4.3c and 4.4a represent solid dolomite 

with one and two circle voids, respectively. The voids have a nine pixel diameter and are 

randomly located in the dolomite. The semivariogram for one vug (Figure 4.3c) shows 

an abrupt change of slope in each direction at a. nine pixel lag and peaks at approximately 

21 and 70 pixels. The change of slope is associated with the size of the void, and the two 

peaks are associated with the physical location of the vug in the matrix. The 

semivariogram in Figure 4.4a is for two vugs with a diameter of nine pixels. As in Figure 
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4.3c, there is an abrupt change of slope at 9 pixels representing the width of the voids. 

The y-direction semivariogram exhibits pseudocycling with peaks associated with 

location features of the voids. The x-direction variogram would exhibit similar behavior 

for two holes except for the fact that by coincidence the edges of the two holes are 

equidistant from the left and right edge of the image. Because of this, the effect of the 

second void mirrors onto the first and appears to be only one void. Both Figures 4.3c and 

4.4a show a standardized nugget of approximately 0.2. 

Figure 4.4b represents twenty very small circular voids with a diameter of three pixels 

in a uniform dolomite formation. The semivariogram clearly indicates the three pixel 

range associated with the voids. At lags greater than three pixels the semivariogram in 

each direction shows uneven pseudocycling associated with location of the voids. The 

standardized nugget for this phantom image is approximately 0.6. 

Figures 4.4c-4.5c represent vertical gypsum-filled cracks in a uniform dolomite 

formation. Analysis of the first three figures reveals that differing lengths and densities 

of cracks provide different ranges and nuggets for the semivariograms. Figure 4.4c 

represents twenty randomly spaced vertical cracks 10 pixels long. This results in a y­

direction semivariogram with a range of 10 pixels and a standardized nugget of 

approximately 0.75. The phantom image in Figure 4.5a with 20 randomly spaced vertical 

cracks 20 pixels long results in a y-direction semivariogram with a range of 20 pixels and 

a standardized nugget of approximately 0.6. Finally, Figure 4.5b shows a phantom image 

with 40 randomly spaced vertical cracks 10 pixels long. This results in a y-direction 

semivariogram with a range of 10 pixels and a standardized nugget at approximately 0.6. 

These results indicate that the range is the length of the cracks in that direction and that as 
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crack density increases the standardized nugget decreases. Figure 4.5c represents a 

uniform dolomite with 20 randomly spaced vertical gypsum-filled cracks 10 pixels long 

and 20 randomly spaced vertical gypsum-filled cracks 20 pixels long. The resulting y­

direction semivariogram has a range of 20 pixels and a standardized nugget of 

approximately 0.5. There is also a noticeable decrease in the slope of the semivariogram 

at 10 pixels, corresponding to the length of the shorter cracks. This semivariogram is 

also more representative of the spherical and exponential models generally used for 

modeling semivariograms in stochastic hydrology [Isaab and Srivastava, 1989; 

Woodbury and Sudicky, 1991]. 

4.5.2 Sample Statistics 

Four two-dimensional concrete cores and one three-dimensional Culebra dolomite 

core. have been analyzed. Characteristics of these cores are summarized in Table 4.2. 

The average bulk densities range from 2.35 g/ml for sample AlA to 2.42 g/ml in sample 

A2A. 

Figures 4.6 and 4. 7 show the histograms for each of the samples. Among the concrete 

cores, AlA (Figure 4.6a) exhibits the smallest percentage of aggregates and A2A (Figure 

4.6b) exhibits the largest percentage of aggregates. The percentage of aggregates is 

similar for samples A3A (Figure 4.6c) and A4A (Figure 4.6d). A peak for dolomite and a 

mixed voxel tail is shown in the C2A V sample histogram (Figure 4. 7). 

Traditional semivariograms of these samples are shown in Figures 4.8 and 4.9. Figure 

4.8 shows pseudocycling in all directions for the concrete cores. Results of modeling the 

semivariograms with a combination model are shown in Table 4.3. The four concrete 
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core samples were analyzed in two dimensions with a single scan. Sample A2A has 

larger horizontal and vertical correlation lengths than the other three concrete core 

samples. The C2A V sample was analyzed in three dimensions with multiple scans. 

Further discussion of the geostatistical characteristics of sample C2A V can be found in 

Vogel and Brown [2001]. 

4.5.3 Conditional Semivariogram Analysis 

Conditional semivariogram analysis has been completed on the five samples. Results 

of the conditional semivariogram analysis are summarized in Table 4.4. Figure 4.10 

shows the conditional semivariograms for a concrete sample (AlA). None of the 

concrete cores show greater than 2.4% voids. The size of detected voids indicates only a 

few voids per core. Percent aggregates range from 14.4% in A3A to 29.5% in core A2A. 

The smallest aggregates were detected in core A4A and the largest aggregates were 

shown in core A2A. The Culebra dolomite core (C2A V) indicated 92.8% solid dolomite 

and 7 .1 % mixed voxels. In general the range for the mixed voxels was larger than the 

range for the solid dolomite. In addition, voids in the Culebra dolomite in the x and y 

directions were best fit with a Gaussian semivariogram models, while the semivariograms 

for all other samples were best fit by spherical, exponential, or combination spherical­

exponential models. 
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4.5.4 Traditional and Conditional Semivariogram Comparisons 

Correlation lengths from traditional semivariograms can be compared with correlation 

lengths detected by conditional semivariograms by comparing Tables 4.3 and 4.4. In 

general, the traditional semivariogram correlation lengths are a weighted average of the 

conditional semivariogram ranges that is weighted by a combination of the sill value and 

the percent if points in the bin. 

4.5.5 Stochastic Representation 

A two-dimensional stochastic representation of the concrete core AlA has been 

generated. A comparison of the generated representation and the actual scan is shown n 

Figure 4.11. The representation is generated by placing structure of the size indicated by 

the conditional semivariogram of voids and aggregates on a background of cement. The 

generated values of voids, cement, and concrete are normally distributed with mean and 

standard deviation as shown in Table 4.5. The histogram showing the relative frequency 

distribution of the stochastic representation and actual CT data is shown in Figure 4.12. 

Figure 4.13 shows the semivariograms of the stochastic representation and the actual CT 

data. Relative frequencies are reproduced well using these assumptions for all values 

except between 2.5 and 2.6 g/ml, where the actual image indicates larger relative 

frequencies than the generated image. This may be a result of edge pixels between 

cement and aggregate structure that are not adequately represented in the generated 

image. The semivariograms shown in Figure 4.13 show similar structure, although the 
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hole effect in they direction of the actual scan at approximately 15 mm is not reflected in 

the semivariogram model and is therefore not found in the stochastic representation. 

Real and phantom images are not expected to be identical, but should show similar 

characteristics. The phantom image histogram closely resembles the histogram of the 

original CT data as it is used to determine outcrop density. Semivariograms for the real 

and phantom image should be similar, but not necessarily identical, especially at smaller 

lags. Larger lags may deviate more than smaller lags because these lags are usually more 

representative of location than characteristics of the rock. 

Successful application of phantom images and semivariograms to identify the major 

features in the porous media could potentially be used to create a stochastic 

representation of the media which may be more representative of the true porous media 

structure for contaminant transport modeling than traditional finite difference modeling. 

This may be especially true for porous media with small hydraulic conductivities where 

dispersion and diffusion are important in contaminant transport and plume width. 

4.6 Summary and Conclusio~s 

Phantom images have been utilized to develop signature semivariograms of structural 

elements common to porous media. Knowledge of semivariograms that are associated 

with specific structure can be used as a tool to identify that structure within the porous 

media. It should be noted, however, that this is only a tool and two different structures 

could possess similar semivariograms. 

A conditional semivariogram has been introduced to determine structure size in 

defined bulk density ranges, or bins. This allows for geostatistical characterization of 
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different rock types and voids within the porous media. As expected, the traditional 

semivariogram results are a weighted average of the various conditional semivariograms. 

Finally, by combining phantom images, histogram analysis, semivariogram analysis, 

and conditional semivariogram analysis, a stochastic representation of porous media has 

been generated. These representations have the potential to be used in flow transport 

models to determine possible contamination or remediation strategies or could be used as 

an initial image for a simulation technique such as simulated annealing. 
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Table 4.1. Mean and standard deviation of each of the major features of the Culebra 
dolomite soil core (Holt, 1997). 

Standard 
Mean Deviation 
(g/ml) (g/ml) 

Solid Dolomite 2.52 0.07 
Gypsum 2.32 0.07 
Mixed Voxels (beta distribution) 2.02 0.41 
Void 0.0 -

Table 4.2. Sample characteristics. 

Sample Name, 
Sample Dimensions, Bulk Density 

XxYxZ, (g/ml) 
Type 

(Voxels) Voxel Size (mm) Mean St. Dev. 

AlA, concrete 
93 x44 X 1 

1.016 X 1.016 X 1.016 2.34 0.20 
(4092) 

A2a, concrete 
94 X 45 X 1 

1.016 X 1.016 X 1.016 2.42 0.26 (4230) 

A3A, concrete 
94 X 45 X 1 

1.016 X 1.016 X 1.016 2.35 0.24 (4230) 

A4A, concrete 
93 X 44 X 1 

1.016 X 1.016 X 1.016 2.39 0.23 
(4092) 

C2A V, Culebra 71 X 71 X 46 
0.37 X 0.37 X 0.75 2.44 0.30 

Dolomite (231,886) 
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T bl 4 3 P f d di d (1) a e .. ropert1es o stan ar ze sem1varioszrams. 

Sample Name and Direction Semivariogram Model 
Range 

Sill, W; -l-,mm (3) 

(mm) 

AIA 
x (nested)· Combination of 6.5 0.58 

0.973 to 40.6 
X Two Spherical 14.3 0.45 

y (nested) Combination of 6.2 0.64 0.987 to 39.6 
y Two Spherical 24.1 0.41 

A2A 
x (nested) Combination of 7.2 0.65 

0.977 to 24.4 
X Two Spherical 11.6 0.44 

y (nested) Combination of 8.3 0.68 
0.991 to 35.6 

V Spherical and Exponential 23.4 0.53 

A3A 
x (nested) Combination of 5.6 0.39 

0.970 to 30.5 
X Two Spherical 12.3 0.58 

y (nested) Combination of 6.6 0.81 
0.964 to 39.6 

V Spherical and Exponential 25.0 0.17 

A4A 
x (nested) Combination of 6.1 0.46 

0.982 to 30.5 
X Two Spherical 12.0 0.52 

y (nested) Combination of 6.1 0.96 
0.968 to 27.4 

y Two Spherical 25.0 0.10 

C2av 
x (nested) Combination of 2.3 0.83 

0.991 to 13.0 
X Spherical and Exnonential 25.9 <2> 0.22 

y (nested) Combination of 9.1 0.17 
0.992 to 15.9 

y Spherical and Exnonential 2.3 0.85 
z (nested) Combination of 28.7w 0.16 

0.993 to 14.8 
z Spherical and Exponential 1.6 0.83 

l') None of the cores were modeled with a nugget 
<2> Range approaching sample width 
<3> In this column, the coefficient of determination and the largest lag value used for calculation of the 
coefficient of determination is reported. 
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T bl 44 P a e rf f d". I rope 1es o con 1tiona sem1vanograms. (1) 

Sample Bin Range (g/ml), Direction Model l:tJ a1 WJ a2 W2 

[% pts in range l (mm) (mm) 
Al A 0.0-1.9 X se 4.6 10.0 17.8 4.02 

f0.6%1 y se 4.5 8.6 25.0 3.23 
1.9-2.6 X se 6.2 0.35 25.0 0.57 

[84.3%] y se 4.9 0.32 25.0 0.48 
>2.6 X s 10.9 2.02 -- l~J --

[15.1%] y s 10.0 1.36 - --
A2A 0.0-1.9 X se 6.4 9.9 25.0 7.0 

f2.0%1 y se 8.1 8.4 12.1 3.3 
1.9-2.6 X ss 4.9 0.34 16.5 0.51 
[68.5%] y ss 5.3 0.26 25.0 0.49 

>2.6 X s 11.1 0.94 -- --
[29.5%] y s 14.7 1.49 -- --

A3A 0.0-1.9 X se 5.3 9.1 25.0 5.84 
f2.1%1 y se 5.8 9.6 25.0 1.58 
1.9-2.6 X se 8.5 0.18 12.1 0.42 
[83.5%] y s 5.8 0.56 -- --

>2.6 X s 13.2 1.46 -- --
[14.4%] y s 11.5 1.82 -- --

A4A 0.0-1.9 X se 5.9 6.1 17.5 0.18 
f2.4%1 y s 5.5 8.8 -- --
1.9-2.6 X ss 4.8 0.32 15.4 0.47 
[75.7%1 y ss 5.0 0.56 18.1 0.20 

>2.6 X s 9.7 1.33 -- --
[21.9%] y s 7.6 1.35 -- --

C2AV 0.0-0.5 X g 2.8 25.2 -- --
[0.1%] y g 2.8 26.3 -- --

z e 5.7 21.5 -- --
0.5-2.00 X se 2.2 2.38 6.5 1.19 
[7.1%] y se 3.4 3.64 14.7 0.44 

z se 1.4 2.42 8.9 1.23 
>2.0 X se 1.7 0.59 16.3 0.13 

[92.8%] y se 1.8 0.63 9.9 0.12 
z se 1.4 0.64 20.0 0.11 

llJ None of the selillvanograms were modeled with a nugget 
C2> s=spherical, se=combination spherical and exponential, ss=combination of two spherical, g=gaussian, 
e=exponential 
C3> large scale structure not detected or hole effect 
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Solid Dolomite 

Solid Dolomite with Mean Trend 
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Figure 1. Phantom images and semivariograms for (A) solid dolomite, (B) solid dolomite 
with a mean trend, and (C) solid dolomite with vuggy bedding planes. 
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Rectangular Gypsum Outcrop 

Oval Gypsum Outcrop 

One Small Gypsum Outcrop 
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Figure 2. Phantom images and semivariograms for (A) a rectangular gypswn outcrop, 
(B) an oval gypswn outcrop, and (C) one small oval gypswn outcrop. 
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Two Small Oval Gypsum Outcrops 

Three Small Oval Gypsum Outcrops 

One Small Void 
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Figure 3. Phantom images and semivariograms for (A) two small gypsum outcrops, (B) 
three small gypsum outcrops, and (C) one small void. 
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Figure 4. Phantom images and semivariograms for (A) two small voids, (B) many very 
small voids, and (C) twenty IO-pixel gypsum-filled cracks. 
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Figure 5. Phantom images and semivariograms for (A) twenty 20-pixel gypsum-filled 
cracks, (B) forty 10-pixel gypsum-filled cracks, and (C) twenty 10-pixel gypsum-filled 
cracks and twenty 20-pixel gypsum-filled cracks. 
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Figure 4.6. Histograms for concrete cores (a) AlA, (b) A2A, (c) A3A, and (d) A4A. 
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Figure 4.8. Semivariograms of concrete cores (a) AlA, (b) A2A, (c) A3A, and (d) A4A. 
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Figure 4.11. Stochastic representation and CT data of concrete core Al A. 

101 



0. 20 ... .. .......... _ ............. _,___ ................ - ... -.......... - ........ __ ,............ .. ....... --............... -................................... -... -....... __ , ............ _,_ .. ,_ ....................... _ ........................................ -... -........... ___ , ........ . 

0.16 
>,, 
CJ 
C: 
Cl) 

-+- Stochastic Representation 

·-•·· CT Data 

S,. 0.12 -t---------------------------l 
f 
u. 
Cl) 

~ 0.08 
cu 
a; 
0:: 

0.00 ---------... --c._---,:_-11111 __ ---1 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Bulk Density (g/ml) 

Figure 4.12. Relative histogram of a stochastic representation and the CT data for 
concrete core AIA. 

102 



1.50 .-------------------------, 

a 
1.25 --t-------------------------------1 

-:0-,. 

~ 0.75 

• CT data, x dir 

0.25 --+--------------------< 

- Stochastic Representation, x dir 
• 

0.00 -t--------.---,----.----.-----,----.------1 

1.50 

b 
1.25 

1.00 
+++++++++++++ + + + + 

+ 
+ 
~ ++++++ 

I 
-:0-,. 

~ 0.75 

~ 

I+ + CT data, y dir 
0.50 

-

- Stochastic Representation, y dir 0.25 
+ 

0.00 I I I I I I 

0 5 10 15 20 25 30 35 

h, mm 

Figure 4.13. Semivariogram in the (A) x and (B) y direction of a stochastic 
representation and the CT data for concrete core AlA. 

103 



APPENDIX A 

SEMIV ARIOGRAM VALUES 
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Table Al. Composite semivariogram values for Culebra dolomite samples C26 l IA 
(slice 30-90) and C261 IA (slice 90-150). 

C261 IA (slice 30-90) C261 IA (slice 90-150) 
la X z X z 
I 0.1887 0.2123 0.4235 0.1925 0.2206 0.4168 
2 0.3610 0.4345 0.5183 0.3749 0.4591 0.5517 
3 0.4403 0.5653 0.5874 0.4658 0.6008 0.6284 
4 0.4857 0.6574 0.6427 0.5175 0.6936 0.6809 
5 0.5193 0.7341 0.6707 0.5554 0.7601 0.7219 
6 0.5463 0.7978 0.6978 0.5852 0.8072 0.7549 
7 0.5696 0.8511 0.7213 0.6100 0.8466 0.7725 
8 0.5893 0.895 0.7429 0.6330 0.8860 0.7913 
9 0.6063 0.9292 0.7604 0.6540 0.9202 0.8109 
10 0.6212 0.9521 0.7743 0.6731 0.9469 0.8290 
11 0.6344 0.9633 0.7853 0.6907 0.9689 0.8448 
12 0.6448 0.9658 0.791 0.7071 0.9891 0.8591 
13 0.6517 0.9621 0.7961 0.7210 1.0074 0.8743 
14 0.6589 0.9517 0.8081 0.7321 1.0238 0.8857 
15 0.6687 0.9368 0.8122 0.7428 1.0407 0.8959 
16 0.6802 0.9212 0.8185 0.7540 1.0570 0.9033 
17 0.6927 0.9098 0.818 0.7635 1.0740 0.9051 
18 0.7043 0.9015 0.8254 0.7727 1.0917 0.9114 
19 0.7153 0.8959 0.83 0.7826 1.1067 0.9125 
20 0.7255 0.8916 0.8359 0.7931 1.1194 0.9172 
21 0.7380 0.8844 0.8465 0.8034 1.1295 0.9197 
22 0.7508 0.8742 0.8435 0.8131 1.1385 0.9192 
23 0.7629 0.8627 0.847 0.8208 1.1449 0.9295 
24 0.7729 0.8515 0.8534 0.8272 1.1419 0.9370 
25 0.7831 0.8449 0.8736 0.8313 1.1324 0.9450 
26 0.7946 0.8413 0.8943 0.8358 1.1199 0.9401 
27 0.8050 0.8401 0.9144 0.8384 1.1096 0.9332 
28 0.8132 0.8440 0.9248 0.8411 1.1039 0.9295 
29 0.8214 0.8553 0.9388 0.8459 1.0988 0.9263 
30 0.8324 0.8723 0.9533 0.8485 1.0939 0.9305 
31 0.8442 0.8896 0.9697 0.8489 1.0902 0.9357 
32 0.8537 0.9115 0.9866 0.8521 1.0868 0.9398 
33 0.8608 0.9354 1.0067 0.8566 1.0832 0.9405 
34 0.8650 0.9566 1.0194 0.8599 1.0820 0.9284 
35 0.8691 0.9759 1.0284 0.8619 1.0794 0.9129 
36 0.8715 0.9897 1.0319 0.8651 1.0683 0.9071 
37 0.8729 0.9993 1.0564 0.8664 1.0510 0.9049 
38 0.8724 1.0029 1.0635 0.8685 1.0296 0.9069 
39 0.8746 1.0010 1.0752 0.8713 1.0049 0.9130 
40 0.8803 0.9933 1.0635 0.8757 0.9814 0.9190 
41 0.8892 0.9808 1.0593 0.8766 0.9573 0.9257 
42 0.8956 0.9640 1.0723 0.8777 0.9339 0.9299 
43 0.9045 0.9402 1.0806 0.8839 0.9066 0.9297 
44 0.9149 0.9158 1.0859 0.8920 0.8786 0.9276 
45 0.9276 0.8950 1.0950 0.9028 0.8523 0.9264 
46 0.9342 0.8840 1.1004 0.9171 0.8271 0.9198 
47 0.9340 0.8837 1.1059 0.9317 0.8064 0.9353 
48 0.9343 0.8909 1.1086 0.9472 0.7892 0.9396 
49 0.9377 0.9047 1.1131 0.9649 0.778 0.9345 
so 0.9404 0.9192 1.1345 0.9897 0.7804 0.9489 
51 0.9483 0.9315 1.1790 1.0188 0.7905 0.9673 
S2 0.9591 0.9447 1.2187 1.0456 0.8046 0.9939 
S3 0.9676 0.9592 1.2673 1.0653 0.8219 0.9891 
S4 0.9735 0.9698 1.3308 1.0744 0.8417 1.0131 
5S 0.9833 0.9800 1.4306 1.0757 0.8614 1.0405 
S6 0.9939 0.9926 1.5234 1.0712 0.8778 1.0844 
57 0.9853 1.0061 1.5456 1.0708 0.8914 1.1337 
58 0.9677 1.0139 1.5561 1.0710 0.9030 1.1518 
S9 0.9299 1.0163 1.5334 1.0574 0.9134 1.2215 
60 0.9177 1.0204 1.3142 1.0443 0.9165 1.2414 
61 1.0300 0.9171 
62 1:0420 0.9197 
63 1.0479 0.9315 
64 1.0402 0.9517 
65 1.0135 0.9729 
66 0.9723 0.9948 
67 0.9128 1.0188 
68 0.8446 1.0439 
69 0.7796 1.0664 
70 0.7180 1.0858 
71 0.6517 1.0988 
72 0.5880 1.0959 
73 0.5349 1.0535 
74 0.4922 0.9749 
75 0.4705 0.8604 
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Table A2. Composite semivariogram values for Culebra dolomite samples ClAV and 
C2AV. 

CIAV C2AV 
la X z X z 
I 0.1958 0.1952 0.5380 0.2684 0.2769 0.6232 
2 0.4418 p.4389 0.7790 0.5652 0.5911 0.7824 
3 0.5600 0.5531 0.8372 0.6484 0.6905 0.8306 
4 0.6659 0.6553 0.8391 0.7247 0.7769 0.8472 
5 0.7411 0.7287 0.8386 0.7794 0.8382 0.8521 
6 0.7837 0.7724 0.8478 0.8044 0.8705 0.8608 
7 0.8132 0.8046 0.8525 0.8228 0.8957 0.8729 
8 0.8311 0.8254 0.8613 0.8347 0.9131 0.8806 
9 0.8431 0.8421 0.8737 0.8445 0.9268 0.8892 
10 0.8515 0.8589 0.8737 0.8536 0.9354 0.8913 
II 0.8561 0.8718 0.8724 0.8599 0.9434 0.8946 
12 0.8587 0.8819 0.8814 0.8669 0.9581 0.9077 
13 0.8596 0.8909 0.8864 0.8747 0.9726 0.9196 
14 0.8590 0.9014 0.8860 0.8784 0.9861 0.9071 
15 0.8577 0.9119 0.8874 0.8811 0.9988 0.9075 
16 0.8563 0.9214 0.8983 0.8833 1.0049 0.9169 
17 0.8551 0.9335 0.9052 0.8829 1.0091 0.9254 
18 0.8523 0.9448 0.9094 0.8849 1.0106 0.9354 
19 0.8484 0.9544 0.9193 0.8886 1.0105 0.9449 
20 0.8466 0.9633 0.9306 0.893 1.015 0.9596 
21 0.8476 0.9714 0.9371 0.8995 1.0187 0.9661 
22 0.8488 0.9805 0.9511 0.904 1.0222 0.9986 
23 0.8487 0.9890 0.9775 0.9063 1.0302 1.025 
24 0.8487 0.9959 1.0054 0.9074 1.0353 1.0316 
25 0.8479 1.0025 1.0283 0.909 1.0357 1.0569 
26 0.8468 1.0097 1.0252 0.9107 1.0361 1.0693 
27 0.8469 1.0188 1.022 0.9128 1.0338 1.0931 
28 0.8476 1.0248 1.039 0.9169 1.0322 1.1008 
29 0.8488 1.0241 1.0507 0.9199 1.0336 1.1071 
30 0.8483 1.0232 1.0541 0.9225 1.0337 1.1179 
31 0.8460 1.0251 1.0679 0.9288 1.0323 1.1315 
32 0.8438 1.0272 1.0893 0.937 1.0302 1.1346 
33 0.8439 1.0281 1.1056 0.941 1.0288 1.1308 
34 0.8469 1.0285 1.1319 0.9425 1.0297 1.1589 
35 0.8539 1.0283 1.1509 0.9471 1.0289 1.1775 
36 0.8616 1.0304 1.1495 0.9568 1.0258 1.1923 
37 0.8693 1.0357 1.1568 0.9673 1.0258 1.2179 
38 0.8741 1.0415 1.1709 0.979 1.0246 1.2433 
39 0.8770 1.0461 1.2287 0.9867 1.0217 1.2548 
40 0.8793 1.0501 1.3048 0.9912 1.0162 1.2865 
41 0.8823 1.0558 1.3464 0.9993 1.0055 1.3755 
42 0.8847 1.0631 1.3414 1.0075 0.9959 1.445 
43 0.8854 1.0715 1.3437 1.0109 0.99 1.6222 
44 0.8860 1.0825 1.2598 1.0153 0.9832 1.8445 
45 0.8901 1.0948 1.1553 1.0235 0.9762 2.0298 
46 0.8976 1.1052 1.0297 0.9662 
47 0.9040 1.1133 1.036 0.9504 
48 0.9127 1.1277 1.04 0.9394 
49 0.9237 1.1472 1.0419 0.9354 
50 0.9319 1.1668 1.0419 0.9329 
51 0.9385 1.1865 1.0416 0.9336 
52 0.9482 1.2078 1.0433 0.9271 
53 0.9594 1.2297 1.0415 0.9126 
54 0.9670 1.2574 1.0368 0.9061 
55 0.9695 1.2884 1.0259 0.9057 
56 0.9727 1.3154 1.0134 0.9083 
57 0.9750 1.3401 1.0039 0.9115 
58 0.9776 1.3722 1.005 0.9108 
59 0.9882 1.4019 1.0148 0.9104 
60 1.0054 1.4295 1.0277 0.9125 
61 1.0197 1.4655 1.0464 0.9049 
62 1.0259 1.5110 1.0717 0.8888 
63 1.0307 1.5548 1.0957 0.8836 
64 1.0341 1.5836 1.1284 0.8959 
65 1.0268 1.5805 1.155 0.9125 
66 1.0206 1.5592 1.1679 0.9438 
67 1.0211 1.5237 1.1677 0.9899 
68 1.0342 1.4796 1.1627 1.0447 
69 1.0762 1.4281 1.1791 1.0987 
70 1.1283 1.3724 1.2209 1.144 
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Table A3. Composite semivariogram values for artificial porous media and concrete 
samples, BOT and AlA, respectively. 

la 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
51 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

X 

0.07058 
0.20672 
0.33294 
0.43366 
0.52345 
0.60758 
0.67855 
0.73489 
0.77738 
0.80663 
0.82548 
0.83615 
0.84199 
0.84688 
0.85180 
0.85505 
0.85746 
0.86081 
0.86351 
0.86629 
0.87347 
0.88547 
0.90088 
0.91979 
0.94279 
0.96909 
0.99673 
1.02316 
1.04856 
1.0769 

1.11081 
1.14374 
1.17178 
1.19742 
1.2234 

1.24713 
1.26615 
1.2788 

1.28724 
1.29618 
1.30885 
1.32269 
1.33939 
1.36281 
1.3948 

1.43179 
1.47566 
1.53261 
1.59715 
1.66238 
1.72416 
1.77653 
1.80712 
1.80988 
1.80146 
1.80541 
1.82027 

BOT AIA 

0.06706 
0.19652 
0.3152 

0.40559 
0.4817 

0.54952 
0.60089 
0.63473 
0.65545 
0.66677 
0.67148 
0.67305 
0.67416 
0.6792 

0.69016 
0.70431 
0.71724 
0.72793 
0.73719 
0.7456 

0.75389 
0.76278 
0.77164 
0.78005 
0.78773 
0.79394 
0.79925 
0.80361 
0.80591 
0.80637 
0.80565 
0.80398 
0.80033 
0.79497 
0.78991 
0.78298 
0.77274 
0.76111 
0.7496 

0.74031 
0.7346 

0.73018 
0.72915 
0.73414 
0.74646 
0.76208 
0.78406 
0.81516 
0.85331 
0.8957 
0.94218 
0.99172 
1.04899 

1.118 
1.17251 
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z 
0.1021 

0.24625 
0.34982 
0.4276 

0.49561 
0.54526 
0.57713 
0.5948 

0.60161 
0.60264 
0.60152 
0.60414 
0.61366 
0.62406 
0.63087 
0.6362 

0.64156 
0.64554 
0.64771 
0.64979 
0.65418 

0.661 
0.67037 
0.67931 
0.68394 
0.68709 
0.69162 
0.69887 
0.70847 
0.71753 
0.72734 
0.73756 
0.74634 
0.75188 
0.75283 
0.74863 
0.74352 
0.74178 
0.74382 
0.74918 
0.75698 
0.76699 
0.77878 
0.78704 
0.79238 
0.79311 
0.7912 

0.78408 
0.77763 
0.77961 
0.79043 
0.8093 
0.8347 

0.87132 
0.91212 
0.95689 
0.99448 
1.0151 

1.03934 

X 

0.13044 
0.33866 
0.52775 
0.67451 
0.7769 

0.84991 
0.89777 
0.91376 
0.92912 
0.96072 
0.99908 
1.03682 
1.06896 
1.07732 
1.0648 

1.05887 
1.03581 
1.01688 
1.00893 
1.0063 

1.00922 
1.01441 
1.02097 
1.02637 
1.03408 
1.03559 
1.02284 
1.00316 
1.00455 
0.98099 
0.96004 
0.9643 
0.9746 
1.01532 
1.04806 
1.08375 
1.08218 
1.08222 
1.07771 
1.08017 
1.10978 
1.13297 
1.16597 

0.13291 
0.35677 
0.5324 

0.65092 
0.72926 
0.78691 
0.82925 
0.85338 
0.86817 
0.88549 
0.90416 
0.9216 

0.93011 
0.9283 

0.93413 
0.95335 
0.98581 
1.02848 
1.06441 
1.08344 
1.08246 
1.07271 
1.07039 
1.07042 
1.06833 
1.0615 

1.05757 
1.05882 
1.05815 
1.04935 
1.03251 
1.02606 
1.03335 
1.02396 
1.01163 
1.02021 
1.03152 
1.03693 
1.02654 
1.00451 
0.97284 
0.92444 
0.87371 
0.81044 
0.74741 
0.72393 
0.7477 

0.77564 
0.78869 
0.80152 
0.81596 
0.83273 
0.85752 
0.88435 
0.91025 
0.93548 
0.95755 
0.95614 
0.92303 
0.90311 
0.94133 
0.97994 
0.99917 
1.02719 
1.06804 
1.11762 
1.16099 
1.18866 
1.21764 
1.22575 
1.20561 
1.18544 
1.19277 
1.21.137 
1.24068 



TableA4. Composite semivariogram values for concrete samples A2A, A3A, and A4A. 
A2A A3A A4A 

la X X X 

1 0.13582 0.12157 0.13888 0.13099 0.13475 0.16452 
2 0.36283 0.35313 0.34127 0.37192 0.34990 0.46567 
3 0.57108 0.55926 0.51814 0.58517 0.52374 0.70959 
4 0.71303 0.70055 0.6397 0.74054 0.65367 0.85454 
5 0.81257 0.79695 0.71831 0.84688 0.75341 0.94060 
6 0.89961 0.87734 0.78573 0.90764 0.82246 0.99268 
7 0.97112 0.95114 0.84087 0.94279 0.86603 1.01742 
8 1.01820 1.01206 0.88346 0.96209 0.90126 1.01555 
9 1.02902 1.05022 0.92020 0.96961 0.93341 0.99640 
10 1.01276 1.07018 0.94259 0.96982 0.96409 0.98002 
II 1.00519 1.08651 0.96368 0.95560 0.99820 0.97507 
12 1.0207 1.10575 0.98497 0.93287 1.01957 0.97851 
13 1.04033 1.12428 1.00137 0.91337 1.02488 0.99251 
14 1.05259 1.13206 1.01352 0.89583 1.01813 1.01034 
15 1.06485 1.12997 1.00632 0.89574 1.00695 1.02712 
16 1.09323 1.12395 0.99062 0.91330 1.00435 1.04401 
17 1.12629 1.12017 0.98157 0.93442 0.99153 1.05961 
18 1.13400 1.12049 0.96179 0.94615 0.97420 1.05691 
19 1.09649 1.12836 0.92418 0.94724 0.95483 1.03492 
20 1.02610 1.14245 0.88349 0.94525 0.92790 1.02594 
21 0.99948 1.16207 0.88340 0.94910 0.91864 1.04794 
22 1.00142 1.18177 0.90452 0.96541 0.91829 1.08579 
23 1.02249 1.19319 0.93873 0.98738 0.93862 1.11013 
24 1.03092 1.19751 0.99419 0.99816 0.97429 1.12296 
25 0.99143 1.20398 1.02519 0.99604 0.99049 1.12508 
26 0.87611 1.21446 1.00234 0.98642 0.99440 1.12704 
27 0.78947 1.22154 0.97571 0.97205 0.99799 1.11740 
28 0.77738 1.22596 0.97103 0.95768 1.00061 1.07745 
29 0.81396 1.22070 0.99628 0.94720 0.99372 1.02198 
30 0.84601 1.20084 1.02731 0.95168 0.97505 0.99663 
31 0.85707 1.17768 1.07311 0.97219 0.93057 1.00421 
32 0.87485 1.17122 1.11997 0.99909 0.86343 1.02494 
33 0.90657 1.17917 1.15421 1.02234 0.82191 1.03650 
34 0.91856 1.17972 1.19521 1.03266 0.89040 1.03313 
35 0.87783 1.16632 1.24229 1.02412 1.05190 1.01833 
36 0.79941 1.14735 1.28398 1.00444 1.24400 0.99982 
37 0.75942 1.11997 1.37304 0.99433 1.43345 1.00128 
38 0.77541 1.08092 1.57193 0.98966 1.60820 1.02550 
39 0.78476 1.04216 1.80824 0.98181 1.77834 1.04144 
40 0.79243 1.01536 2.04803 0.96832 1.88906 1.03350 
41 0.79267 1.00240 2.25914 0.94550 1.74346 1.00718 
42 0.78600 1.00353 2.54161 0.90410 1.41081 0.97050 
43 0.80818 1.01989 2.66412 0.86162 1.18825 0.94264 
44 0.95757 1.03551 2.55629 0.83856 0.93842 
45 1.03718 0.84401 0.95546 
46 1.04953 0.86736 0.98482 
47 1.08341 0.8942 1.01023 
48 1.10719 0.91157 1.01785 
49 1.09006 0.92362 0.99554 
50 1.03382 0.93255 0.96117 
51 0.97099 0.91914 0.93534 
52 0.93056 0.88708 0.91186 
53 0.91099 0.85953 0.87765 
54 0.90238 0.86587 0.84036 
55 0.89877 0.89066 0.82159 
56 0.89082 0.91131 0.80143 
57 0.87204 0.93997 0.74135 
58 0.84902 0.98709 0.67995 
59 0.83697 1.01608 0.67178 
60 0.85173 1.01411 0.69881 
61 0.89236 0.99737 0.72169 
62 0.92319 0.99677 0.73248 
63 0.89764 1.01506 0.73997 
64 0.82172 1.03832 0.76739 
65 0.74897 1.05057 0.80345 
66 0.72211 1.07042 0.84339 
67 0.72865 1.11084 0.88784 
68 0.74780 1.14269 0.93425 
69 0.76438 1.14930 0.96990 
70 0.77444 1.12558 0.98354 

0.77288 1.10000 0.96125 
0.76980 1.08298 0.92684 
0.77375 1.07943 0.87242 
0.76535 1.09059 0.80796 
0.73751 1.12937 0.76112 
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Table B 1. Sample Metadata for Culebra dolomite cores. 
Sample Name: C261 la 
Image Size (voxels): 120 x 120 x 162 
Analyzed pixel dimensions: x: 30, 90 

Sample Name: 
Image Size (voxels): 
Analyzed pixel dimensions: 

Sample Name: 
Image Size (voxels): 
Analyzed pixel dimensions: 

y: 30, 90 
z: 30, 150 
ClAV 
120 X 120 X 54 
x: 25, 95 
y: 25, 95 
z: 5, 50 
C2AV 
120 X 120 X 54 
x: 24, 94 
y: 25, 95 
z: 5, 50 
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Table B2. Sample Metadata for concrete cores. 
Sample Name: AlA 
Image Size (voxels): 100 x 100 
Analyzed pixel dimensions: x: 40, 83 

Sample Name: 
Image Size (voxels): 
Analyzed pixel dimensions: 

: 16, 108 
A2A 
100 X 100 
x: 37, 81 

: 14, 107 
Sample Name: A3A 
Image Size (voxels): 100 x 100 
Analyzed pixel dimensions: x: 37, 81 

y: 14, 107 
Sample Name: A4A 
Image Size (voxels): 100 x 100 
Analyzed pixel dimensions: x: 38, 81 

: 15, 107 
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program main 
C This is the edited gam.for source code, now called convar.for. Much of the documentation for gam.for 
C remains 
C 
C 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C % 
C Copyright (C) 1996, The Board of Trustees of the Leland Stanford % 
C Junior University. All rights reserved. % 
C % 
C The programs in GSLIB are distributed in the hope that they will be % 
C useful, but WITHOUT ANY WARRANTY. No author or distributor accepts % 
C responsibility to anyone for the consequences of using them or for % 
C whether they serve any particular purpose or work at all, unless he % 
C says so in writing. Everyone is granted permission to copy, modify % 
C and redistribute the programs in GSLIB, but only under the condition % 
C that this notice and the above copyright notice remain intact. % 
C % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c-----------------------------------------------------------------------
c 
C 

C 

Variogram of Data on a Regular Grid 
*********************************** 

C 

c This is a template driver program for GSLIB's "gam" subroutine. The 
c input data is ordered rowwise (x cycles fastest, then y, then z) in a 
c GEOEAS format file. The User's Guide contains more details. 
C 

c The program is executed with no command line arguments. The user 
c will be prompted for the name of a parameter file. The parameter 
c file is described in the documentation (see the example gam.par) 
C 

C 

c The output file will contain each directional variogram ordered by 
c direction and then variogram (the directions cycle fastest then the 
c variogram number). For each variogram there will be a one line 
c description and then "nlag" lines with the following: 
C 

c a) lag number (increasing from 1 to n1ag) 
c b) separation distance 
c c) the "variogram" value 
c d) the number of pairs for the lag 
c e) the mean of the data contributing to the tail 
c f) the mean of the data contributing to the head 
C 

C 

C 

c-----------------------------------------------------------------------
include 'gam.inc' 

C 

c Read the Parameter File: 
C 

call readparm 
C 

c Call gam to compute the required variograms: 
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C 

call gamma 
C 

c Write Results: 
C 

call writeout 
C 

c Finished: 
C 

write(* ,9998) VERSION 
9998 format(/' GAM Version: ',f5.3, 'Finished'/) 

stop 
end 

subroutine readparm 
c-----------------------------------------------------------------------
c 
C 

C 

C 

Initialization and Read Parameters 
********************************** 

c The input parameters and data are read in from their files. Some quick 
c error checking is performed and the statistics of all the variables 
c being considered are written to standard output. 
C 

C 

C 

c----------------------------------------------------------------------

C 

include 'gam.inc' 
parameter(MV=20) 
real var(MV),cut(MXV ARG) 
real*8 avg(MV),ssq(MV) 
real vrmin(MAXV AR),vrmax(MAXV AR) 
integer ivar(MV),num(MV),ivc(MXV ARG),indflag(MXV ARG) 
character datafl *40,str*40 
logical testfl 
data lin/1/,ncut/O/ 

c Note VERSION number: 
C 

write(* ,9999) VERSION 
9999 format(/' GAM Version: ',f5.3/) 

C 

c Get the name of the parameter file - try the default name if no input: 
C 

write(*,*) 'Which parameter file do you want to use?' 
read (*,'(a40)') str 
iftstr(l:l).eq.' ')str='gam.par 
inquire(file=str,exist=testfl) 
ift.not.testfl) then 

write(*,*) 'ERROR - the parameter file does not exist,' 
write(*,*) ' check for the file and try again ' 
write(*,*) 
iftstr(l:20).eq.'gam.par ') then 

write(*,*) ' creating a blank parameter file' 
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C 

call makepar 
write(*,*) 

end if 
stop 

endif 
open(lin,file=str,status='OLD') 

c Find Start of Parameters: 
C 

1 read(lin,'(a4)',end=98) str(l :4) 
iftstr(l:4).ne.'STAR') go to 1 

C 

c Read Input Parameters: 
C 

read(lin,'(a40)',err=98) datafl 
call chknam( datafl,40) 
write(*,*)' data file= ',datafl 

read(lin, *,err=98) nvar 
write(*,*)' number of variables= ',nvar 
iftnvar.lt.1) stop 'nvar is too small: check parameters' 
iftnvar.gt.MAXV AR) stop 'nvar is too big: check gam.inc' 
backspace lin 

read(lin, * ,err=98) j,(ivar(i),i= l,nvar) 
write(*,*)' columns= ',(ivar(i),i=l,nvar) 

read(lin, * ,err=98) tmin,tmax 
write(*,*)' trimming limits= ',tmin,tmax 

read(lin,'(a40)',err=98) outfl 
call chknam( outfl,40) 
write(*,*) ' output file = ',outfl 

read(lin, *,err=98) isim 
write(*,*) ' grid number= ',isim 

read(lin, *,err=98) nx,xmn,xsiz 
write(*,*)' nx,xmn,xsiz = ',nx,xmn,xsiz 

read(lin, *,err=98) ny,ymn,ysiz 
write(*,*) 'ny,ymn,ysiz = ',ny,ymn,ysiz 

read(lin, * ,err=98) nz,zmn,zsiz 
write(*,*) ' nz,zmn,zsiz = ',nz,zmn,zsiz 

nxy =nx * ny 
nxyz = nx * ny * nz 
iftnx.lt.1) stop 'nx must be at least 1: check parameters' 
iftny.lt.1) stop 'ny must be at least 1: check parameters' 
iftnz.lt.1) stop 'nz must be at least 1: check parameters' 
iftnxyz.gt.MAXXYZ) stop 'model is too big - check gam.inc' 

read(lin, *,err=98) ndir,nlag 
write(*,*)' ndir,nlag = ',ndir,nlag 
iftndir.lt.1) stop 'ndir is too small: check parameters' 
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if(ndir.gt.MAXDIR) stop 'ndir is too big: check gam.inc' 
if(nlag.lt.1) stop 'nlag is too small: check parameters' 
if(nlag.gt.MAXLAG) stop 'nlag is too big: check gam.inc' 

do i=l,ndir 
read(lin, * ,err=98) ixd(i),iyd(i),izd(i) 
write(*,*) ' direction= ',ixd(i),iyd(i),izd(i) 

end do 
read(lin, *,err=98) isill 
write(*,*) ' flag to standardize sills= ',isill 

read(lin, *,err=98) nvarg 
write(*,*) ' number of variograms = ',nvarg 
if(nvarg.lt.1) stop 'nvarg is too small: check parameters' 
if(nvarg.gt.MXV ARG) stop 'nvarg is too big: check gam.inc' 

do i=l,nvarg 
read(lin, * ,err=98) ivtail(i),ivhead(i),ivtype(i) 
write(*,*)' tail,head,type = ', 

+ ivtail(i),ivhead(i),ivtype(i) 
if(ivtype(i).eq.9 .or.ivtype(i).eq.10) then 

neut = neut + 1 
if(tmin.gt.O.O)stop'tmin interferes with indicators!' 
if(tmax.le. l .O)stop'tmax interferes with indicators!' 
if((nvar+ncut).gt.MAXV AR) then 

write(*,*) 'Too many indicator cutoffs!' 
write(*,*) ' use fewer or increase MAXV AR' 
stop 

endif 
backspace lin 
read(lin, * ,err=98) iijj,kk,cut(ncut) 
if(ivtype(i).eq.9) indflag(ncut) = 1 
if(ivtype(i).eq.10) indflag(ncut) = 0 
ivc(ncut) = ivtail(i) 
ivtail(i) = nvar + neut 
ivhead(i) = nvar + neut 
write(names(nvar+ncut),140) neut 

140 format('Indicator ',i2) 

C 

write(*,*)' indicator threshold: ',cut(ncut) 
endif 

end do 
write(*,*) 
close(lin) 

c Check to make sure the data file exists, then either read in the 
c data or write an error message and stop: 
C 

C 

inquire( file=datafl,exist=testfl) 
if(.not.testfl) then 

write(*,*) 'ERROR data file ',datafl,' does not exist!' 
stop 

endif 

c The data file exists so open the file and read in the header 
c information. Initialize the storage that will be used to summarize 
c the data found in the file: 
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C 

C 

open(lin,file=datafl,status='O LD') 
read(lin,'(a40)',err=99) str 
read(lin, * ,err=99) nvan 
do i=l,nvari 

read(lin,'( a40)' ,err=99) str 
do iv=l,nvar 

j=ivar(iv) 
if(i.eq.j) names(iv) = str(l:12) 

end do 
num(i) = 0 
avg(i) = 0.0 
ssq(i) = 0.0 

end do 

c Read the regular grid information row wise (x cycles fastest): 
C 

C 

do is= 1,isim 
do iz=l,nz 
do iy=l,ny 
do ix=l,nx 

if(is.ne.isim) then 
read(lin,'()',err=99) 

else 
read(lin, * ,err=99) (var(i),i= 1,nvari) 
do iv=l,nvar 

i=ivar(iv) 
index=ix+(iy-1) *nx+( iz-J )*nxy+(iv-1) *nxyz 
vr(index) = var(i) 
if(var(i).ge.tmin.and.var(i).lt.tmax) then 

num(iv) = num(iv) + 1 
avg(iv) = avg(iv) + dble(var(i)) 
ssq(iv) = ssq(iv) 

+ + dble(var(i)*var(i)) 
end if 

end do 
end if 

end do 
end do 
end do 

end do 
close(lin) 

c Compute the averages and variances as an error check for the user: 
C 

do iv=l,nvar 
sills(iv) = -999. 
if(num(iv).gt.O) then 

avg(iv) = avg(iv) I dble(num(iv)) 
ssq(iv) =(ssq(iv) I dble(num(iv))) - avg(iv) * avg(iv) 
sills(iv) = ssq(iv) 
write(*,*) 'Variable number ',iv 
write(*,*) ' Number = ',num(iv) 
write(*,*) ' Average = ',real(avg(iv)) 
write(*,*)' Variance= ',real(ssq(iv)) 

endif 
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end do 
C 

c Construct Indicator Variables if necessary: 
C 

C 

do ic= l ,ncut 
iv= ivc(ic) 
jv= nvar+ ic 
pO = 0.0 
pl= 0.0 
do ix=l,nx 
do iy=l,ny 
do iz=l,nz 

index= ix+(iy-l)*nx+(iz-l)*nxy+(iv-l)*nxyz 
jndex = ix+(iy-l)*nx+(iz-l)*nxy+Gv-l)*nxyz 
if(vr(index).lt.tmin.or.vr(index).ge.tmax) then 

vrGndex) = tmin - EPSLON 
else 

if(indflag(ic ).eq. l) then 
if(vr(index).lt.cut(ic)) then 

vrGndex) = 0.0 
pO=pO+ 1.0 

else 
vrGndex) = 1.0 
pl= pl+ 1.0 

end if 
else 

vrGndex) = 0.0 
if(int(vr(index)+0.5).eq.int( cut(ic )+0.5)) 

+ vrGndex) = 1.0 
end if 

end if 
end do 
end do 
end do 
pO = pO I max((pl+p0),1.0) 
sillsGv) = dble(pO*(l.0-pO)) 

end do 

c Establish minimums and maximums: 
C 

do i=l,MAXVAR 
vrmin(i) = 1.0e21 
vrmax(i) = -1.0e21 

end do 
do ix=l,nx 
do iy=l,ny 
do iz=l,nz 
do iv= 1,nvar+ncut 
index= ix+(iy-l)*nx+(iz-l)*nxy+(iv-l)*nxyz 
if(vr(index).ge.tmin.and.vr(index).lt.tmax) then 

if(vr(index).lt.vrmin(iv)) vrmin(iv) = vr(index) 
if(vr(index).gt.vrmax(iv)) vrmax(iv) = vr(index) 

end if 
end do 

end do 
end do 
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end do 
C 

c Check on the variogams that were requested: 
C 

call check(nvarg,ivtail,ivhead,ivtype, vrmin, vrmax,names,MAXV AR) 
C 

c Return: 
C 

return 
C 

c Error in an Input File Somewhere: 
C 

98 stop 'ERROR in parameter file!' 
99 stop 'ERROR in data file!' 

end 

subroutine gamma 
c-----------------------------------------------------------------------
c 
C 

C 

Variogram of Data on a Regular Grid 
*********************************** 

C 

c This subroutine computes any of eight different measures of spatial 
c continuity for regular spaced 3-D data. Missing values are allowed 
c and the grid need not be cubic. 
C 

C 

C 

c INPUT VARIABLES: 
C 

c nlag Maximum number of lags to be calculated 
c nx Number of units in x (number of columns) 
c ny Number of units in y (number of lines) 
c nz Number of units in z (number oflevels) 
c ndir Number of directions to consider 
c ixd(ndir) X ( column) indicator of direction - number of grid 
c columns that must be shifted to move from a node 
c on the grid to the next nearest node on the grid 
c which lies on the directional vector 
c iyd(ndir) Y (line) indicator of direction - similar to ixd, 
c number of grid lines that must be shifted to 
c nearest node which lies on the directional vector 
c izd(ndir) Z (level) indicator of direction - similar to ixd, 
c number of grid levels that must be shifted to 
c nearest node of directional vector 
c nv The number of variables 
c vr(nx*ny*nz*nv) Array of data 
c tmin,tmax Trimming limits 
c isill 1 =attempt to standardize, O=do not 
c sills the sills (variances) to standardize with 
c nvarg Number of variograms to compute 
c ivtail(nvarg) Variable for the tail of the variogram 
c ivhead(nvarg) Variable for the head of the variogram 
c ivtype(nvarg) Type ofvariogram to compute: 
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1. semivariogram 
2. cross-semivariogram 
3. covariance 
4. correlogram 
5. general relative semivariogram 
6. pairwise relative semivariogram 
7. semivariogram of logarithms 
8. madogram 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

9. indicator semivariogram: an indicator variable 
is constructed in the main program. 

C 

c OUTPUT VARIABLES: The following arrays are ordered by direction, 
c then variogram, and finally lag, i.e., 
c iloc = (id-l)*nvarg*nlag+(iv-l)*nlag+il 
C 

C np() Number of pairs 
c gam() 
Chm() 
C tm() 

Semivariogram, covariance, correlogram, ... value 
Mean of the tail data 
Mean of the head data 

C hv() Variance of the tail data 
C tv() Variance of the head clata 
C 

C 

C 

c Original: A.G. Journel 
c Revisions: B.E. Buxton 

1978 
Apr. 1982 

c-----------------------------------------------------------------------
include 'gam.inc' 

C 

c Initialize the summation arrays for each direction, variogram, and lag 
C 

C 

nsiz = ndir*nvarg*nlag 
if(nsiz.gt.MXDL V) then 

write(*,*) 'ERROR: available storage in gam = ',MXDLV 
write(*,*)' requested storage = ',nsiz 
stop 

endif 
do i=l,nsiz 

np(i) = 0. 
gam(i) = 0.0 
hm(i) = 0.0 
tm(i) = 0.0 
hv(i) = 0.0 
tv(i) = 0.0 

end do 

c First fix the location of a seed point on the grid (ix,iy,iz): 
C 

C 

do ix=l,nx 
do iy=l,ny 
do iz=l,nz 

c For the fixed seed point, loop through all directions: 
C 

do id=l,ndir 
ixinc = ixd(id) 
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C 

iyinc = iyd(id) 
izinc = izd(id) 
ixl = ix 
iyl = iy 
izl = iz 

c For this direction, loop over all the lags: 
C 

do ii= l ,nlag 
C 

c Check to be sure that the point being considered is still in the 
c grid - if not, then finished with this direction: 
C 

C 

ixl = ixl + ixinc 
if(ixl.lt.l.or.ixl.gt.nx) go to 3 
iyl = iyl + iyinc 
if(iyl.lt.l.or.iyl.gt.ny) go to 3 
izl = izl + izinc 
if(izl.lt.l.or.izl.gt.nz) go to 3 

c For this direction and lag, loop over all variograms: 
C 

C 

do iv=l,nvarg 
it= ivtype(iv) 

c Get the head value, skip this value if missing: 
C 

C 

i = ivhead(iv) 
index= ix+(iy-l)*nx+(iz-l)*nxy+(i-l)*nxyz 
vrt = vr(index) 
if(vrt.lt.tmin.or.vrt.ge.trnax) go to 5 

c Get the tail value, skip this value if missing: 
C 

C 

i = ivtail(iv) 
index= ixl+(iyl-l)*nx+(izl-l)*nxy+(i-l)*nxyz 
vrh = vr(index) 
if(vrh.lt.tmin.or.vrh.ge.trnax) go to 5 

c Need increment for the cross semivariogram only: 
C 

C 

if(it.eq.2) then 
i = ivtail(iv) 
index= ix+(iy-l)*nx+(iz-l)*nxy+(i-l)*nxyz 
vrhpr = vr(index) 
if(vrhpr.lt.tmin.or.vrhpr.ge.trnax) go to 5 
i = ivhead(iv) 
index= ixl+(iyl-l)*nx+(izl-l)*nxy+(i-l)*nxyz 
vrtpr = vr(index) 
if(vrtpr.lt.tmin.or.vrtpr.ge.trnax) go to 5 

endif 

c We have an acceptable pair, therefore accumulate all the statistics 
c that are required for the variogram: 
C 

= (id-I )*nvarg*nlag+(iv-1 )*nlag+il 
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C 

np(i) = np(i) + 1. 
tm(i) = tm(i) + dble(vrt) 
hm(i) = hm(i) + dble(vrh) 

c Choose the correct variogram type and keep relevant sums: 
C 

if(it.eq.1.or.it.ge.9) then 
gam(i) = gam(i) + dble((vrh-vrt)*(vrh-vrt)) 

else if(it.eq.2) then 
gam(i) = gam(i) + dble((vrhpr-vrh)*(vrt-vrtpr)) 

else if(abs(it).eq.3) then 
gam(i) = gam(i) + dble(vrh*vrt) 

else if(it.eq.4) then 
gam(i) = gam(i) + dble(vrh*vrt) 
hv(i) = hv(i) + dble(vrh*vrh) 
tv(i) = tv(i) + dble(vrt*vrt) 

else if(it.eq.5) then 
gam(i) = gam(i) + dble((vrh-vrt)*(vrh-vrt)) 

else if(it.eq.6) then 
if((vrt+vrh).lt.EPSLON) then 

np(i) = np(i) - 1. 
tm(i) = tm(i) - dble(vrt) 
hm(i) = hm(i) - dble(vrh) 

else 
tempvar= 2.0*(vrt-vrh)/(vrt+vrh) 
gam(i) = gam(i) + dble(tempvar*tempvar) 

endif 
else if(it.eq.7) then 

if(vrt.lt.EPSLON.or. vrh.lt.EPSLON) then 
np(i) = np(i) - 1. 
tm(i) = tm(i) - dble(vrt) 
hm(i) = hm(i) - dble(vrh) 

else 
tempvar= alog(vrt)-alog(vrh) 
gam(i) = gam(i) + dble(tempvar*tempvar) 

endif 
else if(it.eq.8) then 

gam(i) = gam(i) + dble(abs(vrt-vrh)) 
endif 

5 continue 
end do 

4 continue 
end do 

3 continue 

C 

end do 
end do 
end do 
end do 

c Get average values for gam, hm, tm, hv, and tv, then compute 
c the correct "variogram" measure: 
C 

do id=l,ndir 
do iv=l,nvarg 
do il=l,nlag 

i = (id-1 )*nvarg*nlag+(iv-1 )*nlag+il 
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C 

if(np(i).eq.O.) go to 6 
mum =np(i) 
gam(i) = gam(i) I dble(mum) 
hm(i) = hm(i) I dble(mum) 
tm(i) = tm(i) I dble(mum) 
hv(i) = hv(i) I dble(mum) 
tv(i) = tv(i) I dble(mum) 
it = ivtype(iv) 

c Attempt to standardize: 
C 

if(isill.eq.1) then 
if(ivtail(iv).eq.ivhead(iv)) then 

iii= ivtail(iv) 
if( (it.eq. l .or.it.ge.9).and.sills(iii).gt. 0 .0) 

+ gam(i) = gam(i) I sills(iii) 
end if 

end if 
C 

c 1. report the semivariogram rather than variogram 
c 2. report the cross-semivariogram rather than variogram 
c 3. the covariance requires "centering" 
c 4. the correlogram requires centering and normalizing 
c 5. general relative requires division by lag mean 
c 6. report the semi(pairwise relative variogram) 
c 7. report the semi(log variogram) 
c 8. report the semi(madogram) 
C 

if(it.eq.1.or.it.eq.2) then 
gam(i) = 0.5 * gam(i) 

else if(abs(it).eq.3) then 
gam(i) = gam(i) - hm(i)*tm(i) 
if(it.lt.O) then 

if( sills(ivtail(iv) ).lt.O. O.or. 
+ sills(ivhead(iv)).lt.0.0) then 

gam(i) = -999.0 
else 

variance= ( sqrt(sills(ivtail(iv))) 
+ * sqrt(sills(ivhead(iv)))) 

gam(i) = variance - gam(i) 
end if 

end if 
else if(it.eq.4) then 

hv(i) = hv(i)-hm(i)*hm(i) 
if(hv(i).le.0.0) hv(i) = 0.0 
hv(i) = sqrt(hv(i)) 
tv(i) = tv(i)-tm(i)*tm(i) 
if(tv(i).le.0.0) tv(i) = 0.0 
tv(i) = sqrt(tv(i)) 
if((hv(i)*tv(i)).lt.EPSLON) then 

gam(i) = 0.0 
else 

gam(i) =(gam(i)-hm(i)*tm(i))/(hv(i)*tv(i)) 
endif 

C 

c Square "hv" and "tv" so that we return the variance: 
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C 

hv(i) = hv(i)*hv(i) 
tv(i) = tv(i)*tv(i) 

else if(it.eq.5) then 
htave = 0.5*(hm(i)+tm(i)) 
htave = htave * htave 
if(htave.lt.EPSLON) then 

gam(i) = 0.0 
else 

gam(i) = gam(i)/dble(htave) 
end if 

else if(it.ge.6) then 
gam(i) = 0.5 * gam(i) 

endif 
6 continue 

end do 
end do 
end do 
return 
end 

subroutine writeout 
c-----------------------------------------------------------------------
c 
C 

C 

C 

Write Out the Results ofGAM 
**************************** 

c An output file will be written which contains each directional 
c variogram ordered by direction and then variogram (the directions 
c cycle fastest then the variogram number). For each variogram there 
c will be a one line description and then "nlag" lines with: 
C 

c a) lag number (increasing from 1 to nlag) 
c b) separation distance 
c c) the "variogram" value 
c d) the number of pairs for the lag 
c e) the mean of the data contributing to the tail 
c f) the mean of the data contributing to the head 
c g) IF the correlogram - variance of tail values 
c h) IF the correlogram - variance of head values 
C 

C 

C 

C 

C 

c-----------------------------------------------------------------------

C 

include 'gam.inc' 
character title*80 
data lout/1/ 

c Loop over all the variograms that have been computed: 
C 

open(lout,file=outfl,status='UNKNOWN') 
do iv=l,nvarg 
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C 

c. Construct a title that reflects the variograrn type and the variables 
c that were used to calculate the variograrn: 
C 

it= abs(ivtype(iv)) 
if(it.eq. 1) title(l:24) = 'Semivariograrn 
if(it.eq. 2) title(l:24) = 'Cross Semivariograrn ' 
if(it.eq. 3) title(l:24) = 'Covariance 
if(it.eq. 4) title(l:24) = 'Correlogram 
if(it.eq. 5) title(l:24) = 'General Relative 
if(it.eq. 6) title(l:24) = 'Pairwise Relative 
if(it.eq. 7) title(l:24) = 'Variograrn of Logarithms' 
if(it.eq. 8) title(l :24) = 'Semimadograrn ' 
if(it.eq. 9) title(l:24) = 'Indicator 1/2 Variograrn' 
if(it.eq.10) title(l :24) = 'Indicator 1/2 Variograrn' 
write(title(25:62),100) narnes(ivtail(iv)),narnes(ivhead(iv)) 

100 format('tail:',al2,' head:',a12) 
C 

c Loop over all the directions (note the direction in the title): 
C 

do id= 1,ndir 
write(title(62:74),101) id 

101 format('direction ',i2) 
write(lout,'(a74)') title(l:74) 

C 

c Compute the unit lag distance along the directional vector: 
C 

dis= sqrt( max:(((ixd(id)*xsiz)**2 + (iyd(id)*ysiz)**2 + 
+ (izd(id)*zsiz)**2),0.0) ) 

C 

c Write out all the lags: 
C 

do il=l,nlag 
i = (id-l)*nvarg*nlag+(iv-l)*nlag+il 
disl = real(il)*dis 
nump = int(np(i)) 
if(it.eq.4) then 

write(lout, 102) il,disl,garn(i),nump, 
+ hm(i),tm(i),hv(i),tv(i) 

else· 
write(lout, 102) il,disl,garn(i),nump, 

+ hm(i),tm(i) 
endif 

102 format(lx,i3,lx,fl2.3,lx,fl2.5,lx,i8,4(1x,fl4.5)) 
end do 

end do 
end do 
close(lout) 
return 
end 

subroutine check(nvarg,ivtail,ivhead,ivtype,vrmin,vrmax:, 
+ narnes,MAXV AR) 

c---------------------------------------------------------------
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C 

C 

C 

C 

Error Check and Note Variogram Types 
************************************ 

c Go through each variogram type and note the type to the screen and 
c report any possible errors. 
C 

C 

C 

C 

C 

c-----------------------------------------------------------------------

C 

real vrmin(*), vrmax(*) 
integer ivtail(*),ivhead(*),ivtype(*) 
character title*80,names(MAXV AR)*12 

c Loop over all the variograms to be computed: 
C 

write(*,*) 
do iv=l,nvarg 

C 

c Note the variogram type and the variables being used: 
C 

it= abs(ivtype(iv)) 
if(it.eq. 1) title(l:24) = 'Semivariogram ., 
if(it.eq. 2) title(l:24) = 'Cross Semivariogram ·' 
if(it.eq. 3) title(l :24) = 'Covariance ·' 
if(it.eq. 4) title(l:24) = 'Correlogram ·' 
if(it.eq. 5) title(l :24) = 'General Relative ·' 
if(it.eq. 6) title(l:24) = 'Pairwise Relative ·' 
if(it.eq. 7) title(l:24) = 'Variogram of Logarithms:' 
if(it.eq. 8) title(l :24) = 'Semimadogram ·' 
if(it.eq. 9) title(l:24) = 'Indicator 1/2 Variogram:' 
if(it.eq.10) title(l:24) = 'Indicator 1/2 Variogram:' 
write(title(25:64),100) names(ivtail(iv)),names(ivhead(iv)) 

100 format(' tail=',a12,' head=',a12) 
write{*,101) iv,title(l:64) 

101 format(' Variogram ',i2,1:x,a64) 
C 

c Check for possible errors or inconsistencies: 
C 

if(it.eq.2) then 
if(ivtail(iv).eq.ivhead(iv)) write(* ,201) 

201 format(' WARNING: cross variogram with the same variable!') 
else if(it.eq.5) then 

if(ivtail(iv).ne.ivhead(iv)) write(* ,501) 
if(vrmin(ivtail(iv)).lt.0.0.and.vrmax(ivtail(iv)).gt.O.O) 

+ write(* ,502) 
if(vrmin(ivhead(iv)).lt.0.0.and.vrmax(ivhead(iv)).gt.O.O) 

+ write(* ,502) · 
501 format(' WARNING: cross general relative variogram are', 

+ ' difficult to interpret!') 
502 format(' WARNING: there are both positive and negative', 

+ 'values - lag mean could be zero!') 
else if(it.eq.6) then 

if(iv¥J(iv).ne.ivhead(iv)) write(*,601) 
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+ 
if( vrmin(ivtail(iv) ).It. 0. O.and. vrmax(i vtail(iv) ).gt. 0. 0) 

write(* ,602) 
if(vrmin(ivhead(iv)).lt.O.O.and.vrmax(ivhead(iv)).gt.0.0) 

+ write(* ,602) 
601 format(' WARNING: cross pairwise relative variogram are', 

+ 'difficult to interpret!') 
602 format(' WARNING: there are both positive and negative', 

+ 'values - pair means could be zero!') 
else if(it.eq.7) then 

if(ivtail(iv).ne.ivhead(iv)) write(*, 701) 
if(vrmin(ivtail(iv)).lt.0.0.or.vrmin(ivhead(iv)).lt.O.O) 

+ write(*,702) 
701 format(' WARNING: cross logarithmic variograms may be', 

+ 'difficult to interpret!') 
702 format(' WARNING: there are zero or negative', 

+ 'values - logarithm undefined!') 
else if(it.eq.8) then 

if(ivtail(iv).ne.ivhead(iv)) write(* ,901) 
901 

+ 
endif 

format(' WARNING: cross madograms may be difficult to', 
'interpret!') 

C 

c Loop over all variograms: 
C 

end do 
return 
end 

subroutine makepar 
c-----------------------------------------------------------------------
c 
C 

C 

C 

C 

C 

Write a Parameter File 
********************** 

c-----------------------------------------------------------------------
lun = 99 
open(lun,file='gam.par',status='UNKNOWN') 
write(lun, 10) 

10 format(' 
+ 

Parameters for GAM',/, 
******************',/,/, 

+ 'START OF PARAMETERS:') 

write(lun,11) 
11 format('../data/true.dat 

+ '-file with data') 
write(lun,12) 

12 format('2 1 2 , 
+ '- number of variables, column numbers') 
write(lun, 13) 

13 format('-l.Oe21 l.Oe21 ' 
+ '- trimming limits') 
write(lun,14) 
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14 format('gam.out 
+ '-file for variogram output') 
write(lun,15) 

15 format(' I 
+ '-grid or realization number') 
write(lun, 16) 

16 format('50 0.5 1.0 
+ '-nx, xmn, xsiz') 
write(lun, 17) 

17 format('50 0.5 1.0 
+ '-ny, ymn, ysiz') 
write(lun, 18) 

18 format(' I 0.5 1.0 
+ '-nz, zmn, zsiz') 
write(lun,19) 

19 format('2 10 
+ '-number of directions, number of lags') 
write(lun,20) 

20 format(' I O 0 
+ '-ixd(l),iyd(l),izd(l)') 
write(lun,21) 

21 format(' 0 I 0 
+ '-ixd(2),iyd(2),izd(2)') 
write(lun,22) 

22 format(' I 
+ '-standardize sill? (O=no, I =yes)') 
write(lun,23) 

23 format('5 
+ '-number ofvariograms') 
write(lun,24) 

24 format(' I I I 
+ '-tail variable, head variable, variogram type') 
write(lun,25) 

25 format('! I 3 
+ '-tail variable, head variable, variogram type') 
write(lun,26) 

26 format('2 2 I 
+ '-tail variable, head variable, variogram type') 
write(lun,27) 

27 format('2 2 3 
+ '-tail variable, head variable, variogram type') 
write(lun,28) 

28 format('! I 9 2.5 , 
+ '-tail variable, head variable, variogram type') 
write(lun,40) 

40 format(//,'type I = traditional semivariogram',/, 
+ ' 2 = traditional cross semivariogram',/, 
+ 3 = covariance',/, 
+ 4 = correlogram',/, 
+ 5 = general relative semivariogram',/, 
+ 6 = pairwise relative semivariogram',/, 
+ 7 = semivariogram oflogarithms',/, 
+ 8 = semimadogram',/, 
+ 9 = indicator semivariogram - continuous',/, 
+ IO= indicator semivariogram - categorical') 

128 



close(lun) 
return 
end 

subroutine chknam(str,len) 
c-----------------------------------------------------------------------
c 
C 

C 

C 

Check for a Valid File Name 
*************************** 

c This subroutine takes the character string "str" oflength "len" and 
c removes all leading blanks and blanks out all characters after the 
c first blank found in the string (leading blanks are removed first). 
C 

C 

C 

c-----------------------------------------------------------------------

C 

parameter {MAXLEN= 132) 
character str{MAXLEN)* 1 

c Remove leading blanks: 
C 

do i= 1,len-1 
if(str(i).ne.1 1) then 

if(i.eq. l) go to 1 
do j=l,len-i+ 1 

k=j+i-1 
str(j) = str(k) 

end do 
do j=len,len-i+2,-1 

Str(j) =II 
end do 
goto 1 

end if 
end do 

1 continue 
C 

c Find first blank and blank out the remaining characters: 
C 

do i=l,len-1 
if(str(i).eq.1 1) then 

do j=i+ l,len 
str(j) = 11 

end do 
go to 2 

end if 
end do 

2 continue 
C 

c Return with modified file name: 
C 

return 
end 
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APPENDIXD 

SOURCE CODE FOR CONY AR.INC 
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C This is the edited gam.inc file, now called convar.inc. It is used with convar.for 
C 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C % 
C Copyright (C) 1996, The Board of Trustees of the Leland Stanford % 
C Junior University. All rights reserved. % 
C % 
C The programs in GSLIB are distributed in the hope that they will be % 
C useful, but WITHOUT ANY WARRANTY. No author or distributor accepts % 
C responsibility to anyone for the consequences of using them or for % 
C whether they serve any particular purpose or work at all, unless he % 
C says so in writing. Everyone is granted permission to copy, modify % 
C and redistribute the programs in GSLIB, but only under the condition % 
C that this notice and the above copyright notice remain intact. % 
C % 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c-----------------------------------------------------------------------
c 
C 

C 

C 

V ariogram of Data on a Regular Grid 
*********************************** 

c The following Parameters control static dimensioning within gam3: 
C 

c MAXXYZ maximum number of nodes in the 3-D grid 
c MAXY AR maximum number of variables 
C 

c MAXDIR maximum number of directions possible at one time 
c MAXLAG maximum number of lags at one time 
c MXV ARG maximum number of variograms possible at one time 
C 

c MXDLV MAXDIR *MAXLAG*MXV ARG - used for dimensioning 
c EPSLON a small number to avoid dividing by zero 
C 

c-----------------------------------------------------------------------
c 
c User Adjustable Parameters: 
C 

parameter(MAXXYZ = 500000, 
+ MAXVAR= 1, 
+ MAXDIR= 5, 
+ MAXLAG = 200, 
+ MXVARG= 5) 

C 

c Fixed Parameters: 
C 

parameter(MAXLG=MAXLAG+2,MXDLV=MAXDIR*MAXLG*MXV ARG, 
+ EPSLON=l.Oe-20,VERSI0N=2.000) 

C 

c Variable Declaration: 
C 

real xsiz,ysiz,zsiz,tmin,tmax,vr(MAXXYZ*MAXV AR) 
real*8 gam(MXDL V),hm(MXDL V),tm(MXDL V),hv(MXDL V),tv(MXDL V), 
+ np(MXDL V),sills(MAXV AR) 
integer nlag,nx,ny,nz,nxy,nxyz,ndir,ixd(MAXDIR),iyd(MAXDIR), 
+ izd(MAXDIR),ivtail(MXV ARG),ivhead(MXV ARG), 
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+ ivtype(MXV ARG),isill,nvarg 
character outfl*40,names(MAXV AR)*12 

C 

c Common Blocks: 
C 

common /datagv/ xsiz,ysiz,zsiz,tmin,tmax,vr,nlag,nx,ny,nz,nxy, 
+ nxyz,ndir,ixd,iyd,izd,ivtail,ivhead,ivtype, 
+ isill,nvarg 

common /parmdp/ gam,hm,tm,hv,tv,np,sills 

common /chargv/ outfl,names 
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