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Abstract

In this Thesis, we study (several) aspects of three and five dimensional non-supersymmetric
gauge theories. Using non-perturbative techniques, such as known strong-weak coupling dual-
ities and holography, we present new results concerning their dynamics and phase diagrams.
The thesis is divided into six Chapters.
In the first Chapter, we start reviewing some general aspects of non-supersymmetric three
dimensional theories, focusing on the dynamics of gauge theory both in the absence and in
presence of Chern-Simons terms. We then focus on known dualities among three dimensional
theories, such as particle-vortex and bosonization duality. Thanks to these tools, we discuss
what is known about the phase diagram of QCD3, namely the three dimensional analog of four
dimensional quantum chromodynamics, for various ranges of its parameters.
In Chapter two, we introduce the basics of holography, starting by reviewing the AdS/CFT
correspondence. We then generalize the discussion to the case of non-conformal field theories,
with particular emphasis on the description of confining theories. Finally, we review the holo-
graphic construction of four dimensional and three dimensional gauge theories, and, focusing
on the latter case, we construct the gravity dual of QCD3.
In Chapter three, we show new results regarding the phase diagram of QCD3 in presence of
flavor-breaking mass deformation. The corresponding theory, namely QCD3 with two sets of
flavors, is studied in detail, thanks to the conjectured infrared dualities characterizing gauge
theories with matter in three dimensions, namely boson-fermion dualities. In particular, the
low-energy phase diagram is charted, and its consistency gives additional support to the conjec-
tured phase diagram of QCD3. Moreover, new non-perturbative phases are observed, together
with peculiar phase transitions among them, which are novel to QCD3 with two flavors.
In Chapter four, we study the phase diagram of large N QCD3 through its holographic dual.
This novel study shows perfect agreement with the field theory analysis, giving a simple expla-
nation of the observed peculiarity of its phase diagram, together with an holographic evidence
of the validity of boson-fermion dualities.
In Chapter five, we review the main aspects of five dimensional theories. Firstly, we focus on gen-
eral properties of supersymmetric gauge theories, their BPS spectrum, and their moduli spaces
of vacua. Then, we study their non-perturbative dynamics using string constructions, both in
type I’ and in type IIB string theory. The latter type of construction, known as the pq-web
or brane web construction, gives us the possibility of studying in detail many non-perturbative
phenomena characterizing these theories and their superconformal ultraviolet fixed points, such
as global symmetry enhancement and continuation past infinite coupling.
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Finally, in Chapter six, we deal with new results involving the possible existence of five di-
mensional non-supersymmetric conformal field theories. Firstly, a known conjectured non-
supersymmetric fixed point, obtained by soft supersymmetry breaking deformation of the E1

superconformal field theory, is analyzed using field theory techniques. Then, a similar transi-
tion point, enjoyed by a class of superconformal field theories generalizing the E1 fixed point,
is studied via its pq-web construction. In particular, in a specific regime of the parameters,
semi-classical gravitational interactions can be taken into account. In both the field theory and
the string construction analysis, we give hints of the presence of a non-supersymmetric second
order phase transition for some specific regime of the parameters, shading light on the possible
existence of non-supersymmetric conformal field theories in five dimensions.



Forward

This thesis is divided into six chapters. In the first one, we revise some background material
about three dimensional field theories and their dualities. In Chapter two we discuss some
basics of holography which will be useful in the following. In Chapter three we describe new
results for QCD3 with two sets of flavors. In Chapter four new results are reported for the
holographic realization of the vacuum structure of QCD3. In Chapter five we review general
aspects of five dimensional theories and their string constructions. Finally, in Chapter six we
describe recent attempts to find non-supersymmetric conformal field theories in five dimensions
via soft supersymmetry breaking deformations of known superconformal fixed points. The thesis
is based on the following papers
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Introduction

Quantum field theory (QFT) provides the most successful framework to describe physical phe-
nomena. Both low-energy physics, such as phase transitions in condensed matter, and high-
energy physics, such as particle physics and fundamental interactions, can be described in the
context of quantum field theories.
Quantum field theories are well-understood only in perturbation theory: in this framework, the
couplings describing interactions among various fields are taken to be small and the various
observables are calculated in a series expansion of these couplings. However, many interesting
phenomena arise at strong coupling. This is the case of strong interactions or interacting confor-
mal field theories. Phenomena such as confinement, chiral symmetry breaking, and dynamical
generation of a mass gap of four dimensional gauge theories are still far from having a complete
analytic understanding.
It is then of great physical interest to go beyond perturbation theory to study non-perturbative
aspects of QFTs.
In recent years, many techniques have been developed in order to tackle this problem. First
of all, supersymmetry gives us a huge control over quantum field theories. In some cases, the
strong coupling dynamics of supersymmetric QFTs can be studied in detail, giving the pos-
sibility of understanding important physical phenomena, such as confinement from monopole
condensation [1] or chiral symmetry breaking [2]. However, the real world seems to lack of super-
symmetry, at least at low-energies, so although these results can help if the non-supersymmetric
theory we consider is the result of a soft supersymmetry breaking of a supersymmetric theory,
also other tools are needed to study non-perturbative physics.
Dualities are one such option: a theory that is strongly coupled in a certain regime can some-
times be studied using a dual weakly coupled theory that shares with it the same physics in
this regime. Observables can then be easily calculated in the latter theory and the dynamics
of the former can be unveiled. In the same vein, holography can give us important information
about QFTs at strong coupling. The correspondence, relating a quantum gravity theory on a
specific background to a quantum field theory living on the boundary of this background, is of
weak-strong type. So, again, by just looking at a semi-classical theory of gravity, one can obtain
non-perturbative information about the field theory dual to this gravity theory.

On top of these general tools, also studying theories in different dimensions can be helpful.
Three dimensional gauge theories, in particular, share important similarities with their four
dimensional counterparts: they are strongly coupled at low-energies, confine, and show the
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presence of a mass gap. In presence of fermions, they enjoy chiral symmetry breaking as in four
dimensional QCD. The advantage is that we have much more control over these theories since
there exist a huge variety of dualities connecting them which gives us the possibility of studying
their dynamics also in absence of supersymmetry. In this way, studying the dynamics of three
dimensional theories can give us a framework to better understand four dimensional theories,
gaining fundamental hints of how non-perturbative physics works. This can give us also a better
understanding of four dimensional dualities. For example, in the supersymmetric case, many
three dimensional dualities were found to be related to known dualities in four dimensions under
compactification [3]. So, thanks to three dimensional theories, we can understand better four
dimensional physics.
In fact, three dimensional theories are also interesting per se. They happen to describe many
phenomena relevant to condensed matter systems in three dimensions, that can be experimen-
tally realized. For example, we can describe superfluidity and superconductivity, but also the
quantum Hall effect and topological insulators. This gives a way to test theoretical predictions
through experiments and a source for new phenomena that need to be theoretically explained
by new models.

Similarly, five dimensional gauge theories represent an important framework to understand
the physics of strongly coupled systems. They have many connections to four and three di-
mensional theories. This can be easily established by employing supersymmetry. Many five
dimensional dualities, for example, can be obtained by lifting known four dimensional duali-
ties [4]. Similarly, superconformal field theories in five dimensions can be related to known three
and four dimensional analogs [5, 6]. Moreover, in recent years important hints were obtained
that point to the possibility that any four dimensional superconformal field theory can be ob-
tained from dimensional reduction of a six dimensional analog. We see that there is a strict
relation among superconformal field theories in three, four, five, and six dimensions. So, under-
standing superconformal field theories in a framework where they are well-behaved can give us
a tool to understand these theories in all other dimensions. This is precisely the case with five
dimensional theories. These are well-behaved in presence of supersymmetry and many of them
can be studied via model building in string theory. The great control gained through these
constructions allowed in recent years to unveil a great variety of superconformal field theories,
many of which can be obtained as UV completions of known supersymmetric gauge theories.
In this way, also the non-perturbative physics of these latter theories was unveiled and studied
in detail.
For this reason, the analysis of these theories is not only interesting but essential to understand
how the physics of our world works.

This Thesis deals with the problem of understanding non-perturbative aspects of gauge the-
ories in odd dimensions. Using many tools, such as supersymmetry, dualities, holography, and
model building in string theory, we shed light on the dynamics of strongly coupled theories,
with a particular focus on non-supersymmetric field theories.



Chapter 1

Aspects of three dimensional theories

In this Chapter, we review three dimensional non-supersymmetric Quantum Field Theories
(QFT)s. We start discussing Abelian gauge theories in three dimensions and their extensions
obtained by including topological terms, the Chern-Simons (CS) terms. We then introduce
fermions in (2 + 1)-dimensions, their anomalies, and their relation with the CS terms. After
that, we introduce the concept of infrared duality and we describe particle-vortex duality. This
allows us to discuss Abelian bosonization in three dimensions and to obtain, from these basic
correspondences, an intricate web of Abelian dualities between fermionic and bosonic theories.
We then generalize our discussion to non-Abelian theories in presence of CS terms. We extend
dualities in presence of fermionic and/or bosonic matter in the fundamental representation for
non-Abelian theories. Finally, we explore the phase diagram of QCD3, namely SU(N) Yang-
Mills (YM) CS theory coupled to F fundamental Dirac fermions and with CS level k, in different
regimes of its parameter space.

1.1 U(1) Maxwell theory

Let us start by reviewing Maxwell theory in 2 + 1 dimensions.
The Maxwell Lagrangian in presence of a conserved current Jµ, normalizing the gauge field to
have the coupling e in front of the Lagrangian, reads

L = − 1

2e2
F ∧ ∗F − A ∧ ∗J. (1.1)

The corresponding equations of motion reads

d ∗ F = e2 ∗ J. (1.2)

From (1.1), we see that the gauge coupling e is relevant [e] = 1/2, so the theory is super-
renormalizable. Moreover, the coupling e runs classically. In the UV, the theory is asymptoti-
cally free, while in the IR it is strongly coupled. In particular, a charge J0 = δ2(x) generates an
electric field E ∼ 1

r
, so two probes attract with a logarithmic potential V (R) ∼ e2 logR where

R represents the distance between them. This is a signal of confinement of the electric charges.
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12 Chapter 1. Aspects of three dimensional theories

This is quite different from 3+1 dimensional physics, where electromagnetism is free in the IR
and develops a Landau pole in the UV.
Another difference comes from the number of degrees of freedom. The gauge potential is a three
dimensional Lorentz vector. However, we have only one on-shell independent degree of freedom
surviving the gauge fixing. The gauge invariant information of the Maxwell theory are encoded
in the two-form field strength. In any dimension d, this has 1

2
d(d− 1) independent components.

These are divided into an electric field Ei = ∂0Ai − ∂iA0 of dimension d − 1 and a magnetic
field Bij = ∂iAj − ∂jAi of dimension 1

2
(d− 1)(d− 2). So we see that, for example, when d = 5,

the electric field is four dimensional and the magnetic field is six. The first is a vector under
the rotation group (as in any dimension), while the second is a tensor. In four dimensions, both
the electric and the magnetic field have dimension 3 and the first is a vector, while the latter
is a pseudovector. Finally, in three dimensions, the electric field has dimension two, while the
magnetic field has a single independent degree of freedom

B ≡ B12 = ϵij∂iAj (1.3)

which is a pseudoscalar.

Let us now focus on the global symmetries preserved by the Maxwell theory, starting from
discrete symmetries. The theory respects charge conservation C, which sends

C : Aµ → −Aµ. (1.4)

time-reversal symmetry T sends (x0, xi)→ (−x0, xi) and

T : (A0, Ai)→ (A0,−Ai) (1.5)

so the Maxwell Lagrangian is again invariant. Standard parity P : xi → −xi in three dimensions
belongs to the Lorentz group, being a Lorentz transformation of determinant one. So, in three
dimensions (as also in general odd dimensions) parity is actually a reflection along a single
coordinate. In the following, we will choose this coordinate to be x1. Parity then acts on
one-forms as

(A0, A1, A2)→ (A0,−A1, A2) (1.6)

so the Maxwell Lagrangian is left invariant.
The theory in (1.1) preserves also a continuous zero-form symmetry. Indeed, due to the Bianchi
identity [7],

dF = 0 (1.7)

the current

jT =
1

2π
∗ F (1.8)

is conserved. In particular, since it is conserved off-shell, the associated symmetry is topological.
Its charge corresponds to the total flux of the gauge field across a two dimensional spacelike
surface Σ2

Q =

∫

Σ2

∗jT =
1

2π

∫

Σ2

F. (1.9)
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This is nothing but the magnetic flux through the Σ2 surface. States charged under this sym-
metry are then denoted as monopoles and their charge is an integer due to the Dirac quan-
tization condition. In particular, gauge connections are labeled by the first homotopy group
π1(U(1)) = Z or equivalently by the first Chern number 1

2π

∫
S2 F ∈ Z. To each U(1) group, we

associate a corresponding topological symmetry.
We can construct monopole operators as local defects associated with the monopole flux. These
are defined abstractly as operators implementing a boundary condition for the gauge field in
the path integral, when they are inserted in a correlation function of gauge-invariant operators
Oi(xi), i = 1, ..., n. Labeling a monopole operator of charge m at a point x as Mm(x), the
resulting path integral representation will have enforced the boundary condition for the gauge
field ∫

S2
x

F = 2πm (1.10)

where S2
x represents a two-sphere centered at the point of monopole insertion x. So, the corre-

lation function reads

⟨Mm(x)Oi(xi)...On(xn)⟩ =
∫
∫
S2
x
F=2πm

DA Oi(xi)...On(xn)e
iS. (1.11)

We will encounter similar operators, namely instanton operators, in five dimensions.
Finally, notice that Maxwell’s theory, in absence of external currents, possesses a U(1) one-form
symmetry [8] which is conserved by virtue of the equations of motion

d ∗ F = 0. (1.12)

The corresponding current je =
1
e2
F is a two-form, whose charge

Q =
1

e2

∫

Σ1

∗F (1.13)

equals the electric flux passing through a spacelike cycle Σ1. So, the symmetry generator reads

Uα(Σ1) = e
iα
e2

∫
Σ1

∗F ≡ Wα[Σ1]. (1.14)

These are nothing but the Wilson lines associated with the cycle Σ1. From the Lagrangian
point of view, the symmetry acts as a shift of the gauge potential A → A + β under a closed
(but not exact) one-form β. This symmetry acts on the Wilson lines Wm[Σ1] itself. These are
gauge-invariant under a gauge transformation A → A + dλ, due to the quantization condition∮
dλ = 2πZ, but they transform by a phase eimα under the generator Uα(Σ1).

Hodge duality in three dimensions relates two-forms to one-forms. This is analogous to the
four dimensional case, where electromagnetic duality relates a two-form (the electric gauge field
strength) with another two-form (the field strength of the magnetic gauge field) or to the five
dimensional case (where a two-form is dual to a three-form). This suggests that a gauge field
can be dualized to a scalar. Let us start from (1.1) and turn off Jµ. Calculating the partition
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function of the theory, we can first implement the Bianchi identity constraint ϵµνρ∂µFνρ = 0
using a Lagrangian multiplier ω and then change the integration measure from Aµ to Fµν

Z =

∫
DAe−i

∫
d3x 1

4e2
FµνFµν

=

∫
DF Dω e−i

∫
d3x[ 1

4e2
FµνFµν− 1

4π
ωϵµνρ∂µFνρ]. (1.15)

We can then use the equations of motion for the field

F =
e2

4π2
∗ dω (1.16)

and integrate out F , expressing the partition function in terms of a Lagrangian for the dual
scalar ω

Z =

∫
Dω ei e

2

8π

∫
d3x∂µω∂µω. (1.17)

In this frame, the topological current, thanks to eq. (1.16), can be rewritten as

jT =
e2

2π
dω ≡ js. (1.18)

So, we see that the current jT of the original Maxwell theory is mapped to a current js associated
with a shift symmetry ω → ω + c for the scalar field ω. In fact, since F respects the Dirac
quantization condition, ω is periodic ω ≃ ω + 2π.
In this frame, we can easily construct a monopole operator in terms of the dual scalar

Mm(x) = eimω(x) (1.19)

transforming with a phase eimc under the topological symmetry. We see that a disordered
operator, which in the gauge theory cannot be constructed in terms of fundamental fields, now
can be easily constructed in terms of the dual scalar. The charge of the previous monopole is
quantized m ∈ Z, since ω(x) is 2π periodic. Finally, from (1.16) we see that ω is actually odd
under P , so the monopole operator transforms asMm ↔M†

m =M−m.
The theory in (1.17) has an S1 moduli space of vacua parametrized by the VEV of ω. At
each point of this manifold, the shift symmetry is spontaneously broken and ω represents the
associated Goldstone boson. Using the correspondence js ↔ jT , this tells us that U(1)T is
spontaneously broken and the Goldstone boson associated with its breaking can be interpreted
as the scalar ω itself. This can be understood in the Maxwell theory by noticing that also
the one-form symmetry is spontaneously broken. Then, at low energy, we have a protected
Goldstone boson associated with this breaking, which is a spin 1 particle. This is nothing but
the photon itself.

1.2 Abelian Chern-Simons theory

In three dimensions, on top of the usual Maxwell term in eq. (1.1), we can also construct
another gauge-invariant term, the Chern-Simons (CS) Lagrangian. This is a general feature of
odd dimensional gauge theories. The Lagrangian is identified with the CS term

LCS =
k

4π
AdA. (1.20)
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This is labeled by a dimensionless coupling k, called the CS level. The corresponding theory is
denoted in literature as U(1)k pure CS theory. The Lagrangian in (1.20) changes under a gauge
transformation A→ A+ dλ as [9]

δLCS =
k

4π
∂µ(λϵ

µνρ∂νAρ) (1.21)

so it is gauge-invariant in absence of boundaries.
However, the formula is in general difficult to interpret, since A can be not globally well-defined.1

Let us place, in particular, our theory (1.20) on a generic three dimensional manifold M3. To
define properly the CS term, we need to extend the gauge potential to a four dimensional
manifoldM4 with boundary ∂M4 =M3. Now the CS is manifestly gauge-invariant and depends
only on the field strength F

SCS =
k

4π

∫

M4

F ∧ F. (1.22)

However, this extension depends on the manifold M4 and so it is ambiguous. To eliminate this
dependence, we require that, when we take two different four manifolds M4, M

′
4, the action

should differ only by an integer number multiplying 2π, so that the path integral is independent
of the choice of the extended manifold. This implies that

k

4π

∫

C4

F 2 = 2πm, m ∈ Z (1.23)

where C4 is a closed four manifold obtained as the union of M4 ∪ M ′
4 along their common

boundary. This leads to a quantization condition for the CS level

k ∈ Z. (1.24)

Actually, the previous condition holds only for manifolds C4 equipped with a spin structure
(see [10, 11] for a nice discussion on this point). On a generic four manifold C4 equipped with
a background metric g and a spinc structure, the term (1.23) is not quantized as an integer
multiplied by 2π, unless k ∈ 2Z. However, when A is actually2 a spinc connection [11] the term
1
4π

∫
F ∧ F together with a gravitational CS term

2CS(g) =
1

96π

∫

C4

Tr(R ∧R) (1.25)

with R the Ricci tensor, is quantized as an integer multiplied by 2π

1

4π

∫

C4

F ∧ F + 2CS(g) = 2πZ. (1.26)

1This happens, for example, in presence of monopoles. A corresponding potential can be defined only on
local patches and at the intersection of two of them, the gauge potential is glued by a gauge transformation.
The gauge field is a connection over the bundle.

2Note that, in the following, we will avoid specifying if we are dealing with a gauge field or a spinc connection.
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When we deal with multiple gauge fields Ai, we can have mixed CS terms

CS(Ai) =

∫

M4

kij
4π
AidAj. (1.27)

Their levels obey an analogous quantization condition, kij ∈ Z.

The CS term is topological since it does not depend on the metric of the manifold on which
the theory is defined. This represents then an example of a topological quantum field theory
(TQFT) since, as we will see, its dynamics depends only on the topology of the manifold itself.
Being the energy-momentum tensor the variation of the action with respect to the metric, we see
that the CS energy-momentum tensor vanishes. This signals the absence of local propagating
degrees of freedom, as we will see in the following.

Let us now discuss the symmetries preserved by the CS Lagrangian.
From the properties of A under discrete symmetries, we see that the CS term breaks time-
reversal (and parity) symmetry. However, it preserves charge conjugation (being quadratic in
the gauge field) and, due to the CPT theory, also PT .
The electric one-form symmetry U(1)e of the original Maxwell theory here reduces to Zk [8],
since the Lagrangian (1.20) is no more invariant under generic shift of the gauge potential, but
only on shifts A→ A+ β

k
with

∮
β ∈ 2πm.

Moreover, the CS term (1.20) couples the topological current to the gauge field

SCS =
k

4π

∫
AdA ∼

∫
A ∧ ∗jT . (1.28)

So, states charged under the topological symmetry acquire an electric charge proportional to the
CS term. This can be seen explicitly by looking at the path integral definition of the disordered
monopole operators in (1.11). The correlation function changes under a gauge transformation
as

δ⟨Mm(x)O1(x1)...Ok(xk)⟩ =
k

4π

(
λ(x)

∮

S2
x

F

)
⟨Mm(x)O1(x1)...Ok(xk)⟩ (1.29)

soMm has an electric charge ne = km.

Let us now discuss the dynamics of the theory. In absence of sources, the equation of mo-
tion reduces to

F = 0 (1.30)

so solutions are only flat connections and there are no local gauge-invariant propagating degrees
of freedom. From (1.30), we see that the topological symmetry vanishes on-shell, accordingly
to the fact that monopoles acquire an electric charge under the gauge group. The previous
conclusion can be drawn by looking at the CS propagator in the Rξ gauge [12]

S(p)µν =
4πi

k

ϵµνρp
ρ

p2
+ iξ

pµpν
p4

. (1.31)
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This has a spurious pole at p2 = 0, leading to no propagating degree of freedom.
The theory, however, in presence of a non-trivial topology for M3, is non-trivial. Indeed, in this
case, we can have non-local gauge invariant operators, the Wilson lines

Wm(C) = eim
∮
C A. (1.32)

Through the algebra of these operators, we can characterize the Hilbert space of the gauge
theory [13, 14]. In particular, taking a two dimensional genus g surface Σg

2 as the space of our
theory, the ground state degeneracy of the Hilbert space is kg.
Considering the one-form symmetry Zk, it can be shown that the Wilson loops follow perimeter
law, so Zk is spontaneously broken. This is the hallmark of deconfinement.

In conclusion, we saw that the pure CS theory has no local propagating degrees of freedom
and no dependence on the metric. This is non-trivial in presence of a non-trivial topology. The
theory is then a TQFT and its vacuum is said to be non-trivially gapped, as opposed to trivially
gapped phases, where the theory in the IR is empty.

1.2.1 Anyons

To the pure CS theory in (1.20), we can add an external current Jµ coupled to the gauge field.
The equations of motion are modified as

k

2π
F = ∗J (1.33)

where the current J is conserved by virtue of the Bianchi identities.
From (1.33), we deduce the analogous of Gauss law and current conservation for CS theories

ρ =
k

2π
B (1.34)

J i =
k

2π
ϵijEj (1.35)

where Jµ = (ρ, J i) and B and Ei are the magnetic and the electric fields respectively.
The relation (1.34) fixes the magnetic and electric fields algebraically in terms of the external
sources. Moreover, the Gauss law (1.34) attaches a magnetic flux to the electric charge. This
relation remains preserved by the time evolution thanks to eq. (1.34), where the CS level plays
the role of a conductivity σij = k

2π
ϵij, which is quantized due to the quantization of k. This

property enables to describe the integer quantum Hall effect through a CS theory, where the
Hall conductivity of ν filled Landau levels with ν = k/e2 coincides with the CS conductivity
σij [14]. So, we see that the Chern-Simons terms introduce a magnetic flux for an electric
charge. This phenomenon is known in the literature as flux attachment.

We can now add two external electric charges m,n to the CS theory. To both particles, the CS
term attaches a magnetic flux. So, when the first particle is moved adiabatically around the
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latter, we expect it to pick up a phase, due to the Aharonov-Bohm (AB) effect. This phase
shift depends on the magnetic flux attached to the second charge and reads:

eim
∮
C A = e

im
∫
D2

F
= e

2πimn
k (1.36)

where D2 is the area enclosed by the curve C and we used (1.33) in the last equality. This
operation can be interpreted as a double exchange of the two particles. In particular, if these
are identical, the phase that the particle picks up gives us their (naive) statistics. Since, under
a single exchange, the phase shifts as

∆θ =
πn2

k
, (1.37)

the naive spin s of the particle reads

s =
n2

2k
mod 1. (1.38)

So, for generic levels, particles obey a new kind of statistics, with fractional spin. These particles
are denoted as anyons. The possibility of having anyons in three dimensions comes from the
structure of the three dimensional massive little group, which is SO(2) ≃ U(1). Its universal
covering is R, so any real value for the spin is allowed for a representation.3 Particles with zero
charges mod k do not acquire any phase by winding around each other, since the AB phase is
a multiple of 2π. However, they can possess non-trivial spin k

2
mod 1 when k is odd. To the

worldline C of a static source with charge n, we can associate a Wilson line

Wn[C] = ein
∫
C A. (1.39)

The relation (1.38) gives us information about the Wilson lines of these theories. These are
identified by their spin and their Aharonov-Bohm phases. We then see that only |k| of these
lines with n = 0, ..., k − 1 are independent when k is even, while these are 2|k| when k is odd,
since whenever n = 0 mod k, the AB phase vanishes. In the latter case, we can in particular
have lines transparent under the AB effect, but with half-integer spins [11, 15]. These are
denoted in the literature as transparent lines. This introduces the need for a spin structure and
renders the CS theory non-trivial. An example comes from the U(1)1 CS theory [16], which has
two lines: the trivial one n = 0 of spin 0 and the non trivial one n = 1 of spin 1/2. The theory
is almost trivial thanks to this transparent line. Its Hilbert space on a spatial manifold Σg of
genus g has always a single state and the partition function Z[g] of the theory can be easily
determined by the action of the topologically nontrivial diffeomorphisms of Σg on this single
state. Z[g] depends then only on a gravitational CS term

Z[g] = e−2iCS(g). (1.40)

Having a single gapped state for any closed manifold, this is an invertible TQFT. These theories
are particularly relevant for the construction and classification of gapped phases of matter.
However, their study is beyond the scope of this thesis. We refer to [17–24] for an extended
discussion.

3Notice, though, that, a formulation of a Lagrangian for these particles is still missing.
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1.2.2 Topologically massive gauge theory

Let us now consider the most general gauge invariant Lagrangian for the U(1) field, including
both the Maxwell and the CS terms

L = − 1

2e2
F ∧ ∗F +

k

4π
AdA. (1.41)

The latter, although topological, contributes to the equations of motion as

d ∗ F +
mCS

2
F = 0 (1.42)

where mCS = ke2

2π
. On the right hand side, we recognize the topological current jT , so we see

that this sources electrically the gauge field. Monopoles are then charged under the electric
field, as can be explicitly seen from the Gauss law

∂iE
i =

ke2

2π
B. (1.43)

So, if flux attachment associates a magnetic flux to an electric charge, the Gauss law in eq.
(1.43) associates an electric flux with a magnetic charge!
The equations (1.42) can be rewritten in terms of a Hodge dual field F̃ , defined as

F̃ ≡ ∗F. (1.44)

This is gauge-invariant and conserved in absence of magnetic charges. So, to this, it corresponds
a single independent degree of freedom. The equation of motion reduces to a Klein-Gordon
equation for a scalar of mass mCS = ke2

2π
:

[
□+

(
ke2

2π

)2
]
F̃µ = 0 (1.45)

The statistics of the field can be inferred from the analysis of the representations of the Poincaré
group. The spin turns out to be s = k

|k| = sgn(k). We see, then, that the CS term gives a mass

mCS = ke2

2π
to the gauge field without Higgsing the gauge symmetry. The Maxwell CS theory is

described by the propagation of this single transverse degree of freedom F̃ .
The same conclusion can be drawn by looking at the propagator of the gauge field (in the Rξ

gauge)

Sµν(p) = e2
(
p2ηµν − pµpν − imCSϵµνρp

ρ

p2(p2 −m2
CS)

+ ξ
pµpν
(p2)2

)
. (1.46)

In particular, it can be shown that only the pole p2 =
(

ke2

2π

)2
is physical, so the photon is

massive.
From the expression of the mass mCS, we see that in the infinite coupling limit, the photon
becomes extremely massive and stops propagating. This is naively expected from the Lagrangian
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(1.41) since the Maxwell term is suppressed in this regime with respect to the CS one. Similarly,
when we flow to low-energies, the Maxwell term, being irrelevant, is negligible with respect to
the CS one, so the photon stops propagating and can be integrated out at energies smaller than
the topological mass mCS. We obtain a vacuum, which is gapped but described by a leftover
TQFT given by the CS theory. The low-energy physics of U(1)k CS theory is then non-trivially
gapped.

1.3 Fermions in three dimensions

In this section, we introduce fermions in three dimensions, their properties under discrete sym-
metries and their anomalies. Many of the following concepts can be applied also to five dimen-
sional theories, as we will see in Chapter 5.
Let us start by analyzing the spinor representation of the Lorentz group in 2+1 dimensions.
The representation of the Clifford algebra

{γµ, γν} = 2ηµν (1.47)

is two dimensional. The Dirac spinor ψ is then two dimensional and complex. In the Dirac
basis, the gamma matrices read

γ0 = σ3 =

(
1 0
0 −1

)
, γ1 = iσ1 =

(
0 i
i 0

)
, γ2 = iσ2 =

(
0 1
−1 0

)
(1.48)

and obey the following relations

γµγν = ηµν − iϵµνργρ
Tr(γµγνγρ) = −2iϵµνρ.

As it happens in general odd dimensions, we have no chirality matrix, so we cannot impose a
Weyl condition on ψ. However, we can impose a Majorana condition, so the smallest represen-
tation is real and given by a two-component Majorana fermion χ.
Note that, in three dimensions all the irreducible representations of the Poincaré algebra are
labeled by the eigenvalues of two Casimirs, the square momentum P 2 and the Pauli-Lubanski
pseudoscalar W = P µJµ, where J

µ = 1
2
ϵµνρLνρ is a pseudovector composed by the Lorentz

generators Lµν . A single particle representation Φ is then classified by its mass m and spin s

P 2Φ = m2Φ, WΦ = −smΦ. (1.49)

For a Dirac fermion, the operator Jµ can be written as

Jµ = −iϵµνρpν
∂

∂pρ
I− 1

2
γµ (1.50)

so the second condition in (1.49) is nothing but the Dirac equation of a massive fermion

(iγµ∂µ −m)ψ = 0. (1.51)
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The spin4 then is 1
2
sgn(m). So, masses in three dimensions are real and their sign determines

the spin of the fermion. This is related to the absence of chirality, so it is a common feature in
odd dimensions.

We now discuss how fermions transform under discrete symmetries. Parity P acts as

ψ → γ1ψ. (1.52)

The action of charge conjugation C reads

ψ → Cψ̄T (1.53)

where C is the 2× 2 charge conjugation matrix, defined by the relations C−1γµC = −(γµ)T . In
the Dirac basis, this is C = γ2.
Finally, time-reversal T acts on fermions as

ψ → γ2ψ. (1.54)

From these transformations, we see that the fermionic kinetic term is invariant under all the
discrete symmetries. On the other hand, a Dirac mass term is odd under time-reversal and
parity transformations

ψ̄ψ → −ψ̄ψ (1.55)

while it is even under charge conjugation. So, adding a mass term for a Dirac fermion breaks
parity and time-reversal symmetry.
Note that fermion masses and Chern-Simons terms share the same properties under discrete
symmetries. So, when one of the two is present, no symmetry prevents the generation of the
other. Indeed, when mass terms for fermions are present, CS terms are generated at the quantum
level.5 This will be the main topic of the next section.

1.3.1 Induced CS terms and parity anomaly

In this section, we see how massive fermions can generate a shift in the CS level and how this
is related to an anomaly between parity and gauge symmetry.
Let us consider a Dirac fermion with mass m coupled to a gauge field A with charge q. In
particular, we set k = 0. At low enough energies, we can integrate the fermion out and we
remain with an Abelian gauge theory. However, the decoupling actually leaves a trace in the
low-energy theory. In the integration, the one-loop diagram in figure 1.1 generates the following
parity violating term

Πodd(p
2,m) = 2mq2

∫
d3l

(2π)3
1

[(l − p)2 +m2][l2 +m2]
=

1

2π

m

|p| arcsin
(

|p|√
p2 + 4m2

)
. (1.56)

4Similarly, we can obtain also anyonic representations with arbitrary spins s constructing an appropriated
Jµ operator [9].

5Also the opposite happens: in presence of CS terms, masses of fermions are additively renormalized at the
quantum level, see [25].
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p p

l

Figure 1.1: Self-energy of the gauge field Aµ.

At small momenta |p| → 0 and in the infinite mass m→∞ limit, (1.56) reduces to [26,27]

Γµν(k,m) ∼ 1

4π

mq2

|m| ϵ
µνρpρ +O

(
p2

m2

)
(1.57)

leading to a Chern-Simons term for the gauge field

∆k =
q2

2
sgn(m). (1.58)

So, integrating out the fermion, we generated a CS term at one-loop!
This shift is one-loop exact [28], as it happens for anomalies in four dimensions. We will come
back to this point later.

The shift (1.58) is not properly quantized when q is odd, being the level half-integer. To eluci-
date why this is the case, we need to consider what happens in presence of massless fermions.
When fermions are massless, these cannot be integrated out at low-energies. However, the di-
agram in figure 1.1 can be calculated. Apparently, the diagram cannot give rise to a parity
violating contribution, since this is preserved by the classical Lagrangian when m = 0. The
photon self-energy is UV divergent, so we must introduce a regulator in the calculation. An
example of this regulator is the Pauli-Villard (PV) one. This regulator is gauge-invariant and
introduces to each field in the theory a field of mass M with the same spin but opposite statis-
tics. Introducing this regulator for the fermions, we see that parity is explicitly broken and
the regularized action SPV

reg [A,m = 0], obtained by decoupling the regulating fields sending
M → ±∞, reads

SPV
reg [A,m = 0] = S[A,m = 0]− lim

M→±∞
S[A,M ]. (1.59)

The mass generates, though the loop in figure 1.1, a CS level proportional to sgn(M). So,
removing the regulator, we end up with a CS term at level

k =
q2

4π
sgn(M). (1.60)
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So, although preserving gauge-invariance, the regulator breaks parity explicitly. In presence of
a bare mass m for the fermion, we generate a total CS level in the IR

kIR = q2
sgn(m) + sgn(M)

2
(1.61)

which is now properly quantized!

We can ask if the previous breaking of parity is avoidable by choosing a different regulator.
It can be shown that this is not the case: any gauge-invariant regulator breaks parity at the
quantum level. This defines a mixed anomaly between parity and gauge symmetry: preserving
one of the two, we break the other and vice versa. This is denoted as parity anomaly.
The anomaly can be obtained by looking at the partition function of the massless fermion cou-
pled to the gauge field. We will take for definiteness q = 1. The partition function, as a function
of the gauge field A, reads

Z[A] = detDA = det i /DA (1.62)

with D is the fermion hermitian Dirac operator obtained when we integrate over the fermions
in the path integral.
Hermiticity implies that all the eigenvalues λi of the Dirac operator are real, and so should
also be its determinant. This is a manifestation of T -invariance, since when a theory respects
time-reversal symmetry, its partition function is real. The number n− of negative eigenvalues of
the operator is infinite, as well as the number of positive ones n+, so the sign of the determinant
detD is not well-defined and needs to be regularized. In particular, we cannot simply choose
a sign, say +, for a gauge field configuration Ā and then assign to a generic configuration A
the sign obtained by looking at the number of eigenvalues that changes sign when we go from
Ā to A. Proceeding in this way we would encounter a violation of gauge-invariance due to the
phenomenon of spectral flow: the partition function calculated on a configuration A related to
Ā by a large gauge transformation would have a different sign of Z[Ā], see [29]. What one can
do is to regularize the difference 1

2
(n+ − n−) by employing the representation

η = lim
ϵ→0+

∑

i

e−ϵ|λi|sign(λi). (1.63)

We will call the expression in (1.63) the η-invariant. The regularized partition function reads
then

Z = | detD|e∓iπ η
2 . (1.64)

The APS index theorem [30] allows us to write the η invariant as a CS term for the field A plus
a gravitational one

eiπη = eiCS(A,g) = ei(
1
4π

∫
W AdA+2CS(g)) (1.65)

and the result (1.64) is actually independent of the regulator. So, under a parity transformation,
the partition function changes by a phase proportional to a CS term of level k = 1. So, as
expected from the previous PV regularization, parity symmetry is broken and a CS term is
generated.
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Adding a mass term for the fermion to the Lagrangian breaks explicitly time-reversal invariance.
At low-energies, we can integrate out the fermion, at the price of generating a new CS term

eisgn(m)π
2
η(A). (1.66)

The IR level reduces to the expression in (1.61). On top, we have also a gravitational CS term
of level

kg =
1

2
(sgn(m)± 1). (1.67)

Note that the value of the IR level depends on the choice of the sign in (1.64), or equivalently
of the PV regulator mass. The two signs lead to two different partition functions (Z+, Z−),
which are inequivalent, having different CS levels in the IR. In the following, we will adopt the
convention of [16,31], choosing the minus sign in (1.64). The CS level in the IR generated by a
massive fermion ψ in this regularization reads

L =
{ 0, m > 0
− 1

4π
AdA− 2CS(g), m < 0.

(1.68)

In absence of a mass, the partition function depends then on

k = kb −
1

2
(1.69)

where kb represents the bare level, which is the CS level the theory possesses in the IR when
we add a positive mass for the fermion and we integrate it out. Since kb is an integer, k is an
half-integer and parity is broken, since we cannot choose kb in such a way that k = 0 and the
partition function is real. Indeed, time-reversal sends m→ −m and kb → −kb, so k → −k and
parity is conserved only for k = 0.
With F fermions, the previous argument trivially generalizes and the level k obeys the quanti-
zation condition

k +
F

2
∈ Z. (1.70)

This tells us that in presence of an odd number of fermions the full theory cannot respect
parity6, since k needs to be half-integer. In presence of an even number of fermions, instead,
(1.70) allows having k = 0. Theories of this kind are distinguished, being parity and time-
reversal invariant at m = 0. In the following, in presence of fermions, we adopt the convention
of indicating the CS level of the theory as the level (1.69). So, a U(1) theory with a single
fermion of charge 1 and no bare CS level will be indicated as U(1)−1/2 + ψ CS theory.

1.4 Abelian dualities

In previous sections, we saw how three dimensional gauge theories exhibit complicated IR dy-
namics. In presence of a CS term, the theory is non-trivially gapped. In absence of a CS term,

6However, parity can arise at low energies as an accidental symmetry, as we will see later.
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on the other hand, pure gauge theories become strongly coupled in the infrared, due to the
classical running of the coupling and are trivially gapped [32,33].
The dynamics is even more complex in presence of matter, and the vacuum structure is some-
times difficult to determine, due to the strong coupling nature of these theories. In particular,
flowing in the IR we can also reach a conformal field theory (CFT). These are theories that
show conformal invariance and describe second order phase transitions. We can have then two
or more theories that, along the RG-flow, end up at the same fixed point in the IR. If this
happens, we say that these theories are infrared dual to each other.
Being the CFT the same, we can establish a correspondence between these two theories. In
particular, the global symmetries of both theories should match in the IR, as well as the relevant
deformations of their fixed point. This correspondence is commonly denoted as a duality map
between the two theories.
Dualities become particularly useful whenever one of the two theories is weakly coupled at the
fixed point. In this way, we can gain information about a strongly coupled theory thanks to the
dual weakly coupled theory. This happens, for instance, in the well-known examples of Seiberg
dualities [34] in four dimensions.
In this section, we review dualities involving Abelian gauge theories. Firstly, we discuss particle-
vortex duality, one of the first dualities discovered in three dimensions. Then, we consider
Abelian bosonization, relating a purely bosonic theory to a purely fermionic one, which general-
izes bosonization in two dimensions. Finally, we will see how to construct new correspondences
from known ones and how many of the known dualities are actually not independent, being
connected by a series of operations.

1.4.1 Particle-vortex duality

Let us consider a theory of a complex scalar ϕ, preserving a U(1)F flavor symmetry ϕ→ eiαϕ.
Neglecting irrelevant operators (and the sextic marginal coupling), the most general Lagrangian,
compatible with the global symmetry reads

LXY = |∂µϕ|2 −m2|ϕ|2 − β|ϕ|4 + ... (1.71)

where m2, β are the relevant couplings of dimension one. The potential is bounded from below
whenever β > 0. The current corresponding to the flavor symmetry jF reads

jF = −i(ϕ̄ dϕ− ϕ dϕ̄). (1.72)

The model is also invariant under a Z2 symmetry acting on the scalar as ϕ → −ϕ. Together
with the global symmetry U(1)F ≃ SO(2)F , the model preserves an O(2) symmetry. The theory
is known in the literature as the O(2) or XY model.
Strong indications suggest that this theory flows in the IR to a strongly interacting fixed point,
called the Wilson-Fisher fixed point [35]. To reach this CFT, the relevant couplings m2, β need
to be tuned to some specific values. We conventionally fix the value of m2 at the fixed point
to be equal to zero. We indicate the theory of the scalar at the fixed point (or critical boson
theory) by the Lagrangian

LWF = |∂µϕ|2 − β|ϕ4|. (1.73)



26 Chapter 1. Aspects of three dimensional theories

This fixed point possesses a relevant deformation, which can be parametrized by the mass
squared m2 itself. Turning on m2, we flow away from the fixed point and we end up in another
IR phase. When m2 is large, these phases can be inferred by analyzing the UV theory at the
semi-classical level. These are distinguished by the sign of m2:

� m2 ≫ 0:
The U(1) global symmetry is preserved since the quartic potential in (1.71) has a single
vacuum at ϕ = 0. The scalar field is massive with mass m2 and can be integrated out.
At low-energies, the theory is trivially gapped. The excitations of the theory around the
vacuum are given by the scalar ϕ itself, which is charged under the global symmetry with
charge one.

� m2 ≪ 0:
The potential has a moduli space of vacua S1, parametrized by the VEV of the scalar field
⟨|ϕ|2⟩ = v = −m2

2β
. This breaks spontaneously the flavor symmetry U(1)F . The theory is

then gapless in this phase and its IR dynamics is described by a single Goldstone boson
σ(x), associated with the phase of the scalar field ϕ(x) = ρ(x)eiσ(x). The field ρ becomes
massive with mass ∼ ⟨ϕ⟩ and decouples at low-energies. We have additional excitations
in this phase, which are charged under the flavor group. These are topologically non-
trivial configurations of the scalar field ϕ, the so-called vortex configurations Vn. This can
be studied in the low-energy effective field theory (EFT) given by the Goldstone boson
Lagrangian

L ∼ v2

2
dσ ∧ ∗dσ (1.74)

in the vacuum ⟨ϕ⟩ = v. In spatial polar coordinates (r, θ), these vortices read ϕ(x) =
ρ(r)eiσ(θ), where in the vacuum we are studying ρ(r) → v at spatial infinity. Since
π1(U(1)) = Z, there exist topological distinct configurations, labeled by a winding number
n. This counts the number of times σ winds around spatial infinity S1

∞, so

∮

S1
∞

dxi∂iσ =

∫
dθ∂θσ = 2πn. (1.75)

A single vortex is infinitely massive, as one can verify by inserting the ansatz ρ(r)einθ

inside the static energy [36]

M = E ∼
∫
r dr dθ

1

r2
(∂θσ)

2 ∼ v2n2 log
v2

Λ
(1.76)

where Λ is an IR cutoff for the radius r ≤ Λ−1. Since ρ(r) → 0 close to r = 0 to ensure
regularity for the solution, there are no UV divergences.
A vortex-anti vortex configuration, on the other hand, has a finite energy proportional to
the logarithm of their distance R

E(R) ∼ v2n2 logR (1.77)



1.4. Abelian dualities 27

since the total winding of the configuration is zero. These are nothing but the vortices
that we observe experimentally in the superfluid phase of liquid helium. We see that the
energy between the two vortices grows with R and a Coulomb force ∼ 1

R
attracts the two

objects.

The phase diagram of the XY model is shown in figure 1.2.

m2m2 = 0

Gapped phase

Symmetry breaking phase WF fixed point

Gapless: massless Golstone σ ofU(1)F

S1moduli space

S1

Massive excitations:
𝒱n

Massive excitations:
ϕ

E(R) ∼ v2n2 log(R) 𝒱−n𝒱n

Symmetric phase

⟨ϕ⟩ ≠ 0 ⟨ϕ⟩ = 0

Figure 1.2: Phase diagram of the XY model.

We can now think of gauging the U(1)F symmetry of the theory. The resulting theory

SAH =

∫
d3x

[
− 1

4e2
FµνF

µν + |Dµϕ̃|2 − m̃2|ϕ̃|2 − β̃|ϕ̃|4
]
. (1.78)

is denoted as the Abelian-Higgs (AH) model.
The gauging of U(1)F introduces an additional global symmetry, the topological U(1)T asso-
ciated with the conserved current jT = ∗ F

2π
. The theory preserves also charge conjugation,

leading to an O(2) = SO(2)T ⋉ C global symmetry, as in the XY model.
Let us explore the phases of this theory for large values of the mass m̃2.

� m̃2 ≫ 0:
The gauge symmetry is unbroken and the scalar field is massive. At low-energies, ϕ̃ can be
integrated out, leaving only the photon as a dynamical field. The latter can be dualized
into a compact scalar ω. The theory is then free and gapless, with Lagrangian

L =
e2

8π
∂µω∂

µω. (1.79)

The moduli space of vacua is an S1 manifold. This is nothing but the theory of the
Goldstone boson of the topological symmetry U(1)T , which is spontaneously broken at
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any point of the vacuum manifold.
In this phase, the scalar field ϕ̃ is massive. Being charged under the gauge group, this
interacts with a scalar ϕ̃† through an interaction energy

E(R) ∼ e2 log(R) (1.80)

where R represents the distance between the charges.
As we saw before, monopoles are present in this phase and can be written in terms of ω.
On a generic vacuum ⟨ω⟩ ≠ 0, these condense, leading to confinement in the original U(1)
gauge theory, due to the Polyakov mechanism [37,38]. The same mechanism was observed
in [1] in the context of N = 2 four dimensional theories.

� m̃2 ≪ 0:
The potential has an S1 moduli space of vacua and the gauge symmetry is spontaneously

broken by the VEV ⟨ ˜|ϕ|2⟩ = − m̃2

2β̃
, leading to an Higgs phase. On the other hand, the

topological symmetry U(1)T remains unbroken. The gauge field and the scalar become
both massive and the theory is hence trivially gapped.
Also, in this case, we have massive vortex solutions.7 Their energy is actually finite and
they are defined as field configurations ϕ̃(r, θ) that at infinite distance r → ∞ behave
as [9]

ϕ̃∞ = veiσ(θ), Ai(r, θ)→ −∂iσ(θ). (1.81)

These configurations are classified by the first homotopy group π1(S
1), given by the num-

ber of times σ winds around spatial infinity. The associated winding number reads

n =
1

2π

∮
dσ. (1.82)

A topological non-trivial configuration, by virtue of (1.81) carries a magnetic field

1

2π

∮
dσ = − e

2π

∮

S1
∞

A =
e

2π

∫

R2

F =
e

2π
Φ (1.83)

where Φ represents the magnetic flux through R2. These are nothing but states produced
by acting with a monopole operatorM on the vacuum of the gauge theory.

The phase diagram of the AH model is shown in figure 1.3.

We see that we can establish a precise map among the XY and the AH models

� The phase diagrams of the two theories agree. The gapped phase of the XY model at
m2 ≫ 0 is mapped to the gapped phase of the AH model at m̃2 ≪ 0. The gapless phase
of the XY model with moduli space S1 at m2 ≪ 0 is mapped to the gapless phase of the
AH model at m̃2 ≫ 0 with moduli space S1;

7These can be studied both in the UV Lagrangian and on the EFT Lagrangian L = v2

2 Dσ describing
superconductivity.
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m̃2
m̃2 = 0

Gapless: massless Golstone ωofU(1)T

S1moduli space
Gapped phase

Higgs phase: ⟨ϕ̃⟩ ≠ 0 Phase transition Coulomb phase: ⟨ϕ̃⟩ = 0

S1

Massive excitations:

ϕ̃
Massive excitations:

ℳn

ϕ̃ ϕ̃†
E(R) ∼ e2 log(R)

⟨ω⟩ ≠ 0⟨ω⟩

Figure 1.3: Phase diagram of the AH model.

� The flavor symmetry of the XY model matches the topological symmetry of the AH theory

SO(2)F ↔ U(1)T . (1.84)

Both are broken in the corresponding gapless phases and preserved in the gapped ones.
Currents of these two symmetries map then as

jF = −i(ϕ̄dϕ− ϕdϕ̄)↔ jT =
1

2π
∗ F (1.85)

� Excitations matches across the duality. In the gapless phase, the Goldstone boson of the
U(1)F symmetry in the XY model is mapped to the dual photon, namely the Goldstone
boson of the U(1)T symmetry, of the AH model. The massive excitations ϕ̃ of the AH
model match the massive vortices of the XY theory and both excitations interact with
each other via a confining potential. In the gapped phases, the vortices of the AH model,
charged under the topological symmetry are mapped to the scalar excitations ϕ in the XY
model, charged under the U(1)F symmetry.

Note that, in the previous duality map, the matching involves gauge-invariant operators only.
Indeed, in general, gauge symmetry does not need to match across the duality, while global
symmetries do and represent an important tool to map operators across the correspondence.
Finally, in the AH model, we expect a phase transition to separate the two different semi-classical
phases at m̃2 = 0. Since at this point the global symmetry U(1)T of the theory is restored,
this suggests that the transition is second order, with the order parameter corresponding to the
VEV of the dual photon. We are then led to identifying this transition with the Wilson-Fisher
fixed point of the XY model, and the only relevant deformation of the WF fixed point m2 with
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−m̃2 parameter of the AH model. The two theories are claimed to be IR dual and to flow
to the same WF fixed point. We can express this duality schematically in terms of their ”IR
lagrangians”

|Dµϕ̃|2 − β̃|ϕ̃|4 ↔ |∂µϕ|2 − β|ϕ|4 (1.86)

where we dropped the Maxwell term at low-energies. The duality maps particles to vortices
and vice versa: for this reason, this is denoted in the literature as particle vortex duality. We
summarize the duality map in Table 1.1. Many other evidence suggest the duality to hold, in

XY model AH model
Global current jF = −i(ϕ̄dϕ− ϕdϕ̄) jT = 1

2π
∗ F

Gapped phase Massive ϕ MassiveM
Gapless phase SB phase with massive V Coulomb phase with massive ϕ̃

Relevant deformation |ϕ|2 −|ϕ̃|2

Table 1.1: Dictionary of the particle-vortex duality.

particular from lattice analysis [39,40].

1.4.2 Abelian bosonization

This section is dedicated to Abelian bosonization duality in three dimensions. This generalizes
the concept of bosonization in two dimensions, which represents an exact duality between a
compact chiral boson and a chiral fermion. This allows rewriting bosonic theories in terms of
fermionic ones and vice versa. A famous example of this duality is the relation between the
Thirring model and the Sine-Gordon theory [41].
However, two dimensional physics is rather special: the massive little group is discrete and a
couple of fermions differ from a couple of bosons only when we consider their behavior at coin-
cident points of the one dimensional space. In three dimensions, it seems unlikely for a purely
bosonic theory to match a fermionic one, since the little group is continuous and fermions lie in
different representations of bosons. However, flux attachment shows that charges can develop
a non-trivial spin in presence of magnetic monopoles. In this way, bosonic theories can hide in
their spectrum some non-trivial fermionic excitations [16,42,43].

In three dimensions, Abelian bosonization conjectures that the Wilson-Fisher type fixed point
of the AH model with CS term k = 1 is described by a free theory of a Dirac fermion

U(1)1 + ϕ↔ ψ (1.87)

or, in Lagrangian notation

1

4π
AdA+ |DAϕ|2 − |ϕ|4 ↔ iψ̄ /∂ψ. (1.88)

Notice that in (1.88), we omitted the kinetic term for the gauge field. Indeed, as we saw above,
in presence of a CS term the gauge boson acquires a topological mass. Below this scale, we
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expect the gauge field to stop propagating and the kinetic term to be negligible compared to the
CS one. In this way, the kinetic term can be dropped at low enough energies. However, although
naively correct, it is not completely safe to drop the kinetic term when the strong coupling scale
of the theory is of the same order of the topological mass, since we cannot integrate out the
gauge field before the theory develops a strong coupling dynamics.8 However, when discussing
Abelian dualities, we will adopt the assumption of [15, 16] that the kinetic term can be always
dropped at low energies.
Again, the bosonic theory includes a quartic potential tuned in order to reach a WF-like fixed
point. This correspondence is an example of a strong-weak coupling duality. In the bosonic
description, the CFT appears strongly coupled, but in another duality frame, the theory is
actually free!
Let us first consider the U(1)1 model. The global symmetry of the theory is a topological U(1)T .
To keep track of this symmetry across the duality, we can couple the theory to a background
gauge field B̂ for the topological symmetry. Since jT ∼ ∗dA, the coupling reads

S[B̂] =
1

2π
B̂dA. (1.89)

Note that this does not spoil the duality: taking two dual theories, global symmetries can be
both coupled to the external gauge field associated with them. The duality then ensures that
the partition function ZT1 [B̂] of the first theory T1 is the same as the partition function ZT2 [B̂]
of the latter theory T2 as a function of the external gauge field B̂.
We denote this term as the BF coupling between A and B̂. This is gauge invariant under the
gauge transformations of A and B̂ and it is properly quantized [11]. We can move away from
the fixed point by turning on a mass m2|ϕ|2 for the scalar field. We can then distinguish two
different phases, which can be studied in this semi-classical regime for m2 ≫ 0, m2 ≪ 0.

� m2 ≫ 0:
The potential has a unique vacuum and the gauge symmetry is unbroken. The scalar
ϕ is massive and can be integrated out at energies ≲ m. Also, the gauge field A has
a topological mass due to the CS term mCS ∼ ke2 and it can be integrated out. At
low-energies, we end up with a TQFT described by the following CS Lagrangian

LCS[B̂] =
1

4π
AdA+

1

2π
B̂dA. (1.90)

This is a deconfined gapped phase. The theory is U(1)1, so it is almost trivial. After we
integrate A out, its partition function reduces to a contact term for B̂ together with a
gravitational CS term

Z[B̂] = e−
i
4π

B̂dB̂−2CS(g). (1.91)

However, the theory possesses a single transparent line of spin 1/2, which renders it non-
trivial.
The theory possesses also monopole operators. These are not gauge-invariant, being

8This is crucial, for instance, to determine the dynamics of large N QCD3, see section 1.6.4.
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charged under the gauge group due to the CS term. However, if a monopole of charge
oneM≡M1 is ”dressed” with a scalar field ϕ†, the resulting operator is gauge-invariant.
The scalar field is then quantized in the monopole background. In presence of a magnetic
monopole of charge n, the conserved orbital angular momentum L2 associated with an
electric charge m gets modified as

L2 = (r⃗ × (p⃗− 2sA⃗))2 + |s|2 (1.92)

where s = 1
2
nm, and A⃗ represents the gauge potential of the monopole background.

Looking at eq. (1.92), we see that representations of the angular momentum are bounded
from below by the value of the s. In particular, we can focus on the representation with
lowest angular momentum L2 = s2, since this represents the state of lowest energy. A
particle of spin s and of charge one, in the presence of a unit monopole, acquires then an
additional spin due to the Lorenz force. So, for example, a fermion in the background of
the monopole acquires an integer spin and, more interestingly, a scalar develops a half-
integer spin [42,44]!
We denote the basic dressed monopole operator of the U(1)1 + ϕ theory as

ϕ†M. (1.93)

This is gauge-invariant and has spin |s| = 1/2. Moreover, it is charged under the global
symmetry U(1)T with charge one.

� m2 ≪ 0:
The potential breaks spontaneously the gauge symmetry. The photon develops a mass
due to the Higgs mechanism, and so does ϕ. The theory is trivially gapped with partition
function

Z[B̂] = 1. (1.94)

The lowest massive gauge invariant excitations are again the dressed monopoles ϕ†M.

Let us now analyze the fermionic theory. This has a global symmetry U(1)F which rotates the
fermion as ψ → eiαψ. We can couple the theory to an external background B̂

L = iψ̄ /DB̂ψ (1.95)

with /DB̂ the covariant derivative with respect to the background field B̂. Here, we are showing
the bare CS term kb, which is set to zero. We have a natural relevant deformations defined by
the mass term m̃ψ̄ψ. We have then two phases at low-energies.

� m̃ > 0:
The fermion is massive and can be integrated out. This generates a shift in the CS level
and at low-energy we are left with a gapped theory with no CS term

Z[B̂] = 1. (1.96)

Excitations around this vacuum are represented by ψ itself.
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� m̃ < 0:
The fermion is massive and can be integrated out. This generates a negative shift for the
CS term. The low-energy theory is then a TQFT with action

L = − 1

4π
B̂dB̂ − 2CS(g). (1.97)

The theory is deconfined as expected. The lowest excitation is still the massive fermion.

We see that the topological symmetry of the scalar theory matches the flavor symmetry of the
fermionic one. The relevant deformationm2 of the scalar theory matches the deformation −m̃ of
the fermion. The phases of the theory match as well, as their corresponding partition functions
and their lowest massive excitation. In particular, dressed monopoles of the scalar theory are
mapped to fermions of the free Dirac theory.
Both the scalar and the fermionic theories enjoy parity invariance at m2 = m̃ = 0, when the
background field is switched off. However, both theories suffer a parity anomaly associated with
their global symmetry, which manifests itself when we turn on the background gauge field B̂ as
a half-integer CS term. So the anomaly matches across the duality.
In conclusion, a U(1)1 + ϕ theory is conjectured9 to be IR dual to a theory of a free fermion,
describing its IR fixed point. The CFT point, which in the bosonic case is difficult to access
being strongly coupled, is conjectured to admit a weakly-coupled dual description in terms of a
free fermion. The map between the two theories is summarized below:

jµT =
e2

4π
ϵµνρFνρ ↔ jµF = iψ̄γµψ, (1.98)

|ϕ|2 ↔− ψ̄ψ, (1.99)

ϕ†M↔ ψ. (1.100)

1.4.3 A web of Abelian dualities

We saw above two of the main examples of three dimensional dualities. We can ask ourselves
if these are the only dualities that exist among three dimensional theories and, if not, whether
these are independent or they can be derived from other dualities via a series of operations.
This was studied in detail in [16]. In the following, we resort mainly to this work, giving some
examples of these new dualities.

We start by introducing the basic operations useful to construct new dualities. One of these
is represented by gauging a global symmetry. Let us consider two different theories, which we
denote by T1 and T2, related by an IR duality. We know that, across this duality, global sym-
metries need to match.10 We can then couple both theories to background fields for their global

9Evidence of the validity of this duality are milder with respect to particle-vortex duality, although there are
plausible arguments to infer its correctness, see [16].

10This, actually, needs to happen only in the IR. Indeed, the UV symmetry could not match if there is
symmetry enhancement at low-energies. This is the case, for example, of self-dual QED3 with two Dirac
fermions [15,45].
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symmetry, and the partition function of the first theory T1 with background field B̂1 should
match the partition function of the second theory T2 with background field B̂2

ZT1 [B̂1] = ZT2 [B̂2]. (1.101)

Gauging the background fields B̂1, B̂2 on both sides is then equivalent to integrating the partition
functions over them. These remain then equivalent also after gauging. In this way, we obtain a
new duality between these gauged theories.
Adding contact terms can be important to construct new dualities. These are well-defined local
terms that involve background fields. For example, the CS coupling for the global symmetry
background field can be added on both sides of the duality. This operation preserves the duality
and will be denoted as T .
We can also first gauge a background field and then couple it to another classical background
field Ĉ through a BF-term. This operation will be denoted as S. Acting on a Lagrangian L[B̂]
coupled to a background field B̂ with T and S, we obtain

T : L[B̂]→ L′[B̂] = L[B̂] +
1

4π
B̂dB̂ (1.102)

S : L[B̂]→ L′[Ĉ] = L[B]− 1

2π
BdĈ. (1.103)

Acting twice with the latter transformation, the Lagrangian changes as

S2 : L[B̂]→ L′[D̂] = L[B]− 1

2π
BdC − 1

2π
CdD̂. (1.104)

The same happens acting with (ST )3. Using the following path integral identity11

∫
DE e

i
2π

EdF = δ(F ) (1.105)

we can eliminate C from (1.104), obtaining L[−D̂]. So, S2 acts as charge conjugation.
Finally, we can also act with T and generate new dualities, if the theories related by the corre-
spondence are not already manifestly time-reversal invariant.

Let us now use these operations to generate new dualities. In the following, we will not fo-
cus on the subtleties related to the necessity of introducing spin or spinc connection, regarding
which we refer to [15,16] for a detailed discussion.
We start from Abelian bosonization

1

4π
AdA+

1

2π
AdB̂ + |DAϕ|2 − |ϕ|4 ←→ iψ̄ /DB̂ψ. (1.106)

We can now apply time-reversal, which sends B̂ → −B̂, A↔ −a and ϕ→ φ. The transformed
fields a, φ are in general complicated functions of the original ones. We end up with

− 1

4π
ada− 1

2π
adB̂ + |Daφ|2 − |φ|4 ←→ iψ̄ /DB̂ψ +

1

4π
B̂dB̂ + 2CS(g) (1.107)

11This identity states that E acts as a Lagrangian multiplier setting F to zero [16].
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We can also add background terms on both sides of the duality. In this way, we can eliminate
the CS of the fermionic theory by bringing it to the bosonic side, namely

− 1

4π
ada− 2CS(g)− 1

2π
adB̂ − 1

4π
B̂dB̂ + |Daφ|2 − |φ|4 ←→ iψ̄ /DB̂ψ. (1.108)

The fermionic side is dual to another bosonic theory, thanks to bosonization (1.88). This
establishes a new duality between purely bosonic theories

− 1

4π
ada−2CS(g)− 1

2π
adB̂− 1

4π
B̂dB̂+ |Daϕ|2−|ϕ|4 ←→

1

4π
AdA+ |DAϕ̂|2−|ϕ̂|4+

1

2π
B̂dA

(1.109)
which can be schematically depicted as

U(1)1 + ϕ ←→ U(1)−1 + ϕ̂. (1.110)

So, the theory U(1)1 + ϕ, which is not time-reversal invariant, flows to the same IR CFT as its
time-reversal version!
The same duality can be obtained by similar manipulations from particle-vortex duality (1.86),
by adding a CS term for the U(1) global symmetry 1

4π
B̂dB̂ together with a coupling 1

2π
AdB̂

and making B̂ dynamical. We end up with

1

4π
(B+a+Ĉ)d(B+a+Ĉ)− 1

4π
(a+Ĉ)d(a+Ĉ)+|Daϕ|2−|ϕ|4 ←→

1

4π
AdA+|DAϕ̃|2−|ϕ̃|4+

1

2π
ĈdA.

(1.111)

Indeed, the first term in (1.111) denotes a trivial U(1)1 theory, which decouples in favor of a
purely gravitational CS term. This matches precisely the form of the U(1)1 ↔ U(1)−1 duality
in (1.109) by identifying ϕ̃ ≡ φ, Ĉ ≡ B̂. The relation with particle-vortex duality allows us to
understand how time-reversal acts on the U(1)1 theory: this transforms the scalar field ϕ into
a vortex of the U(1)−1 and a vortex of U(1)1 into the scalar ϕ̂!
Moreover, this tells us also that the mass term for ϕ is odd under time-reversal, as can be shown
using the particle-vortex duality dictionary ϕ2 ↔ −ϕ̃2.
The previous relations, moreover, show that bosonization implies particle-vortex duality. So,
it is sufficient to assume the validity of the former to use the latter and construct additional
dualities!

From bosonization, we can obtain additional boson-fermion dualities. We can, for example,
gauge the global symmetry of the theories that enjoy the duality by making the background
field B̂ dynamical, and add the couplings 1

2π
BdĈ − 1

4π
ĈdĈ. Integrating out B in the bosonic

theory, we obtain

iψ̄ /DBψ +
1

2π
BdĈ − 1

4π
ĈdĈ ↔ |D−Ĉϕ|2 − |ϕ|4 (1.112)

establishing a duality between a U(1)−1/2+ψ theory and a scalar at the WF point. We indicate
the duality as

U(1)−1/2 + ψ ↔ XY model. (1.113)
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The correspondence maps monopoles to particles: a monopoleM† dressed with a fermion ψ in
the fermionic theory is charged under U(1)T with charge −1 and maps to ϕ in the O(2) model,
which is charged with charge −1 under U(1)F .

As a final example, we comment on the possibility of obtaining dualities involving fermionic
theories only. Starting from (1.112), we can add a CS term k

4π
ĈdĈ for the U(1) global sym-

metry. We can then act with S, introducing a new background field D̂ for the topological
symmetry jT ∼ ∗dC, obtaining

k

4π
CdC +

1

2π
CdD̂ + |D−Cϕ|2 − |ϕ|4 ↔ iψ̄ /DBψ +

k − 1

4π
CdC +

1

2π
BdC +

1

2π
CdD̂. (1.114)

We can then choose k = −1 and use (1.107), ending with a purely fermionic duality

iψ̄ /DBψ +
1

2π
BdC − 2

2π
CdC +

1

2π
CdD̂ ↔ iψ̄ /DD̂ψ +

1

4π
D̂dD̂ + 2CS(g). (1.115)

This can be interpreted as a fermionic version of particle-vortex duality [16,43,46–48] since on
one side we have a Dirac fermion charged under a gauge group, while on the other side the
fermion is free. Actually, in order to make this statement precise, we should integrate out C.
This leads to a wrong quantization condition since the integration enforces C = 1

2
(B + D̂),

which is not correctly quantized as a U(1) field. So, in the following, we will refer to this duality
as

”U(1)0 + ψ ↔ ψ” (1.116)

to recall this subtlety. The web enjoyed by these dualities is shown in figure 1.4.

Particle-vortex dualityBosonization

U(1)1 + ϕ ↔ U(1)−1 + ϕ
U(1)−1/2 + ϕ ↔ XY model"U(1)0 + ψ ↔ ψ"

Figure 1.4: Web of Abelian dualities.

From these dualities, using the previous operations, we can obtain other correspondences for
quiver or more complicated fermionic and bosonic theories. We refer the reader to [7, 16] for a
detailed discussion about these dualities.
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1.5 Non-Abelian theories

In this section, we discuss non-Abelian gauge theories in three dimensions. We first start
reviewing pure SU(N) and U(N) YM theories, their symmetries, and their low-energy dynamics.
Then, we analyze pure CS theories in the non-Abelian case, their spectrum of Wilson lines, and
dualities. Finally, we study the dynamics of YM CS theories, focusing on their vacuum structure.

1.5.1 Non-Abelian Yang-Mills theory

Let us consider the Lagrangian of pure Yang-Mills theory

L = − 1

2g2
TrF ∧ ∗F. (1.117)

In the following, we restrict the analysis to SU and U gauge groups.
The U(N) theory possesses a topological symmetry U(1)T associated with the current

jT =
1

2π
∗ TrF. (1.118)

This is preserved by virtue of the Bianchi identities and it is associated with the Abelian factor
of the U(N) gauge group. Indeed, the unitary group can be written (globally) as a product of an

SU(N) group together with an Abelian U(1) as U(N) = SU(N)×U(1)
ZN

. The gauge field associated
with the Abelian factor is nothing but the trace of A, while the traceless field is associated with
the SU(N) part. On the other hand, this topological symmetry is absent in the SU(N) case.
In presence of the topological symmetry, we can construct monopole operators. As we reviewed
in section 1.2, these are disordered operators creating a magnetic flux. This flux, in particular,
can be chosen to lie in the Cartan subalgebra of the U(N) gauge group [49]. Any magnetic
monopole M(x) is then identified by its magnetic fluxes qi associated with each Cartan, the
so-called GNO charges.12 A monopole operator of charges {q1, ..., qN} will be then denoted as

M{q1,...,qN}(x). (1.119)

Note that the charge Q of the monopole under U(1)T equals the sum of all GNO charges∑
i qi = Q.

The SU(N) group possesses a center ZN , associated with a one-form symmetry, acting on
the field A by a shift of a ZN flat connection. This ZN symmetry acts on the Wilson lines of
the theory, which now are labeled by their representation R under the gauge group

WR[C] = Pei
∮
Aa

RTa
R (1.120)

where T a
R are the generators of the algebra in the representation R and P is the path ordered

prescription. When the lines close into loops, they represent a non-local gauge-invariant opera-
tor of the field theory.

12These charges belong to the magnetic dual lattice of the Lie algebra, due to the Dirac quantization condition.
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The U(N) group, on the other hand, possesses a U(1) continuous one-form symmetry, descend-
ing from the one-form symmetry associated with the Abelian factor of U(N) [8].
Since the SU(N) YM coupling g is relevant, the theory is strongly coupled in the IR. This is
expected to confine at low-energies, as it happens in the Abelian case. The expectation value
of the fundamental Wilson loop, in particular, is then expected to satisfy area law, and the
one-form symmetry ZN to be preserved in the IR. Moreover, SU(N) YM in three dimensions is
believed to develop a mass gap of order ∼ g2, corresponding to the mass of the lightest glueball.
The theory is then trivially gapped.

1.5.2 Chern-Simons theories

We now generalize the notion of CS theory to the non-Abelian case. To ensure gauge invariance
under local gauge transformations, the original Abelian CS Lagrangian should be equipped with
an additional term, which is cubic in the gauge field. The non-Abelian CS term reads then

LCS =
k

4π
Tr

(
AdA− 2

3
iA3

)
. (1.121)

A pure SU(N) CS theory equipped with this term is denoted as SU(N)k. For unitarity groups
U(N), the nomenclature is more involved. Indeed, the SU(N) and U(1) factors of the U(N)
gauge group can have different CS levels

L =
k

4π
Tr

(
AdA− 2

3
iA3

)
+

n

4π
TrAdTrA (1.122)

being the two terms separately gauge-invariant.
Writing A = Ã+ 1

N
TrA, we see the SU(N) factor has CS level k, while the U(1) factor has level

N(nN + k). Rewriting k′ ≡ nN + k, the resulting theory is denoted as

U(N)k,k′ =
SU(N)k × U(1)k′N

ZN

. (1.123)

Choosing n = 0, k′ = k, we obtain the CS action of the U(N)k,k ≡ U(N)k CS theory.

As in the Abelian case, CS levels are quantized. The quantization, in particular, ensures gauge-
invariance of the theory under large gauge transformations. Let us take the SU(N) theory and
act with a large gauge transformation Aµ → g−1Aµg + ig−1∂µg. This is labeled by the third
homotopy group of SU(N), being the gauge transformations maps from R1,2 to SU(N). Since
π3(SU(N)) = Z, the classes to which a transformation g belongs are labeled by the winding
number

W (g) =
1

24π2

∫
Tr(g−1dgg−1dgg−1dg) = n ∈ Z. (1.124)

The variation of the CS action (1.121) under large gauge transformations (up to boundary
terms) reads

δLCS = − k

12π
Tr(g−1dgg−1dgg−1dg) = 2πkn. (1.125)
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To ensure gauge invariance, this shift of the action should be then proportional to an integer
multiplied by 2π. This leads to the quantization condition

k ∈ Z. (1.126)

The same reasoning can be done for U(N), leading to the conditions k ∈ Z and k′N ∈ Z
(namely k′−k

N
∈ Z).

Let us now discuss the dynamics of these theories.
As in the Abelian case, the equations of motion are solved by flat connections

F = 0 with solutions: Aµ = ig−1∂µg. (1.127)

We again have no local propagating degrees of freedom (as we can see also from the CS prop-
agator), as expected from the topological nature of the CS term (1.121). The Wilson loops
represent the gauge-invariant non-local observables of these theories

WR[C] = TrRPe
i
∮
A. (1.128)

The Hilbert space of these theories was first analyzed in [13], together with the correlation
functions of Wilson lines. It was shown that these correlation functions compute topological
invariants of the manifolds on which the theory lives, known as knot invariants. We will not
discuss any further these aspects, which are beyond the goal of this thesis.
Much information about these theories is known thanks to the exact duality between CS theories
and WZW models [50].
First of all, not all the lines contribute to the Hilbert space of the theory due to the interrelations
between them. Putting the theory on a spatial torus, for example, only lines in integrable13

representations of the SU(N) group contribute. The number of these representations equals
the dimension of the Hilbert space of the theory and reads

dimH =
(k +N − 1)!

k!(N − 1)!
. (1.129)

For SU(2), we have a more general result [51] coming from the CS-WZW correspondence, which
gives us the dimension of the Hilbert space on a generic genus g surface through the Verlinde
formula

dimH =

(
k + 2

2

)g−1 k∑

j=0

[
sin

(j + 1)π

k + 2

]2−2g

. (1.130)

Second, we can show that many CS theories are dual to each other by looking at their corre-
sponding WZWmodels [50]. For example, SU(N)1 on the torus has a Hilbert space of dimension
N , which is the same dimension as the Hilbert space of a U(1)N theory, see section 1.2. This
holds also for g > 1 [51], showing that the dimension of the Hilbert space of both theories agrees

13These are representations whose Young tableaux have the width of their first row smaller or equal to the
CS level k.
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on generic manifolds and reads N g. This is an example of a level/rank duality [15, 50]. These
dualities relate SU(N) and U(N) pure CS theories via the correspondence

SU(N)±k ←→ U(k)∓N,∓N (1.131)

U(N)k,k+N ←→ U(k)−N,−N−k. (1.132)

The theories have the same lines and isomorphic Hilbert spaces and corresponding equal parti-
tion functions. This represents an exact duality between different TQFTs.
Note that, looking at the first row in (1.131), we conclude that U(N)1 is almost trivial since
SU(1) is empty. This generalizes the almost triviality of U(1)1 to generic N > 1.
Finally, let us mention that the previous methods used to establish new Abelian dualities can
be also employed here to construct new level/rank dualities. In this way it is possible to obtain,
for example, the U(N)k,k−N ←→ U(k)−N,−N+k duality [15].

1.5.3 Yang-Mills CS gauge theory

Adding a CS term of level k to the YM action, we obtain the YM CS action at level k

LYM CS = − 1

2g2
TrF ∧ ∗F +

k

4π
Tr

(
AdA− 2

3
iA3

)
. (1.133)

In presence of a CS term, monopoles become charged under the topological symmetry due to
flux attachment. Take for definiteness a U(N)k CS theory. In this theory, a monopole with
charges {q1, ..., qn, 0, 0, .., 0} breaks the gauge symmetry down to U(1)n × U(N − n) and the
monopole is charged under the n U(1)s with electric charge kqi [49]. This conclusion can be
drawn by looking at the transformation of the monopole operator under the Cartan of U(N),
adapting the Abelian analysis in (1.29).
The one-form symmetry in the SU(N) case remains ZN [8]. In the U(N)k theory, instead, the
U(1) one-form symmetry of the Abelian factor gets reduced to ZkN due to the CS level and to

Zk due to the ZN quotient between the SU(N) and the U(1) group U(N) = SU(N)×U(1)
ZN

.

From the analysis of the propagator, we see again that the A field acquires a gauge-invariant

mass m = |k|g2
2π

without breaking the gauge symmetry. As a consequence, the theory possesses
two mass scales: the topological mass ∼ |k|g2 and the strong coupling scale ∼ Ng2. We can
then have two distinct regimes: |k|g2 ≫ Ng2 and |k|g2 ≪ Ng2. In the first case, gluons can
be semi-classically integrated out at energies smaller than |k|g2, since the dynamics of the YM
theory is weakly coupled at this scale. The kinetic term can be then safely dropped and we are
left with a deconfined CS theory. This is also what we expect by looking at the Lagrangian
(1.133): the first term becomes subleading in the strong coupling regime and can be dropped
out. However, in the |k|g2 ≪ Ng2 regime (such as in the large N , small k limit), we cannot
anymore integrate out the gauge field semi-classically, since at the scale of the topological mass
the theory is already strongly coupled. Nevertheless, the theory is believed to deconfine and
reduce to the same SU(N)k TQFT at low-energies. This expectation changes in presence of
matter fields, as we will see when discussing QCD3 in various limits of its parameters.
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1.6 QCD3: generalities

1.6.1 Chern-Simons matter dualities

Above, we saw how three dimensional theories share some interesting behavior. In the Abelian
case, we saw an intricate web of dualities, involving matter theories, which can be obtained con-
sistently from bosonization or particle-vortex duality. Moreover, in the non-Abelian case, we
saw that pure CS theories are related by exact correspondences, namely by level/rank dualities.
A natural generalization comes from considering dualities among non-Abelian CS matter theo-
ries. These are known as Aharony dualities [49], and can be also seen as a non-supersymmetric
generalization of the three dimensional N = 2 dualities of [3, 52–54]. The original Aharony
dualities read

U(N)−k with F ψ ←→SU(k + F/2)N with F ϕ (1.134)

SU(N)−k with F ψ ←→U(k + F/2)N with F ϕ (1.135)

U(N)−k,−k−N with F ψ ←→U(k + F/2)N,N+k+F/2 with F ϕ. (1.136)

In the relations above, scalars and fermions are always in the fundamental representation of the
gauge group.
As for the Abelian dualities, these relations hold in the infrared: a theory of F bosons shares the
same IR physics as a theory of F fermions with a different gauge group and CS level. Moreover,
as in the Abelian case we will assume that the kinetic term of the gauge field can be safely
dropped in the IR.
A gauge theory coupled to fundamental fermions suffers, in general, from parity anomaly. This
tells us that, in order to preserve gauge-invariance, we need to break parity at the quantum level.
In presence of F fermions in a complex14 representation R, a quantum CS term is generated
and reads 15

∆k = −FhRsgn(m) (1.137)

where hR is the Dynkin index of the representation Tr(T a
RT

b
R) = 2hRδ

ab. Again, the partition
function depends on the renormalized level k = kb−FhR, which is in general half-integer. When
F fermions are massive with mass m, the CS level in the IR reads

kIR = k + FhR sgn(m) (1.138)

where again k is the renormalized level k = kb − hR.
In this way, integrating out the fermions, kIR is always an integer, and gauge-invariance is
preserved. Let us take for instance F fermions in the fundamental representation f . We see
that whenever m = 0, parity is broken if F is odd since the renormalized level k obeys the
quantization condition

k +
F

2
∈ Z, (1.139)

14If the representation R is instead real, ∆k = −F
2 hRsgn(m).

15This can be seen, for example, by calculating the contribution in the PV regularization with the minus sign
prescription. In the following, consistently with the Abelian case, we will stick with the minus prescription for
the CS term.
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being hf = 1
2
.

If, on the other hand, F is even, we see that the theory with k = 0 possesses time-reversal
invariance. This parallels the Abelian case.
In writing eq.s (1.134)-(1.136), due to parity anomaly, we stick with our convention and associate
with the fermionic theories the renormalized level, instead of the bare one (again adopting the
− convention for the shift of the level).
Many of the previous Abelian and non-Abelian dualities can be obtained as limits of the Aharony
ones. For example, the case F = 0 reduces to level/rank dualities and their time-reversed
versions. If N = F = 2k = 1, we obtain Abelian bosonization U(1)1 + ϕ ↔ ψ, as well as
U(1)−1/2 + ψ ↔ XY model . Note that actually, Aharony dualities are a subset of a more
general group of dualities, known as master or Benini’s dualities [55], from which they can be
derived. In the following, we will not cover master dualities in detail, limiting ourselves to the
dualities useful for our purpose.
In particular, we will focus on the non-Abelian bosonization duality

SU(N)k with F ψ ←→ U(k + F/2)−N with F ϕ, (1.140)

representing the time-reversal version of (1.135). In the following, we assume k to be non-
negative since theories with negative CS levels can be studied by applying a time-reversal
transformation. The theory on the left-hand side of the duality, namely SU(N)k+F fundamental
fermions and CS level k, is denoted in the literature as QCD3. Its dynamics was studied in
various range of parameters since this theory shows many interesting phenomena common to
four dimensional QCD. In the following, we will focus on the study of its phase diagram and
the duality in (1.140) will be a useful tool to achieve our goal. For reasons that will become
clear later, we first start analyzing its vacuum structure for the case k ≥ F/2, and after we will
discuss the k < F/2 case.

1.6.2 QCD3: k ≥ F/2 case

Let us first focus on the phase diagram of QCD3.
The deformation of the (conjectured) fixed point of the fermionic theory is represented by
turning on a massmψ̄ψ common to all the fermions, which preserves the U(F ) global symmetry.
Depending on the sing of m, in the semi-classical regime |m| ≫ g2, fermions can be integrated
out and the mass generates a shift of the CS level. At low-energies, we end up with the following
phases

L =

{
SU(N)k+F/2, m > 0
SU(N)k−F/2, m < 0

(1.141)

which are nothing but two deconfined TQFTs. Supposing that no other phase is present in the
small mass regime, the phase diagram of the theory is shown in figure 1.5.
It is easy to show that the phase diagram of the bosonic dual in (1.140), in the range k ≥ F/2,
matches the one of QCD3. Let us first see how symmetries are mapped across the duality. On
the bosonic side, the gauge group is unitary, so the F scalars enjoy a SU(F ) flavor symmetry.
Moreover, the theory preserves a topological symmetry U(1)T . On the fermionic side, the gauge
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Figure 1.5: Phase diagram of SU(N)k + F ψ in the case k ≥ F/2. The phase transition between the
two gapped phases is indicated by the black dot.

group is special unitary, so fermions enjoy a SU(F ) × U(1)B flavor symmetry, where U(1)B
represents the baryon number.16 The global symmetries then match, identifying the baryon
number with the topological symmetry U(1)B ↔ U(1)F . This correspondence generalizes the
duality map of symmetries of Abelian bosonization. Moreover, also anomalies can be matched
across the duality [56].
We can now draw the phase diagram of the bosonic dual of QCD3. We expect the deformation
mψ̄ψ of the fermionic theory to map into a common mass M2ϕ2 for the ϕs. Integrating out the
bosonic fields with positive mass leaves a U(k + F/2)−N CS theory. When the mass square is
negative, on the other hand, scalars condense and partially Higgs the gauge group. In particular,
by a suitable choice of the potential17 we have maximal Higgsing for the group, which gets broken
to U(k − F/2). Note that the bound k ≥ F/2 is crucial: only for this range of k, part of the
gauge symmetry is preserved by the VEV. In the process, the flavor symmetry is unbroken,
thanks to color-flavor locking18. All the scalars are then massive, together with the gauge fields
associated with the broken generators of the gauge group. The remaining gluons acquire a
topological mass due to the CS term and we end up, at low-energies, with a CS theory

U(k − F/2)−N . (1.142)

Looking at the topological phases, we see that the phase diagram of the fermionic theory matches
the bosonic one by the identification

ψ̄ψ ↔ ϕ†ϕ. (1.143)

This generalizes the bosonization map to the non-Abelian case.

Another evidence of the validity of the duality comes from the matching of gauge-invariant
operators across the correspondence.

16Here we are simplifying the analysis, since the global symmetry that acts faithfully on gauge-invariants is
actually U(F )/ZN together with a charge conjugation symmetry. This can be seen to match across the duality,
see [56].

17We will comment about the precise structure of this potential in section 3.1
18Namely, the action of the global symmetry together with a constant gauge transformation leaves the vacuum

invariant, preserving a diagonal SU(F ) symmetry.
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The gauge-invariant operators associated with the U(1) global symmetry are dressed monopoles
in the bosonic case and baryons in the fermionic case. The correspondence can be made precise
by looking at the dimension of the lowest charge operators. Let us start considering the F = 1
case. An explicit calculation of monopole dimension was made in [57,58]. We expect the lowest
dimensional operator to be the monopole with charges {qi} = (1, 0, ..., 0) and topological charge
one. Due to the CS term, this is charged under the first generator of the Cartan torus with
charge −N . To make it gauge-invariant, this must be dressed with N scalars ϕ to compensate
for the charge. The total classical dimension is then ∆ = N∆scalar + ∆monopole. The weight
∆scalar represents the dimension of the scalar in a monopole background and it is equal to one
for a monopole with a unit of flux. The total dimension then reads ∆ = N [49]. Moreover,
ϕ has spin 1

2
in the monopole background [59] due to flux attachment, so in total we have 2N

states with spin s up to N/2.
Baryons of the fermionic theory, on the other hand, can be written as the antisymmetrization
in the color indices of N ψs

B = ϵa1a2...anψ
a1 ...ψan . (1.144)

The operator B has then baryon charge one and classical dimension N , matching the dimension
of the monopole operator.19 The total number of states is 2N since they carry different spins
up to N/2. This matches precisely the number of states and spins of the monopole operator,
justifying the duality map. The same analysis can be done in the F > 1 case, showing that also
the global SU(F ) quantum numbers of the two operators match across the duality.

The duality is also self-consistent, meaning that assuming it to hold for fixed (N, k, F ), this
can be proven to hold also for lower values of F and higher values of k. This can be seen
performing a mass deformation. In particular, we can add a mass term to each side of the
duality for the F -th flavor (keeping an SU(Nf − 1) global symmetry). On the bosonic side, the
sign of the mass deforms the theory to U(k + 1/2 + (F − 1)/2)−N + (F − 1) ϕ for M2 > 0 or
U(k + (F − 1)/2)−N + (F − 1) ϕ for M2 < 0. On the fermionic side, when we integrate out
the flavor we end up with SU(N)k±1/2 + (F − 1) ψ, depending on the sign of the mass. We see
then that, if we assume the duality for (N, k, F ), this holds also for (N, k ± 1/2, F − 1).

Let us comment on the bound k ≥ F/2 that we assumed in the previous analysis. We saw
that, when we deform the scalar theory with a negative mass, we have maximal Higgsing and
preservation of the global symmetry due to color-flavor locking. This is no more the case if
k < F/2: in this regime, the gauge group is completely Higgsed and the global symmetry gets
broken to S[U(F/2 − k) × U(F/2 + k)]. The theory is gapless, described at low-energies by
Goldstone bosons with Grassmannian target space

Gr(F/2 + k, F ) =
SU(F )

S[U(k + F/2)× U(F/2− k)] . (1.145)

There is no analog semi-classical phase for the fermionic theory, which does not manifest nei-
ther symmetry breaking nor gapless excitations. A modification of the previous correspondence

19This suggests that their classical dimension does not acquire quantum corrections [49].
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is then needed, in order for a bosonic theory to describe the phase diagram of QCD3 for k < F/2.

Finally, let us comment on the order of the phase transition in figure 1.5. It is not at the
moment established if this phase transition is actually first or second order. However, we saw
a large number of checks that show the validity of these dualities. Indeed, also in presence of
first order phase transitions (or weakly-first order), in general, dualities can be predictive. For
example, the matching of the phase diagram can be used to determine the vacuum structure of
a strongly coupled theory, whenever this has a weakly coupled dual. Moreover, when the transi-
tion is weakly-first order, there is an approximate scale invariance related to the phenomenon of
walking (this can be associated with tuning or complex CFTs, see [60,61]), so the physics of the
theory resembles very much the one of a conformal field theory. In this case, the correspondence
reminds a lot of a standard IR duality. So, in the following, we will use the bosonic duals to
describe the phase diagram of QCD3 regardless of the order of the phase transitions.

1.6.3 QCD3: k < F/2 case

In the previous section, we saw how the duality in (1.140) apparently fails if k < F/2, since the
semi-classical non-linear sigma-model (NLSM) phase (1.145) that the bosonic theory enjoys,
has no trace in the semi-classical phase diagram of QCD3, as happens in figure 1.5. However,
although semi-classically the fermionic theory does not enjoy a gapless phase, we cannot exclude
that, at the quantum level, the global symmetry of the theory can be spontaneously broken.
For example, the Vafa-Witten theorem [62–64] does not rule out this possibility, suggesting
a symmetry breaking pattern for QCD3 at k = 0 of the form U(F ) ↔ U(F/2) × U(F/2).
This is compatible with the symmetry breaking pattern of the U(k+F/2)−N bosonic theory for
k = 0. Similarly, the analysis of domain walls in four-dimensional QCD with F flavors [65] gives
evidence that SU(N)F/2−1 theory with F fermions enjoys a phase where its global symmetry
U(F ) is spontaneously broken to U(1) × U(F − 1), as happens for the bosonic dual (1.145).
These suggest that the mismatch of the semi-classical phases among the theories that enjoy
Aharony’s duality may not be a symptom of the lack of validity of the bosonic description, but
a hint of a possible quantum phase, invisible in the fermionic theory but accessible from the
bosonic side. This is the guiding principle of the analysis in [31], which extended Aharony’s
dualities to the k < F/2 case.
The proposal of [31] is that the fermionic theory, on top of the semi-classical asymptotic phases
SU(N)k−F/2 and SU(N)k+F/2 at large m, actually admits an inherently quantum phase for
masses |m| ∼ g2, where the quark bilinear condenses as

ψψ† = diag(x, ..., x, y, ..., y)

with x appearing F/2+k times and y F/2−k times with x ̸= y, breaking U(F )→ U (F/2 + k)×
U (F/2− k). The theory is then gapless, described at low-energies by Goldstone bosons with
target space

Gr(F/2 + k, F ) =
U(F )

U(F/2 + k)× U(F/2− k) , (1.146)
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Figure 1.6: Phase diagram of SU(N)k + F ψ in the case k < F/2. For |m| ≲ g2 the theory enters
a quantum phase, with complex Grassmannian (1.146). The two phase transitions, at negative and
positive mass, are described by two different bosonic duals.

accompanied with a Wess-Zumino term Γ with coefficient N , see e.g. [66–68]. This resembles
the chiral symmetry breaking of four dimensional QCD and it is clearly a strong coupling effect.

So, in this case, the phase diagram of the fermionic theory enjoys two phase transitions,
where the gapless phase separates the two semi-classical topological phases. The vicinity of
these two transitions can be then described by two distinct dual bosonic theories, U(F/2− k)N
and U(F/2+k)−N , each coupled to F complex scalars. When the squared masses of the scalars

in the two theories, M̂2 and M2 respectively, are large and positive, they flow respectively to
the large negative and large positive mass phases of the fermionic theory. Instead, when the
squared masses of the scalars are negative, both theories flow to the same NLSM with target
space (1.146). We see that this identified the duality map

M̂2 ↔ −m, M2 ↔ m (1.147)

looking close to the first (resp. second) phase transition. The phase diagram in the k < F/2
case is summarized in figure 1.6. The proposal shows the power of these dualities: a purely
quantum phase of the fermionic theory can be accessed, in the semi-classical limit, by studying
the corresponding bosonic duals!

There are several consistency checks for the validity of this proposal.
First of all, similarly to the k ≥ F/2 case, it is possible to show that dualities are consistent
under mass deformations.
Secondly, when k = 0 and the theory is time-reversal invariant, the Vafa-Witten theorem [62–64]
suggests20 that the global symmetry of the fermionic theory can be spontaneously broken down
to U(F/2)×U(F/2), leading at low-energies to a theory of Goldstone bosons with target space

Gr(F/2, F ) =
U(F )

U
(
F
2

)
× U

(
F
2

) . (1.148)

Holography [69] shows a similar indication as well. We will come back to this point later in
Chapter 3.

20We will discuss later the subtleties related to the VW theorem in section 1.6.4.
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This matches the more general proposal for the non-linear sigma-model phase of eq. (1.145)
and the corresponding phase diagram of U(k + F/2)−N .
Moreover, the Goldstone bosons describing the resulting phase match the mixed anomaly be-
tween time-reversal symmetry and the U(F ) flavor symmetry [31].
The matching between monopoles and baryons that we saw in the k ≥ F/2 case still holds
in this regime. Let us first see the correspondence from the point of view of the fermionic
theory. As in four dimensions, when we have chiral symmetry breaking in QCD, the Skyrme
model represents the effective field theory that describes the dynamics of mesons. In particular,
baryons are realized in the model as solitons, known as skyrmions. These are charged under a
topological symmetry of the model and are classified by their winding number. This realizes the
baryonic charge in the EFT. The model is equipped with a Wess-Zumino (WZ) term k′Γ, where
k′ denotes its level. This gives us the statistics of the skyrmions. If k′ is odd, the Skyrmion have
half-integer spin, while if k′ is even, they have integer spin [66, 67, 70, 71]. In the same vein, in
the NLSM phase of QCD3 we can describe baryons as Skymions of the Grassmannian model,
equipped with a WZ term. Since, baryons of the SU(N)k theory are bosons if N is even and
fermions if N is odd, the level k′ compatible with the correct statistic is k′ = N .
Analogously, constructing the NLSM coming from the bosonic theory, the CS terms of the
bosonic theories reduce to the WZ term of the Skyrme model. The monopole charge reduces
then to the winding number of the skyrmions. So, again, monopoles can be identified with
baryons, being both described in the NLSM as skyrmions!

Let us finally comment on the range of validity of the previous proposal. All the previous anal-
ysis remains valid until F is sufficiently small. The large F limit of QCD3, namely F ≫ k,N
with F → ∞ was analyze in [72, 73]. In this regime, QCD3 simplifies, since only a subset
of Feynman diagrams is dominant and contributes to the correlation functions of the theory.
These can be efficiently resummed and, the theory can be solved explicitly in perturbation the-
ory. The analysis showed that for F > F ∗ with F ∗ a function21 of k,N [72], the phase diagram
reduces to the k ≥ F/2 case, where the transition at m = 0 is second-order and described by
an interacting conformal field theory.22 No bosonic dual is known for this fixed point. So, the
previous analysis holds whenever F < F ∗.
If we assume the phase diagram in figure 1.6 to be correct for k = 0 and F < F ∗, it re-
mains correct for any value of k. Indeed, starting from (N, k = 0, F ) with F < F ∗(N, k = 0),
we can decouple f flavors and reach the theories (N, k′ ≡ ±f/2, F ′ ≡ F − f). The bound
F ′ < F ∗(N, k = 0)− 2k′ remains compatible with F < F ∗, so if the global symmetry is sponta-
neously broken at k = 0, it is broken also at k ̸= 0 and the symmetry breaking pattern matches
the proposed Grassmannian phase.

The limit k,N large with ’t Hooft coupling λCS ≡ N
k
fixed was analyzed in detail in [75–81]. In

this regime, the theory simplifies and can be studied consistently in a large k expansion. The
phase diagram of QCD3 reduces to the k ≥ F/2 one, namely the two semi-classical phases are

21Estimations for its value can be found in [74].
22In particular, in this regime, ’t Hooft anomalies are no more matched by the NLSM, but by the CFT itself.



48 Chapter 1. Aspects of three dimensional theories

separated by a single phase transition. Moreover, the transition was found to be second-order
and the fixed point to be interacting. However, note that this analysis was derived by first
decoupling the YM term from the Lagrangian, namely by studying the pure CS theory in pres-
ence of matter. As mentioned above, this is justified only when k ≫ N , namely λCS ≪ 1, since
gluons acquire a topological mass ∼ kg2 much bigger than the strong coupling scale ∼ Ng2 and
can be integrated out before reaching strong coupling. However, if k ≪ N , we cannot safely
integrate out the gluons and drop the Yang-Mills term. The low-energy dynamics is indeed
richer in this limit, as we will see in detail in the next section.

1.6.4 QCD3 at large N

In this section, we describe the large N limit of QCD3. This regime is obtained by sending N
to infinity, keeping both k and F subleading to N , as opposed to the ’t Hooft limit in three
dimensions, where both k and N are sent to infinity, keeping the coupling λCS ≡ N

k
fixed. In

the following, we indeed keep fixed the scale Λ = Ng2, which will be denoted as the ’t Hooft
coupling of the theory. This is nothing but the strong coupling scale of the theory. So, this
limit resembles the standard ’t Hooft limit of four dimensional QCD [82]. Indeed, the limit can
be also studied using holography, as we will do in Chapter 3. Let us start from the Lagrangian
of QCD3

LYM CS = − N
2Λ

Tr(F ∧ ∗F ) + k

4π
Tr

(
AdA− 2

3
iA3

)
+ iψ̄i /DAψ

i −m j
i ψ̄jψ

i (1.149)

with a generic mass term m = m j
i . This can be diagonalized using an SU(F ) symmetry to

m = diag(m1, ...,mF ). The theory is time-reversal invariant if and only if m = k = 0. The
vacuum structure can be explored by studying the VEV of the mesonic operator

M i
j =

1

N
ψ̄iψ

j, (M j
i )

† =M i
j . (1.150)

This represents an order parameter for the flavor and the time-reversal symmetries (when k = 0).
Note that, being the matrix M in the adjoint of U(F ), its VEV can give us only some specific
symmetry breaking patterns. However, this is sufficient to analyze the breaking of the SU(F )
symmetry. In particular, ⟨M⟩ can be diagonalize via an SU(F ) transformation as

⟨M⟩ = Λ2diag(x1, ..., xF ), xi ∈ R, i = 1, ..., F (1.151)

where xi, i = 1, ..., F are the dimensionless eigenvalues of M, scaling as O(1) in the large N
limit. These are ordered using the Weyl group of SU(F ) as

x1 ≤ ... ≤ xF . (1.152)

The symmetry breaking pattern, and the phase diagram, were obtained by constructing an
effective potential for the meson VEV V (⟨M⟩) at leading and subleading order in N in [25]. In
the following, we do not describe the large N calculation in detail, limiting our analysis to the
resulting phase diagrams.
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� Leading order: the potential reads

V (xi) = NΛ3

F∑

i=1

F (xi) +NΛ2

F∑

i=1

mixi (1.153)

where F (x) has two degenerate minima at x = ±1. At mi = 0, we have F + 1 degenerate
vacua parametrized by the number p of positive eigenvalues xi = +1, i = 1, ..., p. On the
p-th vacuum, the global symmetry is broken spontaneously to U(p) × U(F − p) by the
VEV of the mesonic operator, and the low-energy dynamics is described by a theory of
Goldstone bosons with target space

Gr(p, F ) =
U(F )

U(p)× U(F − p) . (1.154)

The pion decay constant fπ of this non-linear sigma-model can be shown to be large in
the large N limit f 2

π ∼ NΛ [83], so the model is weakly coupled.
When mi ̸= 0 for some i, the degeneracy is spoiled. Choosing

m1 ≥ m2 ≥ ... ≥ mp ≥ 0 ≥ mp+1 ≥ ... ≥ mF , p ∈ {0, ..., F} (1.155)

the vacuum
x1 = ... = xp = −1, xp+1 = ... = xF = 1 (1.156)

is energetically favorable. The energy barrier that separates two vacua with two distinct
symmetry breaking patterns is then of order N . Whenever one of the negative masses mj

changes sign, we encounter a first order phase transition which separates the p-th vacuum
from the (p+ 1)-th one.
All the previous vacua are accompanied by a TQFT.23 This can be inferred from the
semi-classical analysis where mi ≫ Λ and it is conjectured to remain true also at mi ≪ Λ.
The p-th vacuum reads

Gr(p, F )× SU(N)k+p−F/2. (1.157)

From now on, we set the mass term m = mI, in order to obtain the phase diagram
of QCD3 at leading order in the large N limit. This is shown in figure 1.7. This is
consistent also with Vafa-Witten theorem. In particular, the theorem predicts a symmetry
breaking pattern U(F ) → U(F/2) × U(F/2) for massless QCD3 at k = 0. However, this
pattern was obtained by equipping QCD3 with a time-reversal invariant mass, namely24

mi = m, i = 1, ..., F/2 and mi = −m, , i = F/2 + 1, ..., F and sending it to zero. Doing
the same by tuning in this way (1.156), we indeed obtain the same symmetry breaking
pattern. However, the theorem does not exclude additional vacua with different symmetry
breaking patterns, which can appear as degenerate states together with the VW vacuum,
as happens for the phase diagram in figure 1.7.

23The CS term can be neglected in the calculation in the strict large N limit since diagrams including this
term are suppressed by a power of k/N (or equivalently the topological mass mCS ∼ kΛ

N vanishes in the strict
large N limit). However, this is still responsible for the deconfinement of the theory at low-energies.

24Actually, the theory is invariant under the simultaneous action of the Weyl group W of SU(F ) and T ,
namely only WT is preserved.
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m

SU(N)k+F/2
Gr(F − 1,F) × SU(N)k+F/2−1SU(N)k−F/2

Gr(1,F) × SU(N)k−F/2+1 . . .

SU(N)k+F/2SU(N)k−F/2

Figure 1.7: Phase diagram of large N QCD3 at leading order. The green dot indicates a first
order phase transition where F + 1 vacua are degenerate.

� 1/N corrections: the potential is modified by a O(1) term, representing an interaction
between the xi eigenvalues

Vint. = Λ3∆
∑

i,j

xixj (1.158)

where crucially25 ∆ > 0. The degeneracy at m = 0 that we observed in the large N limit
is now resolved by an energy contribution of order ∼ O(1), as we can see by looking at
the value of the potential (1.158) on the p-th vacuum

Vint. = Λ3∆(F − 2p)2. (1.159)

In particular, the VW vacuum p = F/2 is selected.
Taking care of the mass term, we see that the potential becomes

Vint. = Λ3∆(F − 2p)

(
F − 2p+

Nm

Λ∆

)
(1.160)

and for the value of the common mass

m(p) =
4Λ∆

N
(p− F/2 + 1/2) (1.161)

we have a phase transition between the p-th and the (p+ 1)-th vacua. This is again first
order, since the two vacua become degenerate but distinct at the transition point, while
one of the two dominates whenever m is smaller or larger than m(p).
Finally, k now contributes to the potential. Its contribution consists of a shift of the mass
m by a factor kΛ

N
. This is nothing but the additive renormalization of the mass caused

by a CS term, which parallels the additive renormalization of the CS level caused by the
fermionic mass that we saw in section 1.3. The phase diagram is depicted in figure 1.8.

25This was assumed in [25], in order to respect the VW theorem.
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m
SU(N)k+F/2

SU(N)k−F/2 p = 1 p = 2 . . . p = F − 2 p = F − 1

Figure 1.8: Phase diagram with 1/N corrections.

As it happens for generic k, F , and N , the whole phase diagram can be described by at most
two bosonic theories. For k ≥ F/2, this is described by a single bosonic theory, namely
U(k + F/2)−N with F ϕ. For k < F/2, we need two bosonic duals, namely U(F/2 − k)N
and U(F/2 + k)−N . In this case, the former theory describes the first F/2 − k phases of the
diagram, from p = 0 to p = F/2− k, while the phases p = F/2− k, ..., F are described by the
latter bosonic theory. Both for k ≥ F/2 and k < F/2, the bosonic theory needs to be equipped
with a sextic potential to correctly describe the phase diagram [25].
Since the CS levels of the bosonic duals are ±N and their ranks are F/2 ± k, we are in the ’t
Hooft limit of these theories, so these are actually in a weakly coupled regime. It is then sufficient
to study the bosonic theories in the semi-classical limit to understand the large N limit of QCD3.

In conclusion, we saw that QCD3 at leading order in the large N limit possesses a single
first order phase transition between the two semi-classical topological phases SU(N)k−F/2 and
SU(N)k+F/2, at which F + 1 vacua become all degenerate.
Taking into account 1/N corrections, the theory develops a series of F phase transitions, and
each of the F +1 phases is described by a Goldstone model with target space Gr(p, F ) accompa-
nied by a SU(N)k+p−F/2 TQFT. The phase diagram of the theory is reproduced by two bosonic
theories, equipped with a sextic potential.
Note that, since for k ≫ N it is known, as we reviewed above, that QCD3 actually enjoys a sec-
ond order phase transition separating the two semi-classical phases, varying k/N from k/N ≪ 1
to k/N ≫ 1, we expect to encounter a multicritical point for k ∼ N at which the F different
first order phase transition coalesce into the single second order one [84].
We remark that since all the transitions the phase diagram enjoys are first order, this is an
example of a ”weak” duality, namely QCD3 and the bosonic theories do not enjoy the same
fixed point in the IR. Nevertheless, the phase diagrams match, as well as their excitations. In
this way, we can use the weakly coupled description to infer properties of the strongly coupled
fermionic theory, so the duality remains predictive.
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Chapter 2

Holographic aspects of three
dimensional theories

Holography represents a correspondence between a strongly coupled gauge theory and a weakly
coupled quantum gravity theory. For this reason, it is a very powerful tool to understand non-
perturbative physics of QFTs. In the following, we will employ this correspondence to shed light
on the low-energy phase diagram of QCD3. To do so, in this Chapter, we first review the basics
of the gauge/gravity duality, with a particular focus on holographic duals of QCD theories. In
section 2.1, we review the large N limit for vector and matrix models and its connection to string
theory. In Section 2.2, we briefly review the Maldacena limit [85], the AdS/CFT dictionary,
and the methods to extend the correspondence to non-conformal and/or non-supersymmetric
theories. Finally, in Section 2.3 we review the construction of holographic models for QCD in
four [86–89] and three dimensions [69, 90], in order to study the vacuum structure of QCD3 in
Chapter 4.

2.1 Large N limit

Non-Abelian gauge theories in four and three dimensions are notoriously difficult to analyze in
the IR, being strongly coupled. However, field theories can simplify when we take the limit of
a large number of fields. In this regime, only a particular set of Feynman diagrams contributes
to the physics of the theory. In some cases, all diagrams can be resummed and the theory is
solvable, as it happens for vector theories such as the O(N) model [91–93]. In other cases, as
for matrix theories, physics simplifies but the theory is still not solvable completely.
Vector models are an example of this simplification. These are theories in which the funda-
mental fields are vectors ϕa with N components a = 1, ..., N . In the large N limit, only a
finite amount of Feynman diagrams, namely bubble diagrams, are relevant and they can be
geometrically resummed. This happens, for example, for QED3 coupled to N electrons in the
large N limit [94]. This simplification regards also correlation functions. For any correlation
function of m-operators, the disconnected and the connected parts scale differently with N . In
particular, the connected part is suppressed, and all correlation functions can be calculated by

53
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Wick contractions, like for weakly coupled field theories. This property is denoted as large N
factorization.
In this section, we focus on the large N limit of matrix theories. These theories have fields
that are N × N matrices. This is the case of pure U(N) gauge theories, for example. These
types of theories simplify in the large N limit. This simplification was studied in the context of
pure YM theory by ’t Hooft [82], which focuses on SU(N) Yang-Mills theory in four dimensions.
Denoting the gauge coupling as gYM, in order to take a meaningful limit, we want the β function
of gYM

∂gYM

∂ log µ
= − 11

48π2
Ng3YM +O(g5YM) (2.1)

to remain non-trivial in the large N limit. This can be ensured by keeping fixed the RG invariant

scale ΛQCD = ΛUV e
− 3

22
(4π)2

Ng2
YM at large N . This is achieved by keeping constant

λ ≡ Ng2YM (2.2)

as N →∞. In doing so, the β function remains non-trivial and organizes as a series in λ

∂λ

∂ log µ
= − 11

24π2
Nλ2 +O(λ5). (2.3)

The limit is denoted in literature as ’t Hooft limit or the large N limit of SU(N) YM theory in
four dimensions.
In this regime, only a subset of Feynman diagrams contributes to the dynamics. To see how
this happens, let us start by considering a U(N) YM theory

S = − 1

2g2YM

∫
d4xTrF 2. (2.4)

and then extrapolate the finding to SU(N). The gauge bosons (Aµ)
a
b = AA

µ (T
A)ab are in the

adjoint of the U(N) gauge group, so they can be represented as N×N matrices. The Lagrangian
(2.4) has an explicit dependence on N and on the ’t Hooft coupling as

S = −N
2λ

∫
d4xTrF 2. (2.5)

From (2.5), it seems that by sending N to infinity, we are actually reaching a semi-classical
limit, where the factor 1/N plays the role of ℏ. This is what happens, for example, when we
are dealing with vector theories. However, this time the number of fields grows as N2 instead
of N , so we need to be careful regarding this simplification. In fact, taking the propagator of
the gluons, in Feynman gauge

⟨(Aµ)ab(A
ν)cd⟩ = δadδ

c
b

g2YMη
µν

p2 + iϵ
,
∑

A

(TA)ab(T
A)cd = δadδ

c
b (2.6)

We see that this scales like 1/N . We can represent this schematically using a double line
notation, as in figure 2.1(a).
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a d
cb

a
b

cd

e
f

(a) (b)

Figure 2.1: Double line notation for the propagator (a) and the triple vertex (b).

To each δ-function in the propagator (2.6), we associate a line connecting the corresponding two
indices. These lines connect the various indices contracted in a vertex, see figure 2.1(c), Feynman
diagrams are then constructed in this notation connecting lines in vertices and propagators. Any
time a single line closes into a loop, we are summing

∑
a δ

a
a and so we get a factor of N . A

gluon vertex as the one in figure 2.1(b) contributes as g−2
YM = N

λ
. So, a generic Feynman diagram

with V vertices, I internal propagators, and L loops scales with N as

∝ (g2)I−VNL = NL−I+V λI−V = N2−2gλI−V (2.7)

where g is the genus associated with the diagram. Indeed, each diagram can be mapped to a
closed, compact, and oriented surface where edges correspond to propagators and faces to closed
lines, see figure 2.2. This tells us that diagrams of smaller genus are dominant in the large N
limit. So, when we consider, for example, the partition function Z of the theory, we see that
only planar vacuum diagrams (namely surfaces of zero genus) are relevant at leading order in
N . So, to determine Z, it is sufficient to resum only these diagrams. Although this represents a
huge simplification, still efficiently resumming planar diagrams is a hard task in quantum field
theory.
Looking at the next orders, we see that the partition function of the theory organizes in a genus
expansion in 1

N
, see Fig 2.2.

This resembles what happens in closed oriented string theory [82] where interactions are orga-
nized into a genus expansion in the string coupling gs. As we will see, the similarities between
string theory and gauge theories do not stop here.
Also for gauge theories, in the large N limit correlation functions factorize. Consider a set of
single trace operators Oa, with normalization

Ôa =
1

N
Oa (2.8)
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(a)

(b)

(c)

Figure 2.2: Genus expansion of Feynman diagrams. Planar diagram (a), non-planar diagram
(b) and diagram with a fundamental loop (c).

so to keep two-point functions finite in the largeN limit.1 Correlation functions can be computed
by adding a source Ja to its corresponding operator Oa

L → L+
n∑

a=1

JaÔa. (2.9)

where Ja/N is kept fixed to have a non-zero source in the large N limit. The connected
correlation functions scale then as

⟨Ô1....Ôr⟩c ∝ N2−r. (2.10)

We see that, for any r, the connected contribution is sub-leading with respect to the disconnected
one

⟨Ô1⟩...⟨Ôr⟩ ∝ N2r (2.11)

realizing large N factorization.
Correlation functions of single trace operators are then similar to correlation functions of vertex
operators in closed-oriented string theory.
In the multi-trace case, correlators are suppressed2 by some powers of N . Correspondingly,
their contribution is subleading in the strict large N limit.

The same reasoning holds, at leading order in the large N limit, also for SU(N) YM, since

1Normalizing in this way allows states created by acting with the operator on the vacuum to have finite norm
in the large N limit.

2These have different normalizations with respect to the single trace, to ensure the correct scaling of their
two-point function in the large N limit.
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their gluon loops scale in this regime
∑

A(T
A)ab(T

A)cd = δadδ
c
b+O

(
1
N

)
, as happens for the U(N)

case. In presence of fundamental matter, the previous analysis can be adapted. In particular,
each fundamental contributes as a vector in the large N counting. Let us take F of them and
require F to be subleading to N . In double line notation, the propagator of this field is a single
line, since each fundamental has a single gauge index. A fundamental loop contribues then
∝ F/N . The counting in eq.(2.7) gets modified as

∝ (g2)I−VNL−LF = N2−2g−bλI−V (2.12)

where LF is the number of fundamental loops. They play the role of boundaries b of the asso-
ciated surface and they are suppressed with respect to pure gluon diagrams. In this limit, the
flavors are said to be quenched.
We see then that field theories in the large N limit share many similarities with the genus ex-
pansion of closed-oriented string theory (in presence of only adjoint matter) or open and closed
string theory (in presence of fundamentals). The expansion parameter in the string theory gs
corresponds to the expansion parameter 1/N of the field theory. Correlation functions of single
trace operators correspond to correlation functions of vertex operators.
The previous reasoning adapts to SO(N) and Sp(N) theories also. In these cases, since the
fundamental representation is real, there is no direction in the lines defining the propagators.
The surfaces corresponding to the Feynman diagrams are then non-orientable. So, the large N
expansion organizes as a genus expansion in an unoriented string theory.
These similarities between the large N expansion of gauge theories and the perturbative expan-
sion in string theory are made precise via the gauge/gravity correspondence program, which
will be reviewed in the next section.

2.2 Gauge/gravity correspondence

In this section, we review the main aspects of the gauge/gravity correspondence. This will
help us in the study of the low-energy dynamics of three dimensional theories. We first start
by reviewing the AdS/CFT correspondence and the associated dictionary. We then focus on
the description of confinement in holography and, in the end, we discuss generalizations of the
duality involving non-conformal field theories.

2.2.1 AdS/CFT

Holography relates a quantum gravity theory in a d+1 dimensional spacetime to a QFT on its
d-dimensional boundary. In particular, in the AdS/CFT correspondence, this space is a d + 1
dimensional Anti-de Sitter space (AdSd+1), and the gravity theory is dual to the CFT living
on its boundary. The quantum gravity theory can be thought of as a hologram of the CFT at
the boundary. This idea was suggested in the past both by the large N limit of gauge theories
that we saw, but also from black hole thermodynamics [95]. However, the main evidence of
the duality came out in the seminal work of Maldacena [85]. In this section, we first introduce
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some notions on type II string theories and their supergravity limits. We then review the Mal-
dacena argument in detail and we uncover the dictionary between supergravity in AdS and the
conformal field theory on its boundary. Finally, we focus on how confinement can be realized
holographically.

Type IIA and IIB supergravities represent the low-energy limits of type IIA and IIB string
theories, respectively. These are supersymmetric theories preserving 32 supercharges. Type IIA
is non-chiral N = (1, 1) in ten dimensions, so the two Majorana-Weyl spinors ϵL, ϵR associated
with its conserved supercharges ϵLQ

L + ϵRQ
R satisfy opposite chirality conditions

ϵL,R = ±γ̄ϵL,R (2.13)

where γ̄ = γ0...γ9 is the ten dimensional chiral matrix. Type IIB is instead chiral N = (2, 0),
so both Majorana spinors satisfy the chirality condition ϵL,R = γ̄ϵL,R. The two theories have
different bosonic field content

� Type IIB has two scalars, the dilaton ϕ, and the axion C0, a metric gMN , a NSNS field
B2 and a set of RR p-forms Cp. In particular (due to the choice of GSO projection in
the corresponding string theory), only p-forms of even dimensions are allowed. The VEV
of eϕ represents the type IIB string coupling gs. The axion C0 is periodic C0 ∼ C0 + 1
and appears in the supergravity Lagrangian, together with the dilaton, only in a complex
combination, the axio-dilaton τ , defined as

τ = C0 + ie−ϕ. (2.14)

The forms Cp are related by Hodge duality to C9−p. So, only the forms C0, C2, C4 are
independent. In particular, the C4 field strength is self-dual

F5 = ∗F5. (2.15)

� Type IIA contains a dilaton ϕ, a metric gMN , a NS-NS two-form B2 and the RR p-forms
Cp with p odd. Again, there are three independent forms C1, C3, C9. The VEV of eϕ

represents the type IIA string coupling.

Supergravity represents the low-energy limit of string theory. Indeed, at low enough energy,
massive string states can be integrated out and, if energies are smaller compared to the string
mass ∼ 1√

α′ , the dynamics of massless string states is described by the corresponding local
supergravity theory. This approximation remains valid until the curvature Rs of the background
around which we expand supergravity is small enough compared with the string scale. So,
supergravity remains valid only in the regime

Rs ≪
1

α′ , E ≪
1√
α′
, gs ≪ 1. (2.16)

In particular, gs is kept small to have a perturbative description of the corresponding string
theory. In the following, we will mainly work in this regime.
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Closed string perspective

Both in type IIA and IIB there exist 1/2 BPS solitons. These are the p-branes [96]. They
have codimension 10-p and are charged under the Cp+1 fields of the theory through the minimal
coupling

Scoupling ∝
∫

Mp+1

Cp+1 (2.17)

where Mp+1 represents their worldvolume. In flat space, this is nothing but R1,p, spanned
by p + 1 coordinates xµ, µ = 0, ..., p. This generalizes the concept of worldline for a particle
charged under a gauge field through a minimal coupling. So, only branes with an even (resp.
odd) p exist in type IIA (resp. IIB). Being solitons of supergravity, they source a non-trivial
metric [97]

ds2 = H−1/2
p ηµνdx

µdxν +H1/2
p dxidxi, (2.18)

where

Hp = 1 +

(
Lp

r

)7−p

(2.19)

is an harmonic function of the transverse coordinate of the branes r = xixi and i = p+1, ..., 10.
In the formula, the scale Lp reads

L7−p
p = (4π)

5−p
2 Γ

(
7− p

2

)
gsN(α′)

7−p
2 . (2.20)

This metric preserves an SO(1, p)× SO(9− p) isometries.
Branes, moreover, are charged under Cp+1 fields and correspondingly source a flux for them.
They couple to the dilaton as well, introducing, in general, a non-trivial background for it. The
complete solution of the supergravity equations of motion includes then also the non-trivial
profiles [97]

Cp+1 = −(H−1
p − 1)g−1

s dx0 ∧ ... ∧ dxp, e2ϕ = g2sH
3−p
2

p (2.21)

for the (p+1)-form and the dilaton. The charge of this brane QDp equals the flux of the Hodge
dual of the p+ 2 field strength Fp+2 across an S8−p sphere surrounding the brane

QDp =
1

2κ20

∫

S8−p

∗F(p+2) = µp (2.22)

where 2κ20 = (2π)7α′4 and µp = (2π)−p(α′)−
p+1
2 [98].

The solution can be shown to preserve 16 of the original 32 supercharges of the supergravity
theory. Being the solution BPS, we can also align N Dp branes along the same directions
preserving the same amount of supersymmetries. In the transverse space, they lie in general at
different points r⃗i, i = 1, ..., N . The background generated by this system remains the same,
up to a change of Hp

Hp = 1 +
N∑

i=1

L7−p
p

|r⃗ − r⃗i|7−p
(2.23)
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which is now a multi-centered harmonic function. When all the branes coincide at a point r⃗i = 0
of the transverse space, the harmonic function reduces to (2.19) whose length Lp is rescaled to

LpN
1

7−p .
As was shown in [99], these solutions are nothing but the low-energy limit of Dp branes, namely
hyperplanes describing the dynamics of open strings obey Dirichlet boundary condition. In the
next section, we focus on this aspect.

Open string perspective

Open strings whose worldsheet fields X i, i = p + 1, ..., 10 obey Dirichlet boundary condi-
tions and have their endpoints lying on a hyperplane extended along the remaining direc-
tions. These hyperplanes are denoted as Dp branes. On the other hand, the worldsheet fields
Xµ, µ = 0, ..., p, parametrizing the other directions, satisfy Neumann boundary conditions.
The directions xp+1, ..., x10 transverse to the branes are denoted as Dirichlet, while the direc-
tions x0, ...xp along the branes as Neumann.
We can impose these boundary conditions on open strings living in a type II background. These
preserve sixteen supercharges and can be identified at low-energies [99] as the solitonic p-branes
of type II closed string theory described previously!
The dynamics of the excitations associated with these hyperplanes is described, at low energies,
by a supersymmetric quantum field theory of a p + 1 dimensional U(1) vector multiplet living
on the brane worldvolume and interacting with the closed string fields via the DBI action3

SDBI = −Tp
∫

Mp+1

dp+1x e−ϕ
√
− det (P [g] + F) + µp

∫

Mp+1

eF ∧
∑

q

Cq ≡ Sopen + Sint. (2.24)

In eq. (2.24), Tp and µp are respectively the tension and the charge of the Dp brane, P [g] is the
pullback of the string frame metric g on the Dp brane worldvolume, F = B2 + 2πα′F with B2

the closed string NS-NS field and F is the gauge field living on the Dp brane. The first term
in (2.24) represents the coupling between the NS-NS fields and the gauge field. The last term,
instead, is a generalized CS term, where

∑
q Cq is a poly-form obtained by the sum of all the

RR fields of the theory. Zero modes describing the shape of the brane in the transverse space
correspond to the scalars X i(xµ) belonging to the vector multiplet of the SYM theory living on
its worldvolume.4 The pullbacks are then obtained through this parametrization of the brane
worldvolume

P [g]µν = gMN∂µX
M∂νX

N (2.25)

where XM = (xµ, X i(xµ)).
The DBI factorizes into an action involving only the fields on the brane, denoted as Sopen, and
an action involving interactions between open and closed string fields, denoted as Sint.
The tension Tp and the charge µp of the branes are related by the equation

µp = Tp = (2π)−p(α′)−
p+1
2 (2.26)

3Here, we show only the bosonic part of the DBI.
4Here, we are choosing static gauge [97].
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since the branes are 1/2 BPS.
In a flat background gMN = ηMN and B2 = 0, so we can expand the kinetic part of the DBI for
energies5 E ≪ 1/

√
α′. Keeping the expansion up to two derivatives6, we obtain the action of

SYM in p + 1 dimensions. Its corresponding gauge coupling reads

g2SYM = 2gs(2π)
p−2α′p−3

2 (2.27)

where eϕ0 = gs.
The previous analysis can be generalized when we consider a stack of N branes. When these
coincide in transverse space, the gauge group living on their worlvolume enhances to U(N).
This is Higgsed partially when some of the branes are separated in the transverse directions. In
particular, the endpoints of the open string carry a representation of the gauge group through
a corresponding CP factor. So, the gauge enhancement comes when the excitations of a string
connecting one brane with another become massless, namely when the branes coincide at the
same transverse point. This introduces additional massless vector multiplets in the worldvolume
theory, leading to the gauge enhancement U(1)N → U(N).

Let us now specify the discussion on D3 branes. Their low-energy effective dynamics is U(N)
N = 4 SYM in four dimensions. The scalars parametrizing the six directions transverse to the
brane corresponds to the six scalars of N = 4 SYM. Its R-symmetry is SU(4)R ≃ SO(6)R and
maps to the SO(6) isometry of the transverse space, as we can see from the R-symmetry rep-
resentation of the X i scalars. The gauge coupling is g2SYM = 4πgs. Moreover, a θ angle can be
introduced in the theory as a VEV for the axion ⟨C0⟩ = θ

2π
. As in type IIB supergravity, only a

complex combination of the two couplings, the complexified gauge coupling τ = θ/2π+ i/g2SYM,
appears in the SYM Lagrangian. The U(1) part of U(N) describes the center of mass position
of the branes and it is decoupled from the rest of the theory. We are then left with N = 4
SU(N) SYM in four dimensions. The β function of the corresponding coupling vanishes at all
orders in perturbation theory and non-perturbatively [100]. The theory is then classically exact
and conformal for any value of complexified gauge coupling τ . This is a superconformal field
theory (SCFT) with superalgebra psu(2, 2|4). Its bosonic subalgebra is given by the conformal
algebra in four dimensions so(2, 4) and the R-symmetry one so(6)R.

Maldacena limit

Let us consider a set of D3 branes in type IIB string theory. Their low-energy dynamics
is described by massless closed string states together with massless open string excitations
localized on their worlvolume. The two types of excitations interact via the interaction part Sint

of the DBI. Massive string states indeed are expected to be negligible for energies smaller than
1√
α′ or equivalently in the α′ → 0 limit. Interactions between the open string and the closed

string modes, mediated by Sint, scale as

Sint ∝ gs(α
′)2. (2.28)

5Indeed, at energies of order α′ the DBI starts to be highly non-local [97].
6The first higher derivative correction goes like α′2F 4.
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So, in the α′ → 0 limit, closed string fields actually decouple from the D-brane theory. Moreover,
looking at Newton’s constant of type IIB

GN =
(2π)7α′4g2s

16π
(2.29)

we see that in the α′ → 0, GN goes to zero. So, in the same limit, gravity becomes free. We are
then left with two decoupled sectors: the gauge theory on the brane and the free supergravity
theory in the bulk.

D3 branes are also type IIB solitons. They source a non-trivial metric and a flux for C4.
When we deal with a large number N of them in flat spacetime, their gravitational backreac-
tion modifies the original flat space background. We are then left with type IIB string theory
on the background generated by the D3 branes. Their geometry (2.18) has an horizon7 at r = 0.
Due to this horizon, the energy ER of an excitation located at a point r = R and the energy
E∞ of the same excitation measured at infinity are related by a redshift factor

ER ∼
1√−g00

E∞ ∼ H
1/4
3 E∞. (2.30)

So, the energy E0 of an excitation close to the horizon redshifts to zero at infinity. Any excitation
close to the throat is then seen as a low-energy one at infinity. At the same time, gravity is free
at small energies, since the dimensionless coupling describing the interaction ĜN = GNE

8 goes
to zero for E → 0.
We remain with two types of low-energy excitations from the perspective of an observer at
infinity: the ones with arbitrary energies close to the horizon (in the ”throat” of the brane) and
the ones associated with the free bulk gravity. The latter type is decoupled from the former
since no excitation can escape the ”throat” due to the gravitational potential and any excitation
at infinity have a vanishing cross-section on the stack at low-energies σ ∼ E3L8

3 [101].
So, again, we are left with two decoupled excitations: the near-horizon ones and free gravity.
The latter matches the free supergravity sector we found before performing the backreaction.
We are then led to identifying the former with the N = 4 SYM theory on the D3 branes.
Measuring excitations at infinity, we then require r → 0, α′ → 0 with r/α′ fixed, in order to
have E∞ in (2.30) finite for a near horizon excitation.
Relabeling R ≡ L3 and changing variables z = R2

r
, the geometry reduces in this limit to

ds2 = R2

(
dxµdxµ + dz2

z2
+ dΩ2

5

)
(2.31)

which is nothing but the Poincaré patch of AdS5 together with an S5 metric. Both have the same
radius R. The AdS geometry possesses a boundary at z = 0, which is R1,3 in the Poincaré patch.
On this boundary lives N = 4 SU(N) SYM theory. We then establish the correspondence

N = 4 SYM at large N and λ on ∂AdS5 ↔ type IIB SUGRA on AdS5 × S5 (2.32)

7Notice that this is true only for D3 branes, since for generic Dp branes the compact space S8−p shrinks to
zero at r = 0. If p = 3, instead, S5 as a radius R2 = α′(4πgsN)1/2 [97].
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where
R4 = 4πλα′2, g2SYM = 4πgs (2.33)

with λ the SU(N) ’t Hooft coupling λ ≡ Ng2SYM.
The previous analysis relies heavily on supergravity. This is valid whenever the curvature of
the background is small with respect to the string length, and gs is small. Using the map in eq.
(2.33), these requirements

R4

α′2 ∼ λ≫ 1, gs ∼ g2SYM ≪ 1 (2.34)

map to the following conditions in field theory8

N ≫ 1, λ = g2SYMN ≫ 1. (2.35)

So we see that in the large N limit, we can describe a strong coupling QFT via a classical theory
of gravity.
Corrections in α′ and gs map then to 1

λ
and 1

N
corrections respectively. When these corrections

are strong, we are far away from the Maldacena limit. However, there is strong evidence that
the correspondence remains valid also taking into account these corrections. So the duality in
its stronger version actually relates a string theory on AdS5×S5 to N = 4 SYM at its boundary

4dN = 4 SU(N) SYM on ∂AdS5 ↔ type IIB string theory on AdS5 × S5. (2.36)

The dictionary

The previous correspondence is even more powerful since it establishes a dictionary between op-
erators of the CFT on the boundary and states in the gravity theory. Since the correspondence
maps a strong coupling QFT to a weak supergravity theory, having a precise dictionary gives
us a great advantage: observables of the strong coupling CFT, as correlation functions, can be
obtained in supergravity by a semiclassical computation!

Let us start reviewing the dictionary by considering the superconformal algebra of SYM. Above,
we saw that the R-symmetry of SYM theory on the D3 branes was realized as the isometry of
the R6 space transverse to the branes. After the backreaction, the superconformal algebra of
the CFT psu(2, 2|4) with bosonic subalgebra so(2, 4) ⊕ so(6) is reproduced by the isometries
of AdS5 × S5 and the supersymmetries preserved by the background. In the Poincaré patch
only the isometries so(3, 1)⊕ so(1, 1), namely the Lorentz group and dilations, are manifest. In
particular, dilations act as

xM ≡ (xµ, z)→ λ(xµ, z) (2.37)

on the AdS5 coordinates.
The so(6) symmetry maps instead into the isometry of S5. So, the bosonic subalgebra of the
superconformal algebra of the CFT at the boundary maps to the isometry of AdS5 × S5, while
the supersymmetries preserved by the CFT are mapped to supersymmetries preserved by the

8This ensures that non-perturbative states are heavy. The other limit gs ≫ 1 and N ≪ 1 is invalid since
D-string becomes actually light, breaking the gravity approximation [101].
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background itself.

The correspondence relates operators in the CFT to states in supergravity. In particular, oper-
ators of the CFT represent boundary conditions for the supergravity fields. This identification
can be inferred by looking at (2.33). We see that the gauge coupling g2SYM changes when the
string coupling gs does. The latter represents the asymptotic value of the dilaton at infinity,
namely at the boundary of AdS. So, changing the gauge coupling changes the boundary condi-
tion for the dilaton. From the field theory point of view, this is equivalent to changing a source
for the Maxwell operator −1

4
TrF µνFµν . Considering for example a scalar operator Oϕ(x) in the

CFT, adding a source ϕ0(x) to it corresponds in the supergravity theory to impose a specific
boundary condition ϕ0(x) for a scalar field ϕ(x, z) in the bulk. At the level of the partition
function, the correspondence can be recast as

Zstring

[
ϕ(x, z)

∣∣
z=ϵ

= ϕ0(x)
]
= ⟨e

∫
d4xϕ0(x)Oϕ(x)⟩CFT . (2.38)

In generic dimension d, this can be made precise by studying the equations of motion for a
scalar field ϕ(x, z) in AdSd+1 spacetime

(□AdS −m2)ϕ = 0. (2.39)

Close to the boundary z = 0, solutions of the equations of motion scale as

ϕ(x, z) ∼ A(x)z∆+ +B(x)z∆− (2.40)

where ∆± = d
2
±
√

d2

4
+m2R2.

Not all modes are normalizable: for m2 > 0, z∆− diverges at the boundary, while z∆+ decays.
Let us takem2 > 0 and impose boundary conditions on the non-normalizable mode at z = ϵ≪ 1

ϕ(x, z)
∣∣∣
z=ϵ

= ϵ∆−ϕ0(x). (2.41)

The fields ϕ0 live on the boundary. It transforms under dilation as ϕ0 → λ−∆−ϕ0, being ϕ(x, z) a
scalar field. This boundary condition is interpreted in the CFT as a source of the corresponding
dual scalar operator Oϕ of weight

∆+ = d−∆−. (2.42)

Note that the weight is above the unitarity bound for a scalar in a CFT ∆+ ≥ d−2
2
.

This establishes also a map between the correlation functions of the two theories. We can
calculate connected correlation functions of n local operators Oϕi

in the CFT by deriving the
string partition function in their corresponding sources ϕi

0. This can be done by renormalizing
the on-shell action and rewriting the supergravity fields (and then the action) as functions of
the boundary condition ϕi

0. This prescription is known as holographic renormalization [102]. In
this way, we can, for example, calculate the two-point function of a local operator Oϕi

and show
that this has the same structure as the correlation function of operators of dimension ∆+ in the
CFT. By calculating the one-point function, we can also see that A(x) in (2.40) is proportional
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to the VEV of the operator Oϕ itself.

All the operators that we constructed above are irrelevant or marginal, having ∆+ ≥ d. This
comes from our choice m2 > 0 for the mass of the scalar in AdS. However, in AdS, scalar fields
can have a small negative mass, if this respects the Breitenlonher-Freedman (BF) bound

d2

4
≥ −m2R2. (2.43)

This is related to the need of imposing decay boundary conditions at the boundary of AdS.9

Whenever this bound is respected, the operator corresponding to ∆+ has always a weight
satisfying the unitarity bound, while when m is smaller, the weight becomes complex. So, we
see that we can get marginal operators when m2 = 0 and relevant operators if

− d2

4
≤ m2R2 < 0. (2.44)

Moreover, for m2 < 0, ∆− is positive and it can also be above the unitarity bound if the mass
lies in the interval

− d2

4
≤ m2R2 ≤ −d

2

4
+ 1. (2.45)

So, in this regime, also ∆− is a good weight for an operator O. We can then impose the bound-
ary condition on the other mode and describe an operator with weight ∆−. This possibility is
known as double quantization.

The previous analysis holds also for fields with arbitrary spins on AdSd+1. For example, the
metric gMN can be mapped in the stress-energy tensor Tµν of the CFT. Gauge symmetries in the
bulk AM are mapped to conserved currents on the boundary Jµ. More generally, we can show
that any protected (namely BPS) single trace operator at the boundary is mapped to a one-
particle state in the bulk, while multi-trace operators are mapped to multi-particle states [101].
Finally, also anomalies match across the duality (see for example [103] for the computation of
the Weyl anomaly).

Confinement in holography

In this section, we comment on how we can test confinement using holography.
In general, studying confinement can be a hard task, since gauge theories confine when they
are strongly coupled. In field theory, confinement was explored in the context of SQCD [104],
as well as in two dimensions [105]. However, thanks to the gauge/gravity correspondence, we
should be able to understand confinement via semi-classical computations in the corresponding
supergravity theory, which are expected to be more manageable.
We would like then to understand confinement through holography. The hallmark of strict

9Basically, AdS acts as a box for the scalar field [98]
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confinement in field theory comes from the behavior of Wilson loops. As reviewed in Chapter
1, this is a non-local gauge-invariant operator defined on a closed curve C as

WR[C] = TrRPe
i
∮
C A (2.46)

where A = AaT a
R is the gauge potential and R denotes the representation of the generators T a

R.
Taking the loop large, its VEV gives us information about the behavior of the IR dynamics
of the theory. This loop, indeed, can be thought of as the worldline of two static sources in
the representation R (a quark and an antiquark) generated from the vacuum at a certain time
t = −T/2, separated by a distance L and finally annihilated at t = T/2, see figure 2.3.

−
T
2

L

W

T
2

qq̄

L

Figure 2.3: Wilson loop as wordlines of a quark-antiquark pair.

In Euclidean signature, the VEV of the loop reads then ⟨W ⟩ ∼ e−TV (L) with V (L) representing
the interaction potential between the two probe particles. In a confining theory, the potential
goes like V (L) = TRL. The electric field between the two probes has a fixed cross-sectional
area and forms a flux tube between the two quarks. Its tension is TR and depends on the
representation of the probes. This, in four dimensional pure YM theory, is proportional to the
dynamically generated scale ΛYM

TR ∼ Λ2
YM. (2.47)

We see then that if this VEV goes as the exponential of the area of the loop (area law), test
particles interact with a linear potential V (L) ∼ L and the theory confines. If, on the other
hand, the exponent is proportional to the perimeter of the loop, the theory deconfines. In the
first case, the VEV for large loops goes to zero. In the second case, instead, we can always add
local counterterms to the loop and set its VEV to one. In presence of a one-form symmetry
acting on this loop, we see then that in the first case the symmetry is preserved, while in the
latter case it is spontaneously broken.

We want now to analyze confinement in holography.
Let us consider the case of a fundamental Wilson loop. Holographically, a fundamental static
source can be introduced in the D3 theory by adding a D3 brane separated from the stack. The
gauge symmetry of the system is SU(N)×U(1) for the stack and the single brane respectively
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and strings stretching between the two types of branes are in the fundamental representation of
SU(N). The mass of the corresponding strings is proportional to the distance of the single D3
brane from the stack. So, to have a static source for the Wilson loop, we have to send the D3
far away from the stack. Holographically, the string then ends on the boundary of AdS [101].
So, the boundary conditions associated with this string maps to a Wilson loop operator in the
QFT. The expectation value of the Wilson loop corresponds then to the on-shell action of the
string of minimal surface insisting on the loop at the boundary of AdS. The VEV reads (in
Euclidean signature)

⟨WC⟩ = e−Son-shell(Σ)
∣∣∣
∂Σ=C

(2.48)

with Son-shell(Σ) = 1
2πα′

∫
Σ

√
− detP [g] the on-shell action of the string.

In AdS, the surface is favorite to bend towards the horizon, since the metric diverges at the
boundary. However, boundary conditions tend to compensate for this behavior, so the more the
loop is small the more the surface is close to the boundary, see figure 2.4.

L

x

z

L + δL

x

z

z = 0
q̄q̄ qq

Figure 2.4: Minimal surface in AdS dual to Wilson loop of length L (a) and L+ δL (b).

The on-shell action of the resulting configuration goes like [103]

Son-shell ∼
√
λ
T

L
(2.49)

as expected from conformal invariance. The theory is then deconfined. To obtain confinement,
we need to modify the AdS metric, such to have a minimal surface signaling a linear potential
between the probes. Since this requires the presence of the tension TR, which is a dimensionful
quantity, we see that we need to break conformality in the gauge theory. This will be the main
topic of the next section.

2.2.2 Non-AdS/non-CFT

AdS/CFT correspondence provides a powerful setup to study strongly coupled conformal field
theories. However, many theories of physical interest are characterized by very complicated
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dynamics along some RG-flow. This is the case for asymptotically free theories, which confine
in the IR. These theories are then not conformal. Moreover, they can also develop a mass gap,
as happens for YM theory in four and three dimensions. This tells that the spectrum is bounded
from below by the lightest color singlet bound state (glueball) of mass

mG ∼ ΛYM (2.50)

and the theory is empty in the IR. We would then like to generalize AdS/CFT correspondence
to non-conformal theories.
Moreover, we should also generalize the duality to theories with less supersymmetry (like N = 1
or N = 0), which are of most interest to us. In the following, we briefly list some of the main
methods to generalize the correspondence, focusing in particular on models for confining theo-
ries.

There are several ways to break conformality. The most natural one consists in starting from a
CFT in the UV and turning on a relevant deformation by sourcing or giving a VEV to a rele-
vant operator Oϕi

. In the supergravity theory, this is equivalent to imposing a specific boundary
condition for the corresponding field, including it in the solution of the equations of motion.
This, then, contributes to the background solution with a non-trivial profile and source also the
metric due to its energy-momentum tensor. The resulting RG-flow in the field theory can end
on another CFT in the infrared. In the supergravity framework, this tells us that the new metric
interpolates between an AdS background at the boundary and a different AdS background at
z =∞.10 The AdS metric is then modified by a warp factor A(z) as

ds2 = e2A(z)(dz2 + dxµdxµ). (2.51)

This factor interpolated between an AdS in the UV and the IR. As a consequence, A(z) sat-
isfies the condition e2A(z) → 1

z2
as z → 0 and a similar condition at z → ∞. The holographic

direction z can be then interpreted as an energy scale parametrizing the RG-flow. An example
of these flows is the FGPW flow [107], which is related to a relevant deformation of N = 4 SYM
preserving N = 1 supersymmetry.

Another way to break conformality comes from considering branes wrapping cycles of a CY
with non-trivial topology [108] or by adding fractional branes to the system [109]. We will not
review these approaches and we refer the reader to [110] for a very nice review. Let us only note
that with these methods, we can have good control on the solutions also with a small amount
of supersymmetry (normally N = 2 or N = 1). In this way, it was possible to construct an
holographic model of N = 1 SYM [108] and for the duality cascade of Klebanov-Strassler [109].

Another method to break conformality comes from introducing an IR bound on the holographic
coordinate. This introduces a mass gap in the corresponding field theory. Indeed, a theory
with a mass gap MKK has no propagating degrees of freedom at energies smaller than MKK .

10In particular, the two AdS differ by their radius. Being the radius related to the central charge c of the CFT,
the two AdS spaces have radius RUV ≥ RIR, in accordance with the c-theorem that states cUV ≥ cIR [106].
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The theory is then either empty or a TQFT. Holographically, the coordinate z parametrizes the
energy scale in the CFT. So, introducing a bound for the energy scale introduces a bound for
the coordinate z. This can be done in several ways: adding singularities at a finite value of the
holographic coordinate z = z0 for the fields parametrizing a domain wall solution [98,111,112],
introducing a sharp cutoff (a Hard Wall [98, 113]) or a smooth ending of space-time at finite
z = z0 (as for [69,87,89]). In all these cases, z0 assumes the role of the mass gap for the theory.
Moreover, we can also realize confinement through these methods. Indeed, now the string in-
sisting on a Wilson loop cannot extend down to z =∞, due to the cutoff at z = z0. Moreover,
when the warp factor in (2.51) has a minimum at z = z0, the more the loop becomes large, the
more the string is favored to extend at z = z0, where the warp factor is minimized, see figure
2.5. Calculating the on-shell action of the string, the potential between two probe sources [98]

V (L) ∝ L (2.52)

is linear and the theory confines!
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Figure 2.5: Minimal surface in presence of an IR regulator for AdS.

2.3 Holographic QCD

In this section, we review two holographic constructions of QCD in four and three dimensions
respectively: the Sakai-Sugimoto (SS) model and its three dimensional counterpart. Both mod-
els realize confinement and chiral symmetry breaking holographically. In the Sakai-Sugimoto
model, both the spectrum of the masses and the pion Lagrangian can be obtained by a classical
analysis in supergravity. Its three dimensional analog, on the other hand, gives a holographic
realization of deconfinement of YM CS theories [114] and of non-Abelian boson fermion duali-
ties [114,115].
In the following, we start first by reviewing the Witten model, which realizes conformal and
supersymmetry breaking and gives us the holographic realization of pure YM theory. We then
introduce flavors in the holographic realization of YM4 in the quenched approximation à la
Sakai-Sugimoto, obtaining the holographic description of QCD4. Finally, in the last section, we
construct analogously the holographic dual of QCD3 with CS term k and F flavors.
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2.3.1 Witten circle

A way to obtain a holographic dual of four dimensional YM theory is to compactify N = 4
SYM on a thermal circle S1 of length β. This is equivalent to increase the temperature T of the
system to T = β−1. The thermal circle breaks conformal symmetry. The original theory in the
UV, namely N = 4 SYM, at energies below MKK ≡ 2π

β
is effectively three dimensional since all

the KK modes coming from the compactification can be integrated out. Fermions need to obey
antiperiodic boundary conditions on the thermal cycle [86] while bosons have periodic boundary
conditions. Then, the adjoint fermions acquire a non-zero mass at tree level proportional to
∼ MKK due to the antiperiodic boundary conditions, while adjoint scalars acquire a similar
mass at one loops [86]. We are then left, at sufficiently low energies, with pure YM in R3

(YM3).
From the brane perspective, compactify N = 4 SYM maps to compactify the branes on a
thermal circle. The resulting background is the non-extremal limit of (2.18). Its metric and
fluxes can be obtained by first performing a Wick rotation on the extremal metric (2.18),
compactifying on the Euclidean thermal circle and then Wick rotating the solution back. The
operation gives rise to a black brane [86] with metric

ds2BH = R2

[
dz2

z2f(z)
+

1

z2
(
f(z)dt2 + dxidxi

)
+ dΩ2

5

]
(2.53)

eϕ = gs,
1

(2πls)4

∫

S5

F5 = N, f(z) = 1− z4

z40
(2.54)

where i = 1, 2, 3 andR4 = 4πλα′2. Ignoring the compact direction, this resembles a Schwarzschild
black hole in AdS extended along R3. The operation, on the other hand, does not modify the
dilaton and the F5 flux backgrounds, which remain the same. In the Lorentz signature, z0 is
the horizon of the black hole. In Euclidean signature, on the other hand, close to z0 the metric
reduces to [86]

ds2 ≃ R2

{
dρ2 +

4ρ2

z20
dτ 2 +

1

z20
dxidxi + dΩ2

5

}
(2.55)

where z = z0(1− ρ2) and τ is the Euclidean time.
We see that there is no horizon at ρ = 0, since spacetime ends smoothly at this point. The first
two factors in (2.55) resemble a metric over R2. In particular, to avoid conical singularities, the
radius of the thermal circle must be related to the endpoint z0 as [86]

β = πz0. (2.56)

In the limit z → 0, we are far away from the BH and the metric reduces to AdS5 × S5.
The topology of the spacetime is (S1

β × R+) × R3 × S5 where the radius of S1
β shrinks to zero

smoothly at z = z0. The shape of (S1
β ×R+) is then a cigar Cz,τ , depicted in figure 2.6. On the

other hand, the radius of S5 remains finite at the tip of the cigar.
In Minkowski, this background describes then N = 4 SYM compactified on a thermal circle,

which reduces to YM3 in R3 at sufficiently low energies. The same reasoning can be done also
in finite volume S3 [86], where the dynamics is richer and we have a first-order phase transition
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Figure 2.6: Geometry of Euclidean solution.

driven by the temperature [86], the so-called Hawking-Page phase transition [86,116].

We saw how, in Euclidean coordinates, compactification gives rise to a space with an IR cutoff,
namely the Cz,τ of the Witten circle metric. As we reviewed in the previous section, smooth
endings of spacetimes are the hallmark of confining theories. As a consequence, we would like
to reproduce the same behavior in Minkowski spacetime and obtain a holographic dual of YM
in four dimensions. This can be done via wrapping the stack of N D4 branes around a compact
direction. In this case, notice that conformal invariance is broken even before compactification:
the near-horizon limit of the background generated by a Dp brane with p ̸= 3 is only conformally
equivalent to AdSp+2 × S8−p in the string frame. In particular, the dilaton reads

eϕ = gs

(
r

Lp

) (7−p)(p−3)
4

(2.57)

and the metric is conformal to AdSp+2 × S8−p via a Weyl transformation ds2 → ds2dual =

(Neϕ)
2

p−7ds2 followed by a change of variables U2 =
(
5−p
2

)2
α′Lp−7

p r5−p. The dilaton after this
transformation reads

eϕ = BpU
(p−3)(7−p)

2(5−p) , Bp = gsα
′ (p−3)

2 C
(7−p)(p−3)

2(5−p)

(
2

5− p

) (7−p)(p−3)
2(5−p)

(2.58)

where C =
(
5−p
2

)
α′1/2

Lp
. The running in (2.58) is the signal of the classical running of the

gauge coupling of the p + 1 dimensional gauge theory for p ≥ 4, which is classically irrelevant.
For p = 4, in this frame we can see that a decoupling limit compatible with the supergravity
approximation eϕ ≪ 1 (namely N → ∞ and λ fixed) still exists. In the p = 5 the limit is
singular since U becomes a constant. Finally, for p = 6 we cannot decouple gravity anymore
from the theory on the Dp branes [98].
Four dimensional YM theory is then obtained by compactifying on a spatial circle our brane
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stack. Doing so, we obtain the background [86,87]

ds2 =
( r
L

) 3
2
(ηµνdx

µdxν + f(r)dτ 2) +

(
L

r

) 3
2 dr2

f(r)
+ L3/2r1/2dΩ2

4, (2.59)

eϕ = gs

( r
L

)3/4
,

1

(2πls)3

∫

S4

F4 = N, f(r) = 1− r30
r3

where we renamed L3 ≡ L3
4 = πλα′3/2. In eq. (2.59), µ = 0, ..., 3 and τ is periodic

τ ∼ τ +
4π

3

L3/2

r
1/2
0

≡ τ + δτ (2.60)

and parametrizes the spatial circle.
In Lorentzian signature, the geometry ends smoothly at r0 and the topology of spacetime reduces

to (S1
β × R+) times R1,3 times a sphere S4. In this way, we realize a mass gap MKK = 3

2

r
1/2
0

L3/2

and confinement. In particular, the string tension of a flux tube between two probe quarks
reads [87]

T =
2

27π
λM2

KK . (2.61)

On the field theory side, by compactifying on the circle, we can impose antiperiodic boundary
conditions for the fermions. In this way, both fermions and scalars in the adjoint representation
acquire a mass proportional to MKK and can be integrated out at low enough energies. In the
compactification, the gauge coupling g5 on the D4 branes, which is dimensionful with [g5] =
M−1/2, is multiplied by the compactification length ∼ 1

MKK
. The resulting four dimensional

coupling 1/g2YM is dimensionless and reads

1

g2YM

=
1

2πgs

1

MKK ls
. (2.62)

In this way, we are left with pure Yang-Mills theory in four dimensions!
Let us now comment on the regime of validity of the supergravity background. The maximal
curvature occurs at the tip of the cigar r = r0 and is of order (r0R

3)−1/2, while the dilaton runs
as in (2.59). The supergravity approximation then holds if

eϕ ≪ 1, (r0L
3)−1/2 ≫ l−2

s → g4YM ≪
1

g2YMN
≪ 1, λ≫ 1 (2.63)

and r0 ≪ rcrit with rcrit ∼ N1/3MKK l2s
g2YM

. When r ≳ rcrit, the string coupling cannot be small and

the approximation breaks down. This is the signal of non-renormalizability of the five dimen-
sional theory on the D4 branes. Indeed, at energies larger than the compactification scale, the
theory is five dimensional N = 2 SYM. This is known to have a UV completion only in six
dimensions [86,87,117] in terms of a (2, 0) theory.

In conclusion, this model, taking account of the previous limits, realizes some of the main
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qualitative features of YM in four dimensions. However, it is worth noticing that the model
does not realize YM theory at all scales. Indeed, in the UV, when energies are much bigger
than the compactification scale, the theory becomes five dimensional and it is not asymptoti-
cally free. Moreover, it is not even possible to decouple all the spurious five dimensional modes
at low energies. This is so since the mass gap of pure YM is proportional to the strong coupling
scale of the theory, ΛYM ∼ MKK and the string tension of flux tubes to λM2

KK . Then, in the
range of validity of supergravity λ≫ 1, the spurious KK modes cannot be decoupled from the
YM sector and can spoil the low energy dynamics. This is known as the decoupling problem
and affects all holographic duals of confining theories [87,108,110].
Fortunately, our model and YM in four dimensions share the same qualitative feature (and
holographic QCD will do as well). In particular, the two theories are believed to belong to the
same universality class [89].

2.3.2 The Sakai-Sugimoto model

To describe QCD in four dimensions, we need to introduce quarks. In the discussion of Section
2.1, we associated with the genus expansion of gauge theories with fundamental matter, the
perturbative expansion of an open string theory. In the following, we will work in the limit of
quenched flavors, where F is subleading with respect to N .
In holography, a simple way to introduce flavors comes from adding F Dp branes of lower
codimension to the system [118]. Taking the background in (2.59), flavors can be introduced,
for example, adding D6 branes [87] or D8 branes [89]. The gauge theory on the worldvolume of
these branes decouples from the D4 one in the Maldacena limit since the ratio between the Dp
and the D4 gauge coupling

λDp

λD4

=
F

N
(2π)p−4α′(p−4)/2 (2.64)

goes to zero for p > 4. On the other hand, strings stretching between the D4 stack and the
higher dimensional branes contribute to the D4 dynamics. Looking at their CP factors, we see
that these are in the fundamental representation of both the D4 and the D8 groups. Their
lowest mass excitations are then the flavors of the four dimensional theory.
In general, the lowest excitation of the string, in absence of supersymmetry, can be either
bosonic or fermionic. This depends on the number of mixed Neumann-Dirichlet directions #ND

between the D4 and the Dp branes. In particular

� If #ND = 4, 8 supersymmetry is preserved between the branes. The low energy excitations
of the strings stretching between the two branes are then in a supersymmetric multiplet
with both bosonic and fermionic excitations;

� If #ND = 6, supersymmetry is broken and the lightest excitation of the strings is fermionic;

� If #ND = 2, supersymmetry is broken and the lightest excitation is bosonic.

In this way, we can introduce fermions or bosons depending on how we place the Dp branes with
respect to the lower dimensional branes. A mass for these fundamental fields can be introduced
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by separating the ”flavor” Dp branes from the stack in a Dirichlet direction common to all the
branes. The fundamental strings acquire a finite length ∆x and their lowest excitations a mass
m ∼ ∆x

2πα′ .

We can now ask what happens when we backreact the D4 branes. The stack is replaced by
its geometry and we end up with the type IIA background in eq. (2.59). On the other hand,
the probe branes do not backreact and remain as branes living in the background geometry.
Since their number is small compared to the stack, these can be treated as probes in the D4
background.
The corresponding strings living on their worldvolume will then be gauge singlets, charged un-
der the flavor group. So, gauge-invariant bilinears of fundamental fields11 in the field theory
are related to fluctuations of the probe branes in the D4 background. This statement holds in
general for systems of Dp branes probing the background of many Dq branes (with p > q) and
generalizes the gauge/gravity correspondence in presence of fundamental fields [118].

Let us now specialize our analysis on the Sakai-Sugimoto model. This is realized by a stack
of N D4 branes along 01234 compactified along the x4 circle and F D8-D8 pairs branes along
012356789, see Table 2.1. The two different stacks of branes have 6 mixed directions, so the 4-8

0 1 2 3 4 5 6 7 8 9
N D4 − − − − − · · · · ·

F D8-D8 − − − − · − − − − −

Table 2.1: Brane system

strings add fermions to the field theory. In particular, fermions realized by 4-8 strings and 4-8̄
strings are Weyl spinors with opposite chirality. This ensures anomaly cancellation in the four
dimensional theory. The gauge theory on the D8 (resp. D8) stack can be then interpreted as
the left (resp. right) flavor symmetry of QCD U(F )L (resp. U(F )R).
Compactifying along the fourth direction, at energies lower than the Kaluza-Klein scale MKK ,
we remain with pure YM4 theory.

12 The quarks, on the other hand, do not acquire a mass, due
to the U(1)A ⊂ U(F )L × U(F )R axial symmetry (which is non-anomalous in the large N limit,
see [87, 120, 121]). The low energy theory is then QCD with F flavors and N colors. Due to
the absence of a common Dirichlet direction among the D4 and the flavor branes, we cannot
introduce a mass directly by separating the flavor and the color stack. This can be done in a
more refined way [89], but in the rest of the discussion, we will keep the quarks massless. The
brane-anti brane pairs are expected to annihilate due to the presence of a tachyon in the spec-
trum of the strings connecting D8 and D8. However, the tachyon becomes massive whenever
we separate the D8 from the D8 by a distance ∆x4 bigger then ∆x4 >

√
2πls on the S1. In the

following, we will impose these boundary conditions for our probes.

11On the contrary, baryons, for example, are introduced as branes wrapping the S4 at the tip, as in [99,119].
12Actually, the trace part of the fourth component of the gauge boson is protected by a shift symmetry [89],

but since it interacts only via irrelevant coupling, at low energies, we can neglect it. The same holds for the
trace parts of the adjoint scalars.
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After backreaction, we are left with the D4 background in eq. (2.59). Its non-trivial met-
ric modifies the shape of the probe D8-D8 pairs. These will follow geodesics in the D4 back-
ground. Their form can be obtained by minimizing their DBI action [118]. In particular, we
can parametrize the shape of the D8 in static gauge as a profile r(τ). The corresponding DBI
reads

SD8 ∝
∫
d4xdτ r4

√
f(r) +

(
L

r

)3
r′2

f(r)
. (2.65)

The action is independent of shifts of τ , so the following quantity

I ≡ r4f(r)√
f(r) +

(
L
r

)3 r′2

f(r)

(2.66)

is conserved. The corresponding equations of motion can be solved imposing boundary condi-
tions r(0) = r̃, r′(0) = 0 and the solution reads

τ(r) = r̃4f(r̃)1/2
∫ r

r̃

dr
(
r
L

)3/2
f(r)

√
r8f(r)− r̃8f(r̃)

. (2.67)

We see that the branes coming into the interior of the cigar bends and the derivative of τ di-
verges at r = r̃. The brane does not extend over this point. So, due to charge conservation,
this has to merge with an D8, forming a unique U -shape probe, see figure 2.7. Note that, when
r̃ = r0, τ is a constant τ(r) = δτ/4 and the brane is antipodal to the anti-brane, and they merge
only at the tip, as we can see in figure 2.7. This configuration was shown to be stable under

𝒞r,τ

r0

D8

D8
D8

D8
r̃

Figure 2.7: U -shape configurations of brane-anti brane pairs. In blu, we show the antipodal
configuration, where the two branes meet at the tip of the cigar.

fluctuations [89]. In the following, we will focus on this type of solution.
We see then that, far away from the center of the stack, flavor branes do not feel the geometry
of the D4 and behave as in flat space. Here, the D8 and the D8 are separated and antipodal on
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the circle. The symmetry of the theory is then U(F )L × U(F )R. This simply tells us that in
the UV we have a preserved chiral symmetry in field theory.
However, when we go into the interior of the cigar, the D8 branes feel the geometry of the stack
and eventually merge at the tip of the cigar. The global symmetry then spontaneously breaks
to a diagonal subgroup U(F )L × U(F )R → U(F )D. So, at low-energies, we see holographically
the chiral symmetry breaking of QCD4!
The analysis of the non-Abelian DBI of the D8 branes [89] reveals the presence of the corre-
sponding massless pions, which are the Goldstone bosons of chiral symmetry breaking. The
Lagrangian of these fluctuations reduces to the effective Lagrangian which describes interac-
tions among pions, namely the Skyrme model. Moreover, we can see that massive fluctuations
around this background describe the mesons of QCD4. Their holographic mass shows a good
agreement with the experimental data for meson masses of QCD.
Baryons, on the other hand, are described holographically by D4 branes wrapping the S4 com-
pact space [89, 119]. From the point of view of the Skyrme effective field theory on the D8
branes, these are instantons. Indeed, the D4 has four mixed ND directions with respect to
the D8 branes. Moreover, all its Neumann directions lie inside the D8 worldvolume, so the D4
dissolved in the D8 represents an instanton of the D8 gauge theory [97]. This matches with
the description of baryons in the Skyrme model: these are nothing but solitonic configurations,
namely skyrmions, of the theory. The mass of these baryons

mb =
1

27π
MKKNλ. (2.68)

scales as ∼ N , as expected from large N QCD calculations.

The model reproduces also the chiral anomaly of QCD and the mass for the η′ when 1/N cor-
rections are taken into account. The same model was also analyzed at finite temperature [122],
revealing a rich dynamics, such as a deconfinement-confinement phase transition and chiral
symmetry restoration at high temperatures.

2.3.3 Holographic description of QCD3

In this section, we present the holographic set-up describing QCD3 at large N . We first discuss
how CS terms can be introduced holographically and then we add quarks in the quenched
approximation. In Chapter 4, we will use the resulting background to study QCD3 with CS
level k and F flavors in the large N limit.

Yang-Mills theory with a Chern-Simons term

As we saw above, three dimensional SU(N) Yang-Mills can be engineered by N D3-branes
wrapping a circle in one compactified direction, x3 ≃ x3+2πM−1

KK , with supersymmetry-breaking
anti-periodic boundary conditions for the fermions. The metric and fluxes are basically the same
as the black three-brane solution (2.53) where now the x3 direction takes the role of time. The
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metric, written in the holographic coordinate r, reads

ds2 =
r2

L2

(
ηµνdx

µdxν + f(r)(dx3)2
)
+

L2

r2f(r)
dr2 + L2dΩ2

5 ,

eϕ = gs ,
1

(2πls)4

∫

S5

F5 = N ,

(2.69)

where µ, ν = 0, 1, 2 and

L4 = 4πgsNl
4
s , f(r) = 1−

(r0
r

)4
, r0 =

MKKL
2

2
, (2.70)

with ls the string length and gs the string coupling. Similarly to the four dimensional case
reviewed above, the geometry is given by a flat R1,2, a constant S5 and a cigar-shaped (r, x3)
subspace, where the holographic coordinate r goes from rUV =∞ to the tip of the cigar r = r0,
where it smoothly ends, thus giving rise to a mass gap and to confinement. In particular, two
probe quarks at distance d interact with a linear potential V = σd, with [101]

σ =

√
gsNM

2
KK

4
√
π

=

√
ΛM3

KK

4
√
2π

, (2.71)

where Λ is the scale of large N QCD3

Λ ≡ g23dN =
g24d

2πM−1
KK

N =
4πgs

2πM−1
KK

N = 2gsNMKK . (2.72)

The limit L ≫ ls, where the supergravity approximation is reliable, is equivalent to gsN ≫ 1,
i.e. Λ ≫ MKK , so there are spurious KK fields in this regime. In principle we should take the
opposite limit Λ≪MKK , but this does not allow to use the supergravity approximation. This
is again a manifestation of the decoupling problem.

The D3 background reviewed above is dual to the strongly coupled regime of Yang-Mills
theory. We now discuss the inclusion of a Chern-Simons term [90]. The D3-brane theory
admits a coupling with the RR axion C0

SC0 =
1

4π

∫

D3

C0Tr(F ∧ F ) = −
1

4π

∫

S1

dC0

∫

R1,2

ω3(A) , (2.73)

where ω3(A) is the Chern-Simons form in three dimensions and we have assumed that the gauge
field on the D3-branes does not depend on x3 and it does not have any components along S1.
If we choose (take kb non-negative)

dC0(x
3) = − kb

2πM−1
KK

dx3 , (2.74)

then we get the following term in the D3-brane action

SC0 =
kb
4π

∫

R1,2

ω3(A) , (2.75)
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which is exactly a Chern-Simons term at level kb. Clearly, we are neglecting the backreaction
of the axion field on the D3 background, which is valid at leading order in kb/N . Thus, the
Minkowski part of the worldvolume of the D3-branes hosts an SU(N)kb Yang-Mills theory at
large N , with fixed kb. At very low energies, this theory is believed to flow to a pure SU(N)kb
Chern-Simons theory.

At strong coupling, the stack of D3-branes is replaced by the cigar geometry, while the
presence of a non-vanishing RR flux needs to be supported by a magnetic source for C0. This is
provided by kb probe D7-branes, which indeed couple magnetically to C0. Being the number of
branes an integer, this gives a holographic proof of the quantization of the Chern-Simons level.
The CS branes wrap the S5, share with the color D3-branes the three dimensions of Minkowski
spacetime, and are pointlike on the (r, x3) cigar.

0 1 2 3 r Ω5

N D3 – – – – · ·
kb D7 – – – · · –

Table 2.2: Brane system describing SU(N)kb .

Such D7-branes are located at its tip r = r0, where the x
3 circle shrinks to a point, in order

to minimize their energy density, see figure 2.8. In this situation, the worldsheet of a string
that is attached to a Wilson loop at the boundary can end on the D7-branes at the tip of the
cigar. This configuration is energetically favorite, as it has been explicitly computed in [123],
and signals a perimeter law for the Wilson loop. This shows, holographically, that in presence
of a Chern-Simons term the theory does not confine.

D7 x3

r

C   flux0 >

Figure 2.8: Chern-Simons D7-branes are located at the tip of the cigar and act as a source for
the RR axion flux around S1.

Following the standard holographic dictionary, the free energy density (in the three dimen-
sional sense) can be extracted from the on-shell value of the DBI action and reads, for a single
CS brane

ECS = −SD7

V3
= TD7V5L

2r30 ≃ N(gsN)M3
KK , (2.76)

where TD7 = (2π)−7l−8
s g−1

s is the tension of the D7-brane, V3 is the volume of three dimensional
Minkowski spacetime and V5 is the volume of the unit five-sphere. In the strict large N limit
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0 1 2 3 4 5 6 7 8 9

N D3 – – – – · · · · · ·
F D7 – – – · – – – – – ·

Table 2.3: Brane system describing QCD3.

probe D-branes do not interact. Therefore, in this limit, the energy density of kb CS branes will
just be kbECS, which is linear in N .

At energies below the S5 inverse radius, the D7-brane theory reduces to a three dimensional
U(kb) gauge theory. Moreover, the presence of a background RR five-form flux induces a Chern-
Simons term at level −N from the corresponding Wess-Zumino term in the D7-brane action

SC4 =
1

2(2π)5l4s

∫

D7

C4 ∧ Tr(F ∧ F ) = − 1

2(2π)5l4s

∫

S5

F5

∫

R1,2

ω3 = −
N

4π

∫

R1,2

ω3 . (2.77)

At very low energies, all excitations on the D7-branes decouple and we are left with a pure
U(kb)−N Chern-Simons theory. Thus, gauge/gravity duality in this set-up precisely reduces to
the well-known level/rank duality SU(N)kb ↔ U(kb)−N [90].

Note that if we take a negative kb the axion monodromy changes sign, meaning that we
should put |kb| D7-branes with reversed orientation. This implies that there is a sign change in
(2.77), giving rise to the level/rank duality SU(N)−|kb| ↔ U(|kb|)N at low energies, in agreement
with QFT expectations.

Adding flavors in the holographic set-up

As we reviewed above, we can introduce fundamental matter by adding flavor branes in the
background geometry. In our case, we add F copies of fundamental flavors by putting F probe
D7-branes, transverse to the compactified x3 direction and spanning the Minkowski spacetime
R1,2 and five of the six directions which are transverse to the D3-branes worldvolume. The
leftover direction x9 is transverse to both D3 and D7-branes. This configuration has 6 mixed
Neumann-Dirichlet boundary conditions, thus breaking supersymmetry completely even in the
case of a SUSY D3 background (i.e. when the compactification mass scale is zero MKK =
0). In this way, we construct13 the holographic dual of QCD3. A bare mass for the flavors
which breaks parity in QCD3 can be introduced by imposing a separation between color and
flavor branes along x9 at the UV boundary, as opposed to the Sakai-Sugimoto case. Indeed,
the D7 worldvolume scalar corresponding to the x9 direction couples to the fermionic mass
operator. Consequently, the x9 direction changes sign under the 3d parity transformation [69,
114]. According to the holographic dictionary, the profile of the flavor brane along x9 is dual to
the meson operator ψ̄ψ on the field theory side.

Having introduced the set-up, we will dedicate Chapter 4 to the analysis of the flavor branes
embeddings and their field theory interpretation. This will allow us to chart the phase diagram
of large N QCD3 holographically at both leading and next subleading order in N .

13Note that the construction includes the kinetic term for the gauge field. This will be crucial in order to
reproduce the vacuum structure of large N QCD3.
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Chapter 3

QCD3 with two sets of flavors

In this Chapter, based on the original work in [124], we extend the analysis of [31] to the case
in which the phase diagram has a two dimensional structure. The simplest way to do this is
to study an SU(N)k gauge theory coupled to p fundamental fermions of mass m1 and F − p of
massm2. Concretely, we are allowing mass deformations to explicitly break the global symmetry
U(F ) to U(p)×U(F −p).1 We will explore the phase diagram varying the two mass parameters
and check that the dual bosonic theories, conjectured in [31], admit the same phases as the
fermionic theory, after deforming them with symmetry-breaking mass terms. Without loss of
generality, we will consider 0 ≤ p ≤ F/2.

On one hand, our analysis provides a non-trivial check that the conjectured boson-fermion
dualities can be extended to more complicated cases and still maintain their validity. On the
other hand, two dimensional phase diagrams show a richer structure and novel phenomena with
respect to one-family QCD3 (including phase transitions between new gapless phases) and allow
to perform some interesting vacuum analysis on the bosonic side of the duality, as well.

In section 3.1, we comment on the potential inducing maximal Higgsing (see section 1.6.2)
for negative mass deformations for a U(n) gauge theory coupled to f fundamental scalars with
global symmetry SU(f). Taking n = F/2± k and f = F , the potential gives back the correct
vacuum structure for the scalar theories, useful to describe the phase diagram of QCD3. In
section 3.2, we present our main results [124], i.e. our proposal for the phase diagram when two
different masses are varied independently. Section 3.3 contains several checks of our proposal
and gives also more details on the meaning of the different phases the theory enjoys and of
the phase transitions between them. We first focus on asymptotic phases, where one of the
two masses is sent to ±∞. These asymptotic regions are effectively one dimensional and the
phase diagrams should reduce to those of QCD3 with one species of matter fields. We then
discuss in some detail the k = 0 case, which is useful to perform some non-trivial consistency
checks regarding time-reversal invariance and the VW theorem [62–64]. We then analyze the
vacua of the dual bosonic theories, conjectured from boson-fermion dualities, and show that
they match the fermionic description in the neighborhoods of each critical point. Finally, we

1The global symmetry is actually given by the quotient U(F )/ZN , together with a discrete charge conjugation
symmetry [56]. However, this does not affect our analysis and we will naively refer to the global symmetry as
U(F ).

81
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analyze some relevant deformations of the mass-degenerate sigma-model phase, which confirm,
in a yet different way, our findings in a parametrically small neighborhood of the region with
maximal global symmetry. Section 3.4 contains a discussion and an outlook.

3.1 Maximal Higgsing via quartic potential

Let us start remarking what is the general structure of the scalar potential of the U(n) bosonic
duals necessary to induce maximal Higgsing and to reproduce the correct phases in order to
describe the phase diagram of QCD3 in section 1.6.3.
Let us consider a three dimensional gauge theory with gauge group U(n) and Chern-Simons
level l, coupled to f scalar fields in the fundamental representation ϕα

i , where α = 1, ..., n is the
gauge index and i = 1, ..., f the flavor index.

The gauge-invariant operator which can be built out of the scalar fields is the meson field
X = ϕϕ†. In components

X j
i = ϕα

i ϕ
∗j
α , (3.1)

which is an f × f Hermitian matrix whose rank r satisfies

r ≤ min(n, f) . (3.2)

This matrix can be diagonalized and put in the form

X = diag(x1, x2, ..., xr, 0, ..., 0) , (3.3)

where xi are the r positive eigenvalues of X.
The potential which preserves the U(f) global symmetry reads, up to quartic terms in the

scalar fields

V = µ(TrX) + λ(TrX)2 + λ̃(TrX2) , (3.4)

where we take λ̃ > 0, which requires λ̃+min(n, f)λ > 0 in order to make the potential bounded
from below. If µ ≥ 0 then the minimum of the potential is achieved for X = 0. This corresponds
to the case where the gauge group is not Higgsed, so that at low energies the (massive) scalars
can be integrated out and the effective theory is pure U(n) at level l. If µ < 0, instead,
minimizing the potential one gets the following equation for the eigenvalues xi

µ+ 2λTrX + 2λ̃ xi = 0 , (3.5)

which implies that

xi =
−µ

2λr + 2λ̃
∀i = 1, ..., r , (3.6)

meaning that all non-vanishing eigenvalues are degenerate. Moreover, on these minima the
potential is

V = − µ2r

4λr + 4λ̃
, (3.7)
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which is minimized when r is maximum, i.e. when r = min(n, f). Note that the condition for
the eigenvalues xi being positive is the same which assures the stability of the potential.

If f < n this means that the Higgsing is maximal, the gauge group is broken in f indepen-
dent directions, and the global symmetry U(f) is unbroken. After integrating out the massive
fluctuations of the scalars around their minimum configuration, we get as the resulting IR theory
pure U(n− f) at level l.

If f > n the gauge group is completely Higgsed and the global symmetry is spontaneously
broken to U(n)× U(f − n), leading to an IR dynamics described by a non-linear sigma model
with target space

Gr(n, f) =
U(f)

U(n)× U(f − n) , (3.8)

and a Wess-Zumino term with coefficient |l|.
Note that the above result, i.e. maximal Higgsing for f < n and degeneracy of non-vanishing

eigenvalues for f > n, depends crucially on assuming a quartic scalar potential with a single
trace contribution (similar observations were done, in a different context, in [125,126] and also

appear in [25]). One should also assume λ̃ to be positive to get the aforementioned pattern.

Indeed, for negative λ̃ the minimum of the potential (whose stability now requires λ + λ̃ > 0)
is achieved at r = 1, meaning that only one scalar field condenses, giving rise to a different
vacuum structure in the negative squared mass phase.

If one allows higher-order terms in the potential, one would expect that there still exists a
region in such a larger space of couplings for which the above extremization pattern holds.
When applied to QCD3 with one species of fermions, this explains, upon use of boson-fermion
duality, the level/rank dualities in the m < 0 regime, as well as the structure of the Grassman-
nian (1.146), see figures 1.5 and 1.6.

As we will see in section 3.3.3, allowing a scalar potential with all possible gauge-invariant
operators only up to quartic terms has the same effects as those discussed here also in the more
intricate two dimensional phase space.

3.2 The two dimensional phase diagram

The phase diagram of SU(N)k gauge theory coupled to p fundamental fermions ψ1 and F − p
fundamental fermions ψ2, as a function of m1 and m2, turns out to have a different structure,
depending on the value of the Chern-Simons level k at fixed F and p: k ≥ F/2, F/2− p ≤ k <
F/2 and 0 ≤ k < F/2− p.

A property of all phase diagrams is that on the diagonal line m1 = m2, where the global
symmetry is enhanced to the full U(F ), one correctly recovers the corresponding one dimensional
diagram reviewed Chapter 1. We now illustrate the three different phase diagrams in turn.

k ≥ F/2

In this case the phase diagram, which is shown in figure 3.1, presents only phases which are
visible semiclassically. Consistently, as we are going to show in section 3.3.3, the full phase
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T1T2

T4T3

•
m1

m2

Figure 3.1: Phase diagram of SU(N)k + p ψ1 + (F − p) ψ2 in the case k ≥ F/2.

space can be equivalently described in terms of a unique dual bosonic theory, with gauge group
U(k + F/2)−N and two sets of p and F − p complex scalars in the fundamental representation.

Conventions are as follows. The black dot at the origin represents the usual phase transition
of the SU(N)k+F ψ theory. Perturbing it by two independent mass deformations, proportional
to m1 and m2, one covers a two dimensional space, enjoying four different topological phases Ti

defined as

T1 : SU(N)k+F
2

←→ U(k + F/2)−N (3.9)

T2 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N (3.10)

T3 : SU(N)k−F
2

←→ U(k − F/2)−N (3.11)

T4 : SU(N)k−F
2
+p ←→ U(k − F/2 + p)−N (3.12)

where←→ stands for level/rank duality. Note that in the limiting case k = F/2, the topological
theory T3 becomes trivially gapped. Note also that, consistently, T1 and T3 are the same
topological phases one expects for the theory with common mass m = m1 = m2 in the range
k ≥ F/2 (cf figure 1.5) for positive and negative m, respectively, and which one should recover
on the bisector of the first and third quadrants of figure 3.1.

Red lines represent phase transitions in the (m1,m2) plane which are absent in the one
dimensional phase diagrams. For instance, each point on the red line separating phases T1 and
T2 defines a critical theory SU(N)k+F

2
− p

2
+ p ψ1. In bosonic language, this can be equivalently

described by U(k + F/2)−N + p ϕ1. The same logic applies to all other red lines. Consistency
with boson-fermion duality, which we elaborate upon in section 3.3.3, suggests that the four red
lines do indeed meet at a single point (black dot in the figure).
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Figure 3.2: Phase diagram of SU(N)k + p ψ1 + (F − p) ψ2 in the case F/2− p ≤ k < F/2.

F/2− p ≤ k < F/2

In this case, besides genuine topological phases, the phase diagram presents three inherently
quantum phases. This implies, as we show explicitly in section 3.3.3, that two different dual
bosonic descriptions are needed to cover the full fermionic phase diagram, i.e. U(F/2− k)N +
p ϕ1 + (F − p) ϕ2 and U(F/2 + k)−N + p ϕ1 + (F − p) ϕ2.

The phase diagram is reported in figure 3.2. The black dots represent the two phase transi-
tions of the degenerate mass case, m1 = m2, cf figure 1.6. The topological theories are now

T1 : SU(N)k+F
2

←→ U(k + F/2)−N (3.13)

T2 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N (3.14)

T̃3 : SU(N)k−F
2

←→ U(F/2− k)N (3.15)

T4 : SU(N)k−F
2
+p ←→ U(k − F/2 + p)−N (3.16)

where, again, T1 and T̃3 are the correct topological phases one should find on the bisector, cf
figure 1.6. The blue line represents a quantum phase, with target space (1.146) and a Wess-
Zumino term with coefficient N . Finally, the shaded regions in the plane refer to sigma-model
phases, where the IR dynamics is not gapped, but it is described by non-linear sigma models
with different target spaces and a Wess-Zumino term with coefficient N . In particular, the
target space of σ23 is the complex Grassmannian

Gr(F/2− k, F − p) = U(F − p)
U(F/2− k)× U(k + F/2− p) , (3.17)

and that of σ43 is

Gr(F/2− k, p) = U(p)

U(F/2− k)× U(k − F/2 + p)
. (3.18)
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In the limiting case k = F/2 all sigma-model phases σ23, σ43 and σ trivialize, as well as the

topological phase T̃3. Thus, the two phase diagrams in figures 3.1 and 3.2 become topologically
equivalent, as expected. In the other limiting case, k = F/2 − p, to which we connect next, it
is the sigma-model phase σ43 and the topological phase T4 which trivialize, instead.

As in figure 3.1, red lines represent phase transitions in the (m1,m2) plane. Here, however,
there also exist lines separating topological and massless phases. For instance, each point
on the red line separating T2 and σ23, and the corresponding one separating the latter with
T̃3, are the two phase transitions one expects for SU(N)k− p

2
+ (F − p) ψ2. These two phase

transitions are described by two different bosonic duals, U(k + F/2 − p)−N + (F − p) ϕ2 and
U(F/2 − k)N + (F − p) ϕ2, respectively (similar arguments hold when looking at σ43 as the

gapless phase separating the topological phases T4 and T̃3, the relevant fermionic theory on the
red lines being now SU(N)k−F

2
+ p

2
+ p ψ1).

Note that not all lines cutting through the two dimensional phase diagram can be effec-
tively reduced to a one dimensional phase diagram of a single family theory. This applies, in
particular, to the region of small masses, where different gapless quantum phases meet and σ
becomes a phase transition itself, which separates the gapless phases σ23 and σ43. This is a
novel phenomenon, which does not have any counterpart in one-family QCD3. Indeed, in our
case the pattern of symmetry breaking is richer, giving a variety of quantum phases which meet
in the region where both masses are, in modulus, ≲ g2.

0 ≤ k < F/2− p
Also in this range of parameters the phase diagram presents three different quantum phases.
The two dual bosonic descriptions needed to cover the full phase space are again U(F/2−k)N +
p ϕ1 + (F − p) ϕ2 and U(F/2 + k)−N + p ϕ1 + (F − p) ϕ2. The phase diagram, where the same
conventions as before are adopted, is shown in figure 3.3.

The topological phases are now

T1 : SU(N)k+F
2

←→ U(k + F/2)−N (3.19)

T2 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N (3.20)

T̃3 : SU(N)k−F
2

←→ U(F/2− k)N (3.21)

T̃4 : SU(N)k−F
2
+p ←→ U(F/2− p− k)N (3.22)

The sigma-model phases σ and σ23 are as before while σ14 has target space the complex Grass-
mannian

Gr(F/2 + k, F − p) = U(F − p)
U(F/2 + k)× U(F/2− p− k) , (3.23)

and a Wess-Zumino term with coefficient N .
In the limiting case k = F/2− p, the phase σ14 and the topological phase T̃4 trivialize. For

k = F/2−p, the two phase diagrams in figure 3.2 and 3.3 become thus topologically equivalent,
as expected. Again, the quantum phase σ separates two different phases described by the two
Grassmannians (3.17) and (3.23). Note, in particular, that for sufficiently low values of |m2|,
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Figure 3.3: Phase diagram of SU(N)k + p ψ1 + (F − p) ψ2 in the case 0 ≤ k < F/2− p.

the theory enjoys only sigma-model phases for all values of m1 (the asymmetry between m1 and
m2 is due to our choice p ≤ F/2).

Let us close this discussion considering a few specific values for p.

When p = 0 the phase diagram of figure 3.2 disappears since its allowed range for k becomes
an empty set. Figures 3.1 and 3.3, instead, collapse to a single vertical line, the m2 axis,
and their topology becomes the same as the one dimensional diagrams of figures 1.5 and 1.6,
respectively, as one should clearly expect. In particular, the sigma models σ, σ14 and σ23 become
identical for p = 0, while T1 = T2, T3 = T4 and T̃3 = T̃4.

When p = F/2, the phase diagrams in figure 3.1 and 3.2 should be symmetric with respect to
them1 = m2 line, while it is the phase diagram in figure 3.3 which now disappears. Consistently,
the sigma models with target spaces σ23 and σ43 coincide for p = F/2, as well as the topological
phases T2 and T4.

3.3 Consistency checks and beyond

We now present various checks for the validity of our proposed two dimensional phase diagrams.

3.3.1 Asymptotic phases: matching ordinary QCD3

The proposed two dimensional phase diagrams should satisfy various consistency checks, in order
to be compatible with the one dimensional case. The simplest one is that the phase diagram
of one-family QCD3 should be recovered on the m1 = m2 line, where the global symmetry is
enhanced to U(F ). This is something we have already noticed to hold. A more intricate set of
checks comes by studying extreme mass regimes.

Starting from the original SU(N)k+p ψ1+(F−p) ψ2 theory, let us consider the four different
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theories one obtains by integrating out, with either signs for the mass, one of the two fermion
families, ψ1 and ψ2. These are SU(N) gauge theories with a shifted Chern-Simons level and
coupled to p or F − p fundamental fermions with mass m1 or m2, respectively. The IR phases
of these theories are easily constructed by the same methods we used in the one dimensional
case. Such phases should coincide with the ones of our two dimensional diagrams, figures 3.1,
3.2 and 3.3, in the asymptotic, large mass regions. The four asymptotic theories and their one
dimensional phase diagrams are the following:

1. m1 → +∞: one ends up with SU(N)k+ p
2
+(F−p) ψ2, which has only the two semiclassical

phases if k ≥ F/2− p. Its phase diagram has the following structure:

� k ≥ F/2− p: the two phases are T1 (for positive m2) and T4 (for negative m2). The
dual bosonic theory is U(k + F/2)−N + (F − p) ϕ2.

� 0 ≤ k < F/2−p: the topological phases are T1 (for positive m2) and T̃4 (for negative
m2), while the intermediate sigma-model phase is σ14. The dual bosonic theories are
U(k+F/2)−N + (F − p) ϕ2 (for positive m2) and U(F/2− k− p)N + (F − p) ϕ2 (for
negative m2).

2. m1 → −∞: one gets SU(N)k− p
2
+(F −p) ψ2, which has only the two semiclassical phases

if k ≥ F/2. Its phase diagram has the following structure:

� k ≥ F/2: the two phases are T2 (for positive m2) and T3 (for negative m2). The
dual bosonic theory is U(k + F/2− p)−N + (F − p) ϕ2.

� 0 ≤ k < F/2: the topological phases are T2 (for large positive m2) and T̃3 (for large
negative m2), while the intermediate sigma-model phase is σ23. The dual bosonic
theories are U(k + F/2 − p)−N + (F − p) ϕ2 (for positive m2) and U(F/2 − k)N +
(F − p) ϕ2 (for negative m2).

3. m2 → +∞: one ends up with SU(N)k+F
2
− p

2
+p ψ1, which has only two semiclassical phases

for any non-negative k. The two phases are T1 (for positive m1) and T2 (for negative m1).
The dual bosonic theory is U(k + F/2)−N + p ϕ1.

4. m2 → −∞: one gets SU(N)k−F
2
+ p

2
+ p ψ1, which has only two semiclassical phases if

k ≥ F/2 or 0 ≤ k ≤ F/2− p. Its phase diagram has the following structure:

� k ≥ F/2: the two phases are T4 (for positive m1) and T3 (for negative m1). The
dual bosonic theory is U(k − F/2 + p)−N + p ϕ1.

� F/2 − p ≤ k < F/2: the topological phases are T4 (for positive m1) and T̃3 (for
negative m1), and the intermediate sigma-model phase is σ43. The dual bosonic
theories are U(k−F/2 + p)−N + p ϕ1 (for positive m1) and U(F/2− k)N + p ϕ1 (for
negative m1).

� 0 ≤ k < F/2− p: the two phases are T̃4 (for positive m1) and T̃3 (for negative m1).
The dual bosonic theory is U(F/2− k)N + p ϕ1.
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Figure 3.4: Phase diagram of SU(N)0 + p ψ1 + (F − p) ψ2. The transition lines with the same color
are described by the same theories, up to a time-reversal transformation.

It is easy to check that our proposed phase diagrams, figures 3.1, 3.2 and 3.3, exactly reproduce
this intricate structure in the large |m1| and/or |m2| regions.

3.3.2 k = 0 : time-reversal and Vafa-Witten theorem

One interesting non-trivial check comes by taking k = 0, in which the theory we study becomes
SU(N)0+p ψ1+(F −p) ψ2. Since k = 0, time-reversal acts on this theory just flipping the sign
of the mass terms of the two sets of fermions. As a consequence, the two dimensional phase
diagram should be symmetric with respect to the origin, modulo the flipping of the effective
Chern-Simons levels of the specular phases. This symmetry can be nicely observed in the phase
diagram in figure 3.3, which we report in figure 3.4 for the particular case k = 0.

It is a further consistency check that the sigma models with target spaces (3.17) and (3.23)
coincide for k = 0. We labeled this sigma model with σ0, whose target space is

Gr(F/2, F − p) = U(F − p)
U(F/2)× U(F/2− p) , (3.24)

and which includes a Wess-Zumino term with coefficient N . The sigma-model phases σ0 and σ
enjoy time-reversal invariance for k = 0, as expected.

In addition to k = 0, let us also take p = F/2, i.e. we consider the same number of fermions
in the two sets. In this case the phase diagram should be also symmetric with respect to the
m1 = m2 line, besides being symmetric with respect to the origin. The phase diagram for k = 0
and p = F/2 is depicted in figure 3.5. We easily see that σ0 trivializes, as well as the topological
theories SU(N)p−F

2
and SU(N)F

2
−p, leaving a trivially gapped phase in the second and fourth

quadrants. Moreover, the theories on the two red curves are the same, up to the sign of the
Chern-Simons level.
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Figure 3.5: Phase diagram of SU(N)0 + F/2 ψ1 + F/2 ψ2. In the bosonic dual picture, the red
transition lines in the first and third quadrant are described by U(F/2)∓N + F/2 ϕ, respectively. On
the two black spots, where the global symmetry is enhanced, the number of scalars is F .

Another interesting check when k = 0 and p = F/2 is related to the expected enhancement
of time-reversal symmetry on the full m2 = −m1 line. On this one dimensional slice of the
diagram of figure 3.5, the fundamental fermions are actually gapped in a parity preserving way,
so we expect the VW theorem to hold. The theorem suggests then that the full U(F ) global
symmetry should be broken down to U(F/2) × U(F/2) at strong coupling (if not classically
preserved) and prevents this theory from developing a further symmetry breaking of flavor and
time-reversal symmetry along the line m2 = −m1. As a consequence, on such line fermions can
be safely integrated out, leading to a trivially gapped vacuum outside the origin. At the origin,
the breaking U(F )→ U(F/2)× U(F/2) gives rise to the target space (1.146) with k = 0. The
diagram in figure 3.5 exactly reproduces all these features.

3.3.3 Dual bosonic theories: matching the phase transitions

In section 3.3.1 we have checked our two dimensional phase diagrams in the large mass regime,
where they become effectively one dimensional, against one-family QCD3. Here we want to
focus on the region near the critical points, i.e. the black dots in figures 3.1, 3.2 and 3.3. This is
done using boson-fermion duality, properly adapted to the two-family case. This will also work
as a nice consistency check of the duality itself.

From the conjectured boson-fermion duality of the one-family case, one can argue that the
bosonic theories one should consider near the critical points are

U(n)l + p ϕ1 + (F − p) ϕ2 , (3.25)

where (n, l) = (F/2 ± k,∓N) and ϕ1, ϕ2 are scalar fields in the fundamental representation
of the gauge group. Here, we have explicitly split the F scalars in two different sets, since we
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want to deform the massless theories describing the critical points with the independent massive
deformations, M 2

1 and M 2
2 respectively.

We can reproduce the desired vacuum structure assuming that, when at least one of the two
sets condenses, the gauge group is maximally Higgsed and the unbroken global symmetry is
maximized. In fact, exactly as for the one-family model discussed above, it is possible to show
that these assumptions hold true if we consider the scalar potential of the critical theory up to
quartic order in the scalar fields, and then deform it with symmetry-breaking mass operators.
In terms of the gauge-invariant operators X = ϕ1ϕ

†
1, Y = ϕ2ϕ

†
2 and Z = ϕ1ϕ

†
2, we can write the

(deformed) potential as

V =M 2
1 TrX +M 2

2 TrY + λ(Tr2X +Tr2Y + 2TrXTrY ) + λ̃(TrX2 +TrY 2 + 2TrZZ†) , (3.26)

where X and Y are positive semidefinite Hermitian matrices of dimension p and F − p, re-
spectively, whereas Z is a p × F − p rectangular matrix. Note that the quartic couplings in
the potential are chosen to respect the full U(F ) symmetry. This is because we are limiting
ourselves to perturbations due to massive deformations only. In principle, there could be other
U(p)×U(F−p) preserving relevant deformations besides massive ones. If boson-fermion duality
is correct, these deformations should have a counterpart on the fermionic side, but we do not
consider them here.

For the same reasons as the one-family case discussed above, we take λ̃ > 0, which requires
λ̃+min(n, F )λ > 0 in order for the potential to be bounded from below.

In the first quadrant of the (M 2
1 ,M

2
2 ) plane, where both M 2

1 and M 2
2 are positive, X, Y

and Z vanish on shell. This implies that there is no scalar condensation, all matter fields are
massive and can be integrated out, leading to a U(n)l topological theory in the IR.

In all other cases, the vacuum equations imply that Z = 0, while X and Y are diagonal with
respectively r1 and r2 degenerate non-negative eigenvalues given by

x =
−(λ̃+ λr2)M

2
1 + λr2M

2
2

2λ̃2 + 2λλ̃(r1 + r2)
,

y =
−(λ̃+ λr1)M

2
2 + λr1M

2
1

2λ̃2 + 2λλ̃(r1 + r2)
.

(3.27)

The positivity condition on x and y implies that a simultaneous condensation of both ϕ1 and ϕ2

is only allowed in a subregion R of the third quadrant of the (M 2
1 ,M

2
2 ) plane, which includes the

line M 2
1 =M 2

2 . Outside this region and above (below) the bisector, only x (y) can be non-zero,
meaning that only ϕ1 (ϕ2) can condense. The ranks r1 and r2 are non-negative integers which
satisfy the constraints

0 ≤ r1 ≤ min(n, p) , 0 ≤ r2 ≤ min(n, F − p) , r1 + r2 ≤ min(n, F ) , (3.28)

and have to be determined by minimizing the vacuum potential, seen as a function of (r1, r2).
Once we determine these values, the spontaneous symmetry breaking of the flavor symmetry
follows the pattern

U(p)× U(F − p) −→ U(r1)× U(p− r1)× U(r2)× U(F − p− r2) . (3.29)
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Figure 3.6: Phase diagram of the bosonic theory in the case p ≤ F − p ≤ F ≤ n. The region R of
double condensation coincides with C.

This leads, in the region where x and y do not vanish simultaneously, to a sigma model with
coset

Gr(r1, p)×Gr(r2, F − p) =
U(p)

U(r1)× U(p− r1)
× U(F − p)
U(r2)× U(F − p− r2)

, (3.30)

and an appropriate Wess-Zumino term. As we will show, the maximal symmetry pattern se-
lects, in all cases, values of r1 and r2 such that this target space reduces to a single complex
Grassmannian, which exactly matches the phases σ23, σ43, σ14 of figures 3.1, 3.2 and 3.3. Inter-
estingly, these values correspond to minimizing the dimension of the target space (3.30) with
respect to r1 and r2, once we take into account the constraints they obey.

In addition, the scalar condensation leads to a partial or total Higgsing of the gauge group
following the pattern

U(n) −→ U(n− r1 − r2) . (3.31)

In the same spirit section 3.1, one can show that the on-shell potential as a function of (r1, r2)
is never minimized inside the region defined in (3.28), so that the minimum of the potential is
achieved at the boundaries of this region. The maximal degeneracy of the eigenvalues implies
that, under our assumptions, there is never a case in which a sigma model coexists with a TQFT
in a given phase. In addition, all the other excitations get a mass either by Higgs mechanism
or from the scalar potential, and hence can be safely integrated out.

In order to find the values of (r1, r2) and the pattern of Higgsing and global symmetry
breaking, one should consider four qualitatively different cases, depending on the value of n, see
figures 3.6, 3.7, 3.8 and 3.9. Tables collect all data necessary to pinpoint the phase the scalar
theory enjoys on the (M 2

1 ,M
2
2 ) plane, which can be either a TQFT or a sigma model.

Starting from the first quadrant, region A, where all scalars have positive mass, red and green
lines represent the critical theories where one of the two sets becomes massless and condenses,
whereas the blue line is the quantum phase of one-family QCD3. On the red lines the first
set of scalars condenses, partially or totally Higgsing the gauge group. In the former case,
the components of the second set of scalars charged under the unbroken gauge group may
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Figure 3.7: Phase diagram of the bosonic theory in the case p ≤ F − p ≤ n < F . The region R of
double condensation coincides with C +D, including the blue line.
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Figure 3.8: Phase diagram of the bosonic theory in the case p ≤ n < F − p ≤ F . The region R of
double condensation coincides with C, including the blue line.

still become massless and condense, this locus corresponding to the green lines in the figure.
Neutral components receive instead an additional positive contribution to their squared mass
from quartic terms of the potential. One can easily see that this contribution makes their
squared mass always positive, so that they never condense and can be integrated out in the
whole phase space. When the gauge group is completely Higgsed by the first condensation,
instead, all scalars that have not condensed first cannot give rise to any other critical line.

Let us now specify the values of n to make contact with our conjecture and explore the
topological structure of the diagrams around the critical points.

If n = F/2 + k, the allowed diagrams are given in figures 3.6, 3.7 and 3.8. It is now easy to
check that the range of validity of each diagram and its various phases exactly reproduce the
topological structure of the fermionic diagrams in figures 3.1, 3.2 and 3.3, respectively, in the
neighborhood of the black dot in the first quadrant.

If n = F/2 − k, the allowed diagrams are given in figures 3.8 and 3.9. It is again easy
to check that the range of validity of each diagram and its various phases exactly reproduce
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Figure 3.9: Phase diagram of the bosonic theory in the case n < p ≤ F − p ≤ F . In this case, the
region R of double condensation shrinks to the blue line only.

the topological structure of the fermionic diagrams in figures 3.3 and 3.2, respectively, in the
neighborhood of the black dot in the third quadrant. Note that in this case, as in the one-family
case, cf figure 1.6, the orientation of the bosonic diagrams should be reversed.

To summarize, we have shown that the two dimensional phase diagrams of the bosonic
theories are perfectly consistent with the fermionic ones, in the regions of the phase diagrams
where the duality is supposed to hold. In particular, we have reproduced the peculiar structure
with critical points where more than three critical lines meet.

3.3.4 Perturbing σ via massive deformations

Previously we have shown that the vacuum structure of the fermionic theory is exactly repro-
duced by the corresponding bosonic dual theories near each transition point. We now want to
see what happens when we perturb the non-linear sigma model σ (the blue line in figures 3.2
and 3.3) with a small mass term which explicitly breaks the U(F ) symmetry to U(p)×U(F−p).

A similar symmetry-breaking deformation was considered in the one dimensional case, to
check consistency under flowing down from F to F − 1 (i.e. a flow in the space of theories),
see section 1.6. Our philosophy, here, is to choose a symmetry-breaking perturbation that does
not change the theory but allows us to investigate the planar region in a neighborhood of the
quantum phase σ.

To do that, we deform the mass of the p scalars ϕ1 with a small perturbation δM 2. If
δM 2 > 0 (< 0) we are investigating the region M 2

2 < M 2
1 (M 2

2 > M 2
1 ) where the set ϕ2 (ϕ1)

condenses first. In fermionic language M 2
2 < M 2

1 corresponds to m2 < m1 (i.e. below the
m1 = m2 line) for the bosonic theory U(F/2 + k) and m2 > m1 (i.e. above the m1 = m2 line)
for the bosonic theory U(F/2− k). Viceversa, for the case M 2

2 > M 2
1 .

Let us call n the rank of the bosonic theory gauge group, which can be either F/2 + k or
F/2− k. In these conventions, the target space of the sigma-model phase σ reads

Gr(n, F ) =
U(F )

U(n)× U(F − n) . (3.32)
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Massive deformations act modifying the target space, but they do not change the coefficient N
of the Wess-Zumino term. Let us now analyze the different possibilities, performing our analysis
in the underlying gauged linear model.

� If δM2 > 0 and F − p > n, the (F − p) ϕ2 condense first and completely Higgs the gauge
group U(n), whereas the p ϕ1 do not play any role. Indeed, since there is no more gauge
group, all the surviving ϕ1 are neutral and can be safely integrated out. The resulting
sigma model has target space Gr(n, F − p).

� If δM2 > 0 and F − p < n then the (F − p) ϕ2 cannot Higgs completely the gauge group,
but as they condense they Higgs it down to U(n − F + p) and then can be integrated
out. The charged components of the p ϕ1 then condense, whereas the neutral ones have a
positive squared mass around this configuration. This leads to a sigma model with target
space Gr(F − n, p).

� If δM2 < 0 and p < n, then the p ϕ1 condense first and Higgs the gauge group to U(n−p).
By the same mechanism as before, the (F −p) ϕ2 condense, eventually, leading to a sigma
model with target space Gr(F − n, F − p).

� If δM2 < 0 and p > n then the p ϕ1 condense first and completely Higgs the gauge group,
whereas the (F − p) ϕ2 do not play any role. This leads to a sigma model with target
space Gr(n, p).

It is a tedious but simple exercise to check that specifying the above analysis to the case of
interest, i.e. n = F/2± k, the resulting sigma models coincide with those living in the shaded
regions around the quantum phase σ of phase diagrams in figures 3.2 and 3.3.

It is worth noticing that the above check is not entirely independent from the discussion of
the previous section, since we are actually using the underlying gauged linear sigma model. It
would be nice to have a proof directly in non-linear sigma-model terms. While the above results
would not change, at least qualitatively, such an analysis might shed light on the nature of the
phase transition around σ.

Note that by adopting the same philosophy of section 1.6, instead, one can consistently flow
from the theory coupled to F flavors to the one coupled to F − 1 flavors. This can be done by
giving a large mass to, say, one of the p fermions ψ1. After this deformation we get the same
duality with parameters

(N, k, F, p) −→ (N, k ± 1/2, F − 1, p− 1) , (3.33)

for a positive (negative) mass deformation.
Using the same approach one can also play with k. As already observed in section 3.3.2, our

proposal for k = 0 and p = F/2 is consistent with the Vafa-Witten theorem which holds on the
entire m2 = −m1 line, figure 3.5. We can use massive deformations to increase the value of k,
and show that if our proposal is correct for k = 0, it remains true even for k > 0. In particular,
all values of k up to F/2−p can be reached by integrating out by mass deformations the p fields
in the first set, whereas bigger values of k, up to F/2, are reached by acting on the second set.
This shows that one can consistently flow to (N, k, F, p) for any k ≤ F/2.
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3.4 Comments and outlook

In this Chapter we have constructed the phase diagram of two-family QCD3, extending the
analysis carried out in [31] for the degenerate mass case. While our results agree with [31] in
the limits where the two dimensional phase diagram becomes effectively one dimensional, there
exist ranges in the parameter space which present novel phenomena. These are inherent to the
m1 ̸= m2 case, e.g. the shaded regions in figures 3.2, 3.3 and 3.4, which describe new gapless
phases, and phase transitions between them along σ.

We now want to discuss a few directions along which this analysis could be extended.
As far as the bosonic analysis is concerned, we have limited ourselves to quartic couplings.

This is done in analogy to ordinary Wilson-Fisher fixed points for O(N) vector models, and it
has been, in fact, the general approach when considering boson-fermion dualities. However, the
scalar theory one is dealing with is a gauged U(N) linear sigma model and, as of today, a full
understanding of the nature of its fixed points (if any) has not yet been achieved. Strictly speak-
ing, one cannot exclude that along the RG-flow higher order operators acquire large (negative)
anomalous dimensions and the effective low-energy theory should take several such operators
into account. What one usually does is to start considering those operators whose dimensions
near the Gaussian fixed point are the lowest, i.e. quadratic and quartic couplings. In three
space-time dimensions sextic scalar operators are classically marginal, so including them in the
analysis would be the first natural extension one should look for. This was partially discussed
for large N QCD3 with a single set of flavors in [25], where sextic couplings were introduced in
order to correctly reproduce the phase diagram.
In a similar vein, one could consider quartic couplings not respecting the full U(F ) global sym-
metry but just U(p) × U(F − p). This could correspond to yet other relevant deformations of
the massless theory, different from mass terms.

If boson-fermion duality is correct, all these (putative) novel relevant deformations should
have a counterpart on the fermionic side of the duality (the first natural guess being Gross-
Neveu-Yukawa couplings, in analogy with [125]). In this respect, the two-family QCD3 case
could work as the simplest laboratory to extend (and check) boson-fermion dualities beyond
present understanding.

The analysis does not address the issue of the actual order of the phase transitions in QCD3.
While it is known that in certain limits such phase transitions are second order, we saw above
that in the large N limit we have only first order phase transition in the phase diagram of
QCD3. Having a clear picture of this aspect would give crucial insights on how we should think
about boson-fermion dualities in general.

In our two dimensional phase diagrams, there are some phase transitions that might be more
amenable to treatment, namely the transitions between different sigma models. It would be nice
to have a more detailed description of these transitions directly in non-linear sigma-model terms.

Finally, one could explore other situations where two dimensional phase diagrams are ex-
pected. For instance, situations where matter fermions are in other representations of the gauge
group. Recently, a particular case, namely QCD3 with two adjoint fermions, was explored
in [127].



Chapter 4

Holographic QCD3

In this Chapter, based on the original work in [115], we study holographically the vacuum struc-
ture of QCD3, in the large N limit. Our aim is to provide a simple string theory understanding of
the various vacua that one finds as parameters are varied, and of the phase transitions between
them.

The vacuum structure depends on the following parameters, both discrete and continuous:
the rank N , the number of flavors F , the Chern-Simons (CS) level k, and flavor masses m. In
principle, flavors can have different masses, but we will always take them to be equal, unless
otherwise stated, and call m this common mass. The CS level can be defined in two equivalent
ways: we can define a bare CS level kb by integrating out all fermions after giving them a large
positive mass. Alternatively, we can define k = kb − F/2 which has the property of flipping
its sign under a time-reversal transformation. We will actually see a natural string theory
interpretation of both. Finally, we allow ourselves the slight abuse of language of calling N the
‘rank’ of SU(N).

In section 1.6, we reviewed the state of the art regarding the phase diagram of QCD3. Here,
we briefly summarize its phase diagram in various limits of the parameters. The recent regain
of interest started with [75–81] where the large N , large k limit was studied in the presence
of a small number of flavors, and a conformal field theory (CFT) was conjectured to arise at
vanishing flavor masses. Evidence were also presented for a dual description of such fixed point
in terms of a theory with bosonic matter. This led, eventually, to the conjecture [49] that such
boson-fermion duality (a.k.a. bosonization) also holds at finite N , for k ≥ F/2, as we reviewed
in section 1.6.2. In this regime, there is still a single phase transition at a critical value of m,
but there is no direct handle to determine its order (but for the two cases where F or k are
large enough, where it is known that the transition is second order [72,73]). In section 1.6.3 also
the case k < F/2 was contemplated, and the phase diagram was conjectured to consist of three
phases as m is varied, with a purely quantum phase at small m where the flavor symmetry
U(F ) is spontaneously broken and the low-energy physics is captured by the corresponding
Grassmannian σ-model. Again, little can be said about the order of the two phase transitions.
Finally, in the large N limit at finite k and F was studied in [25] and reviewed in section 1.6.4.
A somewhat surprising result was found: irrespective of whether k < F/2 or k ≥ F/2, a total
of F + 1 different phases were found, with generically a coexistence of topological and σ-model

97



98 Chapter 4. Holographic QCD3

sectors. Moreover, they are separated by phase transitions that can be determined to be first
order, following reasonings similar to the ones of [128–130]. Quite interestingly, one should then
expect a multicritical point for a (large) value of the CS level k in which the phase transitions
merge into a single second-order phase transition [84].

Below, we will propose a string theory picture for QCD3, or more precisely for a gauge
theory that we believe reproduces the low-energy behavior of QCD3.

1 It refines a proposal
made in [69, 114], where (probe) flavors were added on the non-supersymmetric holographic
description of Yang-Mills in three dimensions (YM3), see section 2.3.3. In the body of the
Chapter, we will describe the technical details of our proposal, and some results concerning the
phase diagram. Here, we want to outline by simple pictorial arguments how string theory helps
us to find the different vacua of QCD3, giving also evidence for the phase transitions being first
order in the limit we are considering, which is the large N limit at finite k and F reviewed in
section 1.6.4.

A sketch of the brane construction for the QCD3 vacua

Our strategy for building a string theory configuration reproducing the physics of QCD3 in the
large N limit with a finite CS level and a finite number of flavors is to start from the string
theory realization of YM3 of section 2.3.3 and then add both a CS term and flavors in a probe
approximation. We already analyze separately both the addition of the CS and the flavors in
section 2.3.3. After backreaction of the D3s, we see that there are two important differences with
respect to the Sakai-Sugimoto model. First, the D7-branes have an extra orthogonal direction
in which to go (in other words, they wrap an S4 ⊂ S5), in addition to the angular coordinate
on the cigar, so that they do not need to go back as anti-D7 branes. This is related to the fact
that there is no gauge anomaly in 3d, hence anti-D7 branes are not required in the first place.
Second, again because the D7-branes have the possibility to move along x9, see Table 2.3, they
are allowed to feel the repulsive force from the D3-branes, which is due to the fact that they
have six mutually orthogonal directions. After backreaction, this is translated into the flavor
D7-branes being slightly repelled from the tip of the cigar.

This is depicted in figure 4.1, which should be taken as an artistic rendering of the brane con-
figuration, and similarly the following ones. Numerically exact graphs of the brane embeddings
will be presented later.

The embedding of the flavor D7-branes will depend on the boundary condition at infinity
along the x4 · · ·x8 directions. Since before backreaction and interactions are taken into account,
the minimal distance between the D7-branes and D3-branes is given by the value of x9 at which
we place the D7s, we see that we will have massless fermions only if we set the D7s at x9 = 0.
Otherwise, the (bare) mass of the fermions will be proportional to the asymptotic value of x9 of
the D7-brane embedding.2 Note that this gives fermions a mass whose sign is flipped when the
parity transformation is implemented by reversing the sign of x9. In figure 4.1 we have taken a

1A string theory realization of QCD3 at finite N , giving rise to bosonization and symmetry breaking phases
in terms of a magnetic Seiberg dual theory, was proposed in [83,131].

2This is another difference with respect to the Sakai-Sugimoto model, where it is notoriously subtle to
introduce a mass for the fermions, as we already mentioned above.
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D7F

D7CS

S5
>

>

x4, ..., x8

x9

Figure 4.1: An artistic view of our brane set-up: the disk represents the S5 at the tip of the
cigar; the CS D7-branes wrap it, while the flavor D7-branes avoid it crossing the x9 axis.

positive value for x9 at infinity, and we henceforth associate it to a positive fermion mass.
Let us now consider a configuration with one negative mass flavor and no CS branes, figure

4.2. The embedding with minimal energy goes below the ‘disk.’

F=1
>

Figure 4.2: One flavor with negative mass and no CS branes.

If we now slowly bring the mass to positive values, i.e. bring the asymptotic value of the
embedding to positive values of x9, the embedding will be deformed to a non-minimal one, still
passing below the disk, as shown in figure 4.3 (left). However, there is another embedding with
the same asymptotic value for x9 and, importantly, the same D7 charge around the tip of the
cigar: it is a minimal embedding going above the disk, accompanied by a CS brane wrapping
the disk counterclockwise (same figure, right).

F=1>

F=1

kb=1

>

>

Figure 4.3: The two embeddings for positive mass: the non-minimal without CS branes, and
the minimal with one CS brane.
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As we will discuss in detail, there is a critical bare mass above which the energetics will favor
the figure on the right. Hence we are witnessing a transition between a theory whose vacuum
is trivial, i.e. SU(N)0, for negative masses, to a theory with a topologically non-trivial vacuum,
i.e. SU(N)1, for positive masses. This is nothing else but the two phases of the theory denoted
as SU(N)1/2 with one Dirac fermion in the fundamental.

Let us now take a generic situation, with F flavor D7-branes. In order to implement a well-
defined CS level, we specify a bare CS level kb, which is an integer, by wrapping kb D7-branes
on the S5 disk, counterclockwise if kb > 0 (and clockwise if kb < 0), when the flavors have a
positive mass, i.e. when flavor D7s are above the disk (figure 4.4).

F

kb

>

>

Figure 4.4: F flavors with positive mass and a bare CS level given by kb (chosen to be positive
in the figure).

The gauge theory on the CS D7-branes is U(kb) = U(k + F/2), where we used the relation
between kb and k in a theory with F flavors, k = kb − F/2. Its level is the same as in the
YM3 case, i.e. −N . Hence for large positive mass, the vacuum is a topological theory, which by
level/rank duality can be denoted by SU(N)k+F/2. Note that the flavor D7-branes also carry
a U(F ) gauge group, but since they extend infinitely in a direction orthogonal to R1,2, their
coupling vanishes and it then corresponds to the global flavor symmetry of QCD3.

Now bring all F flavor branes below the disk, by tuning their mass to be large and negative.
The minimal energy embedding will now pass below the disk, but in the rearranging process, or
in other words, to conserve the D7 charge around the angular variable of the cigar, the number
of CS D7-branes has to decrease by F units.

If kb ≥ F (i.e. k ≥ F/2), we are left with kb − F CS branes, leading to a topological phase
with U(kb − F )−N = U(k − F/2)−N , level/rank dual to SU(N)k−F/2.

F

kb-F

>

>

Figure 4.5: F flavors with negative mass, and k ≥ F/2.
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If kb < F (i.e. k < F/2), we are left with F −kb clockwise CS branes, leading to a topological
phase with U(F − kb)N = U(F/2− k)N , in agreement with the field theory result. The level of
the gauge theory flips sign since the D7-branes wrap the S5 in the opposite way. The level/rank
dual is SU(N)k−F/2. The two situations are depicted in figures 4.5 and 4.6, respectively.

F

F-kb

>

>

Figure 4.6: F flavors with negative mass, and k < F/2.

We can now ask what happens for small masses, i.e. for embeddings that asymptote to a
small value of x9. Take for instance the embedding that asymptotes to x9 = 0, equivalent to
a vanishing bare mass for the fermions. Obviously, the embeddings going above or below the
disk have the same energy, since they are actually related by flipping the sign of x9, i.e. by a
parity transformation. Since wrapping CS D7-branes on the S5 costs some energy, we are then
to conclude that the most favorable embedding is the one with the fewest CS branes. When
kb < F , this means that the true vacuum should not contain any CS brane at all, i.e. there
should not be any topological theory in the IR, as depicted in figure 4.7.

kb

F-kb

>

>

Figure 4.7: F flavors with zero mass, splitting in such a way that no CS branes are left.

However, the IR theory is not empty, since the flavors have to split into F − kb above and
kb below. Hence the flavor symmetry is spontaneously broken as

U(F )→ U(F − kb)× U(kb) = U(F/2− k)× U(F/2 + k) , (4.1)

and a σ-model parametrizing the Grassmannian Gr(F/2− k, F ) arises from the corresponding
Goldstone bosons.

It is now manifest that there has to be a critical asymptotic value of x9 such that the two
configurations in figure 4.3 are isoenergetic. As we will see, this will happen for some positive
value of the mass, m∗.
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Importantly, note that at such a critical mass there will be, generically, a degeneracy of more
than two phases. Indeed, taking e.g. kb ≥ F , all configurations represented in figure 4.8 as p is
varied from 0 to F , have the same energy.

p

kb-F+p

>>

>F-p

m⇤

Figure 4.8: F flavors at critical mass m∗, splitting in F + 1 different ways, depending on the
value of p.

For every value of p such that 0 ≤ p ≤ F , we have at low energies a σ-model on Gr(p, F )
together with a topological CS theory U(kb−F +p)−N = U(k−F/2+p)−N , for kb−F +p > 0.
If kb−F +p < 0, the topological theory is U(F −p−kb)N = U(F/2−p−k)N . In both cases the
level/rank dual theory is SU(N)k−F/2+p. The Grassmannians accompanied by the topological
theories are exactly the degenerate phases for large N QCD3 we saw in section 1.6, and we see
them arising in this string theory construction in a very straightforward way.

Last but not least, we see pictorially that going from one phase to another requires some
flavor branes to snap from above to below the disk. This clearly implies that the degenerate
vacua are separated in field space, and therefore that the transitions are all first order.

The rest of the Chapter is organized as follows. In section 4.1 we provide details about
the holographic model and we discuss the geometric properties of Chern-Simons and flavor
probe branes. We use the holographic dictionary to extract information about the free energy
and the fermion condensate on the field theory side. In section 4.2 we discuss the structure
of brane configurations describing the different vacua of our holographic model and derive its
phase diagram at leading order in the large N expansion. We explicitly prove that there are
multiple vacua and that the phase transitions in our model are first-order. In section 4.3 we
compute the 1/N corrections to the leading order phase diagram, and show how these modify
its structure. Finally, in section 4.4, we focus on boson-fermion dualities and we show that our
geometric set-up gives a simple understanding on how a dual bosonic description of QCD3 arises
at low-energies. We conclude in section 4.5 with few more comments regarding the validity of
the large N expansion, brane backreaction and the existence of an IR fixed point.

4.1 Holographic description of QCD3

In this section, employed with the holographic setup of section 2.3.3, we study the embedding
of the D7 flavor branes in the massless and massive cases, obtaining the equations of motion
describing their profile and calculating their corresponding energies. Finally, via the holographic
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dictionary, we extract information about the free energy and the fermion condensate on the field
theory side.

Massless case

It is convenient to describe the embedding in isotropic coordinates in the x4 · · ·x9 directions,
transverse to the D3-brane worldvolume. To achieve this, we first define a new radial coordinate
ρ from the holographic coordinate r in eq. (2.69) such that

r(ρ) =

(
ρ2 +

r40
4ρ2

)1/2

. (4.2)

The ambiguity in inverting this relation is solved by choosing the branch ρ2 ≥ r20/2, so that
spacetime in the transverse directions does not extend towards the origin, but a five-sphere with
radius r0/

√
2 is excluded. In these coordinates the metric can be rewritten as (now r = r(ρ))

ds2 =
r2

L2

(
ηµνdx

µdxν + f(r)(dx3)2
)
+
L2

ρ2
(
dρ2 + ρ2dΩ2

5

)
. (4.3)

We now separate the six transverse coordinates in the x4 · · ·x8 directions, which are part of
the flavor branes worldvolume and for which we choose spherical coordinates λ and Ω4 (with
λ ≥ 0), and the transverse 9 direction u ∈ (−∞,+∞). The final form of the metric is

ds2 =
r2

L2

(
ηµνdx

µdxν + f(r)(dx3)2
)
+
L2

ρ2
(
dλ2 + λ2dΩ2

4 + du2
)
, (4.4)

where r = r(ρ) as in (4.2) and ρ2 = λ2+u2 ≥ r20/2. With this choice the D7-brane worldvolume
is spanned by the eight coordinates s = (xµ, λ,Ω4) and its embedding is described by (x3, u) =
(x3(s), u(s)), as we can verify by looking at Table 2.3. We set x3 to a constant, meaning that
the D7-brane is localized on the circle, and by translational and rotational symmetry u = u(λ).
We have reduced the problem of finding the D7-brane embedding to the problem of finding the
profile of a real function of a single real and positive variable. Recall that a parity transformation
acts as u(λ)→ −u(λ) and that, in the massless case, we have to impose the following boundary
conditions (u̇ ≡ du/dλ from now on)

u̇(0) = 0 , u(λ∞) = 0 , (4.5)

where λ∞ is the location of the boundary, related to the UV cutoff on the field theory side.
Now we are ready to compute the differential equation that u(λ) should satisfy. First of all, the
induced metric on the D7 takes the form

ds2|D7 =
r2

L2
ηµνdx

µdxν +
L2

ρ2
(
(1 + u̇2)dλ2 + λ2dΩ2

4

)
, (4.6)

so that the action for a single D7 is

SD7 = −
1

(2π)7l8s

∫
d8s e−ϕ

√
−g|D7 = −TD7V3V4L

2

∫
dλ

(
ρ2 +

r40
4ρ2

)3/2
λ4

ρ5

√
1 + u̇2 , (4.7)



104 Chapter 4. Holographic QCD3

where TD7 = (2π)−7l−8
s g−1

s is the D7-brane tension, V3 is the volume of Minkowski spacetime
and V4 is the one of the unit four-sphere. The Euler-Lagrange equation of motion describing
the D7-brane embedding is

d

dλ

[
(r40 + 4ρ4)3/2

λ4

8ρ8
u̇√

1 + u̇2

]
= −(r40 + ρ4)(r40 + 4ρ4)1/2

λ4u

ρ10

√
1 + u̇2 , (4.8)

to be solved with boundary conditions (4.5). Few observations are in order.

� If r0 = 0, then the equation of motion reads

d

dλ

[
λ4u̇

ρ2
√
1 + u̇2

]
= −2λ4u

ρ4

√
1 + u̇2 . (4.9)

Being the right-hand side non-vanishing, it is easy to see that a constant profile for u(λ)
is a solution only if u(λ) ≡ 0.3 The solution u(λ) = 0 implies no symmetry breaking at
all (being invariant under u→ −u), so we expect it to be unstable, as it was verified, for
instance, in [133].

� An exact solution of (4.8) is given by the profile which wraps half of the five-sphere and
then sits at u = 0 to λ =∞, i.e.

u(λ) =

{
±
√
r20/2− λ2 if 0 ≤ λ ≤ r0/

√
2 ,

0 if λ ≥ r0/
√
2 .

(4.10)

There are two solutions, corresponding to the two signs in (4.10), one being a D7-brane
wrapping the upper half-five-sphere and the other a D7-brane wrapping the lower one, as
shown in figure 4.9. We will refer to these profiles as the maximal embeddings, since we
will show that these solutions correspond to the ones having maximal energy, among all
possible solutions to (4.8).

� In this choice of coordinates, the embedding r = r0 representing the CS D7-branes dis-
cussed in section 2.3.3 takes the form

u2(λ) = r20/2− λ2 , (4.11)

so that the full sphere is wrapped by the CS branes, which do not reach the UV boundary
(and hence they do not introduce new degrees of freedom on the dual field theory side),
see figure 4.10. We can choose an orientation for the CS branes, which are semicircles in
the (λ, u) plane. In the conventions where the flavor D7-branes are taken to be oriented
from left to right, a positive (negative) kb is given by |kb| counterclockwise (clockwise) CS
D7-branes. As we will explain in the next section, this is consistent with integrating out
massive fermions in QCD3.

3As opposite to what happens for the D4/D6 system of [87] and for the D3/D5 system of [132], where any
constant profile is a solution for r0 = 0. This reflects the fact that even in the supersymmetric case MKK = 0
the D3/D7 system we consider is non-BPS.
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Figure 4.9: The two parity related maximal embeddings, corresponding to the highest energy
solutions of the differential equation for the flavor brane profile.

� Most importantly, if ũ(λ) is a solution, then also −ũ(λ) is a solution (for this to hold it is
crucial that the boundary condition u(λ∞) = 0 is parity-invariant). These solutions are
related by a 3d parity transformation and have the same energy, simply because (4.7) is
parity-invariant. This is the first achievement of holography: the fact that the effective
potential for the eigenvalues of ⟨ψ̄ψ⟩ has two degenerate minima at opposite non-vanishing
values is an assumption in the large N description of QCD3 [25]. Here instead, this is
geometrically realized in a natural way.

Let us start discussing the solution in the asymptotic region where λ is close to the cutoff.4

There u(λ) is small and we will assume it to be slowly varying, so that the equation of motion
becomes

d

dλ
(λ2u̇) = −2u . (4.12)

This equation is scale invariant, which reflects the absence of a scale in the theory in the far UV
where r0 is negligible (this QCD3 UV-completion is N = 4 SYM with 3d defect fermions, as
in [133]). The characteristic polynomial has two complex conjugate roots α± = (−1± i

√
7)/2.

The appearance of complex roots is because this equation describes the propagation of a field
whose mass is below the Breitenlohner-Freedman bound, as already emphasized in [114, 133].
The violation of the BF bound corresponds to the instability of the embedding defined in
eq. (4.10), which indeed does not represent the minimal energy configuration. This has been
analyzed in detail in the case r0 = 0 in [135], where it was shown that only the minimal energy
configurations are free of tachyon instabilities. As we will discuss later, the instability of the
maximal embedding is related to the loss of conformality of the dual field theory.

4An alternative regularization that does not require a cutoff consists in considering the full asymptotically
flat D3-brane metric, and not only its near-horizon limit [134]. We prefer not to use this regularization since its
holographic interpretation is less clear.



106 Chapter 4. Holographic QCD3

Figure 4.10: Chern-Simons branes are semicircles in the (λ, u) plane. A positive level correponds
to the counterclockwise orientation.

The general form of the large λ behavior of the solution is

u(λ) = ±
√
µ3

λ
sin

(√
7

2
log

λ

µ
+ φ

)
, (4.13)

where µ and φ are the two integration constants, being µ a positive quantity with the dimension
of a length. As we will see later, this scale is related to the scale of the fermion condensate.
The two signs are related to the two possible parity-related choices.

Requiring that u(λ∞) = 0, we can determine φ and the asymptotic solution reads

u(λ) = ±
√
µ3

λ
sin

(√
7

2
log

λ

λ∞

)
. (4.14)

We also get

u̇(λ∞) = ±
√
7

2

(
µ

λ∞

)3/2

. (4.15)

Near the cutoff the global signs of the u and u̇ are opposite: this means that the embedding
with u̇(λ∞) > 0 (u̇(λ∞) < 0) approaches zero from negative (positive) values of u. The scale µ
is fixed completely by the initial conditions at λ = 0 and it can be thought to be of the order
of u(0). Also, as a consistency check, we found u̇ to be always numerically small (although
non-vanishing) close to λ∞, for any value of the cutoff.

Let us now discuss the solution in the other asymptotic region, where λ is small, u̇(λ) ∼ 0
and ρ ∼ u. The behavior of u(λ) for small values of λ is given by

u(λ) = u0 −
4(r40 + u40)

5u0(r40 + 4u40)
λ2 . (4.16)
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Note that the second derivative ü(0) has the opposite sign with respect to u(0) = u0, meaning
that the brane profile tends to bend towards the horizontal axis u = 0.

The asymptotic expansions of u(λ) for large and small λ are given by (4.14) and (4.16),
respectively. It is natural to make the following correspondence between the sign ambiguities
of these formulas: if u0 > 0 in (4.16) then the minus sign should be chosen in (4.14), and
viceversa. This is confirmed by numerical analysis, as figure 4.11 shows. In this way, the D7-
brane embedding interpolates from u(0) = u0 to u(λ∞) = 0 monotonically without crossing the
u = 0 axis. This zero-node embedding comes with two isoenergetic parity-related solutions, the
‘up’ with u0 > 0, u̇∞ < 0 and the ‘down’ with u0 < 0, u̇∞ > 0.

u

λ∞

u

∞< 0

λ

u0> 0

u

∞> 0

u0<0

Figure 4.11: The two parity-related minimal embeddings in the massless case, numerical result
with parameters µ = 1.34 r0 and λ∞ = 5.73 r0.

All other solutions of (4.8) are given by multiple-node functions u(λ) and it is easy to show
numerically that the associated energy is an increasing monotonic function of the number of
nodes. In particular, we can regard the maximal embeddings (4.10) as the ones having the
highest energy, since the constant behavior u = 0 for large values of λ can be seen as an
embedding with infinite number of nodes.

Let us now compute the energy density associated to the flavor branes. For the maximal
embedding it can be computed analytically and it reads, up to terms suppressed by (r0/λ∞)4

Emax
D7 = − 1

V3
Smax
D7 = TD7V4L

2

(
λ3∞
3

+ bmaxr
3
0

)
, (4.17)

where

bmax =
3π

16
+

1

3

(
2 +

√
2

π
Γ

(
1

4

)
Γ

(
5

4

)
−
√
2 2F1

(
−3

4
,
1

2
;
1

4
;−1

))
≃ 1.026 . (4.18)

The on-shell action includes a term which depends on the cutoff λ∞, but this term is the same
regardless of the particular solution of the equations of motion (i.e. it does not depend on the



108 Chapter 4. Holographic QCD3

number of nodes and, hence, on the scale µ). Since we are interested in comparing energies
between different solutions with the same boundary conditions, we subtract (4.17) to the energy
of a given embedding.

With this regularization the energy of the maximal embedding is clearly vanishing, whereas
the energy of any other embedding is negative and monotonically increasing with the number
of nodes. For the two parity-related minimal embeddings it reads

E0
F = − 1

V3
(SD7 − Smax

D7 ) = −TD7V4L
2(br30 + aµ3) ≃ −N(gsN)(bM3

KK + aM3
µ) , (4.19)

where a and b are order one dimensionless constant and the energy scale Mµ is related to
the length scale µ through the holographic radius/energy relation [136], which we take here
µ =MµL

2/2. This O(N) difference between the energy density of the maximal and the minimal
embedding is related to the potential barrier that separates the degenerate vacua in field space.

One can consider a more general configuration, made of F D7-branes. As already noticed,
the up and the down embeddings are energetically equivalent. Hence, in the large N limit in
which flavor branes do not interact, one can choose p of them being up and F − p being down.
As p is varied from 0 to F all these configurations are energetically equivalent, with energy

E0
F,tot = pE0

F + (F − p)E0
F = FE0

F , (4.20)

which, indeed, does not depend on p.

Massive case

Let us now consider the inclusion of a bare quark mass. The quark mass can be viewed as a
source for the meson operator ψ̄ψ, which is described by the flavor brane profile, whose bending
introduces the characteristic length scale µ. We saw before that for large values of λ

u(λ) ∼ 1√
λ
, (4.21)

so a small mass m can be introduced by requiring that

lim
λ→λ∞

√
λ

µ
u(λ) = 2πl2sm, (4.22)

which amounts to interpret the bare quark mass as the spatial separation between the D3 and
the D7-branes along the common transverse direction u in the ultraviolet regime of the theory.
Indeed, quarks are the lightest modes of the open strings stretching between these branes, and
get an energy proportional to their length.

We have seen that in the massless case there are two isoenergetic profiles for a flavor brane.
Now we want to see if the inclusion of a small mass selects one of the two to be energetically
favorite. This is to be expected, since the two different zero-node embeddings are not related
anymore by a parity transformation u→ −u, because of the parity-breaking boundary condition
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at infinity. Intuitively, a small positive (negative) mass will make the up (down) embedding
favorite, thus lifting the large N vacuum degeneracy of the massless case. We now give a proof
of this statement and, as a byproduct, we also derive the expression of the meson condensate
for small quark mass.

Suppose to start from the massless case and perform a small change in the boundary condi-
tion of the flavor brane profile at the UV cutoff

δu∞ =

√
µ

λ∞
2πl2sδm . (4.23)

The corresponding variation of the on-shell action S =
∫
dλL is given by

δSD7 =
∂L
∂u̇

δu

∣∣∣∣
λ=λ∞

λ=0

= −TD7V3V4L
2

[
(r40 + 4ρ4)3/2

λ4

8ρ8
u̇ δu√
1 + u̇2

]λ=λ∞

λ=0

, (4.24)

where in the first step we have used the equation of motion. Since u̇(0) = 0, we get the following
variation of the energy density

δEF = TD7V4L
2λ2∞u̇(λ∞)δu∞ ≃ ±N

√
gsNM

2
µ δm . (4.25)

Recall that u̇∞ characterizes the massless embeddings and can have both signs. Now, if we give
a positive (negative) mass, then the solution with u̇∞ < 0 (u̇∞ > 0) is preferred, i.e. the up
(down) embedding is selected. This means that the quark mass lifts the degeneracy between the
two embeddings. Thus, for the energetically favorite embedding we have that (up to quadratic
corrections in the quark mass)

EF (m) = EF (0)− c|m| ≃ E0
F −N

√
gsNM

2
µ|m| . (4.26)

Note that this result implies that the fermion condensate is linear in N and it is negative for
positive mass and viceversa, since

⟨ψ̄ψ⟩ = dEF

dm
= −c sign(m) where c ≃ N

√
gsNM

2
µ . (4.27)

It is now clear that the scale µ (or, equivalently, its energy counterpart Mµ) is related to the
scale of symmetry breaking. The fact that there is a discontinuity in the first derivative of the
on-shell action (which maps to the free energy of the dual field theory) signals the presence
of a first-order phase transition whenever one switches from an up to a down embedding or
viceversa. This observation will play a crucial role later.

Let us now consider a configuration of F flavor branes, with a common massm. As discussed
above, the degeneracy between up and down embeddings is lifted for m ̸= 0. Indeed, in the
large N limit where D7-branes do not interact, a configuration with p flavor branes in the up
embedding and F − p in the down one would have a total energy

EF (m, p) = p(E0
F − cm) + (F − p)(E0

F + cm) = FE0
F + (F − 2p)cm . (4.28)

Clearly, if m > 0 the minimal energy configuration occurs for p = F , whereas if m < 0 for
p = 0. In both cases, the total energy will just be F times EF (m), eq. (4.26). In the massless
limit the degeneracy between up and down embeddings is regained, since the above equation
reduces to eq. (4.20). This is insensitive to the value of p, and one recovers the degeneracy of
all F + 1 configurations obtained varying p from 0 to F .
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4.2 Large N energetics of holographic QCD3

In this section we want to derive the (large N) phase diagram of our holographic model. We
will first discuss the generic structure of brane configurations describing its vacua. Then, using
the results of the previous section, we will derive its full phase diagram and finally compare
it with the pure QFT analysis. In section 4.3 we will instead discuss how this is modified by
taking into account 1/N corrections.

4.2.1 Geometric structure of QCD3 vacua

In the previous section we have discussed embeddings of flavor branes in the D3-brane cigar
geometry. In section 2.3.3, we instead described the CS branes embedding in the same geometry.
Here we would like to consider configurations having both CS and flavor branes, since a vacuum
of holographic QCD3 would in general include both.

Actually, one cannot displace flavor branes at will, i.e. independently of CS ones. Indeed,
a CS/flavor brane configuration describing a vacuum of the theory should be compatible with
UV data. The latter includes N , F , m and the axion monodromy measured at the spacetime
location holographically dual to the UV of the field theory. On the (λ, u) plane (more precisely,
it is the strip 0 ≤ λ ≤ λ∞), this is clearly the point PUV where all flavor branes intersect and
the global symmetry is U(F ), i.e. PUV = (λ∞, 0) in the massless case.

We now show that in order to fix this monodromy to give a well-defined CS level k ≡ kb−F/2,
the number of CS branes must depend on p. The axion monodromy measures the effective CS
level of the dual field theory as ∫

S1

F1 = −keff , (4.29)

where S1 is a circle whose location in spacetime is specified, among all other coordinates, once
we fix a point in the (λ, u) plane. Since C0 couples magnetically to D7-branes, the Bianchi
identity of F1 is violated by source terms which are delta functions picked at the location of
both flavor and CS branes. As usual, this can be easily seen by computing the equations of
motion of the dual form C8, which instead couples electrically to D7-branes.

Let us define as ‘p sector’ (with p = 0, . . . , F ) a brane configuration with p up branes
(clockwise oriented), F − p down branes (counterclockwise oriented) and k0 counterclockwise
oriented CS branes.5 In order to determine k0, we first compute keff , which is given by the
following step function (we consider the massless case for definiteness)

keff =





k0 − p in R+ ,

k0 in R0 ,

k0 + F − p in R− ,

(4.30)

where R+, R0 and R− are the regions in the (λ, u) plane which are above, between and below
flavor branes, respectively (see figure 4.12). At the intersection point PUV both flavor branes

5When k0 < 0, the number of counterclockwise CS branes being k0 actually means to have |k0| clockwise CS
branes.
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count one-half and thus keff = k0− p+ F/2 there. In order to have keff = k at PUV we fix the
number of counterclockwise CS branes to be

k0 = k + p− F

2
. (4.31)

As a result, we can rewrite

keff =





k − F
2

in R+ ,

k + p− F
2

in R0 ,

k + F
2

in R− .

(4.32)

Figure 4.12: The configuration of flavor branes and (counterclockwise oriented) CS branes in a
(massless) p sector. We interpret a negative number of counterclockwise branes as a positive
number of clockwise branes.

This has a simple field theory interpretation. In region R+ (R−) it is as if all flavors have
been integrated out with a negative (positive) mass. The effective CS levels read k − F/2 and
k + F/2, respectively, consistently with keff = k + sign(m)F/2, as expected from field theory.
In region R0 it is as if p flavors have been integrated out with a positive mass and F − p with
a negative one, and hence the effective level is k + p − F/2. In absence of flavor branes, when
isotropy on the (λ, u) plane is recovered, the effective CS level coincides with the bare level kb
everywhere, as computed in eq. (2.74). Since k is the time-reversal odd CS level, we will take
it to be non-negative without loss of generality.

Note that with the above argument we have recovered the number of CS branes k0 in
each p sector that we argued to be there with the mechanism of F − p up branes ‘pulled
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down’ and wrapping the S5 before sitting in the down embedding, described around figure 4.3.
These topological arguments, and in particular eq. (4.31), hold regardless of flavor branes being
massless or massive, the only difference being that PUV = (λ∞, u∞) in the massive case.

In figure 4.12 the structure of a p sector is depicted. Its low-energy dynamics is as follows.

� Flavor branes break spontaneously the gauge U(F ) symmetry (associated to the F co-
incident branes in the UV) to U(p) × U(F − p). This happens since the F branes are
spatially separated in the u direction, as soon as we move towards the bulk. By Higgs
mechanism the gauge bosons corresponding to the broken part of the gauge group become
massive. These correspond to the 2p(F − p) lightest modes of the open strings having
one extremum on one down brane and the other on one up brane. Instead, the gauge
bosons corresponding to the up/up and the down/down open strings are still massless,
signaling the presence of an unbroken U(p) × U(F − p) gauge group. The longitudinal
components of the massive gauge bosons are holographically associated with Goldstone
bosons in the dual field theory, through massless poles which must appear in correlators
involving currents. The global symmetry-breaking pattern is U(F ) → U(p) × U(F − p),
leading to a number of Goldstone bosons which is indeed F 2− p2− (F − p)2 = 2p(F − p).
They parameterize a σ-model whose target space is

Gr(p, F ) =
U(F )

U(p)× U(F − p) . (4.33)

Note that the RR five-form flux induces on the flavor D7-branes a term that should match
the level N Wess-Zumino term in the σ-model.

� The CS branes give, at low energy, a three dimensional U(k + p − F/2)−N theory (if
k + p − F/2 > 0) or a U(−k − p + F/2)N theory (if k + p − F/2 < 0). These are pure
three dimensional Chern-Simons theories, since the Yang-Mills sector decouples (gluons
get a large tree-level mass and decouple well before the theory reaches strong coupling).
In both cases, these theories are level/rank dual to SU(N)k+p−F/2.

Thus, the IR dynamics of a p sector is described by

Gr(p, F )× SU(N)k+p−F/2 . (4.34)

The Grassmannian and the topological field theory are mutually decoupled, since the branes do
not interact at leading order in the large N expansion.

Finally, let us observe that the F + 1 sectors in (4.34) are the same which were found with
in the large N limit of QCD3, see section 1.6.4. However, it is worth noticing that in the field
theory analysis only the Grassmannian of each sector was derived from the effective potential of
the theory, whereas the topological part was conjectured to be there. In our construction both
appear naturally in a simple geometrical way.
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4.2.2 Phase diagram of holographic QCD3

The F + 1 sectors discussed above are all possible configurations that can describe holographic
QCD3 vacua. We now want to uncover the phase diagram of the theory as a function of the
fermion mass m, by minimizing the (free) energy over p.

At large N , we have the contribution from the flavor branes, the CS branes and the mass
deformation, neglecting any kind of brane interactions. We have already written in (4.28) the
contribution from the flavor branes for each p sector. The CS contribution is just given by the
number of CS branes in each sector times the energy density ECS of each of them, eq. (2.76).
The total (free) energy of the p sector is hence given by

E(p) = FE0
F − 2cmp+ Fcm+

∣∣∣∣k + p− F

2

∣∣∣∣ECS , (4.35)

where E0
F , c and ECS are all of order N . This formula is invariant under the transformation

p→ F − p, m→ −m and k → −k, correctly implementing a time-reversal transformation. We
now distinguish different cases (recall that we can take k ≥ 0 and that 0 ≤ p ≤ F ). Let us
define m∗ ≡ ECS/(2c) and neglect the irrelevant constant shift FE0

F + Fcm.

1. If k ≥ F/2, the quantity inside the absolute value is positive ∀p. So we have

E(p) = (ECS − 2cm)p+

(
k − F

2

)
ECS , (4.36)

whose minimum is for p = 0 if m < m∗ and for p = F if m > m∗. If m = m∗ all F + 1
vacua are degenerate. The energy of the true vacuum as a function of m hence reads

Evac(m) =

{(
k − F

2

)
ECS if m < m∗ ,

−2cmF +
(
k + F

2

)
ECS if m > m∗ .

(4.37)

Since the derivative with respect to m is discontinuous at m = m∗, the phase transition
is first order. The vacuum p = 0 is the pure TQFT phase SU(N)k−F/2 and the vacuum
p = F is the pure TQFT phase SU(N)k+F/2, where the global symmetry of the UV theory
is unbroken. The resulting phase diagram, depicted in figure 4.13, is the same as the one
in the finite N case, but with the phase transition being first order.

2. If k < F/2, we have to see whether the quantity inside the absolute value is positive or
negative. So we have to distinguish two subcases.

(a) If 0 ≤ F/2− k ≤ p ≤ F

E(p) = (ECS − 2cm)p+

(
k − F

2

)
ECS , (4.38)
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•
m

SU(N)k+F/2SU(N)k�F/2

m⇤

1st order phase  
transition

Figure 4.13: The phase diagram for k ≥ F/2. At m = m∗ all F + 1 vacua are degenerate.

whose minimum is for p = F/2− k if m < m∗ and for p = F if m > m∗. If m = m∗

the vacua p = F/2− k, ..., F are degenerate. Note that

E(F/2− k) = −2cm
(
F

2
− k
)
,

E(F ) = −2cmF +

(
F

2
+ k

)
ECS .

(4.39)

(b) If 0 ≤ p ≤ F/2− k ≤ F , then

E(p) = (−ECS − 2cm)p−
(
k − F

2

)
ECS , (4.40)

whose minimum is p = 0 if m < −m∗ and p = F/2 − k if m > −m∗, whereas if
m = −m∗ the vacua p = 0, ..., F/2− k are degenerate. Note that

E(0) =

(
F

2
− k
)
ECS ,

E(F/2− k) = −2cm
(
F

2
− k
)
.

(4.41)

Looking at the different energies it follows that: if m < −m∗ the true vacuum is p = 0,
if m = −m∗ all the vacua p = 0, ..., F/2 − k are degenerate, if −m∗ < m < m∗ the true
vacuum is p = F/2 − k, if m = m∗ all the vacua p = F/2 − k, ..., F are degenerate, if
m > m∗ the true vacuum is p = F . The energy of the true vacuum as a function of m
hence reads

Evac(m) =





(
F
2
− k
)
ECS if m < −m∗ ,

−2cm
(
F
2
− k
)

if −m∗ < m < m∗ ,

−2cmF +
(
F
2
+ k
)
ECS if m > m∗ .

(4.42)

Since the derivative with respect to m is discontinuous at m = −m∗ and m = m∗, the
phase transitions are again first order. The vacua p = 0 and p = F are the same as before.
The vacuum p = F/2−k is described by the Grassmannian Gr(F/2−k, F ) with no TQFT
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sector, and the symmetry-breaking pattern U(F )→ U(F/2−k)×U(F/2+k) takes place.
The resulting phase diagram, depicted in figure 4.14, is analogous to the small N case
we reviewed in section 1.6.3. The two first-order phase transitions take place at opposite
values of m. Hence, at leading order in the large N expansion, the point m = 0 sits always
inside the so-called quantum phase ∀k < F/2. For k = 0 this is mandatory, as dictated
by the VW theorem. Moreover, the width of the quantum phase in parameter space is
given by

2m∗ =
ECS

c
∼ r30
µ2l2s

∼
√
gsN

M3
KK

M2
µ

, (4.43)

which is O(N0) in the large N expansion.

• •
m

SU(N)k�F/2 SU(N)k+F/2

m⇤

1st order phase  
transitions

�m⇤

Gr(F/2� k, F )

Figure 4.14: The phase diagram for k < F/2. At m = −m∗ the vacua with p = 0, . . . , F/2− k
are degenerate, at m = m∗ the vacua with p = F/2− k, . . . , F are degenerate.

When translated in the asymptotic boundary condition for the embedding through (4.22),
the critical value of the mass corresponds to

u∗ =

√
µ

λ∞
2πl2sm

∗ ∼
√

r0
λ∞

(
r0
µ

)3/2

r0 ≪ r0 , (4.44)

so the brane embedding at the critical value is still very close to the massless one. Hence
we are still well within the regime of small deviations from the latter and, as a consequence,
also the Taylor expansion (4.25) is justified. One can consider next-to-leading order cor-
rections to m∗, by computing the full mass dependence of the flavor brane energy. This
gives a correction to (4.43), but clearly does not spoil the existence of first-order phase
transitions and of a quantum phase whose width is O(N0).

As opposite to what happens in the large N field theory description, in the holographic picture
the quantum phase emerging for k < F/2 has a non-vanishing width already at leading order
in the large N expansion. This implies that the phase diagram displays a different structure in
the two regimes k ≥ F/2 and k < F/2. Interestingly, our phase diagram is identical to the one
conjectured for the same theory, but at finite N .

The apparent discrepancy between holography and large N field theory can be understood
by pure field theory arguments, just recalling that our holographic set-up describes in fact a four
dimensional gauge theory compactified on a (supersymmetry breaking) circle. This reduces to a
pure three dimensional theory only in the limit where the radius of the compactified dimension
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is sent all the way to zero, equivalently MKK → ∞. As we will show below, in such limit our
results reconcile with the pure 3d analysis.

Let us first notice that taking ECS = 0, the two different phase diagrams displayed in figures
4.13 and 4.14 merge, both enjoying a single first-order phase transition at m∗ = 0, where all
vacua are degenerate. This scenario is exactly the one we reviewed in section 1.6.4 at the leading
order in the large N expansion. In particular, eq. (4.35) reduces to (4.28), which exactly matches
the effective potential computed with QFT techniques.

Large N QCD3 with massless probe quarks has only one scale, which is Λ3 = g2YM3
N .

All other quantities, such as the QCD-string tension (computed from the Wilson loop) and the
fermion condensate, depend on Λ3 in a way uniquely fixed by dimensional analysis (in particular
both σ and ⟨ψ̄ψ⟩ scale as Λ 2

3 ).
On the contrary, the four dimensional theory our holographic model describes is a (S)YM4

theory compactified on a circle, which is characterized by two parameters: the dimensionless ’t
Hooft coupling λt = g2YM4

N ∼ gsN and the circle radius 1/MKK . In units of MKK , different
physical quantities depend on different powers of λt. This is a common feature of several
holographic theories realized through compactification on S1 of a higher-dimensional gauge
theory.

First of all recall that MKK sets the scale of the supersymmetry breaking masses of the
fermions (and subsequently of the scalars). Hence, from the point of view of the 4d theory, we
can assume that for energies above MKK the ’t Hooft coupling is given by λt ∼ gsN and it does
not run, while at energies below MKK it runs as in pure YM (since flavors are quenched), with
a dynamical scale defined by

Λ4 =MKKe
− 1

βλt , (4.45)

with β an unimportant O(1) numerical positive factor. Note that the relation above implies
that at the compactification scaleMKK the 4d theory is always in the deconfined phase, though
for large λt very close to the confining scale Λ4.

At energy scales below MKK the theory becomes effectively three dimensional. Hence what
is now relevant is the 3d dynamical scale. We first identify

g2YM3
∼ g2YM4

MKK . (4.46)

The above relation must be understood at the matching scale, i.e. at E ∼ MKK . The 3d
dynamical scale is then

Λ3 ∼ gsNMKK ∼ λtMKK . (4.47)

It is now obvious that the limits λt → 0 and λt → ∞ describe very different regimes. For
λt → ∞, the compactification scale is very close to the confining scale from the 4d point of
view. Below that scale, from the 3d point of view one is already deeply in the confining regime.
Thus one is never really in a 3d theory with perturbative degrees of freedom. When λt → 0,
instead, the theory compactifies when it is still in the perturbative regime, both in 4d and also
in 3d. Hence the evolution can go on towards the IR, until the theory confines as a purely 3d
theory. We will call the ‘3d limit’ the latter, when one sends MKK → ∞ holding the 3d scale
fixed.
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From the 4d perspective, the non-vanishing CS level is obtained by turning on an x3-
dependent θ angle. Concretely, this is implemented as in eqs. (2.73)–(2.75). This would produce
k equally spaced domain walls (more precisely, interfaces), i.e. each time θ = π mod 2π.6 De-
forming the varying θ to a step function can bring all domain walls together, and produce a
level k CS term for the SU(N) gauge field, when reduced to the domain wall (see [65,138,139]).
The tension of such domain walls is given by TDW ∼ NΛ 3

4 . In the 3d limit, this becomes

TDW ∼ NΛ 3
3

1

λ3t
e
− 3

βλt → 0 . (4.48)

We thus see that domain walls (which correspond to CS branes in our set-up) become tensionless
in the 3d limit, so that the CS level becomes a feature of the 3d theory and is no longer associated
to an object that has been added to the theory. Hence, it does not come as a surprise that as
the energy of CS branes vanishes, ECS → 0, our phase diagram becomes identical to the field
theory one. In fact, our result can be regarded as an independent check for the validity of the
analysis performed in the large N limit [25].

The consistency of this picture can be understood also from the point of view of the large
N expansion. The finite width of the quantum phase in figure 4.14 is proportional to m∗ and
thus to ECS, suggesting that in the four dimensional theory compactified on a circle the large
N expansion breaks down. This is actually the case and has a clear field theory origin. As we
just emphasized, the 3d Chern-Simons term is implemented through a varying θ angle in the
parent 4d theory. This generates k interfaces, described in the holographic set-up by wrapped
D7-branes. These objects have tension proportional to N and this indeed spoils the large N
counting rules of the four dimensional theory. In the 3d limit, where ECS → 0, the consistency
of large N counting is recovered.7

4.3 1/N corrections

All what we have been discussing so far was at leading order in the large N expansion. Here
we would like to consider the first next-to-leading order corrections. What we have to do is
to compute 1/N contributions to the free energy and to minimize such contributions over the
different p sectors. Since we are interested in the vacuum energy, we can safely neglect the
contribution of the gauge fields on the probe branes, whose fluctuations describe instead the
dynamical degrees of freedom of the theory.

Recall that at leading order we considered the sum of all contributions coming from the
tensions of the probe branes, i.e. the DBI part of the on-shell action. Clearly, the presence of
an axion introduces a term in the action given by

SRR = − 1

2(2π)7l8s

∫
d10x
√−g|F1|2 , (4.49)

6Indeed, the D7-branes that engineer the CS level in the present set-up are straightforwardly related by
T-duality to the D6-branes that holographically engineer the θ = π domain walls of YM4 [137].

7We thank Zohar Komargodski for a discussion on this point.
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where the integral has to be performed over the entire spacetime. This contribution is 1/N
suppressed with respect to the DBI, since it has no explicit factor of gs.
Given the result in (4.32), the only p-dependent part of the on-shell action is given when
performing the integral in (4.49) over the region R0, where keff = k0. Thus, neglecting p-
independent terms we get

SRR = − 1

2(2π)7l8s
V3V4L

2

∫

R0

dλ du

∫

S1

dx3 r3 |F1|2 , (4.50)

where r is expressed in terms of the radial coordinate ρ2 = u2 + λ2 as in eq. (4.2). We can
extract the 1/N correction to the free energy density as

E1/N(p) = −
SRR

V3
= ∆

(
k + p− F

2

)2

, (4.51)

where ∆ is a positive constant given by

∆ ∼ (gsN)2MKKM
2
µ . (4.52)

As we are going to show below, the positiveness of ∆ has important implications on the phase
diagram. The corresponding field theory quantity was argued to be positive in the field theory
analysis using consistency with the VW theorem, see section 1.6.4. In our holographic context,
instead, we cannot use a similar argument, since the phase p = F/2 in the k = 0 massless case
is already selected at leading order in large N and the VW theorem is surely satisfied regardless
the sign of ∆.8 Nicely, our geometric set-up encodes in a simple way the 1/N corrections and
allows to determine the value of ∆ in terms of the defining parameters of the model, besides
showing its positivity. Similar arguments as the ones presented here were used in the Sakai-
Sugimoto model to compute the Witten-Veneziano mass of the η′ meson [89].
In our holographic set-up, having a positive ∆ implies that at the microscopic level locally
parallel probe branes effectively repel each other. The fact that the contribution of ∆ to the
free energy is a 1/N effect is consistent with brane interactions being next-to-leading order in gs.
This effective repulsion can be rephrased by saying that in our non-supersymmetric set-up, the
effective tension of the probe branes is smaller than their effective charge. A similar effect was
found in a different non-supersymmetric set-up, which allowed to perform such computations
[140].
We can now sum the 1/N contribution in (4.51) to the leading order one in (4.35). Neglecting
again p-independent contributions, one gets for the total energy

E =

∣∣∣∣k + p− F

2

∣∣∣∣ECS − 2 cm′p+∆ p(p− F ) , (4.53)

where m′ = m − k∆/c accounts for the expected O(1/N) shift of the fermion mass due to a
non-vanishing CS level k. The important point is that the extremization problem is modified
comparing to the leading order one by the addition of a subleading quadratic term, proportional
to ∆. As we will see, the final phase diagram crucially depends on such quantity.

8Moreover, stricly speaking, the VW theorem does not necessarily apply to the gauge theory realized by our
D-brane set-up, due to the presence of Yukawa couplings, which spoils the VW argument [62–64].
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4.3.1 Phase diagram

We now establish the phase diagrams as the common flavor mass m is varied. Recall that at
leading order (no p2 term) we found one first-order transition at m∗ = ECS/(2c) when k ≥ F/2
and two first-order transitions at ±m∗ when k < F/2.

� k ≥ F/2
In this case k + p− F/2 > 0 so the expression (4.53) becomes

E = ∆p2 + p (ECS − 2m′c−∆F ) , (4.54)

which we need to minimize as a function of p. Given that ∆ > 0 the function has a local
minimum at

pmin = −ECS − 2m′c−∆F

2∆
. (4.55)

The value of m′ such that pmin = p+ 1
2
gives the mass for which a phase transition occurs

between the phases labeled by p and p + 1. A straightforward computation gives for the
(shifted) mass the value

mp = m∗ +
∆

2c
(2p− F + 1) . (4.56)

As a check one can see that for the above value of the mass the vacua labeled by p and
p+ 1 are degenerate in energy while all others have higher energy.

This analysis holds for any of the F+1 values of p, so we get F first-order phase transitions
at values mp defined by (4.56). These are O(1/N) away from the leading order value m∗,
at which all F + 1 vacua were degenerate at large N . The resulting phase diagram is
depicted in figure 4.15.

•
m

• • •••
p = Fp = F � 1p = 0

m0 m1 mF�1mF�2

Figure 4.15: Phase diagram for k ≥ F/2 at order 1/N . All intermediate phases have O(1/N)
widths. All masses mp are positive. At each critical point a first-order phase transition occurs
where two phases become degenerate.

� k < F/2
In this case, the sign of k + p− F/2 is not fixed. We have two expressions for the energy,
eq. (4.54) for p ≥ F/2− k and

E = ∆p2 − p (ECS + 2m′c+∆F ) , (4.57)

for p < F/2−k. One can run the same argument as before and find the value of the mass
for which a phase transition occurs between nearby phases. This is the expression (4.56)
for p ≥ F/2− k and

mp = −m∗ +
∆

2c
(2p− F + 1) . (4.58)
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for p < F/2−k. All in all we get again F phase transitions and a set of intermediate phases
whose widths are O(1/N) suppressed but the one described by p = F/2−k, the quantum
phase already present at leading order in the large N expansion. The corresponding phase
diagram is reported in figure 4.16.

m
• •••

...

... ...
•
...

...
••

p = Fp = 0

mF�1mF�2m0

p = F/2� k

mF/2�kmF/2�k�1

Figure 4.16: Phase diagram for k < F/2 at order 1/N . The phase p = F/2−k, in blue, has O(1)
width and it is the quantum phase already present at large N . All others intermediate phases
have O(1/N) width. Masses on the right (left) of the quantum phase are positive (negative).
At critical points the corresponding adjacent phases become degenerate.

The final result we get, figures 4.15 and 4.16, is a phase diagram similar to the one of section
1.6.4 at order 1/N , the only difference being that the purely quantum phase p = F/2 − k in
the holographic set-up has an O(1) width. As for the leading order result, see the discussion
in section 4.2.2, this originates from m∗ ∝ ECS not being zero, which is a property of the four
dimensional theory our holographic set-up describes, and which vanishes in the strict 3d limit.

4.4 Bosonization dualities from string theory

We saw in section 1.6.4 how the vacuum structure of QCD3 can be described, in field theory, by
the vacuum structure of two bosonic duals both in the small and largeN limit, if accompanied by
a appropriate potential. The holographic picture furnishes a simple geometric understanding on
how dual bosonic theories for QCD3 arise, similarly as it happens in the holographic description
of QCD4 domain walls [141].

Let us first consider the case k ≥ F/2, when the |k + p − F/2| CS branes in each p sector
are always counterclockwise. Take the situation where this number is maximal, so that p =
F and all flavor branes are up. The lightest modes of the open strings stretching between
CS D7-branes and flavor ones are scalars with one gauge index and one flavor index, i.e. F
fundamental scalars of U(k + F/2). The CS/CS open strings provide the gauge sector of the
theory, while the masslessness of the up/up open strings signals the presence of an unbroken
U(F ) global symmetry. Being the CS branes counterclockwise, the level of the theory is −N .
All in all, we have the U(F/2 + k)−N + F ϕ theory. All other configurations correspond to a
partially Higgsed gauge group U(k + p − F/2) and to a U(F ) global symmetry spontaneously
broken to U(p)×U(F − p). The critical distance between the various brane embeddings should
translate (though in a possibly complicated way) into the parameters of the scalar potential
which guarantee such a vacuum structure.

In the case k < F/2, a single dual bosonic theory is not sufficient to describe all vacua, since
the CS branes change orientation at p = F/2 − k. It is easy to realize that the same bosonic
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theory described above includes all phases with p = F, ..., F/2 − k. To characterize all other
phases, take the configuration where the number of clockwise CS branes is maximal, i.e. when
p = 0 and all flavor branes are down. The gauge group is now U(F/2 − k) at level +N and
the flavor symmetry U(F ) is unbroken. All the phases with p = F/2− k, ..., 0 are described by
moving up one by one the flavor branes, until one reaches the geometric configuration where
there are no CS branes. This is described by U(F/2− k)N + F ϕ theory.

In our holographic picture, the fact that one of the two critical points stays at the same
parametric value m = m∗, for both the k ≥ F/2 and k < F/2 regimes, suggests that the
same dual bosonic theory can describe the neighborhood of that critical point in both regimes.
For k < F/2 a second critical point shows up, at exactly the time-reversed critical mass. This
suggests that the dual bosonic description around−m∗ is indeed given by the time-reversal of the
dual bosonic description of the critical point m∗. This observation supports our considerations
above.

Nicely, in the string theory picture the shift of the CS level due to the integration of massive
fermions can be equivalently interpreted as Higgsing of the gauge group of the dual bosonic
theories. Consequently, the field theory assumption of maximal Higgsing is mapped into the
requirement that the preferred vacua (in the massless case) are the ones with the minimal
number of CS branes. In our set-up this fact is not an assumption, since it easily follows from
the minimization of the on-shell energy density on the gravity side, at leading order in the large
N expansion, as shown in section 4.2.2. Moreover, the holographic picture makes manifest the
necessity of two mutually non-local dual bosonic theories in the case k < F/2, and gives an
indirect check that the vacua of QCD3 can be captured by a dual bosonic description even in
the absence of a proper IR fixed point.
Let us finally comment on the scalar potential of the dual bosonic theory, as it emerges from the
stringy description above. At leading order inN this is given by the sum of single trace operators
up to a sextic term (higher order terms being irrelevant). This potential should guarantee the
vacuum structure we discussed in section 4.2.2, including maximal Higgsing and the existence
of first-order transitions. At subleading order in N double trace operators have to be included
in the potential. In particular, a double trace quartic operator gives a contribution which has
the same form as the ∆ contribution in eq. (4.51). Hence, it is natural to identify ∆ (up to a
positive dimensionful constant) with the coupling of the double trace quartic operator of the
dual bosonic theory. It is indeed the sign of ∆ which fixes the topology of the phase diagram,
once 1/N corrections are included.

4.5 Comments and outlook

In this concluding section, there are some aspects we would like to comment upon.
The first regards the largeN expansion itself, see the discussion at the end of section 4.2.2. While
the discrepancy between our phase diagram and field theory one of section 1.6.4 disappears in
the 3d limit, since ECS → 0, one cannot exclude that the holographic result contains more
information than a mere contamination from the parent 4d theory. For instance, it is suggestive
that a quantum phase, which is believed to exist in QCD3 at finite N , naturally emerges in the
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holographic set-up already at leading order, giving a phase diagram which is in fact identical
to the one conjectured to hold at finite N . In principle, it is not guaranteed that the large N
expansion strictly holds in CS QCD3. In particular, the structure of the QCD3 phase diagram at
next-to-leading order in 1/N in section 1.6.4 was obtained under the assumption that the large
N expansion works. Our holographic analysis provides some more evidence for the validity
of this assumption, since the violating term is a pure 4d effect, but we believe it would be
interesting to investigate this point further.

A second aspect we would like to comment upon regards the asymptotic solution of the
equation of motion for the brane profile u admitting complex roots, see section 4.1. This is
because the field u is below the Breitenlohner-Freedman (BF) bound. This is not uncommon
in holographic models and has interesting implications. In particular, as originally discussed
in [142], the violation of the BF bound can be associated to loss of conformality in the dual
field theory (see also [143, 144]). This suggests a connection between the first-order nature of
the phase transition in the large N , finite k and F regime we have investigated, and the nature
of the scalar field u in the background (4.4).

Seemingly, as k is increased it is expected that the phase transition changes its nature and
becomes second order for k ∼ N , since, as we reviewed in section 1.6.3, for k ≫ N this was
observed in [75–81]. As mentioned in section 1.6.4, we expect the F phase transitions of large N
QCD3 to coealesce at a multicritical point into a second order phase transition. In our model,
the large k regime can be investigated by backreacting the CS branes, which in the present
analysis were treated as probes instead. In a holographic model in which both the D3 and the
CS branes are backreacted one should then expect the existence of a critical value kc = kc(N)
above which the roots for the characteristic polynomial for the (asymptotic) equation for u turn
real. This is a compelling scenario worth being investigated.



Chapter 5

Aspects of five dimensional theories

Previously, we saw how three dimensional theories enjoy a rich dynamics in the IR and how this
can be studied using properties that are peculiar to three dimensional physics. Some of these
features, such as CS terms or parity anomaly, are present also in five dimensions. Moreover,
similarly, we will gain more control over the dynamics of supersymmetric theories compared to
four dimensions, thanks to some special features that are special to five dimensional physics.
In this Chapter, we review various aspects of five dimensional theories, with a particular focus
on gauge theories. We start in section 5.1 discussing pure Yang-Mills theory in five dimensions.
In section 5.2 we introduce CS terms in five dimensions, reviewing their quantization conditions
and the relation with parity anomaly. Then, in section 5.3 we review fermions in five dimensions
and discuss supersymmetric and superconformal field theories. In section 5.4 we focus on the
perturbative dynamics of supersymmetric gauge theories and their UV fixed points. In the
next section 5.5 we review the main string constructions of 5d theories, focusing on pq-web
constructions in type IIB string theory. Finally, in section 5.6 we analyze the modern approach
to classify superconformal fixed points and to describe the physics of their deformations in a
more general framework.

5.1 Yang-Mills theory in five dimensions

Let us start writing the Yang-Mills Lagrangian for a gauge group G in five dimensions

LYM = − 1

2g2
TrF ∧ ∗F. (5.1)

From dimensional analysis, we see that the gauge coupling is irrelevant since [g] = M−1/2, so
Yang-Mills theory is power counting non-renormalizable [145]. This is one of the main differences
with three dimensional theories: the theory is IR free, while in the UV the coupling grows, and
we expect to encounter a Landau pole. The physics at energies larger than ∼ 1

g2
needs then to

be UV completed. However, physics at energies smaller than the inverse gauge coupling square
can be effectively described by the gauge theory itself. This is the main approach that we adopt
in the next sections.

123
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Standard parity in five dimensions P : xi → −xi, i = 1, .., 4 belongs to the Lorentz group
SO(1, 4). To define an improper discrete parity transformation P , we will take the reflection of
one spatial direction [145]

P : x1 → −x1. (5.2)

The gauge field Aµ transforms under this operation as

(A0, A1, ..., A4)→ (A0,−A1, ..., A4). (5.3)

Time-reversal T acts on the coordinates as (x0, xi)→ (−x0, xi) and correspondingly, the gauge
potential transforms as

(A0, A⃗)→ (A0,−A⃗). (5.4)

Finally, charge conjugation C acts on Aµ as

Aµ → −Aµ. (5.5)

We see that the pure Yang-Mills action is invariant under all the discrete symmetries C,P , T .

Pure YM theory enjoys also additional global symmetries. As reviewed in section 1.1, in three
dimensions we associate with any Abelian factor of the gauge group a topological symmetry jT .
In five dimensions, we can associate to any gauge group with field strength F a current [145]

jI =
1

8π2
∗ Tr(F ∧ F ). (5.6)

This is identically conserved due to the Bianchi identities and defines a global zero-form U(1)I
symmetry with charge

QI =
1

8π2

∫

Σ4

∗jI =
1

8π2

∫

Σ4

Tr(F ∧ F ) (5.7)

where Σ4 is a codimension one spacelike surface. The integral (5.7) is the instanton number of
the gauge group. For this reason, states charged under this symmetry are denoted as instan-
tons. These can be thought of as the five dimensional uplifts of four dimensional instantons.
In the SU(N) case, the charge assumes integer values, since the instanton number is always an
integer. Its value is associated with the homotopy group π3(SU(N)) = Z. Also in the U(1)
case, the instanton number is quantized as an integer (on spin manifolds), as we saw in section
1.2. However, for generic compact groups, the instanton number can be non-integer, see [146].
Local operators charged under this symmetry are called instanton operators.
Analogously to the three dimensional monopole operators, these are disordered operators, de-
fined by enforcing a boundary condition for the gauge field [147]. In particular, inserting an
instanton operator Im(x) of charge m in a correlation function amounts to introducing in the
path integral a specific boundary condition for the gauge fields on a sphere S4

x centered in x

1

8π2

∫

S4
x

Tr(F ∧ F ) = m. (5.8)
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These operators play a crucial role in the dynamics of gauge theories, determining their UV
properties, as we will see in the next sections.
Finally, the theory is also invariant under a one-form symmetry, related to the center of the
gauge group. Let us focus on U(1) and SU(N) gauge theories. In the first case, the symmetry
is U(1) and we can construct a conserved charge

Q =
1

g2

∫

Σ3

∗F (5.9)

with Σ3 a spacelike three-cycle. The symmetry acts on the gauge fields shifting it by a closed
(but not exact) one-form β

A→ A+ β. (5.10)

This acts on a charged Wilson loops of charge m Wm[C] = eim
∮
C A as

Wm[C]→ eim
∮
βWm[C] = eimαWm[C]. (5.11)

In the SU(N) case, the symmetry reduces to ZN . A fundamental Wilson loop will transform

as WF → e
2πi
N WF under the generator of ZN . This symmetry is broken in presence of matter

transforming in the, e.g., fundamental representation.

5.2 CS terms

This section is dedicated to the analysis of CS terms in five dimensions. We first discuss CS
terms for Abelian and non-Abelian gauge theories and their quantization. Then, we comment
about instanton operators in presence of CS terms.

5.2.1 Abelian CS terms

Let us start discussing the quantization of CS terms in the Abelian case.
In five dimensions, we can add to the Maxwell Lagrangian a cubic term in the gauge field, the
five dimensional CS Lagrangian

SCS =
k

24π2

∫

M5

AdAdA. (5.12)

We refer to the theory in (5.12) as U(1)k pure Chen-Simons (CS) theory.
Under an infinitesimal gauge transformation A → A + dλ, eiSYM is gauge-invariant (neglecting
boundary terms). However, as happens in three dimensions, this term depends explicitly on the
gauge potential, which is a connection over the bundle, so it is only defined locally in general.
To define this term globally, we should extend the field to a six dimensional manifold, with
boundary M5.
Independence on the extension at the path integral level requires [148,149] the quantization of
the CS level

k ∈ Z. (5.13)
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The same quantization condition holds in presence of multiple U(1) fields for mixed CS term

CS(Aa) =
kabc
24π2

∫

M5

AadAbdAc (5.14)

with kabc ∈ Z for any a, b, c.
Looking at the transformations of the gauge field of section 5.1, we see that the CS term changes
sign under parity and charge conjugation, while it is invariant under CP and T . Finally, notice
that, in contrast to three dimensions, the CS term is cubic in the gauge potential. So, in presence
of a Maxwell term, the gauge field does not acquire a topological mass. However, in the UV
the kinetic term appears suppressed with respect to the CS term, having a smaller number of
derivatives. This can be then neglected in this regime and the dynamics is described by a pure
CS theory. This, although topological, has equations of motion

ϵµνρσδFνρFσδ = 0 (5.15)

which admit solutions with local degrees of freedom [150–152].
Finally, as in three dimensions, the CS term breaks the U(1) one-form symmetry of the Abelian
theory down to Zk, since the CS term is not invariant under generic shifts of the gauge field.

5.2.2 Non-Abelian CS terms

The previous discussion is easily generalized to non-Abelian gauge fields.
To ensure invariance under infinitesimal gauge transformations, the cubic term in (5.12) should
be improved by two additional quartic and quintic terms [149]

SCS =
k

24π2

∫
Tr

(
AF 2 +

i

2
A3F − 1

10
A5

)
. (5.16)

This is gauge-invariant under infinitesimal gauge transformations (in absence of boundaries).
From (5.16), we see that the CS term is proportional to the cubic index of the representation
R [153]

dabc =
1

2
TrTR

a (TR
b T

R
c + TR

c T
R
b ). (5.17)

This is different from the three dimensional case, where the CS term was proportional to the
Dynkin index of the representation, see (1.138). In particular, we see that a non-Abelian CS
term exists only if dRabc ̸= 0 for some representation R. So, this exists only for a gauge group
SU(N) with N ≥ 3.
Although (5.16) is invariant under infinitesimal transformations, it is not under large gauge
transformations. If we consider a large gauge transformation

A→ g−1Ag + ig−1dg (5.18)

with g a non-trivial element of π5(SU(N)) = Z with winding number m, the CS term in 5.16
transforms as

k

240π2

∫
Tr
(
g−1dgg−1dgg−1dgg−1dgg−1dgg−1dg

)
= 2πmk. (5.19)
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So, the level needs to be an integer to ensure gauge invariance

k ∈ Z. (5.20)

Finally, the CS term breaks the ZN one-form symmetry of the non-Abelian theory down to
Zgdc(k,N), see [154].

5.2.3 Instantons and CS terms

In Chapter 1, we saw that in three dimensions the CS term couples the topological current
to the gauge field. Due to this coupling, monopoles become charged under the gauge group
with a charge proportional to the value of the CS term. The same happens in five dimensions.
The CS term is cubic in the gauge field and defines a coupling between the gauge field and the
topological current. Schematically, the coupling reads

SCS =
1

24π2

∫
AdAdA ∼

∫
A ∧ ∗jI . (5.21)

Indeed, instantonic configurations of the gauge field are electric sources of the equations of
motion [147]

DiF
0i
a =

g2k

32π2
dbcaϵ

ijklF b
ijF

c
kl. (5.22)

So, when k ̸= 0, instantons are charged under the gauge group. The same conclusion can be
drawn by studying disordered operators. When a disordered operator Im(x) is inserted in a cor-
relation function of some local gauge-invariant operators Oi(xi), the path integral representation
of the correlation function is modified as

⟨In(x)O1(x1)...Ok(xk)⟩ =
∫

1
8π2Tr

∮
F∧F=n

[DXDADψ]O1(x1)...Ok(xk)e
iS. (5.23)

Under an infinitesimal gauge transformation A→ A +Dλ, the CS term induces a variation of
the correlation function

δ⟨In(x)O1(x1)...Ok(xk)⟩ =
k

8π2
Tr

[
λ(x)

∮

S4
x

F ∧ F
]
⟨In(x)O1(x1)...Ok(xk)⟩ (5.24)

and so

δIn(x) = kdabcQ
ab
I λ

cIn (5.25)

where Qab
I = 1

8π2

∮
F a ∧ F b. So, in presence of a single Abelian factor, we see that instantons

acquire an electric charge ne proportional to the CS level k and their instanton charge m

ne = km. (5.26)
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5.3 Fermions in five dimensions

In this section, we first discuss generalities about fermions in five dimensions, such as their trans-
formation properties under discrete symmetry and their parity anomaly. Then, we construct
the minimal supersymmetry algebra in five dimensions and we review its main representations.
Finally, we analyze some general aspects of superconformal field theories (SCFT) and their
deformations.

5.3.1 Fermions in five dimensions

Let us start by discussing the representations of the five dimensional Clifford algebra

{γµ, γν} = 2ηµν . (5.27)

In general, in odd dimensions there exist two inequivalent representations of the Clifford alge-
bra [148]. In five dimensions, these are identified by the product of all the gamma matrices
γ0γ1γ2γ3γ4 = ±i. Choosing the minus sign in the product, we can employ the following repre-
sentation [155]

γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
σ1 0
0 −σ1

)
, γ3 =

(
σ3 0
0 −σ3

)
, γ4 =

(
−σ2 0
0 σ2

)
.

(5.28)
We can introduce a charge conjugation matrix C satisfying CγµC−1 = (γµ)T , which in our
representation reads C = γ0γ4. Since we are in odd dimensions, chirality is absent, so we
cannot impose a Weyl condition. The spinor representation is four dimensional and pseudo-
real, so we cannot impose a Majorana condition neither [155,156].
Instead, we can introduce two Dirac spinors ψi

α label by the index i, forming a doublet under
an SU(2) global symmetry. Since the doublet representation of SU(2) is pseudo-real, we can
introduce a symplectic Majorana condition [157,158]

ψi = ϵijCψ̄T
j (5.29)

that halves the number of degrees of freedom. Spinors satisfying these conditions are called
symplectic-Majorana fermions. This representation has the same number of degrees of freedom
of a Dirac fermion, but it has a manifest SU(2) symmetry.
In both cases, we can construct mass terms. For a Dirac fermion, we have the standard mass
imψ̄ψ with m ∈ R [153], while for the symplectic-Majorana formulation, we can construct a
symplectic Majorana mass term imA(ψ̄σAψ) at the price of breaking the SU(2) symmetry ,
where A is an index of the adjoint representation of SU(2) [155].

The little group of massive particles has two inequivalent representation [148, 159]. These
correspond to the dotted and undotted spinors of SO(4) ≃ SU(2)×SU(2), associated with the
first and the second SU(2) subgroups. These representations are distinguished by the sign of
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the mass and are physically inequivalent.1 However, changing the sign of the mass in the Dirac
equation

(iγµDµ −m)ψ = 0 (5.31)

has the same effect as changing the representation of the Clifford algebra γµ → −γµ, so the
inequivalent representations of the little group are related by a change of the Clifford represen-
tation.

Discrete symmetries act on Dirac fermions as

P : ψ → iγ1ψ, T : ψ → −iγ0γ4ψ, C : ψ → ψC = γ4ψ∗. (5.32)

We see then that a mass term for a Dirac fermion breaks both C and P , but preserves CP . On
the contrary, a Majorana mass term breaks both C and P and preserves always a subgroup of
SU(2) and T , denote as T ′. The mass term breaks also charge conjugation. Only a subgroup
of SU(2) and C, denoted by C ′, together with P is preserved [155].

CS terms induced by fermions

As in three dimensions, CS terms are generated in presence of fermions charged under the
gauge group. This is a manifestation of a mixed anomaly2 between parity symmetry and gauge
invariance, namely the five dimensional analog of three dimensional parity anomaly [153, 161].
In some cases, as in three dimensions, we are then forced to introduce classical CS terms to
preserve gauge invariance at the quantum level.
Let us take a Dirac fermion of mass m charged with charge q under a U(1) gauge group. Since
the fermion is massive, we can integrate it out for energies smaller than the mass of the fermion.
This operation generates a CS level for the U(1) gauge field. As in the three dimensional case,
the shift is one-loop exact and it is generated by the parity-violating contribution [148] coming
from the diagram in figure 5.1. The resulting shift is proportional to the cube of the charge and
to the sign of the mass

∆k = −q
3

2
sgn(m). (5.33)

As in three dimensions, this is consistent with the common properties of k and m under the
discrete symmetries. We see that the CS term in (5.33) is not correctly normalized for generic

1Indeed, the Pauli-Lubanski operator in five dimensions is a tensor Wµν = 1
2ϵ

µνρσδLρσPδ, with Lµν the
Lorentz generators. The Casimirs of the Poincaré group are W 2 ≡ WµνWµν and H ≡ WµνLµν , together with
P 2. The irreducible massive representations are then characterized by the conditions

1

8
(W 2 +mH) = m2j1(j1 + 1),

1

8
(W 2 −mH) = m2j2(j2 + 1) (5.30)

where j1, j2 are the eigenvalues associated to the Cartan generator of the two SU(2) groups in SO(4) ≃ SU(2)×
SU(2), the little group of massive states. The spinor representations s1 = 0, s2 = 1

2 and s1 = 1
2 , s2 = 0 are

physically inequivalent [160]
2CS terms indeed appear, as a contact term in the three-point function of the gauge currents, see [153].
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Figure 5.1: One-loop diagram generating a CS term.

charges. This is the manifestation of parity anomaly [149]. A half-integer CS term k needs then
to be introduced in the Lagrangian.3 The CS level obeys the following quantization condition

k − F

2
∈ Z. (5.34)

As in three dimensions, in presence of an odd number of fermions, k cannot be set to zero and
so P cannot be preserved together with gauge invariance.
When we have massive fermions charged under multiple gauge fields, mixed CS terms can be
generated by integrating them out. In particular, taking a theory of r U(1) fields with F Dirac
fermions charged under the i-th gauge group with charges qfi and mass mf , we generate a mixed
CS term of the form

∆klmn = −1

2

F∑

f=1

(qf )l(q
f )m(q

f )nsgn(mf ). (5.35)

The analysis can be generalized to the non-Abelian case. CS terms can be generated by inte-
grating out fermions charged under the gauge group. For fermions in a representation R, the
shift is proportional to the third Casimir of the representation R. For SU(N), integrating out
F fundamental fermions of mass m generates a shift

∆k = −F
2
sgn(m). (5.36)

Again, the level k respects the quantization condition

k − F

2
∈ Z (5.37)

so it is half-integer for an odd number of fermions. We see then that, to ensure gauge invariance,
a CS term must be added to the theory whenever F is odd.

3Here the convention for k is analogous to [31], so it is related to the bare level kb as k = kb − F/2. This is
also denoted as the −1/2 convention in [153].
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5.3.2 Supersymmetry

Having defined fermions in five dimensions, we can construct the minimal supersymmetry alge-
bra. The antisymmetric product of two spinors contains the vector representation of SO(1, 4).
The minimal (N = 1) algebra is then generated by a single symplectic Majorana fermion Qi

α.
Its components are eight supercharges, so N = 1 in five dimensions equivalent to N = 2 su-
persymmetry in four dimensions. The global symmetry of the symplectic Majorana fermion is
then identified with the automorphism of the algebra SU(2)R. As happens in four dimensions,
we can preserve supersymmetry only if also SU(2)R is preserved.
The anticommutator4 between two supercharges gives [163]

{Qi
α, Q̄

β
j } = −2iδijPµ(γ

µ)βα + δijZδ
β
α. (5.38)

So, we see that even though this is the minimal supersymmetry algebra, we have a central
charge Z, as in N = 2 in four dimensions. As in four dimensions [2, 164, 165], any Abelian
charge contributes to Z linearly. We will review these aspects in detail in section 5.3.4.
From the algebra, we can construct massless and massive representations. Here we focus on
massless multiplets that we will encounter in our discussion on five dimensional SUSY theories,
namely the hyper and the vector multiplets.

� Hypermultiplet: on shell, a hypermultiplet contains four real scalars and a Dirac fermion
ψ. Off-shell, we have additional auxiliary fields F i, which are complex scalars in the
fundamental of SU(2)R. The four scalars are charged under the R-symmetry and form
a complex doublet H i [166]. We will denote this multiplet as H = (H i, ψ, F i). Since
the doublet of SU(2)R is a pseudo-real representation, we can always describe a single
hypermultiplet as a collection of two half hypermultiplets satisfying a pseudo-reality con-
dition [165]. The same can be done for r hypermultiplets [166], which can be written as
2r half hypermultiplets subjected to a pseudo-reality condition

(H i
a)

∗ = ΩabϵijH
j
b , (ψaα)

∗ = ΩabCαβψbβ, (F i
a)

∗ = ΩabϵijF
j
b (5.39)

where α, β = 1, ..., 4 are the Lorentz indices of the spinor. The global symmetry of r free
hypermultiplets is then Sp(r) instead of U(r). This is explicit in the half hypermultiplet
formulation in (5.39) since the condition is imposed using Ωab with a, b = 1, ..., 2r, the
antisymmetric invariant tensor of the Sp(r) group.

� Vector multiplet: on-shell, the content of a vector multiplet is a real scalar ϕ, a symplectic-
Majorana fermion λi and a gauge boson Aµ. Off-shell, we have also an auxiliary scalar
D(ij) in the triplet of SU(2)R. We will denote the multiplet as A = (ϕ, λi, Aµ, D

(ij)). This
is (Hodge) dual to a tensor multiplet, whose content is given by a two-form, a real scalar,
and a spinor [145].
The real scalar ϕ can be interpreted as the fifth component of the gauge field A5 coming
from the compactification of a six dimensional vector multiplet. As a consequence, parity
P together with the transformation ϕ→ −ϕ is a symmetry of the massless vector theory,

4Here we omit the brane charges associated with the algebra [162].
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since in six dimensions the transformation on A5 → −A5 together with parity implements
a Lorentz transformation. For the same reason, ϕ is also odd under charge conjugation C.

N = 1 SUSY constrains the mass spectrum of the theory. To respect unitarity, the physical
massM of any state should respect the BPS bound defined by the central charge Z of the state5

M ≥ |Z|. (5.40)

We can then divide multiplets into two categories: the BPS or short ones, which saturate the
bound (5.40), and the long ones, which do not saturate the bound. BPS multiplets are protected
by supersymmetry and will be extensively employed in the next sections. The relevant ones for
our analysis are [167]:

� Hypermultiplet: it has the same content as a massless hypermultiplet. Looking at its
mass term, we see that the global symmetry of a single hypermultiplet reduces to U(1),
while for r hypermultiplet, this reduces to U(r).

� Vector multiplet: it has the same content as a massless vector multiplet. This acquires a
mass via self-Higgsing, namely giving a VEV to the real scalar of the vector multiplet.

5.3.3 Field theory parameters

Supersymmetry restricts the possible couplings that appear in a generic Lagrangian. In par-
ticular, when we have eight supercharges, these are constrained by the global symmetries of
the theory.6. In five dimensions, massive parameters can be only introduced as VEVs of vector
multiplet scalars. This allows us to introduce parameters in the Lagrangian of mass dimension
one, since [ϕ] = M . So, massive parameters can be introduced by coupling the theory to the
background vector multiplet associated with the global symmetry of the theory and giving a
VEV to its scalar component. The maximal number of parameters that we can add is then equal
to the rank of the global symmetry group G. For example, when we have F massless hypermul-
tiplets, the global symmetry is Sp(F ). We can then introduce r different mass parameters at
the cost of breaking the global symmetry to its maximal torus U(1)r. These are nothing but the
r independent masses that we can assign to each hypermultiplet. This explains why mass terms
and scalars of the vector multiplet ϕ share the same transformations under discrete symmetries.
When the scalar associated with the global symmetry takes a VEV ⟨ϕ⟩ = m, parity is broken
since the VEV is odd under its action.
As we saw in section 5.1, pure SYM possesses a topological symmetry U(1)I . A parameter of
rank 1 can be then introduced in the theory. This is nothing but the inverse gauge coupling
square of the theory 1

g2
, which has mass dimension 1. This can be seen directly by coupling the

topological conserved current in (5.6) to the vector superfields [145].

5In the bound, we reabsorbed a constant
√
2 factor.

6In 4d N = 2, this was used for example to prove some relevant non-renormalization theorems, see [168]



5.3. Fermions in five dimensions 133

5.3.4 Central charge

As in 4d N = 2 SUSY, the algebra possesses a central charge. This is an operator of the
algebra whose expression in terms of field content of the theory can be obtained from Noether’s
theorem [163]. In particular, since this is a central element of the algebra, it commutes with
the Hamiltonian and it is conserved. The eigenvalues of this operator, obtained by acting on a
SUSY multiplet with it, are nothing but a linear combination of all the Abelian charges of the
multiplet. When we consider a gauge theory with some hypermultiplets, the central charge is a
linear combination of the Cartan generators of the global symmetry (including the topological
one), as well as the Cartan generators of the gauge symmetry. We denote the parameters
associated with these symmetries as mi and ϕi respectively. These multiply the Abelian charge
operators that together form the central charge. Acting on a state with global charge qi and
electric charges nj, the central charge assumes the form

Z =
∑

i

qimi +
∑

j

njϕj. (5.41)

In the following, we separate the instantonic contribution to the central charge from the contri-
bution coming from the symmetry of the hypermultiplets, namely the flavor symmetry of the
theory. The charge of the instantonic symmetry will be denoted as I and its parameter as 1

g2
.

The charge and parameter associated with the Cartan generators of the flavor symmetry are
denoted as qf ,mf respectively. BPS states in the theory then saturate the BPS bound

M =
∣∣∣ 1
g2
I +

∑

f

qfmf +
∑

j

njϕj

∣∣∣. (5.42)

5.3.5 Superconformal field theories

In this section, we introduce the superconformal multiplets and comment on their classification
and their unitarity bounds. Then, at the end of the discussion, we analyze all the possible
supersymmetric deformations of SCFTs in five dimensions.
Let us start by reviewing the construction of representations of the conformal group. In generic
d spacetime dimensions, the conformal algebra contains the Lorentz algebra so(1, d − 1) as
subalgebra together with the dilation transformations D and the special conformal ones Kµ.
They all together form an so(2, d) algebra. Representations of so(2, d) are denoted as conformal
multiplets. Each operator O of the multiplet is identified by its eigenvalue under the dilation
operator ∆O, called the weight, and its representation under the Lorentz group RL. In Euclidean
signature, the Lorentz group in 5d reads so(5) ≃ sp(4), and its representations are identified
by two Dynkin labels. A conformal multiplet is a lowest weight representation. This can be
constructed starting from an operatorO in some Lorentz representations RL which is annihilated
by the special conformal transformations Kµ and then acting with the other generators of the
algebra. The operator O is then a primary field, while all other operators in the multiplet are its
descendants, obtained as derivatives of O [50]. To ensure unitarity, the weight of the conformal
primary should satisfy the bound

∆O ≥ f(d,RL) (5.43)
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which depends on the spacetime dimension and the Lorentz representation through the function
f . For example, a scalar in generic dimensions satisfies

∆O ≥
d− 2

2
(5.44)

while a vector satisfies
∆O ≥ d− 1. (5.45)

In both cases, something peculiar happens when the operator saturates the bound. In the first
case, the scalar is free, while in the second case the vector is conserved, ∂µOµ = 0.

Supersymmetry enlarges the conformal algebra to a superconformal one. In five dimensions,
only one superalgebra is allowed and preserves eight supercharges.7 This is the f(4) algebra.
The bosonic subalgebra contains the conformal algebra so(2, 5) and the R-symmetry algebra
R, which is su(2)R. We have also additional supercharges, denoted by Si, which are necessary
to close the superalgebra.
An operator O is identified by its R-symmetry Dynkin label r, its Lorentz representation RL

and its weight ∆O. Operators organize in representations of the superconformal group, known
as superconformal multiplets (SCM). These are lowest weight representations and are generated
starting from an operator O which is annihilated by all supercharges Si and special conformal
transformations Kµ. Operators satisfying this condition are denoted as superconformal pri-
maries (SCP). Acting on these operators with the remaining elements of the superalgebra, we
construct the superconformal multiplet. Some of the operators obtained in the constructions
are conformal descendants of the SCP. All other operators are conformal primaries. Defining a
superconformal multiplet, we will indicate only its content in terms of its conformal primaries.
This is equivalent to the expansion of a superfield in terms of its components.
Superconformal multiplets are also distinguished by their shortening properties. Some of the
multiplets can be short if their SCPs are also annihilated by some of the Qs. The anti-
commutator of two supercharges is proportional to the momentum operator, so when this acts
on an operator cannot generate conformal primaries but only descendants. Then, due to Fermi
statistic, we can in general act on the superconformal primaries with a string of N supercharges
and obtain a conformal primary for any N ≤ NQ where NQ is the total number of supercharges.
When N saturates the bound, the multiplet is long and it is denoted by the letter L. The
highest component of the multiplets is QNQO and it is invariant under SUSY transformations.
If instead N < NQ, as it happens when the SCP is annihilated by a subset of supercharges, the
multiplet is short.
Also in the superconformal case, we have unitarity bounds for SCPs. However, due to the
presence of supercharges, the number of superconformal descendants is larger than the one of
conformal ones, leading to stringent conditions. These bounds were calculated in [169–175] and
depend on the Lorentz and R- charges as

∆O ≥ f(j1, j2) + g(r) + δA ≡ ∆A (5.46)

7Here, we are considering only the total number of Poincaré supercharges.
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∆O = f(j1, j2) + g(r) + δB,C,D ≡ ∆B,C,D, δA > δB > δC > δD. (5.47)

The first inequality looks like the usual unitarity constraint, but f(j1, j2) is different from the
bosonic case. Multiplets satisfying the bound have generic Lorentz and R-symmetry Dynkin
labels. The bound is saturated by short multiplets, the A-multiplets. When the weight is
smaller than ∆A, unitarity is lost unless weights satisfy one of the equalities in (5.47). This
happens only for specific values of the Lorentz and R-symmetry Dynkin labels. The multiplets
that satisfy these equalities are denoted as B,C,D multiplets. This establishes a hierarchy for
the weights in the spectrum of an SCFT, since ∆A > ∆B > ∆C > ∆D. Finally, each type of
multiplet will be also classified by the level l of its first null state, equivalent to the number
of supercharges that are needed to reach it acting on the SCP. Denoting collectively the labels
L,A,B,C,D as T , a generic multiplet with SCP O in the representation [j1, j2] of the Lorentz
group, with weight ∆O and Dynkin label r is identified by the following notation

Tl[j1, j2]
(r)
∆O
. (5.48)

Multiplets of SCFTs were constructed and classified in [176, 177]. This classification is useful
to see which deformations are allowed in a SCFT. A SCFT can be deformed either by sourcing
an operator O or by giving a VEV to it. Focusing on the first type of deformations, to preserve
supersymmetry O must be annihilated by all the supercharges Qs and be neutral under the
R-symmetry. This is the case when we consider the highest components of superconformal
multiplets which are scalars and singlets under R-symmetry. These operators can then be
sourced without breaking supersymmetry. The corresponding deformation is irrelevant when
∆O > d, marginal if ∆O = d and relevant if ∆O < d. Turning on an irrelevant deformation, we
come back to the fixed point and superconformal symmetry remains preserved. Turning on a
marginal deformation, instead, we preserve superconformal symmetry and the source associated
with the operator parametrizes a conformal manifold. Finally, relevant deformations break
conformal symmetry and trigger an RG-flow. Focusing on the two latter deformations, it is
possible to show [177] that in five dimensions no marginal deformation is allowed (namely, we
cannot have a supersymmetric conformal manifold). Moreover, relevant deformations are highly
constrained. In particular, only one relevant deformation is allowed and comes from sourcing
the highest component of the C1[0, 0]

(2)
3 short multiplet

[0, 0]
(2)
3 → [1, 0]

(1)
7/2 → [0, 1]

(0)
4 ⊕ [0, 0]

(0)
4 (5.49)

where [0, 1] is the vector representation of sp(4) and [1, 0] the spinorial one. One of the high-
est components is a vector Jµ,A, which is then conserved. This is nothing but the multiplet
containing the conserved current of the global symmetry G of the SCFT

JG = (µA
(ij), ψ

A
i , J

A
µ ,M

A) (5.50)

where µA
(ij) ≡ [0, 0]

(2)
3 , ψA

i ≡ [1, 0]
(1)
7/2 and MA ≡ [0, 0]

(0)
4 and A is an adjoint representation

index of G. Sourcing the highest component MA we generically break the global symmetry to
its Cartan torus. To this deformation, we associate then rk(G) parameters. The breaking of
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conformal invariance via this relevant operator triggers an RG-flow from the SCFT to some
IR phase with smaller global symmetry. Modifying the values of the parameters, we span the
low-energy phase diagram of the SCFT and, tuning them in a specific way, we can hope to reach
another non-trivial SCFT in the IR.

5.4 SUSY gauge theories: perturbative dynamics

In this section, we discuss the perturbative dynamics of supersymmetric gauge theories. We
start reviewing their prepotential and the most general supersymmetric Lagrangian of a vector
multiplet coupled to F hypermultiplets. Then, we discuss moduli spaces of five dimensional
gauge theories. At the end of the section, we review their dynamics on the Coulomb branch,
introducing the criterion of convexity and analyzing in detail the U(1) and SU(N) cases.

5.4.1 Prepotential and N = 1 Lagrangians

Lagrangians are strongly constrained by supersymmetry and so is their moduli spaceM. When
we have eight supercharges in four dimensions, M is a direct product of the manifold MV of
the (complex) scalars of the vector multiplets Aa and the manifold MH of the hyper scalars
H i

f . The former space is denoted in literature as the Coulomb branch (CB), while the latter
is denoted as the Higgs branch (HB). Moreover, SUSY constraints also the properties of these
manifolds. The manifold MH is hyperKähler8, while MV is special Kähler. In particular, a
special manifold is Kähler with a Kähler potential coming from derivatives of a holomorphic
function, called the prepotential. We denote the superfield hosting this function as F(A). The
entire SYM Lagrangian is then completely determined (up to two derivatives) by this holomor-
phic function.

Similar constraints are found also in five dimensions. The moduli space parameterized by
the hypermultiplet scalars is again hyperKähler. On the other hand, five dimensional vector
multiplets contain real scalars. The corresponding manifold is then no more special Kähler.
This is very special real [157] and its metric is still determined by a prepotential F(A).
Let us consider the case of N U(1) vector multiplets Aa. The lowest component of the pre-
potential is a real function of the scalars F(ϕa) associated with the vector multiplet Aa. The
metric on the moduli space reads

ds2 = t(ϕ)ab dϕ
a dϕb (5.51)

with t(ϕ)ab =
∂F

∂ϕaϕb . This is nothing but the gauge coupling constants of the ”photons” Aa.
Moreover, SUSY restricts further the form of the prepotential in five dimensions. Indeed, this
can be at most cubic in the scalar fields [145]. Indeed, let us consider the case of a single
gauge field. Under compactification, the fourth component of the gauge field A4 becomes the
imaginary part of the scalar of the four dimensional vector multiplet and the gauge symmetry

8This is a Kähler manifold with a quaternionic structure, i.e. with three different complex structures satisfying
quaternionic identities.
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acting on it reduces to a shift symmetry A4 → A4+ ia. This symmetry is violated by more than
cubic terms in the prepotential, leading to inconsistency. For example, if we add a quartic term
F = 1

4!
ϕ4 to the five dimensional prepotential, we introduce in the four dimensional Lagrangian

a coupling

L ∼ (ϕ2 − A2
5)F

2 (5.52)

which breaks the shift symmetry.
Let us now restrict the analysis to a local patch of the moduli space. The prepotential then
reads

F = c0 + caAa +
1

2
habAaAb +

kabc
6
AaAbAc. (5.53)

Since only the metric (and its derivatives) enters in the Lagrangian, c0 and ca can be set to zero.
Reality properties of the Lagrangian and invariance under shift symmetry restrict hab, kabc to
be real. The prepotential reduces on the local patch to

F =
1

2
habAaAb +

kabc
6
AaAbAc. (5.54)

For a single gauge field, this is

F =
1

2g2
A2 +

k

6
A3 (5.55)

with k, g ∈ R. The metric for the vector multiplet reads

h =
1

g2
+ kϕ (5.56)

leading to an effective coupling for the gauge field on the CB.
The same analysis can be done for non-Abelian gauge theories with gauge group G. The
prepotential is gauge-invariant and has locally the same structure

F(ϕ) = 1

2g2
Trϕ2 +

k

6
Trϕ3. (5.57)

Expanding the scalar field in a basis of generators Ta in the fundamental representation of G as
ϕ = ϕaTa, we see that the cubic term in the prepotential is proportional to the cubic Casimir
of the fundamental representation dFabc. Then, as for CS terms, also the cubic term in the pre-
potential is present for non-Abelian theories only when G is SU(N) with N ≥ 3.

We can now construct the most general Lagrangian preserving N = 1 supersymmetry in five di-
mensions. The quadratic term in the prepotential (5.57) generates respectively the kinetic term
of the fields of the vector multiplet and the Yukawa interactions required by supersymmetry.
The off-shell Lagrangian obtained from the quadratic term reads [158,178]

LSYM =
1

g2

(
−1

2
TrF 2 − Tr(Dµϕ)

2 − iTr(λ̄γµDµλ) + TrD2 + iTr(λ̄[ϕ, λ])

)
. (5.58)
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On the other hand, cubic term in the prepotential leads to the couplings [178]

Lcubic =
k

24π2
Tr

[
AF 2 +

i

2
A3F − 1

10
A5 − 3λ̄γµνλFµν + 6iλ̄Dλ

]
+

k

2π2
Tr[ϕLSYM]. (5.59)

The cubic term in the prepotential introduces then a CS term and its SUSY completion (5.59).
We can also write the most general Lagrangian of a hypermultiplet in some representation R of
the gauge group [178]

L = (DµH)†(DµH)− iψ̄γµDµψ + F †F − iψ̄ϕψ +H†DH +H†ϕ2H − (
√
2ψ̄λH + h.c.). (5.60)

Notice that, as expected, in (5.60) there is no dependence on the prepotential.
The dimension of the real scalar of the vector multiplet is [ϕ] =M1, while the dimension of the
hyperscalars is [H i] =M3/2, due to the different normalizations of the kinetic terms.
Having introduced the classical prepotential, we can now consider the classical properties of the
moduli space and its quantum corrections.

5.4.2 Moduli space

We now review some basic properties of the classical moduli space of gauge theories in five
dimensions, distinguishing between the Coulomb and the Higgs branch.

� Coulomb branch:
Taking a generic gauge group G of rank N , a generic point on the CB is identified by a
VEV for the scalar ϕ = ϕaT a of the vector multiplet. At this point, the gauge group is
generically broken to its Cartan torus U(1)N . The inequivalent vacua are parametrized
by the coordinates ϕa with a = 1, ..., N . These belong to the weight space of the gauge
algebra g. However, a leftover redundancy comes from the Weyl group W of G, acting
on the coordinates ϕa. The inequivalent vacua (and so the CB) describe then a wedge
subspace of RN obtained from the action of the Weyl group RN/W . In the following,
we take as representative of this equivalence class the fundamental Weyl chamber of the
corresponding weights ϕa, defined as the space of weights ϕa satisfying the condition

C0 = {ϕa|(ϕa, αi) ≥ 0, i = 1, ..., N} (5.61)

with αi the simple roots of g. At the edges of the chamber, the gauge group admits non-
Abelian enhancement. At any point of the CB, the original R-symmetry of the theory
remains preserved, since ϕ is a singlet under SU(2)R.

The classical analysis can be modified due to quantum corrections, which change the
metric of the moduli space, as we will see next section.

� Higgs branch:
On the HB, the scalars associated with the hypermultiplets take a VEV. At a generic
point, the rank of the gauge group is reduced due to Higgsing. As in four dimensions,
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the manifold is hyperKähler. At weak coupling, non-renormalization theorems protect
the structure of the HB, which is classical exact. However, in absence of a Lagrangian
description, as we will see, the HB can get corrections.
On the Higgs branch, both the global symmetry and the R-symmetry of the theory act
as isometries. As a consequence, this branch can be distinguished from the CB by the
breaking of the global and the R-symmetries. In particular, the original SU(2)R is broken
at a generic point as well as part of the global symmetry. A subgroup of the two represents
then an emergent R-symmetry SU(2)R′ , which is preserved at any point of the HB. This
property can be used as a non-perturbative definition of the Higgs branch.

Higgs branches of five dimensional theories are extensively studied in the literature, in particular
in strong coupling limits of gauge theories [179–205]. Although we will review some of these
aspects in section 5.5.6, we refer the reader to the literature for a more complete treatment of
the subject.

5.4.3 Coulomb branch dynamics

On a generic point of the CB, the gauge group G is broken to its Cartan torus and the theory is
effectively Abelian, parametrized by the vector multiplets A =

∑N
i=aAaTa with Ta the Cartan

generators. The Higgsing gives masses to the vector multiplets charged under the Cartan
generators with charge qa. In the following, these multiplets will be denoted as W multiplets,
in analogy with electro-weak symmetry breaking in the Standard Model. Fermions get a mass
through the Yukawa coupling in (5.58). The multiplets are BPS, being the result of self-Higgsing
and get a physical mass M equal to their central charge

M = |qaϕa| = |Z|. (5.62)

At sufficiently low-energy and away from the origin, these multiplets can be integrated out, and
the low-energy effective theory reduces to a theory of N Abelian vector multiplets. However,
massive gauginos inside these multiplets are expected to shift the CS level of the theory. Be-
ing this related to the cubic potential, gauginos are then expected to give corrections to the
prepotential [145,148]. In particular, the CS term shifts as

∆kr =
1

2

∑

a

sgn(qraϕ
a) (5.63)

due to the contribution coming from the r-th massive multiplet. The charges qra of this multiplet
define the Dynkin label of a root of the gauge algebra. We indicate this root as a vector
Rr = (qr1, ..., q

r
N). Summing the contributions coming from all the massive vectors, the shift

reads

∆k =
1

2

∑

R∈roots

sgn(R · ϕ). (5.64)

The cubic term of the prepotential shifts then as

∆F =
1

12

∑

R∈roots

|R · ϕ|3. (5.65)
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This modifies the metric on the CB and the corresponding effective coupling. Moreover, the
process introduces singularities on the CB. At a point at the boundary of the Weyl chamber, for
some R we have R · ϕ = 0, signaling the enhancement of the gauge symmetry to a non-Abelian
subgroup of G. The metric, however, is not smooth at this point, due to the modulus. This is
physically meaningful: at that point, the multiplet that we integrated out is massless and the
low-energy description breaks down. To recover a low-energy description, we have to include
the new massless multiplet and consider an effective field theory in presence of the non-Abelian
gauge group.

When we add matter, the low-energy dynamics on the CB enriches. Let us consider a sin-
gle hypermultiplet in a representation R of the group G. On a generic point of the CB, this
acquires a mass due to the interaction terms with the scalar of the vector multiplet in (5.60).
The physical mass equals the central charge

mr = |qraϕa +m| = |Z| (5.66)

where again qra is the charge under the a-th Cartan of the r-th massive hypermultiplet and m
is a bare mass for the hypermultiplet. As in the vector case, fermions induce a shift of the level

∆k = −1

2

∑

a

sgn(qraϕ
a +m). (5.67)

Notice that this is opposite in sign with respect (5.63). This comes from the fact that only short
multiplets contribute to the level [145]. We associate the r-th weight wr of the representation
R to the r-th hypermultiplet. The prepotential gets quantum corrected as

∆F = − 1

12

∑

wr∈weights

|wr · ϕ+m|3. (5.68)

Also in this case the metric develops a singularity at wr · ϕ+m = 0. This again coincides with
the point on the CB at which the hypermultiplet becomes massless and needs to be included in
the low-energy description.
In the most general case, the prepotential for a gauge group G and f = 1, ..., F hypermultiplets
in the representation Rf with a CS term k reads

F =
1

2g2
habϕ

aϕb +
k

6
dabcϕ

aϕbϕc +
1

12

( ∑

R∈ roots

|R · ϕ|3 −
∑

f

∑

wr∈WR

|wr · ϕ+mf |3
)

(5.69)

with hab = Tr(TaTb) and dabc both evaluated for the Cartan’s and WR are the weights of the
R representation of G. This quantum corrected prepotential is dubbed in the literature as the
Intrilligator-Morrison-Seiberg (IMS) prepotential [149]. This is exact at one-loop, as expected
by the one-loop exactness of the shift of the CS term, resulting from the five dimensional version
of the Coleman-Hill theorem [148].
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BPS states on the CB

On top of perturbative states, also non-perturbative ones charged under the gauge group acquire
additional contributions to their mass on the CB. Moreover, also their properties get modified,
as we review in this section.
We know from section 5.1 that to each gauge group of a five dimensional theory we can asso-
ciate a topological zero-form symmetry U(1)I , under which instanton states are charged. The
parameter associated with this symmetry is the inverse gauge coupling square 1

g2
, which enters

the central charge formula as in (5.41). We can then ask what happens to instantons on a
generic point on the CB. These are singlets under the gauge group in absence of a CS term.
On a generic point of the CB, however, the gauge group is broken to its Cartan torus and a CS
term is generated. Instantons acquire then a charge under the Cartan generators.
Let us take for simplicity the case G = SU(2). No classical CS term can be introduced in this
case and instantons are singlets under the gauge group.
On the CB, however, SU(2) is broken to its Cartan U(1), and a CS term k is generated by
quantum corrections, as we can see from the IMS formula (5.69). Instantons then get an electric
charge kI on the CB. This tells us that the naive central charge of the theory

Znaive = qeϕ+
1

g2
I (5.70)

actually acquires an additional contribution due to the CS term

Z = (qe + kI)ϕ+
1

g2
I. (5.71)

So, the true electric charge is not only the charge under the Cartan of SU(2), but an additional
contribution comes from the global charge I. This phenomenon is dubbed electric/instanton
mixing [145]. This has a simple physical interpretation. In presence of a CS term, the gauge
coupling is shifted by a contribution linear in ϕ

1

g2eff
=

1

g2
+ kϕ. (5.72)

We expect instantons to be massive with mass ∼ 1
g2eff

. So, to the instanton charge I we should

associate, due to the BPS property, a mass parameter 1
g2eff

instead of 1
g2
. Inserting this parameter

in the naive central charge (5.70), this is modified as

Z = qeϕ+
1

g2eff
I = (qe + kI)ϕ+

1

g2
I (5.73)

reproducing the mixing.
Also, the properties of instanton states are modified on the CB of the SU(2) theory. At the
origin ϕ = 0, we can construct solitonic configurations of the gauge field which are non-
singular. These are labeled by a continuous modulus ρ, which parametrizes the size of the
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instanton [145, 206, 207]. On the other hand, on a generic point of the CB, instantons tend to
shrink to ρ = 0 and become singular. Their detailed properties depend on the short distance
physics, which depends on how we regularize the theory. This is a signal of the lack of renor-
malizability of the theory [145].

We finally discuss monopole strings in five dimensions. Again, let us specialize to the SU(2)
case. We know that monopoles in four dimensions are BPS particles [2]. The mass parameter
associated with the dual magnetic gauge group ϕD

ϕD =
∂F
∂a

(5.74)

appears in the central charge as
Z = neϕ+ nmϕD (5.75)

where nm is the magnetic charge of the monopole.
In five dimensions, monopoles are actually strings [145]. Indeed, a vector multiplet can be
dualized (in absence of a CS term) to a tensor multiplet. The corresponding mass parameter
ϕD of mass dimension [ϕD] =M2 reads

ϕD =
∂F
∂A(ϕ) =

ϕ

g2
+
k

2
ϕ2. (5.76)

This represents the tension of the associated monopole string. Monopoles charged under the
two-form field are then strings. BPS strings satisfy the BPS bound given by the corresponding
central charge 9

T = Zm = nm(ϕD + cm). (5.77)

When the theory is compactified to four dimensions, monopole strings wrapped around the
compactification circle become the corresponding monopoles in four dimensions [207].
Notice that ϕD (as well as the metric itself) cannot change discontinuously between open sets
as 1/g2 and k do. Moreover, from (5.76) we see that by integrating the tension of the BPS
string, we obtain the prepotential of the gauge theory. This will be useful when we will deal
with string constructions of five dimensional theories in section 5.5.

Prepotential convexity

As we saw in the previous section, the metric on the CB and the effective gauge coupling are
obtained from derivatives of the prepotential. Singularities for the metric are allowed at some
points on the CB, where particles that have been integrated out become massless. However,
to have a well-defined kinetic term for the gauge field, the metric on the CB must be positive
definite at any point. This is ensured only when the prepotential is convex on the entire moduli
space.
The quadratic piece is always convex whenever 1

g2
hab > 0. So this piece is convex when 1

g2
>

9This enters in the supersymmetry algebra as a brane charge [162,163].
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0. The cubic piece, on the other hand, is not always convex. Cubic contributions coming
from hypermultiplets reduce in general the convexity of the prepotential. On the other hand,
contributions coming from vectors are always convex on the entire CB. Away from the origin of
the CB, the metric can then stop to be positive definite and the effective description can break
down. This tells us that additional information is needed to describe the entire CB. As we will
see next, this can be an indication of the non-renormalizability of the theory, as for the U(1)
theories, or the signal that some non-perturbative states must be considered in the effective
description of the CB.
In general, the theory can be made sensible at best in a subspace near the origin taking the
classical part 1

g2
hab > 0. However, when the metric is well defined on the entire CB, a scale-

invariant fixed point 1/g2 = 0 can be reached. Although these theories are power counting
non-renormalizable, we will see that some of them admit SCFTs as UV completions. The gauge
theory description is then interpreted as an effective field theory (EFT) describing the endpoint
of an RG-flow started from a UV SCFT triggered by the inverse gauge coupling squared mass
parameter 1

g2
. We see then that a necessary condition (at the perturbative level) for the theory

to reach a strong coupling fixed point is to have a positive definite metric over the entire CB.
Equipped with this criterion, we can classify gauge theories based on their prepotential. Let
us start with pure non-Abelian gauge theories in absence of a CS term. On top of the classical
quadratic term, massive vectors contribute to the prepotential on the CB. This contribution of
the form |R ·ϕ|3 is always purely convex. We see that all these theories fulfill the criterion since
the prepotential is convex at any point of the CB.
This is no more true in presence of matter. Hypermultiplets introduce pure concave terms
−|wR · ϕ + m|3, which can spoil convexity. This depends then on the number of flavors we
add and on their representations under the gauge group. Indeed, integrating out matter makes
the prepotential more convex [149], so the prepotential behaves better the smaller the number
of hypermultiplets. However, in some cases, this is always concave, regardless of the number
of matter fields. For example, any representation R containing a weight wR larger or equal
length than a root leads to a concave prepotential, since gauge bosons cannot compensate for
the concavity at large values of the CB parameter.
When classical CS terms are added, the convexity of the prepotential needs to be studied in
detail, as we will see in the next sections when discussing the SU(N) case.
We finish this section by discussing in detail the CB dynamics of U(1) and SU(N) gauge theories
and their convexity conditions.

U(1) + F flavors

Let us start considering a U(1) gauge theory with F electrons with charge one. The CB of
U(1) is R and it is parameterized by a single coordinate ϕ ∈ R. We can choose the quadratic
coefficient 1

g2
to be positive definite. In absence of hypermultiplets, the prepotential is then

well-defined but the metric is trivial 1
g2
, so the CB cannot be described at the putative fixed

point 1
g2

= 0.

Adding F massless electrons, the global symmetry of the theory is SU(F ) × U(1)I . Being the
electrons charged under the gauge field, they take a mass on the CB proportional to ϕ, namely
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M = |ϕ|. The gauge coupling is modified at one-loop as

1

g2eff
=

1

g2
− F

2
|ϕ|. (5.78)

The metric is not smooth, signaling the presence of massless fermions at ϕ = 0, as expected. Of
course, if F is odd, we should equip the theory with a CS level k. This is neither a concave nor
a convex contribution and can be interpreted as coming from the decoupling of some additional
electrons with a positive mass. As a consequence, we can reabsorb this contribution in the value
of F .
The metric in (5.78) is not positive anywhere on the CB. In fact, for any positive 1/g2, the
effective coupling diverges at a finite point of the moduli space ϕs = ± 2

Fg2
. The cutoff scale

∼ 1
g2

signals the non-renormalizability of the theory and the necessity of a UV completion.

The SU(F ) symmetry can be broken explicitly by adding different masses for the electrons.
The most generic mass term breaks SU(F ) to its Cartan torus U(1)F−1. Also C and P are
broken, and only CP is preserved. The values of the masses mf , f = 1, ..., F parametrize the
VEV 10 of the scalar ϕ of the background vector multiplet associated with the global symmetry.
Hypermultiplets induce a CS level

∆k = −1

2

F∑

f=1

sgn(ϕ+mf ). (5.79)

and the effective coupling reads

1

g2eff
=

1

g2
− 1

2

∑

f

|ϕ+mf |. (5.80)

Some comments are in order. First of all, we see that 1
g2

is further constrained by masses. This
should respect the inequality

1

g2
≥ 1

2

∑

f

|mf | (5.81)

in order for the metric to be well-defined at the origin of the CB.
Secondly, at ϕ = −mf an electron becomes massless and, as expected, a singularity appears
on the CB metric. When F̃ masses are equal, the effective theory at the singularity is a U(1)
theory with F̃ massless electrons with flavor symmetry SU(F̃ ).
The presence of masses does not cure the non-renormalizability of the theory, since at some
point of the CB the prepotential stops again to be convex.

SU(2) + F fundamentals

Let us start by considering pure SU(2) SYM. Since the gauge group has rank one, the CB of
the theory is one dimensional and parametrized by a single coordinate ϕ. On a generic point,

10Note that they sum to
∑

f mf = 0 or, alternative, the sum is non-physical, since the flavor group is special
unitary.
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the gauge group is broken to its Cartan U(1)c. Since the SU(2) Weyl group is the permutation
group S2 (namely Z2), we can restrict the value of ϕ ∈ R+ in the fundamental chamber. At its
edge, ϕ = 0 and the gauge symmetry enhances to SU(2).
At a generic point of the CB, the adjoint representation 3 decomposes as 2 + (−2) + 0 under
the Cartan. Massive vectors induce a CS term for U(1)c and the effective coupling reads

1

g2eff
=

1

g2
+ 8ϕ. (5.82)

Note that, as expected from the previous discussion, this theory fulfills the convexity require-
ment for a UV fixed point at 1/g2 = 0. So, even in absence of matter, this theory is expected
to possess a UV completion.

Let us now introduce flavors. In particular, we consider F massless quarks in the funda-
mental representation. The flavor symmetry is SO(2F ), since the gauge group is symplectic
SU(2) ≃ Sp(1). On the CB, the fundamental representation decomposes into two representa-
tions of the Cartan group of charges 1 + (−1). From the central charge formula (5.41), the
corresponding electrons acquire a mass

M = |ϕ|. (5.83)

Both states, in particular, generate the same CS terms, since their charges compensate the signs
of the masses. The effective coupling changes as

1

g2eff
=

1

g2
+ (8− F )ϕ. (5.84)

The coupling in (5.84) shows an interesting behavior. If F > 8, this becomes negative at

ϕ =
1

g2(F − 8)
. (5.85)

The convexity requirement is not full-filled, signaling that a new description is needed at these
scales. This is analogous to the U(1) case.
On the other hand, if F < 8, the effective coupling is positive definite for any value of ϕ. These
theories are then expected to have a fixed point for 1/g2 = 0. As we will see later, string theory
constructions [145,207] give us substantial evidence of the presence of these UV completions!
The case F = 8 is more subtle since the coupling trivializes as for U(1) with no electrons.
However, recent evidence suggests that also SU(2) with F = 8 possesses a UV completion, but
in terms of a six dimensional SCFT [208–210].

Since the flavor symmetry is SO(2F ) in the massless case, we can introduce F different physical
masses mf , f = 1, ..., F for each fundamental. This breaks, in general, SO(2F ) → U(1)F .
When all masses mf are equal and we are the origin of the CB, the symmetry reduces, instead,
to U(F ). On a generic point of the CB, the physical mass can be obtained from the central
charge

Mf,± = |ϕ±mf | (5.86)



146 Chapter 5. Aspects of five dimensional theories

for the electron of positive (resp. negative) charge coming from the f -th quark. Due to the
mass splitting in (5.86), the two electrons associated with this quark contribute differently to
the effective gauge coupling

1

g2eff
=

1

g2
+ 8ϕ− 1

2

∑

f

|ϕ−mf | −
1

2

∑

f

|ϕ+mf |. (5.87)

Close to the singularities at ϕ = mf > 0, the effective coupling reduces to the coupling of a U(1)
theory with a single electron. This is indeed the corresponding effective theory at this point of
the CB. If M masses coincide, the theory reduces to U(1) +M massless electrons with SU(M)
global symmetry. As in the U(1) case, the gauge coupling should be chosen to be larger than
the sum of the masses of the quarks, 1

g2
≥∑f |mf |, to have a well-defined metric at the origin

of the CB.

Finally, let us comment on a peculiarity of the SU(2) group. Since π4(Sp(N)) = Z2 and
Sp(1) ≃ SU(2), we can in principle add to the theory a (discrete) θ term with values θ = 0, π.
As for the four dimensional θ term, this labels the instantonic configurations of the gauge field
belonging to the corresponding homotopy class. The perturbative physics of the theory is un-
changed by this term, so the prepotential is the same as SU(2) SYM. Moreover, the angle is
non-physical in presence of fermions [149]. However, as we will see, the θ angle changes drasti-
cally the non-perturbative physics of the theory for pure SU(2) SYM. For this reason, we will
label differently the pure SU(2) theory equipped with a non-zero θ angle, which will be denoted
as SU(2)π SYM.

SU(N) + F fundamentals

The CB of the SU(N) theory is parameterized by the VEV of the scalar field ϕ = diag(ϕ1, ..., ϕN)
in the adjoint of SU(N), obeying the condition

∑
a ϕa = 0. The Weyl group is the permutation

group ofN elements SN . The CB is then the wedge RN−1/SN , and we restrict to the fundamental
chamber choosing ϕ1 ≥ ϕ2 ≥ ... ≥ ϕN . At a generic point, the gauge group breaks to its Cartan
torus U(1)N−1. At the edges of the Weyl chamber, where two or more ϕas become equal, a
non-Abelian subgroup of SU(N) is indeed preserved.
Classical CS terms k can be also introduced in this theory. Since the decoupling of a fundamental
flavor of mass m gives rise to a CS contribution of the form

∆k = −1

2
sgn(m) (5.88)

we can interpret this classical term as coming from integrating out massive fundamentals. Tak-
ing care of the contribution coming from the vector multiplets, the prepotential reads

F =
1

2g2
ϕaϕ

a +
1

6

∑

a<b

(ϕa − ϕb)
3 +

k

6

∑

a

ϕ3
a. (5.89)

The metric g−2
ab = ∂F

∂ϕa∂ϕb
is then positive definite for any N satisfying the inequality [149]

N ≥ |k|. (5.90)
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These theories are then expected to enjoy a UV fixed point. In presence of F massless funda-
mental quarks, the flavor symmetry is U(F ). As usual, when the number of flavors is odd, a
CS term k needs to be added for consistency, since the quantization condition in presence of
fundamentals reads

k +
F

2
∈ Z. (5.91)

Massless fundamentals contribute to the prepotential as

Ffund. = −
F

12

∑

a

|ϕa|3. (5.92)

So, if the number of fermions is small enough, the prepotential is convex on the entire CB. This
happens if and only if

F ≤ 2N − 2|k| (5.93)

When this bound holds, the theory is expected to admit a UV fixed point. This expectation is
confirmed by string theory constructions [207,211] and field theory analysis [208].

5.5 String constructions

One of the main tools to study five dimensional theories comes from string constructions.
Some five dimensional theories, such as Sp(N) SYM, can be constructed in type I’. More-
over, the majority of these theories can be realized via compactification of M-theory on CY3

[149, 153, 212–244] and via pq-web constructions [207, 245, 246]. The inter-twin between these
constructions and the localization calculations of the partition functions [178,247–249] unveiled
interesting properties of gauge and non-Lagrangian theories in five dimensions, such as global
symmetry enhancement at their UV fixed points [178,246–249], Higgs branch enhancement and
the tight connection with three dimensional theories through magnetic quivers [179–205].

In this section, we discuss two specific string constructions: the type I’ and the pq-web con-
struction. We first review the former, describing the construction for SU(2) theories with F
fundamentals, and how this gives us substantial evidence of the existence of UV fixed points
for F < 8. Then, we discuss the latter construction, first reviewing type IIB supergravity, its
branes, and how we can construct BPS string junctions, and then discussing the generalities
of the pq-web construction with and without 7-branes. For sake of brevity, we do not review
applications of type I’ constructions to holography [250–256], neither pq-webs in presence of
orientifolds [193,210,216,257–262] nor the magnetic quiver program [179–205].

Type I’ construction

Let us start by discussing type I’ constructions.
Type I’ string theory is T-dual to type I. In particular, compactifying type I on a circle of
radius R, we obtain type I’ on a circle of radius α′

R
. After T-duality, the 16 D9 branes of the
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first theory become the 16 D8 branes of type I’. These can be distributed at some generic point
of the S1 and their positions are related to a specific VEV for the Wilson line associated with
the SO(32) gauge theory of the type I D9 branes. The O9 orientifold of type I reduces to an

O8-, so the circle is orbifolded to an interval I = S1
⧸Z2

. The orientifold and its copy lie then at
the endpoints of the interval I. In type I, we can then add a D5 brane and wrap it around the
circle. After T-duality, this becomes a D4 brane localized at a point of the interval. On this
brane lives a 5d N = 1 U(1) gauge theory. However, when the D4 sits on top of one orientifold,
the gauge group gets enhanced to Sp(1) ≃ SU(2). This describes the low-energy physics of
the brane system. The distance ϕ of the brane from the orientifold parametrizes the CB of the
SU(2) theory.
From the D4 viewpoint, the theory on the D8 branes is weakly coupled and its gauge group
represents a global symmetry. Strings stretching between the D4 and the D8 branes give rise to
hypermultiplets in the fundamental representation of SU(2). A mass for these hypermultiplets
is given by separating the D8 branes from the D4. On a generic point of the interval, when F
D8 branes are on top of the D4, the theory reduces at low-energies to U(1) with F electrons.
If, on the other hand, the branes sit at one orientifold, the theory is SU(2) with F massless
quarks. In the first case, we have an SU(F ) flavor symmetry, while in the latter the symmetry is
SO(2F ). This agrees with the gauge theory on the D8: when these are on top of the orientifold,
the theory on their worldvolume is special orthogonal, due to the orientifold projection.
The system has four mixed Neumann Dirichlet directions with all Neumann directions of the
D4 in common with the D8. The D4 behaves then as an instanton for the D8 worlvolume
theory [97, 263]. The moduli space of the D4 dissolved in the D8 woldvolume is the HB of the
five dimensional theory. It is then simple to read the Higgs branch of SU(2) theories with F
flavors: this is nothing but the moduli space of one SO(2F ) instanton in R4.
The presence of the D8 branes located at points mi, i = 1, ..., 16 on the interval I introduces a
background for the F0 field of type I’ (since C9 couples to the D8 branes)

F0 =
1

4π

{ 16 0 < ϕ < m1

16− 2i mi < ϕ < mi+1.
(5.94)

On the D4 worldvolume, the background generates a non-trivial CS term from the coupling
F0AF

2, see (2.24). The instantonic symmetry U(1)I is associated with the circle of compact-
ification. In particular, the gauge coupling 1/g2 of the theory on the probe brane in type I is
related to the string coupling as

1

g2
∼ RM2

s

gI
∼ Ms

gI′
(5.95)

with gI(gI′) the dimensionless type I (type I’) coupling constant, R the radius of S1 and Ms the
string scale. So, the coupling changes when the radius R does. This is nothing but the scalar
superpartner of the U(1) symmetry coming from the RR potential A1 of type I’ [264].
The D8 branes introduce also a non-trivial geometry for the D4 probe. Considering a configura-
tion with nL D8 at one orientifold, nR = 16− p− nL at the other orientifold and the remaining
ones p in the middle of the interval at mi, i = 1, ..., p, the background generated by the D8
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branes reads [250,264]

ds2 = H
−1/2
8 (−dt2 + dx21 + ...+ dx28) +H

1/2
8 dz2, e−ϕ = g−1

I′ H
5/4
8 (5.96)

where H8 is the usual harmonic function in (2.23) and z is the coordinate of the interval.
Expanding the DBI on the D4 brane, the effective gauge coupling reduces to the SU(2) one

1/g2eff (ϕ) =
1

g2
+ 8ϕ− nLϕ−

1

2

p∑

i=1

|ϕ−mi| −
1

2

p∑

i=1

|ϕ+mi|, (5.97)

being the CB parameter ϕ ≡ z
l2s
. Looking at (5.97), we see that for sufficiently large R, the

coupling remains finite. However, diminishing the radius to a value R0(g, nL,mi), the effective
coupling diverges at the right orientifold. Taking p = 0, nL > 8, this happens at

R0 = g2(nL − 8). (5.98)

If we place the D4 brane at the left orientifold, (5.98) tells us that the effective coupling diverges
at the point of the CB associated with the right orientifold, as expected for SU(2) theories with
F > 8.
Since 1

g2
∼ 1

gI′
, the effective coupling diverges when 1

gI′
∼ nL−8. This remains valid also if p ̸= 0.

If we place the D4 at the right orientifold, the theory is now SU(2) with F = nR < 8 flavors
and its bare gauge coupling is g̃ = geff (1/R). Rewriting the CB parameter as ϕ̃ = 1/R−ϕ ≥ 0,
the effective coupling reduces to

1

g̃2eff (ϕ̃)
=

1

g̃2
+ (8− F )ϕ̃. (5.99)

We see then that for R = R0 the bare coupling
1
g̃2

goes to zero and the theory at the orientifold is

strongly coupled.11 However, we know that the long-distance dynamics on the brane is always
a local QFT. Since its coupling goes to infinity, this theory must be at a fixed point of the
RG-flow. We can then ask what are the properties of these fixed points. Surprisingly, we can
show that at these points the global symmetry of the theory enhances to a larger group. To see
how this works, we should do a little step back and discuss type I/heterotic duality.
Type I is dual to SO(32) heterotic string theory and the parameters gI , RI of the first theory
map to the parameters gh, Rh of the latter as

R = RI = Rhg
−1/2
h , gI = g−1

h . (5.100)

Via T-duality between type I and type I’, we can map the parameter of the latter to the
parameter to the heterotic ones as

RI′ = α′R−1
h g

1/2
h , gI′ = g

−1/2
h M−1

s R−1
h . (5.101)

11If nL < 8, the opposite happens: the theory at the left orientifold becomes strongly coupled, while the
coupling of the theory at the right orientifold diverges at some point of the CB.
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The expectation values of the Wilson lines in heterotic string theory are mapped to the position
of the D8 branes of type I’. So, giving some expectation value to the Wilson lines, the SO(32)
heterotic gauge group is broken down to some subgroup. In type I’, the same result is obtained
by tuning in a specific way the positions of the D8 branes. However, since the heterotic theory
is compactified on a circle of radius Rh, some winding states can become massless at some
self-dual radius, leading to enhancement of the gauge symmetry. Let us choose a Wilson line
breaking SO(32) down to SO(14)× SO(18), at the self-dual radius

Rh =
√
α′/8 (5.102)

The left movers of heterotic string introduce an additional U(1)L. At the self-dual radius
(5.102), additional winding states become massless and enhance SO(14)×U(1)L to12 E8. To this
configuration, it corresponds a particular brane setup in type I’. To respect the SO(14)×SO(18)
algebra, 7 D8 branes are placed at an orientifold (say the left one), and the remaining 9 are
placed at the other. The corresponding dilaton profile can be read from (5.96). The additional
U(1)L coming from the left movers maps to the instantonic symmetry of the theory [266].
Although the two theories are dual to each other, it seems that their gauge symmetry does not
match at the self-dual radius of heterotic string. However, at this point, in type I’ the dilaton
diverges at the right orientifold. So the enhancement is not visible in type I’ (and neither in
type I), since perturbation theory breaks down. However, the duality tells us that, due to
the heterotic enhancement, the global symmetry of the five dimensional theory enhances from
SO(14) × U(1) to E8 [145]. We see then that SU(2) with 7 flavors has an SCFT in the UV
with global symmetry enhanced from SO(2F ) × U(1)I to E8. Note that this is a purely non-
perturbative effect: the flavor and the topological symmetry mix at the fixed point and they
both contribute to the enhancement.
The same analysis can be performed also for lower F . In the heterotic framework, we can lower
the value of F by giving different VEVs to the Wilson lines to break SO(14)×SO(18) down to
a subgroup. In type I’, this is equivalent to moving some D8 branes away from the orientifold.
The symmetry enhances to EF+1 for F < 8 when the radius is equal to (5.98) for nL = 16− F
or equivalently when the heterotic radius Rh =

√
α′
h(8−F )

8
[266,267]. This is precisely the point

at which the dilaton diverges and our description at the right orientifold is strongly coupled!
As in the F = 7 case, also for lower F the instantonic symmetry U(1)I and the flavor symmetry
mix at the fixed point, leading to the global enhancement.
When F = 0, no D8 brane is placed at the orientifold where the D4 sits and the low energy
theory is SU(2) SYM. We then see that this theory admits an SCFT at which the instantonic
symmetry U(1)I enhances to SU(2)I !
More exotic fixed points can be obtained by considering other expectation values for the Wilson
lines of the heterotic group. In particular, the moduli space of heterotic string theory admits
the existence of SU(18) and SO(34) enhancements. In type I’, this is equivalent to having more
than 16 D8 branes. In the first case, we have 18 D8 branes inside the interval, while in the
latter we have 17 branes at one orientifold. When this happens, the theory at the orientifold

12Note that, however, the enhancement is associated with the Wilson lines of heterotic string, so we cannot
infer the global structure of the gauge group. This motivated the analysis of [154,265].
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is believed to be non-Lagrangian with no global symmetry. This is denoted in literature as the
E0 theory. The existence of this non-Lagrangian theory can be inferred by looking at the phase
diagram of the E2 theory, i.e. the UV completion of SU(2) SYM with a single fundamental
flavor [212,245].
The Higgs branches of these gauge theories change at the strong coupling fixed point. This
becomes the moduli space of EF+1 instantons. This is surprising if we consider pure SU(2) SYM.
At the perturbative level, the Higgs branch is zero dimensional, since there are no perturbative
hypermultiplets. However, at the fixed point, this enhances to the moduli space of SU(2)

instantons C
2
⧸Z2

. This is possible due to the presence of massless instantons at the fixed point,

which are, in fact, responsible for the parametrization of the Higgs branch of the SCFT [179].
This matches the enhancement in the heterotic theory: this originates from winding states
becoming massless at the self-dual radius, which in type I’ are mapped to D0 branes. The
left U(1)L is mapped to the RR field which couples to the D0s [268]. These are nothing but
instantons for the D4 worldvolume theory, as we can see from the mixed Neumann Dirichlet
directions of the D0/D4 system. So, when winding states become massless, instantons on the
D4 worldvolume become light, and perturbation theory breaks down. Then, additional massless
vectors described by the D0 branes contribute to the global symmetry enhancement on the D8
worldvolume at the self-dual radius [266,267].
Notice that the previous reasoning does not hold in presence of a θ term. This can be introduced
in the construction as a background for the A1 field [249]. Superconformal index computations
[249], field theory results [208] and pq-web techniques [207] can be used to show that the global
U(1)I symmetry of SU(2)π in absence of flavor does not enhance to SU(2)I in the UV. The
corresponding fixed point is denoted as Ẽ1.

pq-web constructions

Below, we review the pq-web construction of five dimensional gauge theories. In sections 5.5.1
and 5.5.2, type IIB supergravity and its solitons, its bound states, and corresponding junctions
are discussed. In section 5.5.3, we construct gauge theories using brane webs. In sections 5.5.4
and 5.5.5, we give the tools to extract information about gauge theories from the pq-web, such
as their prepotential and their BPS states. In the last section, we add 7-branes to the webs and
we discuss how the global symmetries, the HB, and continuation past infinite coupling of the
gauge theories can be understood in terms of these improved pq-webs.

5.5.1 Type IIB supergravity, SL(2,Z) invariance and bound states

In this section, we review bound states and string junctions in type IIB string theory. The main
part of the analysis is based on [97,269,270].
Let us start by discussing branes in type IIB. As mentioned in Chapter 2, these are electric (or
magnetic) sources of the RR and NSNS fields of type IIB supergravity.
The RR fields of type IIB are C0, C2, C4, C6, C8, C10 and, we have D(-1), D1, D3, D5, D7, and
D9 branes in the spectrum. In particular, by Hodge duality, D7 (resp. D5) branes are magnetic
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sources of C0 (resp. C2).
The NSNS fields are the dilaton ϕ, the two-form field B2, and the metric gMN . The VEV of eϕ

is the type IIB string coupling gs. The fundamental strings F1 couples electrically to B2, while
NS5 branes couple to it magnetically.
Type IIB SUGRA possesses SL(2,R) invariance. This descends from self-duality of type IIB
string theory SL(2,Z). This is a weak-strong coupling duality, acting on the states of type IIB.
In supergravity, this reduces to SL(2,R), since we do not require charge quantization [97]. The
most general SL(2,Z) transformation reads

Λ =

(
a b
c d

)
, ab− cd = 1, a, b, c, d ∈ Z (5.103)

and the group has two generators, the S and T transformations

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
. (5.104)

This remains true also for SL(2,R), where now a, b, c, d ∈ R.
Under an SL(2,R) transformation in supergravity, fields transform as follows

� The axio-dilaton field τ ≡ C0 + ie−ϕ transforms as

τ → aτ + b

cτ + d
. (5.105)

In particular, S relates weakly coupled to strongly coupled string theory, since it sends
τ → − 1

τ
;

� The fields B2 and C2 combine into a doublet of SL(2,R) and transform as

(
B2

C2

)
→ Λ−T

(
B2

C2

)
; (5.106)

� The four form C4 is invariant under SL(2,R);

� The metric in the Einstein frame gE = e−ϕ/2gS is also invariant.

We can then write a manifestly invariant Lagrangian under SL(2,R) for supergravity. Defining
the covariant fields

M = eϕ
(
|τ |2 C0

C0 1

)
, G3 =

(
H3

F3

)
=

(
dB2

dC2

)
, F5 = dC4 −

1

2
C2H3 +

1

2
B2dC2 (5.107)

with transformation properties

M→ ΛMΛT ,

(
H3

F3

)
→ Λ−T

(
H3

F3

)
, F5 → F5. (5.108)
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This reads

SIIB =
1

2κ2

∫
d10x
√−gE

(
R +

1

4
Tr[∂µM∂µM]− 1

12
GT

3MG3 −
1

480
F 2
5

)
− ϵij

4κ2

∫
C4∧Gi

3∧Gj
3

(5.109)
with 2κ2 = (2π)7α

′4g2s is the Newton’s constant GN = κ2

8π
.

Since type IIB string theory is self-dual under SL(2,Z), BPS states organize in representations
of this transformation group. D3 branes are singlets of SL(2,Z), while branes that source
electrically or magnetically (B2, C2) with charges (pe, qe) and (pm, qm) respectively transform as

(
pe
qe

)
→ Λ

(
pe
qe

)
,

(
qm
pm

)
→ Λ

(
qm
pm

)
. (5.110)

We see then that an F1 string is mapped to a D1 brane and a D5 brane to an NS5 by S-duality.
These are said to be S-dual. Of course, we can act with a more general transformation on branes.
In particular, the most general SL(2,Z) matrix maps an F1 string into a state with (p, q) charges
under (B2, C2), with p, q relatively prime. The same happens for 5-branes. Due to self-duality,
these solutions are non-perturbative BPS states of type IIB string theory. This agrees with the
existence of bound states of p F1 and q D1 strings of charges (p, q) relatively prime, as well as
of p D5 and q NS5 branes [97,271] with relatively prime charges. Conventionally, bound states
of strings with p B2 and q C2 charges are called (p, q) strings, while bound states of p D5 and q
NS5 branes are called (p, q) 5-branes. Being all these states BPS, their tensions are related to
their charges by the BPS bound [207,270]

Tp,q = |p+ qτ |Ts, Tp,q = |p+ qτ |T(1,0) (5.111)

for a (p, q) string and a (p, q) 5-brane respectively. In (5.111) Ts is the string tension 1
2πα′ while

T(1,0) is the D5 brane tension g−1
s (2π)−5(α′)−3.

Finally, SL(2,Z) duality acts non-trivially on the D7 branes also. These are magnetically
charged under C0, so we expect them to transform under SL(2,Z). The resulting object, called
a [p, q] 7-branes, couples magnetically to both C0 and e−ϕ.
As we will see later, these branes are peculiar: being magnetically charged under C0 and ϕ, they
introduce branch cuts for the axio-dilaton via their monodromies, together with a non-trivial
metric [211,272–277].

5.5.2 String junctions and brane webs

From (p, q) strings (resp. 5-branes), we can construct more complicated BPS states, called
string junctions (resp. brane webs). These are states defined by a set of (pi, qi), i = 1, ..., n
strings (resp. 5-branes) that join together at a single point. To see under which conditions
these states preserve supersymmetry, we first review which supercharges are preserved by (p, q)
strings (resp. 5-branes) in general.
Let us focus on a generic Dp brane aligned along the first p + 1 directions x0, ..., xp. This is a
1/2 BPS state preserving 16 out of 32 type IIB supercharges. The Majorana-Weyl spinors ϵL,R
defining the preserved supersymmetries ϵLQ

L + ϵRQ
R satisfy the equation [271]

ϵL = β⊥ϵR (5.112)
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where β⊥ is the product of all the gamma matrices γ0...γp aligned along the Neumann directions
of the brane. For example, the β⊥ of a D1 extended along 01 reads β⊥ = γ0γ1. The condition
(5.112) halves the number of conserved supercharges of type IIB. When multiple Dp branes
are present, only the supercharges compatible with all the conditions (5.112) associated with
each brane are preserved. In particular, it can be shown that some supersymmetry remains
whenever the mixed Neumann Dirichlet boundary conditions #ND are a multiple of four [271].
In particular, 8 supercharges are conserved if #ND = 4, 8 and 16 if #ND = 0.
States charged under the NSNS field B2 do not preserve the supercharges (5.112). In fact, the
condition for both F1 strings13 and NS5 branes is modified as

ϵL = β⊥ϵL, ϵR = −β⊥ϵR. (5.113)

We see that when a Dp brane and an F1 (resp. NS5 brane) are present, 8 supercharges are
preserved if #ND = p+1 (resp. #ND = 7−p). Then, for example, the following system preserves
8 supercharges (taking p < 5): an F1 string along 01 and a Dp along 02...p, a D5 along 012345
and an NS5 along 012346, or a generic Dp brane ending on an NS5 along 012346 with p common
Neumann directions. Denoting (x1, x2) ≡ (x, y), we see that an F1 string perpendicular to a
Dp brane in the (x, y) plane preserves eight supercharges. We can then wonder if an F1 string
that terminates on this brane perpendicularly, forming a junction, preserves this same amount
of supersymmetry.
First, let us notice that the F1 can terminate on a Dp brane only if its charge can be absorbed by
some field configuration on the brane worldvolume [269]. This is dictated by charge conservation
and it is a general feature of a brane ending on another brane: a brane can terminate on another
if the latter has a worldvolume field able to compensate for the charge of the former.14 In our
case, the endpoint of the string on the Dp brane is a charged particle for the gauge field Aµ on
the Dp worldvolume. A Coulomb field is generated by the charge and reads

A0 =
Q

rp−2
(5.114)

where r = xmxm with m = 2, ..., p is the radial coordinate associated with the spatial direction
of the Dp woldvolume. In particular, the endpoint of the string is located at r = 0. The
behavior of the Coulomb potential at infinity then depends only on the codimension of the
string endpoint in the worldvolume of the Dp brane.
A background of the form (5.114), however, is not a BPS solution of the equations of motion of
the worldvolume theory. The background is BPS only if also a bosonic field X1(r) parametrizing
the position of the brane in the transverse direction y is turned on. The BPS equation for this
field reads

∇2X1 = Qδ(r) (5.115)

where ∇2 represents the Laplacian in p dimensions. This leads to a bending of the Dp brane as

X1 =
Q

rp−2
. (5.116)

13Actually, for an F1 string ϵR = ±β⊥ϵR, where the sign depends on its orientation.
14A simple way to verify the endability comes from T- and U-duality. If our brane system is dual to a system

of a string ending on a Dp brane, then the first brane is endable on the latter [269].
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Note that Q is quantized in the worldvolume gauge theory as

Q = ng2SYM = ngsl
p−3
s , n ∈ Z (5.117)

so, in the gSYM → 0 limit, the bending is suppressed [278].
The same reasoning applies in the case of a Dq brane ending on a D(q+p) brane. The D(q+p)
brane is bent by the Dq endpoint and the bending depends only on the codimension of the end-
point, which is still p. In general, the X2 profile in (5.116) receives quantum corrections [279]
in the vicinity of the endpoint. However, at large r, the bending (5.116) correctly describes the
asymptotic shape of the D(p+q) brane.

Let us now focus on the case of an F1 string ending on D1 brane. Let us take gs = 1 for
definiteness. The codimension of the string endpoint is one. The one dimensional Laplace
equation

∇2x = δ(y) (5.118)

describes how the D1 brane bends. The most general solution reads

x =
1

2
|y|+ cy + d. (5.119)

We can tune c and d to have a D1 brane asymptotically aligned along y in the limit y → −∞.
The bending reduces to

x =
1

2
|y|(1 + sgn(y)) (5.120)

and it is shown in figure 5.2. For negative y, we see the F1 string ending perpendicularly on

x

y

F1

D1

(1,1)

Figure 5.2: Bending of D1 brane by an F1 string.

the D1 brane. For positive y, however, the D-brane bends at an angle π/4 with respect to the
x axis. This apparently violates supersymmetry. However, the D-brane bent at 45° is not a
D1. Indeed, the F1 and the D1 actually merge and become a (1, 1) bound state. The whole
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system is then compatible with supersymmetry. Indeed, a (p, q) string along 0x, in presence of
a non-trivial axio-dilaton τ , preserves the following supercharges [270]

ϵL + iϵR = eiϕ(p,q,τ)γ2...γ9(ϵL − iϵR) (5.121)

where ϕ(p, q, τ) = arg(p + qτ). So, when we consider a (p, q) string at angle ϕ(p, q, τ) with
respect to x together with the F1/D1 system, the following supercharges

ϵL = γ2...γ9ϵL, ϵR = −γ2...γ9ϵR, ϵL = γ1γ3...γ9ϵR (5.122)

are still preserved. These are the same eight supercharges preserved originally by the F1/D1
system. In particular, any system of (pi, qi) strings oriented along a (pi + qiC0, qig

−1
s ) vector

preserves the same supercharges as the F1/D1 system. In the τ = i, (p = 1, q = 1) case, the
angle is 45°. So, the junction preserves eight supercharges!
Notice, moreover, that SUSY forbids any possible corrections to the bending (5.120). So the
formula remains valid also close to the intersection point [245].
More generally, we see that N (pi, qi) strings oriented along (pi + qiC0, qig

−1
s ) vectors preserve

1/4 supercharges by virtue of (5.121). Many strings emanating from the same point with this
orientation and respecting charge conservation form a BPS junction and this happens when

N∑

i=1

pi =
N∑

i=1

qi = 0, (pi, qi) ∥ T⃗pi,qi ≡ (pi + qiC0, qig
−1
s ). (5.123)

These conditions can be recast in an equation of conservation of ”momentum”

N∑

i=1

T⃗pi,qi = 0 (5.124)

with T⃗pi,qi = (pi + qiC0, qig
−1
s ) the ”momentum” associated to the (pi, qi) brane. Since the pre-

served supercharges in (5.122) depend only on the orientation of the strings at the junction, we
can connect different junctions respecting the previous rules without breaking supersymmetry.
The corresponding systems are denoted as string networks, see figure 5.3.
The same reasoning applies also for 5-branes junctions. A D5 can end on an NS5 and the
bending of the NS5 caused by the D5 is linear. This can still be interpreted as the forma-
tion of (1, 1) 5-brane bound state. Any corrections to this bending would break the remaining
SUSY [245]. Connecting different 5-brane junctions we can construct brane webs (denoted also
as pq-webs), namely the equivalent of string networks for five branes. When each junction of
the web conserves the momentum

N∑

i=1

T⃗pi,qi = 0 (5.125)

this is 1/4 BPS.

In the next section, we see how using these webs we can embed five dimensional gauge the-
ories in type IIB and how information on these theories can be extracted.
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2

Figure 5.3: Example of string network at τ = i.

5.5.3 Gauge theories from brane webs

In the previous section, we saw how to construct 1/4 BPS webs of 5-branes. Their low-energy
physics should be described by the open strings ending on them. In particular, some of the
branes composing the web are finite dimensional. The low-energy dynamics is then expected to
be described by a five dimensional theory living on the finite branes. This idea parallels general
brane constructions, such as Hanany-Witten (HW) constructions [280]. For these reasons, in
this section, we first review the HW construction of three dimensional gauge theories, and then
we adapt the acquired knowledge to understand constructions of five dimensional theories via
brane webs.

The Hanany-Witten construction was first introduced in [280] to describe N = 4 three di-
mensional theories. These were described through systems composed of D3 branes along 012x
direction, NS5 branes along 01234y, and D5 branes along 012789, where (x, y) ≡ (x5, x6). In the
(x, y) plane, the D3s (resp. NS5s) are extended along x (resp. y), while the D5s are pointlike.
All the branes in the system have three common Neumann directions. Moreover, it is possible
to show that the system preserves eight supercharges.
The worldvolume theory on the D3 brane, in absence of other branes, is N = 4 SYM in 4d.
However, this is endable on the D5s/NS5s. In the following, we will consider the classical gs = 0
limit, to discard bending effects. A D3 brane can be then suspended between two straight
5-branes of generic type. When this happens, the theory on its woldvolume gets modified as
follows.
Firstly, the fields on the D3 branes are subject to boundary conditions given by the 5-branes.
Scalars parametrizing the position of the D3 brane in the 34y (resp. 789) directions have a
fixed value z⃗ (resp. w⃗) at the endpoint of the D3 brane at D5 (resp. NS5) position. As a
consequence, these scalars are subject to Dirichlet boundary conditions at the endpoints, while
the remaining ones are subject to Neumann boundary conditions. These breaks supersymmetry
and the woldvolume theory preserves only eight supercharges, as expected. Analogously, the
gauge fields FMN withM,N = 0, 1, 2, x satisfies Neumann (resp. Dirichlet) boundary conditions
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at the endpoint where the D3 end on the D5 (resp. NS5) brane. These read [281]

Fµν

∣∣
z⃗
= 0 (resp.Fµx

∣∣
w⃗
= 0). (5.126)

Boundary conditions on fermions are obtained from the remaining supersymmetry.
Secondly, the theory on the worldvolume of the D3 is three dimensional for low enough energies,
since the x direction is compact of length L. In the reduction, scalars satisfying Dirichlet bound-
ary conditions acquire a Kaluza-Klein mass ∼ 1

L
and can be integrated out at low-energies. On

the other hand, scalars satisfying Neumann conditions survive the reduction. The same thing
happens when we deal with the gauge field. We can then distinguish three cases: when the D3
is suspended between two NS5 branes, two D5 branes, and a D5 and an NS5 one.
In the first case, a gauge boson and three scalars survive the reduction. Since the theory is
N = 4 SUSY in 3d, the quantum field theory on the D3 worlvolume is N = 4 U(1) SYM. When
N D3 branes are suspended between the two NS5 and are on top of each other, the gauge group
theory enhances to U(N).
When a D3 is suspended between two D5 branes, three scalars survive, together with the third
component of the gauge field Ax. This is the content of a N = 4 hypermultiplet.
Finally, when a D3 is suspended between a D5 and an NS5 brane, all scalars and gauge bosons
are lifted and the three dimensional theory is gapped with a unique vacuum [280].

The same analysis applies to 5-brane webs in the gs = 0 limit [207, 282]. When a D5 is sus-
pended between two NS5, a single scalar survives the reduction. This parametrizes the position
of the D5 in the worldvolume of the NS5 since all other transverse directions are Dirichlet for
the NS5 branes. Moreover, the gauge field in the tangent directions survives the reduction and
the five dimensional content of the theory reduces to a single vector multiplet. When N D5
branes are suspended between the NS5, the five dimensional theory is U(N) N = 1 SYM. The
gauge coupling on the D5 brane is dimensionful and proportional to the length Lx of the com-
pact direction x, namely 1

g25d
= Lx

gsl2s
. This is irrelevant, as expected for five dimensional gauge

theories. Quantum corrections modify the previous system. The D5 bends the NS5 on which it
ends to preserve supersymmetry and charge conservation. When a single brane is considered,
all its scalars are lifted by the bending, since the D5 is stuck at the two junctions and cannot
move, see figure 5.4. As a consequence, the vector multiplet is lifted [245]. On the contrary,
when the gauge group is non-Abelian, the brane web has N − 1 moduli, as we will see in the
next section. So the theory on the D5 reduces to SU(N). This holds also for a generic stack
of (p, q) 5-branes, since, as we mentioned in section 5.5.1, SL(2,Z) duality relates the theory
on these branes to the SU(N) theory living on a stack of N D5 branes. The theory on these
branes does not decouple at strong string coupling. Indeed, this can be seen naively from the
fact that at τ = i the NS5 brane mass and the gauge coupling of the corresponding field theory
are the same as those of a D5 brane. In particular, if the NS5 are compact themselves, the gauge
coupling on an NS5 stack becomes proportional to their length Ly. So the couplings on the two
different stacks are of the same order, and we then expect both stacks to contribute to the field
theory dynamics. As we will see, this aspect is crucial to understanding the electric/instanton
charge mixing in the pq-web context [207].
The theory on the 5-branes reduces to a five dimensional gauge theory only at low enough
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gs → 1

x

y

D5

(a) (b)

Figure 5.4: A D5 brane suspended between two NS5 before (a) and after (b) quantum correc-
tions.

energies. Indeed, for this to hold gravity and the KK modes coming from the compactification
of the theory need to decouple. This happens for energies smaller than the Planck massMp and
the KK modes mass ∼ 1

Lx
, 1

Ly
, where Lx, Ly are the largest length scales in the configuration.

So in the low energy limit

E ≪Mp, E ≪
1

Lx

,
1

Ly

(5.127)

the physics of the web is described by a five dimensional N = 1 gauge theory.
We have now all the tools to describe five dimensional gauge theories using pq-webs. We start
building the simplest possible five dimensional gauge theory, namely pure SU(2) SYM. This
will be our playground to construct more complicated theories, as we will do next.

SU(2) example

Let us start from the web in figure 5.5(a). Fix, for definiteness, τ = i. The web has two three-
junctions of a (1, 1), (1,−1), and two D5 branes which are suspended between the junctions
themselves. Having in mind the previous discussion, it follows that the theory on the D5 branes
is five dimensional pure SU(2) SYM. The corresponding gauge coupling 1

g2
is proportional to

the length of the compact direction along which the D5 extends. Changing this length changes
the gauge coupling of the theory. In the process, we move the (1, 1) and (1,−1) branes, as we
can see in figure 5.5(b). Being these branes semi-infinite the amount of energy necessary to
move these objects is infinite from the five dimensional point of view. This agrees with the field
theory interpretation of this length: the gauge coupling represents an external parameter of the
theory, not a modulus.
All other moves of the semi-infinite branes are either trivial or not allowed by supersymmetry.
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1/g2

2ϕ
1/g2 1/g2

(a) (b) (c) (d)

Figure 5.5: The SU(2) theory (a), its global deformation (b), its fixed point (c) and its moduli
space (d).

This matches the field theory expectation: the theory has a rank one global symmetry, to which
we can associate a single massive parameter 1/g2.
Note that in the web we can send 1

g2
→ 0 by collapsing the three junctions into a four junction,

see figure 5.5(c). This non-trivial four junction represents the SCFT associated with the SU(2)
SYM theory, namely the E1 theory. The strong coupling fixed point of this theory is then easily
accessible in this construction.

We now want to describe the CB of the theory in the pq-web context. Going to the CB is
naturally interpreted in the web by separating the D5 branes in the vertical direction y. In this
way, the states of the strings connecting the two D5s become massive, and the SU(2) gauge
symmetry is broken to its Cartan. However, this operation by itself is not allowed by super-
symmetry. What we can do, instead, is to separate the D5 at the cost of producing NS5 branes
in the process, as we see in figure 5.5(d).
The resulting web is supersymmetric. In the process, we moved only finite branes. This cor-
responds to a modulus from the field theory point of view. So, the opening of figure 5.5 can
be interpreted as going on the CB of the SU(2) theory. The non-Abelian symmetry is restored
only when the D5 branes are on top of each other, so the distance between the two branes is
proportional to the CB parameter. In particular, the fundamental string stretched between the
horizontal D5s describes a vector multiplet W becoming massive, with mass MW = |ϕ|. The
mass of the lowest excitation of the string is

mW = LyTs. (5.128)

Then, we reproduce the field theory result by identifying LyTs = ϕ. In the following, we will
measure lengths of branes web in units of string tension, so Ly = ϕ and Lx = 1

g2
.

In the previous analysis, we kept the axio-dilaton fixed to i and we matched the parameter of
the field theory with lengths of the brane web. We can ask if this is too restrictive. It turns
out [207] that the axio-dilaton is in general a redundant parameter for the low-energy theories
of brane webs.15 This is compatible with the absence of possible additional independent param-
eters for the gauge theory. So, from now on, we will always fix τ = i.

15Namely, we can always compensate a change of the string coupling with a change of lengths of the web to
maintain the same physical parameters mW ,mI fixed. The same happens with a non-zero axion [207]
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Let us comment on the realization of the SU(2)R symmetry and SL(2,Z) duality in the pq-web.
We know from section 5.3.2 that any N = 1 SUSY theory preserves an SU(2)R R-symmetry.
In the pq-web context, the symmetry is realized geometrically: this is nothing but the SO(3)
isometry of the three Dirichlet directions (x7, x8, x9) common to all the branes. This agrees
also with our previous interpretation of the pq-web deformations: all operations that we did
acted on the plane and so they preserved the R-symmetry, as expected from the changing of an
external parameter or a CB modulus. In the same vein, from the discussion of section 5.4.2, we
expect the Higgs branch to be described by some deformation involving finite branes outside
the (x, y) plane. We address this issue later when we add 7-branes to the web.
String theory is SL(2,Z) self-dual. An SL(2,Z) transformation Λ acts on both τ an the 5-
branes. Since, to preserve supersymmetry, we assigned to a (p, q) brane a (p, q) direction in
the (x, y) plane, we see that the transformation reduces to a coordinate transformation on the
(x, y) plane (since we can always set τ = i after). So the duality maps pq-webs into pq-webs
via a coordinate transformation

[
x′

y′

]
= Λ

[
x
y

]
, Λ ∈ SL(2,Z). (5.129)

So, for example, applying S duality to our SU(2) pq-web at a generic point on the CB, we
obtain another SU(2) pq-web, with different parameters. We will comment extensively on this
map in the following sections.
Since SL(2,Z) is a symmetry of type IIB string theory, the physics of the pq-webs mapped by
the duality should be related. In particular, moduli and parameters are mapped between the
two theories. This establishes UV dualities between five dimensional gauge theories, as we will
see in section 5.5.6.

5.5.4 Deformations

With the SU(2) discussion in mind, we can now generalize the previous analysis to more com-
plicated pq-webs.
We denote generically as deformations of a pq-web any deformation of the web which respects
supersymmetry and does not change the charges or the orientation of the external branes (like
instead SL(2,Z) duality does). These deformations can change the position of the external legs.
If this happens, the deformation is denoted as global, while if not as local. The two types of
moves have the following properties.

� Global deformations:
A global deformation changes the asymptotics of the web, moving the external semi-
infinite branes. From the viewpoint of the five dimensional theory, this is associated with
a change of a parameter. Since all parameters in a supersymmetric theory are related
to the Cartan of the global symmetry group G, the number of independent deformations
equals the rank of G. In the E1 case, for example, we have a SU(2)I topological symmetry
to which we associated a single parameter 1

g2
.
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This gives us a way to calculate the rank of the global symmetry from the number of
independent global deformations of the web nG. Taking a pq-web with E external branes,
their number reads

nG = E − 3. (5.130)

Note that this formula holds both at weak and strong coupling: the rank of the symmetry
remains the same along the RG-flow and so does the number of external branes.

� Local deformations:
Local deformations involve only finite branes. They are CB moduli from the viewpoint
of the five dimensional theory. Their number nL is then equal to the rank of the gauge
group.16

Let us take a pq-web with I internal edges and V vertices and with a single connected
component. The number of local deformations reads

nL = I − V + 1 = F (5.131)

where F is the number of faces of the web and in the second equality we used the Euler
formula I − V + 1 = F . Indeed, in the SU(2) case, the diagram has a single face, in
agreement with the CB being one dimensional. Again, this holds both for SU(2) SYM
and for the E1 theory, which inherits the SYM Coulomb branch.

Let us consider some examples.
The brane web describing SU(N)k gauge theories with |k| ≤ N is shown in figure 5.6. The web

...

(0,1)(k − N,1)

(−k, − 1)
(N, − 1)

Figure 5.6: SU(N)k theory.

has nL = N − 1, nG = 1, as expected from a theory of rank N − 1 and global symmetry U(1)I .
All these theories admit a fixed point, due to the convexity condition (5.93).
All the webs (up to SL(2,Z) duality) of SU(2) gauge theories with a single mass parameter are
shown in figure 5.7. The θ angle is the only parameter that distinguishes the three theories.

16Actually, this holds if the theory is Lagrangian. As we will see later, some non-Lagrangian theories can
admit a CB, which cannot be interpreted in terms of VEVs of a scalar field of a vector multiplet.
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(a) (b) (c)

Figure 5.7: SU(2) theories with θ angle 0 (a), (c) and π (b)

In particular, the web (a) corresponds to SU(2) SYM, while (b) corresponds to SU(2)π SYM.
The former (resp. latter) diagrams can be obtained from the E2 diagram by integrating out the
quark with a positive (resp. negative) mass. The diagram (c) instead can be shown to be an
SU(2) SYM theory, as that corresponding to web (a) [207,211,283]. We will come back to this
point when discussing symmetry enhancement and HW transitions in section 5.5.6.

Determining nL can be subtle when one sits at the origin of the CB. Let us take the example of
the E0 junction in figure 5.8 and one of the junctions in figure 5.4(b). Both are three junctions
of branes. However, in the first case, the junction can be opened, while in the second case the
junction cannot be resolved and so we cannot associate a CB to it. The theory of figure 5.8

(2, − 1)

(1, − 2)

Figure 5.8: E0 theory.

is rather peculiar. This has no parameters, so the web has no gauge theory interpretation and
no global symmetry. However, it has a CB of dimension 1, since nL = 1. This theory can be
identified with the E0 theory we discussed above. In particular, this can be obtained from a
series of deformations of the E2 pq-web [245], as expected from the field theory analysis of the
E2 fixed point [212]. The theory is believed to be non-Lagrangian. The analysis of its BPS
spectrum will be elucidated in the next section.
A simple way to understand the resolvability of a web comes from the analysis of its grid dia-
gram. Although this technique is rather powerful, we will not discuss it in detail and we refer
the reader to [207] for a clear description of this method.
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5.5.5 BPS Spectrum

The BPS spectrum of gauge theories can be studied in detail thanks to brane web constructions.
This allows us to understand the phenomena of Higgs branch and symmetry enhancements in
the pq-web context, as we will see in the next sections. Here, we first review the BPS spectrum
of the SU(2) theory and we introduce string networks in the context of the pq-web. Then,
we generalize the analysis to more complicated webs. Finally, we introduce flavors and discuss
pq-webs of quiver gauge theories, analyzing their BPS spectrum.

SU(2) case

We already mentioned in section 5.5.3 that massive W bosons are realized in the SU(2) pq-web
as fundamental strings stretching between the two D5 branes at some point of the CB. The
mass of their lowest excitation is equal to the CB parameter |ϕ|. However, this is not the only
BPS state of the SU(2) theory. From the field theory analysis, we know that also instantons
and monopole strings belong to the BPS spectrum and we expect them to be described in the
pq-web construction. Indeed, in the following, we will construct all these states in terms of
strings and branes of type IIB string theory.
The simplest case comes from massive vectors. An F1 string stretching perpendicularly between
the two D5 describes a massive W boson. Looking at its preserved supercharges, this string
breaks 1/2 of the pq-web supersymmetries. This is then a 1/2 BPS object of the five dimensional
theory, as expected. Analogously, D1 branes stretching perpendicularly between NS5 branes
are responsible for the enhancement of the gauge theory on the NS5 worldvolume [97]. As the
W bosons, these are 1/2 BPS objects. Moreover, they can be interpreted as instantons of the
five dimensional theory. This can be understood by looking at the mixed ND direction between
the D1 and the D5: these are four, all Neumann for the D5. We see that the D1 can be then
interpreted as an instanton of the five dimensional gauge theory.17 At the origin of the CB,
instantons of the gauge theory have an additional modulus related to their size, as mentioned
in section 5.4.3, leading to a continuous spectrum. Away from the origin, the gauge symmetry
is Abelian and the instantons are pointlike and singular. Looking at the D1, a single compact
modulus remains on the CB and parametrizes the position of the D1 inside the face of the web.
Then, these states are vector multiplets of the five dimensional theory18. Indeed, S duality maps
an F1 stretching between two D5 with a D1 stretching between two NS5 [207]. The mass of
this state, calculated from the tensions of branes, is equal to the central charge of an instanton
particle of charges (ne = 2, I = 1)

MI = 2ϕ+
1

g2
. (5.132)

In particular, the electric charge of the instanton comes entirely from the mixing: the D1 has
no CP factor associated with the D5 branes, so it is a singlet of the SU(2) gauge group. Its
electric charge comes entirely from the CS term induced on the CB. From the pq-web point
of view, the mixing can be interpreted as a contribution to the electric charge coming from all

17Actually when C0 ̸= 0 there are some additional subtleties, see [207].
18Also the W boson possesses the same zero mode.
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the 5-branes composing the face. Whenever the D1 or the F1 end on a D5 or an NS5, to each
endpoint we associate a contribution ne = 1 to the total electric charge of the state.
Taking the W boson and the instanton, we can ask if there exist also BPS bound states composed
of a W bosons and b instantons, namely with charge (ne = 2a + 2b, I = 2b). From the central

charge, their corresponding mass is
∣∣∣(2a+ 2b)ϕ+ 2b 1

g2

∣∣∣. This is at threshold with the sum of the

masses of their constituents, so it is not clear if these states are stable or not.19 However, bound
states of this kind have a simple interpretation in the brane web context: these are junctions of
F1 and D1 strings. Due to charge conservation, these bound states should end on the various
branes composing the faces of the web. So, to these states, we associate a string junction of a
F1 strings and b D1 branes. The basic example with a = 1, b = 1 is shown in figure 5.9(c). The
state preserves the (p, q) charges since any (p, q) string is ending on the corresponding (p, q)
5-branes and it is also 1/2 BPS since it breaks half of the supercharges preserved by the brane
web. Moreover, the mass of the junction matches the central charge formula. Using the refined
techniques of [280, 284], it is easy to show that actually only string junctions associated with
states of charges (ne, I) = (2n,m) for n,m ≥ 1 or n = 1,m = 0 are actually BPS. This is
a strong result: thanks to the pq-web, we gained information about the stability of the non-
perturbative BPS states of SU(2) SYM!

(a) (b) (d)(c)

Figure 5.9: BPS states of SU(2) SYM. W boson (a), instanton (b), generic bound state (c) and
magnetic string (d).

Finally, we can also construct magnetic strings. These are described by D3 branes wrapping the
face of the web, see figure 5.9(d). Indeed, a D3 brane is endable on both an NS5 and D5 brane
and preserves 1/2 of the original supersymmetries of the web. Moreover, it has two Neumann
directions in common with the whole brane system, so it is a string from the five dimensional
point of view. This is BPS and carries charge, so it is actually a five dimensional monopole
string. Its tension equals the area of the wrapped face (in units of T 2

s ). This matches the
expected formula

Tm = 2ϕ

(
1

g2
+ 2ϕ

)
=
∂F
∂ϕ

(5.133)

coming from the SU(2) prepotential20

F =
1

g2
ϕ2 +

4

3
ϕ3. (5.134)

19This is a feature of five dimensions since the central charge Z is real.
20Here, we rescaled the value of 1/g2 to adapt to the conventions of [155].
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General case

The previous analysis can be generalized to more complicated webs.
A generic 1/2 BPS bound state is described by a string junction ending on some internal branes.
In the pq-web, any (p, q) string is oriented in the (x, y) plane along a (q,−p) vector, in order
to end on a (p, q) 5-brane perpendicularly and to respect supersymmetry. Each endpoint of
the junction ending on either internal branes contributes to the electric charge of the BPS state
associated with the corresponding face of the web. This is the result of the mixing of all Abelian
charges of the branes composing the web. On the other hand, the state is in a non-trivial repre-
sentation of the gauge group only when the endpoints lie on the D5 branes realizing the gauge
theory. Finally, its mass can be calculated from the tension of the junction, and its charges
are obtained by comparing the corresponding lowest mass excitations with the central charge
formula.

D3 branes wrapping faces are associated with monopole strings of the five dimensional the-
ory. Labeling each face of the web by a = 1, ..., N with N the total number of faces, we
associate a CB parameter ϕa to the a-th face. The tension Ta of the brane wrapping it equals
the derivative of the prepotential with respect to the ϕa CB parameter

Ta =
∂F
∂ϕa

(5.135)

The prepotential of the theory can be then obtained directly from the geometric lengths of the
web!

As an example, we can now construct the BPS spectrum and obtain the prepotential of the E0

theory. Although there is no gauge theory parameter, the web has a modulus to which we can
associate a charge coming from the endpoints of string junctions on the internal branes. The
basic BPS state is identified by the string junction of figure 5.10. This has ne = 3 and it is the

3ϕ

Figure 5.10: BPS states for E0 theory.

state of lowest charge. This is again the signal of a lack of gauge theory interpretation since no
BPS junctions can be associated with massive W bosons on the CB (these would have ne = 2).
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We can also obtain the prepotential of the theory by looking at the D3 brane wrapping the face
of the web. The tension of this string and the corresponding prepotential read

T =
9

2
ϕ2 → F =

3

2
ϕ3 (5.136)

This matches the prepotential obtained in field theory from the decoupling of the E2 theory
in [246].

Adding flavors: hypermultiplets

Let us now consider gauge theories with fundamental hypermultiplets. As for HW brane setups
[280], semi-infinite D5 branes introduce flavors in the field theory described by the web [207].
Strings connecting these branes and the finite length ones hosting the gauge theory have CP
factors associated with the fundamental representation of both gauge groups. Their lowest
excitations are hypermultiplets. The distance of the semi-infinite branes from the gauge theory
branes corresponds to a mass for the flavors. When F semi-infinite branes are considered, strings
ending are in the fundamental representation of their gauge group, which reduces to a flavor
symmetry from the five dimensional point of view.
Let us consider the simplest possible case, SU(2) with one flavor. The theory has an SO(2)F ×
U(1)I global symmetry. The mass of the quark m represents the parameter associated with
the flavor group SO(2)F . The pq-web at the origin of the CB is shown in figure 5.11(a). The

(b)(a)

m

a

b

2ϕ

(c)

a

2ϕ

Figure 5.11: The pq-web at the origin of the CB with a mass m turned on (a). An electron and
an instanton can be constructed as an F1 string between two D5 branes or a D1 between two
NS5 branes respectively (b). No quark state can be constructed in terms of strings (c).

central charge reads

Z = neϕ+
I

g2
+ qfm (5.137)

where qf is the charge of the state under the flavor group. On top of the usual W -boson
(ne = 2, I = 0, qf = 0), also flavors are BPS states of the theory. At a generic point on the CB,
a quark splits into two electrons of opposite charge ne = ±1 with physical masses

M± = |ϕ±m|. (5.138)
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We can then ask how these quarks are described in the pq-web. First, notice that the bottom
a and the upper b edges of the web are fixed to

a = 1/g2 + 2ϕ−m/2, b = 1/g2 + ϕ+m/2 (5.139)

in order to reproduce the SU(2)+1 flavor prepotential for |m| ≤ ϕ.
If |m| ≤ ϕ, we see that one electron is realized in figure 5.11(b) as an F1 string connecting
the gauge and the flavor branes. Its mass matches M+, as expected from the BPS formula.
On the other hand, the other quark cannot be constructed as a string in the pq-web, since no
F1 string connects the upper gauge brane with the flavor one respecting supersymmetry21, see
figure 5.11(b).
When m > ϕ as in figure 5.11(d), both flavors cannot be realized as string junctions.
As we will see later, this problem is solved by introducing 7-branes in the pq-web.
From the web, we immediately recognize an instanton coming from a D1 stretching between
two NS5 figure 5.11(b). Looking at its mass

M =
∣∣∣ 1
g2

+ 2ϕ− m

2

∣∣∣ (5.140)

we see that the instanton, of charges ne = 2, I = 1, acquires also a flavor charge qf = −1/2. As
we will see later, this comes from mixing between flavor and instantonic symmetries.

Quivers

The semi-infinite D5s associated with the flavor symmetry can be made finite by ending them
on additional junctions. In this way, the theory on their worldvolume becomes effective five
dimensional, and the flavor symmetry is gauged. This realizes a five dimensional quiver theory,
as happens for the SU(2) × SU(2) theory in figure 5.12(a). The original flavors become bi-
fundamental fields arising from strings connecting D5 branes associated with the two different
gauge groups. Let us focus, for simplicity, on the SU(2)× SU(2) case. From the viewpoint of
the first node described by the D5 branes on the left, the branes of the other node introduce
two flavors, associated with an SO(4) flavor symmetry. However, this symmetry is partially
gauged by the SU(2) group of the second node. The two parameters associated with the SO(4)
symmetry are then the CB parameter of the second node ϕ2 and the mass of the bifundamental
field mB, coming from separating vertically the two D5 stacks. The first deformation is shown
in figure 5.12(b) and the latter in figure 5.12(c). So, to a single bifundamental corresponds an
SU(2)BF symmetry at mB = 0, which is broken to U(1)BF when mB ̸= 0.
As in the E2 case, only for some values of the CB parameters ϕ1, ϕ2 bifundamentals are realized
as strings of the pq-web, see figure 5.12(b). When this is so, to each endpoint of the string, it
is associated an electric charge (n1

e, n
2
e) for the Cartan of each node.

An additional flavor charge qB is associated with the U(1)BF symmetry. The central charge
then reads

Z = n1
eϕ1 + n2

eϕ2 + qBmB. (5.141)

Finally, the perturbative prepotential of the quiver can be obtained by looking at the tensions

21This state can be realized as an instanton living in the (1,−1) brane woldvolume [207].
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(a) (b) (c)
Figure 5.12: SU(2)× SU(2) quiver theory (a), its bifundamentals on the CB with no mass (b)
and the bifundamental at the origin of the CB with mB ̸= 0 (c).

of the D3 branes wrapping the various faces of the brane web. For the brane web in figure 5.12,
this reads

F =
1

g21
ϕ2
1 +

1

g22
ϕ2
2 +

4

3
(ϕ3

1 + ϕ3
2)−

1

12
|ϕ1 ± ϕ2 ±mB|3. (5.142)

5.5.6 pq-web with 7-branes

As we saw above, pq-web constructions are useful to understand many perturbative and non-
perturbative properties of five dimensional gauge theories. However, some others are missing in
this formulation.
First of all, from the pq-web, we can only extract the rank of the global symmetry group. So,
the enhancement at the UV fixed point is in general difficult to analyze. In some cases, as for
SU(2) SYM in the configuration in figure 5.7(c), this can be inferred from the superposition of
the external branes [207]. Alternatively, this can be seen looking at the degeneracy of the BPS
states at a point of the CB of the SCFT [245]. However, these information are hard to extract
in more general cases.
Moreover, all local deformations of these webs that we analyzed preserve SU(2)R, since they
act on the (x, y) plane. So, a parametrization of the Higgs branch of the theory in terms of
local deformations is missing. All these problems are solved by the introduction of 7-branes.
A generic [p, q] 7-brane transverse to the (x, y) plane preserves the same supercharges of the
pq-web, see (5.112). Naively, 7-branes seem to play the same role performed by the D5 branes
in the HW systems. In the latter constructions, D5 branes are introduced to add flavors to
the theory. This is an alternative way with respect to introducing flavors via semi-infinite D3
branes, see figure 5.13(a), as we did in the previous section. Strings stretching between D3
brane and D5 brane describe a flavor in the three dimensional theory, as we can see in figure
5.13(b). The mass of the corresponding flavor is proportional to the distance between the D3
brane and the semi-infinite D3 (resp. the infinite D5) brane. The theory on the finite D3 brane
is then N = 4 U(1) plus one flavor. The only physical parameter associated with the D5 in this
theory is its distance from the D3, namely the mass of the flavor. So, when we move the D5
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(a) (b) (c)

Figure 5.13: U(1) gauge theory with one flavor with semi-infinite D3 branes (a), D5 brane (b)
and after HW transition (c).

horizontally (say to the right) no parameter nor modulus changes. Moreover, we do not expect
any change from the field theory point of view also when the D5 hits the NS5 branes on the
right and moves towards it. Indeed, in the process an additional D3 brane is created [280] and
emanates from the point where the D5 hit the NS5, see figure 5.13(c). The transition between
the two configurations is denoted in the literature as Hanany-Witten (HW) transition. In this
new framework, the flavor is now described by a string connecting the finite and the semi-infinite
brane. No parameters in the theory depend on the length of the D3 brane stretching between
the D5 and the NS5 (this is expected, since the theory on this brane is gapped). Then, the D5
can be pushed towards infinity, and we end up with the configuration figure 5.13(a).
What is the analog of this operation in the pq-web?
As in the HW case, we can naively add a D7 brane to the system to introduce a flavor: this
comes from the string stretching between D5 branes and D7 in figure 5.14(a). We can then try

(a) (b)

Figure 5.14: Brane creation in the E1 case with a D7.

to perform the same operation, moving to the right the D7 brane and making it pass through
the NS5. However, we encounter an obstacle: the operation needs to modify also the original
pq-web, to preserve supersymmetry, see figure 5.14(b). This is related to the peculiar properties
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of 7-branes, which will be the topic of the next section.

Properties of 7-branes

A 7-brane sources a non-trivial axio-dilaton background, being magnetically charged under it.
This background introduces a branch cut going from infinity to the brane. The axio-dilaton is
transformed crossing the cut counterclockwise by an SL(2,Z) monodromy transformation

Kp,q =

(
1 + pq −p2
q2 1− pq

)
. (5.143)

Moreover, 7-branes introduce a non-trivial metric [273], which in complex coordinates z = x+iy
reads on the plane

ds2 = τ2η(τ)
2η̄(τ̄)

∏

i

(z − zi)−1/12(z̄ − z̄i)−1/12dzdz̄ (5.144)

where zi defined the position of the i-th brane on the plane. BPS states then change passing the
cut accordingly to the SL(2,Z) monodromy (5.143). In particular, an (m,n) 5-brane passing
counterclockwise the branch cut of a [p, q] 7-brane transforms as

(
m
n

)
→
(
m′

n′

)
= K[p,q]

(
m
n

)
, (5.145)

A generic (m,n) string passing the cut changes asMp,q as well [272]. Since a generic (r, s) string
(resp. 5-brane) is oriented along a (s,−r) (resp. (r, s)) direction in the (x, y) plane, the change
of charges can be interpreted as a change of direction of the string (resp. brane) passing the
cut.
On top of this change of direction, 5-branes do not follow any more straight geodesics, due to
the non-trivial metric (5.144). The form of these geodesics is hard to determine in general, so,
as it is usual in literature, sometimes we will keep (p, q) 5-branes as straight lines along (p, q)
vectors, to identify them in the web, while in some other cases we will schematically indicate
the geodesics followed by the 5-branes as some smooth curve on the (x, y) plane.
A 7-brane passing through a 5-branes leads to a generalized HW transition, where additional
branes are created. More precisely, let us take an (m,n) 5-brane passing a cut of a [p, q] 7-
brane, as in figure 5.15. Before the transition, the 5-brane changes charges as it passes the cut,
becoming a K[p,q](m,n) 5-brane. After the transition, (qm− pn) (p, q) 5-branes are created and
connect the 5-brane to the 7-brane, as in figure 5.15. In this way, we performed an Hanany-
Witten transition in the pq-web context. As similar transition happens for a [p, q] 7-branes
passing an (m,n) string [272].

In the previous analysis, we had the freedom of positioning the cut to lie vertically from the
7-branes down to infinity, since we were dealing with a single 7-brane. However, when we have
multiple branes, we have multiple branch cuts. So, we have still the freedom of moving a branch
cut until we hit the cut of another 7-brane. This happens when, for example, we want to ex-
change two 7-branes X[p,q] and X[m,n], as figure 5.16(b). Making the left brane passing the right
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[p, q]

(a) (b)

(m, n)
K[p,q](m, n)

(m, n)
K[p,q](m, n)

(qm − pn)(p, q)
[p, q]

Figure 5.15: A (m,n) brane passing the branch cut of a [p, q] 7-branes (a) and after HW
transition (b).

one, the former becomes a X[p,q]+(pn−qm)[m,n] in order to conserve the total monodromy

X[p,q]X[m,n] = X[m,n]X[p,q]+(pn−qm)[m,n]. (5.146)

The resulting system of 7-branes is then shown in figure 5.16(c) and it is equivalent to the initial
one in figure 5.16(a).
Similarly, if we exchange the two branes by moving the right one on the left, the right brane
becomes X[m,n]+(pn−qm)[p,q].

5-branes ending on 7-branes

Having specified the properties of 7-branes, we can introduce them into the pq-web.
Let us start by adding D7 branes in the E1 pq-web, figure 5.14(a). As we mentioned, a D7
introduces a flavor: on the CB, the two corresponding electrons are strings stretching between
the D7 and the two D5 branes. The distance between the D7 and the D5s is associated with
the mass m of the flavor. We already see a large improvement from the original setup: both
flavors can be constructed in terms of string states. The horizontal position of the D7, as for the
D5s in the HW case, is not a parameter nor a modulus of the theory, since the only parameter
associated with the flavor comes from the vertical distance from the D5 branes. We can then
move the D7 horizontally to the right and cross the NS5 branes. The crossing produces, via HW
effect, a single D5 brane22 connecting the NS5 with the D7. The branch cut can be now moved
to avoid intersection with the pq-web and the D7 can be pushed to infinity. This reduces the
web to the SU(2) plus one flavor one, see figure 5.14(b). As in the HW setup, now electrons are
described by strings connecting the semi-infinite and the finite D5s (or instantons of the (1,−1)
brane).

22Moreover, moving the branch cut, the junction is modified accordingly to the rules in (5.146).



5.5. String constructions 173

[1,1][1, − 1] [3,1] [3,1][1,1]

(a) (b) (c)

[1,1]

Figure 5.16: Exchange of a [1,−1] and a [1, 1] brane.

Similarly, a (p, q) 5-branes can end23 on a [p, q] 7-brane. We can then make all 5-branes of the
system finite by ending them on the appropriate 7-branes, see figure 5.17. As in the D7 case,

(a) (b)

Figure 5.17: E1 theory where the semi-infinite 5-branes are replaced by segments (a). E1 theory
after the D7s are shifted inside the web, creating a brane loop (b).

moving the 7-branes along the 5-prong does not change any parameter or modulus of the theory.
Then, adding 7-branes or not is irrelevant from the field theory point of view. Of course, due to
their branch cuts and the non-trivial metric, 7-branes change instead the pq-web. These effects,
in many cases, can be neglected when 7-branes are very far away from the web.24

However, when the 7-branes are close to the web, the 5-branes follow curved geodesics, as shown
in figure 5.17(b) and close into a brane loop [285].

23Due to charge conservation, (p, q) 5-branes are the only branes endable on [p, q] 7-branes [211].
24This happens when their distance from the faces of the web is larger than any physical scale of the system.
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Global symmetry

Previously, we saw how SU(2) theories with F < 8 flavors admit UV fixed points with en-
hanced global symmetry. This enhancement was first observed in type I’ constructions [145],
and calculations from instantonic zero modes [208] and the superconformal index [247–249] gave
independent evidence of this enhancement and revealed, in addition, a plethora of theories ad-
mitting fixed points with enhanced global symmetry.
The main advantage of adding 7-branes comes from the possibility of making the global symme-
try of the five dimensional theory manifest. The corresponding algebra comes from the algebra
of 7-branes. These algebras were intensively studied in [272–277] and in this section, we review
only some basics properties that can be useful in the brane web context.

First of all, we remind that quark states were constructed in the pq-web alternatively as strings
connecting two D5 branes (when this parametrization is possible) and as strings connecting a
D5 to the D7. The same behavior applies to any BPS state: a state can be described, due to
HW brane creation, as a 5-5 or a 5-7 string junction. For example, we can consider the F1
string connecting two D5 branes in the SU(2) theory, see figure 5.18(a). This corresponds to
the massive W boson. We can now continuously move25 it as in figure 5.18(b). When the F1

(a) (b) (c)

Figure 5.18: W boson states changing passing the 7-brane cut.

passes the cut of the (1,−1) brane, additional strings are created via the HW effect, see figure
5.18(b). Passing also the (1, 1) cut, we arrive to figure 5.18(c). In this configuration, the W
boson is represented by a 5-7 string junction. The same result holds for any BPS state [211].
These string junctions fall then into representations of the 7-brane algebra. These were studied
in [277] and the properties of corresponding string junctions were analyzed in [276]. The main
results of the analysis are listed below.

� A generic string junction J is uniquely identified by the number of prongs ending on the
various 7-branes (the invariant charges of the junction [273]) and by its (p, q) charges. On
the space of junctions, we can introduce a scalar product between two networks J and J′,

25This operation does not change the corresponding state of the field theory, see [211].
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defined as the intersection form (J,J′). This form is uniquely determined by the invariant
charges and the (p, q) charges of the networks, together with the type of 7-branes of the
system. The corresponding square norm for the junction J, namely its self-intersection,
is denoted as (J,J) ≡ J2;

� A necessary condition for a generic junction J to be BPS is that its self-intersection satisfies
the bound

J2 ≥ −2 + gcd(p, q). (5.147)

The corresponding state in the five dimensional theory is then 1/2 BPS;

� BPS junctions J with no external charges saturating the previous bound J2 = −2 belong
to the adjoint representation of the algebra of 7-branes. Their mutual intersection form
determines the Cartan matrix of the algebra of the system of 7-branes;

� BPS junctions J with external charges (p, q) belong to some representation R of the 7-
branes algebra. This representation is completely determined by the invariant and the
(p, q) charges.

Thanks to the previous results, it is possible to prove [211] that the algebra of 7-branes associated
with a generic pq-web is at least an affine algebra26, as opposed to global symmetries of these
theories that are associated with finite Lie algebras. However, it can be shown that all BPS
states of the five dimensional theory do not see the affine structure and fall into representations
of the corresponding finite subalgebra. So, looking at the 7-brane system, we can read off the
global symmetry of the five dimensional theory and the representations of the BPS states!
Let us consider, for example, the E1 theory. The 7-brane system is composed of two [1,−1]
and two [1, 1] branes. In the literature, these are labeled as B and C branes respectively. The

total monodromy of the system is BCBC. Its affine algebra is ŝu(2) ≡ Ê1 [276] and its finite
subalgebra is nothing but su(2), as expected for the E1 theory!
All BPS states fall into representations of the global symmetry group. For example, one can
show that the W -boson and the instanton of the SU(2) theory form a doublet of SU(2)I !
Although this seems surprising, these states are actually degenerate on the CB of the E1 theory,
since their masses are both equal to 2ϕ. Moreover, they are both vector multiplets and they are
exchanged by S-duality at the fixed point, see figure 5.19.

The states become non-degenerate only when the gauge coupling is turned on. This breaks
SU(2)I → U(1)qI . However, the masses of the BPS states are not split as expected for a SU(2)I
doublet. This is due to the mixing phenomenon: the Cartan U(1)qI associated with the global
symmetry group is not the instantonic symmetry of the gauge symmetry U(1)I . In particular,
the charge qI associated with the former is related to the instantonic charge I associated with
the latter as

I =
1

2

(ne

2
+ qI

)
(5.148)

with ne the electric charge of the state.
A similar mixing happens for SU(2) with one flavor. All BPS states fall into representations

26For example, the 7-brane system of the pq-web of SU(2) with 8 flavors is a non Kac-Moody loop algebra [211].
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S

Figure 5.19: W boson (dark blue) and instanton I (light blue) exchanged by S-duality.

under the global symmetry SU(2)I ×SO(2)F at the fixed point. Also in this case, however, the
Cartan of SU(2)I differs from the U(1)I instantonic symmetry as

qI =
7

4
I − ne

2
− qf

2
(5.149)

The mixing involves also the UV flavor symmetry U(1)Qf
, whose charge Qf is related to the

charge qf of the IR symmetry U(1)F as Qf = qf + I/2.

Although string junctions fall into representations of SU(2)I , we know that the global sym-
metry is broken at weak coupling. We can then ask how the enhancement can be seen from the
7-branes viewpoint.
As mentioned above, moving 7-branes along 5-prongs does not change any parameter (or mod-
ulus) of the gauge theory. However, at weak coupling branes of the same type B or C cannot
meet at the same point of the (x, y) plane, since their minimal distance equals the inverse gauge
coupling squared, see figure 5.20(a). At infinite coupling, instead, branes of the same type,
for example, the Cs, can be superimposed at the same point, as in figure 5.20(b). The string
connecting the C (resp. B) branes becomes massless at this point, leading to a gauge symmetry
enhancement on the worldvolume of the 7-branes. This is nothing but the realization of the
SU(2)I symmetry enhancement since the string that becomes massless is associated with the
root of the finite algebra of 7-branes.
Note that the enhancement appears only when we superimpose a couple of B or C branes.
Indeed, the BCC system of brane is non-collapsible [286], so the associated branes cannot be
superimposed at the same point. Then, once the C (resp. B) branes are placed in the middle
of the face, the other branes must remain at a finite distance due to non-collapsibility. The
symmetry then enhances at most to SU(2)I .

The same mechanism is responsible for the global symmetry enhancement of the EF+1 theories
for F < 7 at the corresponding fixed point.
Note that, adding F flavors to the system, the axio-dilaton in presence of the corresponding
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(a) (b)

Figure 5.20: C branes at minimal distance 1/g2 at weak (a) and strong (b) coupling.

monodromy reads

τ(z) =
i

2π
(8− F ) log(z) + τ0 (5.150)

where τ0 is a constant. So the axio-dilaton and the metric (which is proportional to its imaginary
part) remain positive definite if and only if F < 8. If F > 8, the metric becomes negative, leading
to inconsistency. This explains why for F > 8 we cannot have UV fixed points. If F = 8, the
metric trivializes, and the corresponding algebra of 7-branes becomes the loop algebra Ê9. Both
these aspects are related to the six dimensional nature of the UV completion of SU(2) theory
with F = 8 [208,287].

Flow past infinite coupling

In the previous section, we saw how we can infer symmetry enhancement from 7-branes. In
particular, the fixed point of SU(2) SYM can be reached by tuning to zero the inverse gauge
coupling squared of the gauge theory. To this parameter, it is associated with the mutual
position between some of the external branes (for example, this was the length of the D5 branes
in the pure SU(2) case). In field theory, this parameter has to be positive, to have a well-defined
metric at the origin of the CB. However, in the brane web, this can take any real value. We
can then ask what happens from the field theory perspective when we deform the pq-web past
infinite coupling.
Let us consider again the SU(2) theory and the corresponding web, figure 5.21. The gauge
theory lives on the parallel D5 branes. Their distance is proportional to the CB parameter and
their length is proportional to the inverse gauge coupling squared. However, also the parallel

NS5 branes host an ŜU(2) gauge theory at a point of the CB. This has a CB parameter 2ϕ̂
proportional to the distance between the two NS5 branes 2ϕ̂ ≡ 2ϕ+ 1

g2
and a gauge coupling 1

ĝ2

proportional to the difference between their length and the CB parameter, namely 1
ĝ2
≡ − 1

g2
.

Surely, if 1/g2 > 0, the NS5 gauge theory is not a valid description, since they have negative
coupling. In this case, only the D5 brane theory is well-defined. However, when we start
approaching the fixed point the coupling of both theories goes to zero and both descriptions
become strongly coupled. The face of the web reduces to a square, describing the CB of the
E1 theory, see figure 5.21(c). Passing this point, we can keep squashing the web vertically. In
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this way, the length of the D5 branes 1
g2

+ 2ϕ becomes smaller than the CB parameter 2ϕ,

the gauge coupling 1
g2

becomes negative and the description in terms of D5 branes is no more
valid. However, now, the description of the NS5 branes is well-defined, having a positive gauge
coupling. Moreover, by keeping squashing we can make the NS5 coincide, see figure 5.21(d).

Their gauge group enhances to ŜU(2). The NS5 branes describe then the five dimensional

(a) (b)

(c) (d)

Figure 5.21: Continuation past infinity of the SU(2) theory.

physics after continuation past infinite coupling. BPS states are mapped between one another
within the two descriptions: W -bosons for the D5 brane theory become instantons of the NS5
theory and vice-versa. This mapping is realized precisely by S-duality: the gauge theory on
the NS5 branes is S-dual to the gauge theory description of two D5 branes and the parameters
(1/ĝ2, ϕ̂) of the former are mapped by S-duality to the parameters (1/g2, ϕ) of the latter as

1

ĝ2
= − 1

g2
, ϕ̂ = ϕ+

1

2g2
(5.151)

In conclusion, away from the FP, there is only one gauge theory interpretation with a positive
coupling, while the other has no physical meaning. Deforming the FP by the parameter 1/g2,
we flow to the first or the second description, depending on the sign of 1

g2
.

This is an example of UV duality: two theories share the same UV fixed point and are related
by a past infinite coupling limit. Moreover, being 1/g2 related to the VEV of the scalar field
of the SU(2)I global symmetry multiplet, the two descriptions are mapped one another by the
Weyl group of SU(2), which sends 1

g2
→ − 1

g2
. This is the reason why SU(2) gauge theory is

mapped into another SU(2) theory under S-duality.27

27This can be also seen from the discussion in [288] regarding fiber-base duality. For SU(2) with F ≤ 7, the
flavor symmetry SO(2F ) together with the fiber-base duality generates the EF+1 symmetry. In more general
cases, however, fiber-base duality does not belong to the Weyl group of the enhanced global symmetry and it
does not act as a self-duality for the theory.
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Dualities

UV dualities are rather common in five dimensions. These relations can hold among different
gauge theories, see [247,256] or between gauge theories and non-Lagrangian ones [207]. In many
cases, the two IR descriptions have different global symmetries. However, at the fixed point, the
global symmetry can enhance in both descriptions and matches across the duality. We can think
about this process starting from the SCFT in the UV: we can leave the fixed point turning on
a SUSY preserving flavor current deformation. In doing so, we break the global symmetries of
the SCFT to a subgroup. As a consequence, deforming in different ways, we arrive at different
IR phases preserving (potentially) different subgroups of the UV flavor symmetry. So, from the
point of view of the IR theories, the global symmetry enhances flowing backward along the RG
flow.
In general, we can establish a map among parameters and moduli of the two descriptions, and,
at least when we are sufficiently close to the fixed point, also the BPS spectrum matches.
Many of these dualities, obtained from the pq-web, can be tested via superconformal index
calculations, as was done in [247,256]. In particular, from the IR phases, we can infer the sym-
metry enhancement by looking at BPS protected operators. Indeed, as we saw in the examples
treated above, instantonic operators can provide the broken currents in the IR necessary to
enhance the global symmetry in the UV [208], and can parametrize the additional directions
coming from the enhancement of the Higgs branch [179]. So, studying these operators in the
IR yields important information about the UV physics of the theory.
We can also invert the logic. Thanks to UV dualities, we can infer the existence of fixed points
and symmetry enhancement for some gauge theory descriptions. In this way, we can see that
many theories, which fail the convexity condition, admit a fixed point, being UV dual to theories
with convex prepotentials. This was the case for quiver theories [256].
We finish this section by reviewing an example of UV duality, namely the correspondence be-
tween the +M,N and +N,M theories [207].
The +M,N fixed point consists of N NS5 and M D5 branes intersecting at a single point. We
can flow away from the fixed point separating the NS5 branes, as in figure 5.22. The field theory
lives on the finite D5 branes of the web and it is an SU(M)N−1 quiver theory. On top of the
N − 2 bifundamentals (M,M) stretching between each pair of adjacent gauge groups, we have
a pair of M fundamentals charged under the first and the last nodes of the quiver, see figure
5.23. The global symmetry of the quiver is SU(M)2 × U(1)2F × U(1)N−2

B × U(1)N−1
I . This is

expected to enhance at the fixed point to SU(N)2×SU(M)2×U(1), since the N (resp. M) D5
(resp. NS5) branes coincide at the fixed point.28

Alternatively, we can stretch the web vertically. All gauge couplings of the quiver (5.23) are con-
tinued past infinity, so the field theory now lives on the finite NS5 branes. This can be seen by
S-dualizing the web, obtaining the quiver theory associated with the +N,M theory. The quiver
is SU(N)M−1 withM−2 bifundamentals (N,N) and N hypermultiplets charged under the first
and last node, see figure 5.24. The global symmetry is SU(N)2×U(1)2F ×U(1)M−2

B ×U(1)M−1
I .

However, at the fixed point the symmetry enhances again to SU(N)2×SU(M)2×U(1), match-

28Actually when N or M is small, the global symmetry gets enhanced to a larger group. For example, if
N = 2, the symmetry enhances to SU(2M)× SU(2)2 [288].
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N

. . ...
. M

Figure 5.22: The brane web of +M,N theory.

. . .M MM

N − 1

M M

Figure 5.23: Quiver of +M,N theory.

ing across the duality.
The dimension of the CB matches across the duality [207] as well as the number of parameters.
Indeed, gauge couplings of one theory are mapped to masses of the other and vice-versa. The
same happens for the BPS states of the two theories [256].
Dualities were also employed recently to calculate the complete prepotentials for quiver theo-
ries [246] and were also related to the lifting of known 4d IR dualities to five dimensions [4].

Higgs branches

Finally, let us comment on the parametrization of the Higgs branch in presence of 7-branes. As
we mentioned earlier, in absence of 7-branes, all local deformations lie on the (x, y) plane and
are associated with the CB of the theory.
On the other hand, 7-branes are localized on the plane and extended in its transverse directions.
The 789 directions, which are common Dirichlet directions for all the 5-branes of the web, are
Neumann directions for the 7-branes. So, when a finite 5-brane is suspended between two 7-
branes, we can detach it from the web and slide it along the 789 directions, respecting charge
conservation and supersymmetry. The dynamics at low-energies of the corresponding five brane
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. . .N N NN

M − 1

N

Figure 5.24: Quiver of +N,M theory.

is described by a theory of a hypermultiplet. The position of the D5 suspended between the two
D7 is parametrized by three scalar fields in the adjoint representation of the R-symmetry acting
in the 789 space. The A6 component of the gauge field survives boundary conditions [289] and
adds up to form the hypermultiplet. So, sliding the D5 along the D7, we give a VEV to the
hypermultiplet and this parametrizes one direction of the HB. This parallels the HB description
in the HW setups, where a D3 suspended among two D5s parametrizes a quaternionic direction
of the HB [280].
The same reasoning applies whenever we have a (p, q) branes suspended between two [p, q] 7-
branes or more generally, whenever our system possesses a subweb that can be detached from
the rest of the web [187, 207]. Then, the dimension of the HB equals the number of possible
detachable webs, namely the number of zero-sum subsets of (p, q) labels of the external legs.

In the weak coupling limit, when we have a gauge theory description, the Higgs branch is
parametrized by VEVs of the gauge invariant operators of the theory. Take for example the
SU(N) theories with nL flavors on the left of the web and nR on the right, see figure 5.25(a). To
enter the Higgs branch, we can give a VEV to a meson or a baryon. To do so, we need to tune
some parameters to have massless quarks to form the gauge-invariants. In the pq-web, this is
equivalent to performing a series of global and local deformations to obtain a brane detachable
from the main web. Examples of this kind are shown in figure 5.25(b) and (c). In the first case,
the gauge-invariant operator parametrizing the HB is a meson, in the second it is a baryon [207].
The D5 (resp. NS5) brane is now detachable and parametrizes a quaternionic direction of the
mesonic (resp. baryonic) branch.
In the process, part of the gauge group is broken by the VEV of the operator, as can be seen
from the smaller number of faces of the remaining web. Moreover, the global symmetry is
spontaneously broken, as well as the original R-symmetry. Both act on the HB moduli space
as isometries [179]. However, to preserve supersymmetry, at each point of the HB an emergent
SU(2)R′ symmetry, coming from the subgroup of SU(2)R and the global symmetry itself, is
preserved.
In presence of multiple 5-branes ending on some common 7-branes, things are more subtle.
Indeed, it is not always possible to detach a subweb that is apparently detachable, see figure
5.26(a). The obstruction to this operation is known as the s-rule [280, 283, 289]. The rule was
first analyzed in [280] and was later found to be associated with the Pauli exclusion princi-
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(c)(a) (b)

Figure 5.25: Higgs branch. We can start from (a) and pull up the top left and right flavor branes,
make them coincide with the top finite D5 brane, and arrive at the web (b). The horizontal line
is detachable and parametrizes one direction of the mesonic branch. The same happens for (c)
for the baryonic branch.

ple [290]. In five dimensions, the s-rule states that the number of (p, q) 5-branes that can be
suspended between a [p, q] 7-branes and a (r, s) 5-brane must be smaller or equal than |ps− qr|.
If this condition is not fulfilled, we break supersymmetry. This excludes, for example, the pos-
sibility of detaching the D5 segment in figure 5.26.
At the fixed point, the HB enhancement corresponds to a larger number of detachable webs

(a) (b) x
y z

Figure 5.26: Non-detachable web.

with respect to the weak coupling brane web. There is a huge literature regarding the study
of the HB at infinite coupling [186–205] which is mainly related to the possibility of describing
these as the quantum Coulomb branches of some N = 4 three dimensional theory, via the
so-called magnetic quiver program. These techniques are behind the scope of this thesis and so
we will not discuss them in detail. In this last part of the section, we only limit ourselves to
studying the HB of the E1 theory from its pq-web diagram.
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At weak coupling, we know that SU(2) SYM possesses a zero dimensional HB, since the theory

has no hypermultiplets. At the fixed point, the HB is known to enhance to C
2
⧸Z2

. This is visible

from the E1 pq-web in figure 5.27(a). At the fixed point, the (1, 1) brane between the [1, 1]

x
y z

(a) (b)

[1, − 1] [1,1] [1, − 1] [1,1]

Figure 5.27: Higgs branch of the E1 theory.

7-branes can detach and move in the 789 space. This parametrizes the single quaternionic HB
direction at infinite coupling. The existence of this branch can be confirmed by analyzing the
contribution of instantons to the chiral ring [179,208]. From the pq-web, we can also construct
the corresponding magnetic quiver [187] which is nothing but U(1) plus two flavors.
In field theory terms, the HB of the E1 theory is parametrized by a current Φ(ij) in the adjoint
of SU(2)R obeying the condition

(Φ(12))
2 = Φ(11)Φ(22). (5.152)

This is chargeless under the Cartan of SU(2)I and it can be identified as the lowest component

of the flavor current multiplet of the E1 theory µ
(12)
(ij) . This shows the non-perturbative nature

of this HB, being this described by a current multiplet of an instantonic symmetry.

5.6 Complete prepotential

In the previous sections, we saw how five dimensional gauge theories are highly constrained
by supersymmetry and how their perturbative dynamics on the CB is encoded in their pre-
potential. Originally [149] it was thought that theories could be classified by the convexity of
their prepotential, which was supposed to give a necessary (but not sufficient) condition for the
existence of UV fixed points. However, string constructions showed that many theories with
non-convex prepotentials possess UV completions in five dimensions, being often UV dual to
field theories with convex prepotentials. So, the convexity of the IMS prepotential (5.69) does
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not give us a good criterion to classify five dimensional theories. Moreover, this is also blind to
symmetry enhancement, being this a purely non-perturbative effect. This suggests the necessity
of generalizing the description of five dimensional gauge theories to include these properties.
In this section, we first review the modern criterion to classify five dimensional gauge theories
admitting a UV fixed point. Then, we introduce the complete prepotential, which generalizes
the IMS formula in (5.69) to include non-perturbative effects. Armed with this toolkit, we
conclude this discussion with some interesting examples.

5.6.1 New criterion for UV fixed points

As we reviewed in section 5.4.3, particles contribute to the prepotential via concave terms.
Depending on the sign of their mass, the CB is divided into subchambers and the prepotential
takes different expressions in each subchamber. However, the prepotential depends only on
masses of perturbative particles, through its cubic terms. These are only a subset of the BPS
states of the theory. In particular, non-perturbative BPS particles are expected to modify the
physics of the theory when they become light.
Let us consider the central charge of a generic gauge theory

Ze =
∑

a

na
eϕa +

∑
Ii/g

2
i , Zm =

∑

a

na
mϕDa (5.153)

where ϕDa = ∂aF(ϕ) and 1/g2i the gauge coupling associated with the i-th gauge group. Tensions
of monopole strings must be positive and we expect r of them to be independent

Ti(ϕ) ≡ ∂aF(ϕ) = ϕD, a, a = 1, ..., r. (5.154)

Non-perturbative objects become massless on the CB whenever the central charge (5.153) is
zero. When this happens, the perturbative theory described by the prepotential breaks down
and a new description is mandatory. How we can extend the description past this point?
To answer this question, let us start by considering, for definiteness, the SU(2)π×SU(2)π quiver,
see figure 5.28(a). The prepotential of this quiver is reported in (5.155). This theory does not
fulfill the convexity requirement. However, this is S-dual to SU(3) with two flavors [247], which
admits a UV fixed point, figure 5.28(b). This tells us that the perturbative description of the
prepotential of the quiver fails at some point of the CB. After this value, a non-perturbative
description is needed, and the theory is UV completed by the fixed point of SU(3) + 2F . This
expectation is actually fulfilled if we look at the prepotential of the quiver

F(ϕ) = 1

g21
ϕ2
1 +

1

6
(8ϕ3

1 + 8ϕ3
2 − (ϕ1 + ϕ2)

3 − (ϕ1 − ϕ2)
3) +

1

g22
ϕ2
2. (5.155)

Here we restrict the analysis to the chamber ϕ1 > ϕ2 > 0 and we have set to zero the bifunda-
mental massmB. Looking at (5.155), we see that the metric becomes negative near ϕ2 ∼ 0.255ϕ1

for 1/g21,2 ≪ 1. However, before reaching this point, the monopole strings with tension

T1 = 2ϕ2/g
2
2 − 2ϕ1ϕ2 + 4ϕ2

2 (5.156)
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2ϕ12ϕ2

Figure 5.28: SU(2)π × SU(2)π quiver gauge theory (a) and its S-dual SU(3) + 2F in (b).

associated with the first gauge group becomes massless at ϕ2 ∼ ϕ1/2 for 1/g21,2 ≪ 1. At this
point, the perturbative dynamics breaks down and we cannot trust anymore the perturbative
prepotential. This is only valid in a subwedge ϕ1 > ϕ2 > ϕ1/2 of the chamber ϕ1 > ϕ2 > 0. So
the prepotential is already non-trustable before reaching the non-convexity point!
We can then ask if, including this non-perturbative effect, we can describe completely the CB
of the quiver theory. This is indeed the case. When we pass the massless point, the new light
states are taken into account by the description through the SU(3)+2F prepotential!
In this other description, the point at which the string becomes tensionless coincides with a
boundary of the Weyl chamber of the SU(3) gauge theory, at which a non-Abelian SU(2) sub-
group is preserved. As a consequence, the CB past this point is merely a Weyl copy of the
original CB wedge.

The previous analysis suggests a new criterion to classify five dimensional theories. Look-
ing at the positivity of the metric on the entire CB is too stringent: some of the regions of this
”naive” CB can be impossible to describe using the perturbative prepotential. However, if no
non-perturbative state becomes massless on the CB, the prepotential of well-behaved theories
(namely, theories that admit a fixed point) needs to be convex. The subregion of the CB where
all non-perturbative BPS states have a positive mass/tension is denoted as the physical CB
Cphys of the theory and it is defined as

Cphys = {ϕ ∈ C|T (ϕ) > 0, M2
I (ϕ) > 0} (5.157)

where MI and T are respectively any possible masses and tensions of non-perturbative BPS
states. The metric should be then positive definite along the entire physical CB to reach a UV
fixed point. Indeed, when this condition holds we can safely take the limit 1/g2 → 0 and reach
the fixed point by tuning ϕ = 0.
The type of hyperplanes that enclose the physical CB (and so the corresponding BPS states
that becomes massless) can be classified by looking at the CY realization of these theories [218].
These are nothing but boundaries of Weyl chambers (so, past this plane, the theory is a Weyl
copy of the original one), superconformal fixed points (where we have tensionless monopole
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strings interacting with massless electric particles), and flops (where BPS particles become
massless). At these points, their central charges vanish. In particular, it is sufficient to focus
on the Coulomb branch of the SCFT, turning off all mass parameters. Since the charges of the
states na

e and na
m are quantized, the hyperplanes are identified only by the vanishing of rational

linear combinations of the mass parameters ϕa, namely
∑
na
eϕa = 0 with na

e ∈ Q (and similarly
for the monopole strings). This hyperplane is denoted as a rational boundary. The physical CB
reads then

Cphys = CT≥0 = {ϕ ∈ C T (ϕ) ≥ 0}, and ∂Cphys, is rational. (5.158)

The existence of a physical CB identified by (5.158) is conjectured to be a necessary (although
not sufficient) condition for the existence of a non-trivial fixed point [218, 219]. However, ver-
ifying the existence of a physical CB can be quite involved for higher rank theories. The
classification of five dimensional theories (at rank smaller or equal than two) was obtained by
looking for theories fulfilling one of the following three requirements

� If the metric is positive somewhere in the naive CB C (possibly including unphysical
regions), then there exists a physical CB.

� If T (ϕ) > 0 in some region CT>0 ⊆ C, the metric is positive in this region.

� If the prepotential is positive everywhere in the CB C (possibly including unphysical
regions), there exists a physical CB.

All above conditions are conjectured to hold whenever the physical CB Cphys exists and the
metric of the theory is positive on it [218,219] Using the previous conditions, a classification of
rank one and rank two theories has been performed and generalized in [153, 220, 221, 226]. In
particular, the analysis of this classification suggested an origin of all five dimensional SCFTs
from compactification of six dimensional SCFTs [219,227].

5.6.2 Prepotential with enhanced symmetry

We saw in section 5.5.6 how we can continue a gauge theory past infinite coupling and how the
physics after the continuation is described by another, UV dual, five dimensional theory (either
Lagrangian or not). This is related to the original descriptions, but in general, it has a different
prepotential and a different global symmetry. This comes from the perturbative nature of the
IMS prepotential: this does not take into account continuation past infinite coupling, nor non-
perturbative physics, such as instantons becoming massless for some values of the parameters.
Both problems can be overcome by the construction of the so-called complete prepotential that
takes care of these issues.

Let us consider, for example, pure SU(2) SYM. When the θ angle is zero, its perturbative
global symmetry U(1)I is known to enhance to E1 at the UV fixed point. On the contrary, if
θ = π, the UV fixed point is the Ẽ1 theory and the global symmetry does not enhance.
Despite these differences, the perturbative dynamics of the two theories is the same and it is
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described by the IMS prepotential

F = 2hϕ2 +
4

3
ϕ3 (5.159)

with h = 1
2g2

. The theories differ only at the non-perturbative level.

When the θ angle is zero, at the fixed point the Weyl group of SU(2)I acts on the gauge coupling
as h↔ −h and relates the UV dual descriptions of the E1 fixed point at positive and negative
couplings. In the pq-web construction, it is S-duality that relates the two descriptions. The
IMS prepotential of the SU(2) theory is blind to this symmetry, as we can see from (5.159).
To implement a duality invariant description, we need to re-express the prepotential in terms
of S-invariant parameters. Since the CB parameter ϕ gets mapped by the duality to ϕ+ h and
h→ −h, the invariant CB parameter

ϕ̃ = ϕ+
h

2
(5.160)

is left unchanged by the S-transformation.29 The effective coupling can be expressed as a
function of ϕ̃ only

1

g2eff
= 8ϕ̃ (5.161)

and it is well-define for any values of the parameters. The corresponding prepotential reads

F compl.
E1

= −h2ϕ̃+
4

3
ϕ̃3 (5.162)

which is manifestly invariant under the Weyl group. The expression (5.162) represents the
complete prepotential of the E1 theory. The invariant CB parameter makes manifest the rep-
resentation of the W -boson and the instanton of E1 theory under the SU(2)I global symmetry,
since in this parametrization their masses

MW = |2ϕ̃− h|, MI = |2ϕ̃+ h| (5.163)

are exchanged by the Weyl group.

As mentioned above, the complete prepotential should also take care of flops coming from
non-perturbative states. These become important considering, for example, SU(2)π SYM.
Its fixed point Ẽ1 has no enhanced symmetry, so we do not need to introduce an invariant CB
parameter in this case. However, past infinite coupling, the description via the perturbative
prepotential breaks down. Indeed, from both field theory [212] and pq-web [245] analysis, we
know that past infinite coupling the theory flows to the E0 fixed point, see figure 5.29(c). Its
prepotential (5.136) can be written in terms of the SU(2) SYM parameters as

F =
3

2
ϕ3 + 3ϕ2 +

1

2
h2ϕ (5.164)

29This transformation is interpreted as a fiber/base duality in the CY construction of the SU(2) SYM theory
[288].
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2h + ϕ

2ϕ

2h + ϕ

2ϕ 3ϕ + 2h

(a) (b) (c)

Figure 5.29: Ẽ1 with positive coupling (a), negative coupling with ϕ+2h > 0 (b) and ϕ+2h < 0
(c) leading to the E0 theory.

where the Coulomb branch is bounded ϕ ≥ −2
3
h to ensure the positivity of the monopole string

tension. The two prepotentials (5.159) and (5.164) differ by a contribution

∆F =
1

6
(ϕ+ 2h)3. (5.165)

This difference can be explained by a flop of an instantonic hypermultiplet. Indeed, looking at
the Ẽ1 theory in figure 5.29(a), we can go past infinite coupling (b) and start decreasing the
value of the CB parameter in order to reach the E0 description. At ϕ+ 2h, the hypermultiplet
becomes massless, see figure 5.29(b). Being this instanton charged under the gauge group on
the CB, the prepotential jumps by a term proportional to the cube of its mass, which is exactly
the difference (5.165). The complete prepotential of the Ẽ1 theory

FẼ1
= 2hϕ2 +

4

3
ϕ3 +

1

6
[[ϕ+ 2h]]3, [[x]]] = θ(−x)x (5.166)

is then valid in the whole range of the parameters!

The previous arguments can be generalized to more complicated theories. The complete pre-
potential of a generic theory can be obtained from the IMS one following the procedure listed
below:

� Writing the IMS prepotential in a certain Weyl subchamber;

� Rewriting it in terms of the invariant CB parameters ϕ̃a, by shifting the original ϕas by
some linear combination of the mass parameters. For example, for SU(2)+F flavors, the
invariant CB parameter reads [246,288]

ϕ̃ = ϕ+
4

8− F h. (5.167)

� Applying the Weyl reflection associated with the global symmetry of the SCFT to the
resulting prepotential. In this way, cubic terms generated by BPS states come into rep-
resentations of the global symmetry group and the prepotential is manifestly invariant
under the action of the Weyl group.
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Adopting this strategy, we can obtain the complete prepotential with manifest enhanced global
symmetry. This was done, for example, for SU(2) + F < 8 flavors and Sp(2) + 1AS + F ≤ 7
flavors in [246].
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Chapter 6

Searching for non-supersymmetric
CFTs in five dimensions

In the previous Chapter, we focused on the study of N = 1 supersymmetric field theories.
Thanks to supersymmetry, we unveiled a plethora of SCFTs, many of which were obtained as
UV completions of gauge theories. These are quite well-studied and we have also a (conjectured)
method to classify them.
In spite of this knowledge, we know very little about the existence of non-supersymmetric
conformal field theories in five dimensions. This comes from the fact that five dimensional
Gaussian fixed points do not admit relevant deformation, contrary to lower dimensions. So
there is no hope to find a CFT by deforming a Gaussian fixed point in the UV. Many strategies
were employed to search for non-supersymmetric fixed points in five dimensions, such as ϵ-
expansion, bootstrap, or lattice techniques (see [291–301] for some recent works). Although
these analyses provided hints for the existence of these theories, it is fair to say that we are still
far from having a clear understanding of the existence of interacting CFT in five dimensions
without supersymmetry.
Another possible strategy comes by starting from a known SCFT and deforming it via a soft
SUSY breaking deformation. Although the fixed point that we deform is still strongly coupled,
thanks to supersymmetry we have much more handle on its properties. In this way, some
characteristics of the endpoint of the RG-flow, where we can hopefully find a non-SUSY CFT,
can be actually inferred from the ones of the original SCFT. This way of thinking motivated
the construction of [155], which we briefly review in section 6.1. The remaining part of the
Chapter, which is based on the original works in [302, 303], is organized as follows. Section 6.2
contains a recap of the properties of the moduli space of 5d SU(2) SYM and the E1 theory. In
particular, we also offer some improvements of the 5-brane web description of the E1 theory and
its moduli space, characterizing the hypermultiplets describing the Higgs branch. These will
play a crucial role for what comes in section 6.3, where we discuss the supersymmetry breaking
mass deformation reviewed in section 6.1, its description in terms of 5-brane web and its effects
on the IR dynamics. In section 6.4 the resulting phase diagram as a function of the deformation
parameters is discussed. In the remaining part of the Chapter, we study the nature of this phase
transition by looking directly at the corresponding pq-web construction. In section 6.5, we show

191
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that neglecting brane interactions, the phase transition looks first order for any value of the
parameters. While brane interactions are difficult to compute for this system, this can be done
if we consider a generalization of the E1 theory, known as X1,N theory, which admits a similar
supersymmetry breaking deformation. In section 6.6 we review the main aspects of this class
of theories and in section 6.7 we analyze the deformation at large N looking at their pq-web.
In this case, the effect of brane interactions can be reliably computed, and we show that there
exists a region of the parameter space where the corresponding phase transition is in fact second
order. Our result provides concrete evidence for the existence of non-supersymmetric CFTs in
five dimensions. We conclude in section 6.8 with a summary of our results and a discussion on
some open questions.

6.1 Non-SUSY CFTs from E1 theory?

From section 5.3.5 we know that SCFTs admit only one relevant class of SUSY preserving
deformations, coming from sourcing the top component of the flavor current multiplet JG as

δL = ϕAM
A, (6.1)

see eq. (5.50). Generically, this breaks the global symmetry to its Cartan torus, since the source
ϕA comes from the VEV of the scalar of the background vector multiplet associated with the
global symmetry.
In the SU(2) case, the operation triggers an RG-flow to SU(2) SYM with the gauge coupling
ϕ(ab) = hv̂(ab), where a is an index of the fundamental representation of SU(2)I and v̂ is the
versor indicating the Cartan direction preserved by the deformation. The identification be-
tween the UV deformation and the IR gauge coupling is possible since the current multiplet
is an operator protected along the RG-flow, being short. The Weyl group of SU(2)I relates
the two SU(2) gauge theory descriptions at positive and negative couplings, as encoded in the
complete prepotential (5.162) of the theory. At the fixed point, BPS states charged under both
SU(2)I×SU(2)R become massless, leading to a strongly interacting superconformal field theory,
the E1 theory itself.

Looking at the current multiplet, another Lorentz preserving relevant deformations comes from
sourcing the lowest component µ

(ab)
(ij) of the current multiplet

δL = Y
(ij)
(ab)µ

(ab)
(ij) , Y

(ij)
(ab) = m̃(ij)v̂(ab) (6.2)

where we choose two Cartan directions v̂ (resp. m̃) for SU(2)I (resp. SU(2)R). This is inter-

preted as giving a VEV to the auxiliary field Y
(ij)
(ab) , belonging to the background vector multiplet

associated with the global symmetry.
This deformation breaks SUSY and SU(2)I×SU(2)R → U(1)I×U(1)R. Moreover, this triggers
an RG-flow. To understand the endpoint of this flow, we can start looking at the effect of the
deformation on the SU(2) SYM theory. This is equivalent to studying the RG-flow triggered
by both the SUSY and the SUSY breaking deformations of the E1 theory

δL = ϕ(ab)M
(ab) + Y

(ij)
(ab)µ

(ab)
(ij) , ϕ(ab) = hv̂(ab), and Y

(ij)
(ab) = m̃(ij)v̂(ab) (6.3)
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in the weak coupling limit h2 ≪ m̃. Again the subgroup U(1)I × U(1)R is preserved by the
deformations, having chosen the Cartan directions m̃I = (0, 0, m̃), v̂A = (0, 0, 1), with I an
index of the adjoint representation of SU(2)R. In the limit h2 ≪ m̃, we can study the SUSY
breaking deformation by looking at its effect on SU(2) SYM. This is nothing but a VEV for the
D-term of the background U(1)I vector multiplet. The deformation can be written in terms of
the SYM fields as

δL = m̃Tr

(
i

4
λ̄σ3λ+ σDi

)
(6.4)

where we denoted the scalar of the SU(2) SYM vector multiplet as σ to avoid confusion with ϕ,
while σ3 is the third Pauli matrix. The term (6.4) gives a mass to the scalar and the gauginos
of the vector multiplet, upon integrating out the auxiliary fields. The CB is then lifted and,
integrating out massive matter, we end up with pure SU(2) YM in the IR, see figure 6.1. The
same deformation at negative gauge coupling h < 0 leads again to pure SU(2) YM. The m̃ axis
separates the two SU(2) YM phases, as shown in figure 6.1. Although these theories appear the
same, they actually differ by topological invariants, the CS level of the global U(1)I × U(1)R
symmetry, as we now review.
By introducing the background fields AR for U(1)R and AI for U(1)I and choosing h > 0, the
CS terms of SU(2) YM theory with positive coupling read

kR = −3

2
sgn(m), kI = −2. (6.5)

The former level in (6.5) comes from integrating out the massive gauginos, which have a mass
∼ m̃g2 and are charged under the R-symmetry. Since they are in the triplet of SU(2) group,
they contribute with a 3

2
coefficient in (6.5).

The second level can be obtained by looking at the complete prepotential in (5.162). This is
nothing but the coefficient of the cubic term in h, that, although it is a constant in the field
σ, it cannot be put to zero without spoiling the invariance of the prepotential under the Weyl
group of SU(2)I . The CS levels for the h < 0 phase can be then obtained using the residual
Weyl groups ZI

2 × ZR
2 coming from the breaking of SU(2)I × SU(2)R. These act rotating the

vector associated with the Cartan directions v̂(ab) and m̃
(ij) to minus themselves. So, the first

group sends
(h, m̃)→ (−h,−m̃), AI → −AI , (kI , kR)→ (−kI , kR) (6.6)

being AI the gauge potential associated with the Cartan of SU(2)I , while the second sends

(h, m̃)→ (h,−m̃), AR → −AR, (kI , kR)→ (kI ,−kR). (6.7)

Combining the two operations, the resulting transformation Zh
2 sends

(h, m̃)→ (−h, m̃), (kI , kR)→ (−kI ,−kR). (6.8)

This is a symmetry of the theory at h = 0. As we cross the m̃ axis, both levels jump

∆kI = 4, ∆kR = 3. (6.9)
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YM(−2,−3/2)YM(2, 3/2)

YM(−2, 3/2)YM(2, −3/2)

?

?

Figure 6.1: Phase diagram of E1 theory.

The corresponding phase diagram is shown in figure 6.1.
We can now ask what is the physical meaning of this jump of CS levels.
The jump of kR across the h axis is easily understood: the gauginos, charged under the R-
symmetry, become massless when the SU(2)R symmetry (and supersymmetry) is restored. The
jump of both levels across the m̃ axis, on the other hand, cannot be explained by a flop of some
perturbative state. On this axis, the non-perturbative level jumps and separates two distinct
phases, leading to a phase transition. Three possibilities are then in order:

� Spontaneous symmetry breaking of a continuous symmetry: the Abelian global symme-
tries U(1)R×U(1)I can be spontaneously broken to a subgroup on the axis. The transition
is then second order and it is described by a gapless theory of Goldstone bosons;

� Spontaneous symmetry breaking of Zh
2 : the discrete symmetry Zh

2 can be spontaneously
broken on the axis. At the phase transition, we have two different degenerate vacua with
different CS levels exchanged by the discrete symmetry. Turning on h, one of the two
vacua has lower energy while the other becomes metastable. The vacua exchange under
flipping the sign of h, realizing a first-order phase transition.

� Symmetries conservation: all symmetries are preserved. The jump of the level comes from
massless modes, charged under the global U(1)I × U(1)R symmetry. Since both kI and
kR jump, non-perturbative states (namely instantons) and states charged under U(1)R
become massless at the same point.1 This is the hallmark of an interacting conformal
field theory describing the phase transition.

1A similar thing happens, for example, at the E1 point, where both non-perturbative and perturbative
particles, such as instantons and W -bosons respectively, become massless at that point.
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It is then natural to ask if the last possibility is realized and we have found a non-supersymmetric
conformal field theory in the phase diagram of softly broken SU(2) SYM. Answering this ques-
tion will be the main goal of this Chapter. However, to do so, we need first to understand how
the deformation acts on the moduli space on the E1 theory. For this reason, in the next section,
we will briefly expand the discussion of section 5.5.6 on the HB of the E1 theory.

6.2 Moduli space and supersymmetric deformations

Let us focus on the moduli space of the E1 theory and on its supersymmetric deformation.
We first summarize known field theory results and then show how they can be described in
(p,q)-brane web brane language.

The E1 theory admits both a Coulomb branch and a Higgs branch. The former is present also
in N = 1 SU(2) pure SYM while the latter is peculiar to the E1 theory only. The Higgs branch
is a one dimensional hyper-Kähler sigma model C2/Z2 parametrized, locally, by a complex
hypermultiplet H with scalar components Hi, where i is an index in the fundamental of SU(2)R.
At a generic point on the Higgs branch the global symmetry is broken to D[SU(2)I×SU(2)R] =
SU(2)R′ , which is still an R-symmetry. This gives rise to three Goldstone modes which, together
with the scaling modulus, describe the one dimensional quaternionic sigma model.

This parametrization hides the action of the instantonic symmetry on the Higgs branch and
of the aforementioned symmetry breaking pattern. To make this action manifest, the complex
hypermultiplet can more conveniently be described as two real half hypers Ha with a an index
in the fundamental representation of SU(2)I and Ha = Ha.

Using real half hyper parametrization, one can easily see the lifting of the Higgs branch at
finite gauge coupling. This is done by introducing background vector fields of the instantonic
SU(2)I symmetry. The SU(2)I current multiplet can be described in terms of the real half
hypermultipletsHa. The hypermultiplet scalarsHa

i transform in the bi-fundamental of SU(2)I×
SU(2)R global symmetry. Since the SU(2)I instantonic symmetry acts on the Higgs branch,

and hence on Ha
i , the bottom component µ

(ab)
(ij) of the SU(2)I current multiplet can reliably

be tracked on the Higgs branch:2 it is simply the tri-holomorphic moment map of the SU(2)I
symmetry and reads

µ
(ab)
(ij) ∼ H

(a
(i H

b)
j) , (6.10)

which in turn implies, for instance, that

M (ab) ∼ ΩαβQi
αQ

j
βµ

(ab)
(ij) , (6.11)

where Ωαβ is the Spin(5) symplectic invariant tensor and Qi
α are the supercharges.

N = 1 supersymmetry couples the background gauge field with the SU(2)I current multiplet
J (ab) and by (6.10) and (6.11) to the hyperscalars Ha

i as

Y
(ij)
(ab) ·H

(a
(i H

b)
j) and ϕ(ab) · ΩαβQi

αQ
j
βH

(a
(i H

b)
j) . (6.12)

2We thank Thomas Dumitrescu for clarifying this to us.



196 Chapter 6. Searching for non-supersymmetric CFTs in five dimensions

A VEV for the scalar operator ϕ(ab) corresponds to a massive deformation proportional to the
inverse gauge coupling squared, 1/g2 [145]. This brings the E1 theory down to SU(2) SYM and
breaks the global SU(2)I symmetry to U(1)I while leaving the SU(2)R symmetry untouched,
as expected for N = 1 SU(2) SYM.

In fact, via (6.12), ⟨ϕ(ab)⟩ provides a mass also to the hypermultiplets Ha

ϕ(ab)M
(ab) −→ ∆L = ⟨ϕ(12)⟩M (12) =

1

g2
M (12) =

1

g2
ΩαβQi

αQ
j
β H

(1
(iH

2)
j) , (6.13)

where we have chosen a specific Cartan direction, for definiteness.3 We hence see that the Higgs
branch is lifted at weak coupling, as anticipated. This is a supersymmetric mass deformation
since M (ab) is a highest component operator of the SU(2)I current multiplet and so the full
hypermultiplet becomes massive, i.e. both Ha

i and its fermionic superpartner ψa
H , with a mass

mSUSY = 1/g2.
The E1 theory and SU(2) SYM admit also a Coulomb branch. This is parametrized in

terms of the VEV of a scalar operator σ (which at weak coupling corresponds to the scalar
component in the Cartan of the SU(2) vector multiplet). This scalar operator does not carry
any global index, hence along the Coulomb branch the full global symmetry SU(2)I × SU(2)R
(or U(1)I × SU(2)R at finite coupling) is preserved. Further, the hypermultiplet parametrizing
the Higgs branch gets a mass proportional to ⟨σ⟩, showing that the E1 theory does not admit
a mixed branch. One reason for this to be expected is that the Higgs branch is singular at its
origin and it is known that the Coulomb branch of the E1 theory is smooth for any finite value
of ⟨σ⟩ [145, 212]. Another way to see that the Higgs branch is lifted on the Coulomb branch
comes from the BPS bound for instantonic particles. At weak coupling, the breaking of the
SU(2) gauge symmetry on the Coulomb branch generates a CS level k for the Cartan surviving
the breaking. As we reviewed in Chapter 5, the effect of this CS level consists, in giving a net
additional electric charge ne = kI to particles charged under the instantonic symmetry, with I
the U(1)I charge. If the particle is BPS, its mass then reads

M = |ne⟨σ⟩+ hI| . (6.14)

Since this bound remains true also in the strong coupling limit, particles charged under the
instantonic symmetry, as the hypermultiplet Ha, obtain a mass proportional to ⟨σ⟩ on the
Coulomb branch.

Brane web description

Let us consider the Higgs branch, which is a property of the E1 theory, only, in the pq-web
context. This is described in figure 6.2 and it is obtained by displacing the (1, 1) 5-brane in the
space transverse to the (x, y) plane. As we discussed in section 5.5.6, the complex hypermultiplet
H parametrizing the Higgs branch can be identified as the lowest energy excitations of the (1, 1)
strings on the (1, 1) 5-branes across the (1,−1) 5-branes, which is a free hypermultiplet when
the (1, 1) and (1,−1) 5-branes do not intersect.

3Note that, for later purposes, we changed the convention for h, denoting h ≡ 1/g2.
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[1,1] [1,1][1,-1][1,-1]

Figure 6.2: The E1 theory at the origin (left) and at an arbitrary point (right) of the Higgs
branch. The blue wiggles represent the hypermultiplet H. The (1, 1) 5-branes slides along the
[1, 1] 7-branes, giving rise to a free hypermultiplet (a finite 5-brane stretching between two 7-
branes). The VEV of Hi is proportional to the distance between the (1, 1) and (1,−1) 5-branes
in the transverse space.

This process describes a symmetry breaking pattern SU(2)R → U(1)R: the brane separation
occurs in the transverse directions of the 5-brane system, which is R3, and hence only SO(2)
rotations, corresponding to a U(1)R symmetry, survive in the transverse space. It is worth
noticing that one cannot display the full Higgs branch symmetry breaking pattern SU(2)I ×
SU(2)R → SU(2)R′ . This is because the two symmetries, the R-symmetry and the instantonic
symmetry, have different realizations in the brane web. The former is realized geometrically,
in terms of rotations in the three dimensional transverse space the 5-brane system shares. The
latter is instead realized in terms of string degrees of freedom, namely the (1, 1) strings living
on the [1, 1] 7-branes. These two symmetries have different origins and cannot mix, so the web
diagram is not manifestly invariant under the unbroken group.

Let us now consider the supersymmetric mass deformation (6.13) which makes the E1 theory
flow to pure SU(2) SYM. This is described by the global deformation depicted in figure 6.3. We
see from the figure that the Higgs branch is lifted, as expected. Indeed, as soon as 1/g2 ̸= 0 the
(1, 1) and (1,−1) 5-branes cannot anymore be moved apart since the quadruple brane junction
splits into two triple ones. At the same time, the (1, 1) strings describing the hypermultiplet H
get stretched and get a mass proportional to 1/g2, in agreement with field theory expectations.

An important comment is worth at this point. Although from figure 6.3(b) we do see that
H gets a mass at finite gauge coupling, this description is inaccurate. The hypermultiplet
parametrizing the Higgs branch is a BPS state but a (1, 1) string connecting two separated
(1, 1) branes as in figure 6.3(b) is not. A similar problem arises when adding flavors on a brane
web [207,211]. As in that case, a simpler and more direct description can be obtained performing
a HW transition on the original brane web, as described in figure 6.4 (see appendix of [283]).
After the transition, a (1, 1) string stretching between the (1, 1) 5-brane and the [1, 1] 7-brane
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(b)

Figure 6.3: Higgs branch lifting and (a naive description of) hypermultiplet mass generation at
finite gauge coupling.

can be constructed and correctly represents the hypermultiplet degrees of freedom.

(1,1)

(1,1)

(1,-1)(1,-1) (3,1)

Figure 6.4: Hanany-Witten transition. In the resulting 5-brane web the string representing
the hypermultiplet is now a (1, 1) string stretched between the (1, 1) 7-branes and 5-branes
(green wiggle). The two (1, 1) 5-branes on the bottom left are displaced just to visualize the
hypermultiplet degrees of freedom.

As illustrated in figure 6.5, at finite gauge coupling this string acquires a mass which, in
units of the fundamental string tension Ts, is

mH = 1/g2 , (6.15)

which is the same of an instanton with unit charge. As it is clear from the figure, the (1, 1)
string length is suppressed by a

√
2 factor with respect to that of the D1-brane on the D5-brane

which is an instanton of the SU(2) theory, but its tension is
√
2 larger and the two factors

compensate. This shows that this state is BPS and at threshold with an instanton with I = 1,
see eq. (6.14).4

4This agrees with the fact that all BPS saturated states in the N = 1 SU(2) theory can be viewed as bound
states of two basic states, an instanton and, when the Coulomb branch opens-up, a massive W-boson (see [207]
for a detailed discussion).
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h = 1/g2

Figure 6.5: Supersymmetric mass deformation. The (1, 1) string representing the hypermultiplet
Ha gets a mass proportional to the inverse coupling squared.

In this dual frame, the hypermultiplet degrees of freedom are naturally described in terms
of the real half hypermultiplet Ha, which are nothing but the (1, 1) strings connecting 5 and
7-branes in figure 6.4. The Higgs branch is obtained by displacing a (1, 1) 5-brane segment in
the transverse space, as shown in figure 6.6. The free hyper parametrizing the Higgs branch is
a (1, 1) string living on the finite (1, 1) 5-brane (blue wiggles in the figure), which is in fact a
complex hyper, as in figure 6.2.

[1,1]

[3,1][1,-1]

[1,1]

[3,1][1,-1]

Figure 6.6: Higgs branch description in the HW dual frame. Displacing a finite (1, 1) 5-brane
in the transverse space provides a VEV to the hyperscalars Ha

i [304]. The blue wiggles on the
5-brane describe the complex hypermultiplet parametrizing the Higgs branch.

Let us now see how the brane web captures the correct symmetry breaking pattern induced
by the mass deformation. From figure 6.3 one can also see the correct symmetry breaking
pattern SU(2)I × SU(2)R → U(1)I × SU(2)R. From the brane web perspective, the SU(2)I
group is realized as the gauge group of the 7-branes. The low energy excitations of the (1, 1)
strings living on the [1, 1] 7-branes are a vector multiplet in eight dimensions. Once reduced to 5
dimensions, in terms of N = 1 representations this corresponds to a (free) hypermultiplet and a
vector multiplet (at zero coupling). The latter represents the background vector multiplet of the
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flavor symmetry of the five dimensional E1 theory. At finite gauge coupling, the [1, 1] 7-branes
get displaced due to the finite length (2, 0) 5-brane, and the (1, 1) strings connecting the 7-
branes get stretched and acquire a minimal length of order 1/g2, see figure 6.7. This is Higgsing
for the SU(2)I theory living on the [1, 1] 7-branes, which is broken to U(1)I , and corresponds
to give a VEV ∼ 1/g2 to the lowest component of the (background) vector multiplet, ϕ(ab). The
SU(2)R symmetry is instead preserved since the deformation does not involve the transverse
space.5

Figure 6.7: Geometric description of the symmetric breaking SU(2)I → U(1)I induced by the
mass deformation (6.13). At 1/g2 ̸= 0 the two [1, 1] 7-branes cannot anymore be put on top of
each other, the (1, 1) strings living on them (yellow wiggles) get stretched and the instantonic
symmetry is broken to U(1)I . The R-symmetry remains untouched.

Let us finally discuss the Coulomb branch, which exists both for the E1 theory and for
N = 1 SU(2) SYM. We report in figure 6.8 its description both at weak coupling and at infinite
coupling. As for the latter, one easily sees that the Higgs branch is lifted, since the (1, 1) 5-
brane cannot anymore be moved apart along the transverse space, in agreement with field theory
analysis. The (1, 1) strings describing the hypermultiplet H becomes massive and saturates the
BPS mass formula (6.14) with ne = 4 and I = 1. It is then at threshold with a bound state of
a W-boson (ne = 2, I = 0) and an instanton with unit instantonic charge (ne = 2, I = 1 – recall
that on the Coulomb branch an instanton acquires an effective U(1) charge).

Finally, in agreement with field theory expectations, one can see that on the Coulomb branch
the full global symmetry is preserved, SU(2)I × SU(2)R and U(1)I × SU(2)R at infinite and
finite couplings, respectively. The SU(2)R symmetry is preserved since the deformation does not
involve transverse directions, as opposed to the Higgs branch deformation described in figure
6.2. Also, the instantonic symmetry is preserved. In particular, as shown in figure 6.9, in the
E1 theory the [1, 1] 7-branes can still be freely moved on the (1, 1) 5-branes prong, preserving
the full SU(2)I symmetry.

6.3 Supersymmetry breaking mass deformation

In this section, we discuss the supersymmetry breaking deformation reviewed in section 6.1,
provide its geometric realization via brane webs, and discuss its effects on the low energy

5An identical argument can be done in the dual setup of figure 6.5.
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Figure 6.8: Coulomb branch description for the E1 theory (up) and at weak coupling (down).
The E1 theory Higgs branch is lifted since the (1, 1) 5-brane cannot anymore be displaced in
the transverse space. The hypermultiplet (blue wiggles in the figure) becomes massive. The
corresponding BPS state has ne = 4 and (at finite gauge coupling - bottom figures) instantonic
charge I = 1. It is at threshold with a bound state of an instanton and a W-boson, whose
(p,q)-brane web description is depicted in the most right figures.

Figure 6.9: On the Coulomb branch of the E1 theory the [1, 1] 7-branes can still be moved on
top of each other and the full SU(2)I global symmetry is preserved. The presence of 7-branes
creates a non-trivial metric so the 5-branes follow curved geodesics. The curved 5-branes in the
right figure are just a pictorial way to mimic this effect (which does not change the nature of
the 5-branes, namely their charges).

dynamics.
Let us look at the supersymmetry breaking deformation (6.2) more closely and start considering
deforming the E1 fixed point just with

∆L = m̃µ
(12)
(12) , (6.16)

namely at infinite coupling, h = 0. One can easily show that this deformation induces an
instability on the Higgs branch, which in the E1 theory is instead a flat direction. More precisely,
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under (6.16) a mass term is generated for the hyperscalars Ha
i parametrizing the Higgs branch

but this mass term always has a positive and a negative eigenvalues. To see this, let us rewrite
(6.16) using (6.10) as

∆L = m̃
(
H1

1H
2
2 +H2

1H
1
2

)
. (6.17)

Recalling that H ia = H ia, with little algebra the above equation can be recasted as

∆L = m̃
(
|H1

1 |2 − |H2
1 |2
)
, (6.18)

which shows that regardless of the sign of m̃ there always exists a tachyonic mode and hence
an instability.6 Considering the more general deformation (6.3) we then see that there are two
competitive contributions to scalar masses, one weighted by m̃ and one by h (the latter, being
a supersymmetric mass deformation, always gives positive mass squared contribution for the
hyperscalars Ha

i )
∆L = (h2 + m̃)|H1

1 |2 + (h2 − m̃)|H2
1 |2 . (6.19)

This implies that, unlike the regime |m̃| ≪ h2, the regime |m̃| ≫ h2 describes a region of
instability. Before discussing what the fate of this instability could be, let us see how this
discussion translates in brane-web language.

The supersymmetry breaking deformation (6.16) has (at least) the following properties:

1. Break supersymmetry.

2. Break SU(2)I × SU(2)R to U(1)I × U(1)R.

3. Lift the Higgs branch of the E1 theory.

4. Lift the Coulomb branch.

Starting from the E1 theory, figure 6.10(a), let us consider a rigid rotation of the two (semi-
infinite) right 5-branes along the x-axis, as shown in figure 6.10.

This deformation satisfies all the above requirements. First, the rotation along the x-axis
changes the angles between the 5-branes of the E1 fixed point, and therefore the supersymmetric
condition for brane junctions is not anymore satisfied. Supersymmetry is then broken. The R-
symmetry is broken to U(1)R since only SO(2) rotations are still allowed in the transverse space.
The rotation by an angle α also misaligns the [1, 1] 7-branes on which the (1, 1) 5-branes end
which get rotated one another by the very same angle. Therefore, the 7-branes are not anymore
parallel and the SU(2)I instantonic symmetry is broken to U(1)I .

7 The Higgs branch is lifted
since the possibility to displace any of the 5-branes along transverse directions at no cost, as in
figure 6.2, is now geometrically obstructed. Finally, also the Coulomb branch is lifted. The four
5-branes describing the string junction cannot undergo a process as the one described in figure

6We thank Thomas Dumitrescu for pointing this out to us.
7This also signals the instability. The tilt, besides Higgsing the SU(2)I gauge theory on the 7-branes, makes

open strings connecting the two 7-branes becoming tachyonic, one mode getting a positive mass squared and
the other one getting a negative mass squared [305, 306]. This can be seen as the D-term of the SU(2)I vector
multiplet on the 7-branes getting a VEV along a Cartan direction.
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Figure 6.10: The supersymmetry breaking deformation: a rigid rotation around the x-axis of
the right (1, 1) and (1,−1) 5-branes.

6.8 because the finite length D5 and NS5 branes would now be misaligned and it costs energy
to open up the string junction. So the modulus σ parametrizing the Coulomb branch is lifted.
We then propose the deformation in figure 6.10 to be the one we are looking for.

A further check for the validity of our proposal comes from computing the resulting low
energy spectrum at weak coupling, namely at large |h|. Field theory analysis shows that the
supersymmetry breaking deformation lifts the whole N = 1 vector multiplet of SU(2) SYM but
the vector field and the theory flows to pure YM in the IR. So, if our proposal is correct, not
only the real scalar σ but also the gaugini should be lifted by rotating the brane system as in
figure 6.10. To show that this is the case it is easier to work in the limit gs → 0 (this makes the
analysis simpler but does not change the end result). In this regime the supersymmetric brane
system depicted in figure 6.10(a) becomes a system of two parallel NS5-branes with two D5-
branes stretched between them. The D5s extend along (01234x) and the NS5s along (01234y),
which are separated in the x direction by the finite length D5-branes. Standard analysis of the
boundary conditions of the low energy modes on the D5-branes shows that a full 5d N = 1
vector multiplet survives.

In this regime, our supersymmetry breaking deformation amounts to rotating the right NS5-
brane by an angle α around the x direction, as shown in figure 6.11.

The boundary conditions for a massless vector of section 5.5.3 are still satisfied, in particular,
is still true that

Fµx = 0 , Fµν unconstrained (6.20)

where µ, ν = 0, . . . , 4, which are Neumann directions for both the D5 and the NS5-branes.
On the contrary, the boundary condition for getting a massless gaugino is violated. In the
supersymmetric configuration, the following conditions are satisfied at both ends of the finite
D5-branes

λ− ≡ (1− Γ)λ = 0 , λ+ ≡ (1 + Γ)λ unconstrained , (6.21)

where λ is the spin 1/2 field of the D5-brane theory and Γ = ΓxΓ7Γ8Γ9 is a product of Dirac
matrices with indices on the NS5-brane transverse directions. The mode λ+ is the gaugino,
partner of the gauge field Aµ. Upon rotating one NS5-brane by an arbitrary angle in, say, the
(y7) plane, the condition which is satisfied at the corresponding intersection is the same as
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Figure 6.11: The supersymmetric and the supersymmetry breaking configurations at gs = 0
and finite h = 1/g2. The grey lines are NS5-branes. In the right figure, the NS-brane on the
extreme right is rotated around the x-axis on the (y7) plane.

(6.21) but implemented by a different Γ matrix, namely Γ′ = ΓxΓ7′Γ8Γ9 where 7
′ is a transverse

direction for the rotated NS5-brane, together with x, 8, 9. This mixes the + and − modes so
that an unconstrained one, compatible with both boundary conditions at the right and left
NS5-branes, does not exist anymore. Hence, the gaugino is lifted.

The analysis of the boundary conditions at the D5/NS5 intersections provides also another
way to see that after the supersymmetry breaking rotation the modulus σ is lifted. On the
D5-branes there are four scalars, ϕy,7,8,9, associated with the possibility for the D5s to move in
the directions transverse to their worldvolume. The NS5 branes fix to zero all scalars transverse
to both the D5 and the NS5 branes. So, for an NS5 along 01234y, we get

ϕ7,8,9 = 0 . (6.22)

In the supersymmetric case, the D5s are suspended between two identical NS5, so ϕy survives
the boundary conditions and is nothing but the scalar field σ in the vector multiplet of the
five dimensional gauge theory living on the finite length D5-branes. Upon rotating the right
NS5-brane as in figure 6.11 the boundary conditions there change, fixing now to zero the modes

ϕ7′,8,9 = 0 . (6.23)

As a consequence, imposing the two conditions at once, all scalar modes are lifted.
The origin of the instability in the rotated brane web can be seen as follows. Under a

rotation by an angle α around the x-axis the [1, 1] and [1,−1] 7-branes on which the 5-branes
end get twisted by the same angle. This implies, in turn, that the two [1, 1] 7-branes where
the (1, 1) strings describing the background vector multiplet live become a system of branes at
angles with 2 mixed Neumann-Dirichlet boundary conditions. This provides a VEV to the D-
term component of the (background) vector multiplet described by the 7-7 strings, Y

(ij)
(ab) . More

precisely, we have

⟨Y (ij)
(ab) ⟩ = m̂(ij)v̂(ab)

1

πα′ tan
α

2
(6.24)

with m̂(ij) and v̂(ab) being unit vectors indicating the Cartan’s directions, which we choose
along (12) in both, as discussed in section 6.1. Via the coupling (6.12) this generates a mass
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deformation in the E1 theory

Y
(ij)
(ab) µ

(ab)
(ij) −→ ∆L = ⟨Y (12)

(12) ⟩µ
(12)
(12) = m̃ µ

(12)
(12) = m̃(|H1

1 |2 − |H1
2 |2) , (6.25)

which is nothing but eq. (6.18).8 The operator µ
(ab)
(ij) is a lowest component operator of the

SU(2)I current multiplet and therefore the deformation above breaks supersymmetry explicitly.

The scalar operator Y
(ij)
(ab) is in the adjoint of both SU(2)’s of the global symmetry group

and a VEV breaks them to their Cartan generators, SU(2)I × SU(2)R → U(1)I × U(1)R. As
already noticed, this is matched geometrically: the angle between the [1, 1] 7-branes breaks
SU(2)I → U(1)I and at the same time leaves only a two dimensional plane transverse to both
the (x, y) plane and to the plane spanned by the two 7-branes at angles, hence breaking the
R-symmetry as SU(2)R → SO(2) ≃ U(1)R. Note that unlike the symmetry breaking pattern
on the Higgs branch we discussed previously, in this case, we have a complete description of
the symmetry breaking pattern, SU(2)I × SU(2)I → U(1)I × U(1)R. This is because in this
case, the breaking pattern does not mix the two symmetries. Moreover, everything depends on
a VEV for Y

(ij)
(ab) which is a fundamental degree of freedom for the [1, 1] 7-branes theory.

Let us end with an important remark about the range of validity of the above brane descrip-
tion. In order for the brane-web after the deformation to describe a five dimensional field theory,
we need to decouple the Kaluza-Klein (KK) six dimensional modes. Being the supersymmetry
breaking scale MSB = m̃g2 and the KK mass ∼ 1

∆x
= g2/l2s , with ls the string length, the

following inequality should hold, MSB ≪ g2/l2s . So, if the supersymmetry breaking deformation
is sufficiently smaller than the gauge coupling squared in string units (which is a weaker and
weaker constraint the larger the gauge coupling), the brane-web still describes a five dimensional
field theory and the KK modes do not mix.

6.4 Phase diagram of softly broken SYM

The picture emerging from our analysis is that the parameter space is divided into two quali-
tatively different regions. One region, which includes the weak coupling regime, where at low
energy the mass deformed E1 theory reduces to pure SU(2) YM. A second region, symmetri-
cally displaced around the m̃-axis, where the global symmetry is spontaneously broken due to
the condensation of the hyperscalar Ha

i , with a symmetry breaking pattern U(1)I × U(1)R →
D[U(1)I × U(1)R] ≡ U(1). This implies that a phase transition should occur between them.

The response of the brane web in the two regimes seems to confirm this picture. For any
fixed angle α, for small enough h so that an open string tachyon is generated, the (1, 1) semi-
infinite branes are expected to recombine and separate from the (1,−1) recombined brane in
the transverse direction, in analogy with what happens with systems of branes at angles in
flat space, see e.g. [307]. Space separation induces a VEV for the hyperscalars, as discussed
in section 6.2, and the global symmetry is spontaneously broken. On the contrary, for large
enough h the tachyon disappears from the spectrum and brane recombination is disfavored
(notice, further, that the larger h the heavier is the (2, 0) 5-brane which keeps the half (1, 1)

8One can reach the same result also looking directly at the 5-brane theory.
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and (1,−1) 5-branes apart, working against brane recombination). Hence in this regime, the
brane web does not break and the VEV of the Higgs field vanishes.

A concrete handle on the fate of the instability may come from an effective field theory
approach. Clearly, by breaking supersymmetry, the exact scalar potential is expected to contain
more terms than just quadratic ones, eq. (6.19). While we cannot find its complete expression,
there are two regimes where we can be quite safe about its form.

Let us start from the E1 supersymmetric fixed point and sit at a point of the Higgs branch
where the hyperscalar field VEV is very large. In this regime the low energy dynamics is
described by the massless hypermultiplet H only, since all other degrees of freedom have masses
of order ⟨H⟩.

Let us now switch on the non-supersymmetric mass deformation. This lifts the modulus
and a potential is generated. Requiring that no singularities arise as m̃ → 0, one can easily
conclude by dimensional analysis that, besides the quadratic term, only operators with negative
powers of H can appear. This ensures that the absolute minimum at ⟨H⟩ → ∞ predicted by
the leading order analysis survives. Hence we conclude that on the m̃-axis the global symmetry
is indeed spontaneously broken and the potential is unbounded from below.9

Let us now consider the other extreme regime, m̃ = 0, h ̸= 0. In this regime, the hypermul-
tiplet is a massive BPS state at threshold and so we expect no corrections to the potential other
than the supersymmetric mass term

V (H, h) = h2H2 . (6.26)

In particular, and more relevant to us, the minimum of the potential is at ⟨H⟩ = 0 (as dictated
by N = 1 SYM, which is in an unbroken phase). So, as anticipated, there should exist a curve
in the (h, m̃) plane where a phase transition occurs, separating a region where the U(1)I×U(1)R
global symmetry is preserved from a region where it is spontaneously broken.

For both m̃ and h non-vanishing, the potential should interpolate between the above regimes.
Computing its exact expression is a daunting task (in brane-web language this would correspond
to computing the full tachyon potential). Moreover, as soon as h ̸= 0 it is not at all guaranteed
that the only light field is the hypermultiplet H. So, in principle, the potential could depend on
more scalar fields than just the hyperscalars. Still, even under the restrictive assumption of one
light field only, some lessons can be learned, just using continuity arguments and consistency of
various limits. In particular, one can show that as soon as h ̸= 0 the instability may disappear,
and global minima at finite distance in field space may arise, corresponding to a stable symmetry
broken phase out of the m̃-axis. On the other hand, without further insights, one cannot be
conclusive about the order of the phase transition separating the symmetry broken and the
symmetry preserving phases. This depends on the exact form of the potential, which we do not
know. A qualitative picture of the phase diagram is reported in figure 6.12.

9Depending on the specific form of the higher order corrections local minima can appear at finite distance in
the moduli space, but these do not change our conclusions. In principle, it is also possible that a competitive
unstable vacuum shows up at vanishing VEV for H. This cannot be excluded, but the brane-web description of
the supersymmetry breaking deformation, figure 6.10, suggests this not to be the case. As already emphasized,
for vanishing h the 5-branes tend to recombine and separate in the transverse space, hence providing a non-
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Figure 6.12: Phase diagram of softly broken E1 SCFT. The four regions described by pure
SU(2) YM enjoy different U(1)I and U(1)R background CS levels, as indicated. The instability
region (red wavy line) can be confined on the m̃-axis or extend in part or all the symmetry
broken phase, depending on the exact form of the potential. Along the blue thick lines, a
phase transition occurs, which can be first or second order. In the latter case, note that the
critical line does not represent a non-supersymmetric one dimensional conformal manifold. The
deformation out of the E1 fixed point is a relevant one, which is seen as irrelevant from the IR
theory point of view. The ratio h2/m̃ is a marginal parameter but its value is tuned on the
critical line. Hence, if a CFT actually exists, it is unique.

If the phase transition is second order and the corresponding CFT an interacting one, this
could be viewed as a UV-completion of pure YM SU(2). Upon integrating out the massive
gaugini and the real scalar at one loop, the effective YM coupling reads

1/g2YM = 1/g2 − ag2|m̃| , (6.27)

with a positive and 1/g2 = h. This suggests that the theory becomes strongly coupled at finite
h, where the YM coupling diverges. Past infinite coupling the theory enters a different phase
where one could expect, on general ground, an instantonic operator to condense. This nicely
agrees with the phase diagram described in figure 6.12, which was obtained looking at the Higgs
branch dynamics and which shows that in the confining phase an instantonic operator does
condense, in fact.

vanishing VEV for H. That the end-point of this process is a reconnected, stable non-supersymmetric brane
web is very unlikely and we exclude such possibility.
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6.5 Phase transition from brane web

Another way to analyze this phase transition, as we mentioned in the previous section, comes
from the analysis of the pq-web of the E1 theory. For generic values of h and m̃ there exist
two brane webs compatible with charge conservation, a recombined smooth configuration after
tachyon condensation and the original connected one, as described qualitatively in figure 6.13.
Following the discussion above, we expect the former to dominate for h2 < m̃ and the latter
for h2 > m̃. At h2 ∼ m̃ a phase transition between these topological distinct configurations
is expected and one could wonder whether using brane web dynamics the order of such phase
transition can be determined.
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Figure 6.13: On the left the recombined brane web after tachyon condensation. The (1, 1) and
(1,−1) 5-branes are separated in a direction transverse to the (x, y) plane. On the right the
connected supersymmetry breaking configuration. Each three junction is supersymmetric but
the whole system breaks supersymmetry since the boundary conditions of the D5-branes (dark
grey line) on the two three junctions are mutually non-BPS.

The energy of the two configurations and, in turn, the way the transition between the two
brane webs occurs depends on the interaction between the constituent branes. This is hard to
compute, in particular in a non-supersymmetric setup as the one we are interested in. Let us
then analyze the brane system by neglecting brane interactions, first.

In this limit, the energies of the two configurations are nothing but the tensions of the
various branes shaping them. In the calculation, the 7-branes on which the 5-branes end furnish
a regulator, since this way the otherwise semi-infinite 5-branes become finitely extended and
their energy finite.

The 5-brane constituting the brane webs are of different kinds and so are their tensions. In
particular, recall that the tension of a (p,q) 5-brane is

T(p,q) =
√
p2 + q2 T(1,0) , (6.28)

where T(1,0) is the D5-brane tension and the complexified Type IIB string coupling has been set to
its self-dual point, τ = i. With this in mind, let us start considering the connected configuration
in the supersymmetric limit, as shown in figure 6.14. The energy of this configuration is easily
computed to be

Econ.(h, L) = 4
√
2L+ 2h (6.29)

in units of T(1,0). If we now rotate the right junction by an angle α ≤ π around the x-axis as in
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Figure 6.14: The connected configuration for α = 0. The (1, 1) and (1,−1) 5-brane segments
have all length L.

the right figure 6.13, keeping the angle between the (1, 1) and the (1,−1) 5-brane fixed,10 the
energy remains the same since all lengths remain fixed. Hence, the total energy of the connected
configuration in the limit in which brane interactions are neglected equals (6.29) for any α.

In this same limit, the reconnected configuration compatible with charge conservation is
nothing but the straight brane version of the brane web on the left of figure 6.13. This comes
from merging of the (1, 1) 5-brane prongs into a unique straight (1, 1) 5-brane suspended between
the [1, 1] 7-branes, and similarly for the (1,−1) 5-branes, as shown in figure 6.15. The energy
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Figure 6.15: Recombined configuration neglecting brane interactions. Fixing the boundary
conditions, that is the positions of the 7-branes, the minimal energy configurations are straight
lines, as indicated.

Erec. of the configuration depends now on the rotation angle α and reads

Erec.(h, L, α) = 2
√
2

√
(h+

√
2L)2 + 2L2 cos2

α

2
. (6.30)

Comparing eqs. (6.29) and (6.30) we see that the connected configuration is the one with minimal
energy and hence is the true vacuum of the theory for h > h∗, while the reconnected one has
minimal energy for h < h∗, where

h∗ =
√
2L
√
1− cosα . (6.31)

10This can be shown to be the configuration minimizing the energy.
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At h = h∗ the two configurations, which exist and remain distinct for any value of h, are
degenerate in energy and there is a phase transition between them (in the supersymmetric
limit, α = 0, the transition occurs at h∗ = 0 and, consistently, the connected configuration is
always dominant). The corresponding phase diagram is similar to figure 6.12 and suggests that
the phase transition, at least at this level of the analysis, is actually first order.11 In particular,
in both cases the transition depends on the angle α. However, in the phase diagram of figure
6.12, the transition point h∗ is proportional to the string length ls, while in our configuration,
which is completely semi-classical, there is no dependence on this parameter.12

One might wonder if anything could change once brane interactions are taken into account.
In fact, it is expected brane interactions to affect the order of the phase transition, as it was
shown to be the case in e.g. [308], where four dimensional gauge theories were studied using
rather similar brane models. One of the key ingredients of the analysis of [308] was the possibility
of selecting a regime where few constituent branes could be studied as probes in the background
of many others, and take advantage of the gravitational background generated by the latter.
This is something we cannot achieve in our case since our brane web is composed of one (1, 1),
one (1,−1) and, once h ̸= 0, two (1, 0) 5-branes and none of them can be treated as a probe
in the background of the others. So, in order to take advantage of an approach as in [308]
a generalization of the E1 theory is required. A natural such candidate is the so-called X1,N

theory [256], whose structure will be reviewed in the next section.

6.6 Generalizations of E1: the X1,N theory

The brane web of N (1, 1) branes intersecting M (1,−1) branes at a 90 degrees angle realizes
the so-called XM,N fixed point [256]. Specializing to the case M = 1, the web reduces to the
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Figure 6.16: X1,N fixed point (N = 3 in the figure).

one in figure 6.16.

11The same result was found independently by Oren Bergman and Diego Rodriguez-Gomez.
12We find here a spurious dependence on the parameter L that we used to regulate. We will further comment

about it when considering the effects of brane interactions, in section 6.7.
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Similarly to the E1 theory, one can switch on (the now several) supersymmetric relevant
deformations. These trigger an RG-flow and drive the theory to a supersymmetric gauge the-
ory in the IR. This corresponds to opening-up the brane web as shown in figure 6.17, while
figure 6.18 is the quiver diagram describing such low energy effective theory. This is a SU(2)N

t1

t2

t3

m1

m2

Figure 6.17: The X1,N brane web in the SU(2)N limit.

supersymmetric gauge theory with matter in the bifundamental.

. . .SU(2) SU(2) SU(2) SU(2)

Figure 6.18: SU(2)N quiver.

The lengths of the (1, 0) branes, that we dub ti in the following, correspond to the square of
the inverse (effective) gauge couplings of the SU(2) gauge factors. The vertical distance between
the D5-branes associated with the i−th and the (i+ 1)−th groups defines instead the mass mi

of the corresponding bifundamental.
For generic values of ti and mi the global symmetry of the system is U(1)NI × U(1)N−1

F .
Similarly to what happens for E1, when ti = 0 the instantonic U(1)I associated with the
i−th node enhances to SU(2)I . This is manifest from the brane web: when ti = 0 one can
make two 7-branes of the same type (either [1, 1] or [1,−1]) to lie on top of each other, hence
enhancing the 8-dimensional gauge symmetry living on their world-volume, which corresponds
to an instantonic symmetry in the five dimensional theory [211,302]. Similarly, whenmi = 0, two
(1, 1) 5-branes become aligned, inducing an enhancement of the corresponding flavor symmetry
from U(1)BF to SU(2)BF .

At the fixed point, the global symmetry is believed to get enhanced to SU(2N) [247]. This
can be understood from the brane web by the possibility of superimposing the 2N [1, 1] 7-branes
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at the fixed point, see figure 6.16.13 This also implies that the Higgs branch, parametrized
at weak coupling by the massless bifundamentals, gets enhanced. At the fixed point, this is
the 2N -dimensional minimal nilpotent orbit O[2N ](su(2N)), as can be shown by drawing the
corresponding magnetic quiver. This is nothing but the space of 2N × 2N complex matrices M
with M2 = 0,TrM = 0 or the Higgs branch of four dimensional U(N) supersymmetric gauge
theory with 2N flavors.14

In the following, we will consider a supersymmetry breaking deformation of the X1,N theory
very similar to the one we discussed previously for the E1 theory. Again, the existence of a
phase transition in the space of parameters will be manifest. However, very much like what was
done in [308], in this case, the possibility to play with the large N limit will let us get some
insights on the nature of this phase transition. In particular, we will show that in a certain
range of parameters the phase transition is actually second order, and a non-supersymmetric
fixed point is then expected to exist in the phase diagram.

6.7 Phase transitions in the X1,N theory

Let us consider a deformation of the X1,N theory with parameters ti = −2mi = h for all i.
This makes the single junction of the fixed point theory to separated into two, as shown in
figure 6.19: the (1, 1) 5-branes remain perpendicular to the (1,−1) ones while (N + 1, N − 1)
represents the intermediate (p,q) 5-brane, whose length equals h. The SU(2N) flavor symmetry
is broken to SU(N)L×SU(N)R×U(1)B while the SU(2) R-symmetry remains unbroken since
the deformation takes place in the (x, y) plane, only.
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Figure 6.19: Opening the fixed point via a supersymmetric deformation with parameters ti =
−2mi = h. The (1,−1) 5-branes remain at a 90 degrees angle with the (1, 1) 5-brane stack,
while the larger N the smaller the angle δ between the stack and the (N +1, N − 1) 5-brane of
length h.

13Strictly speaking, this argument is a bit naive since no affine extension of the AN−1 algebra can be con-
structed from systems of 7-branes [277]. So the standard methods used in presence of exceptional symme-
tries [211] cannot be applied.

14We thank Antoine Bourget for elucidating this point to us.
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It is worth noting that, for generic N , this deformation does not give any simple five di-
mensional field theory, but rather a limit in which some of the gauge couplings of the N SU(2)
gauge factors diverge15. An exception is the case N = 1 for which the mass deformation leads
to pure SU(2) SYM.

Exactly as we did for E1, we can now break supersymmetry by rotating the right brane
junction by an angle α around the axis along which the (N + 1, N − 1) 5-brane is aligned.
The deformation involves the transverse directions to the (x, y) plane and hence affects now
also the SU(2) R-symmetry, which gets broken to its Cartan. This has a natural field theory
counterpart. The supersymmetry preserving deformation corresponds to giving a non-vanishing
VEV to the lowest component of the background vector multiplet associated with the global
symmetry current, which is a singlet under the SU(2) R-symmetry. Here, instead, we give a
VEV to a highest component which, as such, breaks supersymmetry. This is a triplet under
SU(2) and so the R-symmetry is broken to U(1), very much like what happens for the E1

theory [155,302].
From the structure of the brane web, and comparing with figure 6.13, one could argue the

effects of the supersymmetry breaking deformation to be qualitatively similar to what happens
for the E1 theory [302]. A scalar mode is expected to become tachyonic for small enough h
and the brane web wants to recombine. The two competing configurations, compatible with
brane charge conservation, are shown in figure 6.20. Their energies, in the limit in which brane
interactions are neglected, are a generalization of eqs. (6.29)-(6.30) and read

Erec. =
√
2 [f(sin δ) +Nf(cos δ)] , f(a) ≡

√
(h+ 2La)2 + 4L2(1− a2) cos2 α

2
,

Econ. =
√
2
[
2NL+ 2L+

√
N2 + 1h

]
,

(6.32)

where the reconnected configuration is the natural generalization to N > 1 of the straight brane
configuration of figure 6.15. It is possible to show that also in this case there exists a (single)

(N + 1, N − 1)
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Figure 6.20: The two competing brane webs after the supersymmetry breaking deformation.
The recombined system consists of one (1,−1) 5-brane and N (1, 1) 5-branes, separated in a
direction transverse to the (x, y) plane.

15For instance, for N = 2 after the deformation t1 = t2 = −2m, we get a theory where both gauge couplings
of the two SU(2) nodes diverge.
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critical value h∗ that separates two regions in the space of parameters where one brane web
dominates against the other, and viceversa.

So far this is no different from what we discussed in section 6.5, and neglecting interactions
the phase transition looks again first order. The point, now, is that we can consider N to be
parametrically large. This has two effects. The first is that it makes easier to compute brane
interactions in the recombined brane system, left of figure 6.20, since in the large N limit this
can be treated as a probe (1,−1) 5-brane in the gravitational background of N (1, 1) 5-branes.
The second effect is that it makes the angle δ between the two stacks of N (1, 1) 5-branes and
the (N + 1, N − 1) 5-brane, see figure 6.19, going to zero

cos δ =
N√
N2 + 1

, lim
N→∞

δ = 0 , (6.33)

while the (N +1, N − 1) 5-brane are indistinguishable from a stack of N (1, 1) 5-branes. Hence,
in the strict N → ∞ limit the system in figure 6.19 reduces to that in figure 6.21. Physically,
in this limit brane charge conservation at brane junctions does not force the N stack to bend
anymore (and to change its nature) due to the (1,−1) branes which end on it. In this regime,
the energies (6.32) of the two configurations simplify as

Erec. =
√
2

[
N(h+ 2L) +

√
h2 + 4L2 cos2

α

2

]
+O (1/N) ,

Econ. =
√
2 [N(h+ 2L) + 2L] +O (1/N) .

(6.34)

The transition point h∗ reads then h∗ = 2L sinα/2.
We note, in passing, that in this limit our system becomes very similar to the one considered

in [308], yet in one dimension higher. This will be useful later.
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Figure 6.21: The deformed X1,N theory in the large N limit. The system becomes that of N
(1, 1) 5-branes on which two (1,−1) 5-branes ends.

6.7.1 Phase transitions in the backreacted X1,N brane-web

In this section we will take brane interactions into account and see how the nature of the phase
transition discussed previously may change.
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As already noticed, in the large N limit the original supersymmetric configuration simplifies
to the one depicted in figure 6.21. Rotating by an angle α the non-supersymmetric connected
and reconnected brane webs look instead as in figure 6.22.
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Figure 6.22: The two competing brane webs after the supersymmetry breaking deformation, in
the large N limit. The difference in energy depends only on that of the (1,−1) 5-brane, since
that of the (rigid, in this limit) (1, 1) 5-brane stack contributes equally to the two webs.

The difference in energy between the two configurations depends on the (1,−1) 5-brane only,
since the (1, 1) 5-brane stack is unperturbed in this limit, as in the non-interacting case. Hence,
its contribution will be factored out in what follows, and we will just compute the (1,−1)
5-branes energy. The system can be treated as a probe (1,−1) 5-brane in the gravitational
background of N (1, 1) 5-branes which can exert a force on (and hence bend) the probe brane.
Note, however, that by the very geometry of the problem, this does not happen for the connected
brane web, right of figure 6.22, whose energy is then the same as when interactions are neglected,
eq. (6.32). In what follows, we will hence compute the effects of brane interactions on the left
brane web of figure 6.22.

Let us start considering the background generated by the (1, 1) branes stack. We can
align these branes along the 01234x directions, while the (1,−1) branes, in the supersymmetric
configuration, are aligned along 01234y. It is useful to introduce cylindrical coordinates as

(x, y, z) = (x, ρ cosϕ, ρ sinϕ) . (6.35)

In these coordinates the N (1, 1) 5-branes are located along (x, 0, 0) while the (1,−1) 5-brane,
after the supersymmetry breaking deformation, has boundary conditions on the [1,−1] 7-branes
it ends on P1 ≡ (x1, ρ1, 0) and P2 ≡ (x2, ρ2 cosφ, ρ2 sinφ), where

φ = π − α . (6.36)

The supersymmetric limit corresponds to φ = π. In these cylindrical coordinates, the backre-
acted metric of the N (1, 1) 5-branes takes the form16

ds210 = H−1/4ds2R1,4
+H−1/4dx2 +H3/4(dρ2 + ρ2dϕ2 + ds2R2

) , H = 1 +
ℓ2

ρ2
, (6.37)

16We present the metric in Einstein frame, and take asymptotic values of the axio-dilaton to equal τ0 = i, as
before.
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where ℓ = 21/4ls
√
N . To simplify notations we will set measure quantities in units of ℓ, and

rëınstate the correct factors through dimensional analysis when needed. The axio-dilaton equals

τ =
1 +H

1−H + 2 i

√
H

1 +H
, (6.38)

while the three forms have support on the S3 sphere surrounding the stack

1

(2πls)2

∫

S3

F3 = N,
1

(2πls)2

∫

S3

H3 = N. (6.39)

The brane action of the (1,−1) 5-brane consists of a DBI term and a WZW term, given by [309]

S(1,−1) = −T(1,0)
∫
d6ξ∆(τ, τ̄)

√
− det

(
P [gµν ] +

P [C2 −B2]

∆(τ, τ̄)

)
+ T(1,0)

∫
(C6 −B6) . (6.40)

where

∆(τ, τ̄) =

√
2i(1− τ)(1− τ̄)

τ − τ̄ . (6.41)

Note that the two-form gauge potentials are transverse to the (1,−1) 5-branes, and the six-form
gauge potentials are equal, thus the brane action will only depend on the ten-dimensional metric
and axio-dilaton.

Filling in the metric pull-back and the value of τ one finds that

S(1,−1) = −
√
2T(1,0)

∫
dx

√
H−1 + ρ̇2 + ρ2ϕ̇2 , (6.42)

where we have denoted derivatives with respect to x with a dot. Modulo an overall normal-
ization, the DBI (6.42) is the same as for a D5 brane in the background of a NS5 brane [308].
Indeed, the two configurations are SL(2,R) dual. Since the corresponding Lagrangian, L(1,−1),
does not explicitly depend on x and ϕ we find the following two constants of motion

I =HL(1,−1) , (6.43)

Q =Hρ2ϕ̇ . (6.44)

We search for brane configurations ending on the points P1 and P2. These develop a minimum
xm at which ρ̇(xm) = 0. This represents the turning point of the solution, namely the minimal
distance of the probe from the brane stack. Taking ρm = ρ(xm), we find that

√
1 + ρ2m +Q2 = ρmI . (6.45)

To solve the full equations of motion we split the solution into two branches x ∈ [xi, xm], where
i = 1, 2 and, as mentioned below eq. (6.35), xi labels the positions of the [1,−1] 7-branes along
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the x direction. We can then use eqs. (6.44) and (6.45) to solve eq. (6.43) through separation
of variables

√
1 +Q2(xm − x1) =

ρ1∫

ρm

dρ
H√

Hm −H
= ρm

√
ρ21 − ρ2m + θ1 ,

√
1 +Q2(x2 − xm) =

ρ2∫

ρm

dρ
H√

Hm −H
= ρm

√
ρ22 − ρ2m + θ2 ,

(6.46)

where, for later convenience we have defined θi = arccos(ρm/ρi). Similarly, we find, using the
equation of motion for ρ, that

√
1 +Q2ϕm = −Q θ1 ,

√
1 +Q2(ϕm − φ) = Q θ2 , (6.47)

To further analyze the system we will assume the simplification ρ1 = ρ2 ≡ L, and thus θ1 =
θ2 ≡ θ, such that √

1 +Q2h = L2 sin 2θ + 2θ ,
√
1 +Q2φ = 2Q θ , (6.48)

where h ≡ x2−x1. Solving the second equation in (6.48) for Q we can rewrite the first equation
as (reinstating the appropriate factors of ℓ defined below eq. (6.37))

ℓh(θ) =

√
1−

( φ
2θ

)2
(L2 sin 2θ + 2ℓ2θ) , (6.49)

which is transcendental and does not have a closed-form expression when solving for θ. Since
the constant of motion Q is real, and 0 ≤ φ ≤ π we conclude that φ ≤ 2θ ≤ π. In the
supersymmetric limit, this equation trivializes and one has a solution only for h = 0. This is
consistent since in this regime the reconnected and the connected brane webs become the same,
while for h ̸= 0 the reconnected one does not exist.

The energies for the reconnected and connected configurations can be now easily computed
as (minus) their evaluated brane actions and read

ℓErec. = 2
√
2T(1,0)

√
Hm −

( φ
2θ

)2
ρmL sin θ , Econ. = 2

√
2T(1,0)L , (6.50)

where, as already noticed, the energy of the connected configuration is unaffected by brane
interactions and hence equals that in eq. (6.32). This implies that

(
Erec.

Econ.

)2

=

(
1− φ2

4θ2Hm

)(
1 +

ρ2m
ℓ2

)(
1− ρ2m

L2

)
. (6.51)

The natural variables of interest are the distance between the two [1,−1] 7-branes along the x
direction, h, the relative rotation between them φ, and their distance from the (1, 1) 5-branes
stack, L. To rewrite the ratio of energies in terms of these physical variables one must solve
eq. (6.49) to find θ(h, φ, L). This requires a combination of analytical and numerical methods
and will be dealt with below.

We will first focus on the case α = π, that can be studied almost completely analytically.
This will be important when we move on studying the system for general values of α, which
will turn out to be qualitatively similar, albeit one must resort to numerical methods.
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Figure 6.23: The reconnected and connected brane webs for α = π. In this case, everything
happens on the (x, y) plane only. Blue squares and circles refer to 7-branes orthogonal to the
(x, y) plane which look however as anti-branes compared to unrotated ones.

The α = π case

Taking α = π, the brane setup is SL(2,R) dual to a D5-NS5 system that is T-dual to the
D4-NS5 brane system studied in [308]. Following a completely analog analysis as in [308] we
will give strong evidence that, in a certain range of parameters, the X1,N brane-web undergoes
a second order phase transition. Even though the computation is cognate to the one in [308] we
will go through it in detail since it will provide a good intuition for the physics in the situations
that α ̸= π.

First, notice that taking α = π several quantities simplify. The transcendental eq. (6.49)
now becomes Kepler’s equation17

ℓh(θ) = L2 sin 2θ + 2ℓ2θ , (6.52)

where 0 ≤ θ ≤ π/2. A maximum for h is reached at

ℓh0 = L2 sin 2θ0 + 2ℓ2θ0 , with L2 cos 2θ0 = −ℓ2 , (6.53)

which can only be solved when L ≥ ℓ. In the following, we will split the analysis into two cases,
L ≤ ℓ, and L > ℓ, which will turn out being qualitatively different.

� L ≤ ℓ: We find that h monotonically increases from h(0) = 0 to h(π/2) = πℓ. In the
regime 0 ≤ h ≤ πℓ there are thus two solutions to the brane action, the reconnected
and the connected ones, whose brane webs are depicted in figure 6.23. The ratio of their
respective energies is given by

(
Erec.

Econ.

)2

=

(
1 +

ρ2m
ℓ2

)(
1− ρ2m

L2

)
< 1 . (6.54)

This ratio is always smaller than one, so we find that the energetically favorable config-
uration is the reconnected one. At h = πℓ we find that ρm = 0, the ratio goes to one
and, consistently, the reconnected and the connected brane webs become degenerate. For

17This equation can actually be solved analytically for θ, in terms of a series of Bessel functions, within the
range −ℓπ < h < ℓπ.
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h > πℓ eq. (6.52) ceases to have a solution, and thus only the connected configuration
solves the equations of motion.

Schematically we depict the distinct phases of the brane configurations through a potential
in figure 6.24. Whenever h < πℓ, the potential has a minimum coinciding with the

E
h > πℓ

h = πℓ

h < πℓ

Figure 6.24: The potential energy as a function of the configuration space of the web as h is
varied, for L ≤ ℓ.

reconnected configuration and a maximum coinciding with the connected one. As the
value h increases, the minimum of the potential does as well, until h = πℓ, at which point
the two extrema merge and the potential has a single minimum corresponding to the
connected configuration. We thus find that the system undergoes a second order phase
transition when h passes the value πℓ = π 21/4ℓs

√
N . We note, for future purposes, that

this value is independent of L.

� L > ℓ: the function h(θ) has a maximum, h0, given by eq. (6.53). This maximum decreases
whenever L does, until L = ℓ, at which it is at θ0 = π/2. Whenever h > h0 there is no
solution to eq. (6.52), and therefore only the connected configuration exists. Instead, in
the region

h0 ≥ h ≥ πℓ , (6.55)

Kepler’s equation has two solutions labeled by θS, θL, denoting the previous angles as,
respectively, the smallest and the largest ones associated with the same value of h. These
solutions are associated with two distinct reconnected 5-brane configurations.

For h < πℓ one can show that

(
Erec.

Econ.

)2

=

(
1 +

ρ2m
ℓ2

)(
1− ρ2m

L2

)
=

(
1 +

L2 cos2 θ

ℓ2

)
sin2 θ ≤ 1 . (6.56)

The reason is that the ratio is monotonically increasing in θ and smaller than or equal to
1 for

θ ≤ θ∗ , where θ∗ = arcsin ℓ/L < θ0 , (6.57)
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where h∗ = h(θ∗) > πℓ. Hence for h < πℓ the reconnected brane configuration is always
energetically favorable with respect to the connected one.

When h > πℓ the analysis is slightly more involved. There are now three brane configura-
tions whose energies (Econ., E

S
rec., E

L
rec.) we have to compare, where the energies ES

rec., E
L
rec.

are associated with the smooth solutions with θS, θL respectively. Since π/2 > θL > θ0,
and the ratio of energies decreases in this region, we have that

(
EL

rec.

Econ.

)2

>

(
Erec.(π/2)

Econ.

)2

= 1 , (6.58)

with Erec.(π/2) represents the energy of the reconnected configuration with θ = π/2. This
tells us that connected configuration is always energetically favorable compared to the
reconnected one with θ = θL. Moreover, it can be shown that EL

rec. > ES
rec., using the fact

that the sum and differences of θL and θS are bounded by

0 ≤ θL + θS ≤ π , and 0 ≤ θL − θS ≤ π/2 , (6.59)

and that h(θL) = h(θS). The discussion above shows that ES
rec./Econ. can be either bigger

or smaller than 1, depending on the value of h(θS). We denote with h∗ = h(θ∗) the value
of h(θS) for which E

S
rec./Econ. = 1. Schematically the different phases are depicted through

a potential in figure 6.25.

E h > h∗

h = h∗

πℓ < h < h∗

Figure 6.25: The potential energy as a function of the configuration space of the web for some
values of h, for L > ℓ.

The connected configurations correspond to the left minimum of the potentials, the smooth
reconnected solutions with θ = θL correspond to the maxima of the potentials, and the
smooth reconnected solutions associated with θS correspond to the right minima. Depend-
ing on h, these minima can be either local or global, showing that the brane configuration
undergoes a first order phase transition when h passes through h∗. Note that contrary
to the case L ≤ ℓ, the point at which the phase transition occurs, h∗, now depends on L
through eq. (6.57).
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Figure 6.26: Plot of ℓφ/ℓ as a function of φ. The yellow dotted line represents the analytical

function π/
√
π2 − φ2, and the purple dots show the numerical results.

Generic values of α

We now want to generalize the previous analysis to generic values of α. The transcendental
equation is now

ℓh =

√
1−

( φ
2θ

)2
(L2 sin 2θ + 2ℓ2θ) , (6.60)

and h has an extremum at

L cos 2θ
[
2θ(4θ2 − φ2) + φ2 tan 2θ

]
= −8ℓθ3 . (6.61)

Eq. (6.60) is not solvable analytically, so we will have to resort partly to numerical analysis. In
this way, one can show that this equation has a zero only for

L ≥ ℓφ =
πℓ√
π2 − φ2

≥ 1 , (6.62)

where ℓφ plays the same role as ℓ of previous section (ℓφ=0 = ℓ). The function h has at most one
extremum, which is a maximum when L ≥ ℓφ. This follows from the fact that for π/2 > θ > θ0,
where θ0 is the value for which h reaches its maximum h0, the second derivative of h with respect
to θ is strictly negative.

Qualitatively, h behaves similarly to the case α = π, just replacing ℓ→ ℓφ. In the following,
we then distinguish the case L ≤ ℓφ from the case L > ℓφ.

� L ≤ ℓφ: There are two brane configurations, a connected configuration and a reconnected
one. Additionally, since the reconnected energy is monotonically increasing in h and h
itself is monotonically increasing in L, we find that

(
Erec.

Econ.

)2

≤
[
1 +

θ2 − 4φ2

(π/2)2 − 4φ2

(π/2)2

θ2
cos2 θ

]
sin2 θ ≤ 1 . (6.63)
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The ratio only saturates the bound at θ = π/2. Therefore, when L ≤ ℓφ there are
two possible brane configurations, the connected and reconnected one and the latter is
energetically favorable. When h increases and crosses the value h̃ = ℓ

√
π2 − φ2, a second

order phase transition occurs, after which only the connected brane configuration remains.
We thus find a behavior that is qualitative the same as in the case α = π.

The minimal distance ρm between the recombined (1,−1) brane and the stack decreases
continuously from ρm = L cosφ/2 at h = 0 down to ρm = 0 at the transition h = h̃. In the
process, the reconnected brane comes closer and closer to the stack and flattens along the
direction of the latter, until ρm reaches zero. At this point, the reconnected configuration
becomes indistinguishable from the connected one, as it can be shown taking the ρm → 0
limit in the equations of motion (6.43)-(6.44), realizing the second order phase transition.

� L > ℓφ: the function h does have a maximum h0, and when

h0 ≥ h ≥ h̃ , with h̃ = ℓ
√
π2 − φ2 , (6.64)

there exist two reconnected configurations, together with the connected one. The two
reconnected configurations are again associated with two values θS ≤ θL, for which h(θS) =
h(θL). Analogously to the α = π case, we denote the energies of the three configurations
as Econ., E

S
rec., and E

L
rec.. Numerically, it is possible to show that

(
EL

rec.

ES
rec.

)
≥ 1 ,

(
EL

rec.

Econ.

)
≥ 1 , (6.65)

and that ES
rec./Econ. can be either bigger or smaller than 1, depending if h(θS) is above

or below a critical value h∗. In figure 6.27 we show the generic behavior of the ratio of
energies in function of h, here specifically at values L/ℓ = 2, and φ = π/16, illustrating
the behavior mentioned above.

Whenever h < h̃, one can argue, in a similar way as we did in the L ≤ ℓφ case, that
there is only one reconnected configuration, and that its energy is always favored over the
connected one. Therefore we can conclude that if L > ℓφ, the brane system undergoes a
first order phase transition when h increases and crosses a value h∗, as in the α = π case.

All in all, we then see that the brane system behaves qualitatively the same, independent
of the value of α. For the ease of the reader, we summarize below the different cases and the
associated phase transitions.

Summary

When L ≤ ℓφ and h < h̃ = ℓ
√
π2 − φ2, there are two brane configurations, a reconnected

configuration and a connected one, and the former is always energetically favorable compared
to the latter. As the value of h increases and passes h̃, the two configurations become the same
and a second order phase transition occurs at h = h̃.
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Figure 6.27: Ratio of energies for the different configurations as a function of h/ℓ, for the values
L = 2ℓ and φ = π/16. The red dashed line represents the value h̃/ℓ =

√
π2 − φ2 above which

two reconnected configurations exist. The black dashed line represents the value h∗/ℓ, where
ES

rec./Econ. = 1 and the first order phase transition occurs.

When L > ℓφ and h < h̃ there is one reconnected configuration that is always energetically
favorable with respect to the connected one, as for L ≤ ℓφ. However, when h ≥ h̃, there are three
brane configurations: two reconnected and one connected. The θL reconnected configuration is
unstable, having maximal energy. The θS and the connected configurations represent a global
and a local minimum, respectively, whenever h < h∗. For h > h∗, the role of the two solutions
exchange and the connected one becomes an absolute minimum. So, as h increases, the brane
configurations undergo a first order phase transition at h = h∗.

It is worth noting that for small supersymmetry breaking parameter, α ∼ 0, one gets that
ℓφ ∼ α−1/2 →∞ and the range in which the phase transition is second order, i.e. L ≤ ℓφ, can
be made parametrically large.

6.7.2 On the tachyonic origin of the phase transition

In section 6.7.1, by computing energies of brane webs in the limit of a large number N of (1, 1) 5-
branes, we have shown that a phase transition of first or second order occurs between a connected
and a reconnected configuration, as one varies h, at fixed L. As in the simplest setup of the E1

theory [302], the instability of the connected brane web against decay to the reconnected one
is expected to originate from a tachyonic mode of an open (1,−1) string stretched between the
(1,−1) 5-branes which develops for small enough h.

Let us start considering two D5 branes at an angle α. At weak string coupling, the spectrum
of the strings ending on the branes can be explicitly calculated and the modes localized at the
intersection are tachyonic with mass m2

T ∼ −2πα ℓ2sT 2
s . This holds both at small angles α and

at large angles α ∼ π. Separating the D5 at a distance h, the lowest excitations develop an
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additional positive mass ∼ h2T 2
s since the minimal length of these strings is now h. So, when

h2 = h̃2flat ∼ 2παℓ2s, the lowest mode becomes massless and the system is locally stable. This is
expected to remain true also at strong gs coupling, as was argued in [308] in the case of two D4
branes at angles.

Since this brane system is SL(2,Z) dual a system of two (1,−1) 5-branes, one can argue
that also in this latter system a tachyonic mode is present at small enough distance between
the branes, while for h2 ∼ αℓ2s the configuration should become locally stable.

Our previous analysis shows that this is what actually happens for L ≤ ℓφ:
18 there is a

phase transition at h = h̃ and, for h > h̃, the connected configuration becomes an absolute
minimum of the energy system. At this point, h̃ ∼ √α for both α ∼ 0 and α ∼ π, so we expect
the tachyon to condense and to be responsible for the second order phase transition.

For L > ℓφ, the connected configuration ceases to be a maximum at h ∼ h̃ but remains
globally unstable until h = h∗. At that point, this is energetically favorable and becomes the
absolute minimum of the configuration energy. So at h ∼ h̃, the local instability is resolved
when the tachyon becomes massless, but a non-perturbative one remains until h ∼ h∗. This
realizes the first order phase transition we saw in section 6.7.1.

Note that our transition point h̃ is of order
√
N , while the tachyonic mass between the

branes is expected to be ∼ O(1). The same mismatch was found in [308] in the case of two
D4 branes at an α = π angle in a background of N NS5 branes. This apparent tension of
the parameters was related to the presence of the NS5 stack19 which was found to modify the
tachyonic contribution to the mass as

m2
T ∼ −πα ℓ2T 2

s . (6.66)

Again, this was argued to remain true also at strong gs coupling.
Although the system in [308] is only SL(2,R) dual to ours, we find the same behavior for

our brane set-up at α = π and a similar transition at α ̸= π. We are then led to conclude that
also in our case the second order phase transition is mediated by a tachyon becoming massless
at h ∼ h̃. Figures 6.24 and 6.25 provide a qualitative behavior of the tachyon potential whose
minimum, the tachyon VEV, goes smoothly to zero as h is varied or jumps abruptly when the
transition is, respectively, second order, figure 6.24 or first order, figure 6.25.

6.8 Discussion

At the beginning of this Chapter, we first studied the phase diagram of the E1 theory as a
function of the two deformation parameters h and m̃. A phase transition was found to separate
a symmetry broken phase, where the symmetry U(1)I × U(1)R is spontaneously broken to a
diagonal subgroup U(1), from a symmetry preserving phase. However, we were not able to have
satisfactory control of the dynamics of this point, neither via field theory nor via pq-web tech-
niques, due to its strongly coupled nature. As a consequence, it was not possible to understand

18Remind that ℓφ = πℓ√
π2−φ2

with ℓ = 21/4ℓs
√
N .

19In their case, the angle was fixed to α = π.



6.8. Discussion 225

the order of this phase transition.
More control was gained starting from section 6.6, by studying a generalization of this supersym-
metry breaking deformation considering a similar setup for the X1,N theory. The response of the
system upon this supersymmetry breaking deformation is qualitatively similar to the E1 case.
In particular, turning on both the supersymmetry preserving and the supersymmetry breaking
deformations at once, it was shown that the parameter space is divided into two different regions
separated by a phase transition. In the X1,N case thanks to the possibility of taking N large, it
was possible to characterize the phase transition, which, in a certain regime of parameters, was
shown to be second order. This gives evidence for the existence of non-supersymmetric fixed
points in five dimensions.

One could wonder whether finite N corrections could change the state of affairs. Following
arguments similar to those in [308], whose brane system is similar to ours in section 6.7, one could
argue that no qualitative difference is expected. Note, however, that while finite N corrections
modify both brane systems, an advantage of the system considered in [308] is that a small string
coupling limit can be taken in which 1/N corrections can in principle be computed. This is not
the case for the X1,N web, whose structure changes as the string coupling is modified.

Another aspect which deserves attention has to do with the dependence of our result on
the fixed length L of the 5-brane prongs. In particular, as L crosses ℓφ from the bottom,
the phase transition turns from being second order to being first order. For one thing, in the
supersymmetric limit L is not a relevant parameter, as the five dimensional dynamics of the
system is independent of L (indeed, one can send the 7-branes on which the 5-brane prongs end
all the way to infinity without any change in the dynamics [211]). This does not seem to be the
case after we break supersymmetry. From the 7-brane theory point of view, this does not come
as a surprise, since L is related to a Coulomb branch modulus of the eight-dimensional theory
living on the 7-branes. By rotating the brane system this modulus is lifted, but only a detailed
study of the 7-brane dynamics could tell whether this would be stabilized to some finite value
or, say, sent all the way to infinity. This is hard to figure out since the brane system of section
6.6 is intricate and more complicated than a system of branes at angle in isolation. This is again
an important aspect worth investigating further, even though present string techniques do not
seem to be enough to tackle it. This said, it is reassuring that whenever the phase transition
is second order, the value of h at which the phase transition occurs, h = h̃, does not depend
on L. Notice, further, that if the supersymmetry breaking deformation is taken to be small, ℓφ
can be made parametrically large, and hence one can take L large as well, still having the phase
transition being second order. In this regime, the 7-branes are far from the stack compared to
the scale h̃ at which the transition happens. Therefore, the 7-brane metric, which would change
non-trivially the background and which we have not considered in our analysis, would not have
any sensible effect on the dynamics triggering the phase transition.

The property of the X1,N theory may be shared by other systems, some of which could also
admit a holographic dual description. While no fully stable non-supersymmetric AdS6

backgrounds are known (see [310–313] for recent works addressing this point), this is yet an
interesting and potentially far reaching direction to be pursued.
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[247] O. Bergman, D. Rodŕıguez-Gómez, and G. Zafrir, 5-Brane Webs, Symmetry
Enhancement, and Duality in 5d Supersymmetric Gauge Theory JHEP 03 (2014) 112,
arXiv:1311.4199 [hep-th].

http://dx.doi.org/10.1007/JHEP12(2020)099
http://dx.doi.org/10.1007/JHEP12(2020)099
http://arxiv.org/abs/2003.04333
http://dx.doi.org/10.1007/JHEP07(2020)199
http://dx.doi.org/10.1007/JHEP07(2020)199
http://arxiv.org/abs/2004.15007
http://dx.doi.org/10.1007/JHEP03(2021)054
http://arxiv.org/abs/2005.01722
http://dx.doi.org/10.1007/JHEP12(2020)014
http://arxiv.org/abs/2006.01694
http://dx.doi.org/10.1007/JHEP09(2021)186
http://dx.doi.org/10.1007/JHEP09(2021)186
http://arxiv.org/abs/2010.13230
http://dx.doi.org/10.1007/JHEP04(2021)221
http://arxiv.org/abs/2010.13235
http://dx.doi.org/10.1007/JHEP02(2021)159
http://arxiv.org/abs/2008.09600
http://dx.doi.org/10.1007/JHEP05(2021)274
http://arxiv.org/abs/2012.12827
http://arxiv.org/abs/2105.08724
http://dx.doi.org/10.21468/SciPostPhys.12.2.065
http://dx.doi.org/10.21468/SciPostPhys.12.2.065
http://arxiv.org/abs/2107.03509
http://dx.doi.org/10.1007/JHEP09(2021)059
http://arxiv.org/abs/2104.14493
http://dx.doi.org/10.1007/JHEP10(2021)018
http://arxiv.org/abs/2105.12177
http://arxiv.org/abs/2105.12177
http://dx.doi.org/10.1016/S0550-3213(97)00472-0
http://arxiv.org/abs/hep-th/9704170
http://dx.doi.org/10.1007/JHEP02(2020)074
http://arxiv.org/abs/1912.10301
http://dx.doi.org/10.1007/JHEP03(2014)112
http://arxiv.org/abs/1311.4199


244 Bibliography
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