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14.5 Time evolution of Rényi negativities in free models: Numerical results . . . . . . . 226
14.6 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
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Chapter 1

Introduction

In classical statistical physics, the concept of entropy is related to the lack of knowledge about
a subsystem since it quantifies the uncertainty on its exact microscopic state due to thermal
fluctuations. The definition of entropy of a subsystem in terms of the number of allowed microstates
Ω is S = kB log Ω. At zero temperature, thermal fluctuations vanish and S = 0. At quantum level,
if we consider the ground state of a quantum many-body Hamiltonian and we restrict to a region
of this system, the entropy of the region does not vanish. This is due to a fundamental property of
quantum mechanics, entanglement, and such entropy is known as entanglement entropy. Indeed,
the quantum correlations between the region and the rest of the system are such that we cannot
exactly describe its state, which causes a lack of knowledge. Said otherwise, the uncertainty
about the subsystem, i.e. its entropy, is not anymore due to thermal fluctuations but to quantum
correlations. Entanglement generally provides a deeper understanding of a quantum theory.
This example is one of many showing that entanglement is the most fundamental characteristic
distinguishing the quantum from the classical world [1–3].

First meeting with Alice and Bob

Over the last decades, the point of view of the scientific community about entanglement has
changed dramatically. At first, it was seen as the wart of quantum mechanics to the point that
Einsein, Podolsky and Rosen tried to surgically remove it. This “spooky action at a distance” [4]
appeared to go against the idea that nothing, not even information, can travel faster than the
speed of light [5]. On the other hand, entanglement creates correlations between the parts of a
quantum system, even if they are separated by an arbitrary distance.
This paradox can be illustrated with a simple example that will give also the opportunity to
introduce two characters, Alice and Bob, who will help us in understanding the intricate world of
quantum mechanics. Let us suppose that we have a system of two spins, labelled A and B, that
are initially prepared in the singlet state

|ψ〉 =
1√
2

(|↑A↓B〉 − |↓A↑B〉).

The spins are then sent in opposite directions to Alice and Bob. If Alice observes that her spin is
in the state |↑A〉, the axioms of quantum mechanics imply that the wave function has collapsed to
the state |↑A↓B〉 and hence the outcome of Bob’s measurement will be, or was, the state |↓B〉. This
instantaneous effect, independent of the physical distance between Alice and Bob, seems to be in
contradiction with the principles of relativity and the finite velocity of light and information [6].
This paradox led different authors to argue that quantum states are simply an incomplete charac-
terisation of a quantum system, supporting the existence of the hidden-variable theories.
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2 CHAPTER 1. INTRODUCTION

After about 30 years, Bell showed that such surgery cannot be performed without destroying some
fundamentals of physical reality [7]. He considered a setup in which Alice and Bob perform in-
dependent measurements on a one-particle system prepared in a fixed state. Each observer has
a detector to make measurements. On each trial, Alice and Bob can independently choose be-
tween various detector settings, whose outcome of each measurement can be ±1, depending on
the state of the particle. If we assume that the particles’ properties are fully determined prior
to the measurement, and that Alice’s measurements do not influence those of Bob, we end up
into correlations between observables which must satisfy some inequalities (Bell inequalities) that
are violated by entangled states, such as the singlet |ψ〉. This implies that quantum mechan-
ics cannot be secretly just some classical theory where everything has a definite state before the
measurement. The inconsistency of local hidden-variable theories was also supported by strong
experimental evidences [8], e.g. by the group of Aspect [9].

Entanglement in many-body systems

Once the existence of entanglement has been at least accepted despite its puzzling nature, it has
become one of the main characters of the Physics scene (and not only, see e.g. the cartoon of
Martin Mystere (Num. 368, April 2020)) and the most popular and useful of its measures is the
von Neumann entanglement entropy. During the 90s, entanglement became a resource for quan-
tum technology, communication and information in general [10], the crucial ingredient to perform
tasks that are impossible or extremely inefficient in a pure classical setting, such as quantum
teleportation [11] or quantum error correction [12]. Around 2000, the progress made in quantum
information for quantifying entanglement has led to further insights into other areas of physics such
as statistical mechanics and quantum field theory, in particular in the analysis of extended quan-
tum systems [13–16], i.e. with infinitely many degrees of freedom. For example, it can be useful
to detect and describe phase transitions, even when a conventional order parameter is unavailable.
In fact, its behaviour as a function of the subsystem size allows us to distinguish if the system is
in a gapped or gapless phase and what are the universal features of critical systems [17–21]. It
turns out that in the former case, the entanglement follows the area law, i.e. it is proportonal
to the border of the subsystem, unlike the thermal entropy which is characterised by a volume
law. This idea was firstly put forward and explored in the context of black hole physics [22, 23],
where it was suggested that this property of entanglement could be at the origin of the black hole
entropy, given by the Bekenstein-Hawking formula [24,25], which is in fact proportional to the area
of the boundary surface of the black hole. This is one of the reasons for which the high-energy
communities have always showed a great interest in the physics of the entanglement. For example,
in the framework of the AdS/CFT correspondence, which argues that a theory of quantum gravity
in an Anti-de Sitter (AdS) space is equivalent to a Conformal Field Theory (CFT) defined on
the boundary of the former, we have to mention the celebrated Ryu-Takayanagi formula [26–29].
Inspired by the Bekenstein-Hawking formula for the entropy of a black hole, it states that the
entanglement of a region can be computed in the classical regime from the area of certain mini-
mal surfaces in the bulk, anchored to the entangling surface in the boundary. Another important
contribution from the high-energy community was given by Page [30], who took the first steps
towards a systematic characterisation of entanglement in random quantum states, with important
applications in different fields, ranging from the black hole information paradox [31–35] to the
foundations of statistical mechanics [36, 37]. We will come back to the behaviour of the Page
curves in the presence of symmetries in Chapter 10.

Let us go further in the exploration of the research fields in which entanglement plays a promi-
nent role. In two dimensions, a very interesting class of systems are the ones displaying topological
phases. The first correction to the area law is called topological entropy [38, 39] because it is a
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topological invariant directly related to the total quantum dimension. Hence, by computing the
entanglement entropy and isolating the constant term in the size of the subsystem, we have a tool
to detect topological order. Prototypical examples in which this situation occurs are the Kitaev
model [40] and two-dimensional (2d) electron gases in large magnetic fields in the fractional quan-
tum Hall regime [41].

Up to this point, we have shown some examples concerning the area law of entanglement,
typical of gapped systems (see also Chapter 2 for a field theoretical approach to the subject,
while Chapter 7 for a formulation of the problem on the lattice) and its connections with black
hole physics and the topological order of matter. However, for the ground state of gapless lo-
cal Hamiltonians in one dimension, the area law is corrected by a logarithmic term [20]. One
practical implication is that the presence of entanglement makes difficult to deal with quantum
many-body systems using a classical computer. For example, the Density Matrix Renormaliza-
tion Group (DMRG) algorithm [42] works well in non critical 1d systems, but it becomes less
efficient (and practically useless in 2d) when we approach a quantum critical point. In this case,
the growth of the entanglement originates long-range correlations that increase the complexity
of simulating the system. As a consequence, it is necessary to construct algorithms that try to
capture the essential properties of the state’s entanglement and they are usually based on tensor
network techniques [43]. We have already mentioned the most prominent examples of logarithmic
area-law violations, which are critical 1d models [17,19–21], for which the mass gap becomes zero,
the correlation length diverges and the ground state correlation functions decay algebraically. The
low-energy properties of such corrections are captured by CFT and, besides signaling criticality,
the logarithmic term turns out to be universal. Indeed it is proportional to the corresponding
central charge, which does not depend on the microscopic details of the model but only on the
universality class associated with a given fixed point of the renormalization group (RG). This kind
of systems will be the core of the Chapters 3, 4, 5, 12, 13 and 15, where we try to unveil some
universal properties of the systems through the study of entanglement-related quantities, such as
their symmetry resolution, to characterise the properties of the group generating the symmetry
itself. We mention that the ground state correlations can display algebraic decay even with non-
zero mass gap, e.g. for fermionic chains with long-range couplings, as we are going to study in
Chapter 9. With respect to higher dimensions, to our knowledge, there are no rigorous and general
proofs for the area law as it happens in one dimension [50]. It is known that for non-critical, local
systems of free fermions the entanglement entropy of the ground state fulfils an area law. The same
occurs if we consider bosons instead of fermions. On the other hand, for critical fermions with a
finite, non-zero Fermi surface, the entanglement entropy of the ground state presents logarithmic
corrections to the area law. This will be the subject of Chapter 8.

We close this broad introduction about entanglement in extended systems by mentioning an-
other question that has been addressed in the last years, i.e. the connection between entanglement
and thermodynamics in the framework of the out-of-equilibrium dynamics of quantum correla-
tions. The simplest and most broadly studied protocol is the quantum quench [44, 45]: a system
is prepared in the ground state of a 1d translationally invariant Hamiltonian, and at a given time
a sudden change modifies the Hamiltonian. In integrable systems, the entanglement dynamics
after a quench is captured by a well-known quasiparticle picture [46–49]. The key tenet of the
quasiparticle picture is that the entanglement dynamics is described by the ballistic propagation
of pairs of entangled excitations, which are produced after the quench (see Fig. 1.1). We will study
the entanglement dynamics in many-body systems in Chapters 6, 11, 14 and 16.
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Figure 1.1: Quasiparticle picture for the time evolution after a quench of the entanglement between
two disjoint intervals (A1 = [u1, u2] and A2 = [u3, u4]) embedded in the infinite line. Pairs of
entangled quasiparticles are emitted from every point in space at t = 0. At a given time t the
entanglement between A = A1 ∪ A2 and the remainder is proportional to the number of pairs
shared between A and its complement.

1.1 Walking with Alice and Bob through quantum information

Let us consider a quantum system made up of two parts. The first one, A, is owned by Alice,
and the second one, B, by Bob. This corresponds to a bipartition of the total Hilbert space as
H = HA ⊗HB. Any normalised pure state |ψ〉 ∈ H has a Schmidt decomposition [51]

|ψ〉 =
r∑

i=1

√
λi |ψA,i〉 ⊗ |ψB,i〉 ,

r∑

i=1

λi = 1, (1.1.1)

where {|ψA,i〉} and {|ψB,i〉} are, respectively, an orthonormal basis of HA and HB. Here r denotes
the Schmidt rank and it cannot be larger than min(dimHA, dimHB). If r = 1, Eq. (1.1.1) reduces
to

|ψ〉 = |ψA〉 ⊗ |ψB〉 , (1.1.2)

and we say that the state |ψ〉 is separable (or product state). The definition of separable states
means that |ψA〉 and |ψB〉 are uncorrelated. Contrarily to the example we have done in the previous
section, if Alice measures any observable in A and Bob measures it in B, the probabilities of the
different outcomes factorise. Thus, the measurement outcomes for Alice do not depend on the
outcomes on Bob’s side. If r > 1, the state is entangled.
In a more general situation, the full system is not in a pure state |ψ〉, but in a mixed state described
by a density matrix

ρ =
∑

j

pj |ψj〉 〈ψj | , (1.1.3)

being pj the probability that the state is |ψj〉 ∈ H. For mixed states, ρ is a product state if
ρ = ρA ⊗ ρB, as it also occurs for pure states, while it is separable if

ρ =
∑

j

pjρA,j ⊗ ρB,j . (1.1.4)

Otherwise the state is called entangled. Therefore, we have found three different scenarios. First,
a product state is an uncorrelated state, where Alice and Bob own each a separate state. For
non-product states, we can distinguish two types of correlations. Separable states are classically
correlated, i.e. they can be produced only through local operations and classical communication
(LOCC) [52,53]. In this case, Alice and Bob share a random number generator that produces the
outcomes j with probabilities pj and for each of them they can build the state ρA,j ⊗ ρB,j , and, as
a consequence, ρ. These states only share classical correlations while if a state is entangled, the
correlations cannot originate from the classical procedure described above. In this sense, entangled
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states are a typical feature of quantum mechanics. We specify that, if the state is pure, it can only
be either a product state or entangled.

Let us come back to the original problem of quantifying the entanglement in a pure state of the
bipartite system A ∪ B. This is provided by a family of functions known as Rényi entanglement
entropies (REEs).
Starting from the density matrix ρ = |ψ〉 〈ψ|, the key object to study the bipartite entanglement is
the reduced density matrix (RDM) of A, ρA = TrBρ, where TrB denotes the partial trace. If r 6= 1,
now ρA describes a mixed state. The Rényi entropies are defined as (throughout the Chapters of
this thesis we will specify the superscript denoting the subsystem only if necessary, otherwise we
omit it for simplicity)

SAn ≡
1

1− n log TrρnA, (1.1.5)

where n is an integer number. After an analytic continuation to complex values of n, the limit
n→ 1 provides the von Neumann entanglement entropy (vNEE)

SA1 ≡ −TrρA log ρA. (1.1.6)

If we now apply the Schmidt decomposition of Eq. (1.1.1) in the definition of the entropies, we
obtain

SAn =
1

1− n log

(
r∑

i=1

λni

)
, SA1 = −

r∑

i=1

λi log(λi). (1.1.7)

From the Schmidt decomposition, it also follows that if we take the partial trace over A, rather
than B, SAn = SBn for a pure state. The entanglement entropy (1.1.6) satisfies all the requirements
to be considered a good entanglement measure. In particular, it vanishes when it is separable and
it is an “entanglement monotone”, meaning that it does not not grow on average under operations
that do not increase the degree of entanglement (the LOCC) [54].
Given two spatial subsystems A1 and A2 (not necessarily one the complement of the other), the
vNEE satisfies two important inequalities [55,56], namely the subadditivity

SA1∪A2
1 ≤ SA1

1 + SA2
1 , (1.1.8)

and the strong subadditivity

SA1∪A2
1 + SA1∩A2

1 ≤ SA1 + SA2
1 . (1.1.9)

On the other hand, the REEs do not satisfy subadditivity.
For a mixed state, the entanglement entropies are no longer good measures of entanglement

because both quantum and classical correlations contribute to the von Neumann and Rényi en-
tropies. A situation usually considered is when A is further divided into two parts, A = A1 ∪ A2.
In general, the RDM ρA is mixed and, therefore, entanglement between two non-complementary
subsystems A1 and A2 is not provided by SA1

n . In this case, a useful quantity to consider is the
Rényi mutual information

IA1:A2
n ≡ SA1

n + SA2
n − SA1∪A2

n , (1.1.10)

which is not a measure of the entanglement between A1 and A2, but for n → 1 it quantifies the
amount of global correlations between the two subsystems (we mention that for n 6= 1, IA1:A2

n can be
also negative [57] and a more complicated definition of mutual information must be employed [58]).

Let us introduce a more convenient way to deal with entanglement in mixed states. Assume
that we know the joint density matrix of two particles belonging to Alice and Bob, respectively. We
carry out the following mathematical operation: we apply a matrix transposition to that part of the
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density matrix which corresponds to Bob’s particle and leave Alice’s part unchanged. Physically
this partial transposition would correspond to a time reversal transformation in Bob’s lab. If the
state is unentangled then its partial transpose is again an admissible density matrix. However, the
partial transposition may lead to negative and hence unphysical eigenvalues of the density matrix
if the state is entangled. Looking at whether or not the density matrix has a “positive partial
transpose” (PPT) can in this way help us to answer whether a given state is entangled. Now we
can formalise this condition, also known as Peres criterion [59, 60]. It states that given a system
described by the density matrix ρA=A1∪A2 , a sufficient condition for the presence of entanglement
between A1 and A2 is that the partial transpose ρT1

A with respect to the degrees of freedom in A1

(or equivalently A2) has at least one negative eigenvalue. We can introduce the partial transpose
operation as follows. We write down the density matrix as

ρA =
∑

ijkl

〈e1
i , e

2
j |ρA|e1

k, e
2
l 〉 |e1

i , e
2
j 〉 〈e1

k, e
2
l | , (1.1.11)

where |e1
j 〉 and |e2

k〉 are orthonormal bases in the Hilbert spaces HA1 and HA2 corresponding to
the A1 and A2 regions, respectively. The partial transpose of a density matrix for the subsystem
A1 is defined by exchanging the matrix elements in the subsystem A1, i.e.

ρT1
A =

∑

ijkl

〈e1
k, e

2
j |ρA|e1

i , e
2
l 〉 |e1

i , e
2
j 〉 〈e1

k, e
2
l | . (1.1.12)

In terms of its eigenvalues λi, the trace norm of ρT1
A can be written as

Tr|ρT1
A | =

∑

i

|λi| =
∑

λi>0

|λi|+
∑

λi<0

|λi| = 1 + 2
∑

λi<0

|λi|, (1.1.13)

where in the last equality we used the normalisation
∑

i λi = 1. Here Tr|O| ≡ Tr
√
O†O denotes

the trace norm of the operator O. Therefore, starting from the Peres criterion, two measures of
the bipartite entanglement for a general mixed state can be naturally defined as [62,63]

N =
Tr|ρT1

A | − 1

2
, E ≡ logTr|ρT1

A |, (1.1.14)

which are known as negativity and logarithmic negativity, respectively. The expression in Eq.
(1.1.13) makes evident that the negativity measures “how much” the eigenvalues of the partial
transpose of the density matrix are negative, a property which is the reason for the name negativity.

1.2 Entanglement in the lab

Heretofore, we have discussed the relevance of entanglement from a theoretical point of view, while
the aim of this section is to give some insights about how it can impact the physics from a more
practical perspective, i.e. in the realm of experiments. Of course, this discussion is far from being
comprehensive, but the goal is to give further motivations on the importance of the theoretical
study of entanglement properties of quantum many-body systems. As we already pointed out,
entanglement is the heart of quantum information and computation. Let us illustrate this with
the help of our friends. Alice wants to send quantum information to Bob. Specifically, suppose
she wants to send the qubit state |ψ〉 = α |0〉 + β |1〉, i.e. passing on information about α and β
to Bob. There exists a theorem in quantum mechanics which states that you cannot simply make
an exact copy of an unknown quantum state. This is known as the no-cloning theorem [61]. As a
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result, we can see that Alice cannot simply generate a copy of |ψ〉 and give it to Bob. However,
with the assistance of two classical bits and an entangled qubit pair, Alice can transfer her state
|ψ〉 to Bob. This is known as quantum teleportation because, at the end, Bob will get |ψ〉 and
Alice will eventually have a different state. We do not enter into the description of this protocol,
but as a sample of the rapid development of this research field we can mention the experiment [64]
of Zeilinger’s group in 2012 in which they were able to teleportate a state between two entangled
photons separated 143 km.

Let us move on to review some of the main proposed techniques to detect and measure entan-
glement itself. One of the first proposal was given in [65–68], exploiting special relations between
the RDM of a subsystem and quantum noise in free-systems. Such relations, however, are not valid
in the presence of interactions. An alternative way to detect entanglement in a generic system is
given by quantum state tomography [10], i.e. a measurement of all the density matrix elements.
Its drawback is that is scales exponentially with the system size, so it has been applied to trapped
ions [69,70] and superconducting qubits [71] up to, at most, 10 qubits [72].

Going further in the review, in the lab, it is easier to have access to REEs by preparing n
identical copies of the system and letting them interact in such a way that it is then possible to
extract the expectation value of the shift operator V (n), whose action is to cyclically permute the
n copies V (n) |ψ1〉 . . . |ψn〉 = |ψn〉 |ψ1〉 . . . |ψn−1〉 [73]. This shift operator allows to estimate Tr(ρn)
as Tr(V nρ⊗n), i.e. from the expectation values of the shift operator on the replicated system.

There exist two possible ways to implement the shift operation experimentally: the first one
was proposed by Cardy in [74] and also later exploited by Abanin and Demler in [75] and it consists
in performing a quantum quench on the n copies of the system. The second, proposed for n = 2
by Alves and Jaksch in [76] and extended to general n by Daley et al. in [77, 78], is based on an
optical lattice where the copies interfere by switching on the tunneling among them in a controlled
way. By observing the system after this controlled interference, it is possible to have access to the
value of the shift operator for any desired subsystem. This technology has been used in Greiner’s
group at Harvard to calculate the quantum purity of a subsystem, i.e. Trρ2

A, in a Bose-Hubbard
system [79]. The advantage of using this quantity is that it is connected to an observable depending
on the number of particles, which is the parity. When two pure and identical quantum states are
inferred on a beam splitter, the interference of odd outcomes is destructive and the output state
has an even number of particles in each copy. As a consequence, the measurement of entanglement
simply reduces to the measure of a single operator.
A recent toolbox which has been firstly introduced to measure entanglement entropies are the
randomised measurements [80]. The idea is to apply local random unitary operators, extracted
from the circular unitary ensemble, on the L-qubit state of the system ρ and store the bit-string
outcomes of the measurements. From the bit-strings and the unitaries it is possible to construct
the classical-shadows, which are an estimator of the density matrix of the measured quantum state.
The use of this protocol has been extended to estimate many physical properties of a quantum
state as state fidelities, out-of-time ordered correlators, topological invariants and other nonlinear
functions of the density matrix.
Let us now conclude this section by mentioning an experiment which allows us to introduce an-
other crucial subject of this thesis, the entanglement resolution. We refer to the recent experiment
by Lukin et al. [81] about the time evolution of a many-body localised system through particle
fluctuations and correlations. This has shed the light on the internal symmetry structure of the
total entanglement, that can be better understood in terms of two quantities in which the total
entanglement can be split, i.e. the configurational and the number entropy. In the presence of
both disorder and interaction, the dynamics of configurational and number entanglement occur
over different time scales: the number entanglement quickly saturates to an asymptotic value while
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Entanglement and symmetries II

S = ∑
q

p(q)S(q) − ∑
q

p(q)log(p(q)) ≡ Sc + Sn

A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman,S. Choi, V. Khemani, J. Leonard, and M. Greiner,  
Probing entanglement in a many-body localized system, Science 364, 6437 (2019).

: Configurational entropy 

: Number entropy 

Sc

Sn

The symmetry resolved entanglement satisfies the sum rule

14

of correlations are not generically enforced by the mere
presence of conserved quantities and dynamics in the sys-
tem.

Entanglement dynamics in the MBL regime

The following subsections show exact diagonaliza-
tion calculations based on the Hamiltonian in Eq. 1 at
strong disorder for both the interacting (MBL) and non-
interacting (AL) cases. We numerically show the evolu-
tion of the entanglement entropy SvN for di↵erent Hamil-
tonian parameters and discuss the connection of the con-
figurational entanglement entropy Sc with the configura-
tional correlator C.

Entropy partitioning

A calculation of the dynamics for the partitioned en-
tropy is shown in Fig. S8. Since the initial state is a
product state, there is no initial entropy contribution
from number fluctuations or configurational correlations.
In the many-body-localized regime, the site occupation
numbers become a reasonable proxy for locally-conserved
quantities, leading to a suppression of the entropy Sn

that is associated with particle fluctuations across the
boundary of subsystems A and B. Indeed, the numeri-
cal calculations show that Sn reaches a stationary value
within a few tunneling times, indicating that the particle
transport has reached its equilibrium.

However, the configurational entropy Sc still grows
due to the presence of interactions. This is a conse-
quence of exponentially weak interactions between parti-
cles that occupy localized orbitals in each of the subsys-
tems. Sc is responsible for the unbounded logarithmic
entropy growth expected in many-body localization [30].
The growth persists for much longer times than the par-
ticle number fluctuations and demonstrates a separation
of time scales of Sn and Sc.

E↵ect of interactions

In order to separately investigate the contribution of
Sn and Sc, we perform numerical calculations at di↵er-
ent interaction strengths U . The total (von Neumann)
entanglement entropy SvN shows a logarithmically-slow
growth, which depends on the interaction strength.
Whereas the number entropy Sn is almost independent of
the interaction strength, the configurational entropy Sc

shows a qualitatively di↵erent behaviour in the presence
or absence of interactions in the system. Without inter-
actions, almost no configurational entropy is generated
and Sc remains nearly independent of the evolution time.
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FIG. S8. Total entropy partitioned The total von Neu-
mann entanglement entropy SvN for the half-system is shown
as a function of time in an interacting system at strong dis-
order. The entropy is split up into Sn and Sc. For visual
guidance, the configurational entropy (Sc) is o↵set by the
long-time average of Sn. This partitioning of the entropy
qualitatively shows that logarithmic entropy growth arises
primarily from the configurational entropy. The simulation
was performed using exact diagonalization on 6 sites at unity
filling.

However, when interactions are present, Sc shows a loga-
rithmic growth with the same interaction dependence as
SvN. These calculations show that the separation of the
entanglement into number and configurational degrees of
freedom allows us to isolate the logarithmic growth of
SvN.

Configurational correlations vs. configurational entropy

Since the configurational entropy is inaccessible in this
experiment, we use the correlator C as a measure of the
configurational entanglement in the system (see Eq. 2).
It is related to the configurational mutual information be-
tween the two subsystems [50]. C measures the distance
between the joint distribution of particle configurations
in the entire system from the uncorrelated distributions
of configurations in subsystem A and B. These correla-
tions are measured in the Fock basis and act as a proxy
for the corresponding configurational-entropy growth.

Despite being qualitatively similar metrics which go to
zero in the unentangled limit, Sc and C show very distinct
behavior for large degrees of entanglement. Consider the
maximally mixed reduced density matrix in the Schmidt
basis. The configurational entanglement entropy Sc is
unbounded and Sc ! log (N) for the maximally mixed
case with N representing the Hilbert space dimension of
the reduced density matrix.

num

c
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S1

Figure 1.2: The results obtained in [81] for the temporal evolutions of the vNEE (S1), the config-
urational (Sc) and the number (Snum) entropy (see eq. (1.3.5) for their definitions). They system
is a half-chain in a one-dimensional interacting bosonic chain with disorder, where J parametrises
the interaction strength. The configurational entropy is vertically shifted with respect to its initial
value. Figure taken from [81].

the configurational one exhibits a slow logarithmic growth [81]. This is shown in Fig. 1.2, where
a plot with the results of Ref. [81] has been reported. As we will find out, this experiment has
opened a fruitful reasearch activity about the symmetry resolved entanglement measures.

1.3 Alice and Bob meet symmetries

Following the conclusion of the previous section, a question that has recently attracted much
attention is how entanglement decomposes into the different symmetry sectors in the presence of
global conserved charges [84–86]. Various reasons have motivated the interest in this problem. The
fact that the effect of symmetries on entanglement can be investigated experimentally [81, 87–89]
and, moreover, understanding how entanglement arises from the symmetry sectors is crucial to
better grasp some quantum features, for example in non-equilibrium dynamics [81]. Also at more
practical level, it can help to speed-up the numerical algorithms to simulate quantum many-
body systems [85]. All that has been the breeding ground for a plethora of works that analyse
the resolution of entanglement from different perspectives: spin chains [86, 88–100, 102, 106–110],
integrable quantum field theories [103,104,111–115], CFTs [84,85,101,116–127], holography [128–
131], out-of-equilibrium [132–137] and disordered systems [138–141] or topological matter [142–147]
to mention some of them.

Let us define the problem starting with an example. Alice and Bob share three boxes with
only one quantum chocolate inside one of them and this is described by a pure state |Ψ〉 =

1√
6
(|100〉 + |010〉 + 2 |001〉). The chocolate number is fixed to be N = 1. Alice is curious to

know the probability of finding it in two of them. The RDM of Alice is ρA = TrB|ψ〉〈ψ| =
1
6(4 |00〉 〈00|+ (|10〉+ |01〉)(〈10|+ 〈01|), i.e.

ρA =
1

6




4 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 , (1.3.1)

in the basis {|00〉 , |01〉 , |10〉 , |11〉}. This matrix is block diagonal with respect to the occupation
number NA, i.e. the chocolate number in Alice’s boxes. Let us observe that the total charge
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N is fixed to be 1, while the possible outcomes for NA are 0, 1, 2 (even though, as we will see,
finding 2 chocolates is, unfortunatly, impossible). From Eq. (1.3.1), we can read the probabilities
p(NA = 0) = 2/3, p(NA = 1) = 1/3, p(NA = 2) = 0 and quantify the information stored in
the three boxes by computing −∑NA

p(NA) log p(NA) = log(3/41/3), which is known as Shannon
entropy or, as we mentioned, number entropy. Poor Alice, the probability of eating one chocolate
is not on her side!
The example above has showed to us that the presence of a conserved charge, i.e. the number of
chocolate in this case, is reflected into a block-diagonal structure of the RDM and one can compute
the entanglement corresponding to the RDM in only one charge sector. Thus, NA = 0, 1, 2 is a
good quantum number in which the total entanglement between A and B can be resolved. Let
us formally define this concept. We take a spatial bipartition A ∪ B of an extended quantum
system in a pure state |Ψ〉. We assume that the system is endowed with a global U(1) symmetry
generated by a local charge Q = QA ⊗ 1B + 1A ⊗ QB. If |Ψ〉 is an eigenstate of Q, the density
matrix ρ = |Ψ〉 〈Ψ| commutes with Q, i.e. [Q, ρ] = 0, and, by taking the trace over B, we find that
[QA, ρA] = 0. This implies that the reduced density matrix ρA presents a block diagonal structure,
in which each block corresponds to an eigenvalue q ∈ Z of QA. That is,

ρA =
⊕

q

ΠqρA =
⊕

q

[p(q)ρA(q)] , (1.3.2)

where Πq is the projector onto the eigenspace associated to the eigenvalue q and p(q) = Tr (ΠqρA)
is the probability of obtaining q as the outcome of a measurement of QA. Notice that Eq. (1.3.2)
guarantees the normalisation Tr[ρA(q)] = 1 for any q.

The amount of entanglement between A and B in each symmetry sector can be quantified by
the symmetry resolved Rényi entropies (SRRE), defined as

SAn (q) ≡ 1

1− n log Tr[ρA(q)n]. (1.3.3)

Taking the limit n→ 1 in this expression, we obtain the symmetry resolved entanglement entropy
(SREE),

SA1 (q) ≡ −Tr[ρA(q) log ρA(q)]. (1.3.4)

According to the decomposition of Eq. (1.3.2), the total entanglement entropy in Eq. (1.1.6) can
be written as

SA1 =
∑

q

p(q)SA1 (q)−
∑

q

p(q) log p(q) ≡ SAc + SAnum, (1.3.5)

where Sc is known as configurational entropy and quantifies the average contribution to the total
entanglement of all the charge sectors [81, 93–95], while Snum is called number entropy (or fluctu-
ation entanglement [90]) and takes into account the entanglement due to the fluctuations of the
value of the charge within the subsystem A [81, 139, 140, 143, 148–150]. The origin of the latter
name is inspired by the case when the conserved charge is the particle number (see also Fig. 1.2).

If A = A1 ∪A2, the total charge in A is the sum of the charge in A1 and A2, QA = QA1 +QA2 ,
and the RDM ρA1 , ρA2 of A1 and A2, can be independently decomposed in charged sectors as we
did for ρA in Eq. (1.3.2). Therefore, we can define the SRREs SA1

n (q1), SA2
n (q2) for the regions

A1 and A2 analogous to Eq. (1.3.3) for A, with q = q1 + q2. This leads to the definition of the
symmetry resolved mutual information as [133]

IA1:A2(q) =

q∑

q1=0

p(q1, q − q1)
[
SA1

1 (q1) + SA2
1 (q − q1)

]
− SA1 (q). (1.3.6)



10 CHAPTER 1. INTRODUCTION

The quantity p(q1, q − q1), normalised as

q∑

q1=0

p(q1, q − q1) = 1, (1.3.7)

is the probability that a simultaneous measurement of the charges QA1 and QA2 yields q1 and
q − q1, respectively, while the charge of the whole system A is fixed to q. Although Eq. (1.3.6) is
a natural definition, IA1:A2

1 (q) is not in general a good measure of the total correlations between
A1 and A2 within each charge sector since, in some cases, it can be negative [133]. Nevertheless,
it provides a decomposition for the total mutual information (1.3.6) similar to the one reported in
Eq. (1.3.5) for the entanglement entropy,

IA1:A2 =
∑

q

p(q)IA1:A2(q) + IA1:A2
num , (1.3.8)

where IA1:A2
num ≡ SA1

num + SA2
num − SAnum is the number mutual information.

Another entanglement measure with an interesting symmetry decomposition is the negativity.
The first question to answer is whether the partial transposed RDM admits a block-diagonal
structure. Performing a partial transposition of the relation [ρA, QA1 +QA2 ] = 0 yields [116]

[ρT1
A , Q2 −QT1

1 ] = 0, (1.3.9)

from which we can do a block matrix decomposition according to the eigenvalues qimb of the im-
balance operator Qimb = Q2−QT1

1 . Let Πqimb
denote the projector onto the subspace of eigenvalue

qimb of the operator Qimb. We define the normalised charge imbalance partially transposed density
matrix as

ρT1
A (qimb) =

Πqimb
ρT1
A Πqimb

Tr(Πqimb
ρT1
A )

, Tr(ρT1
A (qimb)) = 1, (1.3.10)

such that
ρT1
A = ⊕qimb

p(qimb)ρT1
A (qimb). (1.3.11)

Here, p(qimb) = Tr(Πqimb
ρT1
A ) is the probability of finding qimb as the outcome of a measurement of

Qimb and corresponds to the sum of the diagonal elements of ρT1
A (qimb). Although the eigenvalues

of ρT1
A can be negative, the partial transpose leaves invariant all the elements on the diagonal and

so they remain the same as those of ρA which are non-negative. Hence p(qimb) satisfies p(qimb) ≥ 0
and

∑
qimb

p(qimb) = 1, as it should be for a probability measure.
We can thus define the (normalised) charge imbalance resolved negativity as

N (qimb) =
Tr|(ρT1

A (qimb))| − 1

2
. (1.3.12)

If in the qimb sector there are no negative eigenvalues, according to Eq. (1.3.12), N (qimb) = 0.
Hence, this definition not only provides a resolution of the negativity, but also tells us in which
sectors the negative eigenvalues are, i.e. where the entanglement is. The total negativity, N , is
resolved into (normalised) contributions from the distinct imbalance sectors as

N =
∑

qimb

p(qimb)N (qimb). (1.3.13)

We stress that the imbalance decomposition of the negativity as in Eq. (1.3.13) cannot be per-
formed for the logarithmic negativity in Eq. (1.1.14), because of the nonlinearity of the logarithm.



1.4. FROM FIELD THEORETICAL TOOLS TO THE LATTICE COMPUTATION OF THE ENTANGLEMENT11

1.4 From field theoretical tools to the lattice computation of the
entanglement

In the context of extended quantum systems, the calculation of the vNEE is not an easy task.
The difficult point lies in the computation of log ρA. One of the most successful strategies to avoid
this problem is the replica approach, firstly used in this context by Holzey et al. in [17] and then
by Calabrese and Cardy [20]. The idea of this technique is the following: calling λi a Schmidt
eigenvalue and starting from the identities

log λi = lim
m→0

λmi − 1

m
,

∂

∂n
λni

∣∣∣
n→1

= lim
m→0

λm+1
i − λ1

i

m
,

(1.4.1)

we can derive the following relation

λi log λi =
∂

∂n
λni

∣∣∣
n→1

. (1.4.2)

Since TrρnA =
∑

i λ
n
i , if we are able to evaluate TrρnA for n integer and then analytically continue

it as a function of n to complex values, we can compute the vNEE in (1.1.6) (assuming that the
analytical continuation is unique) as

SA1 = − lim
n→1

∂

∂n
TrρnA. (1.4.3)

A generalisation of this replica trick (1.4.3) has been then introduced in Refs. [151,152] for the
negativity. In this case, we must distinguish the two cases

Tr(ρT1
A )ne =

∑

λi>0

λnei +
∑

λi<0

λnei ne = 2m,

Tr(ρT1
A )no =

∑

λi>0

λnoi −
∑

λi<0

|λi|no no = 2m+ 1.
(1.4.4)

with m ∈ N. The limit from the odd sequence of replicas would give Tr|ρT1
A | = 1, therefore, in

order to properly reproduce the absolute value in the definition of negativity, it is given by the
limit

N = lim
ne→1

Tr(ρT1
A )ne . (1.4.5)

Below we review some of the most powerful techniques to deal with entanglement measures in the
context of many-body quantum systems, focusing on the main ones used throughout the thesis.

1.4.1 Path-integral formalism

The replica trick turns out to be a powerful strategy to compute the REEs using the path-integral
approach. We focus on the ground state of a 2d quantum field theory (QFT) parameterised by
the complex coordinate w = x + iτ , where x denotes the spatial coordinate, whose support is on
a finite segment of length L. The path integral representation of the density matrix ρ is given
by [20,21]

〈Φ′| ρ |Φ′′〉 = Z−1

∫
Dφe−S(φ)

∏

x

(δ(φ(x, τ = 0−)− Φ′(x)))

×
∏

x

(δ(φ(x, τ = 0+)− Φ′′(x))), (1.4.6)
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Figure 1.3: Left panel: Representation of the n-sheeted Riemann surface Rn for n = 3 and
A = [u1, v1]∪ [u2, v2]. The blue edge of each cut is identified with the red edge of the corresponding
cut in the upper copy. Right panel: Path-integral representation of Tr(ρT1

A )3 : the geometry is
different as compared with Rn.

where the geometry of the integration surface is an infinite cylinder with a discontinuity of the
field configurations at τ = 0, S(φ) is the Euclidean action of the theory and Z is a normalisation
factor. Let us now compute the RDM by tracing over the subsystem B

〈Φ′|TrB(ρ) |Φ′′〉 = Z−1

∫
Dφe−S(φ)

∏

x∈A
(δ(φ(x, τ = 0−)− Φ′(x)))

×
∏

x∈A
(δ(φ(x, τ = 0+)− Φ′′(x))). (1.4.7)

Then we replicate n times ρA and we glue the copies together along the cuts in a cyclical way. The
last and the first copy are also sewed together in the same form (see the left-hand-side of Fig. 1.3
for a graphical representation when L→∞). We eventually obtain an n-sheeted Riemann surface
Rn of genus (n−1)(p−1), with p the number of intervals, which is symmetric under the Zn cyclic
permutation of the sheets. The moments of ρnA are given by the partition function on Rn, denoted
by Zn(A), as

TrρnA =
Zn(A)

Zn1
. (1.4.8)

If we deal with a CFT, the path integral formalism easily generalises to a state different from the
ground state [153, 154]: the excess of the REEs of the excited state with respect to the vacuum
can be expressed as a correlator of the operators corresponding to the excited states by using the
state-operator correspondence. We will provide an explicit example for this in Chapter 5.

Alternatively, instead of replicating the space-time where the theory is defined, one can take
n copies of the QFT on one single worldsheet, and quotient it by the Zn symmetry under the
cyclic exchange of the copies. We then get the orbifold theory QFT⊗n/Zn [155]. Specifically, for a

subsystem A consisting of p disjoint intervals, A =
p⋃
i=1

[ui, vi], TrρnA can be expressed as a 2p-point

correlation function of twist and antitwist fields, Tn and T̄n, respectively, [21, 156]

TrρnA = 〈
p∏

i=1

Tn(ui)T̄n(vi)〉. (1.4.9)

The (anti)-twist fields implement in the orbifold the multivaluedness of the correlation functions
on the surface Rn when we go around its branch points [155,157]. In fact, the winding around the
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point where Tn (T̄n) is inserted maps a field Ok living in the copy k of the orbifold into the copy
k + 1 (k − 1), that is

Tn(u)Ok(e2πi(z − u)) = Ok+1(z − u)Tn(u). (1.4.10)

This approach is particularly fruitful when dealing with a CFT, where the twist felds are spinless
primaries with conformal weight [20,156]

∆n =
c

24

(
n− 1

n

)
, (1.4.11)

where c is the central charge of the initial CFT. If A consists of one single interval on the infinite
line, the conformal invariance allows us to write

TrρnA = 〈Tn(u)T̄n(v)〉 = cn

( |u− v|
ε

)−2∆n

. (1.4.12)

where cn is the normalisation of the twist operators and ε is an ultraviolet cutoff. This expression
for the moments of ρA leads to the famous scaling results (|u− v| = `) [20]

SAn =
n+ 1

n

c

6
log(`/ε), SA1 =

c

3
log(`/ε). (1.4.13)

Another framework in which the twist fields represent a powerful tool is the computation of
the negativity. As shown in [152], if we take the partial transpose ρT1

A with respect to the degrees

of freedom living on the interval A1 = [u1, v1], Tr(ρT1
A )n can be written as a twist field correlator

as in Eq. (1.4.9), the only difference being that the twist fields Tn and T̄ n at the endpoints of A1

are exchanged while the remaining ones stay untouched, i.e. [151,152]

Tr(ρT1
A )n = 〈T̄ n(u1)Tn(v1)

p∏

i=2

Tn(ui)T̄n(vi)〉. (1.4.14)

This procedure can be generalised straightforwardly to the case where the partial transposition
involves more than two intervals (the corresponding geometry for two intervals in the ground state
is depicted in the right-hand-side of Fig. 1.3).

The situation in which p = 2 intervals are adjacent can be obtained from Eq. (1.4.14) by
taking the limit u2 → v1, giving Tr(ρT1

A )n = 〈T̄ n(u1)T 2
n (u2)T̄ n(v2)〉. As we already discussed for

Eq. (1.4.9), in a generic CFT characterised by a central charge c, this last expectation value is

evaluated by knowing the conformal dimensions of Tn, T̄ n, T 2
n and T̄ 2

n. The scaling dimensions of

T 2
n and T̄ 2

n are equal, and depend on the parity of n as [151]

∆(2)
n ≡

{
∆n oddn

2∆n/2 evenn
, (1.4.15)

where ∆n are the scaling dimensions of Tn, T̄ n in Eq. (1.4.11).

1.4.2 Charged moments approach

In this subsection, we will find out how the replica trick can be also helpful for determing the
SRREs up to slight modifications of what we have showed in the previous subsection.
The computation of the SREEs from the definitions of Eq. (1.3.3) requires the knowledge of the
entanglement spectrum of ρA and its symmetry resolution. However, this is usually a very difficult
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task, in particular if one is interested in analytical expressions. Alternatively, one can employ the
charged moments of the RDM, which for ρA are defined as [84]

ZAn (α) = Tr[ρnAe
iαQA ]. (1.4.16)

Similar quantities were independently studied in holographic theories [158–161,163,164,631]. They
can be interpreted as the partition function of the field theory on a Riemann surface, which is now
coupled to an external magnetic flux. Partition functions with a background gauge field have been
also introduced as non-local order parameters to detect symmetry-protected topological phases in
interacting fermionic systems [165,166].

In this specific case, the charged moments are not the main goal of our computations, but
they represent a fundamental tool, because their Fourier transforms are the moments of the RDM
restricted to the sector of fixed charge q

ZAn (q) ≡ Tr(Πq ρ
n
A) =

∫ π

−π

dα

2π
e−iαqZAn (α), p(q) ≡ Z1(q). (1.4.17)

Here we rely on the Fourier representation of the projection operator, that can be also extended
to the non-abelian case, as we will show in Chapter 3. Finally, the SREEs are given by

SAn (q) =
1

1− n log

[
ZAn (q)(
ZA1 (q)

)n
]
, SA1 (q) = lim

n→1
SAn (q). (1.4.18)

The charged moments of ρA can be computed employing the framework of Sec. 1.4.1. As it is
argued in Ref. [84], the operator eiαQA can be interpreted as a magnetic flux between the sheets
of the surface Rn, such that a charged particle moving along a closed path that crosses all the
sheets acquires a phase eiα. For this reason, we dub the modified surface Rn,α (we stress that the
geometry of the Riemann surface does not change, but the subscript α is helpful to keep in mind
the presence of the flux). The phase can be implemented by a local U(1) operator Vα(x) that
generates a phase shift eiα along A (see also Fig. 1.4). If we are interested in one single interval
on the infinite line, A = [u, v], then the charged moments are equal to the two-point correlation
function on the surface Rn,α

ZAn (α) = ZAn (0)〈Vα(u)V−α(v)〉Rn,α . (1.4.19)

In the orbifold theory, the magnetic flux can be incorporated by considering the composite twist
field Tn,α ≡ Tn · Vα. Thus, if we take a field Ok in the copy k of the orbifold, then the winding
(z − u) 7→ e2πi(z − u) around the point u where Tn,α is inserted gives rise to a phase eiα/n,

Tn,α(u)Ok(e2πi(z − u)) = eiα/nOk+1(z − u)Tn,α(u). (1.4.20)

Therefore, Eq. (1.4.19) can be reexpressed as the two-point function of the orbifold

ZAn (α) = 〈Tn,α(u)T̄n,−α(v)〉. (1.4.21)

In Ref. [84], it is shown that, if Vα is a spinless primary operator with conformal weight ∆Vα , then
so are the composite twist and antitwist fields, with conformal weights

∆n,α = ∆n +
∆Vα
n
. (1.4.22)

where ∆n is given in Eq. (1.4.11).
The relation between the SREE and the charged moments can be further extended. For example,
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Figure 1.4: Representation of the n-sheeted Riemann surface Rn,α for n = 3. The calculation of
the multi-charged moments in Eq. (1.4.23) requires to insert different magnetic fluxes between the
sheets, which we indicate by the arrows. The operator eiαQA1 is implemented by the flux insertions
α and −α along the left interval, while eiβQA2 corresponds to the fluxes β and −β at the right
interval.

to compute the symmetry resolved mutual information of Eq. (1.3.6), we need to determine p(q1, q−
q1), i.e. the probability that a measurement of QA1 and QA2 gives q1 and q− q1 respectively, with
QA fixed to q. Thus, we can consider the generalisation of the charged moments in Eq. (1.4.16)
introduced for the first time in Ref. [133],

ZA1:A2
n (α, β) = Tr

[
ρnAe

iαQA1
+iβQA2

]
. (1.4.23)

We refer to them as multi-charged moments (see Fig. 1.4 and Chapter 4 for further details about
this quantity). If we take the Fourier transform of Eq. (1.4.23),

ZA1:A2
n (q1, q2) =

∫ π

−π

dα

2π

dβ

2π
e−iαq1−iβq2ZA1:A2

n (α, β), (1.4.24)

then ZA1:A2
1 (q1, q2) can be interpreted as the probability of having q1 and q2 as outcomes of

a measurement of QA1 and QA2 respectively, independently of the value of QA. Therefore, it
satisfies the normalisation ∑

q1,q2

ZA1:A2
1 (q1, q2) = 1, (1.4.25)

and p(q1, q − q1) can be calculated as the conditional probability

p(q1, q − q1) =
ZA1:A2

1 (q1, q − q1)

p(q)
. (1.4.26)

Let us conclude this section by explaining how the charged moments can be adapted for the
computation of the charged moments of the RDM after the partial transpose operation, defined
as

NA
n (α) = Tr((ρT1

A )neiQimbα). (1.4.27)

We focus on two intervals A = [u1, v1] ∪ [u2, v2] on the infinite line. The phase factor eiαQimb can
be implemented by two operators at u1 and v1, V−α and Vα respectively, and two operators Vα at
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u2 and V−α at v2. In terms of the composite twist field Tn,α, in the limit v1 → u2, the charged
moments of the partial transpose read [116]

NA
n (α) = 〈T̄ n,−α(u1)T 2

n,2α(v1)T̄ n,−α(v2)〉 . (1.4.28)

The conformal weight of T 2
n,2α is

∆(2)
n,α = ∆(2)

n +
∆V2α
n
. (1.4.29)

where ∆
(2)
n is given in Eq. (1.4.15). In order to correctly perform the replica limit, we have to

distinguish the Fourier transforms to take as

ZAn (qimb) =

∫ π

−π

dα

2π
e−iαqimbNA

n (α), p(qimb) =

∫ π

−π

dα

2π
e−iαqimbNA

1 (α), (1.4.30)

from which the charge-imbalance resolved negativity reads

NA(qimb) =
1

2

(
lim
ne→1

ZAne(qimb)

p(qimb)
− 1
)
. (1.4.31)

1.4.3 Entanglement entropy from correlation matrix

Let us conclude this overview about the techniques to compute entanglement in extended quantum
systems by exploring what can be done numerically in some priviledged contexts. It is clear that
the computation of the REEs from the RDM ρA is a difficult task when the dimension of A is
large enough. However, for the eigenstates of quadratic lattice Hamiltonians, we can bypass this
problem expressing SAn in terms of the two-point correlation functions [167–169]. We are going
to illustrate this computation of entanglement entropies in an exact and numerically efficient way
focusing on fermionic systems, but similar techniques are available for free bosonic systems as
well [170,171].

Let us consider free fermions hopping on a N -site lattice with a general Hamiltonian

H =
N∑

n,m=1

εnmc
†
ncm. (1.4.32)

with c†(c) denoting the creation (annihilation) fermionic operators. The ground-state |Ψ〉 is a
Slater determinant and, therefore, it satisfies the Wick theorem: all even higher-order correlation
functions can be written in terms of the two-point function, Cnm = 〈Ψ|c†ncm|Ψ〉, e.g.

〈Ψ|c†mc†nckcl|Ψ〉 = CmlCnk − CmkCnl. (1.4.33)

Taking a subsystem A with ` contiguous sites corresponds to restrict the correlation matrix to the
subsystem, CAnm, with n,m ∈ A. By Wick theorem, it is possible to show that ρA can be written
as a Gaussian operator [19,167,169,172]

ρA =
1

Z
e−HA , HA =

∑̀

i,j=1

hi,jc
†
icj , (1.4.34)

where Z is a normalisation constant and HA is called entanglement Hamiltonian. In order to
diagonalise it, it is necessary to introduce the fermionic operators dk performing a linear transfor-
mation

cj =
l∑

k=1

φk(j)dk, (1.4.35)
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where φm(j) are the eigenfunctions of hi,j with eigenvalues εk. In this case, HA becomes

HA =

l∑

k=1

εkd
†
kdk =

l∑

i,j=1

l∑

k=1

εkφk(i)φ
∗
k(j)c

†
icj → hij =

l∑

k=1

εkφk(i)φ
∗
k(j). (1.4.36)

The first thing to do is to relate the eigenvalues εk of HA to those of the correlation matrix:

CAij = Tr(ρAc
†
icj) =

l∑

k,k′=1

φk(i)φ
∗
k′(j)TrA(ρAd

†
kdk′). (1.4.37)

By computing the correlator

TrA(ρAd
†
kdk′) =

1

Z
TrA[e−

∑l
k=1 εkd

†
kdkd†kdk′ ] =

δkk′

1 + eεk
, (1.4.38)

we find

CAij =

l∑

k=1

1

1 + eεk
φk(i)φ

∗
k(j). (1.4.39)

Therefore, the eigenvalues of CA are

ζk = (1 + eεk)−1 (1.4.40)

or, in matrix form, we can write

h = log[(1− CA)/CA]. (1.4.41)

As a consequence, the diagonalisation of an `× ` matrix CA leads to the RDM ρA. Indeed, since
the k-fermionic modes are uncorrelated, the RDM can be rewritten as

ρA =
⊗̀

k=1

e−εkd
†
kdk

Zk
, (1.4.42)

where each single term in the Kronecker product can be interpreted as a single-particle RDM, and
therefore Zk has to be chosen to normalise it, i.e. Zk = 1 + e−εk . If the k-mode is occupied, the

eigenvalues of ρA are given by
e−εk

1 + e−εk
= ζk, otherwise they are given by

1

1 + e−εk
= 1− ζk.

One could also work with Majorana operators, a2n−1 = (cn + c†n) and a2n = i(cn − c†n), and form
the 2N × 2N correlation matrix Γmn = 〈aman〉 − δmn. Both methods work for all states which
satisfy Wick theorem and they can be also generalised to compute the REEs when |Ψ〉 is an excited
state of Eq. (1.4.32).
The relation found between ρA and CAnm implies a drastic reduction of the computational complex-
ity, from an exponential to a polynomial dependence on the size of the system. This simplification
of the problem is valid provided that the density matrix satisfies the Wick decomposition (i.e. it
describes a Gaussian state) and, therefore, all the information about the state is encoded in the
two-point correlation functions.
At this point, the computation of entanglement entropies from the eigenvalues of CA, ζk, is quite
simple: the REEs read as

SAn =
1

1− n
∑̀

i=1

log[ζni + (1− ζi)n]. (1.4.43)
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whose limit n→ 1 gives

SA1 = −
∑̀

i=1

[ζi log ζi + (1− ζi) log(1− ζi)] . (1.4.44)

If we are interested in the computation of the charged moments Zn(α), we can write down the
charge operator as

QA =
∑

i∈A
c†ici =

∑̀

k=1

d†kdk, (1.4.45)

such that

ρAe
iαQA =

⊗̀

k=1

e(−εk+iα)d†kdk

Zk
. (1.4.46)

This allows us to express the charged moments in terms of the eigenvalues ζk as [84,90]

ZAn (α) =
∑̀

i=1

log[eiαζni + (1− ζi)n]. (1.4.47)

The computation of the REE from the eigenvalues of the correlation matrix can be generalised
to other entanglement measures. For example, the partial transpose of a bosonic Gaussian state
is again a Gaussian operator and this simplifies the calculation of the negativity [173]. The
analogous result for fermionic Gaussian states does not hold. This has motivated the introduction
of another way of implementing a fermionic partial transpose [163], which has the merit that the
partially transposed Gaussian state remains Gaussian and hence can be computed efficiently for
free fermions. We will come back to this in the third part of this thesis.
We conclude this section by showing another powerful application of the algebra of Gaussian
RDMs. When looking at the trace of products of RDMs in different eigenstates, they usually do
not commute and so they cannot be simultaneously diagonalised in a common base. However, it
is possible to use the composition properties of Gaussian density matrices [174]: let ρ[Γ] denote a
Gaussian density matrix characterised by its correlation function Γ written in terms of Majorana
fermions as ΓΩ

ij = 〈aiaj〉Ω − δij , where Ω stands for the set of occupied single-particle levels. The
composition of correlation matrices is indicated by Γ× Γ′ and it is implicitly defined by

ρ[Γ]ρ[Γ′] = Tr[ρ[Γ]ρ[Γ′]]ρ[Γ× Γ′], (1.4.48)

leading to [174]

Γ× Γ′ = 1− (1− Γ′)
1

1 + ΓΓ′
(1− Γ). (1.4.49)

The trace of two fermionic operators can be computed as

{Γ,Γ′} ≡ Tr(ρΓρΓ′) =
∏

µ∈Spectrum[ΓΓ′]/2

1 + µ

2
, (1.4.50)

namely it is the product of the eigenvalues of (1 + ΓΓ′)/2 with halved degeneracy.

1.5 Organisation of the thesis

The content of this thesis is provided by the research projects I have been doing during my PhD,
thanks to several collaborations in and outside SISSA. After a general and broad introduction that
has allowed me to define the main topics I will deal with throughout the thesis, it consists of three
Parts, each one containing different Chapters. Let us look at their content in more details.
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Part I The main problems we address in the first part concern the study of entanglement in
(1+1)-dimensional QTFs, with particular care about the effect of symmetries on our systems.

• The first example of this thesis in which the symmetry resolution of entanglement is analysed
is the content of Chapter 2: the systems under consideration are free quantum field theories,
in particular Dirac and complex scalar fields in two dimensional dimensions, both in the
massive and massless cases.

• In the realm of entanglement resolution, we tackle the non-abelian problem in Chapter 3.
We consider systems having, in addition to conformal invariance, an internal Lie group
symmetry. By using some group theory tools, we try to study the information one can get
from the symmetry resolved entanglement about the underlying group structure.

• The analysis of the symmetry resolved mutual information in Chapter 4 allows us to study
the multi-charged moments for two disjoint intervals in the ground state of two (1+1)-
dimensional CFTs, i.e. the massless Dirac field theory and the compact boson.

• The replica trick and its implementation via the path-integral finds wide place in Chapter 5:
for a free bosonic theory, the mode expansion of the fields allow us to develop an efficient
strategy to compute the second generalised Rényi entropy for all the eigenstates of a (1+1)-
dimensional CFT.

• The findings of the previous Chapter represent the starting point to develop a simulation
scheme ideal to compute the entanglement in more generic (1+1)-dimensional QFTs. This is
done in Chapter 6, by applying this technique to compute the entanglement after a quench
in the sine-Gordon field theory.

Part II A typical framework in which entanglement is studied are lattice models, where different
techniques can be exploited in order to derive exact results: in the second part of this thesis, these
methods will be applied to study the symmetry resolution of entanglement.

• In Chapter 7, we study the symmetry resolved entanglement entropies in gapped integrable
lattice models, finding exact results for a free system of complex bosons and the XXZ spin-
chain. The connection between the symmetry resolved entanglement and the full counting
statistics is also discussed. The key tool we adopt is the corner transfer matrix.

• We apply the dimensional reduction to study lattice models in any (spatial) dimension in
Chapter 8: this strategy is based on the reduction of the initial d-dimensional problem into
decoupled d− 1-dimensional ones in a mixed space-momentum representation. We focus on
the case d = 2 and two lattice models possessing a U(1) symmetry, i.e. free non-relativistic
massless fermions and free complex (massive and massless) bosons.

• Chapter 9 is devoted to the investigation of the symmetry resolution of entanglement in the
presence of long-range couplings. This feature of the system strongly affects entanglement,
starting from the logarithmic behaviour with the size of the subsystem despite the mass gap.

• Inspired by the works by Page about entanglement in random pure states [30], we find some
interesting analytical expressions about the symmetry resolved Page curves for Haar-random
pure states and random fermionic Gaussian states in Chapter 10.

• Not only symmetries play a special role in this thesis, but also quantifying how much a
symmetry is broken. This is the main topic of Chapter 11, where we introduce the notion of
entanglement asymmetry as a subsystem measure of symmetry breaking.
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Part III The third and last part of this thesis is focused on the study of entanglement in mixed-
states, when the entanglement entropy does not properly describe the quantum correlations.

• Chapter 12 gives some standard definitions about the partial transpose operation and neg-
ativity, in particular for fermionic systems. Then, it also contains an operatorial characteri-
sation of entanglemtent in mixed states, which we dub negativity Hamiltonian.

• In Chapter 13, we study the symmetry resolution of the entanglement negativity in free
fermionic systems, which admits a decomposition in terms of the charge imbalance between
the two subsystems.

• We compute the moments of the partial transpose RDM in Chapter 14. Given the relevance
of these quantities which can be accessed experimentally in the context of the quantum
simulation of many-body systems, we study their time evolution after a quench, providing a
quasiparticle description for integrable models in the space-time scaling limit.

• In Chapter 15, we study the ground state of a (1+1)-dimensional CFT built with several
species of massless free Dirac fermions coupled at one boundary point via a conformal junc-
tion. This system provides the playground to compute both the Rényi entropy for a given
bipartition and the negativity between non-complementary parts.

• The last Chapter 16 contains the results of the first experimental measurement of the oper-
ator entanglement of a subsystem’s RDM in a quantum many-body system. We also study
the effect of the U(1) symmetry, introducing the notion of symmetry resolved operator en-
tanglement.

Every Chapter of this thesis contains an abstract, followed by a specific introduction, and the
peculiar perspectives stemming from it. Still, this PhD work leaves room for many questions and
open problems. The last Chapter contains some thoughts regarding promising directions for future
research.
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Entanglement and symmetries in
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Chapter 2

Symmetry resolved entanglement
entropies in quantum field theories

The main goal of this first Chapter is to investigate the field theoretical techniques for the compu-
tation of the charged moments in relativistic free two-dimensional quantum field theories (QFTs).
Their Fourier transform provides the desired SRREs introduced in Eq. (1.3.3): we show that at
the leading order, they satisfy entanglement equipartition and we identify the subleading terms
that break it. This Chapter is based on Ref. [111].

2.1 Introduction

Let us present the first thorough analysis of the entanglement entropies related to different symme-
try sectors of free QFTs with an internal U(1) symmetry. We will mainly deal with a free fermionic
field theory and with a complex scalar one, whose Euclidean actions are given, respectively, by

SD =
1

4π

∫
dzdz̄ (ψ∗R∂zψR + ψ∗L∂z̄ψL +m(ψ∗LψR + ψ∗RψL) ,

SS =
1

4π

∫
dzdz̄

(
∂zϕ

∗∂z̄ϕ+ ∂z̄ϕ
∗∂zϕ+m2ϕ∗ϕ

)
,

(2.1.1)

where we employ complex coordinates (z, z̄) for the two-dimensional spacetime. In SD the fields
ψR/L are the chiral (right-moving R) and anti-chiral (left-moving L) components of the Dirac
fermion. In SS the field ϕ is a complex scalar. The actions in (2.1.1) exhibit a U(1) symmetry,
i.e. a symmetry under phase transformations of the fields given, respectively, by

ψR/L → eiαψR/L, ψ∗R/L → e−iαψ∗R/L, ϕ→ eiαϕ, ϕ∗ → e−iαϕ∗. (2.1.2)

By Noether’s theorem, this continuous symmetry transformation leads to a conserved quantity,
which is the charge Q we introduced in Sec. 1.3.

The actions (2.1.1) played the role of the simplest massive quantum field theories to study
the properties of the entanglement entropy. In the same spirit, they also represent the natural
starting point for the field theoretical investigation of the charged moments and, as a consequence,
of the SRREs. We provide explicit analytic computations for the charged moments of Dirac and
complex scalar fields in two spacetime dimensions, both in the massive and massless cases, using
two different approaches.

The first one is based on the replica trick, the computation of the partition function on Riemann
surfaces with the insertion of a flux α, and the introduction of properly modified twist fields, whose

23
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two-point function directly gives the scaling limit of the charged moments, as we have already
learnt from Sec. 1.4.2. Being the theory free, a further simplification arises by the diagonalisation
in the replica space: the n-sheeted problem can be mapped to an equivalent one in which one
deals with n decoupled and multivalued free fields, generically referred as φ̃k. Thus, also the twist
fields can be written as products of fields acting only on φ̃k, denoted as Tn,k and T̄ n,k. The total
partition function is a product of n partition functions, ζk, each one given by (up to unimportant
multiplicative constant)

ζk ∝ 〈Tn,k(z1)T̄ n,k(z2)〉 . (2.1.3)

The second method also relies on mapping the problem from the determination of the partition
function on Rn, to the computation of n partition functions of a free field on a cut plane. However,
the difference with respect to the previous approach is that each ζk is not computed as a two point-
function of twist fields, but using the relation between the free energy and the Green’s function of
each sector k. Denoting by GD the Green’s function for the Dirac field and by GS the one for the
scalar (in each sector k of the n copies), they are related to the corresponding partition function
ζk by, respectively,

∂m log ζk = trGD, ∂m2 log ζk = −
∫

dr2GS(r, r′). (2.1.4)

The strategy of Refs. [176, 177] was to exploit the rotational and translational symmetry of the
Helmholtz equations satisfied by GD and GS and analyse their behaviour at the singular endpoints
of the cut A so to determine the right hand sides of the above equations. The final expressions
for ζk can be expressed in terms of the solution of second order non linear differential equations
of the Painlevé V type. Here we only report the final results for the Rényi entropies of free fields
in the limit m`→ 0 with t = m` fixed [176,177]

SDn =
n+ 1

6n

(
log

`

ε
− (m`)2

2
log2m`

)
+O((m`)2 logm`),

SSn =
n+ 1

3n
log

`

ε
+ log

logm`

logmε
+O(m`).

(2.1.5)

The Chapter is organised as follows. We report our main findings in Secs. 2.2, 2.3, and 2.4: in
the first we employ the twist fields to compute the charged moments both in the massless and in
the massive context (in the limit m`� 1). These results are extended in Secs. 2.3 and 2.4, where
we write down the explicit form of the charged moments for arbitrary m` and provide analytic
asymptotic expansions valid for large and small m`. These outcomes are the starting point for
the computation of the SRREs. Numerical checks for free fermions and bosons on the lattice are
also provided as a benchmark of the analytical results. We draw our conclusions in Sec. 2.5 and
we include a small appendix with some technicalities about the conformal dimensions of the twist
fields.

2.2 Twist Field Approach

In this section we consider 1d critical and close to critical systems. We obtain a general exact result
for the conformal invariant charged moments by exploiting the properties of the modified twist
fields [158, 161]. This result includes and generalises the ones in Ref. [84]. The same approach
also provides the leading asymptotic behaviour of the charged moments for (free) massive field
theories.
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2.2.1 Modified Twist Fields

As already mentioned in Sec. 1.4.2, rather than dealing with fields defined on a non trivial manifold
Rn,α, it is more convenient to work on a single plane with a n-component field

Φ =




φ1

φ2
...
φn


 , (2.2.1)

where φj is the field on the j-th copy (here the field φj generically refers to either a scalar field
ϕj or a chiral Dirac one ψj ; the same applies to φ̃k that we are going to introduce soon). Upon
crossing the cut A, the vector field Φ transforms according to the transformation matrix Tα

Tα =




0 eiα/n

0 eiα/n

. . .
. . .

(−1)(n+1)feiα/n 0


 , (2.2.2)

where f = 1 for free Dirac fermions and f = 0 for free complex scalars. When α = 0 we recover
the usual transformations for the fields across the different replicas [178]. The matrix Tα has
eigenvalues

f = 0 : λk = ei
α
n e2πi k

n , k = 0, . . . , n− 1,

f = 1 : λk = ei
α
n e2πi k

n , k = −n− 1

2
, . . . ,

n− 1

2
.

(2.2.3)

By diagonalising Tα with a unitary transformation, the problem is reduced to n decoupled fields
φ̃k in a 2d spacetime. Thus, the total partition function is a product of the partition functions for
each k and the twist fields can be written as products of fields each acting on a different φ̃k, i.e.

f = 0 : Tn,α =

n−1∏

k=0

Tn,k,α, T̃ n,α =

n−1∏

k=0

T̃ n,k,α,

f = 1 : Tn,α =

n−1
2∏

k=−n−1
2

Tn,k,α, T̄ n,α =

n−1
2∏

k=−n−1
2

T̄ n,k,α,
(2.2.4)

with Tn,k,αφ̃k′ = δk,k′e
iα/ne2πik/nφ̃k and T̃ n,k,αφ̃k′ = δk,k′e

−iα/ne−2πik/nφ̃k. Since the partition
function on Rn,α can be written as the two-point function of the modified twist fields, from (2.2.4)
we have

f = 0 : logZn(α) =

n−1∑

k=0

log 〈Tn,k,αT̄ n,k,α〉 ,

f = 1 : logZn(α) =

(n−1)/2∑

k=−(n−1)/2

log 〈Tn,k,αT̄ n,k,α〉 .
(2.2.5)

When dealing with a CFT (e.g. when m = 0 in (2.1.1)) Tn,k,α and T̄ n,k,α are primary operators
and their two-point function is fixed by conformal invariance to be

〈Tn,k,αT̄ n,k,α〉 ∝
1

|u− v|4∆k(α)
, (2.2.6)
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where (see the Appendix)

f = 0 : ∆k(α) =
1

2

(
k

n
+
|α|
2πn

)(
1− k

n
− |α|

2πn

)
,

f = 1 : ∆k(α) =
1

2

(
k

n
+

α

2πn

)2

.

(2.2.7)

Let us stress that, in order to have operators with positive conformal dimension, the phase that
bosons pick up going around one of the entangling points must be 0 < k

n + α
2πn < 1. This can be

achieved, since α ∈ [−π, π], by trading α with |α| when we deal with scalar field theories.
Using Eqs. (2.2.5), (2.2.6) and (2.2.7) the logarithm of the partition function on Rn,α reads

f = 0 : logZn(α) = −4 log `
n−1∑

k=0

∆k(α) = −
[

1

3

(
n− 1

n

)
− α2

2π2n
+
|α|
πn

]
log `,

f = 1 : logZn(α) = −4 log `

n−1
2∑

k=−n−1
2

∆k(α) = −
[

1

6

(
n− 1

n

)
+

2

n

( α
2π

)2
]

log `.

(2.2.8)

The charged moments for the free massless Dirac field theory (f = 1) have been already worked
out in the literature with different techniques [84, 85, 158, 161]. Instead, the charged moments for
a free massless complex scalar field (f = 0) are consistent with the Appendix A of [158], where
the heat kernel techniques have been exploited.

Let us stress that the presence of a flux in the Riemann surface changes some features of the
twist fields in CFT: they remain primary operators (see Appendix for details), but they do depend
on the theory and are not anymore identified only by the central charge (see also [84]).

2.2.2 Massive field theory and flux insertion

We now compute the charged moments Zn(α) of a massive relativistic 2d QFT on the infinite
line for a bipartition in two semi-infinite lines. Thus, we follow the same logic as in [20] (i.e.
the continuum version of Baxter corner transfer matrix approach [179] for the reduced density
matrix [20,180,182,353]), which in turn parallels the proof of the c-theorem by Zamolodchikov [183].
The results of this section are not limited to free theories but hold for generic massive relativistic
QFT. Exploiting the rotational invariance about the origin of the Riemann surface Rn,α, the
expectation values of the stress tensor of a massive euclidean QFT in complex coordinates, T ≡
Tzz, T̄ ≡ T ∗z̄z̄, and the trace, Θ ≡ 4Tzz̄, have the form

〈T (z, z̄)〉 = Fn,α(zz̄)/z2,

〈Θ(z, z̄)〉 − 〈Θ〉1,α=0 = Gn,α(zz̄)/zz̄,

〈T̄ (z, z̄)〉 = Fn.α(zz̄)/z̄2,

(2.2.9)

where 〈Θ〉1,α=0 is a non-vanishing constant measuring the explicit breaking of scale invariance in

the non-critical system, while 〈T 〉1,α=0 and 〈T̄ 〉1,α=0 both vanish. These quantities are related by
the conservation equations of the stress-energy tensor (4∂z̄T + ∂zΘ = 0) as

(zz̄)

(
F ′n,α +

1

4
G′n,α

)
=

1

4
Gn,α. (2.2.10)

The conservation equations as well as the rotational invariance are preserved in the presence of
the flux α because the Riemann surface Rn,α can be thought simply as a complex plane with
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the insertion of two modified twist fields, as discussed in the previous subsection. Both Fn,α and
Gn,α approach zero for |z| � ξ, while when |z| � ξ, they approach the CFT values given by the
conformal dimension of the modified twist field, ∆n(α) [84]. Hence we have

FCFTn,α → c

24

(
1− 1

n2

)
+

∆n(α)

n
,

Gn,α → 0,

(2.2.11)

and in particular for a massive Dirac field theory (f = 1) and for a complex massive scalar theory
(f = 0), using the conformal weights (2.2.7), we have

F f=1
n,α →

1

24

(
1− 1

n2

)
+

1

2n2

( α
2π

)2
,

F f=0
n,α →

1

12

(
1− 1

n2

)
+

1

2n2

[( α
2π

)2
− |α|

2π

]
.

(2.2.12)

Changing variable to R2 = zz̄, we can rewrite the Eq. (2.2.10) as

R2 ∂

∂R2

(
Fn,α(R2) +

1

4
Gn,α(R2)

)
=

1

4
Gn,α(R2). (2.2.13)

The corresponding integrated form using the boundary conditions in Eq. (2.2.11) is

∫ ∞

0

Gn,α(R2)

R2
dR2 = − c

6

(
1− 1

n2

)
− 4∆n,α

n
. (2.2.14)

Taking into account the normalisation of the stress tensor, the definition of Gn,α in Eq. (2.2.9) and

that

∫

Rn
〈Θn,α〉 dR2 corresponds to the variation of the free energy wrt a scale transformation (the

mass m in this case) per each sheet of the whole n-sheeted surface, the left hand side of (2.2.14)
is equal to

− 2

n
m∂m logZn(α). (2.2.15)

We can therefore integrate this equation at fixed n and α to obtain logZn(α). The additive non-
universal integration constant can be absorbed in a UV cutoff εn,α that consequently depends both
on the Rényi index n and the parameter α (consistently with the lattice results in Ref. [90,98] for
massless theories). Finally we get

logZn(α) =

[
c

12

(
n− 1

n

)
+ 2∆n(α)

]
log(mεn,α), (2.2.16)

or specialising to free Dirac (f = 1) or complex Klein-Gordon (f = 0) fields

f = 1 : logZn(α) =

[
1

12

(
n− 1

n

)
+

1

n

( α
2π

)2
]

log(mεn,α), (2.2.17)

f = 0 : logZn(α) =

[
1

6

(
n− 1

n

)
− 1

n

( α
2π

)2
+
|α|
2πn

]
log(mεn,α). (2.2.18)

We anticipate that logZn(α) for the Klein-Gordon field matches the continuum limit of a chain
of complex oscillators obtained through the corner transfer matrix approach (see [98] and Chap-
ter 7). We can specialise Eq. (2.2.16) to a Luttinger liquid with parameter K, whose underlying
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field theory is a c = 1 CFT equivalent to a massless compact boson. In this case, one can use the
results found in [84] for the conformal dimension of the modified twist field, obtaining

logZn(α) =

[
1

12

(
n− 1

n

)
+
K

n

( α
2π

)2
]

log(mεn,α), (2.2.19)

which for K = 1 gives the result found for fermions in Eq. (2.2.17), as it should.

2.2.3 From charged moments to symmetry resolved entropies

Performing the Fourier transforms of the charged moments above, one obtains symmetry resolved
moments and entropies. For the Luttinger liquid, which includes Dirac Fermions at K = 1, the α
dependence of the leading term is the same as in the massless cases. Hence the analysis is identical
to the one of Refs. [84,90] and so we will just sketch the results here.The charged moments (ignoring
for the time being the dependence on n and α of εn,α in (2.2.19)), are

Zn(q) ' (mε)
1
12(n− 1

n)
√

nπ

K| logmε|e
− nπ2q2

K| logmε| , (2.2.20)

and hence SRREs

Sn(q) = Sn −
1

2
log

(
K

π
| logmε|

)
+O(1), (2.2.21)

with Sn the total entropy. Exploiting the knowledge of Z1(q) in (2.2.20) we also easily get the
number or fluctuation entropy

Snum = −
∫ ∞

−∞
Z1(q) logZ1(q) =

1

2
log

(
K

π
| logmε|

)
+O(1) , (2.2.22)

that in the sum for the total entropy cancels exactly the double logarithmic term in Eq. (2.2.21).
For the massive complex boson, we are interested in the Fourier transform of Eq. (2.2.18). In

the saddle point approximation, we can neglect the term ∝ α2 in Eq. (2.2.18) and the Fourier
transform is

Zn(q) ' Zn(0)
2n| log(mε)|

4n2π2q2 + log2(mε)
' Zn(0)

2n

| log(mε)|

(
1− 4n2π2q2

log2(mε)
+ . . .

)
, (2.2.23)

and hence
Sn(q) = Sn − log | logmε|+O(1) , (2.2.24)

with Sn the total entropy. Also in this case, one easily derives the number entropy from Z1(q)
obtaining again, at the leading order, the double logarithmic term in Sn(q) in Eq. (2.2.24), i.e.
Snum = log(| logmε|) +O(1).

2.3 The Green’s function approach: The Dirac field

In this section we derive the charged moments for a massive Dirac field for arbitrary mass and then
consider the limits of small and large mass. In Sec. 2.2.1 we showed that Zn(α) can be written as
product of partition functions ζa on the plane with proper boundary conditions along the cut A,
explicitly given by

ψ̃k(e
2πiz, e−2πiz̄) = e2πiaψ̃k(z, z̄), a =

k

n
+

α

2πn
, k = −n− 1

2
, · · · , n− 1

2
. (2.3.1)
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Figure 2.1: The universal constant cn(α) extracted from the numerical solution of the Painlevé
equation (2.3.6) for different values of α and n as a function of t = m` (full lines). The numerical
data are obtained varying ` between 200 and 400 lattice points and properly choosing m in such
a way t = m` ∈ (0, 1). For larger α and n, we need larger subsystem size to have a good match
between field theory and lattice calculation because lattice corrections become stronger.

Hence we have

logZn(α) =

n−1
2∑

k=−n−1
2

log ζ k
n

+ α
2πn

. (2.3.2)

Let us introduce the auxiliary universal quantities

wa ≡ `∂` log ζa, cn(α) ≡
∑

k

w k
n

+ α
2πn

, (2.3.3)

that, using (2.3.2), allow us to write the logarithmic derivative of the partition function in Rn,α as

cn(α) = `
∂ logZn(α)

∂`
⇒ logZn(α) =

∫ `

ε

cn(α)

`′
d`′. (2.3.4)

For n = 1, the function cn(α) is the analogue of Zamolodchikov’s c-function [183] in the presence
of the flux α. The cutoff ε, in analogy to what discussed in Sec. 2.2.2 depends on both α and n,
although we almost always omit such a dependence for conciseness.

As already discussed in Sec. 2.1, the key observation of this approach relies on the identity
between the partition function ζa and the Green’s function in the same geometry (see Eq. (2.1.4)).
Through this relation, the function wa has been already obtained for generic values of a for the
massive Dirac fermion [176,178].

The method that we just reviewed provides exact results for the charged moments of a free
Dirac field. Indeed, in Ref. [176] it has been shown that the function wa defined in (2.3.3) can be
written as

wa(t) = −
∫ ∞

t
yv2
a(y)dy, (2.3.5)

where t = m` and va is the solution of the Painlevé V equation

v′′a +
v′a
t

= − va
1− v2

a

(v′a)
2 + va(1− v2

a) + 4

(
a− 1

2

)2

t2(1− v2
a)
va. (2.3.6)
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This equation can be straightforwardly solved numerically with any standard algorithm for ordi-
nary differential equations, once we impose the boundary condition as t→ 0 [176]

va(t) = −2a(log t+ κD(a)) +O(t2), (2.3.7)

where

κD(a) = − log 2 + 2γE +
1

2
(ψ(a) + ψ(−a)), (2.3.8)

with ψ(z) ≡ Γ′(z)/Γ(z) the digamma function and γE the Euler-Mascheroni constant. Plugging
the numerical solution of the differential equation (2.3.6) into Eq. (2.3.3), we obtain the universal
constant cn(α). Then, with the further integration (2.3.4), the desired logZn(α) is found to the
price of introducing the non-universal cutoff ε. As examples we report in Fig. 2.1 the plots of the
resulting cn(α) for few values of α and n as functions of t = m`. In the figure we also compare
our exact solution with the numerical results obtained from a lattice discretisation of the free
Dirac theory. The agreement is excellent. We stress that in Fig. 2.1 there is no free parameter in
matching analytical and numerical data for cn(α) (as a difference compared to Zn(α)).

The method we just outlined provides exact results for the desired charged moments and, by
Fourier transform, the SRREs. However, the procedure is completely numerical and we would
appreciate an analytic handle on the subject. While in general this is not feasible, the limits of
small and large t are analytically treatable, as we are going to show.

2.3.1 The expansion close to the conformal point m` = 0

Here we use the methods just introduced to derive an asymptotic expansion of the charged moments
close to the conformal point, i.e. for t = m`→ 0. In this limit, the expansion of the function wa(t)
has been worked out in Ref. [176], obtaining

wa = −2a2 + a2(1− 2κD + 2κ2
D + (4κD − 2) log t+ 2 log2 t)t2 − 2a4t4 log4 t+O(t4 log3 t), (2.3.9)

where we omitted the dependence on a of κD. In order to compute cn(α) through Eq. (2.3.3), we
again set a = k

n + α
2πn and we compute the following sums

∑

k

a2 =
1

12

(
n− 1

n

)
+

α2

4nπ2
, (2.3.10a)

Ωn(α) ≡
∑

k

a2(ψ(a) + ψ(−a)) ≡ Ωn(0) +
α2

2π2n
ωn + ρωn(α), (2.3.10b)

Λn(α) ≡
∑

k

a2(ψ(a) + ψ(−a))2 ≡ Λn(0) +
α2

2π2n
λn + ρλn(α), (2.3.10c)

where ωn = π2nΩ′′n(α) and λn = π2nΛ′′n(α) so that the remainder functions ρ
ω/λ
n (α) are O(α4). All

the sums over k run from −n−1
2 to n−1

2 . The quantities Ω(n, α) and Λ(n, α) (and their derivatives)

can be rewritten using the integral representation ψ(x) = −γE +
∫ 1

0 dy
1−yx−1

1−y for the digamma
function ψ(x). This procedure allows for an analytic continuation in n, as explained with more
details in [111].
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Figure 2.2: Leading scaling behaviour of the charged Rényi entropies with the insertion of a flux
α. The numerical results (symbols) for two different values of α and masses m are reported as
functions of t = m` when n = 1. The data match well the prediction in Eq. (2.3.12) (solid lines)
which includes lattice corrections as explained in the text.

From Eqs. (2.3.9)-(2.3.10) we obtain up to O(t2)

cn(α) =
∂ logZn(α)

∂ log `
=

(n−1)/2∑

k=−(n−1)/2

w k
n

+ α
2πn

=

(
1− n2

6n
− α2

2π2n

)
(1− t2 log2 t)+

+

[(
1− n2

6n
− α2

2π2n

)
(1 + 2 log 2− 4γE) + 2Ωn(α)

]
t2 log t+

−
[(

1− n2

12n
− α2

4π2n

)
(1 + 2 log 2− 4γE + 2(log 2− 2γE)2)+

+ (1− 4γE + 2 log 2)Ωn(α)− Λn(α)

2

]
t2 +O(t4 log3 t).

(2.3.11)

Eq. (2.3.11) can be now integrated analytically, getting

logZn(α) = −
(

1

6

(
n− 1

n

)
+

α2

2π2n

)
log

`

ε
+ yn(t)− α2

2π2n
zn(t) + ρzn(α, t) + o(t3), (2.3.12)

where we defined

yn(t) =
t2

6

(
n− 1

n

)(1

2
log t2 − log t(1− 2γE + log 2) +

3

4
+ 2γ2

E +
log2 2

2
(2.3.13)

−2γE(1 + log 2) + log 2
)

+ (log t− (log 2 + 1− 2γE))t2Ωn(0) +
t2

4
Λn(0),

zn(t) = t2
[
− log t2

2
+ log t(1− 2γE + log 2− ωn) + (2.3.14)

−3

4
− 2γ2

E −
log2 2

2
+ 2γE(1 + log 2)− log 2 + (log 2 + 1− 2γE)ωn −

λn
4

]
,

ρzn(α, t) = t2[(log t− (log 2 + 1− 2γE))ρωn(α) + ρλn(α)], (2.3.15)

and ρzn(α) is defined so that ρzn(α) = O(α4). Notice, as we already stressed a few times, that in
Eq. (2.3.12) the cutoff ε comes as an additive constant of integration and it generically depends
on both n and α.
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Figure 2.3: Subtracted universal charged entropy δZ(α, t) in Eq. (2.3.18). Left (right) panel is for
n = 1 (n = 2). The dashed lines are the small t expansion in Eq. (2.3.12) for n = 1 while the solid
lines are the Painlevé exact solution. The tiny discrepancies observed in some cases are finite `
corrections.

Eq. (2.3.12) represents our final field theoretical result for the charged entropies. We wish to
test this prediction against exact lattice computations obtained with the methods of Sec. 1.4.3.
However, in order to perform a direct comparison with lattice data, we have to take into account
the additional non-universal contribution coming from the discretisation of the spatial coordinate,
i.e. the explicit expression for the cutoff ε in Eq. (2.3.12) that, as already mentioned, does depend
on α and cannot be simply read off from the result at α = 0. We assume here (as Eq. (2.3.12)
suggests at leading order) that the cutoff does not depend on the mass; consequently we can use
the exact value for m = 0 [90] obtained with the use of Fisher-Hartwig techniques. The final result
of Ref. [90] may be written as

(
1

6

(
n− 1

n

)
+

α2

2π2n

)
log(2ε) =

Υn(α) = ni

∫ ∞

−∞
dw[tanh(πw)− tanh(πnw + iα/2)] log

Γ(1
2 + iw)

Γ(1
2 − iw)

, (2.3.16)

and in particular we will use

γ(n) ≡ 1

2

∂2Υn(α)

∂α2

∣∣∣
α=0

=
ni

4

∫ ∞

−∞
dw[tanh3(πnw)− tanh(πnw)] log

Γ(1
2 + iw)

Γ(1
2 − iw)

. (2.3.17)

In Ref. [90] it has been shown that the cutoff in (2.3.16) is very well described by the quadratic
expansion in α and higher corrections O(α4) are negligible for most practical purposes.

In Fig. 2.2 we report the numerical data for the charged moments with the insertion of a flux
α for two values of α and m with n = 1. The data are well described by the theoretical prediction
(2.3.12) with the cutoff (2.3.16). Finally, in order to have a test of the prediction (2.3.12) that
does not rely on an independent lattice calculation we can consider the difference between the
charged entropy at finite t (i.e. finite mass) and the massless one. Specifically we consider

δZ(α, t) = logZn(α,m)− logZn(α,m = 0), (2.3.18)

in which both the cutoff and ` dependences cancel and it becomes a universal function solely of t
(closely related to cn(α)). The results for δZ(α, t) are reported in Fig. 2.3. The agreement of the
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Figure 2.4: The probability Z1(q). Top: As a function of t = m` at fixed q = 0 for mass m =
0.0005 (left) and m = 0.001 (right). The dashed green line is Z1(q) obtained by the saddle point
approximation, i.e. Eq. (13.4.27). The solid green line is the exact Fourier transform without taking
the quadratic approximation. For large ` (and t as a consequence) the saddle-point approximation
converges to the exact value, as expected. Bottom: The same at fixed t as function of q.

numerics with the prediction (2.3.12) is perfect for small t. Furthermore, the differences emerging
for larger t are correctly captured by the numerical exact solution of the Painlevé equation (2.3.6).
The small discrepancies visible in the figure are just finite size effects that are stronger for larger
values of n and α.

2.3.2 From the charged moments to symmetry resolution

We are now ready to study the true symmetry resolution by performing the Fourier transform of
Zn(α). In this Fourier transform we ultimately use a saddle-point approximation in which Zn(α)
is Gaussian and hence we truncate hereafter Eq. (2.3.12) at quadratic order in α. Consequently,
the charged partition function can be well approximated as

Zn(α) = Zn(0)e−bnα
2/2, (2.3.19)

where

bn(`, t) =
1

π2n
(log `+ zn(t))− 2γ(n) +

log 2

π2n
≡ 1

π2n
log `− hn, (2.3.20)

and we consistently approximated the cutoff at quadratic level and used the lattice cutoff with
γ(n) given in Eq. (2.3.17). A different cutoff just leads to a different additive constant in bn (i.e.,



34 CHAPTER 2. SYMMETRY RESOLVED ENTANGLEMENT ENTROPIES IN QFT

�� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

�� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Figure 2.5: SRREs for a few different values of q as functions of `. The field theory prediction is
tested against exact lattice computations. The agreement with Eq. (2.3.24), that includes lattice
effects, is remarkable. For large |q|, the approximation at the order q2 is no longer sufficient and
neglected corrections to the scaling become important, as well known for the massless case [90].

a different definition of hn), but we will use its precise form only for the comparison with numerics
and so all the following formulas are completely general.

Now we can compute the Fourier transform (1.4.17) that reads

Zn(q) = Zn(0)

∫ π

−π

dα

2π
e−iqαe−α

2bn(`,t)/2. (2.3.21)

When ` → ∞, we can perform the integral by saddle point approximation and the integration
domain can be extended to the whole real line. We end up in a simple Gaussian integral, obtaining

Zn(q) =
Zn(0)√

2πbn(`, t)
e
− q2

2bn(`,t) . (2.3.22)

We check Eq. (2.3.22) against numerical computations in Figure 2.4 focusing on n = 1 and the
agreement is perfect. We test both the scaling with t = m` for fixed q and at fixed t as a function
of q.

Now we are ready to compute the SRREs. From the definition (1.4.18) we have

Sn(q) = SDn −
1

2
log(2π) +

1

1− n log
b1(`, t)n/2

bn(`, t)1/2
− q2

2(1− n)

(
1

bn(`, t)
− n

b1(`, t)

)
, (2.3.23)

where SDn is the total n-th Rényi entropy for the Dirac fields (cf. Eq. (2.1.5) up to O(t2 log2 t)). We
can further expand the above equation for `→∞ since bn(`, t) diverges logarithmically, obtaining

Sn(q) = SDn −
1

2
log
( 2

π
log δn`

)
+

log n

2(1− n)
− π4n(h1 − nhn)2

4(1− n)2(log `)2
+

+ q2nπ4 h1 − nhn
2(1− n)(log `κn)2

+ o(log `−2), (2.3.24)

where

log δn = −π
2n(hn − h1)

1− n , (2.3.25)

and

log κn = −π2 (h1 + nhn)

2
. (2.3.26)
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Figure 2.6: Subtracted SREE δS1(q, t) ≡ S1(q, t) − S1(q, t = 0) for q = 0 (left) and q = 1 (right)
as a function of t (fixing ` = 600 and varying m). This subtracted quantity highlights the mass
dependence of SRREs. The continuous lines are just the difference of the same subtracted entropies
as obtained from the field theory expansion (2.3.24).

The above formula is valid also for the SREE taking properly the limits of the various pieces as
n → 1. By construction, the total entropy, SDn , coincides with the one obtained in [176] for the
massive fermions in the conformal limit up to O(t2).

Let us critically discuss the result in Eq. (2.3.24). The leading terms for large ` (up to
O((log `)−2)) do not depend on q and they are given by the total entropies SDn in Eq. (2.1.5). We
then conclude that at this order, the presence of the mass does not break entanglement equipar-
tition found in conformal field theory [85]. The first term breaking equipartition is at order
O((log `)−2) and its amplitude is governed by the constant hn defined in Eq. (2.3.20). This con-
stant gets contributions both from the non-universal cutoff and from the mass; the two contri-
butions have the same analytic features. In Fig. 2.5 we test the accuracy of our total prediction
against exact lattice numerical calculations. The agreement is remarkable for small values of |q|,
but it worsens already at q = 2; this does not come as a surprise since the same trend was already
observed in the massless case [90]. Such discrepancies are entirely due to corrections of order o(q2)
and are expected to reduce as ` gets larger. The drawback of the data reported in Fig. 2.5 is that
universal field theory mass contributions and the lattice non-universal terms are mixed up and
the latter are, by far, the largest one. It is then very difficult to observe the dependence on the
mass in these plots. An effective and easy way to highlight the role of the mass is to subtract
from the SRREs their value for the massless case, i.e. considering the numerical evaluation of the
δSn(q, t) ≡ Sn(q, t) − Sn(q, 0). Such subtracted entropies for n = 1 and q = 0, 1 are reported in
Fig. 2.6, showing that the entropy is a monotonous decreasing function of t (and hence of m at
fixed `).

2.3.3 The long distance expansion.

In this subsection we move to the analysis of the charged and SRREs in the limit of large t.
The most effective way to proceed is, following Ref. [176], to employ in Eq. (2.3.6) a boundary
condition for t→∞, that takes the form [176]

va(t) ∼
2

π
sin(πa)K2a(t), (2.3.27)

where K2a(t) is the modified Bessel function of the second kind. This is the starting point for a
systematic expansion for large t of the solution va(t) of the differential equation (2.3.6). Plugging
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Figure 2.7: The solid lines are the functions cn(α) obtained as exact numerical solutions of the
differential equation (2.3.6). The dashed lines are the leading terms in the expansions for short
(red) and long (black) distances, i.e. Eqs. (2.3.11) and (2.3.29), respectively.

the resulting expansion into the integral (2.3.5) for wa(t), we get

wa(t) = −e−2t sin
2(aπ)

π

(
1 +
−1 + 16a2

4t
+O(t−2)

)
. (2.3.28)

Summing over a = k
n + α

2πn , we obtain the long distance asymptotic expansion for the universal
factor cn(α)

cn(α) =
e−2t

2π

(
−n+

(4− n2)π2 − 12α2

12ntπ2
− 2 csc π

n(π cot πn cos αn + α sin α
n )

πnt
+O(t−2)

)
, (2.3.29)

and for n = 1

c1(α) = −e
−2t

π
sin2 α

2

(
1 +

4α2

π2 − 1

4t
+O(t−2)

)
. (2.3.30)

This is consistent with the exact result c1(0) = 0 coming from the normalisation of the reduced
density matrix. For α = 0, Eq. (2.3.29) reproduces the known results [176].

In Fig. 2.7 we report the numerical exact solution of the Painlevé equation (2.3.6) for cn(α); we
focus on n = 1, 2 and plot cn(α) as a function of t. For large t, the solutions perfectly match the
asymptotic expansions (2.3.29) and (2.3.30) (for completeness we also show the small t expansion
in Eq. (2.3.11)). Let us emphasise the presence of a discontinuity in cn(α) for n→ 1 as a function
of n: it is due to the non-commutativity of the limits n → 1 and t → ∞, as well known and
discussed at length in the literature for α = 0 [175,176]. We show here that the presence of α does
not cancel such a discontinuity, although for α 6= 0 the leading term is of the same order e−2t.

The charged entropy is simply given by the integral

logZn(α) =

∫ m`

mε

cn(α)

t
dt. (2.3.31)

At large t, the function cn(α) goes to zero exponentially in t for any n; hence the charged entropies
approach asymptotically a finite value for large `. This saturation value is determined entirely by
the infrared physics, i.e. by the value of cn(α) at small t, indeed

logZn(α) ' logZ(0)
n (α) ≡

∫ ∞

mε

cn(α)

t
dt '

(
1

6

(
n− 1

n

)
+

α2

2π2n

)
logmε. (2.3.32)
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This dependence on log(mε) coincides with the result in Sec. 2.2.2 (following the analysis of the
properties of the energy momentum tensor on Rn,α), up to a factor 2 due to the number of the
endpoints (cf. (2.2.17)).

The corrections in m` to the `-independent result (2.3.32) are obtained expanding the inte-
gral (2.3.31) in the ultraviolet. Keeping for conciseness only the leading order in t of Eqs. (2.3.29)
and (2.3.30) and performing the integration, we get

logZn(α) = logZ(0)
n (α) +

ne−2t

4πt
, logZ1(α) = logZ

(0)
1 (α) +

e−2t

2πt
sin2 α

2
. (2.3.33)

Once again, Zn(α) are not continuous functions of n close to n = 1 (as it was already known for
α = 0, see [176]) and, above all, the correction of logZn(α) does not depend on α for n 6= 1 at this
order. Subleading corrections to (2.3.33) can be straightforwardly and systematically worked out,
but they are not illuminating, although they do depend on α also for n 6= 1.

For n 6= 1, since the leading correction does not depend on α, the Fourier transform is not
affected and the symmetry resolved moments with n 6= 1 just get a multiplicative correction to
Zn(q) in Eq. (2.2.20) (so additive for the logarithm), given by

δ logZn(q) =
ne−2t

4πt
. (2.3.34)

For n = 1 the net effect of the sin2(α/2) term in Eq. (2.3.33) is to renormalise the variance with
an exponential additive correction, i.e. the desired probability is

Z1(q) = e
− 2q2π2

4| log(mε)|+πe−2t/t

√
2π

4| log(mε)|+ πe−2t/t
(2.3.35)

The SRREs with n 6= 1 are straightforwardly obtained from Eq. (1.4.18). Indeed, plugging
Eqs. (2.3.34) and (2.3.35) in (1.4.18), we get

Sn(q) = −n+ 1

6n
log(mε)− ne−2m`

4πm`(1− n)
+

log n

2(1− n)
− 1

2
log

(
2

π
| logmε| − ne−2m`

(1− n)2m`

)
+

+O((logmε)−1, e−3m`). (2.3.36)

Such a result shows exact equipartition (at this order) which is a clear consequence of the simple
form of (2.3.34). This is reminiscent of the exact results for integrable models studied in Ref. [98].

The limit n→ 1 for the von Neumann entropy should be handled with care. We start rewriting
Eq. (1.4.18) as

S1(q) = logZ1(q)− 1

Z1(q)

∫ π

−π

dα

2π
e−iqαZ1(α)∂n logZn(α)|n=1. (2.3.37)

We use this equation to obtain the entire correction in t due to the Bessel function and not only
the leading exponential term (as done in Eq. (2.3.33)). The crucial computation is

∂ncn(α)|n=1 = −∂n
∫ ∞

t
dy y

(n−1)/2∑

k=−(n−1)/2

v2
a(y)

∣∣∣∣∣
n=1

=

=−
(

2

π

)2

∂n

∫ ∞

t
dy y

(n−1)/2∑

k=−(n−1)/2

sin2(πa)K2
2a(y)

∣∣∣∣∣
n=1

,

(2.3.38)
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where a = k
n + α

2πn . We can use the integral representation for the Bessel function

Ka(y) =

∫ ∞

1
du e−yu

(u+
√
u2 − 1)a + (u+

√
u2 − 1)−a

2
√
u2 − 1

, (2.3.39)

to perform the sum over k in Eq. (2.3.38). Once we plug Eq. (2.3.39) into Eq. (2.3.38) , we get

cn(α) =− 2

π2

∫ ∞

t
dy y

∫ ∞

1
du

∫ ∞

1
dv

e−y(u+v)

√
u2 − 1

√
v2 − 1

×

×
(
Fn,α((u+

√
u2 − 1)(v +

√
v2 − 1)) + Fn,α

(
(u+

√
u2 − 1)

(v +
√
v2 − 1)

))
,

(2.3.40)

where

Fn,α(z) =
z
π−α
nπ

4

(
z − 1

z

)(
1 + z

2α
nπ

z
2
n − 1

+
(z

2(π+α)
nπ − 1) cos π−αn + (z

2
n − z 2α

nπ ) cos π+α
n

1 + z
4
n − 2z

2
n cos(2π

n )

)
. (2.3.41)

We now study the behaviour of Fn,α(z) when n → 1. For z = 1, the limit n → 1 is singular. We
can isolate this singularity using the polar variables (n−1, z−1)→ (ρ cos θ, ρ sin θ) and expanding
in the radial coordinate ρ. The result of this procedure is

Fn,α(z) =
1

2
− 1

2

(z − 1)2 cosα

π2(n− 1)2 + (z − 1)2
+O(n− 1, z − 1), (2.3.42)

whose derivative with respect to n is

∂nFn,α(z)
∣∣∣
n→1

= lim
n→1

Fn,α(z)− F1,α(z)

n− 1
= π2

(
1

2
− sin2 α

2

)
δ(z − 1). (2.3.43)

Plugging this result in Eq. (2.3.40) and taking the derivative wrt n, we get

∂ncn(α)
∣∣
n→1

= −
(

1− 2 sin2 α

2

)∫ ∞

t
dyyK0(2y) = −

(
1

2
− sin2 α

2

)
tK1(2t), (2.3.44)

which, once integrated in t according to Eq. (2.3.31), gives the full ultraviolet behaviour of
∂n logZn(α)

∣∣
n→1

, i.e.

∂n logZn(α)
∣∣
n→1

=

(
1

3
− α2

2π2

)
log(mε) +

(
1

4
− 1

2
sin2 α

2

)
K0(2t). (2.3.45)

Plugging the above derivative into Eq. (2.3.37) finally yields

S1(q) = −1

3
log(mε)− 1

4
K0(2m`) + logZ1(q) +

log(mε)

2π2Z1(q)

∫ π

−π

dα

2π
e−iqαZ1(α)α2+

+
K0(2m`)

2Z1(q)

∫ π

−π

dα

2π
e−iqαZ1(α) sin2 α

2

' −1

3
log(mε)− 1

4
K0(2m`)− 1

2
log

(
2| log(mε)|

π

)
− 1

2
+O((logmε)−1). (2.3.46)

The first two terms in (2.3.46) are respectively the leading and the subleading terms in the total
entanglement entropy of a massive Dirac field, in agreement with the known results in Refs. [156,
175, 176]. The double logarithmic term appears only in the symmetry resolved result and, as
already discussed in Eq. (2.2.21), it is related to the number entropy. The above derivation clearly
highlight this correspondence. As for the Rényi entropy, at this order in logmε, there is perfect
entanglement equipartition that will be broken by higher order terms.
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2.4 The Green’s function approach: The complex scalar field

In this section we present a derivation of the charged moments for a complex massive scalar by
generalising to α 6= 0 the results obtained in [177,178]. In Sec. 2.2.1 we showed that Zn(α) can be
written as product of partition functions on the plane with boundary conditions along the cut A

ϕ̃k(e
2πiz, e−2πiz̄) = e2πiaϕ̃k(z, z̄), a =

k

n
+

α

2πn
, k = 0, · · ·n− 1. (2.4.1)

Denoting, as usual, by ζa these partition functions we have

logZn(α) =
n−1∑

k=0

log ζ k
n

+ α
2πn

. (2.4.2)

As for the analogous case of fermions, cf. Eq. (2.3.3), we define the auxiliary quantities

wa ≡ `∂` log ζa, cn(α) ≡
n−1∑

k=0

w k
n

+ α
2πn

, (2.4.3)

that, using (2.4.2), allow us to write the logarithmic derivative of the partition function in Rn,α as

cn(α) = `
∂ logZn(α)

∂`
⇒ logZn(α) =

∫ `

ε

cn(α)

`′
d`′. (2.4.4)

Even here, for n = 1, the function cn(α) is the analogue of Zamolodchikov’s c-function [183] in the
presence of the flux α.

As already discussed in section 2.1, the key observation of this approach relies on the identity
between the partition function ζa and the Green’s function (see Eq. (2.1.4)). Through this rela-
tion, the function wa has been obtained for generic values of a also for bosonic free massive field
theories [178]. As already found in Sec. 2.2.1 using twist fields, also this approach requires that
0 < a < 1 for the scalar theory (see [177] for details). Thus, in order to compute Zn(α), we will

use the results in [178] setting a = k
n + |α|

2πn for the complex Klein Gordon theory.
Here we consider the complex massive non-compact bosonic field theory with action given by

(2.1.1) and mass m. The function wa with 0 < a < 1 defined in (2.4.3) can be written as [177]

wa = −
∫ ∞

t
yu2

a(y)dy, (2.4.5)

where t = m` and ua is the solution of the Painlevé V equation

u′′a +
u′a
t

=
ua

1 + u2
a

(u′a)
2 + ua(1 + u2

a) + 4

(
a− 1

2

)2

t2(1 + u2
a)
ua. (2.4.6)

The solution of Eq. (2.4.6) is showed in Fig. 2.8: the function wa for a generic value of t can be
obtained solving numerically Eq. (2.4.6) with the initial condition for t→ 0

ua(t) =
−1

t (log t+ κS(a))
− a(a− 1)t(log t+ κS(a)) +O(t), (2.4.7)

where [178]

κS(a) = 2γE +
ψ(1− a) + ψ(a)

2
− log 2. (2.4.8)
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Figure 2.8: Left panel: Logarithmic derivative of the charged moments, c1(α), as a function
of t = m` obtained by solving numerically the Painléve equation (2.4.6) (solid lines). The data
(symbols) are obtained fixing (from top to bottom) ` = 720, 620, 420, 420, 320 and varying properly
m in such a way that m` ∈ (0, 1). As discussed in the main text, the agreement with the numerical
data worsens as α decreases. Right panel: the same quantity is plotted as a function of α from
the numerical solution of the Painlevé equation (solid lines), showing also in this case that the
agreement as α → 0 is not excellent. The dashed lines represent the small t expansion in Eq.
(2.4.10): the smaller is t, the better the approximation works.

In the figure we compare the exact result from field theory with numerical data for a chain of
complex oscillators, obtained exploiting the techniques we will present in Chapter 7. We have a
fairly good agreement between lattice and field theory, although for small values of α the agreement
gets worse and one needs a larger and larger subsystem length ` on the lattice to match the
continuum limit. This is not surprising, already in Ref. [98] it was shown for the massless case
that the lattice results approach the CFT ones in a non uniform way. In the following we will
further discuss this issue in the limits when we have an analytic handle on the problem.

2.4.1 The expansion close to the conformal point

In the conformal limit t → 0 we have that the solution of the Painlevé equation admits the
expansion [177]

wa = −2a(1− a)− 1

log(t) + κS(a)
+O(t). (2.4.9)

Using Eq. (2.4.3) we get

cn(α) =
n−1∑

k=0

w k
n

+
|α|
2πn

=
1− n2

3n
+

α2

2π2n
− |α|
πn
−
n−1∑

k=0

1

log t+ κS(a(k))
+ . . . . (2.4.10)

Let us discuss first at the level of the universal function cn(α) the origin of the non uniform
behaviour in α. Eq. (2.4.10) is an exact asymptotic expansion valid for any α 6= 0. For α → 0,
there is a clear problem with the constant κS(a(0)) (i.e. of the mode with k = 0) which diverges as
π/|α|. Hence, since log t grows very slowly with t, the true asymptotic behaviour is attained only
for t & eπ/|α|. For smaller values of t, the mode k = 0 looks almost constant (∼ |α|/π) and similar
to the leading term. Exactly for α = 0, the mode k = 0 diverges, so its inverse is just zero and
it does not affect the calculation. It is then clear that the approach to the asymptotic behaviour
cannot be uniform in α, as already observed numerically in Fig. 2.8.
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Figure 2.9: Charged moments for the free massive boson close to the critical regime. We benchmark
the analytical prediction (2.4.11) (solid lines) with the numerical data (symbols) for different values
of n and α at fixed m = 10−10: the analytical formula matches well the data for large values of α
(left), but for smaller α (right) much larger values of ` are necessary to observe a fair match, as
explained in the text.

After having discussed this caveat with the small α behaviour, we are ready to integrate
Eq. (2.4.10) to get the charged moments, according to Eq. (2.4.4), obtaining

logZn(α) =

(
1− n2

3n
+

α2

2π2n
− |α|
πn

)
log

(
`

ε

)
+
n−1∑

k=0

log

∣∣∣∣
log(mε) + κS(a(k))

log(m`) + κS(a(k))

∣∣∣∣ . (2.4.11)

Let us remark that when n = 1, the last sum reduces to the term with k = 0. We recall that the
cutoff ε depends both on n and α making the analysis even more troubling.

Even though we are in the conformal limit in which m`� 1, the additional constant κS(a(0))
cannot be neglected because of its divergent behaviour when k = 0 and α = 0. The terms with
k > 0 do not present any problem and κS(a(k)) can be safely neglected. The mode with k = 0
instead has three different regimes, depending on the value of κS(k = 0) which is governed by α
as follows:

• for very small α, i.e. such that α . nπ/| log(mε/2) + γE |, κS(k = 0) diverges faster than
both logm` and logmε. Hence, expanding the ratio in Eq. (2.4.11), this subleading term
becomes of the same order of the leading one, i.e.

log

∣∣∣∣
log(mε) + κS(a(0))

log(m`) + κS(a(0))

∣∣∣∣
α→0−−−→ |α|

πn
log

`

ε
+ . . . ., (2.4.12)

• for intermediate values of α, i.e. when nπ/| log(mε/2) + γE | . α . nπ/| log(m`/2) + γE |, we
have

log

∣∣∣∣
log(mε) + κS(a(0))

log(m`) + κS(a(0))

∣∣∣∣ ∼ log

∣∣∣∣
log(mε)

κS(a(0))

∣∣∣∣+ . . . , (2.4.13)

and hence this produces just an additive correction in `, but depending on mε;

• for larger α, i.e. for α & nπ/| log(m`/2)+γE |, the term κS is a correction both for numerator
and denominator and so

log

∣∣∣∣
log(mε) + κS(a(0))

log(m`) + κS(a(0))

∣∣∣∣ ' log

∣∣∣∣
log(mε)

log(m`)

∣∣∣∣+ . . . , (2.4.14)

as for the terms with k 6= 0. We stress that this third regime is the true asymptotic one for
large ` at fixed α.
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This competition among the three terms makes difficult the analytical treatment of the last
sum in Eq. (2.4.11), and, at the same time, the non trivial dependence on the cutoff ε (that we
recall also depends on α and n) complicates the comparison with the numerics. For this reason,
we consider only the leading term in Eq. (2.4.11), which, strictly speaking, is valid in the massless
case and in the third regime above. Such a leading term is the same provided as in the twist
field approach (cf. Eq. (2.2.8)) and coincides with some equivalent ones in literature [98, 158].
The main advantage of Eq. (2.4.11) is that it clearly shows what are the problems one faces when
considering only the leading term. The comparisons with the numerics are shown in Figure 2.9: we
report the numerical data for different values of n and α; as expected from our previous discussion,
the agreement with the predictions is very good for large α, but it worsens as α gets smaller and
n gets larger. Smaller is α, larger is the value of ` on the lattice necessary to observe the true
asymptotic behaviour.

Symmetry resolution

The symmetry resolved moments of the RDM can be computed through the Fourier transform of
the leading term of the charged moments in Eq. (2.4.11)

Zn(q) =

∫ π

−π

dα

2π
e−iqαZn(α) = Zn(0)

∫ π

−π

dα

2π
e−iqαe

(
α2

2π2n
− |α|
πn

)
log `

ε =

Zn(0)

(
`

ε

)− 1
2n
√

nπ

8 log(`/ε)
(−1)qe

nπ2q2

2 log(`/ε)

[
Erfi

(
log(`/ε)− nπiq√

2n log(`/ε)

)
+ Erfi

(
log(`/ε) + nπiq√

2n log(`/ε)

)]
,

(2.4.15)

where Erfi(x) is the imaginary error function (the overall result is real and positive for q ∈ Z)

Erfi(x) =
−2i√
π

∫ ix

0
dt e−t

2 x→∞−−−→ ex
2

√
πx
. (2.4.16)

In the large ` limit, using the expansion in Eq. (2.4.16), the charged moments in Eq. (2.4.15) can
be can be approximated as

Zn(q) = Zn(0)
n log `/ε

n2π2q2 + log2 `/ε
, (2.4.17)

and hence the SRREs are given by

Sn(q) =
1

1− n log
Zn(q)

Z1(q)n
' Sn − log log

`

ε
+

log n

1− n, S1(q) ' S1 − log log
`

ε
− 1. (2.4.18)

The leading behaviour is described by the total Rényi entropies, with the usual correction log log `
that is independent on q, confirming the equipartition of the entanglement entropy for a complex
massive scalar field theory, in agreement with the result for massive harmonic chains [98] (although
the critical limit considered there is different from the one here). Let us mention that a further
expansion of Eq. (2.4.15) leads to subleading corrections behaving as q2/(log `)2 which explicitly
depend on q, breaking the equipartition of the entanglement.

Let us now discuss the effect of the term that we disregarded in Eq. (2.4.11), namely the sum
over k. The mode with k 6= 0 would provide double logarithimic corrections encountered also in
other contexts, like non unitary CFTs [184, 185]. These in principle are calculable and partially
under control. We mention that such terms have a non-trivial dependence on n in Zn(q) and hence
they are responsible of a further breaking of equipartition. Unfortunately, the determination of
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Figure 2.10: The solid lines are the functions cn(α) as solutions of Eq. (2.4.6). The dashed lines are
the short (red) and long (black) distance leading terms we evaluated analytically in Eq. (2.4.10)
and Eq. (2.4.21), respectively.

this correction is not easy because it is influenced by the precise dependence on α and n of the
non-universal cutoff ε (as it should be clear from Eq. (2.4.11)). Finally, as discussed for the
charged moments, the effect of the mode k = 0 is even more dramatic and too difficult to keep
under control.

2.4.2 The long distance expansion.

The boundary condition for Eq. (2.4.6) in the limit in which t→∞ is [177]

ua(t) ∼
2

π
sin(πa)K1−2a(t). (2.4.19)

The solution of Eq. (2.4.6) in the long distance regime together with Eq. (2.4.5) gives

wa(t) = −e−2t sin
2(aπ)

π

(
1 +

3− 16a+ 16a2

4t

)
. (2.4.20)

Summing over a = k
n + |α|

2πn , we get

cn(α) =
e−2t

2πnt

(
−n2t− 8 + n2

12
+

2|α|
π
− α2

π2
+ 2
(

csc2 π

n
− |α|

π

)
cos

α

n
+

2α

π
cot

π

n
sin

α

n

)
,

c1(α) = −e
−2t

π
sin2 α

2

(
1 +

3 + 4α2

π2 − 8|α|
π

4t

)
.

(2.4.21)

The long distance leading term in Eq. (2.4.21) is showed in Fig. 2.10 for two different values of n:
it approximates well the solution of the Painlevé equation (2.4.6) in the regime t� 1. The same
feature was observed in Sec. 2.3.3 for the corresponding equations in fermionic systems as also the
discontinuity for n→ 1, which can be ascribed to the non-commutativity of the limits n→ 1 and
t → ∞. Also for a complex scalar field, Eqs. (2.4.21) show that the functions cn(α) vanish for
large t and the charged moments stop growing. Hence,

logZn(α) ' logZ(0)
n (α) ≡

∫ ∞

mε

cn(α)

t
dt ' −

(1− n2

3n
+

α2

2π2n
− |α|
πn

)
logmε. (2.4.22)
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As expected, the dependence on log(m) coincides with the one reported in Eq. (2.2.18), up to a
factor 2 due to the number of endpoints.

Integrating cn(α), we obtain up to order O(e−2t/t)

logZn(α) = logZ(0)
n (α)− ne−2t

4πt
,

logZ1(α) = logZ
(0)
1 (α)− e−2t

2πt
sin2 α

2
,

(2.4.23)

which are the same expressions found for fermions in Sec. 2.3.3. The expression for δZn(q) is the
same as in Eq. (2.3.34) for fermions, while Z1(q) is given by

Z1(q) =
| logmε|

π2q2 + log2mε
+O(1/(log2mε)), (2.4.24)

so that all contributions coming from the long-distance behaviour are negligible at orderO(1/(logmε)).
The resolved entropies are the ones given in (2.2.24), where Sn also takes into account the term
ne−2t

4πt . The limit n→ 1 can be solved through a technique similar to the one used in Sec. 2.3.3.

2.5 Closing remarks

In this Chapter we characterised the SRREs for free massive fields in two dimensions, presenting the
results for a Dirac field and a complex scalar theory. We showed that two well known techniques in
the framework of the replica trick can be adapted –by modifying the n-sheeted Riemann surface and
the corresponding partition function– to the calculation of charged moments. Both computations
(via modified twist fields and the Green’s function approach of Ref. [178]) mainly rely on the
boundary conditions of the fields at the endpoints of the entangling region. In the first framework,
the conformal dimensions of the twist fields get modified as in Eq. (2.2.8). In the second setting
the change induced by the flux α lies in the precise form of the Painlevé V equations (2.3.6) and
(2.4.6) providing the generalised partition function. These Painlevé equations are easily solved
numerically for arbitrary values of the mass, but they can be also handled analytically in the limit
of small masses, leading to the charged moments (2.3.12) for the Dirac field and (2.4.11) for the
scalar theory. The opposite limit of mass much larger that the interval length can also be treated
analytically. For the free complex scalar, we also obtain general results for the charged moments
in arbitrary dimension when the entangling surface is an hyperplane.

From the Fourier transform of these charged moments, we extract the SRREs, stressing the
relevant universal aspects. At leading order for small m, the SRREs for both theories satisfy
equipartition of entanglement [85]. We also show that the entanglement equipartition is broken by
the mass at order (log `)−2, which is the same one found in other circumstances [90,98,100,117].

There is an interesting aspect that one can further study from this Chapter. It concerns the
calculation of charged and SRREs in free scalars and fermions in arbitrary dimension and for
entangling surfaces that are more complex than the simple hyperplane done in [111]. To this aim,
we expect that some of the existing techniques in the literature, as e.g. in Refs. [186–189,191–196,
219], should be readily adapted to our problem.

2.A Conformal dimensions of twist fields

The goal of this Appendix is to find the conformal dimension of the twist field Tn,k,α defined in
Eq. (2.2.4). We will call it generically Ta, where a = k

n + α
2πn , with a ∈ [0, 1]. As already discussed
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in section 2.2.1, in the neighbourhood of a twist field the k-th component of φ undergoes a phase
rotation

φ̃k(e
2πiz, e−2πiz̄) = e2πiaφ̃k(z, z̄). (2.A.1)

Let us start from the case of the free complex scalar CFT with fields (ϕk, ϕ
∗
k) and, following [155],

consider the correlation function in the presence of four Zn twist-fields

g(z, w; zi) =
〈−1

2∂zϕk∂wϕ
∗
kTa(z1)T̃a(z2)Ta(z3)T̃a(z4)〉

〈Ta(z1)T̃a(z2)Ta(z3)T̃a(z4)〉
. (2.A.2)

Imposing that for z → w we have g(z, w; zi) ∼ (z−w)−2 and that for z → zi we have g(z, w; zi) ∼
(z−zj)−a for j = 1, 3 and g(z, w; zi) ∼ (z−zj)−(1−a) for j = 2, 4, we can write (up to an additional
constant independent of z and w, A(zj , z̄j))

g(z, w; zi) =ωa(z)ω1−a(w)

[
a

(z − z1)(z − z3)(w − z2)(w − z4)

(z − w)2

+(1− a)
(z − z2)(z − z4)(w − z1)(w − z3)

(z − w)2
+A(zj , z̄j)

]
,

(2.A.3)

where
ωa(z) = [(z − z1)(z − z3)]−a[(z − z2)(z − z4)]−(1−a). (2.A.4)

In the limit w → z

lim
w→z

[g(z, w)− (z − w)−2] =
1

2
a(1− a)

(
1

z − z1
+

1

z − z2
+

1

z − z3
+

1

z − z4

)2

+ · · · (2.A.5)

This is exactly the expectation value of the insertion of the stress energy tensor of the field ϕk in
the four-point correlation function. From the comparison with the conformal Ward identity, we
can understand that Ta and T̃a are primary fields with scaling dimensions

∆a = ∆̄a =
1

2
a(1− a) =

1

2

(
k

n
+
|α|
2πn

)(
1− k

n
− |α|

2πn

)
. (2.A.6)

In order to obtain the conformal dimensions of the twist fields of the free Dirac field theory, let
us apply a similar procedure for the chiral or anti-chiral complex fermionic fields, (ψk, ψ

∗
k). The

scaling dimension of Ta can be extracted from the Green’s function in presence of two Zn twist
fields

g(z, w; zi) =
〈−1

2(ψ∗k∂zψk − ∂wψ∗kψk)Ta(z1)T̃a(z2)〉
〈Ta(z1)T̃a(z2)〉

. (2.A.7)

Using the results in [201], the previous expression can be explicitly written as

g(z, w; zi) = ωa(z)ω−a(w)

[
a

(z2 − z1)(w2 + z2 + 2z1z2 − (z1 + z2)(w + z))

2(z − w)
+

−(w − z1)(w − z2)(z − z1)(z − z2)

(z − w)2

]
,

(2.A.8)

where
ωa(z) = [(z − z1)]−a−1[(z − z2)]a−1. (2.A.9)

In the limit w → z

lim
w→z

[g(z, w) + (z − w)−2] =
1

2
a2

(
1

z − z1
− 1

z − z2

)2

+ · · · (2.A.10)
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This is the expectation value of the insertion of the stress energy tensor of the field ψk in the
two-point correlation function and, as before, the comparison with the conformal Ward identity
gives the dimensions of the primary twist fields Ta and T̃a as

∆a = ∆̄a =
1

2
a2 =

1

2

(
k

n
+

α

2πn

)2

. (2.A.11)

Putting together the monodromy conditions (2.A.1) and the scaling dimension of the twist field in
Eq. (2.A.11), we deduce that the twist field of a fermionic field admits a bosonisation formula. We

can write the complex fermionic field as ψk ∼ eiϕk and the twist field as Tn,k,α(z) = ei(
k
n

+ α
2πn)ϕk .

By introducing the vertex operators Vβ(z) = eiβϕ(z), the twist fields take the form Tn,k,α(z) =
V k
n

+ α
2πn

(z) and T̃ n,k,α(z) = V− k
n
− α

2πn
(z) [158, 201]. Let us observe that at first sight this result

could be misleading since the outcome for bosons in Eq. (2.A.6) does not appear to agree with that
of fermions in Eq. (2.A.11) given that they are related by bosonisation in 1+1 dimensions [202–
204]. However, via bosonisation of U(1) complex fermions, the corresponding bosons transform
by translation, and thus should instead satisfy the boundary condition ϕk(e

2πiz) = ϕk(z) + a.
Therefore, our computation for charged bosons is not related to charged fermions by bosonisation.

Before concluding this appendix, let us emphasise that while CFTs are well understood objects,
n-copies of a CFT after modding out the ZN symmetry among the replicas form a more complicated
object known as orbifold [155,157]. The operator product expansions of the twist fields with other
fields have been extensively explored (e.g., see [205–213]), but, unless a bosonisation procedure for
free theories can be used, as for the compact boson, they remain elusive in general and require a
case-by-case study.



Chapter 3

Symmetry resolved entanglement
entropy in Wess-Zumino-Witten
models

The present Chapter is devoted to the decomposition of the Rényi entanglement entropies in the-
ories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW)
models. We first consider SU(2)k as a case study and then generalise to an arbitrary non-abelian
Lie group. We find that at leading order in the subsystem size ` the entanglement is equally
distributed among the different sectors labelled by the irreducible representation of the associated
algebra. We also identify the leading term that breaks this equipartition: it does not depend on `
but only on the dimension of the representation. Moreover, a log log ` contribution to the Rényi
entropies exhibits a universal prefactor equal to half the dimension of the Lie group. This Chapter
is based on Ref. [121].

3.1 Introduction

Two-dimensional conformal field theories are characterised by an infinite-dimensional algebra,
known as a Virasoro algebra, that leads to their exact solution [202,214,269]. There exists a set of
field theories that present, in addition to conformal invariance, an internal Lie group symmetry: the
Wess-Zumino-Witten models, that possess interesting applications in a wide range of topics, such
as the study of fundamental interactions, statistical mechanics, and condensed matter theory [215–
218]. In the present Chapter, such theories will be the arena to study the decomposition of the
entanglement into the charge sectors of the symmetry.

We specify the problem to address by generalising the concepts about the symmetry-resolution
of Sec. 1.3 in the non-abelian case. We consider a 1+1d field theory on the infinite line R, with
the Hilbert space H, and a symmetry group G that acts unitarily on H. The spatial bipartition
R = A ∪B with A = [0, `] and B = (−∞, 0) ∪ (`,+∞) corresponds to a bipartition of the Hilbert
space of the field theory, H = HA ⊗HB, and we assume that the action of G is such that, for any
element g ∈ G, the unitary matrix Ug acting on H can be decomposed as Ug = UAg ⊗ UBg , where

UAg (UBg ) is a unitary operator acting on HA (HB).

We focus on the SREE of the ground state of the quantum field theory. We assume that the
ground state |ψ0〉 is non-degenerate, so that it is invariant under the action of G: Ug |ψ0〉 = |ψ0〉.

47
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Consequently, the RDM ρA is also invariant (under the action of G restricted to HA):

UAg ρAU
A†
g = UAg (TrB |ψ0〉 〈ψ0|)UA†g = TrB

(
UAg |ψ0〉 〈ψ0|UA†g

)

= TrB

(
UBg−1Ug |ψ0〉 〈ψ0|U †gUB†g−1

)
= TrB

(
UBg−1 |ψ0〉 〈ψ0|UB†g−1

)

= TrB |ψ0〉 〈ψ0| = ρA, (3.1.1)

where we have used the cyclicity of the trace and the unitarity of UBg−1 to arrive at the last line.
Thus, when decomposing the Hilbert space HA into a direct sum of irreducible representations of
G, the RDM ρA is block-diagonal in the corresponding basis:

ρA =
⊕

r

p(r)ρA(r) =




p(1)ρA(1)

p(2)ρA(2)
. . .


 . (3.1.2)

Here r labels the irreducible representations of G.
In Eq. (3.1.2), the block ρA,r is normalised such that TrρA,r = 1, and pr ≡ Tr(ΠrρA) is a

non-negative number such that
∑

r pr = TrρA = 1 (Πr is the projector on the irrep r). As already
showed for the abelian case in Sec. 1.3, the SREE measures the entanglement in the subsystem A
for a fixed symmetry sector, i.e.

Sn(r) =
1

1− n log TrAρA(r)n, S1(r) = lim
n→1

Sn(r). (3.1.3)

Similarly to Eq. (1.3.5), the total von Neumann entanglement entropy can be written as [10,81]

S1 =
∑

r

p(r)S1(r)−
∑

r

p(r) log p(r) ≡ Sc + Snum. (3.1.4)

It is worth mentioning that the relation in Eq. (3.1.4) has also been exploited to study the entan-
glement structure for both abelian and non-abelian (lattice) gauge theories, e.g. in [219–224]. In
the gauge theories, the symmetry resolved entropy S1(r) is further split into two contributions.

The goal of this Chapter is to study how the total entanglement splits into the contributions
coming from symmetry sectors in CFTs with a non-abelian Lie group symmetry, i.e. the WZW
models. They are described by a two-dimensional action which consists of a non-linear σ term
plus the Wess-Zumino term, whose topological coupling factor k is constrained to be an integer
number and it is referred to as the level of the model [215,216]. Here we follow the conventions of
Ref. [269]. For simplicity, we assume that the Lie group G is compact and simple.
These WZW models are the scaling limit of critical quantum spin chains with the same sym-
metry [217, 218, 225]. For instance, some possible discretisations of SU(2)k are the Heisenberg
spin-1/2 chain or the Haldane-Shastry model for k = 1 [231–235]. They have been also studied
in the context of topological anyons on 1D chains [236]. Spin chains associated with spin j = k/2,
k > 1 correspond to SU(2)k WZW models, which can mark phase transitions between different
gapped phases, as in the Babudjan-Takhtajan chains [237–239].

The Chapter is structured as follows. In Sec. 3.2, we review the example of a non-abelian
resolution for a SU(2) spin chain. In Sec. 3.3, we present the WZW-models, its symmetry algebra
and we introduce the notion of character of a representation. Using the modular properties of
unspecialised characters, we calculate the moments of the RDM in presence of a charge flux, that
we call charged moments and we give an alternative derivation of the symmetry decomposition of
entanglement for WZW-models with SU(2)k symmetry in Sec. 3.4. This strategy has the advantage
of being generalisable for the computation of the SRREs for an arbitrary non-abelian symmetry,
as showed in Sec. 3.5. We conclude in Sec. 3.6.
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3.2 Overview of known results for SU(2)

In this section we review the known results about the symmetry resolution of a SU(2) symmetry,
following Ref. [84]. However, the method of Ref. [84] for the SU(2) case is not generalisable to
other groups G; nevertheless we review it here for completeness and as a comparison for our main
derivation. The more general method is presented in details in Secs. 3.4 and 3.5.

3.2.1 SU(2) symmetry resolved entanglement (after Ref. [84])

Let us recall that the charged moments for a single interval of length ` on the infinite line of a free
massless compact boson (a generalisation of Eq. (2.2.8) for K = 1), which is the easiest CFT with
U(1) symmetry, behave as [84]

Zn(α)

Zn1
= cn,α`

− c
6

(n− 1
n

)− 2K
n

( α
2π

)2
, (3.2.1)

where cn,α is a non-universal constant which depends on the cutoff (i.e. the microscopic details of
the model). To tackle the SU(2) case, the authors of Ref. [84] rely on the following trick, which
allows them to recycle the result for the U(1) case. Decomposing the Hilbert space HA into SU(2)
sectors with spin j and magnetisation jz, they notice that, for an SU(2)-invariant RDM ρA,

TrJA=jρ
n
A = (2j + 1)(TrJzA=jρ

n
A − TrJzA=j+1ρ

n
A). (3.2.2)

Here the trace in the left-hand side is over all states in HA with spin JA = j, while the two traces
in the right-hand side are over all states with fixed magnetisation JzA, without restriction on the
total spin JA. Eq. (3.2.2) is slightly different from the identity used in [84]:

TrJA=j,JzA=jz = TrJzA=jρ
n
A − TrJzA=j+1ρ

n
A, (3.2.3)

i.e. the trace in the left-hand side is over all states with fixed spin JA = j and JzA = jz, whose
multiplet structure gives the contribution (2j + 1) in our Eq. (3.2.2). A sketch of a derivation
of that identity is given in [121]. First, let us explain how the SU(2) SREE can be obtained
from there. The point is that the operator JzA generates a U(1) symmetry (an abelian subgroup
of SU(2)) so it can be identified with the charge operator Q of the previous section (up to an
unimportant constant). The two terms in the right-hand side of Eq. (3.2.2) can be computed using
the same methods as for the U(1) case. Indeed, the charged moments related to the U(1) subgroup
are just given by Eq. (3.2.1), with K = k/2, see Refs. [84, 85] and Sec. 3.4.2. The saddle point
approximation of the Fourier transform gives

Zn(JzA = j) =
1

Zn1

∫ π

−π

dα

2π
e−iαjZn(α) (3.2.4)

' cn,0`
− c

6
(n− 1

n
)e
− nj2π2

k log(`/ε)

(
(πn)1/2

k1/2(log `)1/2
+ . . .

)
,

where the dots stands for neglected subleading contributions, due e.g. to cn,α. From Eq. (3.2.2)
we get

Zn(JA = j) ' cn,0e−
nj2π2

k log(L/ε) `−
c
6

(n− 1
n

)(2j + 1)2 π5/2n3/2

k3/2(log `)3/2
, (3.2.5)
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where we keep the Gaussian factor in order to have a normalised probability ZJA=j
1 (`). Eq. (3.2.5)

leads to the desired SRREs for the spin-j representation:

Sn(j) = Sn −
3

2
log(log `)

+ 2 log(2j + 1)− log(23/2π2) +
3

2

(
− log k +

log(n)

1− n + log(2π3)

)
+ o(`0). (3.2.6)

This result is the first example of a non-abelian symmetry resolution in the literature, but it
cannot be easily generalised to an arbitrary non-abelian symmetry because it strongly relies on
the identity (3.2.2). However, an alternative derivation of the same result in Sec. 3.4 will allow us
to perform such generalisation.

3.3 WZW models: currents and characters

In this section we introduce our conventions for WZW models and review some fundamental objects
which will be useful later on. The interested readers can consult the comprehensive literature on
the subject, for example in [202,215,240,269].

3.3.1 WZW model on G and current algebra

We consider a compact simple Lie group G and the associated Lie algebra g = Lie(G). Let Ja

(a = 1, . . . ,dim g) be generators of g, with commutation relations

[Ja, Jb] =
∑

c

ifabcJ
c, (3.3.1)

with structure constants fabc.
In the WZW model on the Lie group G, the symmetry is locally generated by the holomorphic and
anti-holomorphic current Ja(z) and J

a
(z̄), where (z, z̄) are complex coordinates for 2D Euclidean

space. As usual in CFT, the holomorphic and anti-holomorphic components are independent and
isomorphic. Focusing on the holomorphic components, the modes in their Laurent expansion

Ja(z) =
∞∑

n=−∞

Jan
zn+1

(3.3.2)

obey the commutation relations of the Kac-Moody algebra at level k (the level k is a positive
integer),

[Jan, J
b
m] = i

∑

c

fabcJ
c
m+n + kmK(Ja, Jb) δm+n,0. (3.3.3)

Here,

K(X,Y ) ≡ 1

2g
Tr(adXadY) (3.3.4)

is the Killing form of g, which is positive definite becauseG is compact. We follow the normalisation
convention of Ref. [269], with the inclusion of the factor 1

2g where g is the dual Coxeter number of
g.
The currents can be multiplied to construct the energy-momentum tensor, whose mode expansion
generates the Virasoro algebra. Mathematically, this means that the enveloping algebra of the
Kac-Moody algebra contains a subalgebra that is the Virasoro algebra, a result which is known
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as the Sugawara construction [269]. We can express the energy-momentum tensor in terms of the
currents in the following way:

T (z) =
1

2(k + g)

∑

a

: Ja(z)Ja(z) :, (3.3.5)

where :: denotes the normal ordering, which consists in the subtraction of the singular terms. The
computation of the operator product expansion T (z)T (w) determines the central charge c of the
theory, which is

c =
k dim(G)

k + g
, (3.3.6)

where dim(G) = dim g is the dimension of the Lie group G, or equivalently the dimension of g.
As already mentioned, the stress-energy tensor can be expanded into mode operators, Ln, the
Virasoro generators, that read

Ln =
1

2πi

∮
dz zn+1T (z) =

1

2(k + g)

∑

a

∑

m

: JamJ
a
n−m :, (3.3.7)

where the integration contour circles the origin and the normal ordering means that positive modes
should appear to the right of negative ones.

3.3.2 The unspecialised characters and their asymptotic behaviour

Primary fields of WZW models are in one-to-one correspondence with highest weight representa-
tions of the Kac-Moody algebra (3.3.3), see e.g. Ref. [269]. Each primary field transforms as a
representation r under conjugation by elements of G, so we can label them by irreps of G. The un-
specialised character of the corresponding highest weight representation of the Kac-Moody algebra
Mr is defined as

χr(x, τ) = TrMre
i
∑
a xaJ

a
0 e2πiτ(L0− c

24
). (3.3.8)

Here x = (x1, . . . , xdim g) is the coordinate of elements in the Lie algebra, so ei
∑
a xaJ

a
is viewed as

an element of G via the exponential map. When x = 0, Eq. (3.3.8) is referred to as the specialised
character, χr(τ) := χr(0, τ). We note that, in the literature (see e.g. [240]), unspecialised characters
are sometimes defined alternatively as

TrMre
i
∑
b αbH

b
0e2πiτ(L0− c

24
), (3.3.9)

where Hb (b = 1, . . . , rank g) are Cartan generators (i.e. the generators of a maximal commuting
subalgebra of g), so that

∑
b αbH

b is an element of the Cartan subalgebra h ⊂ g, instead of an
arbitrary element of g. We stress that this makes no difference, because any element of g is
conjugated to an element of h. In other words, for any element

∑
a zaJ

a ∈ g, there exists g ∈ G
such that

∑
a zaJ

a = g−1
∑

b αbH
bg for some

∑
b αbH

b ∈ h. Using the fact [g, L0] = 0 and the
cyclicity of the trace, one sees that the two definitions are equivalent.
In what follows, we will need the asymptotics of χr(x, τ) when τ → i0+. This is obtained by
using the modular properties of the characters. Under the modular transformation τ → −1/τ , the
unspecialised character (3.3.8) transforms as [240,269]

χr(x, τ) = e−i
k

4πτ
K(x·J,x·J)

∑

r′
Srr′ χr′

(
x

τ
,−1

τ

)
, (3.3.10)

where S is the modular S-matrix, which is unitary and symmetric. In the argument of the
exponential, we use the notation x · J =

∑
a xaJ

a, and K(., .) is the positive definite Killing form,
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normalised as in Eq. (3.3.4). As explained in the following sections, we are mainly interested in the
behaviour of characters around the elements of the center of G, e.g. the unit element. Therefore,
in the limit τ → i0+, we can keep only the leading contribution of each character χr′

(
− 1
τ

)
, i.e.

χr(x, τ) '
τ→i0+

e−i
k

4πτ
K(x·J,x·J)

∑

r′
Srr′e

− 2πi
τ

(hr′− c
24

), (3.3.11)

where hr′ is the conformal dimension of the primary field associated with the highest weight
representation r′. The leading behaviour of Eq. (3.3.11) is given by the smallest dimension field.
Since we are dealing with unitary theories, this is given by the identity with h0 = 0, while the
conformal dimensions of all other fields are strictly positive. As a consequence, we have [269]

χr(x, τ) '
τ→i0+

Sr,0 e
πic
12τ e−i

k
4πτ

K(x·J,x·J). (3.3.12)

This asymptotic behaviour plays a key role in our derivation of the SRREs below.

3.3.3 Haar measure on G from the Killing form, and orthonormality of group
characters

Metric and Haar measure. Importantly, because G is compact and simple, the Killing form
K(., .) is positive definite on g. The Killing form then gives rise to a Riemannian metric on G. In
a local coordinate chart x ∈ Rdim(G) 7→ g(x) ∈ G, this metric can be defined as follows:

Kab(x) ≡ K(i g−1(x)∂ag(x), i g−1(x)∂bg(x)). (3.3.13)

[The factors i come from the fact that we use the physics convention that the Lie algebra elements
X ∈ g are multiplied by i before being exponentiated to give a group element eiX ∈ G. Then
g−1(x)∂bg(x) needs to be multiplied by i to be in the Lie algebra.] This metric induces a volume
form on G,

dµ(g(x)) ≡
√

detK(x) dx, (3.3.14)

which turns out to be the Haar measure on G. We recall that the Haar measure is unique up to
normalisation, and here the normalisation of the measure dµ is fixed by the normalisation of the
Killing form. In particular, the volume of the group

Vol(G) ≡
∫

G
dµ(g) (3.3.15)

is fixed by this normalisation convention [241].

To see that the measure (3.3.14) is the Haar measure on G, one can check that it is invariant
under left multiplication by a fixed group element h ∈ G,

dµ(hg) = dµ(g), (3.3.16)

which is a consequence of the invariance of the Killing form under conjugation by elements of G,

K(h−1Xh, h−1Y h) = K(X,Y ), for all h ∈ G. (3.3.17)

Moreover, for compact Lie groups, a left invariant measure must also be right invariant, i.e.
dµ(gh) = dµ(g), so it is the Haar measure on G.
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Group characters. Finally, let us recall the definition of group characters. Given g ∈ G, a
representation Ug is not unambiguous since any similarity transformation yields an equivalent
form. In order to describe the invariant properties of the group, one could use the eigenvalues of
a representation matrix which do not change under similarity transformations. This leads to the
construction of the Casimir operators, the eigenvalues of which classify the representation. Since
this is in general a very difficult problem, in many cases it is sufficient to use a simpler invariant,
namely the group character of a representation r, which is defined in terms of the unitary matrix
Ug as

χr(g) = TrUg, (3.3.18)

and it is invariant under similarity transformations. Importantly, group characters of irredubile
representations are orthonormal with respect to the Haar measure,

1

Vol(G)

∫

G
dµ(g)χr(g)χ∗r′(g) = δrr′ . (3.3.19)

3.4 Revisiting the SU(2)k case

In this section we provide a detailed derivation of the charged moments for SU(2)k and the
corresponding entanglement decomposition. This alternative approach with respect to the one
reviewed in Sec. 3.2.1 leads to a generalisation to an arbitrary non-abelian symmetry reported in
the next section.

3.4.1 The entanglement Hamiltonian

We focus on a critical system described by the WZW-model SU(2)k at level k, and central charge
c = 3k

k+2 , where we used Eq. (3.3.6) with g = 2. In CFT, the powers of the RDM, ρnA, are expressed
as [17,242]

ρnA =
e−2πnKA

Zn1
, Z1 = TrAe

−2πKA , (3.4.1)

where KA =
∫
A dxT00(x)/f ′(x) is the entanglement Hamiltonian and T00 is a component of the

stress tensor (see also Chapter 12). The function f(x) is the conformal map from the euclidean
spacetime, with a cut along the interval A and two boundaries, into an annulus of width 2 logL/ε
and height 2π [242]. For the ground state of a CFT on the real line, KA is proportional to the
Virasoro generator L0 up to an additive constant,

KA =
π

2 log(L/ε)

(
L0 −

c

24

)
, (3.4.2)

therefore

Zn = TrAe
−2πnKA = TrAq

L0− c
24 , q = e2πiτ , τ =

iπn

2 log(`/ε)
(3.4.3)

with ε the UV cutoff. This is nothing but a consequence of the celebrated Bisognano-Wichmann
theorem [243,244] joined with conformal invariance [242,245].

3.4.2 Charged moments and SU(2)k characters

We are interested in how Zn can be resolved in the different j sectors of our theory, Zn(j, τ).
The Hilbert space HA is a linear combination of the modules, Mj , corresponding to a given
representation labelled by j, HA = ⊕jnjMj with coefficients nj . In order to achieve our goal, let
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us focus on the charged moments for the conserved quantity Jz0 . In this section Zn(α, τ) stands
for the charged moments (1.4.16) related to this U(1) charge. They can be written as a linear
combination of the unspecialised characters introduced in Eq. (3.3.8) [85], i.e.

Zn(α, τ) =
∑

j

njχj(α, τ), χj(α, τ) = TrMjq
L0− c

24 eiαJ
z
0 . (3.4.4)

Here the trace is over all states in the representation with highest weight j and level k, which belong
to the moduleMj . The index j = 0, 1

2 . . .
k
2 labels all the unitary representations of the Kac-Moody

algebra of SU(2)k [269]. At this point we are forced to make some physical assumptions on the
allowed values of nj , i.e. on the structure of the entanglement spectrum of the CFT. For example
the approach reviewed in Sec. 3.2.1 comes from the continuum limit of an SU(2) spin chain. In
that case, the total spin of the subsystem A would be either integer or half-integer depending on
the parity of the length ` of the subsystem. Consequently, nj = 0 for half-integer j when ` is even,
while nj = 0 for integer j if ` is odd. From a CFT perspective, we conclude that the continuum
limit of the spin chain induced boundary conditions at the two entangling point of the subsystem
A that select only integer or half-integers values of j’s (although this is difficult to prove directly,
see e.g. [246] for a similar issue). We stress that, from the CFT side, other choices of nj are also
fully legitimate; anticipating the result, they all lead to the same double logarithmic factor in the
SRREs, but to a different O(1) term which is affected by a boundary factor log g (g is the Affleck-
Ludwig non-integer ground state degeneracy [247]) resulting from the induced boundary CFT at
the entangling points; in turn this is very similar to what is known for the total entanglement
entropy [201,246].
Going back to our main computation, the SU(2)k characters are known in the literature and in
order to write them down in a compact form, we first define the level-k theta functions

Θ(k)
m (α, τ) ≡

∑

n∈Z+m
2k

qkn
2
ykn, y = eiα. (3.4.5)

Then the SU(2)k characters read [269]

χj(α, τ) =
Θ

(k+2)
2j+1 (α, τ)−Θ

(k+2)
−2j−1(α, τ)

Θ
(2)
1 (α, τ)−Θ

(2)
−1(α, τ)

=

Θ
(k+2)
2j+1 (α, τ)−Θ

(k+2)
−2j−1(α, τ)

q
1
8 (y

1
2 − y− 1

2 )
∏∞
n=1(1− qn)(1− yqn)(1− y−1qn)

. (3.4.6)

In the limit ` � ε, one has q ' 1, so that a large number of terms contribute to Eq. (3.4.6).
However, using the modular transformation τ → −1/τ , we get

χj(α, τ) = e−
πik(α/(2π))2

2τ

∑

j′
Sjj′χj′

(
α

τ
,−1

τ

)
, Sjj′ =

√
2

k + 2
sin

π(2j + 1)(2j′ + 1)

k + 2
. (3.4.7)

In the limit `� ε, only the term with j′ = 0 survives in the sum, so for α around 0 the final result
is

Zn(α, τ) =
∑

j

njχj(α, τ) ' cn,α
(∑

j

Sj0nj

)
e

2 log(`/ε)
[
c
12( 1

n)− k
2n

α2

4π2

]
, (3.4.8)

as already obtained in [85]. Similar techniques have been employed for the entanglement entropies
in Ref. [182]. Here cn,α is a non-universal constant which depends on the cutoff (see also the
discussion after Eq. (3.2.1) for the abelian case).
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We already mentioned in Sec. 3.2 that we are ultimately interested in the saddle point evalu-
ation of the integral which leads to the evaluation of the SRREs. As we explain in Sec. 3.4.3, in
this case the saddle points are determined by the behaviour of the charged moments around α = 0
and α = 2π, which correspond to the two elements of the center of SU(2), Z = {1,−1} (see the
parameterisation (3.4.13) of the elements of SU(2)). It is not sufficient to know the asymptotic
behaviour (3.4.8) around α = 0, we also need to know the one around α = 2π. However, when we
set α′ ≡ 2π − α, we observe that

Zn(α, τ) =
∑

j

njχj(2π − α′, τ) =
∑

j

njTrMj (−1)2Jz0 qL0− c
24 eiα

′Jz0 =
∑

j

nj(−1)2jχj(α
′, τ).

(3.4.9)
Since either all j are integer or they are all half-integer, the factor (−1)2j simply reduces to an
overall factor 1 or −1, respectively. Moreover, the previous asymptotic expansion yields, for α′

around 0,

Zn(2π − α′, τ) ' cn,2π−α′
(∑

j

(−1)2jSj0nj

)
e

2 log(`/ε)
[
c
12( 1

n)− k
2n

α′2
4π2

]
. (3.4.10)

To summarise, Eq. (3.4.8) gives the large ` behaviour when α ∈ [0, π], while Eq. (3.4.9) gives the
leading contribution when α ∈ (π, 2π]. We now turn to the analysis of the integral over all group
elements parameterised by (3.4.13), where we use these asymptotic behaviours.

3.4.3 Projecting the charged moments on the spin j representation

The idea to project the charged moments on the spin j representation is to use the orthonormality
of the group characters with respect to the Haar measure to isolate the contribution from all states
of spin j in the trace (3.4.3), corresponding to the term proportional to the group character χj(α).
This is done by using the orthonormality of group characters with respect to the Haar measure,
i.e. using the following relation between the matrix representation of the group element g in HA,
UAg , and the projector Πj on all states transforming in the represention j:

Πj =
(2j + 1)

Vol(SU(2))

∫

G
dµ(g)χ∗j (g)UAg , (3.4.11)

where the factor (2j + 1) is the dimension of the representation. Let us observe that if we were
interested in a symmetry decomposition of entanglement with respect to both j, jz (as done in [84]),
because of the multiplet structure of SU(2), the factor 2j + 1 in Eq. (3.4.11) should be removed.
In other words, all the 2j + 1 states belonging to the same irrep j give the same contribution to
the entanglement. For SU(2), the group characters are given by

χj(α) =

j∑

m=−j
ym =

yj+
1
2 − y−j− 1

2

y
1
2 − y− 1

2

=
sin((j + 1

2)α)

sin α
2

, (3.4.12)

whose behaviour around α = 0 is χj(0) = 2j+ 1, while around α = 2π is χj(2π) = (−1)2j(2j+ 1).
As already discussed in Sec. 3.3.2, the simplest way to measure invariantly the volume of a

group, SU(2) in this case, is to start from the Killing metric in the Lie algebra. We can write
down a generic element of SU(2) in its exponential form as

g(x, y, z) = ei(xσx+yσy+zσz)/2 = 1 cos
α

2
+ i

sin(α/2)

α
(xσx + yσy + zσz),

α =
√
x2 + y2 + z2 ∈ [0, 2π] (3.4.13)
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where (x, y, z) are the coordinates of the Lie algebra su(2) and σi the Pauli matrices. Let us
observe that for α = 2π, g = −1, i.e. the behaviour of g around α = 0, 2π corresponds to the
behaviour around the two elements of the center of SU(2), Z2, i.e. respectively +1 and −1. The
Killing form is given by

K(σi, σj) =
1

4
Tr(ad

σi
2

ad
σj
2

) =
1

4
Tr(σiσj) =

δij
2
, i, j ∈ {x, y, z} (3.4.14)

where we used that g = 2 for SU(2). Once we have found the Killing form, using Eq. (3.3.13), we
can fix the metric Kab(x, y, z), a, b ∈ {x, y, z} and compute

√
detKab(x, y, z) =

√
2
(sin(α/2)

α

)2
. (3.4.15)

We can rewrite it in polar coordinates (x, y, z) = (α cos γ sinβ, α sin γ sinβ, α cosβ) such that

Vol(SU(2)) =
√

2

∫
√
x2+y2+z2≤2π

dx dy dz
(sin(α/2)

α

)2
=

=
√

2

∫ 2π

0

∫ π

0

∫ 2π

0
dαdβdγα2 sinβ

sin2(α/2)

α2
= 25/2π2.

(3.4.16)

From the volume form in Eq. (3.4.15) we can explicitly write down the Haar measure for SU(2)
as

dµ(α, β, γ) =
√

2 sin2 α

2
sinβ dα dβ dγ 0 ≤ α ≤ 2π, 0 ≤ β ≤ π, 0 ≤ γ ≤ 2π. (3.4.17)

One can also explicitly check that using Eq. (3.4.17) and the SU(2) characters in Eq. (3.4.12), the
orthogonality relation in Eq. (3.3.19) is satisfied.

Using Eq. (3.4.8), we get

Zn(j) =
2j + 1

Vol(SU(2))

∫
dµ(α, β, γ)

Zn(α, τ)

Zn1
χj(α)

' e
− nj2π2

k log(`/ε)

2Vol(SU(2))
(2j + 1)2

[Zn(0, `)

Zn1

√
25n3π9

k3 log3(`/ε)
+
Zn(2π, `)

Zn1
(−1)2j

√
25n3π9

k3 log3(`/ε)

]

' e
− nj2π2

k log(`/ε)

Vol(SU(2))

Zn(0, `)

Zn1
(2j + 1)2

√
25n3π9

k3 log3(`/ε)
, (3.4.18)

where we approximate the first line by two integrals, one around α = 0, the other around α = 2π.
Indeed, for α ∈ [0, 2π] there is a saddle point at α = 0 and one at α = 2π. The first one corresponds
to study the charged moments around g = 1, while the second one around g = −1, which are
the two elements of the center of SU(2). Let us stress again that since j is fixed to be integer
or half-integer, the factors 1 or −1 overall simplify. Eq. (3.4.18) coincides with the result found
in Eq. (3.2.5) once we use Eq. (3.4.16). Also here we have kept the Gaussian factor to get a
normalised probability, i.e.,

∑

j

Z1(j) '
√

π5

k3 log3(`/ε)

∫ ∞

0
dje
− j2π2

k log(`/ε) (2j + 1)2 = 1, (3.4.19)

where, in the large ` limit, we can approximate the sum over the irreducible representation as an
integral.
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As a byproduct of our results, from Eq. (3.4.18), we can compute the number entropy, i.e.

Snum = −
∑

j

Z1(j) logZ1(j, τ) ' −
∫ ∞

0
djZ1(j) logZ1(j)

' 1

2
log(k logL)− 2 + γE −

1

2
log π +

3

2
, (3.4.20)

with γE the Euler constant. In full analogy with the U(1) case, see e.g. [90], the leading term of
the number entropy is a double logarithm in `. The prefactor is 1/2, exactly like for U(1), but
this will not be true in general, as shown in the next section. When computing the total entropy,
this double log cancels with the same contributions coming from the configurational entanglement
entropy, as we will show in the next paragraph.

3.4.4 Result for the symmetry resolved entanglement

At this point we can plug the result found in Eq. (3.4.18) into the definition of SRREs in Eq. (3.1.3),
i.e.

Sn(j) =
1

1− n log
Zn(j)

Z1(j)n
∝ 1

1− n log


Zn(0, `)

Zn1
n3/2

(
(2j + 1)2 1

2

√
π5

k3 log3(`/ε)

)1−n
 . (3.4.21)

The first ratio in (3.4.21) just gives the total Rényi entropy of order n while the other term is

log

(
1

2
(2j + 1)2

√
π5

k3 log3(`/ε)

)
+

3

2(1− n)
log(n) =

3

2
log(log `)

+ log

(
1

2
(2j + 1)2

√
π5

k3

)
+

3

2(1− n)
log(n) + o(`0), (3.4.22)

where we have neglected the (subleading) contributions due to the cutoff ε (see Ref. [90] for the
U(1) case in which the contribution O(1/ log `) are taken into account, too). Putting everything
together, the SRREs in the j sector are given by

Sn(j) = Sn(`)− 3

2
log(log `)− 3

2
log(k) + 2 log(2j + 1) +

3

2(1− n)
log(n)+

5

2
log(π) + o(`0). (3.4.23)

Summing up the weighted symmetry resolved contributions (3.4.23) at n = 1, we get the configu-
rational entanglement entropy

Sc =
∑

j

Zj1(τ)Sj1(L) ' S1 −
1

2
log(k log `) + 2− γE −

3

2
+

1

2
log(π). (3.4.24)

Notice that the prefactor 1/2 of the double logarithmic term comes from the combination of 3/2
present already in Eq. (3.4.23) and another double log coming from the integral of the log(2j +
1) term always in Eq. (3.4.23). As an important final sanity check, combining Eqs. (3.4.20)
and (3.4.24), we straightforwardly verify that Eq. (3.1.4) is satisfied and the double logarithmic
terms exactly cancel in order to recover the total vNEE, S1.

Eq. (3.4.23) is equivalent to (3.2.6) and so it just represents a consistency check with some
known results. However, this calculation is the starting point to study the entanglement resolution
for a WZW-model with an arbitrary symmetry group and it would have been difficult to motivate
many of some intermediate steps (e.g. the choice of nj , the equivalent saddles from the elements
of the center, etc.) without having in mind a concrete example.
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3.5 Symmetry resolution for a general group G

This section contains the main results of the Chapter: after some explicit examples of symmetry
decomposition for WZW-models, we find a general expression for the SRREs of these theories by
emphasising its universal features.

3.5.1 Derivation of the main result

We generalise the method exploited for SU(2)k, using the tools of Sec. 3.3.

Entanglement Hamiltonian and charged moments The entanglement Hamiltonian is still
given by Eq. (3.4.2), i.e.

KA =
π

2 log(`/ε)

(
L0 −

c

24

)
, (3.5.1)

therefore

Zn = TrAe
−2πnKA = TrAq

L0− c
24 , q = e2πiτ , τ =

iπn

2 log(`/ε)
(3.5.2)

with ε the UV cutoff. Given an element of the algebra X ∈ g, we define the charged moments as
Zn(X, τ) = Zn1 Tr[eiXρnA]. The total Hilbert space decomposes as

HA = ⊕rnrMr, (3.5.3)

where nr gives the multiplicity of the module Mr over the Kac-Moody algebra. Hence, the
charged moments Zn(X, τ) can be written as a linear combination of the unspecialised characters
in Eq. (3.3.8)

Zn(X, τ) =
∑

r

nrχr(X, τ), (3.5.4)

with the same coefficients nr.

Asymptotics of the charged moments. In the limit ` � ε, we can use the expansion of
the unspecialised characters reviewed in Sec. 3.3 to find the large-` asymptotics of the charged
moments

Zn(X, `) '
`→∞

Zn(0, `)e−
k

2π2n
K(X,X) log(`/ε), for X ∈ g, (3.5.5)

which is valid until g = eiX is in some small neighborhood of the unit element. However, as
we have learnt from the SU(2) case, when we project the charged moments onto the irreducible
representations, we have to consider the contributions coming from all the saddle points. Apart
from the unit element, the other obvious saddle points correspond to the elements h ∈ Z(G) of
the center of the Lie group. Indeed, as we explain below, the contribution around each element h
is proportional to Eq. (3.5.5), up to a constant phase.

Furthermore, for simplicity we will assume that these are the only saddle points contributing
to the integral. This seems like a reasonable assumption in view of the SU(2) case, but we do not
know how to prove that it holds for a general group G. It is under this assumption that we arrive
at our main result. We stress that, even if other saddle points were present, the leading orders
would remain unchanged; only the order O(`0) term would be affected.

If we consider group elements of the form g = heiX , we have a slightly different asymptotic
behaviour with respect to Eq. (3.5.5) when h is not simply the unit element. The unitary matrix
UAg can be decomposed as UAg = UAh UeiX , where UAh is a representation of Z(G), which is a finite

abelian subgroup. Let Π
Z(G)
m , m = 1, · · · , |Z(G)|, denote the projector onto states in HA that
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transform in the m-th irreducible (one-dimensional) representation of Z(G). Irreps of Z(G) are
just phases times the identity in each block, i.e.

Uh =
∑

m

eiϕm(h)ΠZ(G)
m . (3.5.6)

This definition shows that the elements of the center of a group play the same role up to a
constant (in `) phase. We stress again that our intuition about these multiple saddle points has
been suggested by the explicit computations done for the SU(2) case in Sec. 3.4.3. In our case
study SU(2), the center is given by Z2, and we have already seen that around g = 1, eiϕj(1) = 1,
while around g = −1, eiϕj(−1) = (−1)2j . However, these phases are fixed to be +1 or −1 by
the boundary conditions at the entangling points of the subsystem through the coefficients nr
appearing in Eq. (3.5.4). In a similar way, for the general case we assume that all the non-zero nr
in Eq. (3.5.4) correspond to representations r that are in the same block in Eq. (3.5.6), i.e. there is
a single term in the sum (3.5.6). As a consequence, Uh is fixed to be simply a phase, Uh = eiϕ(h),
and the asymptotic expression in the neighborhood of h reads

Zn(X,L) '
L→∞

Zn(0, L)eiϕ(h)e−
k

2π2n
K(X,X) log(L/ε), for X ∈ g, h ∈ Z(G). (3.5.7)

Projecting the charged moment onto the representation r using the orthonormality
of group characters. The main idea of our approach is to use the orthonormality of group
characters to extract the contribution of the representation r from Tr[gρnA], i.e. recalling Zn(r) =
Tr[Πrρ

n
A],

Zn(r) =
dim(r)

Vol(G)

∫
dµ(g)Tr[gρnA]χ∗r(g). (3.5.8)

Similarly to what has been discussed after Eq. (3.4.11), if we were interested in a symmetry resolu-
tion involving also the quantum numbers labelling the states within an irreducible representation
r (e.g. jz for the case study SU(2)), the prefactor dim(r) (the dimension of the representation)
should be removed. The reason is that the entanglement Hamiltonian KA is independent of them
because it commutes with the corresponding charge generators, therefore each quantum number
in a given irrep r gives the same contribution to Tr[gρnA], from which the prefactor dim(r) arises.
Strictly speaking, Tr[gρnA] differs from the charged moments built with Tr[heiXρnA] because the
former is valid for arbitrary group elements g ∈ G, while the latter is valid only for elements in a
neighbourhood of the element h in the center of the group. Nevertheless, the knowledge of only
Tr[heiXρnA] is enough for our aims because we are going to use a saddle point integral that is
dominated by the elements of the group in some neighbourhood of h ∈ Z(G).
Around h, it is convenient to use the local coordinate chart x 7→ g(x) = hei

∑
a xaJ

a
. Replacing the

integral over the whole group G by the integral over the neighbourhood of h parametrised by this
chart, we have

Zn(r) =
∑

h∈Z(G)

dim(r)

Zn1 Vol(G)

∫
dµ(hei

∑
a xaJ

a
)Zn(x, `)χ∗r(he

i
∑
a xaJ

a
)

=
∑

h∈Z(G)

dim(r)

Zn1 Vol(G)

∫ √
detK(x)dxZn(x, `)χ∗r(he

i
∑
a xaJ

a
). (3.5.9)
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Now we use the asymptotics (3.5.7), and then we do a saddle point approximation around the
elements of the center of the group,

Zn(r)

'
L→∞

∑

h∈Z(G)

Zn(0, `)

Zn1

dim(r)eiϕ(h)

Vol(G)

∫ √
detK(x)e−

k
2π2n

∑
a,b xaxbK(Ja,Jb) log(`/ε)χ∗r(he

i
∑
a xaJ

a
) dx

'
∑

h∈Z(G)

Zn(0, `)

Zn1

dim(r)eiϕ(h)

Vol(G)

(
2π3n

k log(`/ε)

)dim(G)/2

Tr

[
he
− π2n

2k log(`/ε)

∑
a,bK

−1(Ja,Jb)JaJb
]
,

' Zn(0, `)

Zn1

|Z(G)|
Vol(G)

(
2π3n

k log(`/ε)

)dim(G)/2

dim2(r)e
− π2n
k log(`/ε)

C
(2)
r , (3.5.10)

where in the last step we used that (K(Ja, Jb) = δab/2),

Trhe
− π2n

2k log(`/ε)

∑
a,bK

−1(Ja,Jb)JaJb
= e−iϕ(h)Tr e

− π2n
k log(`/ε)

∑
a JaJ

a

= e−iϕ(h)e
− π2n
k log(`/ε)

C
(2)
r Tr1dim(r)×dim(r) = e−iϕ(h)e

− π2n
k log(`/ε)

C
(2)
r dim(r), (3.5.11)

and C
(2)
r labels the eigenvalues of the quadratic Casimir operator of G. We also remark that

the evaluation of the Gaussian integral holds for Ja = O(
√

log `), such that the saddle-point
approximation is valid.
From Eq. (3.5.10) for n = 1, we also read that the probability introduced in Eq. (3.1.2) is in the
large ` limit

p(r) ' |Z(G)|
Vol(G)

(
2π3

k log(`/ε)

)dim(G)/2

dim2(r)e
− π2

k log(`/ε)
C

(2)
r . (3.5.12)

Interestingly, the normalisation of that probability distribution,
∑

r p(r) = 1, in the large ` limit,
leads us to the following asymptotic formula relating the quadratic Casimir operator and the
dimension of irreducible representations of G,

lim
η→0+

(2πη)dim(G)/2
∑

r

dim2(r)e−ηC
(2)
r = Vol(G). (3.5.13)

Here the sum is over all irreps r of G. [This is the reason why the factor |Z(G)| has dropped. It
reenters if one restricts the sum to irreps r that transform identically under the action of the center
Z(G), see also the discussion in Sec. 2 of [121].] This formula may be viewed as an analog of the
one for finite groups, that says that the square of dimensions of all irreps is equal to the order of
the group, since one may regard Vol(G)/(2πη)dim(G)/2 as the order of some finite approximation
of the continuous Lie group G.

Unfortunately, we have not been able to find formula (3.5.13) in the mathematics literature.
It is very likely that it comes from results on the Plancherel formula for Lie groups (see, e.g.,
Refs. [228,229]), but we have not been able to find it in the explicit form (3.5.13) (also Ref. [230]
is closely related to this subject). Nevertheless, in [121] we have checked its validity explicitly for
the group SU(N), for some values of N , using the actual form of the quadratic Casimir operator.

Final result. Finally, the SRREs is

Sn(r) =
1

1− n log
Zn(r)

(Z1(r))n
,
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leading to our final result

Sn(r) = Sn −
dim(G)

2
log(log `) + 2 log dim(r)− log Vol(G) + log |Z(G)|

+
dim(G)

2

(
− log k +

log n

1− n + log(2π3)

)
. (3.5.14)

This is the main result of this Chapter: at leading order, the SRRE satisfies equipartition,
i.e. it is equally distributed in the different symmetry sectors. Interestingly, we find the term
2 log(dim(r)), at O(`0) which explicitly depends on the specific representation of the group G,
breaking equipartition. This is different from what was found in the literature for the abelian case,
where the first terms breaking equipartition usually occur at order O((log `)−2) (the two results
are compatible since in the abelian case dim(r) = 1 always). Also the prefactor of the double
logarithmic correction has a universal behaviour which depends on the dimension of the group.
Actually, the entire form (3.5.14) at order O(`0) is universal since the ultraviolet cutoff is fully
encoded in the total entropy.

3.6 Closing remarks

In this Chapter, we considered the decomposition of the entanglement entropy into the various
sector of a non-abelian symmetry. In particular, we studied the resolution of the entanglement
entropy in WZW-models, which are associated to a group G and their symmetry algebra is a
Kac-Moody algebra. Writing the charged moments as a linear combination of the unspecialised
characters of these theories and using their modular properties, we have computed the resolved
partition functions, i.e. the ones which take into account the preserved symmetry by including only
states in a given representation of the group. We first characterised the general scaling behaviour
of the charged moments; then we focused on the integration measure over the group manifold and
the group characters around the elements of its center to extract the symmetry resolved moments
and Rényi entropies. Our physically more relevant findings are: (i) SRRE satisfies equipartition at
leading order; (ii) this equipartition is broken at O(`0) by a term depending only on the dimension
of the irrep; (iii) the coefficient in front of the double logarithmic correction to the Rényi entropies
is universal and it is equal to half of the dimension of the symmetry group of the model; (iv) the
difference Sn − Sn(r), between SRRE and total one, is universal up to order O(`0) and the cutoff
enters only in higher order terms.

It is worth mentioning that while throughout all the Chapter we only wrote the results for the
ground state of a single interval in the infinite line, it is easy to generalise our findings to different
situations such as a finite interval in an infinite system at finite temperature, or finite interval in
a finite system by using standard conformal transformations on the worldsheet.

Finally, our findings also lead to few very natural questions and generalisations. The most nat-
ural one is how other entanglement measures decompose in the sectors of a non-abelian symmetry
and if there is some important difference with the abelian case [101, 116, 118, 119]. A second one
is whether it is possible to generalise the form factor bootstrap program of Refs. [112–114] to the
resolution of non-abelian symmetries. A last one is to identify the holographic dual of the SREE
for theories with non-abelian symmetry and compare it with our results, as already done for the
abelian case in [128].





Chapter 4

Multi-charged moments of two
intervals in conformal field theory

The following Chapter is devoted to the study of the multi-charged moments for two disjoint
intervals in the ground state of two 1 + 1 dimensional CFTs with central charge c = 1 and global
U(1) symmetry: the massless Dirac field theory and the compact boson (Luttinger liquid). For this
purpose, we compute the partition function on the higher genus Riemann surface arising from the
replica method in the presence of background magnetic fluxes between the sheets of the surface. We
consider the general situation in which fluxes generate different twist boundary conditions at each
branch point. The obtained multi-charged moments allow us to derive the symmetry resolution of
the Rényi entanglement entropies and the mutual information for non complementary bipartitions.
We check our findings against exact numerical results for the tight-binding model, which is a lattice
realisation of the massless Dirac theory. This Chapter is based on Ref. [105].

4.1 Introduction

For bipartite systems in a pure state, the von Neumann and Rényi entropies can be used as mea-
sures of the entanglement shared between the two complementary parts. In the case considered in
this Chapter in which A consists of two subsystems A1 and A2, i.e. A = A1∪A2, the ground-state
entanglement entropy depends on the full operator content of the CFT, encoding all the conformal
data of the model [206,210,248,249]. It is important to remark that, in this situation, the entan-
glement entropies quantify the entanglement between A and B but not between the two parts of A,
for which one must resort to other entanglement measures such as negativity [151, 152, 250–254].
Nevertheless, from the entanglement entropies, it is possible to construct the mutual informa-
tion (1.1.10), which is a measure of the total correlations between A1 and A2. The computation of
two-interval Rényi entanglement entropies is a difficult problem, even for minimal CFTs [253,255],
as it boils down in general to determine the partition function of the theory on a higher genus
n-sheeted Riemann surface [206, 210]. In fact, exact analytic expressions are only available for
the free theories or special limits [176,206,207,210,249,256–263,266,267]. Moreover, the analytic
continuation in n to obtain Eq. (1.1.6) is still a challenging open issue. As we already showed,
the computation of entanglement itertwines with the presence of symmetries in a system. The
symmetry resolution of entanglement in the two-interval case has not been much explored in CFT.
Ref. [129] studies it at large central charge, in the context of holography, while, in Ref. [124], the
charged Rényi negativity is analysed for the complex free boson. Here we take a different charge
for each part of A, which leads to introduce the multi-charged moments of ρA (see Eq, (1.4.23))
that are the main subject of this Chapter. In CFT, they correspond to the partition function

63
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on the n-sheeted Riemann surface, but with the insertion of a different magnetic flux across each
subset of A. We will analyse the previous quantities in 1 + 1-dimensional CFTs with a global
U(1) symmetry. We will assume that the entire system is in the ground state and that the spatial
dimension is an infinite line which we will divide into two parts A and B, with A made up of two
disjoint intervals, namely A = A1 ∪ A2 = [u1, v1] ∪ [u2, v2]. If we denote by `1 and `2 the lengths
of the two intervals and d their separation, we have

`1 = |v1 − u1|, `2 = |v2 − u2|, d = |u2 − v1|, x =
`1`2

(d+ `1)(d+ `2)
, (4.1.1)

where we have also introduced the cross ratio x of the four end-points, which takes values between
0 and 1.

One can further consider other configurations for the magnetic fluxes between the sheets of the
Riemann surface Rn (to enlighten the notation, we omit the pedix α’s of Rn,α here). In general,
if we assume that a particle gets a different phase eiαj when it goes around each branch point,
provided they satisfy the neutrality condition α1 + α2 + α3 + α4 = 0, then the partition function
of this theory is given by

ZA1:A2
n ({αj}) = ZAn (0)〈Vα1(u1)Vα2(v1)Vα3(u2)Vα4(v2)〉Rn , (4.1.2)

or, in terms of the composite twist fields, by

ZA1:A2
n ({αj}) = 〈Tn,α1(u1)T̃n,α2(v1)Tn,α3(u2)T̃n,α4(v2)〉. (4.1.3)

Then the multi-charged moments ZA1:A2
n (α, β) can be treated as the particular case in which

α1 = −α2 = α and, due to the neutrality condition, α3 = −α4 = β.
In Sec. 4.2, we will compute the charged moments ZA1:A2

n (α, β), and more in general the parti-
tion functions ZA1:A2

n ({αj}), for the massless Dirac fermion using the orbifold theory CFT⊗n/Zn.
On the other hand, in Sec. 4.3, we will adopt a geometric approach to obtain the multi-charged mo-
ments of the compact boson from the correlation function on the Riemann surfaceRn of Eq. (4.1.2).

Finally, in Sec. 4.4, we apply the previous results to obtain the symmetry-resolution of the
mutual information in these theories. When possible, we benchmark the analytic expressions
with exact numerical calculations for lattice models in the same universality class. We draw
our conclusions in Sec. 4.5 and we include one appendix, with more details about the numerical
computations.

4.2 Free massless Dirac field theory

We have already learnt that the Dirac field theory described by the action (2.1.1) exhibits a global
U(1) symmetry. By Noether’s theorem, this symmetry is related to the conservation of the charge
QD =

∫
dx1ψ

†ψ.
The ground state entanglement of a subsystem A made up of multiple disjoint intervals in

the ground state of this theory was first investigated in Ref. [176]. For the case of two disjoint
intervals, A = A1 ∪A2, it was found that the moments of ρA are

ZAn (0) = cn [`1`2(1− x)]
1−n2

6n , (4.2.1)

where cn is a non-universal constant.
In this section, we will compute the multi-charged moments of Eq. (1.4.23) in the ground state

of the massless Dirac field theory. We will extend the approach introduced in Ref. [176] for the
moments of Eq. (4.2.1), as already done in Chapter 2. We will benchmark our analytical results
with exact numerical calculations in a lattice model.
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4.2.1 Charged moments

In Sec. 1.4.2, we explained that the partition function Zn(α) (and, as a consequence, also ZA1:A2
n ({αj}))

can be obtained either by considering the theory on a complicated Riemann surface or by repli-
cating it n-times and working with the orbifold on the complex plane. For the massless Dirac field
theory, the latter approach is more convenient. As done also in 2.2.1, let us take the n-component
field

Ψ =




ψ1

ψ2
...
ψn


 , (4.2.2)

where ψj is the Dirac field on the j-th copy of the system. Eq. (1.4.20) describes the effect of the
composite twist fields on the components of Ψ when going around the end-points of the subsystem
A = A1 ∪A2. This transformation can be encoded in the matrix

Ta =




0 eia/n

0 eia/n

. . .
. . .

(−1)n−1eia/n 0


 . (4.2.3)

In the general case of Eq. (4.1.3), Ψ transforms according to Tα2p−1 when winding around the point
up and to the transpose matrix T tα2p

when going around the points vp, with p = 1, 2. The matrix Ta
in Eq. (4.2.3), sometimes called twist matrix, was introduced for the case a = 0 in Refs. [156,176]
and for general a in Sec. 2.2.1. Its eigenvalues are of the form

tk = eia/ne2πik/n, k = −n− 1

2
, . . . ,

n− 1

2
. (4.2.4)

By simultaneously diagonalising all the Tαj with a unitary transformation (which is independent
of αj), we can recast the replicated theory in n decoupled fields ψk on the plane, which are
multi-valued,

ψk(e
i2π(z − up)) = eiα2p−1/ne2πik/nψk(z − up),

ψk(e
i2π(z − vp)) = eiα2p/ne−2πik/nψk(z − vp). (4.2.5)

For the free massless Dirac theory, this allows us to write the Lagrangian of the replicated theory
as

LD,n =
∑

k

Lk, Lk = ψ̄kγ
µ∂µψk. (4.2.6)

Following this approach, the partition function of Eq. (4.1.3) factorises into

ZA1:A2
n ({αj}) =

k=n−1
2∏

k=−n−1
2

ZA1:A2
k,n ({αj}), (4.2.7)

where ZA1:A2
k,n ({αj}) is the partition function for a Dirac field ψk with the boundary conditions of

Eq. (4.2.5).

The main difference between the partition functions ZA1:A2
k,n ({αj}) and the standard compu-

tation of Ref. [176] for Rényi entropies is that the boundary conditions of the multi-valued fields
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around the branch points now depend on the phases αj . This multivaluedness can be removed, as
done in [176] for αj = 0, by introducing an external U(1) gauge field Akµ coupled to single-valued

fields ψ̃k. In fact, if we apply the singular gauge transformation

ψk(x) = e
i
∫ x
x0
dyµAkµψ̃k(x), (4.2.8)

then the Lagrangian for the k-th mode can be rewritten as

Lk =
¯̃
ψkγ

µ
(
∂µ + iAkµ

)
ψ̃k, (4.2.9)

with the advantage of absorbing the phase around the end-points of A1 ∪A2 into the gauge field.
The only requirement that Akµ in Eq. (4.2.8) must satisfy is that, integrated along any closed
curve C that encircles the end-points of A, the boundary conditions of Eq. (4.2.5) for ψk must be
reproduced. For this purpose, we require

∮

Cup
dyµAkµ = −2πk

n
− α2p−1

n
,

∮

Cvp
dyµAkµ =

2πk

n
− α2p

n
, (4.2.10)

where Cup and Cvp are closed contours around the end-points of the p-th interval. Moreover, we
have to impose that, if C does not enclose any end-point, then

∮
C dy

µAkµ = 0. Applying the Stoke’s
theorem, the conditions of Eqs. (4.2.10) can be expressed in differential form,

1

2π
εµν∂νA

k
µ(x) =

2∑

p=1

[(
α2p−1

2πn
+
k

n

)
δ(x− up) +

(
α2p

2πn
− k

n

)
δ(x− vp)

]
. (4.2.11)

Once the transformation of Eq. (4.2.8) is performed, the partition function ZA1:A2
k,n ({αj}) of the

k-th mode is equal to the vacuum expectation value

ZA1:A2
k,n ({αj}) =

〈
ei
∫
d2xjµkA

k
µ

〉
, (4.2.12)

where jµk ≡
¯̃
ψkγ

µψ̃k is the conserved Dirac current for each mode. Eq. (4.2.12) can be easily com-
puted via bosonisation [176], which allows us to write the current in terms of the dual scalar field φk
such that jµk = εµν∂νφk/

√
π. If we use this result in Eq. (4.2.12), and we apply Eq. (4.2.11), then

ZA1:A2
k,n ({αj}) is equal to the following correlation function of vertex operators Va(y) = e−iaφk(y)

ZA1:A2
k,n ({αj}) = 〈V k

n
+
α1
2πn

(u1)V− k
n

+
α2
2πn

(v1)V k
n

+
α3
2πn

(u2)V− k
n

+
α4
2πn

(v2)〉. (4.2.13)

Notice that the neutrality condition α1 + α2 + α3 + α4 = 0 ensures that the latter correlator does
not vanish. The correlation function of vertex operators in the complex plane is well-known (see,
for instance, Ref. [269]) and, therefore, Eq. (4.2.13) can be easily calculated. Plugging the result
into Eq. (4.2.7) and performing the product over k, we obtain

ZA1:A2
n ({αj}) ∝

[`1`2(1− x)]
1−n2

6n [dα2α3`α1α2
1 `α3α4

2 (d+ `1)α1α3(d+ `2)α2α4(d+ `1 + `2)α1α4 ]
1

2π2n , (4.2.14)

where x is the cross-ratio defined in Eq. (4.1.1). When we take α1 = −α2 = α and α3 = −α4 = β
in this expression, we get the multi-charged moments in Eq. (1.4.23) as

ZA1:A2
n (α, β) = cn;α,β [`1`2(1− x)]

1−n2

6n

[
(1− x)−αβ `−α

2

1 `−β
2

2

] 1
2π2n . (4.2.15)
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Figure 4.1: Analysis of ZA1:A2
1 (α, β) for the tight-binding model. In the left panel, we show

ZA1:A2
1 (α, β) as a function of α at fixed β for different intervals of lengths `1, `2, separated by a

distance d > 0. In this case, the solid lines are the theoretical predictions of Eq. (4.2.15), taking
Eq. (4.2.19) for cn;α,β. In the middle panel, we repeat the analysis but considering adjacent intervals
(d = 0) and the solid curves correspond to Eq. (4.2.17), with c̃n;α,β conjectured in Eq. (4.2.21).

In the right panel, we plot ZA1:A2
1 (α, β) as a function of the cross-ratio x. Here the solid lines

correspond to Eq. (4.2.15) using the exact expression for cn;α,β of Eq. (4.2.19), while for the dashed
curves we have considered instead the quadratic approximation for this constant of Eq. (4.2.20).
In all the cases, the points are the exact numerical values for ZA1:A2

1 (α, β) calculated as described
in Appendix 4.A.

We assume that all the length scales in this formula have been regularised through a UV cutoff
which is included in the multiplicative constant cn;α,β.

An interesting case to analyse is when the two intervals A1 and A2 become adjacent; that is,
when d→ 0. In that limit, the cross-ratio x tends to one such that

1− x = d
`1 + `2
`1`2

+O(d2), (4.2.16)

and Eq. (4.2.15) vanishes. Nevertheless, in this regime, the distance d must be regarded as an-
other UV cutoff, which can be absorbed in the multiplicative constant cn;α,β. Therefore, from
Eqs. (4.2.16) and (4.2.15), one expects

ZA1:A2
n (α, β) = c̃n;α,β(`1 + `2)

1−n2

6n

[
`αβ−α

2

1 `αβ−β
2

2

(`1 + `2)αβ

] 1
2π2n

, (4.2.17)

which agrees with the fact that the multi-charged moments ZA1:A2
n (α, β) must tend to the three-

point function of primaries 〈Tn,α(u1)V−α+β(v1)T̃n,−β(v2)〉, in the limit d→ 0.
In Fig. 4.1, we check the expressions obtained in Eqs. (4.2.15) and (4.2.17) for ZA1:A2

n (α, β)
with exact numerical calculations performed in the tight-binding model, which is a chain of non-
relativistic free fermions whose scaling limit is described by the massless Dirac field theory. The
details of the numerical techniques employed are given in Appendix 4.A. In order to compare
Eqs. (4.2.15) and (4.2.17) with the numerical data, we need the concrete expression of the non-
universal factors cn;α,β and c̃n;α,β for this particular model. When the two intervals A1 and A2 are
far away, that is in the limit d → ∞, the charged moments of A1 ∪ A2 factorise into those of A1

and A2,
lim
d→∞

ZA1:A2
n (α, β) = ZA1

n (α)ZA2
n (β). (4.2.18)

Therefore, one expects cn;α,β to be the product of the two non-universal constants associated to
A1 and A2 as single intervals. The latter were obtained for the tight-binding model in Ref. [90]
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by exploiting the asymptotic properties of Toeplitz determinants. We can also apply here those
results, taking into account that each interval is associated to a different flux, either α or β. Then
we have

cn;α,β = e

[
− 1

3(n− 1
n)− α2

2π2n
− β2

2π2n

]
log 2+Υ(n,α)+Υ(n,β)

, (4.2.19)

where Υ(n, α) is given by Eq. (2.3.16). Expanding Υ(n, α) up to quadratic order in α, then
Eq. (4.2.19) can be approximated as

cn;α,β ≈ e−
1
3(n− 1

n) log 2+2Υ(n,0)− ζn
2π2n

(α2+β2), (4.2.20)

where ζn = log 2− 2π2nγ2(n).
In the limit of adjacent intervals, given by Eq. (4.2.17), the multiplicative constant c̃n;α,β cannot

be determined using the known results for Toeplitz determinants. However, we can conjecture an
analytical approximation for it at quadratic order in α and β. When d → 0, we can associate
to each end-point of the intervals u1, v1 = u2 and v2 the fluxes α, β − α and −β respectively.
From the results for one interval of Ref. [90], one can conjecture that each end-point with flux

α contributes with a factor e−
ζn

4π2n
α2

to the constant c̃n;α,β, if we restrict to terms up to order
α2. Therefore, the combination of all the fluxes in our case should contribute with a total factor

e−
ζn

4π2n
(α2+(β−α)2+β2). We then expect that c̃n;α,β should be well be approximated by

c̃n;α,β = e−
1
6(n− 1

n) log 2+Υ(n,0)− ζn
2π2n

(α2+β2−αβ). (4.2.21)

When α = β = 0, the expression above simplifies to the multiplicative constant for the moments of
a single interval obtained in Ref. [268]. In spite of the heuristic reasoning of this result, in Fig. 4.1,
we check its validity by comparing it against exact numerical data.

In Fig. 4.1, we study ZA1:A2
1 (α, β) as function of α, for various values of β, `1, `2 and d.

The points correspond to the exact numerical values obtained as we described in Appendix 4.A
while the solid curves are the analytic prediction of Eq. (4.2.15) ((4.2.17) for d = 0), taking as
multiplicative constant cn,α,β that in Eq. (4.2.19) (Eq. (4.2.21)). We find an excellent agreement.

Finally, in the right panel, we plot ZA1:A2
1 (α, β) as function of the cross-ratio x, for various values

of α, β, `1 and `2. The curves represent the prediction of Eq. (4.2.15). The continuous ones
correspond to take as non-universal constant cn;α,β the full expression of Eq. (4.2.19), while for the
dashed ones we have used the quadratic approximation of Eq. (4.2.20). The agreement between
the analytic prediction and the numerical data is extremely good, even considering the quadratic
approximation for the non-universal constant. As expected, this agreement is better for small
values of α and β, while, around ±π, we need to take larger subsystem sizes `1, `2 in order to
suppress the finite-size corrections which are well known and chracterised for the charged moments
with a single flux insertion [90].

4.3 Free compact boson

The second theory we focus on in this Chapter is the free (real) compact boson, which is the CFT
of the Luttinger liquid, and whose action reads

Sb =
1

8π

∫
dx0dx1∂µϕ∂

µϕ. (4.3.1)

The target space of the real field ϕ is compactified on a circle of radius R, i.e. ϕ ∼ ϕ + 2πmR
with m ∈ Z. The compactification radius R is related to the Luttinger parameter K as R =
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√
2/K. The action of Eq. (4.3.1) is invariant under the transformation ϕ 7→ ϕ + α which, due

to the compact nature of ϕ, realises a U(1) global symmetry. The associated conserved charge is
Qb = 1

2π

∫
dx1∂x1ϕ.

The moments of the ground state reduced density matrix of this theory are well-known. An
exact analytic expression for the two-interval case was obtained in Ref. [206], which was generalised
to an arbitrary number of disjoint intervals in Ref. [260]. In particular, for two intervals, it
reads [206]

ZAn (0) = cn [`1`2(1− x)]
1−n2

6n Fn(x), (4.3.2)

where cn is a non-universal constant and

Fn(x) =
Θ(0|Γ(x)/K)Θ(0|Γ(x)K)

[Θ(0|Γ(x))]2
. (4.3.3)

We denote by Θ the Riemann-Siegel Theta function

Θ[ εδ ](u|Ω) ≡
∑

m∈Zn−1

eiπ(m+ε)t·Ω(m+ε)+2πi(m+ε)t·(u+δ), (4.3.4)

with characteristics ε, δ ∈ (Z/2)n−1, u ∈ Cn−1 and Ω a complex (n − 1) × (n − 1) matrix. In
Eq. (4.3.3), the characteristics are zero 0 = (0, . . . , 0) and, therefore, we have used the standard
shorthand notation Θ(u|Ω) ≡ Θ[ 00 ](u|Ω). The matrix Γ(x) in Eq. (4.3.3) has entries given by

Γrs(x) =
2i

n

n−1∑

l=1

cos

[
2πl(r − s)

n

]
sin

(
πl

n

)
βl/n(x), r, s = 1, . . . , n− 1, (4.3.5)

and

βp(x) =
Ip(1− x)

Ip(x)
, (4.3.6)

with Ip(x) ≡ 2F1(p, 1 − p, 1, 1 − x). The function Fn(x) is invariant under x 7→ 1 − x and it is
normalised such that Fn(0) = Fn(1) = 1. Although the moments of ρA are known for all the
integer n, its analytic continuation to complex n and, consequently, the von Neumann entropy of
Eq. (1.1.6) is still not available for all the values of the Luttinger parameter.

A remarkable contact point between the theories described by the action of Eq. (2.1.1) (SD)
and (4.3.1) is the case K = 1. Notice that, when the Luttinger parameter takes this value, the
function Fn(x) in Eq. (4.3.3) simplifies to Fn(x)=1 and the moments of Eq. (4.3.2) for the massless
compact boson present the same universal dependence on `1, `2 and x as the ones in Eq. (4.2.1)
for the massless Dirac fermion. A detailed discussion on this identity can be found in Ref. [259],
where it is explained the reason why, although these two theories are not related by a duality,
their partition functions on the Riemann surfaces Rn arising in the two-interval replica method
are actually equal. Here we find that this identity extends to the partition functions ZA1:A2

n ({αj})
on the surface Rn with different twist boundary conditions at each branch point. In general,
when A is made up of more than two intervals and the Rényi index n is larger than two, the
moments of the reduced density matrix in these CFTs (and the corresponding Rényi entropies)
are different [259].

4.3.1 Charged moments

We now generalise the result (4.3.2) to the multi-charged moments in Eq. (1.4.23). Starting from
Eq. (1.4.19), we will compute them as the four-point function of the field Vα on the Riemann
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surface Rn. Since the U(1) conserved current is proportional to ∂x1ϕ, Vα is identified in this case
with the vertex operator [84]

Vα(z) = ei
α
2π
ϕ(z), (4.3.7)

which has conformal dimensions

hVα = h̄Vα =
( α

2π

)2 K

2
. (4.3.8)

In the following, it will be useful to introduce the rescaled Luttinger paratemeter η = K/(2π2) in
order to lighten the expressions.

Without loss of generality, let us consider that the end-points of subsystem A are u1 = 0,
v1 = x, u2 = 1 and v2 = ∞. Using Eq. (4.1.3), and given that the composite twist fields are
primaries, we can eventually obtain the expression for an arbitrary set of end-points through a
global conformal transformation. Therefore, according to Eq. (1.4.19), the multi-charged moments
can be derived from the four-point correlation function of the vertex operators of Eq (4.3.7)

ZA1:A2
n ({αj}) = ZAn (0)〈Vα1(0)Vα2(x)Vα3(1)Vα4(∞)〉Rn(x) (4.3.9)

on the n-sheeted Riemann surface Rn(x) with branch points at 0, x, 1 and ∞. This surface of
genus n− 1 can be described by the complex curve

yn =
z(z − 1)

z − x . (4.3.10)

The correlator of vertex operators on a general Riemann surface of arbitrary genus was obtained in
Ref. [271]. In order to give the explicit expression in our case, we need to introduce some notions
about Riemann surfaces [270].

There are different parameterisations of the moduli space of genus n − 1 Riemann surfaces.
One possibility is through the matrix of periods, which we denote by Γ. This is a (n− 1)× (n− 1)
symmetric matrix with positive definite imaginary part. Notice that, according to Eq. (4.3.10),
the Riemann surface Rn(x) is parametrised by the cross-ratio x. Therefore, the corresponding
matrix of periods only depends on x, i.e. Γ = Γ(x). In order to define it, we need first to specify
a particular homology basis for Rn(x), i.e. a basis of 2(n− 1) oriented non-contractible curves on
the surface, which we denote by ar and br, with r = 1, . . . , n− 1. We also have to choose a basis
of holomorphic differentials νr, r = 1, . . . , n− 1, normalised with respect to the ar cycles. That is,

∮

ar

dzνs(z) = δr,s, r, s = 1, . . . , n− 1. (4.3.11)

Then the matrix of periods is defined as

Γrs =

∮

br

dzνs(z). (4.3.12)

For the surface Rn(x), the normalised holomorphic differentials read

νr(z) =
1

πn

n−1∑

l=1

e−
i2π(r−1)l

n sin(πl/n)

Il/n(x)
(z(z − 1))−l/n(z − x)−1+l/n. (4.3.13)

Inserting it in Eq. (4.3.12), it is then easy to show that the entries of the matrix of periods Γ(x)
are precisely those of Eq. (4.3.5).
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If we now consider four vertex operators inserted at generic points in the surface Rn(x) and
with arbitrary dimensions satisfying the neutrality condition α1 + α2 + α3 + α4 = 0, then its
correlation function is of the form [271]

〈Vα1(z1)Vα2(z2)Vα3(z3)Vα4(z4)〉Rn(x) =
∏

1≤j<j′≤4

∣∣∣E(zj , zj′)e
−πIm[w(zj)−w(zj′ )]

t·Im[Γ(x)−1]Im[w(zj)−w(zj′ )]
∣∣∣
αjαj′η

. (4.3.14)

In this expression, we denote by E(z, z′) the prime form of the surface Rn(x), which we will
define precisely later, and w(z) = (w1(z), . . . , wn−1(z)) is the Abel-Jacobi map, which relates a
point z in the surface Rn(x) to a point w(z) in the genus n − 1 complex torus Cn−1/Λ, where
Λ = Zn−1 + ΓZn−1. This map can be written in terms of the normalised holomorphic differentials
of Eq. (4.3.13) as

wr(z) =

∫ z

0
νr (mod Λ), (4.3.15)

where we have taken as origin the branch point z = 0. The images under the Abel-Jacobi map of
the points z = 0, x, 1, and ∞, where the vertex operators in Eq. (4.3.9) are inserted, can be easily
computed using Eq. (4.3.13). Then we find

w(0) = 0, (4.3.16)

w(x) = q, (4.3.17)

w(1) = q + ip(x), (4.3.18)

w(∞) = ip(x), (4.3.19)

where q = (1/n, . . . , 1/n) and p(x) = (p1(x), . . . , pn−1(x)) with

pr(x) = − 1

n

n−1∑

l=1

[
cos

[
2πl(r − 1)

n

]
sin

(
πl

n

)
+ sin

[
2πl(r − 1)

n

]
cos

(
πl

n

)]
βl/n(x). (4.3.20)

Therefore, for the case z1 = 0, z2 = x, z3 = 1, z4 =∞, Eq. (4.3.14) simplifies to

〈Vα1(0)Vα2(x)Vα3(1)Vα4(∞)〉Rn(x) = Mn(x)(α1+α2)(α3+α4)η
∏

1≤j<j′≤4

∣∣E(zj , zj′)
∣∣αjαj′η , (4.3.21)

where
Mn(x) = e−πp(x)t·[ImΓ(x)]−1p(x). (4.3.22)

Let us now focus on the prime form E(z, z′). It can be defined as [270]

E(z, z′) =
Θ1

2
(w(z)−w(z′)|Γ(x))
√
g(z)

√
g(z′)

, (4.3.23)

where Θ1
2

is a shorthand notation for the Theta function of Eq. (4.3.4) with both characteristics

equal to (1/2, 0, . . . , 0) ∈ (Z/2)n−1 and g(z) is

g(z) =
n−1∑

r=1

νr(z)∂ur Θ1
2
(u|Γ(x))

∣∣∣
u=0

. (4.3.24)

Notice that the holomorphic differentials νr(z) in Eq. (4.3.13) and, therefore, g(z) are singular
at the branch points of the curve that defines the surface Rn(x). This means that the correlation
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function (4.3.14) is in principle not well-defined. In order to solve this issue, the vertex operators
inserted at the branch points have to be regularised by redefining them as a proper limit from a
non-singular point. We will first extract and remove from g(z) the divergent terms at the branch
points. Then, by considering the limit in which the distance between A1 and A2 tends to infinity,
we will fix the correct definition of the regularised vertex operators at the branch points.

Close to the branch points z = 0, x, 1, and ∞, the holomorphic normalised differentials νr(z)
of Eq. (4.3.13) behave as

νr(z + ε) = ε
1−n
n

[
ν(∗)
r (z) +O(ε1/n)

]
, (4.3.25)

with |ε| � 1 ,

ν(∗)
r (z) =





−x−1/nQr,n(x), z = 0,

e−
iπ(4r−3)

n (x(1− x))−1/nQr,n(x), z = x,

(1− x)−1/nQr,n(x), z = 1,

e−
4πi(r−1)

n Qr,n(x), z =∞.

(4.3.26)

and

Qr,n(x) = e
2πi(r−1)

n
sin(π/n)

πnI1/n(x)
. (4.3.27)

Observe that, in the four singularities, the divergent term when ε→ 0 is a global factor ε
1−n
n and,

once we take it out, the subleading corrections in ε vanish. Therefore, these singularities can be
removed in the correlation function of Eq (4.3.14) by defining the vertex operators at the branch
points as the limit

V(∗)
α (z) = lim

ε→0

(
κnε

n−1
n

)2hVα Vα(z + ε), z = 0, x, 1,∞. (4.3.28)

In this definition, we have included a possible global rescaling factor κn, which may depend on the
genus of the surface, and we will adjust by studying the limit of large separation between the two
intervals. If we replace in Eq. (4.3.21) the vertex operators by the regularised ones introduced in
Eq. (4.3.28), then the resulting correlation function can be written in the form

〈V(∗)
α1

(0)V(∗)
α2

(x)V(∗)
α3

(1)V(∗)
α4

(∞)〉Rn(x) =

= κ2hT
n Mn(x)(α1+α2)(α3+α4)η

∏

1≤j<j′≤4

|E(∗)(zj , zj′)|αjαj′η, (4.3.29)

where hT = hα1 + hα2 + hα3 + hα4 and E(∗)(zj , z′j) stands for the regularised prime form

E(∗)(zj , zj′) =
Θ1

2
(w(zj)−w(zj′)|Γ(x))
√
g(∗)(zj)

√
g(∗)(zj′)

(4.3.30)

with

g(∗)(zj) =

n−1∑

r=1

ν(∗)
r (zj)∂ur Θ1

2
(u|Γ(x))

∣∣∣
u=0

, (4.3.31)

and the expressions of ν(∗)(z) at the branch points are those given in Eq. (4.3.26).
In [105], we conjecture and numerically check the following identities for the regularised prime

forms that appear in Eq. (4.3.29),

|E(∗)(0, x)| = nx1/n, (4.3.32)

|E(∗)(x, 1)| =
n(1− x)1/n

Mn(x)
, (4.3.33)

|E(∗)(1,∞)| = n, (4.3.34)
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and

|E(∗)(0, 1)| = |E(∗)(0,∞)| = |E(∗)(x,∞)| = n

Mn(x)
. (4.3.35)

Plugging them into Eq. (4.3.29), we finally find

〈V(∗)
α1

(0)V(∗)
α2

(x)V(∗)
α3

(1)V(∗)
α4

(∞)〉Σn(x) =
(κn
n

)2hT
x
α1α2η
n (1− x)

α2α3η
n . (4.3.36)

In Eq. (4.3.9), once the vertex operators Vα are replaced by the regularised ones V(∗)
α , we can

exploit Eq. (4.3.36) to get

ZA1:A2
n ({αj}) ∝

(κn
n

)2hT
(x(1− x))

1−n2

6n (xα1α2(1− x)α2α3)
η
n Fn(x). (4.3.37)

In particular, when α1 = −α2 = α and α3 = −α4 = β, we get the multi-charged moments
ZA1:A2
n (α, β). After a global conformal transformation to a subsystem A with arbitrary end-points

(u1, v1, u2, v2), we obtain the following result

ZA1:A2
n (α, β) = cn;α,β

(κn
n

)2hT
(`1`2(1− x))

1−n2

6n

(
`α

2

1 `β
2

2 (1− x)αβ
)− η

n Fn(x). (4.3.38)

Note that the rescaling factor κn, which was introduced in the definition of the regularised
vertex operators at the branch points, is still undetermined. We can fix it by analysing the limit in
which the two intervals A1 and A2 are far, i.e. d→∞, as done for the Dirac theory. In that case,
the charged moments ZA1:A2

n (α, β) must verify Eq. (4.2.18). Since Fn(0) = 1 and the constant
cn;α,β factorises into those for the intervals A1 and A2, then Eq. (4.3.38) satisfies the limit d→∞
of Eq. (4.2.18) if κn = n.

In conclusion, for the massless compact boson, the partition function on the surface Rn with
general twisted boundary conditions is of the form

ZA1:A2
n ({αj})
ZAn (0)

∝ [dα2α3`α1α2
1 `α3α4

2 (d+ `1)α1α3(d+ `2)α2α4(d+ `1 + `2)α1α4 ]
K

2π2n , (4.3.39)

and the multi-charged moments are

ZA1:A2
n (α, β) = cn;α,β (`1`2(1− x))

1−n2

6n

(
`α

2

1 `β
2

2 (1− x)αβ
)− K

2π2n Fn(x). (4.3.40)

When the Luttinger parameter is K = 1, then Fn(x) = 1, and the partition function of Eq. (4.3.40)
is equal to the one obtained in Eq. (4.2.14) for the massless Dirac field, as we anticipated at the
beginning of this section. Interestingly, the factor in Eq. (4.3.40) due to the magnetic fluxes is
the same, when α = β, as the one derived in Ref. [129] for a large central charge CFT with the
Luttinger parameter K replaced by the level of the Kac-Moody algebra of that theory.

4.4 Symmetry resolution

In this section, we apply the approach described in Sec. 1.4.2 in order to evaluate the symmetry
resolution of the mutual information in the two CFTs analysed in Secs. 4.2 and 4.3 from the
expressions obtained there for their multi-charged moments ZA1:A2

n (α, β).
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4.4.1 Fourier transforms

The first step is to determine the Fourier transform (1.4.24) of the multi-charged moments. We
need to know how the non-universal constant cn;α,β does depend on α and β. In Sec. 4.2, we
have concluded that, for the tight-binding model, it can be well approximated if we only take into
account the quadratic terms in α and β. In the following, we will assume that this is in general a
good approximation [85]. Therefore, we will take

cn;α,β = cn;0,0λ
− (α2+β2)K

2π2n
n . (4.4.1)

In the case of the tight-binding model (K = 1), we obtained in Eq. (4.2.20) that λn = eζn .
Therefore, applying Eq. (4.4.1) in the result of Eq. (4.3.40), the multi-charged moments can

be rewritten as

ZA1:A2
n (α, β) = ZAn (0)

[
(1− x)−αβ ˜̀−α2

1
˜̀−β2

2

] K
2π2n , (4.4.2)

where ˜̀
p = λn`p. The evaluation of Eq. (1.4.24) using the expression above yields the following

multivariate Gaussian function for the Fourier modes of the multi-charged moments

ZA1:A2
n (q1, q2) =

ZAn (0)nπe
−2π2n

q21 log ˜̀
2+q22 log ˜̀

1+q1q2 log(1−x)

K[4 log(˜̀
1) log(˜̀

2)−log2(1−x)]

K
√

4 log(˜̀
1) log(˜̀

2)− log2(1− x)
. (4.4.3)

Notice that the Luttinger parameter K enters in the Gaussian factor as an overall rescaling of its
variance.

In the limit of large separation between the intervals, i.e. d→∞ (x→ 0), Eq. (4.4.3) tends to

lim
d→∞

ZA1:A2
n (q1, q2)

ZAn (0)
=
nπ

2K

e
− nπ2q21

2K log ˜̀
1√

log ˜̀
1

e
− nπ2q22

2K log ˜̀
2√

log ˜̀
2

, (4.4.4)

namely ZA1:A2
n (q1, q2) factorises into the contributions of A1 and A2. This is consistent with the

probabilistic interpretation for the case n = 1: the outcomes of the charge measurements in the two
intervals are independently distributed when the separation between A1 and A2 is large enough.
On the other hand, in the limit of two adjacent intervals, i.e. d → 0 (x → 1), the multi-charged
moments have the form (see also Eq. (4.2.17))

lim
d→0

ZA1:A2
n (α, β)

ZAn (0)
=

[
˜̀αβ−α2

1
˜̀αβ−β2

2

(˜̀
1 + ˜̀

2)αβ

] K
2π2n

, (4.4.5)

whose Fourier transform is

lim
d→0

ZA1:A2
n (q1, q2)

ZA1∪A2
n (0)

=
nπe

−2π2n
q21 log ˜̀

2+q22 log ˜̀
1+q1q2[log(˜̀

1
˜̀
2)−log(˜̀

1+˜̀
2))]

4K log(˜̀
1) log(˜̀

2)−K[log(˜̀
1

˜̀
2)−log(˜̀

1+˜̀
2))]2

K

√
4 log(˜̀

1) log(˜̀
2)−

[
log(˜̀

1
˜̀
2)− log(˜̀

1 + ˜̀
2)
]2
. (4.4.6)

Setting α = β in Eq. (4.4.2), we obtain the charged moments (1.4.16) with a single flux

ZAn (α) = ZAn (0)
[
(1− x)˜̀

1
˜̀
2

]− α2K
2π2n . (4.4.7)



4.4. SYMMETRY RESOLUTION 75

-4 -2 0 2 4
0.00

0.05

0.10

0.15

0.20

-4 -2 0 2 4
0.00

0.02

0.04

0.06

0.08

0.10

-4 -2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

Figure 4.2: Probability Z1(q1, q2) for the tight-binding model as a function of q1 at fixed q2 and
for two disjoint intervals of lengths `1, `2, and separated a distance d. The points are the exact
numerical values calculated using the methods of the Appendix 4.A. The solid line is the theoretical
prediction in Eq. (4.4.3) taking for the non-universal constants the corresponding values for the
tight-binding model indicated in the main text.

In this case, performing the Fourier transform of Eq. (1.4.17), we end up with

ZAn (q) =
ZAn (0)

√
πn√

2K log
[
(1− x)˜̀

1
˜̀
2

]e
− π2nq2

2K log[(1−x)˜̀
1

˜̀
2] . (4.4.8)

Taking n = 1 in this expression, we obtain the probability p(q) of having charge q in the subsystem
A, namely p(q) = Z1(q). Now we can plug it together with the result for Zn(α, β) found in
Eq. (4.4.3) into Eq. (1.4.26) to obtain the conditional probability p(q1, q2) of having charge q1 and
q2 = q − q1 in the intervals A1 and A2 if the total charge in A is q,

p(q1, q2) =

√√√√ 2π log
[
(1− x)˜̀

1
˜̀
2

]

K[4 log(˜̀
1) log(˜̀

2)− log2(1− x)]
e
− 2π2

K

[
q21 log ˜̀

2+q22 log ˜̀
1+q1q2 log(1−x)

4 log(˜̀
1) log(˜̀

2)−log2(1−x)
+

(q1+q2)2

4 log[(1−x)˜̀
1

˜̀
2]

]

.

(4.4.9)
In this expression, ˜̀

p = λ1`p; in particular, for the tight-binding model λ1 = elog 2+1+γE , with
γE the Euler-Mascheroni constant. As a non-trivial consistency check, we have verified that the
probability functions we have obtained satisfy the normalisation conditions

∫ ∞

−∞
ZA1:A2

1 (q1, q2)dq1dq2 = 1,

∫ q

−∞
p(q1, q − q1)dq1 = 1, (4.4.10)

in agreement with Eqs. (1.4.26) and (1.4.25).
In Fig. 4.2, we compare the expression for Z1(q1, q2) found in Eq. (4.4.3) for the case of disjoint

intervals with the exact numerical results obtained for the tight-binding model using the methods
of the Appendix 4.A. The agreement is excellent. We remark that in Fig. 4.2 there is no free
parameter when matching the analytical prediction with the numerical data since we know the
expression of the non-universal constants for this particular system. We have also repeated the
same analysis in the case of adjacent intervals (d = 0), checking the validity of Eq. (4.4.6).

4.4.2 Symmetry resolved mutual information

We compute now the symmetry resolved mutual information defined in Eq. (1.3.6). We need the
probability p(q1, q−q1) derived in Eq. (4.4.9) as well as the symmetry resolved entropies for A and
its parts A1 and A2 separately. For the entropies of A1 and A2, we can use the results for a single
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interval obtained in Ref. [90] while, for the full subsystem A, it can be derived from the Fourier
transform of the charged moments determined in Eq. (4.4.8) by applying Eq. (1.4.18). The three
symmetry resolved entropies can eventually be written in the form

SX1 (q) = SX1 −
1

2
log

(
2K

π
log δσΛ

)
− 1

2
− σπ4 ξ2

(K log(λσ1 Λ))2
+ σq2π4 ξ

(K log(λσ1 Λ))2
. (4.4.11)

where SX1 is the total entanglement entropy of subsystem X. In this expression, when X = Ap,
we have to take Λ = `p and σ = 1 while, if X = A1 ∪ A2, then Λ = `1`2(1 − x) and σ = 2. The
auxiliary quantities δ and ξ in Eq. (4.4.11) are defined in terms of λn as

log δ = log λ1 + 2π2ξ, ξ = − 1

2π2
∂n(log λn)|n=1 (4.4.12)

For the tight-binding model, we know the explicit value of these non-universal constants,

log δ = 2π2γ′2(1) + log 2, ξ = γ2(1) + γ′2(1). (4.4.13)

From Eqs. (4.4.9) and (4.4.11), we can now obtain an explicit expression for the symmetry resolved
mutual information. Since the conditional probability p(q1, q − q1) satisfies Eq. (4.4.10), we have

IA1:A2(q) = IA1:A2 − 1

2
log


2K

π

log(˜̀δ
1) log(˜̀δ

2)

log
(

˜̀δ
1
˜̀δ
2(1− x)

)


− 1

2
− 2q2π4 ξ

K2 log2
(

˜̀
1
˜̀
2(1− x)

)

−π4 ξ
2

K2

(
1

log ˜̀
1

+
1

log ˜̀
2

− 1

log(˜̀
1
˜̀
2(1− x))

)

+
π4

K2
ξ

∫ ∞

−∞
p(q1, q − q1)

[
q2

1

log2 ˜̀
1

+
(q − q1)2

log2 ˜̀
2

]
dq1, (4.4.14)

where IA1:A2 is the total mutual information of Eq. (1.1.10) (when n→ 1) and we have introduced
the rescaled subsystem length ˜̀δ

p = δ`p. As we anticipated, the symmetry resolved mutual infor-
mation is not a good measure of total correlations between A1 and A2 in each symmetry sector
since it can assume negative values. Finally, we can also derive the number mutual information
defined in Eq. (1.3.8). Applying in that formula the result for IA1:A2(q) obtained in Eq. (4.4.14),
we have

IA1:A2
num =

1

2
log


2K

π

log(˜̀δ
1) log(˜̀δ

2)

log
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˜̀δ
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˜̀δ
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1
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+

2π2ξ

K log
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−π4 ξ
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log ˜̀
2

− 1

log(˜̀
1
˜̀
2(1− x))

)

−π4 ξ

K2
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−∞
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1 (q1, q − q1)

[
q2

1

log2 ˜̀
1

+
(q − q1)2

log2 ˜̀
2

]
dq1dq.

(4.4.15)

Since q = q1 + q2 and

∫ ∞

−∞
ZA1:A2

1 (q1, q2)q2
pdq1dq2 =

K log ˜̀
p

π2
, p = 1, 2, (4.4.16)
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then Eq. (4.4.15) becomes

IA1:A2
num =

1

2
log

[
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π

log(˜̀δ
1) log(˜̀δ
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log(˜̀δ
1
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1

log ˜̀
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log(˜̀
1
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. (4.4.17)

In the limit `1, `2, d→∞, this expression behaves as

IA1:A2
num ∼ 1

2
log

[
2K

π

log `1 log `2
log (`1`2(1− x))

]
+

1

2
. (4.4.18)

This result resembles the one for the number entropy of a single interval (see e.g. [90]), where a
double logarithmic correction in the subsystem length also appears, even though, in our case, the
dependence on the parameters `1, `2, d is more involved. On the other hand, it is a simple function
of the Luttinger parameter K since, as we already pointed out, the only effect of K in the Gaussian
factor of the Fourier transform of the multi-charged moments is renormalising its variance.

4.5 Closing remarks

In this Chapter, we have computed the multi-charged moments of two intervals in the ground state
of the free massless Dirac field and the massless compact boson, with arbitrary compactification
radius. Using the replica approach, the multi-charged moments are given by the partition function
of the theory on a higher genus Riemann surface with a different magnetic flux inserted in each
interval. We have carried out the analysis of such partition function for the two CFTs under
investigation in full generality, allowing the background magnetic flux to generate a different twist
boundary condition at each end-point of the intervals.

The multi-charged moments analysed here can be used to study the symmetry decomposition
of the negativity in imbalance sectors [116]. A further generalisation is to identify the holographic
dual of the multi-charged moments, which would be the starting point to compute the symmetry
resolved mutual information in the AdS/CFT correspondence, as done for the entanglement en-
tropy in Ref. [128]. Partition functions with twisted boundary conditions, as the ones considered
here, have been also proposed as non-local order parameters to distinguish various topological
phases of spin chains [165, 166]. We think that our analysis for the multi-charged moments can
be useful to make progresses also in that direction. Finally, it would be interesting to obtain a
rigorous proof of the identities for the prime forms that we have found and numerically checked
here.

4.A Numerical Methods

For the numerical test of our field theory results, we consider the following lattice discretisation of
the Dirac fermion, known as tight-binding model,

H = −1

2

∞∑

j=−∞
(c†j+1cj + h.c.), (4.A.1)
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where c†j and cj are fermionic creation and annihilation operators that satisfy the anti-commutation

relations {cj , c†k} = δjk. In terms of them, the charge operator reads

Q =
∞∑

j=−∞

(
c†jcj −

1

2

)
. (4.A.2)

The two-point correlation functions in the ground state of Eq. (4.A.1) are of the form

〈c†jck〉 =
sin(π(j − k))

2π(j − k)
, (4.A.3)

and, due to the particle number conservation, 〈cjck〉 = 0. As well-known [169, 171], the moments
Tr[ρnA] can be calculated from the restriction of the two-point correlation matrix to the subsystem

A, that is (CA)j,k = 〈c†jck〉, with j, k ∈ A. The charged moments ZA=A1∪A2
n (α) can also be easily

computed numerically in terms of the matrix CA using the formula [84,90]

ZA=A1∪A2
n (α) =

`1+`2∏

j=1

[(εj)
neiα/2 + (1− εj)ne−iα/2], (4.A.4)

where εj are the eigenvalues of CA and `p is the number of sites in the interval Ap. In the case
of the multi-charged moments ZA1:A2(α, β) defined in Eq. (1.4.23), the method used to compute
ZAn (α) can not be applied since ρA does not commute with the charges QA1 and QA2 of the two
parts of A. Following Ref. [133] (which was based on [272]), we rewrite Eq. (1.4.23) as

ZA1:A2
1 (α, β) = Z̃ATrA(ρAρ̃A), (4.A.5)

where

ρ̃A =
1

Z̃A
eiαQA1

+iβQA2 , Z̃A = TrA(eiαQA1
+iβQA2 ). (4.A.6)

Although ρ̃A is not a density matrix, it is a Gaussian operator with an associated two-point
correlation matrix, C̃A, given by

(C̃A)kj = δkj

{
eiα

1+eiα
j ∈ A1,

eiβ

1+eiβ
j ∈ A2.

(4.A.7)

Applying the rules for the composition of Gaussian operators [174] and introducing W = 2CA− I,
we get [133]

ZA1:A2
1 (α, β) = (e−iα/2 + eiα/2)`1(e−iβ/2 + eiβ/2)`2det

(
1`1+`2 +Wαβ

2

)
, (4.A.8)

where

Wαβ =

(
W11 W12

W21 W22

)( eiα−1
eiα+1

1`1 0

0 eiβ−1
eiβ+1

1`2

)
, (4.A.9)

and the notation Wpp′ , p, p
′ = 1, 2, refers to correlations between sites in Ap and Ap′ . This result

allows to exactly compute the multi-charged moments in the tight-binding model for different
values of α and β, as showed in Fig. 4.1. The Fourier transform of ZA1:A2

1 (α, β) gives the quantities
ZA1:A2

1 (q1, q2) analysed in Fig. 4.2.



Chapter 5

Generalised entanglement entropies
in two-dimensional conformal field
theory

In this Chapter we introduce and study the generalised Rényi entropies defined through the traces
of products of TrB(|Ψi〉〈Ψj |) where |Ψi〉 are eigenstates of a 2d CFT. When |Ψi〉 = |Ψj〉 these
objects reduce to the standard Rényi entropies of the eigenstates of the CFT. Exploiting the path
integral formalism, we show that the second generalised Rényi entropies are equivalent to four
point correlators. We then focus on a free bosonic theory for which the mode expansion of the
fields allows us to develop an efficient strategy to compute the second generalised Rényi entropy
for all eigenstates. As a byproduct, our approach also leads to new results for the standard Rényi
and relative entropies involving arbitrary descendent states of the bosonic CFT. This Chapter is
based on Ref. [275]

5.1 Introduction

An old and fundamental result that we reviewed in Chapter 1 is that the ground state entanglement
entropy is universal [17, 20, 21]. The same is also true for all low-energy eigenstates [153, 276].
Indeed, denoting by ρΥ the RDM of the state associated to the field Υ by the operator-state
correspondence (and hence ρ1 is the ground-state RDM), the ratio

FΥ,n(A) ≡ TrρnΥ
Trρn

1

= exp[(1− n)(S
(n)
A,Υ − S

(n)
A,GS)], (5.1.1)

is universal and calculable in CFT [153,154]. The universal function FΥ,n(A) measures the excess
of entanglement of the excited state |Υ〉 with respect to the ground state value. The simplest
class of excited states in a CFT are those generated by the action of a primary field Υ. The von
Neumann and Rényi entropies in excited states of CFT have then been the subject of intensive
investigations [117,153,154,277–290].

Another important quantum information quantity encoding the universal features of CFT low-
lying excited states is the relative entanglement entropy [119,291–304]. Given two RDMs, ρ1 and
ρ0, the relative entropy is defined as [306,307]

SA(ρ1‖ρ0) = Tr (ρ1 log ρ1)− Tr (ρ1 log ρ0) , (5.1.2)

and can be interpreted as a measure of distinguishability of the two RDMs, providing a sort of
distance between them in the Hilbert space (despite not being a proper metric because it is not

79
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symmetric in ρ1 and ρ0). In a replica approach, SA(ρ1‖ρ0) can be obtained as the limit for n→ 1
of the logarithm of the universal ratio [291,303]

Gn,A(ρ1||ρ0) ≡ Tr(ρ1ρ
n−1
0 )

Trρn1
. (5.1.3)

Similar quantities are also the starting point for the replica approach to the trace distance [308–
310]. Both Eq. (5.1.1) and Eq. (5.1.3) have been studied intensively for the lowest-energy states
corresponding to primary fields. Conversely, the study of descendant states (obtained from the
primaries by the application of conformal generators) has been limited to a very few cases [283,285].
The drawback of the method of Refs. [283,285] is that it becomes more and more cumbersome as
the conformal level increases. Here we develop a strategy to obtain the Rényi entropies of excited
states which is a more efficient way for theories with central charge c = 1 for which we can use the
free boson representation.

As part of this, we introduce a novel quantity that we dub generalised mixed state Rényi
entropies (GMSREs) defined as

Ri1,j1;...;in,jn = TrA

(
n∏

t=1

TrB |Ψit〉 〈Ψjt |
)
, (5.1.4)

where |Ψit〉 is the t-th copy (1 ≤ t ≤ n) of states |ψi〉 of the CFT. For brevity, we will often refer to
them as generalised Rényi entropies. This object reduces to the usual Rényi entropies of excited
states when |Ψit〉 〈Ψjt | = δi,j |Ψi〉 〈Ψj | for each t-th copy. Let us stress that the states ψil in each
copy can be different CFT eigenstates, i.e. ψi1 6= ψi2 . Moreover, the CFT eigenstates are also
known in literature as dilatation eigenstates, since they are the eigenstates of the CFT Hamiltonian
given by the Virasoro generators L0 + L̄0 (up to a constant), which is the dilatation operator.
These objects also resemble the notion of pseudo-entropies recently introduced in [311,312], whose
reduced density matrix is defined in terms of two different states. Apart from their intrinsic interest,
these generalised non-diagonal entropies represent the building blocks for the calculation of the
entanglement entropies in states that can be written as a linear combination of the elements of the
CFT basis, as happens for example, in the truncated conformal space approach [305,313–315].

The Chapter is organised as follows. In Sec. 5.2 we outline the path integral approach to the
second generalised Rényi entropy and we show that it can be rewritten as a correlation function.
In Sec. 5.3 we focus on the bosonic theory and we develop a CFT approach to compute the second
generalised entropy for an arbitrary state of the CFT. We start from some simple examples and
piece by piece, we lead the reader to the most general case in Sec. 5.4. Finally, we conclude and
discuss some future perspectives in Sec. 5.5.

5.2 Path integral for the second generalised Rényi entropy

In this section, we focus on the second generalised Rényi entropy and we show that its calculation
within the path integral formalism reduces to the computation of a four point correlator, by
generalising the one for the ground state done in Sec. 1.4. Let L be the total length of a periodic
1D system, A a subsystem consisting of a segment of length `, i.e A = [u, v] with v − u = `, and
B its complement. Because of the state-operator correspondence in CFT, each eigenstate |Ψit〉 is
generated by an operator Ψit , acting on the vacuum and placed at the infinite past. Hence, the path
integral representation of the off-diagonal density matrix |Ψi〉 〈Ψj | is given, up to a normalisation
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t = �1

<latexit sha1_base64="6QeLx1qoFCQYF14me2B4KaYCbiE=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgxbJbKnoRCl48VrAf0i4lm2bb0CS7JLPCsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUEsuAHX/XYKa+sbm1vF7dLO7t7+QfnwqG2iRFPWopGIdDcghgmuWAs4CNaNNSMyEKwTTG5nfueJacMj9QBpzHxJRoqHnBKw0iPcXPS5CiEdlCtu1Z0DrxIvJxWUozkof/WHEU0kU0AFMabnuTH4GdHAqWDTUj8xLCZ0QkasZ6kikhk/mx88xWdWGeIw0rYU4Ln6eyIj0phUBrZTEhibZW8m/uf1Egiv/YyrOAGm6GJRmAgMEZ59j4dcMwoitYRQze2tmI6JJhRsRiUbgrf88ipp16pevXp5X680ankcRXSCTtE58tAVaqA71EQtRJFEz+gVvTnaeXHenY9Fa8HJZ47RHzifP4W2kDA=</latexit>

t = 0�

<latexit sha1_base64="tz4mMzNPwc7Vb9bAq65fAg5y/dM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgxZKUil6EghePFUxbaGPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvCARXKPjfFuFtfWNza3idmlnd2//oHx41NJxqijzaCxi1QmIZoJL5iFHwTqJYiQKBGsH49uZ335iSvNYPuAkYX5EhpKHnBI0koc3zuNFv1xxqs4c9ipxc1KBHM1++as3iGkaMYlUEK27rpOgnxGFnAo2LfVSzRJCx2TIuoZKEjHtZ/Njp/aZUQZ2GCtTEu25+nsiI5HWkygwnRHBkV72ZuJ/XjfF8NrPuExSZJIuFoWpsDG2Z5/bA64YRTExhFDFza02HRFFKJp8SiYEd/nlVdKqVd169fK+XmnU8jiKcAKncA4uXEED7qAJHlDg8Ayv8GZJ68V6tz4WrQUrnzmGP7A+fwDs0I4Q</latexit>

 i

<latexit sha1_base64="lD9iziC9iYzLSg5/LtEBYpryw9U=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWih4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukdr9p+IAPyhWv6i2A14mfkwrkaA7KX/2homnMpKWCGNPzvcQGGdGWU8FmpX5qWELohIxYz1FJYmaCbHHtDF84ZYgjpV1Jixfq74mMxMZM49B1xsSOzao3F//zeqmNboKMyyS1TNLloigV2Co8fx0PuWbUiqkjhGrubsV0TDSh1gVUciH4qy+vk3at6terV/f1SqOWx1GEMziHS/DhGhpwB01oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AG27jv4=</latexit>

�0

<latexit sha1_base64="DEyv0Q8BS3Bc+4eVk6qVbOB2A1c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbRU0lKRY8FLx4r2A9oQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKrX5zLC4H5YpbdRcg68TLSQVyNAflr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWapoxI2fLY6dkQurDEkYa1sKyUL9PZHRyJhpFNjOiOLYrHpz8T+vl2J462dCJSlyxZaLwlQSjMn8czIUmjOUU0so08LeStiYasrQ5lOyIXirL6+Tdq3q1avXD/VKo5bHUYQzOIcr8OAGGnAPTWgBAwHP8ApvjnJenHfnY9lacPKZU/gD5/MHQhOOSA==</latexit>

t = 0+

<latexit sha1_base64="1lXVUI0bB3rOth2mQd/j7cO5SR8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIsgCCUpFb0IBS8eK5i20May2W7apZtN2J0IJfQ3ePGgiFd/kDf/jds2B219MPB4b4aZeUEiuEbH+bYKa+sbm1vF7dLO7t7+QfnwqKXjVFHm0VjEqhMQzQSXzEOOgnUSxUgUCNYOxrczv/3ElOaxfMBJwvyIDCUPOSVoJA9vnMeLfrniVJ057FXi5qQCOZr98ldvENM0YhKpIFp3XSdBPyMKORVsWuqlmiWEjsmQdQ2VJGLaz+bHTu0zowzsMFamJNpz9fdERiKtJ1FgOiOCI73szcT/vG6K4bWfcZmkyCRdLApTYWNszz63B1wximJiCKGKm1ttOiKKUDT5lEwI7vLLq6RVq7r16uV9vdKo5XEU4QRO4RxcuIIG3EETPKDA4Rle4c2S1ov1bn0sWgtWPnMMf2B9/gDpyI4O</latexit>

 j

<latexit sha1_base64="rizY66PJNoDl9UXQGxfq7mIeOJU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGiB4DXjxGMImQLGF2MptMMo9lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaUfI2woZ5K2LLOcPiaaYhFx2okmt3O/80S1YUo+2GlCQ4GHksWMYOukdq9pWH/cL1f8qr8AWidBTiqQo9kvf/UGiqSCSks4NqYb+IkNM6wtI5zOSr3U0ASTCR7SrqMSC2rCbHHtDF04ZYBipV1Jixbq74kMC2OmInKdAtuRWfXm4n9eN7XxTZgxmaSWSrJcFKccWYXmr6MB05RYPnUEE83crYiMsMbEuoBKLoRg9eV10q5Vg3r16r5eadTyOIpwBudwCQFcQwPuoAktIDCGZ3iFN095L96797FsLXj5zCn8gff5A28/jv8=</latexit>

�00

<latexit sha1_base64="A+QHvduZRHSbfWwsyzC8gP2D9rU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRapp7JbKnosePFYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpaJIrRNJJeqF2BNORO0bZjhtBcriqOA024wvc387hNVmknxYGYx9SM8FixkBBsrdQatCatWh+WKW3MXQOvEy0kFcrSG5a/BSJIkosIQjrXue25s/BQrwwin89Ig0TTGZIrHtG+pwBHVfrq4do4urDJCoVS2hEEL9fdEiiOtZ1FgOyNsJnrVy8T/vH5iwhs/ZSJODBVkuShMODISZa+jEVOUGD6zBBPF7K2ITLDCxNiASjYEb/XlddKp17xG7eq+UWnW8ziKcAbncAkeXEMT7qAFbSDwCM/wCm+OdF6cd+dj2Vpw8plT+APn8wejv455</latexit>

 j

<latexit sha1_base64="rizY66PJNoDl9UXQGxfq7mIeOJU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGiB4DXjxGMImQLGF2MptMMo9lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaUfI2woZ5K2LLOcPiaaYhFx2okmt3O/80S1YUo+2GlCQ4GHksWMYOukdq9pWH/cL1f8qr8AWidBTiqQo9kvf/UGiqSCSks4NqYb+IkNM6wtI5zOSr3U0ASTCR7SrqMSC2rCbHHtDF04ZYBipV1Jixbq74kMC2OmInKdAtuRWfXm4n9eN7XxTZgxmaSWSrJcFKccWYXmr6MB05RYPnUEE83crYiMsMbEuoBKLoRg9eV10q5Vg3r16r5eadTyOIpwBudwCQFcQwPuoAktIDCGZ3iFN095L96797FsLXj5zCn8gff5A28/jv8=</latexit>

 i

<latexit sha1_base64="lD9iziC9iYzLSg5/LtEBYpryw9U=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWih4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukdr9p+IAPyhWv6i2A14mfkwrkaA7KX/2homnMpKWCGNPzvcQGGdGWU8FmpX5qWELohIxYz1FJYmaCbHHtDF84ZYgjpV1Jixfq74mMxMZM49B1xsSOzao3F//zeqmNboKMyyS1TNLloigV2Co8fx0PuWbUiqkjhGrubsV0TDSh1gVUciH4qy+vk3at6terV/f1SqOWx1GEMziHS/DhGhpwB01oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AG27jv4=</latexit>

A

TrB

<latexit sha1_base64="ADyrVTm0TM93k4L6uI7FnT8JjmE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktLXosevFYoV/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSsq6NEEdohEY9UP8CaciZpxzDDaT9WFIuA014wu8/83hNVmkWybeYx9QWeSBYygk0mtdXoblSuuFV3CbRJvJxUIEdrVP4ajiOSCCoN4VjrgefGxk+xMoxwuigNE01jTGZ4QgeWSiyo9tPlrQt0ZZUxCiNlSxq0VH9PpFhoPReB7RTYTPW6l4n/eYPEhLd+ymScGCrJalGYcGQilD2OxkxRYvjcEkwUs7ciMsUKE2PjKdkQvPWXN0m3VvXq1cZjvdKs5XEU4QIu4Ro8uIEmPEALOkBgCs/wCm+OcF6cd+dj1Vpw8plz+APn8we/TI4B</latexit>

�00

<latexit sha1_base64="A+QHvduZRHSbfWwsyzC8gP2D9rU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRapp7JbKnosePFYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpaJIrRNJJeqF2BNORO0bZjhtBcriqOA024wvc387hNVmknxYGYx9SM8FixkBBsrdQatCatWh+WKW3MXQOvEy0kFcrSG5a/BSJIkosIQjrXue25s/BQrwwin89Ig0TTGZIrHtG+pwBHVfrq4do4urDJCoVS2hEEL9fdEiiOtZ1FgOyNsJnrVy8T/vH5iwhs/ZSJODBVkuShMODISZa+jEVOUGD6zBBPF7K2ITLDCxNiASjYEb/XlddKp17xG7eq+UWnW8ziKcAbncAkeXEMT7qAFbSDwCM/wCm+OdF6cd+dj2Vpw8plT+APn8wejv455</latexit>

�0

<latexit sha1_base64="DEyv0Q8BS3Bc+4eVk6qVbOB2A1c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbRU0lKRY8FLx4r2A9oQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKrX5zLC4H5YpbdRcg68TLSQVyNAflr/4wZmnEFTJJjel5boJ+RjUKJvms1E8NTyib0BHvWapoxI2fLY6dkQurDEkYa1sKyUL9PZHRyJhpFNjOiOLYrHpz8T+vl2J462dCJSlyxZaLwlQSjMn8czIUmjOUU0so08LeStiYasrQ5lOyIXirL6+Tdq3q1avXD/VKo5bHUYQzOIcr8OAGGnAPTWgBAwHP8ApvjnJenHfnY9lacPKZU/gD5/MHQhOOSA==</latexit>
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τ = 0−

τ = − ∞

Figure 5.1: Left: Path integral representation of matrix elements of |Ψi〉 〈Ψj |, cf. Eq. (5.2.1).
Right: Path integral representation of TrB(|Ψi〉 〈Ψj |), as in Eq. (5.2.2).

constant, by

〈Φ′ |Ψi〉 〈Ψj |Φ′′〉 ∝
∫
Dϕe−S(ϕ)

∏

x

(δ(ϕ(x, τ = 0−)− Φ′(x)))Ψi(τ = −∞)

×
∏

x

(δ(ϕ(x, τ = 0+)− Φ′′(x)))Ψj(τ =∞), (5.2.1)

where the geometry of the integration surface is an infinite cylinder with a discontinuity of the
field configurations at τ = 0 and S(ϕ) is the Euclidean action of the theory we are interested in
(e.g. in the following we will focus on the bosonic CFT). We represent Eq. (5.2.1) graphically in
the left panel of Fig. 5.1.

Let us now compute the off-diagonal reduced density matrix by tracing over the subsystem B
(see the right panel of Fig. 5.1):

〈Φ′|TrB(|Ψi〉 〈Ψj |) |Φ′′〉 = Cij

∫
Dϕe−S(ϕ)

∏

x∈A
(δ(ϕ(x, τ = 0−)− Φ′(x)))Ψi(τ = −∞)

×
∏

x∈A
(δ(ϕ(x, τ = 0+)− Φ′′(x)))Ψj(τ =∞), (5.2.2)

where Cij is a normalisation factor. By imposing the normalisation of the off-diagonal reduced
density matrix to be TrA(TrB(|Ψi〉 〈Ψj |)) = δij , we can fix the constant Cij as

δij = CijZ 〈Ψj(τ =∞)Ψi(τ = −∞)〉 . (5.2.3)

Here Z and 〈Ψj(τ =∞)Ψi(τ = −∞)〉 are, respectively, the partition function and the correlation
function of the two fields.

As already mentioned, we are interested in the second generalised Rényi entropy. We thus
make two copies of Eq. (5.2.2), and glue them together cyclically such that

ϕ1(x, τ = 0+) = ϕ2(x, τ = 0−), ϕ2(x, τ = 0+) = ϕ1(x, τ = 0−), ∀x ∈ A. (5.2.4)

Starting from Eq. (5.2.2), we find the following expression for the elements of the off-diagonal
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τ

Figure 5.2: Representation of the spacetime geometry involving a 2-sheeted Riemann surface, R2,
that appears in computing the second generalised entropy Ri,j;i′,j′ in Eq. (5.2.6).

second Rényi entropy

〈Φ′|TrB(|Ψi〉 〈Ψj |)TrB(|Ψi′〉 〈Ψj′ |) |Φ′′〉 = CijCi′j′

∫
Dϕ1Dϕ2e

−S(ϕ1)−S(ϕ2)

×
∏

x∈A
(δ(ϕ1(x, τ = 0−)− Φ′(x)))

∏

x∈A
(δ(ϕ2(x, τ = 0+)− Φ′′(x)))

×Ψi(τ = −∞)Ψj(τ =∞)Ψi′(τ = −∞)Ψj′(τ =∞), (5.2.5)

where the path-integral is done over a 2-sheeted Riemann surface such that the first equality in
Eq. (5.2.4) holds. Let us notice that the field ϕ1 along A at τ = 0− is fixed at Φ′, while ϕ2 at
τ = 0+ is fixed at Φ′′. Thus, by taking the trace over A, i.e. using also the second identification
in Eq. (5.2.4), we obtain an expression for the second generalised Rényi entropy

Ri,j;i′,j′ = TrA(TrB(|Ψi〉 〈Ψj |)TrB(|Ψi′〉 〈Ψj′ |)) = CijCi′j′

∫
Dϕ1Dϕ2e

−S(ϕ1)−S(ϕ2)

×
∏

x∈A
δ(ϕ1(x, τ = 0−)− Φ′(x))δ(ϕ2(x, τ = 0+)− Φ′′(x))Ψi(τ = −∞)Ψj(τ =∞)Ψi′(τ = −∞)

×Ψj′(t =∞) = CijCi′j′Z2(A) 〈Ψi(τ = −∞)Ψj(τ =∞)Ψi′(τ = −∞)Ψj′(τ =∞)〉R2
, (5.2.6)

where R2 is the 2-sheeted Riemann surface that results from the sewing of the two copies of the
original cylinder along the cuts associated with the interval A and Z2(A) is the partition function
in the same geometry. This path integral is over a spacetime pictured in Fig. 5.2. The result in
Eq. (5.2.6) shows that the second generalised entropy reduces to a 4-point correlation function.

Before embarking in the calculation of Eq. (5.2.6), we fix the normalisation constants, Cij ’s.
As already discussed, the constants Cij ’s are independent of A. Thus if the segment A shrinks to
zero, we decouple the two Riemann sheets and the 4-point function factorises into a product of
2-point ones:

CijCi′j′Z
2 〈Ψi(τ = −∞)Ψj(τ =∞)〉R1

〈Ψi′(τ = −∞)Ψj′(τ =∞)〉R1
= δijδi′j′ . (5.2.7)

Now if we take the segment A to be the entire system (as the TrB operation is trivial), the two
sheets of the Riemann surface are again no longer connected and

CijCi′j′Z
2 〈Ψi(τ = −∞)Ψj′(τ =∞)〉R1

〈Ψi′(τ = −∞)Ψj(τ =∞)〉R1
= δij′δi′j , (5.2.8)

i.e. the four-point function still factorises even though differently with respect to Eq. (5.2.7).
Hence, the constant may be fixed as

Cij =
1

Z
√
〈Ψi(τ = −∞)Ψi(τ =∞)〉R1

〈Ψj(τ = −∞)Ψj(τ =∞)〉R1

, (5.2.9)
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and we can express ratios of the generalised entropies in terms of universal quantities:

Ri,j;i′,j′

R1,1;1,1
=FiFjFi′Fj′ 〈Ψi(τ = −∞)Ψj(τ =∞)Ψi′(τ = −∞)Ψj′(τ =∞)〉R2

,

Fi =
1√

〈Ψi(τ = −∞)Ψi(τ =∞)〉R1

.
(5.2.10)

This expression can be easily extended to the n-th order generalised Rényi entropy introduced in
Eq. (5.1.4) as

Ri1,j1;...;in,jn

R1,1;...;1,1

= Fi1Fj1 . . . FinFjn 〈Ψi1(τ = −∞)Ψj1(τ =∞) . . .Ψin(τ = −∞)Ψjn(τ =∞)〉Rn . (5.2.11)

5.3 Bosonic theory: a CFT approach beyond primary fields

In the following sections, we compute the second generalised Rényi entropy for a massless free
bosonic field theory whose Euclidean action is (we report it here for completeness, but it is the
same action we already introduced in Eq. (4.3.1))

S(ϕ) =

∫ L

0
dxdτ

[
1

8π
∂µϕ(x, τ)∂µϕ(x, τ)

]
. (5.3.1)

The mode expansion of the field ϕ(x, τ) is [269]

ϕ(x, τ) = ϕ0 − i
4π

L
π0τ + i

∑

k 6=0

1

k
(ake

2πk(ix−τ)
L − ā−ke

2πk(ix+τ)
L ). (5.3.2)

Here in Eq. (5.3.2) ϕ0 is the bosonic zero mode and π0 is its conjugate momenta. The modes
a−k, ā−k can be obtained as follows:

a−k = −e
− 2πkτ

L

2π

∫
dxe

2πik
L

x∂ωϕ, ω = x+ iτ ; (5.3.3)

ā−k =
e−

2πkτ
L

2π

∫
dxe−

2πik
L

x∂ω̄ϕ, ω̄ = x− iτ. (5.3.4)

Each mode a−k, ā−k carries momentum ±2πk/L.
In Refs. [153,303], Eq. (5.1.1) and Eq. (5.1.3), respectively, have been computed for the excited

states generated by primary fields of a free massless bosonic field described by Eq. (5.3.1). The
primary fields of the theory consists just of the vertex operator, Vα,ᾱ, and the derivative field
i∂ωϕ [269]. The general state can be written in terms of the modes as

|Ψi〉 = a−k1 . . . a−ki |Mi〉 , |Mi〉 =: eiMiβϕ(0) : |0〉 , (5.3.5)

with |Mi〉 being the highest weight states and : eiMiβϕ(0) : is a vertex operator (:: denotes the
normal ordering prescription in its mode expansion, i.e. positive modes should appear to the right
of negative ones). Here β marks the compactification radius, β−1, of the boson:

ϕ(x+ L) ≡ ϕ(x) + 2πβ−1, (5.3.6)

and Mi is an integer. In the following sections, we develop an efficient strategy to compute the
generalised Rényi entropies involving descendant states.
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5.3.1 A warmup: zero-momentum states with a pair of chiral and anti-chiral
modes

As a first non-trivial example, let us evaluate the second generalised Rényi entropy for the following
(normalised) states that involve a chiral and anti-chiral mode whose momentum sums to zero:

Rk1,k2;k3,k4 = TrA(TrB(
1

k1
a−k1 ā−k1 |0〉 〈0|

1

k2
ak2 āk2)TrB(

1

k3
a−k3 ā−k3 |0〉 〈0|

1

k4
ak4 āk4)). (5.3.7)

We can write the state 1
ka−kā−k |0〉 as

1

k
a−kā−k |0〉 = − 1

4π2k
e−

4πkτ−
L

∫ L

0
dx1dx1′e

2πik
L

(x1−x1′ )∂ω1ϕ(ω1)∂ω̄1′ϕ(ω̄1′) |0〉 , (5.3.8)

where ω1,1′ = x1,1′+iτ−, τ± = ±∞. Since these states are normalised, the F -factors of Eq. (5.2.10)
are simply 1. With this representation, we can write Rk1,k2;k3,k4 as

Rk1,k2;k3,k4

R1,1;1,1
=

1

256π8
∏4
i=1 ki

e
4π
L

(k2+k4)τ+e−
4π
L

(k1+k3)τ−I1234Ī1′2′3′4′ ,

I1234 =

∫ L

0
dx1dx2dx3dx4e

2πi
L

(k1x1+k3x3−k2x2−k4x4) 〈∂ϕ(ω1)∂ϕ(ω2)∂ϕ(ω3)∂ϕ(ω4)〉 ,

Ī1′2′3′4′ =

∫ L

0
dx1′dx2′dx3′dx4′e

− 2πi
L

(k1x1′+k3x3′−k2x2′−k4x4′ ) 〈∂ϕ̄(ω̄1′)∂ϕ̄(ω̄2′)∂ϕ̄(ω̄3′)∂ϕ̄(ω̄4′)〉

= I∗1234,

(5.3.9)

where w1,1′ = x1,1′ + iτ− and w2,2′ = x2,2′ + iτ+ are coordinates on the first Riemann sheet while
w3,3′ = x3,3′ + iτ− and w4,4′ = x4,4′ + iτ+ are coordinates on the second Riemann sheet.

Let us next compute the correlators appearing in Eq. (5.3.9). The complex coordinate ω = x+iτ
parametrises an infinite cylinder of length L and the interval A is identified with the domain
u < ω < v. This cylinder can be mapped into the complex plane by the conformal transformation

ξ =
sin(π(ω − u)/L)

sin(π(ω − v)/L)
, (5.3.10)

which maps the segment (u, v) into (−∞, 0). Then, the uniformizing map for R2, z = ξ1/2

tranforms the double-sheeted surface into a single sheet. As a consequence, the coordinates become

ω1,3 =x1,3 + iτ− → ξ− = eiπ(v−u)/L ≡ eiπr → z1 = eiπr/2, z3 = −eiπr/2, (5.3.11)

ω2,4 =x2,4 + iτ+ → ξ+ = e−iπ(v−u)/L ≡ e−iπr → z2 = e−iπr/2, z4 = −e−iπr/2, (5.3.12)

each of the points ξ− and ξ+ gives rise to two points in the Riemann surface R2 with coordinates
z1, z3 and z2, z4, respectively. Thus, we can write I1234 as (zij ≡ zi − zj)

I1234 =

∫ L

0
dx1dx2dx3dx4e

2πi
L

(k1x1+k3x3−k2x2−k4x4) dz

dω

∣∣∣
ω=ω1

dz

dω

∣∣∣
ω=ω2

dz

dω

∣∣∣
ω=ω3

dz

dω

∣∣∣
ω=ω4(

1

z2
23z

2
14

+
1

z2
12z

2
34

+
1

z2
13z

2
24

)
=

=

∮

C1
−

∮

C2
+

∮

C3
−

∮

C4
+

dz1dz2dz3dz4e
2πi
L

(k1x1+k3x3−k2x2−k4x4)

(
1

z2
23z

2
14

+
1

z2
12z

2
34

+
1

z2
13z

2
24

)
,

(5.3.13)
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where C1,3
− is a clockwise contour about z1,3 = ±eπir/2 and C2,4

+ is a counter clockwise contour

about z2,4 = ±e−πir/2. Using

e2πix1,3/L = e2πτ−/Le2πiv/L
z2

1,3 − e−iπr
z2

1,3 − eiπr
,

e2πix2,4/L = e−2πτ+/Le−2πiv/L
z2

2,4 − eiπr
z2

2,4 − e−iπr
,

(5.3.14)

we can evaluate

I1234 = e
2π
L

((k1+k3)τ−−(k2+k4)τ+) 16π4

∏4
i=1 Γ(ki)

S(r, k1, k2, k3, k4),

S(r, k1, k2, k3, k4) ≡ ∂k1−1
z1 ∂k2−1

z2 ∂k3−1
z3 ∂k4−1

z4

[(
z2

1 − e−iπr
z1 + eiπr/2

)k1
(

z2
2 − eiπr

z2 + e−iπr/2

)k2

(
z2

3 − e−iπr
z3 − eiπr/2

)k3
(

z2
4 − eiπr

z4 − e−iπr/2
)k4

(
1

z2
23z

2
14

+
1

z2
12z

2
34

+
1

z2
13z

2
24

)] ∣∣∣∣∣ z1,3=±eiπr/2
z2,4=±e−iπr/2

,

(5.3.15)

where Γ denotes the Gamma function. Therefore the second generalised entropy in Eq. (5.3.7)
reads

Rk1,k2;k3,k4

R1,1,1,1
=

1∏4
i=1 kiΓ(ki)2

|S(r, k1, k2, k3, k4)|2. (5.3.16)

For ki = 1, i = 1, . . . , 4, it reduces to

R1,1;1,1

R1,1;1,1
=

(7 + cos(2πr))4

642
. (5.3.17)

This result reproduces what has been found in [153] for the (chiral) primary field i∂ϕ. In a similar
way, we can compute

R0,1;1,0

R1,1;1,1
=

R1,0;0,1

R1,1;1,1
=

sin4 πr

16 cos4(πr/2)
,

R1,1;0,0

R1,1;1,1
=

R0,0;1,1

R1,1;1,1
=

sin4 πr

16 sin4(πr/2)
,

R1,0;1,0

R1,1;1,1
=

sin4(πr)

16
.

(5.3.18)

The quantity R0,0;1,1/R1,1;1,1 in Eq. (5.3.18) reproduces the results found for the relative entropy
of the state described by the primary operator i∂ϕ with respect to the ground state, G(ρGS ||ρi∂ϕ),
in Ref. [303].

5.3.2 An example involving vertex operators

As a second non-trivial example, we choose states involving both the derivative operator i∂ϕ and
vertex operators. In particular, we consider one of the states to be

Vα,ᾱ(ω, ω̄) |0〉 = (
iL

2π
e2πi/Lω)α

2/2(
iL

2π
e2πi/Lω̄)ᾱ

2/2 : ei(αϕ(ω)+ᾱϕ̄(ω̄)) : |0〉 , ω = iτ−. (5.3.19)
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Therefore the second generalised Rényi entropy we compute is

Rk1,k2;Vα,ᾱ,V−α,−ᾱ = TrA(TrB(
1

k1
a−k1 ā−k1 |0〉 〈0|

1

k2
ak2 āk2)TrB(Vα,ᾱ |0〉 〈0|V−α,−ᾱ)). (5.3.20)

If we rename Vα and Vᾱ the holomorphic and antiholomorphic part of the vertex operator, respec-
tively, Eq. (5.3.20) can be reformulated as

Rk1,k2;Vα,ᾱ,V−α,−ᾱ

R1,1,1,1
=

1

16π4k2
e−

4π
L

(k1τ−−k2τ+)I1234Ī1′2′3′4′ ;

I1234 =

∫ L

0
dx1dx2e

2πi
L

(k1x1−k2x2) 〈∂ϕ(ω1)∂ϕ(ω2)Vα(ω3)V−α(ω4)〉 ;

Ī1′2′3′4′ =

∫ L

0
dx1′dx2′e

− 2πi
L

(k1x1′−k2x2′ ) 〈∂̄ϕ̄(ω̄1′)∂̄ϕ̄(ω̄2′)Vᾱ(ω̄3)V−ᾱ(ω̄4)〉 = I∗1234.

(5.3.21)

Applying the conformal transformation of the primary fields, we obtain for the four point correla-
tion function involving both derivative and vertex operators the following

I1234 = −
(

sin(πr)

2 sin(πr/2)

)α2 ∫ L

0
dx1dx2e

2πi
L

(k1x1−k2x2) dz

dω

∣∣∣
ω=ω1

dz

dω

∣∣∣
ω=ω2

(
1

z2
12

+
α2z2

34

z13z23z14z24

)

= −
(

sin(πr)

2 sin(πr/2)

)α2 ∮

C−

∮

C+

dz1dz2e
2πi
L

(k1x1−k2x2)

(
1

z2
12

+
α2z2

34

z13z23z14z24

)
.

(5.3.22)

Let us notice that in evaluating the correlation function, any one of its term involves a single
contraction of ∂ϕ(zi) with one other operator: when contracted with another ∂ϕ(zj), it gives a
factor −1/(zi − zj)2, while when contracted with a vertex operator Vαj (zj) gives −iαj/(zi − zj).
On the other hand, the terms of the correlation function can involve contractions of Vαi(zi) with
multiple other operators. When contracted with another Vαj (zj) it gives a contribution (zi−zj)αiαj .
These rules will be useful for treating the most general case in Sec. 5.4.2.

Using Eqs. (5.3.14), we get

I1234 = e
2π
L

(k1τ−−k2τ+) 4π2

Γ(k1)Γ(k2)
S(r, α, k1, k2),

S(r, α, k1, k2) ≡
(

sin(πr)

2 sin(πr/2)

)α2

× ∂k1−1
z1 ∂k2−1

z2

[(
z2

1 − e−iπr
z1 + eiπr/2

)k1
(

z2
2 − eiπr

z2 + e−iπr/2

)k2
(

1

z2
12

+
α2z2

34

z13z23z14z24

)] ∣∣∣∣∣ z1,3=±eiπr/2
z2,4=±e−iπr/2

,

Rk1,k2;Vα,ᾱ,V−α,−ᾱ

R1,1,1,1
=

1∏2
i=1 kiΓ(ki)2

|S(r, α, k1, k2)|2.

(5.3.23)

5.3.3 A more complicated case: two chiral modes

The previous two examples have shown that we can focus only on the chiral states, since the
contributions of the chiral and anti-chiral parts to the GMSREs factorise. Hence, let us consider
an example in which there are states involving more than one chiral mode such as

R(1,1),(1,1);(1,1),(1,1) = TrA(TrB(a−1a−1 |0〉 〈0| a1a1)TrB(a−1a−1 |0〉 〈0| a1a1)). (5.3.24)
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The Fourier expansion of the field in Eq. (5.3.2) leads to

a−1a−1 |0〉 =
e−

2π(τ1+τ2)
L

4π2

∫
dx1dx2e

2πi
L

(x1+x2)∂ω1ϕ(ω1)∂ω2ϕ(ω2) |0〉 ; (5.3.25)

〈0| a1a1 =
e

2π(τ3+τ4)
L

4π2

∫
dx3dx4e

− 2πi
L

(x3+x4) 〈0| ∂ω3ϕ(ω3)∂ω4ϕ(ω4). (5.3.26)

Thus, the generalised entropy in Eq. (5.3.24) reads

R(1,1),(1,1);(1,1),(1,1)

R1,1,1,1
=

1
√

2
4

1

(4π2)4
e−

2π
L

(τ1+τ2−τ3−τ4+τ5+τ6−τ7−τ8)

×
∫ L

0
dx1 . . . dx8e

2πi
L

(x1+x2−x3−x4+x5+x6−x7−x8) 〈∂ω1ϕ(ω1) . . . ∂ω8ϕ(ω8)〉 , (5.3.27)

where 1√
2

4 normalises the states in Eq. (5.3.24). Once we perform the conformal mappings from the

two-sheeted Riemann surface R2 to a single complex plane, the previous integral can be computed
through the residue theorem. The points that the wi’s are mapped onto are given by

y1 = eiπr/2, y2 = e−iπr/2, y3 = −eiπr/2, y4 = −e−iπr/2. (5.3.28)

The difference with respect to the computations involving one single mode is that now the poles
seen by the spatial integrals can arise both from zi = yj but also from zi = zj . For future
convenience it is useful to write down the correlation function 〈∂z1ϕ(z1) . . . ∂z8ϕ(z8)〉 so that all
occurrences when there are contractions involving zi’s near the same point (one of the four yi) are
explicitly written, i.e.

〈∂z1ϕ(z1) . . . ∂z8ϕ(z8)〉 = 〈12345678〉′ + 1

z2
12

〈345678〉′ + 1

z2
34

〈125678〉′ + 1

z2
56

〈123478〉′

+
1

z2
78

〈123456〉′ + 1

z2
12z

2
34

〈5678〉′ + 1

z2
12z

2
56

〈3478〉′ + 1

z2
12z

2
78

〈3456〉′ + 1

z2
34z

2
56

〈1278〉′

+
1

z2
34z

2
78

〈1256〉′ + 1

z2
56z

2
78

〈1234〉′ + 1

z2
12z

2
34z

2
56z

2
78

. (5.3.29)

We use the prime, i.e. 〈. . .〉′, on the correlators to indicate that there are no contractions involving
(1, 2) or (3, 4) or (5, 6) or (7, 8). Hence, we can evaluate the primed correlation functions as

〈12345678〉′ =
∑

ijkl=1
ijkl all distinct

1

2

1

(yi − yj)4

1

(yk − yl)4
+

2
1

(yi − yj)2

1

(yi − yk)2

1

(yj − yl)2

1

(yk − yl)2
;

〈1 · · · 2̂i− 12̂i · · · 8〉′ =8
∑

jkl 6=i
j<k<l

1

(yj − yk)2

1

(yj − yl)2

1

(yk − yl)2
, i = 1, 2, 3, 4;

〈1 · · · 2̂i− 12̂i · · · 2̂j − 12̂j · · · 8〉′ =2
∑

k<l
k,l distinct from i,j

1

(yk − yl)4
, i < j, i, j = 1, 2, 3, 4.

(5.3.30)
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Let us now plug the results found in Eq. (5.3.30) in the integral in Eq. (5.3.27). We must evaluate
integrals of the form:

I12 =

∫ L

0
dx1dx2e

2π
L
i(x1+x2) 1

z2
12

∂ω1z1∂ω2z2

=

∮

C1
−

dz1

∮

C2
−

dz2e
2π
L

(τ1+τ2)e4πiv/R 1

z1 − y1

1

z2 − y1

1

(z1 − z2)2
f(z1, y1)f(z2, y1),

I13 =

∫ L

0
dx1dx3e

2π
L
i(x1−x3) 1

z2
13

∂ω1z1∂ω3z3

=

∮

C1
−

dz1

∮

C3
+

dz2e
2π
L

(τ1−τ3) 1

z1 − y1

1

z3 − y2

1

(z1 − z3)2
f(z1, y1)f(z3, y2),

(5.3.31)

where

f(zi, yj) =
z2
i − (y∗j )

2

zi + yj
. (5.3.32)

In order to do the first integral, we will take τ1 < τ2 (without loss of generality), such that the
contour C1

− is inside C2
−, i.e. we can first perform the integral C1

− followed by C2
− (similarly for

the integral along C3
+), with the result

I12 =− 4π2e2π(τ1+τ2)/Le4πiv/Lf(y1, y1)
1

2
∂2
zf(z, y1)|z=y1 = −π

2

y2
1

e
2π
L

(τ1+τ2)e4πiv/Lf(y1, y1)2,

I13 =4π2 1

(y1 − y2)2
e

2π
L

(τ1−τ3)f(y1, y1)f(y2, y2).

(5.3.33)

The dependence on τi’s cancel in Eq. (5.3.27), thus even though some wi’s are mapped onto the
same point once τi → ±∞, if we keep them finite, we can do the integral and then take the limit,
obtaining a finite result. We can then perform all the integrals along the lines discussed above and
put everything together to get

R(1,1),(1,1);(1,1),(1,1)

R1,1,1,1
=

1

4

[(7 + cos(2πr))

4096
(1606 + 335 cos(2πr) + 106 cos(4πr) + cos(6πr))

− sin6(πr)

2
+

(7 + cos(2πr))2 sin4(πr)

1024
+

sin8(πr)

256

]
=

88123 + 37256 cos(2πr) + 4604 cos(4πr) + 1080 cos(6πr) + 9 cos(8πx)

131072
. (5.3.34)

We observe that this result coincides with the second Rényi entropy for the first descendant in the
tower of a CFT with central charge c = 1, i.e., the state associated with the stress-energy tensor
T = L−21 ({Lp, p ∈ Z} from the Virasoro algebra [269]).

5.4 GMSREs for arbitrary bosonic states

In this section we report the results for the generalised Rényi entropies involving arbitrary bosonic
CFT states. To set the stage for the most general case, we first consider the case involving states
with arbitrary mode content but no vertex operators.
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5.4.1 Generalised mixed state Rényi entropies without vertex operators

Using what we have learnt from the previous simple examples, we now want to treat a much more
general case, involving an arbitrary (even) number of modes but without vertex operators, i.e.

Rk1,...;...kN = A1A2A3A4

TrA(TrB(

N1∏

i=1

a−ki |0〉 〈0|
N2∏

i=1

akN1+i
)TrB(

N3∏

i=1

a−kN1+N2+i
|0〉 〈0|

N4∏

i=1

akN1+N2+N3+i
)), (5.4.1)

where N = N1 +N2 +N3 +N4 is the total number of the modes. Here k1, . . . kN are all positive

integers and the Aj ’s denote the normalisation of the states a
nk1
−k1

. . . a
nkMj
−kMj

|0〉 which are given by

Aj = 1/(〈0|
Mj∏

i=1

aki)

Mj∏

i=1

a−ki |0〉)1/2 =
1

∏Mj

i=1

√
k
nki
i (nki !)

. (5.4.2)

Using the integral representation of modes, we have to compute the following correlation function:

〈
N1∏

i=1

∂ωiϕ(ωi)

N2∏

i=1

∂ωi+N1ϕ(ωi+N1)

N3∏

i=1

∂ωi+N1+N2
ϕ(ωi+N1+N2)

N4∏

i=1

∂ωi+N1+N2+N3
ϕ(ωi+N1+N2+N3)〉 =

N∏

i=1

∂ωizi
∑

σ∈SN
σ2i<σ2i+1

σ1<σ3<...σ2N−1

N/2∏

i=1

1

(zσ2i−1 − zσ2i)
2
, (5.4.3)

where the second line comes from the conformal mapping from the two-sheeted Riemann surface
to the plane. We can recognise that the last sum over σ ∈ SN , with SN the permutation group of

the N indices, can be compactly rewritten as Hf
(

1
(zi−zj)2

)
1≤i,j,≤N

, where Hf denotes the Hafnian

of a matrix B

Hf(B) =
1

2N/2N/2!

∑

σ∈SN

N/2∏

i=1

Bσ(2i−1),σ(2i), (5.4.4)

an object which contains (N − 1)!! terms. Let us now consider the needed integrations focusing
on one of the term in the above sum, i.e.

N/2∏

i=1

1

(zσ2i−1 − zσ2i)
2
. (5.4.5)

Its contribution to Rk1,...;...kN /R1,1,1,1 is

(−1)N1+N3e2πi v
L

(P1+P3−P2−P4)

N/2∏

i=1

W (kσ2i−1 , kσ2i , yσ2i−1 , yσ2i). (5.4.6)

The factor (−1)N1+N3 comes from the N contour integrals in total, N1 + N3 that are clockwise
and N2 +N4 that are counterclockwise. Here Pi (the total momentum of the state) are given by

Pi =

Ni∑

j=1

kj+
∑i−1
`=1N`

, i = 1 . . . 4, (5.4.7)
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and the yi’s, i = 1, . . . , N , are defined as

yi =





eiπr/2, 1 ≤ i ≤ N1;

e−iπr/2, N1 + 1 ≤ i ≤ N1 +N2;

−eiπr/2, N1 +N2 + 1 ≤ i ≤ N1 +N2 +N3;

−e−iπr/2, N1 +N2 +N3 + 1 ≤ i ≤ N1 +N2 +N3 +N4.

(5.4.8)

The evaluation of W (ki, kj , yi, yj) in Eq. (5.4.6) (for conciseness, we use the subscript (i, j) rather
than (σ2i−1, σ2i)) leads to

W (ki, kj , yi, yj) =





1
Γ(ki)

∑ki−1
l=0

(
ki−1
l

) Γ(ki−l+1)
Γ(ki+kj−l+1)(∂lzf

ki)(z = yi, yi)

×(∂
ki+kj−l
z fkj )(z = yj , z = yj), yi = yj ;

1
Γ(ki)Γ(kj)

∂ki−1
zi ∂

kj−1
zj

(
fki (zi,yi)f

kj (zj ,yj)
(zi−zj)2

) ∣∣∣zi=yi
zj=yj

yi 6= yj ;

(5.4.9)

This first case above (yi = yj) can be obtained by exploiting the product rule for higher-order
partial derivatives, i.e.

∂α(hg) =
∑

β+γ=α

α!

β!γ!
(∂βh)(∂γg), (5.4.10)

whose proof can be done by induction. Using this rule for h = f(zi, yi) and g = 1/(zi−zj)2, taking
the derivative with respect to zi, setting zi = yi, and then doing the integral in zj , we obtain the
first line of Eq. (5.4.9). This corresponds to the assumption τi < τj , but we can explicitly check
that nothing changes for zi ↔ zj . We have applied this same logic in solving the integral I12 in
Eq. (5.3.31). The second case of Eq. (5.4.9) is analogous to the solution of I13: it can be obtained
by simply applying the residue theorem since there are no contractions involving zi’s (i = 1, . . . N)
near the same point (one of four ±e±iπr/2). To summarise, we have

Rk1,...;...kN

R1,1;1,1
= A1A2A3A4(−1)N1+N3e2πi v

L
(P1+P3−P2−P4)Hf (W ) , (5.4.11)

where W is the matrix which enters in Eq. (5.4.6). This result can be extended to generalised
Rényi entropies with index n. The total number of modes is now given by N =

∑2n
i=1Ni, the set

of N points yk is defined by

yk =

{
eiπ

j
n

(r+m) ∑Nm
j=1Nj < k <

∑Nm+1

j=1 Nj − 1, m even;

eiπ
j
n

(−r+m−1) ∑Nm
j=1Nj < k <

∑Nm+1

j=1 Nj − 1, m odd,
(5.4.12)

while the formal expression for W (ki, kj , yi, yj) is the one defined in Eq. (5.4.9) with the following
definition for f ’s:

f(zi, yi) =





zni − eiπr∑n−1
j=0 z

n−j−1
i eiπ

j
n

(r+m)
, m even;

zni − e−iπr∑n−1
j=0 z

n−j−1
i eiπ

j
n

(−r+m−1)
, m odd.

(5.4.13)

Thus Eq. (6.3.17) becomes for generic n

Rk1,...;...kN

R1,...1;1,...1
= A1 · · ·A2n(−1)

∑
i odd Nie2πi v

L
(
∑
i odd Pi−

∑
i even Pi)Hf (W ) . (5.4.14)
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5.4.2 Generalised mixed state Rényi entropies with vertex operators

The most general case involves states with arbitrary vertex operator content:

Rα1,α2,α3,α4

k1,...,;...kN
= Aα1

1 Aα2
2 Aα3

3 Aα4
4

TrA(TrB(

N1∏

i=1

a−ki |α1〉 〈α2|
N2∏

i=1

akN1+i
)TrB(

N3∏

i=1

a−kN1+N2+i
|α3〉 〈α4|

N4∏

i=1

akN1+N2+N3+i
)) (5.4.15)

where the states |αi〉 are defined via

|α1,3〉 ≡ (
L

2πi
e

2πi
L
ωα1,3 )α

2
1,3/2 : eiα1,3ϕ(ωα1,3 ) : |0〉 ≡ cα1,3 : eiα1,3:ϕ(ωα1,3 ) : |0〉 , ωα1,3 = −i∞

〈α2,4| ≡ 〈0| (
L

2πi
e−

2πi
L
ωα2,4 )α

2
2,4/2 : eiα2,4ϕ(ωα2,4 ) :≡ 〈0| cα2,4 : eiα2,4ϕ(ωα2,4 ) :, ωα2,4 = i∞

(5.4.16)

and the A
αj
j are the normalisation of the states where now the vacuum is replaced by the state

created by the vertex operator, i.e.

A
αj
j = 1/(〈αj |

Nj∏

i=1+N1+···Nj−1

aki

Nj∏

i=1+N1+···Nj−1

a−ki |αj〉)1/2. (5.4.17)

Eq. (5.4.15) can be rewritten as

Rα1,α2,α3,α4

k1,...,kN

R1,1,1,1
=

(−1)N

(2π)N
e−

2π
L

∑N
i=1 σikiτiAα1

1 Aα2
2 Aα3

3 Aα4
4

×
∫ L

0
dx1dx2 . . . dxNe

2πi
L
σikixiC(ωα1 , ωα2 , ωα3 , ωα4 , ω1, . . . , ωN ), (5.4.18)

where σi = ±1 if the corresponding mode a is a creation/annihilation operator, the factor (−1)N

comes from representing each a in terms of ∂ωϕ(ω), and
C(ωα1 , ωα2 , ωα3 , ωα4 , ω1, . . . , ωN ) is given by

C(ωα1 , ωα2 , ωα3 , ωα4 , ω1, . . . , ωN ) = cα1cα2cα3cα4〈
N1∏

i=1

∂ωiϕ(ωi)e
iα1ϕ(ωα1 )eiα2ϕ(ωα2 )

×
N2∏

i=1

∂ωi+N1ϕ(ωi+N1)

N3∏

i=1

∂ωi+N1+N2
ϕ(ωi+N1+N2)eiα3ϕ(ωα3 )eiα4ϕ(ωα4 )

×
N4∏

i=1

∂ωi+N1+N2+N3
ϕ(ωi+N1+N2+N3)〉. (5.4.19)

This correlation function can be evaluated by considering all the possible contractions among
operators: eiαiϕ(ξi) must be contracted to all other operators, with a contribution (ξi − ξj)αiαj
when contracted with another eiαjϕ(ξj) and −iαi/(ξi − zj) when contracted with ∂ϕ(zj). The
operators ∂ϕ(zi) must be contracted with one operator at a time, giving a factor −1/(zi − zj)2

when contracted with another ∂ϕ(zj). These rules were the same already used to evaluate the
correlation function in Eq. (5.3.21).
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By summing up all these contributions, we get

C(ωα1 , ωα2 , ωα3 , ωα4 , ω1, . . . , ωN ) = M(α1, α2, α3, α4)

×
N∏

i=1

∂ωizi


〈∂z1ϕ . . . ∂zNϕ〉+ i

4∑

i

N∑

i′

αiαj
(ξi − zi′)

〈
N∏

l 6=i
∂zlϕ〉

−
4∑

i,j

N∑

i′<j′

αiαj
(ξi − zi′)(ξj − zj′)

〈
N∏

l 6=i,j
∂zlϕ〉

+

4∑

i,j,k

N∑

i′<j′<k′

αiαjαk
(ξi − zi′)(ξj − zj′)(ξk − zk′)

〈
N∏

l 6=i,j,k
∂zlϕ〉+ · · ·+ iN

4∑

i1,i2,...,iN

N∏

j=1

αij
(ξij − zj)


 .

(5.4.20)

The prefactor M(α1, α2, α3, α4) encodes all information about the purely vertex operator part of
the correlation function:

M(α1, α2, α3, α4) = cα1cα2cα3cα4 〈eiα1ϕ(ωα1 )eiα2ϕ(ωα2 )eiα3ϕ(ωα3 )eiα4ϕ(ωα4 )〉
4∏

i=1

(∂ωαizi)
α2
i /2|zi=yi

= sin
(πr

2

)α1α2+α3α4

cos
(πr

2

)α1α4+α2α3

× 2−ᾱ·ᾱ/2 sin(πr)ᾱ·ᾱ/2(e−iπre2πiv/R)(α2
1+α2

3−α2
2−α2

4)/2, (5.4.21)

with ᾱ = (α1, α2, α3, α4). When α1 = −α2 = α3 = −α4, M(α1, α2, α3, α4) = 1 as also found in
Ref. [153].

Writing the correlation function in this way allows us to express Rα1,α2,α3,α4

k1,...,kN
in terms of Rényi

entropies that do not involve the vertex operators, R0,0,0,0
k1,...,kN

, as follows:

Rα1,α2,α3,α4

k1,...,kN

R1,1,1,1
= M(α1, α2, α3, α4)

[R0,0,0,0
k1,...,kN

R1,1,1,1
+

N∑

i=1

R0,0,0,0

k1,...,k̂i...kN

R1,1;1,1
N(ki)Lki(ᾱ)

+
N∑

i1<i2

R0,0,0,0

k1,...,k̂i1 ...,k̂i2 ,...kN

R1,1;1,1
N(ki1 , ki2)Lki1 (ᾱ)Lki2 (ᾱ) + · · ·+

N∑

i1<i2,···<iN−2

R0,0,0,0

k1,...,k̂i1 ...,k̂i2 ,...k̂iN−2
...kN

R1,1;1,1
N(ki1 , ki2 , . . . , kiN−2)Lki1 (ᾱ)Lki2 (ᾱ) . . . LkiN−2

(ᾱ)

+

N∏

i=1

Lki(ᾱ).
]
, (5.4.22)

where k̂i′ indicates that the operator does not appear in the Rényi. Here the coefficients N(ki)
arise as normalisations of the states after some of the creation/annihilation operators have been
removed since we are dealing with Rényi entropies involving only properly normalised states. So
for example N(ki) for i < N1 reads

N(ki) =
(〈α1|

∏N1
j 6=i akj

∏N1
j 6=i a−kj |α1〉)1/2

(〈α1|
∏N1
j=1 akj

∏N1
j=1 a−kj |α1〉)1/2

. (5.4.23)
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The functions Li are defined as

Lkj (ᾱ) =
4∑

i=1

αiIij

Iij =
e−

2π
L
τjσjkj

2πi

∫ L

0
dxje

2π
L
ixjσjkj

1

ξi − zj
∂ωjzj .

(5.4.24)

The integral above gives

Iij =σje
2π
L
σjivJij ;

Jij =





1
Γ(kj+1)∂

kj
zj f

kj (zj , kj) i = j

1
Γ(kj)

∂
kj−1
zj

fkj (zj ,kj)
zj−yi i 6= j.

(5.4.25)

The terms like e
2π
L
σjivkj allow one to recover the factor e

2π
L

(P1+P3−P2−P4) in Eq. (5.4.6). Eq. (5.4.22)
is the main result of this Chapter. Despite its involved expression, it provides an efficient way to
compute any generalised mixed state Rényi entropy of a bosonic CFT involving arbitrary excited
states.

5.5 Closing remarks

In this Chapter we considered the generalised mixed state Rényi entropy defined in Eq. (5.1.4).
We developed a strategy to compute the aforementioned quantities for a bosonic CFT using the
representation of its Hilbert space in terms of massless modes and highest weight states created by
vertex operators. This procedure allowed us to recover some known results about the entanglement
of low-energy excitations represented by primary fields [153, 303] and of descendant states [283].
Exploiting the techniques of Sec. 1.4.3, one can aso numerically check our results for some simple
excited states, as it is reported in [275].

Although we provided explicit results only for a bosonic theory, our approach can be extended
to a generic state of a CFT written as a product of modes of primary fields (for example the
Ising CFT). Our results represent the starting point to apply the truncated conformal space ap-
proach [305,313] to the evaluation of the Rényi entropies in both equilibrium and non-equilibrium
situations. We use the results herein to describe the time evolution of the second Rényi entropy
after a quench in the sine-Gordon model [315], as we are going to illustrate in the following Chapter.

A straightforward use of our results is the computation of entanglement measures involving
two CFT states such as the relative entropy [292, 303] and the trace distance [308, 309]. Another
relatively simple extension concerns the resolution of entanglement in systems endowed with an
abelian symmetry [84]. A more challenging idea would be to derive similar non-diagonal objects
for the negativity [151,152].





Chapter 6

Post-Quantum Quench Growth of
Rényi Entropies in Low Dimensional
Continuum Bosonic Systems

The growth of Rényi entropies after the injection of energy into a correlated system provides
a window upon the dynamics of its entanglement properties. In this Chapter, we develop a
simulation scheme by which this growth can be determined in Luttinger liquids systems with
arbitrary interactions, even those introducing gaps into the liquid. We apply this scheme to an
experimentally relevant quench in the sine-Gordon field theory. While for short times we provide
analytic expressions for the growth of the second and third Rényi entropy, to access longer times,
we combine our scheme with truncated spectrum methods. This Chapter is based on Ref. [315]

6.1 Introduction

The time evolution of the Rényi entanglement entropy in out-of-equilibrium QFTs nowadays plays
a crucial role in disparate situations ranging from quantum gravity and black hole physics [34,
35] to experiments in cold-atom and ion-trap setups [79, 88, 89, 316]. Very effective numerical
techniques, based, e.g., on tensor networks allow us to compute their behaviour at not-too-long time
scales in lattice systems [317–320]. Conversely, simulation algorithms performing well for generic
interacting field theories are not available yet (although Continuous Matrix Product States [321–
323] represent a promising framework). The main goal of this Chapter is to introduce and develop
a new simulation scheme which in principle should work for a large class of 1d QFTs. The key idea
is to use as computational basis the one of the Luttinger liquid and write a general exact expansion
for the Rényi entropies. The coefficients entering in such an expansion can be effectively calculated
by truncated spectrum methodologies (TSM) [305,313,314].

The root of the effectiveness of our algorithm is that Luttinger liquid is a cornerstone for the
description of a wide variety of quasi-1D systems [204, 324, 325], spin-charge separation in 1D
metals and nanotubes [326, 327], power-law correlations of the dynamic structure function in 1D
cold atomic systems [328,329], and the fractionalization of magnons into spinons in quasi-1D spin
chains [330, 331]. Even when a Luttinger liquid is gapped out by an interaction, the underlying
bosonic description of the unperturbed liquid provides an excellent starting point to understanding
any underlying phenomena. Here our fundamental idea is to use the unperturbed liquid as the
starting point for the description of a wide variety of non-equilibrium dynamics.

The main object of interest here is the Rényi entropy of a bosonic system with a time-dependent
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reduced density matrix, ρ(t). In this chapter, we will denote it as Sn(t) to stress the time depen-
dence.

While here we apply our machinery to the computation of time-dependent Rényi entropies,
our framework also allows for the determination of time-dependent relative Rényi entropies [306,
307, 333, 334]. We start with a review of the non-equilibrium Luttinger liquids in Sec. 6.2, which
provides the computational basis for the evaluation of the dynamical Rényi entropies. We analyse
their early and longer time behaviour in Secs. 6.3 and 6.4 respectively. Finally, we discuss some
possible outlooks in Sec. 6.5.

6.2 Model for Non-Equilibrium Luttinger Liquids

To explore the non-equilibrium Rényi entropies in non-equilibrium Luttinger liquids, we will con-
sider a canonical Hamiltonian density describing their dynamics:

H(t) =

∫
dx
vF
8π

(∂xϕ
2 + Π2) + 2J1(t) cos(βϕ). (6.2.1)

ϕ(x, t) is a real compact Bose field which admits the following mode expansion [269] (see also
Eq. (5.3.2) for it = τ and m = 0)

ϕ(x, t) = ϕ0 +
4π

L
Π0t+

2πm

βL
x+ i

∑

l 6=0

1

l

(
ale

2πil
L

(x−t) − ā−le
2πil
L

(x+t)
)
. (6.2.2)

The parameter β is related to the Luttinger parameter, K, of the theory via β = (2K)−1/2. K
determines the power law correlations in the model when J1 = 0. This mode expansion assumes
the boson has compactification radius 2π/β, i.e. ϕ(x+L, t) = ϕ(x, t) + 2π

β m, where m denotes the
winding number, which is related to the U(1) charge of the sector. The operator ϕ0 is the ‘center
of mass’ of the Bose field and Π0 is its conjugate momentum, which has permitted values nβ, with
integer n. These obey the commutator [ϕ0,Π0] = i.
The bosonic Hilbert space emerges from an infinite set of highest weight states marked by the
bosonic winding number and the value of conjugate momentum:

|n,m〉 = e
inβϕ(0)+i m

2β
Θ(0)|0〉. (6.2.3)

These highest weight states |n,m〉 are defined by acting with vertex operators involving the boson
and its dual on the vacuum |0〉. The dual boson, Θ, can be defined via the relation

∂xΘ(x, t) = ∂tϕ(x, t). (6.2.4)

The quantum number n gives the momentum of the bosonic zero mode for the state while the
quantum number m gives the U(1) charge of the state. The full Hilbert space is then constructed
by the acting with the right and left moving modes (an and ān) of the field on the highest weight
states:

|Ψ〉 =

M∏

j=1

akj

M̄∏

j̄=1

ākj̄ |n,m〉. (6.2.5)

The energy and momentum of such a state is

EΨ =
2π

L

(
n2β2 +

m2

4β2
+

M∑

j=1

kj +

M̄∑

j̄=1

kj̄ −
1

12

)
,
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Pψ =
2π

L

(
(n−m) +

M∑

j=1

kj −
M̄∑

j̄=1

kj̄

)
. (6.2.6)

The 1/12 term in EΨ reflects the fact that the vacuum energy in the conformal limit on the
cylinder does not vanish if it is assumed to be zero on the plane. The an/ān satisfy the following
commutation relations:

[an, am] = nδn+m,0; [ān, ām] = nδn+m,0; [an, ām] = 0. (6.2.7)

These commutators, together with the relation for the commution of the modes with vertex oper-
ators

[an, e
iβϕ(0)] = −βeiβϕ(0), (6.2.8)

allow one to compute generic matrix elements of the states with the vertex operators appearing
in the sine-Gordon Hamiltonian.
After this generic introduction, we will now specify the computational basis we use to explain how
time-dependent Rényi entropies, Sn(t), can be computed in a non-equilibrium setting. Starting
from Eq. (6.2.5), all states |Ψi〉 of the J1 = 0 theory have the (unnormalised) form:

|Ψi〉 =

Ni∏

k=1

a−nk

N̄i∏

k=1

ā−n̄k |νi〉, |νi〉 ≡ eiνiϕ0 |0〉. (6.2.9)

Here the |νi〉 = niβ, with ni an integer, are plane waves states of the zero mode ϕ0 of the boson
and Ni/N̄i is the number of chiral/anti-chiral modes in the state |Ψi〉.

We now want to imagine that we have done a quantum quench or that J(t) has some non-trivial
time dependence. We are going to suppose that we are tracking the time dependence of the state,
|ϕ(t)〉, of the system via the following representation:

|ϕ(t)〉 =
∑

i

αi(t)|Ψi〉, (6.2.10)

where |Ψi〉 are the states just discussed of the unperturbed bosonic theory. The corresponding
density matrix of the system is

ρ(t) =
∑

i,j

αi(t)α
∗
j (t)|Ψi〉〈Ψj |. (6.2.11)

It will be with the density matrix in this form that we attack the problem of computing Sn(t).

6.2.1 Quenching from Luttinger Liquids to the sine-Gordon Model

Let us focus on the second Rényi entropy, S2(t), for simplicity. Imagine that we perform a partial
trace of region B of the system (= A ∪ B) from the density matrix in Eqn. 6.2.11. The second
Rényi entropy will then take the form

S2(t) = − log
( ∑

i,j,i′,j′
αi(t)αj(t)

∗αi′(t)αj′(t)
∗Ri,j;i′,j′

)
,

Ri,j;i′,j′ = TrA(TrB|Ψi〉〈Ψj |TrB|Ψi′〉〈Ψj′ |). (6.2.12)

Here we exploit the general closed form expressions for the GMSREs, Ri,j;i′,j′ for bosonic field
theories discussed in Chapter 5.
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We now want to consider a specific quench, imagining preparing the system in the Luttinger liquid
ground state (i.e., taking J1=0 in Eqn. 6.2.1) and observe the dynamics of the system by turning
on at t = 0 a finite J1. For J1 > 0 the dynamics of the system will be that of a far-from equilibrium
sine-Gordon model. How far from equilibrium can be quantified. The energy of the ground state
of the sine-Gordon model is

Egs = L∆2
s tan(πξ/2)/4, ∆s = c(β2)J

(2−β2)−1

1 ;

c(β) =
2Γ(ξ/2)√

πΓ(1/2 + ξ/2)

(πΓ(1− β2/2)

2Γ(β2/2)

)1/(2−β2)
, (6.2.13)

where ξ = β2/(2 − β2) and ∆s is the gap of the sine-Gordon soliton excitation. c(β2) was first
determined in [337]. On the other hand the energy of the pre-quench state |ϕ(t = 0)〉 relative to
the post-quench Hamiltonian is −π/(6L) and so the quench pumps in a finite energy density of
tan(πξ/2)∆2

s/4 at large volumes into the system.

The sine-Gordon model is integrable and while integrability does not allow us to determine the
non-equilibrium time evolution of the system, it does provide us with knowledge of the dynamically
generated non-perturbative scales in the problem. This include the gap of the solitons, ∆s, above
in terms of J1. It also includes the gaps of solitonic bound states, the breathers. In sine-Gordon’s
attractive regime, β < 1, the model has

⌊
ξ−1
⌋

breathers with gaps

∆bn = 2∆s sin(πnξ/2), n = 1, · · · ,
⌊
ξ−1
⌋
. (6.2.14)

For β � 1, the model has a large number of breathers much lighter than the soliton and it is these
excitations that dominate the dynamics. In this Chapter we will be focusing on the attractive
regime and will suppose that β < 1. With knowledge of these scales, it is possible to write down
scaling behavior of various quantities post-quench. We will focus on both the time-dependent
Rényi entropy density as well as the order parameter, C(t) = 〈cos(βϕ)〉(t).

A quantity O(t) with scaling dimension a is going to have a scaling form

O(t) = ∆a
b2gO(∆b2L,∆b2t) (6.2.15)

where gO is a dimensionless scaling function. For the order parameter C, a = β2, while for the
Rényi entropy densities, Sn/L, a = 1. We now will determine these scaling forms in the limit of
early and late times focusing on the experimentally interesting limit of system sizes L∆b2 � 1.

6.3 Early Time Analysis: UPT

At early times, we can use unitary perturbation theory (UPT) to determine the leading order term
in J1 to the scaling forms. At the heart of unitary perturbation theory is a similarity transformation
that transforms the original unperturbed set of bosonic states to an energy-diagonal one where
time evolution is easily evaluated. We adapt the unitary perturbation theory (UPT) of Ref. [338].
The main idea of this formalism is to bring the Hamiltonian into energy diagonal form. To do so
we introduce a canonical anti-Hermitian transformation,

S = J1S1 +
J2

1

2
S2 +O(J3

1 ). (6.3.1)
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We will apply it to the Hamiltonian

H = H0 +H1,

H0 =
2π

L

[∑

k

(a−kak + ā−kāk) + π2
0 −

1

12

]
,

H1 = J1

(
2π

L

)β2 ∫ L

0
dx : cos(βϕ(x)) : .

(6.3.2)

The action of S upon H in Eqn. (6.3.1) is given by

e−SHe−S =H0 + J1(H1 + [S1, H0]) + J2
1 (

1

2
[S2, H0] + [S1, H1] +

1

2
[S1, [S1, H0]]) +O(J3

1 ),

≡H0 + J1H1,diag + J2
1H2,diag +O(J3

1 ).
(6.3.3)

We define S such that the matrix elements of Hn,diag with respect to two eigenstates, |n〉, |m〉, of
H0 are only non-zero if En = Em. Hence, we find that S satisfies at first order in J1,

S1,nm =

{
H1,nm

En−Em En 6= Em,

0 En = Em,
(6.3.4)

and at second order,

S2,nm =

{
[S1,H1+H1,diag ]

En−Em En 6= Em,

0 En = Em.
(6.3.5)

The transformed Hamiltonian H1/2,diag reads to second order in J1,

〈n|H1,diag|m〉 =〈n|H1|m〉; En = Em

〈n|H2,diag|m〉 =
∑

k,Ek 6=En

H1,nkH1,km

En − Ek
, En = Em.

(6.3.6)

We can apply this formalism to find the time dependence of an observable A

〈A(t)〉 = 〈0|eiHtAe−iHt|0〉
= 〈0|e−SeiHdiagteSAe−Se−iHdiagteS |0〉
≡ 〈0|e−SeS(t)Adiag(t)e

−S(t)eeS |0〉 ,
(6.3.7)

where S(t) = eiHdiagtSe−iHdiagt, Adiag(t) = eiHdiagtAe−iHdiagt. We expand first the inner transfor-
mation as

eS(t)Adiag(t)e
−S(t) = Adiag(t) + [S(t), Adiag(t)] +

1

2
[S(t), [S(t), Adiag(t)]] +O(J3

1 ), (6.3.8)

and then the outer back transformation

e−SeS(t)Adiag(t)e
−S(t)eS = Adiag(t) + [S(t)− S,Adiag(t)]

+
1

2
([S, [S − 2S(t), Adiag(t)]] + [S(t), [S(t), Adiag(t)]]) +O(J3

1 ). (6.3.9)
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Therefore we can write down 〈A(t)〉 in terms of its matrix elements as

〈A(t)〉 = A00 +
∑

j

(δS0k(t)Adiag,k0(t)−Adiag,00(t)δSk0(t))

+
1

2

∑

kl

(δS0k(t)δSkl(t)Adiag,l0(t) +Adiag,0k(t)δSkl(t)δSl0(t)

−2δS0k(t)Adiag,kl(t)δSl0(t)) +O(J3
1 ), (6.3.10)

with δSkl(t) ≡ Skl(t)− Skl.

We now use UPT to compute the time-dependence of the state of the system, |ϕ(t)〉. To do
so, we write |ϕ(t)〉 in terms of the states of the unperturbed bosonic theory |Ψa〉 via:

|ϕ(t)〉 =
∑

a

αa(t)|Ψa〉. (6.3.11)

By choosing the observable A as ρab = |Ψa〉 〈Ψb|, we can use Eq. (6.3.10) to compute the time
dependence of the density matrix elements

cab(t) ≡ 〈ϕ(t)|ρab|ϕ(t)〉 (6.3.12)

to second order in J1 as

cab(t) =





1 + 2
∑

k S1,0kS1,k0(1− cos((Ek − E0)t)) a = b = 0

eit(E0−Eb)S1,b0 − S1,b0

+1
2

∑
k S1,bkS1,k0(1− ei(E0−Ek)t − ei(Ek−Eb)t + ei(E0−Eb)t) a = 0, b 6= 0

−eit(Ea−E0)S1,0a + S1,0a+
1
2

∑
k S1,0kS1,ka(1− ei(Ek−E0)t − ei(Ea−Ek)t + ei(Ea−E0)t) a 6= 0, b = 0

−(1− ei(E0−Eb)t − ei(Ea−E0)t + ei(Ea−Eb)t)S1,0aS1,b0 a, b 6= 0

(6.3.13)
This will allow us to back out the αa(t)’s.

At small β, the number of states we need to consider in the post-quench density matrix at
leading order in the cosine coupling, J1, and leading order in β include

|0; 0; 0〉 ≡ |0〉, |0; 0;m = ±1〉 ≡ eimβϕ(0) |0〉 , |n;n;m = ±1〉 ≡ 1

n
a−nā−neimβϕ(0) |0〉 ,

|n, l;n, l;m = 0,±1〉 ≡ 1

2δnlnl
a−na−lā−nā−le

imβϕ(0) |0〉 ,

|n, l;n+ l;m = ±1〉 ≡ 1

2δnl/2
√
nl(n+ l)

a−na−lā−n−le
imβϕ(0) |0〉 ,

|n+ l;n, l;m = ±1〉 ≡ 1

2δnl/2
√
nl(n+ l)

a−n−lā−nā−le
imβϕ(0) |0〉 .

(6.3.14)

The energies of these states are given by

E(n1,··· ,nr);(l1,··· ,ls);m =
2π

L
(
r∑

i=1

ni +
s∑

i=1

li +m2β2). (6.3.15)

We will further focus on the contribution of states involving chiral modes such that
∑2

i=1 ni ≤ 2
as these states provide the dominant contribution to S2(t). Thus we consider the contribution of
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states: |n;n; 0,±1〉 , n = 0, 1, 2; |1, 1; 2;±1〉 ; |2; 1, 1;±1〉, and |1, 1; 1, 1; 0,±1〉. Using Eq. (6.3.13),
the coefficients, αn,m(t), describing these states’ time dependence post-quench are:

αn;n;±1(t) =

(
eit(En;n;1−E0;0;0) − 1

En;n;1 − E0;0;0

)
J1
β2

n
L

(
2π

L

)β2

' iJ1
β2

n
L

(
2π

L

)β2

t;

α0;0;±1(t) =

(
eit(E0;0;1−E0;0;0) − 1

E0;0;1 − E0;0;0

)
J1L

(
2π

L

)β2

' iJ1L

(
2π

L

)β2

t;

α0;0;0(t) = 1− 2J2
1L

2

(
2π

L

)2β2
[

1− cos(E0;0;±1t)

E2
0;0;±1

+
2∑

k=1

β4

k2

1− cos(Ek;k;±1t)

E2
k;k;±1

]

' 1− J2
1L

2t2
(

2π

L

)2β2

1 +

∑

k 6=0

β4

k2


 ;

α1,1;1,1;±1(t) =
1

2

(
eit(E1,1;1,1;1−E0;0;0) − 1

E1,1;1,1;1 − E0;0

)
J1β

4L

(
2π

L

)β2

' 1

2
iJ1β

4L

(
2π

L

)β2

t;

α1,1;1,1;0(t) =
1

4

∑

Ek 6=0,E1,1;1,1;0

[ H1,(1,1;1,1;0)kHk0

(Ek − E0;0)(E1 1;1,1;0 − Ek)
(1− e−i(Ek−E0;0)t − ei(Ek−E1 1;1,1;0)t

+ e−i(E1 1;1,1;0−E0;0)t)
]
' −3J2

1L
2t2
(

2π

L

)2β2

β4;

α1,1;2;1(t) = −α2;1,1;−1(t) ' 1

2
√

2
iJ1β

3R

(
2π

R

)β2

t.

(6.3.16)

With these coefficients in hand, we can plug them into our generalised Rényi entropy machinery
to compute the time-dependence of the second Rényi entropy (see [315] for more details). Putting
everything together, we find

S2(t)− S2,gs = L2J2
1

(
2π

L

)2β2

t2β4
(

4 log2(2)− 447

256

)
+O(t3)

= 0.17L2J2
1

(
2π

L

)2β2

t2β4 +O(t3). (6.3.17)

We have kept only terms up to O(β4), and we neglected the contributions due to states |1, 1; 2;±1〉
because they are O(β6).

We see that S2(t) behaves as β4t2. The β4 dependence of S2(t) means that we cannot ignore
the contribution of states of the form |n > 0; l > 0;m〉, i.e. states with a non-trivial bosonic mode,
a−n, ā−n, content. Thus S2(t) probes at early times not just the zero mode dynamics of the field,
ϕ(t), but its field theoretic nature.

While we do not report here general formulae for the GMSREs needed to compute the third
Rényi entropy, S3(t), (these are considerably more involved as they involve computing 6-point
conformal correlation functions on a 3-sheeted Riemann surface), we can compute the hand-
ful of GMSREs needed to compute S3(t) at early times. Doing so for the sextuplets involving
|0, 0〉 , |n,±1〉 , n = 0, 1, we find

S3(t) = L2J2
1 (

2π

L
)2β2

t2f3(β), (6.3.18)
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where f3(β) for small β reads

f3(β) '
(
−31

27
+ 3 log

27

16
log 3

)
β4. (6.3.19)

We again see the β4t2 dependence and again find that we cannot ignore the contribution of states
with non-trivial bosonic mode content.

Like with S2(t) and S3(t), we can use unitary perturbation theory to compute the time depen-
dence of the order parameter, C(t) = 〈cos(βϕ)〉(t). Here we find that the contribution of states
involving only vertex operators, |0; 0;m = 0,±1〉, determine C(t) at leading order in β and t to
be:

C(t) = −(2π)1+2β2
J1β

2t2L−2β2
. (6.3.20)

We see that this contribution comes in at O(β2). At early times C(t) is then determined solely by
the dynamics of the compact zero mode of the field, i.e. the problem is quantum mechanical not
quantum field theoretic.
Using this framework, the scaling form, gO, simplifies to

gO(x, y) = xm(2−β2)−ahO(y/x). (6.3.21)

Here m is the order in J1 that gives the leading order correction to g0 in unitary perturbation
theory. For the cosine order parameter, m = 1, while for the Rényi entropies m = 2 (see the
Supplemental Material in [315] for further details).

6.4 Longer Time Analysis: TSM

While UPT can be used to compute the early time behavior of the growth of C(t) and the Rényi
entropies, for longer times we need to use a wholly numerical approach. The natural choice
here is the truncated spectrum methodology (TSM) [305, 313, 314]. This method provides for a
controlled computation of non-equilibrium quantities in a field theoretic setting. It employs as a
computational basis the states of the unperturbed Luttinger liquid, i.e. the |Ψi〉’s, precisely the
states for which we now know how to compute the generalised mixed state Rényi entropies. It
gains its name from the need to introduce an energy cutoff, Ec, above which we exclude states in
the Luttinger liquid basis. While we do not report here the technical details (see [315]), we discuss
the results we obtain.

6.4.1 TSM results: Discussion

As a validation of the accuracy of our TSM results, we demonstrate scaling collapse. Fixing L∆b2,

we expect data collapse if we plot our post-quench data for S2/(∆b2L) and cos(βϕ)/∆β2

b2 against
t∆b2 for different values of J1 and L. This is what we find, as illustrated in Fig. 6.1. Here we
present data that have been extrapolated in the TSM cutoff, Ec →∞ (for S2 and 〈cos(βϕ)) and the
GMSRE exclusion parameter, W → 0 (see the Supplemental Material in [315]). If |ᾱiᾱjᾱkᾱl| < W
(ᾱi is the time-averaged counterpart of αi(t)), we exclude the contribution of Ri,j;i′,j′ to S2(t) in
Eq. (6.2.12). Because we work with computational bases of size Ncb ∼ 104, computing all Ri,j;i′,j′ ’s
would require the computation of ∼ 1016 different quantities – something that is computationally
prohibitive. Fortunately the contribution of the vast majority of GMSREs is negligible (because
|αi(t)αj(t)αk(t)αl(t)| is negligible) and we need to only compute a very small fraction of GMRSEs
in order to compute S2(t).
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Figure 6.1: The growth of the second Renyi entropy (left panel) and of the order parameter (right
panel) for an equal bipartition of the system as a function of time for different system sizes and
postquench couplings J1 chosen such that ∆b2L is constant and thus scaling collapse is expected.
Error bars (blue dots) arising from the extrapolation procedure are shown. We see the expected
scaling collapse.

β J1 Teff S2(∞)− S2gs Rtherm.
2 〈cos(βϕ)〉(∞) 〈cos(βϕ)〉therm. S

growth
2 cos(βϕ)growth

3/20 0.1 0.45 0.16 0.66 −0.43 −0.17 0.009∆b2 −0.003∆b2

1/
√

8 0.0375 0.29 0.058 0.19 −0.42 −0.31 0.005∆b2 −0.023∆b2

1/
√

2 0.0375 0.24 0.023 0.093 −0.41 −0.32 0.01∆b2 −0.14∆b2

Table 6.1: Here we report for three values of β the late time values of S2 and cos(βϕ), comparing
them to their thermal values as determined by the effective temperature Teff . The post-quench
values of J1 are chosen such that ∆b2(β)L are constant. We also report these quantities’ early

time growth rates. All values of S2, cos(βϕ) are scaled by ∆b2L/2,∆
β2

b2 .

The S2(t) data at β = 3/20 presented in Fig. 6.1 show collapse for four different values of J1 and
L (chosen such that ∆b2L is constant within a few percent) over a time window of (0, 100/∆b2). We
provide error bars associated with the extrapolation procedure. However for S2 the extrapolation
procedure is particularly robust and the error bars are small. For the collapsed 〈cos(βϕ)〉(t) data
in Fig. 6.1, we are restricted to a more narrow time window (0, 40/∆b2).

At very early times, UPT predicts quadratic growth in time of S2(t) and 〈cos(βϕ)〉(t). After
UPT breaks down, both of these quantities experience a window in time where they grow linearly.
We report this growth rate in Tab. 6.1 for three different values of β. We see that with increasing
β, the growth rates increase in magnitude.

At late times both S2(t) and 〈cos(βϕ)〉(t) saturate. We expect S2(t) to approach its late time
value via a correction vanishing as log(t)/t3, valid for integrable quenches with coherent quasi-
particles [339]. Using this as a fitting form, we report the value of S2(t = ∞) in Tab. 6.1. We
see that asymptotic value of S2(t) is extremely sensitive to the value of β. The late time value of
〈cos(βϕ)〉 however is not. We see its final value is almost β independent. Because 〈cos(βϕ)〉(t)
approaches its asymptote by oscillating about it, its value can be determined most readily by
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performing a time average over the data obtained after the initial linear growth.

One useful metric to which we can compare the t = ∞ values of S2 and cos(βϕ) are the
values that would be obtained if the ensemble governing late time dynamics was thermal. Because
we know the amount of energy injected by the quench, we can use the analytic expression for the
energy of the sine-Gordon model arising from the thermodynamic Bethe ansatz (TBA) to compute
both the effective temperature that governs the thermal ensemble with this same energy and then
the t =∞ values of S2 and cos(βϕ) [340,341]. We see the expected thermal values of S2(t =∞) far
exceed that of its post-quench extrapolated value. Because the sine-Gordon model is integrable,
the generalised Gibbs ensemble that governs late time behaviour is going to involve contributions
from the higher conserved quantities in the theory. The system is thus more tightly constrained
and so the asymptotic value of the entropy S2 will be smaller than would be expected in a thermal
quench. We also see that the magnitude of cos(βϕ) is in general larger than would be expected
from the thermal value. As this expectation value is directly related to the interaction energy, we
can see that the GGE arising from the quench favours interaction over kinetic energy uniformly
for different values of β in comparison to the thermal ensemble.

6.4.2 Computation of Power Spectra of S2(t) and C(t)

As a final comparison between the behavior of S2(t) and cos(βϕ)(t), we consider the power spec-
trum of the late time oscillations of these two quantities. This is, in effect, a spectroscopic probe of
the post-quench Hamiltonian: the frequencies at which power appears here is at the differences of
energies of the excitations [342,343] of the post-quench sine-Gordon Hamiltonian. For S2(t) these
differences involve four excitations while for cos(βϕ)(t) the differences involve two excitations. In
Fig. 6.2 we present the results of the power spectra. Because of the ability to compute accurately
S2(t) out to longer times, our spectroscopic information for S2(t) is much resolved in energy than
that for cos(βϕ)(t).
Let us now explain how the power spectrum presented in Fig. 6.2 for the set of parameters
L = 20, β = 3/20, J1 = 0.4. In order to isolate the oscillating behaviour of S2(t), we do a
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0.01| cos( ) ( )/ 2

b2|2

Figure 6.2: We analyse here β = 0.15 the oscillation frequencies of the late time behavior of S2 and
cos(βϕ) via Fourier transform (FT). The notation (e1, e2) labeling peaks in the FT of 〈cos(βϕ)〉(t)
indicates a frequency ω = |Ee1 − Ee2 | where Eei is the energy of excitation ei. The bi’s refer to
states with single breathers, (bi, bj) refers to a state with two breathers, while g is the ground
state. Similiarly the notation (e1, e2, e3, e4) indicates a frequency ω = |E1 − E2 + E3 − E4|.
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running time average using

S̄2(t) =
1

2∆t.avg

t+∆t.avg∑

y=t−∆t.avg

S2(y), (6.4.1)

for ∆t.avg = 2π/∆b2 over a time window T ≡ |t2 − t1| = |132.8 − 6.8| = 126. We then perform a
discrete Fourier transform (DFT) on the time series S2(t) − S̄2(t) − ε, for t ∈ [t1, t2], where ε is
chosen such that S2(t)− S̄2(t) = ε as t→∞:

S2(ωn) =
1

T

N∑

k=1

(S2(t)− S̄2(t)− ε)e−iωnk∆t, n = 1, . . . , N. (6.4.2)

The time averaging serves to suppress frequencies, ωn � ωb2 . Here the frequencies, ωn, of the
DFT are defined as ωn = 2π

N ∆tn where ∆t = 0.4 is the time step and N = T/∆t.
The time dependence of S2(t) can be understood in terms of the eigenstates, {|Ei〉} of the

post-quench Hamiltonian. A contribution to S2(t) of the form |Ei〉〈Ej |Ek〉〈El| comes with a time
dependence, eit(Ei−Ej+Ek−El) [315]. So the peaks in the Fourier transform will correspond to
quadtuplets (Ei, Ej , Ek, El). In general, several possible combinations of the groundstate (g) and
excited states are present. Looking at the low-lying energies of the states |Ei〉, we can identify the
quadtuplets for each peak in the power spectrum. In the spectrum, the first excited state is the
second breather (an excitation involving the first breather alone is forbidden by symmetry) and
is denoted as b2. The next two excited states are (b1, b1) and (b1, b1)’ and are two-particle states
of two first breathers. They are distinguished by the momentum carried by each constituent b1
(although the total momentum of the state sums to zero). The fourth excited state is the fourth
breather, b4.

For the Fourier transform of the cosine operator, we do a DFT on the function C(t)−C(t =∞),
i.e. we subtract the asymptotic value in order to obtain a power spectrum with C(ω = 0) = 0.
To perform the DFT, we use as a time window T = |40 − 5| = 35. In this case, the peaks in the
Fourier transform correspond to pairs (Ei, Ej) rather than to quadruplets: in the computation,
terms like 〈Ej | cos(βϕ)|Ei〉 appear and provide a eit(Ei−Ej) dependence to C(t). Let us notice that
the dominant peak in the DFT of C(t) is due to the contribution of the first excited state, i.e.
the second breather b2, while the amplitude of the next largest peak is due to contributions from
(b1, b1) and (b1, b1)′, the two low-lying energy states after b2.

6.5 Closing Remarks

We close this Chapter by commenting on applications to quenches in cold atomic systems. The
quench considered here (that of joining two Luttinger liquids) has been performed experimentally
in Ref. [344] while the time evolution of C(t) has been computed in Refs. [345, 346]. Our ability
to compute S2(t) to relatively late times (in comparison to C(t)) gives us the time window needed
to see equilibration in this system. At small β, the equilibriation time is 3 to 4 times longer than
that needed by C(t) to begin to oscillate about its t = ∞ value. In our spectroscopic analysis of
the late time oscillations of S2(t) and C(t), we can see the outsized role played by the breather
excitations of the post-quench Hamiltonian. Importantly we see the post-quench dynamics cannot
be described by the lowest breather alone. Finally our determination of a Teff for the post-quench
dynamics and corresponding thermal values of S2(t) and C(t) allow us to quantify the importance
of the higher conserved quantities in the GGE governing post-quench dynamics.

We mention that while the quasiparticle picture [46] provides the exact time evolution of the
von Neumann entropy (n = 1) for arbitrary integrable models [47, 48], the same is not true [347–
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350] for the experimentally accessible Rényi entropies for which our approach is the only viable
methodology for both integrable and chaotic post-quench dynamics. We remark that, although
we present new and interesting results for the out-of-equilibrium Rényi entropies, the goal of this
Chapter is not providing fundamental physical insights on the specific quench dynamics of the
coupled Luttinger liquids per se, but rather using it as a playground for a simulation scheme ideal
to compute the entanglement in more generic 1d QFTs.



Part II

Entanglement and symmetries: exact
results

107





Chapter 7

Symmetry resolved entanglement in
gapped integrable systems: a corner
transfer matrix approach

Let us start the second part of this thesis with the study of SRREs in gapped integrable lattice
models. We use the corner transfer matrix to investigate two prototypical gapped systems with
a U(1) symmetry: the complex harmonic chain and the XXZ spin-chain. While the former is a
free bosonic system, the latter is genuinely interacting. We focus on a subsystem being half of
an infinitely long chain. In both models, we obtain exact expressions for the charged moments
and for the symmetry resolved entropies. While for the spin chain we found exact equipartition of
entanglement (i.e. all the symmetry resolved entropies are the same), this is not the case for the
harmonic system where equipartition is effectively recovered only in some limits. Exploiting the
gaussianity of the harmonic chain, we also develop an exact correlation matrix approach to the
symmetry resolved entanglement that allows us to test numerically our analytic results (as also
done for the scalar field in Chapter 2). This Chapter is based on Refs. [98] and [99].

7.1 Introduction

For the ground state of critical one-dimensional systems with an underlying conformal field theory,
the vNEE shows a remarkable universal scaling depending only on the central charge c (e.g., see
Eq. (1.4.13)).

Such a universal behaviour is not strictly a prerogative of the gapless models, but it also
occurs for gapped models in the vicinity of a quantum phase transition in the regime in which
the correlation length ξ is large but finite [20]. Indeed, using ideas from the famous proof of the
c-theorem by Zamolodchikov [183], already exploited in Sec. 2.2.2, it has been shown that for a
bipartition of an infinite system into two semi-infinite halves, the leading behaviour of entanglement
entropies is generically [20]

Sn '
c

12

(
1 +

1

n

)
log ξ. (7.1.1)

This result can be elegantly recovered for integrable lattice models through the Baxter corner
transfer matrix (CTM) [179], as reported (and generalised) in many references [20, 182,246,351–
357]. We will discuss explicitly this technique in the following sections. The CTM approach
provided exact results not only close to the critical point, but gave generalisations also to the
regime in which the correlation length, ξ, is small. When the subsystem A is a finite interval
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of length `, as long as ` � ξ, the Rényi entropies are just twice the value in Eq. (7.1.1) as a
consequence of cluster decomposition in the ground-state of these theories. However, as ` becomes
of the order of ξ, a complicated crossover takes place that is not captured by CTM and requires
more complicated techniques, see e.g. Refs. [156,175,199,358].

In the spirit of exploring the relation between entanglement and symmetries and in particular
how entanglement is shared between the various symmetry sectors of a theory [84, 86], in this
Chapter we ask whether and when the equipartition of entanglement proven in conformal invariant
systems [85] survives away from criticality. Thus, we study how the total entanglement splits into
the contributions coming from disjoint symmetry sectors in gapped integrable models, using CTM
techniques. We carry out this analysis for two non-critical quantum lattice models with a U(1)
symmetry, namely the double or complex harmonic chain (which is a free model) and the XXZ
chain (which is genuinely interacting). To this aim, we first calculate the charged moments of the
RDM, and then obtain the contributions of the sectors by Fourier transform.

In Sec. 7.2 we give an overview of how the RDM of an off-critical quantum chain is related to
Baxter’s CTM. For integrable models whose weights satisfy a Yang-Baxter relation, the eigenvalues
of the RDM can be determined exactly. In Secs. 7.3 and 7.4 we exploit these exact results for the
computation of the SRREs, for the complex harmonic chain and XXZ spin-chain respectively. We
also benchmark the analytic results in Sec. 7.3 against exact numerical computations. In Sec. 7.5,
we find analytic expressions for the full counting statistics in gapped XXZ spin-chain, pointing
out its relation with the entanglement resolution. We conclude in Sec. 7.6 with some remarks
and discussions. Some technical details about the complex harmonic chain can be found in the
Appendix.

7.2 The corner transfer matrix and the entanglement entropy

In dealing with the geometric bipartition considered in this Chapter (i.e. two semi-infinite half
lines) the corner transfer matrix provides an exact form for the reduced density matrix [180] and
hence it is a formidable tool for the derivation of the charged moments and SRRE. In order to
understand how the CTM works, we give a brief review of the construction of the RDM.

Generally, a direct computation of the density matrix of a system is tough. A trick to address
this problem is to use the fact that the density matrix of the quantum chain is the partition function
of a two-dimensional classical system on a strip [359–361]. The latter can be solved by means of
the transfer matrix T and we can identify the eigenstate |Ψ〉 of T corresponding to its maximal
eigenvalue. Given the Hamiltonian of the quantum chain H and its lattice spacing a, the transfer
matrix is T = e−aH up to a prefactor; hence |Ψ〉 is the ground state of H. One then obtains the
reduced density matrix of a subsystem A of the chain by tracing over all the coordinates belonging
to the complement of A. Therefore ρA is the partition function of two half-infinite strips, one
extending from −∞ to 0 and the other from +∞ to 0.

The CTM plays a crucial role: it connects a horizontal row to a vertical one. Choosing
the lattice in a clever way [179], when the model is isotropic, the four possible corner transfer
matrices [179] are all equivalent and the partition function is just TrÂ4, with Â the CTM. Going
back to our quantum problem, the reduced density matrix is [180]

ρA =
Â4

TrÂ4
. (7.2.1)

We will deal with integrable massive models satisfying the Yang-Baxter equations; in this case, it
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is possible to show that Eq. (7.2.1) has an exponential form given by [180,359]

ρA =
e−HCTM

Tre−HCTM
. (7.2.2)

In the cases we are interested in, HCTM (the entanglement or modular Hamiltonian) can be
diagonalised as [180]

HCTM =

∞∑

j=0

εjnj , (7.2.3)

where nj are number operators and εj are the single-particle levels of the entanglement Hamil-
tonian. The result (7.2.3) provides exact eigenvalues and degeneracies of the RDM (i.e. the
entanglement spectrum of the system [335,362]), from which one calculates straightforwardly the
entanglement entropies [20]. We comment that this approach to the computation of the entangle-
ment Hamiltonian provided exact results about lattice statistical mechanics and it goes parallel
to alternative routes towards the study of this operator, like the one in axiomatic field theory
provided by Bisognano and Wichmann that we already mentioned in Chapter 3. We will come
back to this also in Chapter 12.

Eq. (7.2.3) contains no information about the distributions of the eigenvalues εj into the various
symmetry sectors (indeed, it has exactly the same form for models with discrete and continuous
symmetries). In order to use it to compute the SRREs in gapped integrable models, we should
complement Eq. (7.2.3) with some other input providing the symmetry resolution, but this should
be done on a case by case basis, as we are going to show.

7.3 The complex harmonic chain

In this section we use the CTM to derive the SRREs for a double or complex harmonic chain
that is U(1) symmetric and its continuum limit is a non-compact massive complex boson, i.e.
a Klein-Gordon field theory. We will find an analytic expression for the charged moments as
functions of α and we will discuss its limit close to the conformal invariant critical point, when the
correlation length ξ is finite but large. Then we will use this result to compute the SRREs. All
the analytical results will be compared against exact numerical computations based on correlation
matrix techniques [169,171,366].

7.3.1 Brief recap of the free complex scalar field and its lattice discretisation

The meaning of the symmetry of a double harmonic chain is clearer in the field theory language
and so we first consider a free complex scalar field ϕ(x) described by the Hamiltonian

H =

∫
dx
[
Π†(x)Π(x) + ∂xϕ

†(x)∂xϕ(x) +m2ϕ†(x)ϕ(x)
]
, (7.3.1)

with Π(x) being the field conjugated to ϕ(x). We use the dagger to denote the complex conjugation.

We can as well rewrite the model in terms of two scalar real fields ϕx(x) and ϕy(x)

ϕ(x) =
1√
2

(φx(x) + iϕy(x)), (7.3.2)
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and the same for Π(x). In these variables the U(1) symmetry is an O(2) rotation in the plane
(ϕx, ϕy). The Hamiltonian (7.3.1) in terms of these variables is

H =
1

2

∫
dx
[
Π2
x(x) + (∂xϕx(x))2 +m2ϕ2

x(x)
]

+
1

2

∫
dx
[
Π2
y(x) + (∂xϕy(x))2 +m2ϕ2

y(x)
]

= HR(ϕx) +HR(ϕy), (7.3.3)

where in the second line we stressed that it is a sum of two identical Hamiltonians HR for the real
fields ϕx and ϕy. One introduces the modes a†i (p) and ai(p) for each field i = x, y and momentum
p. The Hamiltonian and the conserved charge are instead better written in terms of particles and
antiparticles modes operators

a(p) =
1√
2

(ax(p) + iay(p)), b(p) =
1√
2

(a†x(p) + ia†y(p)). (7.3.4)

The Hamiltonian is

H =

∫
dp

2π
ε(p)(a†(p)a(p) + b†(p)b(p)), (7.3.5)

(with ε2(p) = m2 + p2) while the conserved charge is

Q =

∫
dp

2π
(a†(p)a(p)− b†(p)b(p)), (7.3.6)

i.e. the total number of particles minus the number of antiparticles. The conserved charge can be
as well written in real space and its value in a given subsystem A is the same integral restricted
to A, i.e.

QA =

∫

A
dx(a†(x)a(x)− b†(x)b(x)). (7.3.7)

For the construction of the RDM for the lattice version of the complex Klein-Gordon field
theory, we start from discretising each of the two real Hamiltonians in Eq. (7.3.3). The lattice
discretisation of each of them is the harmonic chain, i.e. a chain of L harmonic oscillators of mass
M = 1 with equal frequency ω0, coupled together by springs with elastic constant k (hereafter we
set ω0 = 1− k), i.e. the lattice discretisation of the Hamiltonian HR is

HHC(q) =

L∑

i=1

(p2
i

2
+
ω2

0q
2
i

2

)
+

L−1∑

i=1

1

2
k(qi+1 − qi)2, (7.3.8)

where variables pi and qi satisfy standard bosonic commutation relations [qi, qj ] = [pi, pj ] = 0 and
[qi, pj ] = iδij . Hence, the lattice version of the complex field theory is the sum of two of the above
harmonic chains in the variables qx and qy, i.e.

HCHC(qx + iqy) = HHC(qx) +HHC(qy). (7.3.9)

which we call complex or double harmonic chain.
The reduced density matrix, ρA, for half of the real harmonic chain was explicitly constructed

by Peschel and Chung in [167] in the large L limit. The trick is to relate ρA to the partition
function of a two-dimensional massive Gaussian model in the geometry of an infinite strip of width
L with a cut perpendicular to it [363]. Due to the integrability of the Gaussian model, in the
case where L is much larger than the correlation length, the HCTM for the harmonic chain may
be written in a diagonal form as in Eq. (7.2.3), where now we explicitly have

HCTM =

∞∑

j=0

(2j + 1)ε β†jβj , ε =
πI(
√

1− k2)

I(k)
. (7.3.10)
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Here I(k) is the complete elliptic integral of the first kind, i.e.

I(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

, (7.3.11)

and βj , β
†
j are bosonic annihilation and creation operators (satisfying [βi, β

†
j ] = δi,j). They are

related to the ladder operators ai of the original chain by a generalised Bogoliubov transforma-
tion [167] as

βj =
∑

i∈A
gjiai + hjia

†
i . (7.3.12)

Notice that the transformation mixes a and a† so it does not conserve the number operator.

The RDM for the double chain is clearly factorised in x and y part, i.e. the entanglement
Hamiltonian is the sum of two HCTM in Eq. (7.3.10) one with βx,i and one with βy,i ladder opera-
tors. Now we proceed as follows. First we rewrite these two entanglement Hamiltonians in terms of
the local ladder operators ax,i and ay,i using the inverse of the Bogoliubov transformation (7.3.12).
Then, using the lattice analogue of (7.3.4), i.e.

ax,i =
1√
2

(ai + bi), a†x,i =
1√
2

(a†i + b†i ),

ay,i =
1√
2i

(ai − bi), a†y,i =
1√
2i

(b†i − a
†
i ).

(7.3.13)

we rewrite the entanglement hamiltonian in terms of local ladder operators for particles and
antiparticles. This is clearly quadratic (it is the rewriting of a quadratic operator after two linear
transformations and so it is quadratic) and commute with the charge operator. Hence, via another
Bogoliubov transformation (see Appendix 7.A)

αi =
∑

j∈A
gijaj + hijb

†
j , γ†i =

∑

j∈A
h∗ija

†
j + g∗ijbj , (7.3.14)

which conserves the charge, the entire entanglement Hamiltonian of half-chain is brought into the
form

HA =
∞∑

j=0

ε(2j + 1)(α†jαj + γ†jγj), (7.3.15)

The charge operator restricted to the semi-infinite line is just the discretisation of Eq. (7.3.7),
i.e.

QA =
∑

j∈A
a†jaj − b

†
jbj . (7.3.16)

Once we apply the Bogoliubov transformation in Eq. (7.3.14), we have

QA =

∞∑

j=0

α†jαj − γ
†
jγj , (7.3.17)

up to an unimportant additive constant that we neglect.

Since the αi and γi operators in Eq. (7.3.15) commute, the RDM factorises as

ρA = ραA ⊗ ργA, (7.3.18)
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where we denoted the RDM for αi and γi with ραA and ργA respectively. For the charged moments,
we need to compute TrρnAe

iQAα, but using also that QA is the difference of the number of αi’s and
γi’s, see Eq. (7.3.17), the trace factorises as

Zn(α) = TrρnAe
iQAα = Tr[(ραA)neiN

α
Aα]× [Tr(ργA)ne−iN

γ
Aα]. (7.3.19)

where Nα
A =

∑
j∈A α

†
jαj and Nγ

A =
∑

j∈A γ
†
jγj . The two factors are equal, except for the sign of

α. It is very instructive to see how this factorisation happens for a chain of two oscillators as we
report in Appendix.

If for a single harmonic chain, we introduce the quantity

Fn(α) = log[TrρnAe
iNAα], (7.3.20)

then we have that the charged moments of the complex boson are given by

logZn(α) = Fn(α) + Fn(−α). (7.3.21)

We stress that Fn(α) is not the log of a local charged moment because in the single harmonic chain
there is no local U(1) symmetry.

In the following we show how to compute Fn(α) by CTM methods for a single harmonic chain
and after we use (7.3.21) to get the charged moments.

7.3.2 Charged moments from CTM

Here we first compute the quantity Fn(α) for a real harmonic chain and from this Zn(α) is simply
derived from Eq. (7.3.21). In the above subsection, NA and ρA for the single chain have been
already written in the same basis and the derivation of Fn(α) amounts to compute the trace

eFn(α) =
Tre−

∑∞
j=0(εjn−iα)nj

(
Tre−

∑∞
j=0 εjnj

)n =

∞∏

j=0

∞∑

k=0

e−((2j+1)εn−iα)k



∞∏

j=0

∞∑

k=0

e−(2j+1)ε k



n =

∞∏

j=0

(1− e−(2j+1) ε)n

∞∏

j=0

(1− e−(2j+1) εn+iα)

, (7.3.22)

whose logarithm is given by

Fn(α) =

∞∑

j=0

n log[1− e−(2j+1)ε]−
∞∑

j=0

log[1− e−(2j+1)εn+iα]. (7.3.23)

This formula is exact and can be easily computed numerically, since it converges very quickly. It
is plotted in Figure 7.1 as a function of α for various values of ω0 and n, but we will discuss its
properties later.

The charged moments for the complex harmonic chain, cf. Eq. (7.3.21), are

Zn(α) = eFn(α)eF
∗
n(α) =

∞∏

j=0

(1− e−(2j+1)ε)2n

∞∏

j=0

(1− e−(2j+1)εn+iα)

∞∏

j=0

(1− e−(2j+1)εn−iα)

=

= Zn
θ4(0|e−εn)

θ4(α2 |e−εn)
, (7.3.24)
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where in the last equality we factor out the total partition sum

Zn ≡ Zn(α = 0) =

∞∏

j=0

(1− e−(2j+1)ε)2n

(1− e−(2j+1)εn)2
, (7.3.25)

and use the following definitions of the theta functions θr(z|u), r = 2, 3, 4 [368]

θ2(z|u) =
∞∑

k=−∞
u(k+ 1

2)
2

ei(2k+1)z,

θ3(z|u) =

∞∑

k=−∞
uk

2
e2ikz,

θ4(z|u) =

∞∑

k=−∞
(−1)k uk

2
e2ikz.

(7.3.26)

The shorthand θr(u) stands for θr(0|u), r = 2, 3, 4. Notice that the entire α dependence in
Eq. (7.3.24) is encoded in the denominator of Eq. (7.3.24) and that Z1 = 1, but Z1(α) 6= 1. Also
the total Rényi entropies of the complex harmonic chains are

Sn =
1

1− n logZn =
2

1− n
∞∑

j=0

[n log (1− e−(2j+1)ε)− log (1− e−(2j+1)εn)], (7.3.27)

i.e. the double of a real harmonic chain.

Poisson resummation and critical regime.

A drawback of the form (7.3.23) is that it does not directly allow a direct expansion in the critical
regime, i. e. for small ε. Moreover, we cannot perform an Euler Mac-Laurin summation (as for
α = 0, see [20]) since the function f(x) = log(1 − e−2x) diverges for x → 0. However, following
Ref. [182], we can obtain the asymptotic expansion for small ε by using the (generalised) Poisson
resummation formula:

∞∑

j=−∞
f(|ε(bj + a)|) =

2

εb

∞∑

k=−∞
f̂

(
2πk

εb

)
e2πika/b, (7.3.28)

where

f̂(y) =

∫ ∞

0
f(x) cos(yx)dx. (7.3.29)

In order to use this resummation formula for Eq. (7.3.23), we must choose a = 1/2, b = 1 and

fn,α(x) = − log(1− e−2nx+iα), (7.3.30)

which allows us to rewrite the sum (7.3.23) as

Fn(α) =

∞∑

j=0

(nf1,α=0(ε(j + 1/2))− fn,α(ε(j + 1/2)))

=
1

2

∞∑

j=−∞
(nf1,α=0|(ε(j + 1/2)|)− fn,α(|ε(j + 1/2))|).

(7.3.31)
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The cosine-Fourier transform of fn,α(x) is

f̂n,α(y) =
ieiα

2y

[
Φ(eiα, 1, 1− iy

2n
)− Φ(eiα, 1, 1 +

iy

2n
)

]
, (7.3.32)

where Φ is the Lerch transcendent function, defined as

Φ(z, s, a) =
∞∑

j=0

zj

(j + a)s
. (7.3.33)

If α = 0 and n = 1, Eq. (7.3.32) simplifies to the known value [182]

f̂1,0(y) =
1

y2
− π

2y
coth

(πy
2

)
. (7.3.34)

Plugging Eq. (7.3.32) into the Poisson resummation formula, we rewrite logZn(α) in such a way
to isolate the contribution of the term k = 0 which gives the leading divergence in the limit ε→ 0,
i.e.

Fn(α) =
Li2(eiα)

2εn
− nπ2

12ε
+
∞∑

k=1

[
(−1)k

nε

2π2k2
+ (−1)k+1 n

2k
coth

π2k

ε

]
+

ieiα

2π

∞∑

k=1

(−1)k

k

[
Φ(eiα, 1, 1− iπk

εn
)− Φ(eiα, 1, 1 +

iπk

εn
)

]
.

(7.3.35)

Here we have introduced the polylogarithm of order 2, Li2(z).
We are now interested in the critical region of the parameter space in which the correlation

length ξ (inverse gap) is large but finite. In the critical regime ξ � 1 (or equivalently ε� 1), the
correlation length of the model behaves like

log ξ ' π2

ε
+O(ε0). (7.3.36)

Using the results of Ref. [367], the last sum over k in Eq. (7.3.35) in the limit ε→ 0 behaves like

ieiα

2π

∞∑

k=1

(−1)k

k

[
Φ(eiα, 1, 1− iπk

εn
)− Φ(eiα, 1, 1 +

iπk

εn
)

]
→ nε

12

eiα

1− eiα . (7.3.37)

and hence the only non-vanishing terms in the asymptotic expansion close to ε = 0 are

Fn(α) =
Li2(eiα)

2εn
− nπ2

12ε
+
n

2
log 2 +O(ε), (7.3.38)

whose real part is

Re[Fn(α)] =

[
1

2n

( α
2π

)2
− |α|

4πn
+

1

12n
− n

12

]
log ξ +

n

2
log 2 +O(ε), (7.3.39)

because
Re[Li2(eiα)]

n
=

1

n

(α
2

)2
− π|α|

2n
+
π2

6n
. (7.3.40)

The charged moments for the complex harmonic chain are now given by Eq. (7.3.21), i.e.
logZn(α) = Fn(α) + Fn(−α) and, in the limit ε→ 0,

logZn(α) =

[
1

n

( α
2π

)2
− |α|

2πn
+

1

6n
− n

6

]
log ξ + n log 2 +O(ε). (7.3.41)

Notice that while Fn(α) is generically complex, logZn(α) for the complex chain is real and even
in α. The expression (7.3.41) tells us that the leading term in the charged moments diverges
logarithmically with ξ and matches the result found in (2.2.17) replacing ξ with the inverse of the
mass of the continuum theory.
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Figure 7.1: Charged moments for the harmonic chain: we report the real (top) and the imaginary
(bottom) part of Fn(α), Eq. (7.3.23), as function of α for different values of ω0. Everywhere, the
dashed lines are the asymptotic expansions for ε → 0 and α 6= 0 up to O(ε), cf. Eq. (7.3.38).
As discussed in the text, the convergence to the critical result is not uniform and it is slower for
smaller α 6= 0. The function logZn(α) for the complex chain is twice the real part of Fn(α).

Discussions.

We concluded our exact computation of the charged moments and we are now ready to critically
discuss our findings. Eq. (7.3.41) is very suggestive. It tells us that the leading term in the
“charged entropies” diverges logarithmically with ξ but with a non-standard prefactor. Indeed,
in the conformal field theory of the compactified boson, it has been found that when α 6= 0,
the additional term in the logarithm is proportional to α2 [84] , while here we also have a linear
contribution in α. Obviously the two results are not in contradiction, because the continuous
limit of the harmonic chain is non-compact and the prefactor of α2 in Ref. [84] diverges when the
compactification radius is sent to infinity.

Another interesting fact is that the limit α→ 0 and the expansion for ε around 0 do not com-
mute, as a difference with other known cases (we believe that the origin of the non-commutativity
is the non compact nature of the continuum limit). Indeed, if we consider first the limit α→ 0 in
Eq. (7.3.35), the last sum gives

∞∑

k=1

(−1)k
[
− εn

2k2π2
+

1

2k
coth

(
kπ2

εn

)]
, (7.3.42)

leading to the known formula of the Rényi entropies of a real harmonic chain, that in the critical
regime ε→ 0 is [20,182] (see Eq. (7.3.27))

Sn =
π2

12ε

1 + n

n
− log 2

2
+O(ε). (7.3.43)

On the other hand, if we invert the order of these two operations, we obtain the divergent term
in Eq. (7.3.37). Considering now the charged moments of the complex chain, logZn(α) =
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2ReFn(α), the divergent term (7.3.37) cancels, but the finite part is not the total moment logZn
in Eq. (7.3.25). This fact implies that the approach of logZn(α) to the critical limit ε → 0 is
non-uniform in α: exactly at α = 0 the charged entropy approaches (7.3.27), but for any non-zero
α the limit is (7.3.38) that as a consequence is reached for smaller and smaller ε (i.e. ω0) as α gets
closer to 0.

All these aspects are evident in Figure 7.1 where we show (for α ≥ 0 since Fn(−α) = F ∗n(α))
the exact result Eq. (7.3.35) (or equivalently (7.3.23)) together with its critical limit, Eq. (7.3.38).
As we discussed above, the former converges to the latter as ω0, therefore ε, decreases, but in a
non-uniform way. Indeed, while for large α (i.e. close to π) the two curves are very close also when
ω0 is not so small, for smaller and non-zero values of α, we need much smaller ω0 to approach
the critical limit. For α = 0 the limit is different. It is also clear that for higher values of n, the
convergence is slower and starts at smaller values of ω0. The last observation is a well known fact
for α = 0, cf. Ref. [182], and it is not surprising that the effect is amplified in the presence of a
flux.

7.3.3 Symmetry resolved moments and entropies via Fourier trasform

The symmetry resolved moments Zn(q) are obtained as Fourier transform of Zn(α) in Eq. (7.3.24),
i.e.

Zn(q) =

∫ π

−π

dα

2π
e−iqαZn(α) = Znθ4(0|e−εn)

∫ π

−π

dα

2π
e−iqα

1

θ4(α2 |e−εn)
. (7.3.44)

The integral in the rhs of the above equation can be found in Ref. [368] (exercise 14 at page 489),
obtaining

Zn(q)

Zn
=

∞∏

k=1

(
1− e−nε(2k−1)

1− e−2nεk

)2

e−nε|q|
∞∑

k=0

(−1)ke−nεk
2
e−nε(2|q|+1)k , (7.3.45)

which is our final result for the symmetry resolved moments. It is likely that the sum in Eq. (7.3.45)
can be rewritten in terms of some special functions, but we did not find any particularly useful
expression. We define the sum as

Φq(u) = u|q|
∞∑

k=0

(−1)kuk
2
u(2|q|+1)k, (7.3.46)

which can be written in few different equivalent ways that are useful for investigating diverse
properties:

Φq(u) =

∞∑

k=0

(−1)kuk
2+k+|q|(2k+1) = u|q|−

1
4

∞∑

k=0

(−1)ku(k+ 1
2

)2
u2|q|k . (7.3.47)

Clearly in terms of this function we have

Zn(q) =
∞∏

k=1

(
(1− e−ε(2k−1))n

1− e−2nεk

)2

Φq(e
−nε), (7.3.48)

where we used the explicit form of Zn in Eq. (7.3.25).
The SRREs are now easily deduced from Eq. (1.4.18), obtaining

Sn(q) =
1

1− n log

[ Zn(q)

Z1(q)n

]
=

=
2

1− n
∞∑

k=1

[
n log(1− e−2εk)− log(1− e−2nεk)

]
+

1

1− n log
Φq(e

−nε)
(Φq(e−ε))n

. (7.3.49)
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Taking the limit n→ 1, we get the von Neumann entropy

S1(q) = −2
∞∑

j=1

[
log(1− e−2εj)− 2εje−2εj

1− e−2εj

]
+ log Φq(e

−nε) + εe−ε
Φ′q(e

−nε)

Φq(e−nε)
. (7.3.50)

The critical limit ε → 0 is easily understood if one focuses on the variation in q of moments
and entropies, rather than on their absolute values. Indeed from Eq. (7.3.48), it is easy to see that

Zn(q)

Zn(q = 0)
=

Φq(e
−nε)

Φ0(e−nε)
ε→0−−→ e−n

2q2ε2/2 , (7.3.51)

where the last limit is performed by expanding to the second order in ε each term in the sum (7.3.46),
making carefully the sum in terms of ζ functions, and finally re-exponentiating the result. We stress
that this critical limit is not the Fourier transform of the critical limit for Zn(α) in Eq. (7.3.41) be-
cause the two limiting procedures do not commute. The critical behaviour of the resolved entropies
is then easily worked out as

Sn(q) =
1

1− n log
Zn(q)

Zn1 (q)
= Sn(q = 0) +

nε2q2

2
+O(ε3), (7.3.52)

which is valid also for n = 1 without any particular limit. Also in the critical limit, it is worth to
mention the behaviour

Sn(q = 0) = Sn − log
8π

ε
+

log n

1− n + o(1) , (7.3.53)

which signals the presence of a subleading term proportional to log ε ∼ log(log ξ). Such a term has
not a unique interpretation and origin for the (complex) harmonic chain. Indeed, we know that the
total entropy of a massive free non-compact boson has such subleading terms in log(log ξ) [177] in
the small mass limit, but even that double logarithmic terms appear generically in the symmetry
resolution, also for the critical compact boson [84, 90]. Let us now critically discuss our results.
First of all, there is a very important difference compared to the conformal gapless case [84], i.e. the
absence of equipartition of entanglement [85]: the Rényi entropies (7.3.49) depend explicitly on q.
This dependence is reported in Figure 7.2 (a) where, in order to show its variation, we plot it as a
continuous function of q, although only integer values are physical. The lack of exact equipartition
is not surprising; also in critical models the leading terms for large ` show equipartition [85],
while some subleading terms depend explicitly on q [84, 90]. In panel (b) of Figure 7.2 we focus
on the critical limit of Rényi entropies (7.3.52) plotting Sn(q) − Sn(q = 0). As ε → 0, the
result approaches the critical form (7.3.52), but clearly the convergence is not uniform: it is faster
for smaller q and n. Indeed, since this dependence is all encoded in the function Φq(e

−nε), the
parameter that must be small is not ε, but nε. On the other hand, the higher order terms in ε,
that have been neglected in (7.3.52), become important for large q. Another interesting feature
of the SRREs for this complex harmonic chain is an effective equipartition in two limits. The
first one is the limit of large q. Indeed, in Eq. (7.3.49) the entire q-dependence is encoded in the
function Φq(e

−nε). Looking at Eq. (7.3.47), it should be clear that all the terms with qnε� 1 are
exponentially suppressed. Practically, the total sum is more or less the same for all q such that
nεq & 1 (from Eq. (7.3.36) this is equivalent to nqπ2 & log ξ in the critical region). Hence, there is
an effective equipartition among all q & 1/(nε). Actually, since the only physical values of q are the
integers, this fact implies that there is an almost exact equipartition (with the exception of Sn(0))
of the entropy if nε & 1, which corresponds to ω0 & 10−4 (for n = 1). In panel (c) we report the
von Neumann entropies S1(q) for several values of ω0, showing that, as q becomes large enough, the
entropies Sn(q) do not depend on q anymore. We also explicitly report the (approximate) crossover
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Figure 7.2: SRREs for the complex harmonic chain. Panel (a) shows Sn(q) as functions of q for
different values of ε and n. Panel (b) reports Sn(q) − Sn(q = 0) for small values of ε, showing
the validity of the expansion in the critical regime (7.3.52). The critical limits in Eq. (7.3.52) are
also reported as dashed lines showing its accuracy for small nε. The panel (c) shows the effective
equipartition of entanglement for q & 1/ε (these crossover values are reported as dashed vertical
lines). The panel (d) shows Sn(q) as function of ω0 for different values of q and n.

values for q ∼ 1/ε (as function of ω0 is given by Eq. (7.3.10)), showing that it correctly captures
the change of behaviour. Finally, we have effective equipartition also in the critical regime, but in
this case also for small q. In fact, Eq. (7.3.52) shows that the q-dependent term is proportional
to ε2, while the leading term of Sn(q) (say for q = 0) diverges as ε−1. Thus the q-dependence is
suppressed as ε3 and there is an effective equipartition. Even if for large q, the expansion (7.3.52)
breaks down, we do not expect that Sn(q) − Sn(0) becomes of the order Sn(0) and so there is
an effective equipartition for all q: the numerical analysis of Eq. (7.3.49) seems to confirm this
expectation. The functional form of the leading q-dependent term in Eq. (7.3.52) is reminiscent
of the one found for free fermions [90].

7.3.4 Numerical checks

In this subsection we test the validity of the results in the previous ones against exact numerical
computations. We work only with an infinite real harmonic chain (7.3.8) with finite ω0. For the
complex case, we just combine the results for two real chains. Let us consider a bipartition where
the subsystem A is given by ` contiguous lattice sites. Let us call XA and PA the ` × ` matrices
of the correlators restricted to the subsystem A, where Xij = 〈qiqj〉 and Pij = 〈pipj〉. The explicit
forms of these correlators in the ground state of the gapped harmonic chain have been already
reported many times in the literature (see e.g. Refs. [15,366,369]) and we are not going to rewrite
them here. Let us denote by σk, with k = 1, . . . , `, the eigenvalues of the matrix

√
XAPA. We

introduce the vectors |n〉 ≡ ⊗`
k=1 |nk〉, products of Fock states of the number operator in the

subsystem A, namely NA.
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Figure 7.3: Numerical results for the charged moments for an interval of length ` embedded in
the infinite harmonic chain. We report the real (left) and the imaginary (right) parts of Fn(α)
as a function of the subsystem length `, for different values of n = 1, 2, 3 and fixed ω0 = 0.1.
The numerical data for an interval of length ` (divided by 2) are compared to the analytic CTM
prediction (7.3.23): as ` is moderately large, the agreement is perfect. The charged moments are
just logZn(α) = 2Re[Fn(α)].

The reduced density matrix of A can be written as [370,371]

ρA =
∑

n

∏̀

k=1

1

σk + 1/2

(
σk − 1/2

σk + 1/2

)nk
|n〉〈n|, (7.3.54)

where the non-negative integer nk is the k-th element of the `-dimensional vector n. Since NA =∑
j∈A nj is the number operator in the orthonormal basis made of the states |n〉, we can write

Tr[ρnAe
iNAα] =

∑

n

∏̀

k=1

[
1

σk + 1/2

(
σk − 1/2

σk + 1/2

)nk]n
einkα. (7.3.55)

Summing over the possible occupation numbers nk from 0 to ∞, we get

Tr[ρnAe
iNAα] =

∏̀

k=1

1(
σk + 1

2

)n − eiα
(
σk − 1

2

)n . (7.3.56)

This relation holds also in higher dimensions and for a generic shape of the subsystem A provided
that ` is the number of sites in A. Notice the similarity of Eq. (7.3.56) with the analogous result
for fermions (cf. Refs. [84,90] and Eq. (1.4.47)): there are only some different signs, reflecting the
different statistics. The formula (7.3.56) allows us to check numerically the results obtained via
the CTM approach, and also the field theory predicitons for the scalar field in Chapter 2. Finally,
the charged moments for an arbitrary subsystem A for a complex harmonic lattice model are

Zn(α) =
∣∣Tr[ρnAe

iNAα]
∣∣2 =

∏̀

k=1

1(
σk + 1

2

)n − eiα
(
σk − 1

2

)n
1(

σk + 1
2

)n − e−iα
(
σk − 1

2

)n . (7.3.57)

We comment that the machinery exploited here is also the tool to benchmark our analytical
predictions for the free scalar theory in Sec. 2.4.

We now consider Fn(α) = log Tr[ρnAe
iNAα] for a real harmonic chan. The numerical data for

Fn(α) for an interval of length ` should converge to the double (because of the two end-points) of
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Figure 7.4: Numerical results for the symmetry resolved moments for the complex harmonic chain.
(a): (Square root of the) symmetry resolved partition sums Zn(q) as function of q. The numerical
data for n = 1, 2, 3 are compared with the CTM prediction (7.3.45) for two values of ω0. (b): The
same quantity is plotted against the subsystem size ` for different values of q = 20, 40 and fixed
ω0 = 0.1, showing the convergence towards the CTM prediction (7.3.45) for n = 1, 2, 3.

the CTM prediction for the semi-infinite line (with one-endpoint) as soon as ` becomes larger than
the correlation length ξ. In Figure 7.3 we report the numerical data for (half of) the real and the
imaginary parts of Fn(α) for different values of n and α. We have set ω0 = 0.1, so that after a short
crossover in `, the data saturate. The CTM prediction (7.3.23) is also reported for comparison,
showing that the analytical result perfectly describes the saturation values. The charged moments
for the complex harmonic chain are just logZn(α) = 2Re[Fn(α)] both for numerics and analytics
and so Figure 7.3 is a direct test also for them.

We now take the Fourier transform of the numerical data for Zn(α) to test the validity and the
accuracy of the CTM predictions for the symmetry resolved moments and entropies. In Figure 7.4
we report the (square roots of the) numerically calculated symmetry resolved partition sums Zn(q).
We compare the data for n = 1, 2, 3 with the CTM prediction (7.3.45). The latter perfectly captures
the q-dependence, as shown in the panel (a), and gives the value at which the data saturate when
studied as functions of `, panel (b). Finally, in Figure 7.5 we report the SRREs for several values of
q, n, ω0. For large `, the numerical data converge to (twice) the CTM predictions in Eqs. (7.3.49)
and (7.3.50). Notice that for the larger values of ω0 the saturation values do not depend on q
because of the effective equipartition, but for smaller ω0 they clearly do. As ω0 becomes much
smaller (such that ε ∼ 0.1), we expect again effective equipartition, although we do not report
such data here because they require very large `.

7.4 Gapped XXZ spin-chain

In this section we study the SRREs in the anisotropic Heisenberg model in the gapped antiferro-
magnetic regime using the CTM approach. The resolved moments are computed starting from the
explicit expressions for the eigenvalues of the RDM and their degeneracies. Then the SRREs are
deduced and their critical regime is investigated. The discrete Fourier transform of the resolved
moments allows us to compute the charged moments and to discuss their behaviour in the critical
regime.
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Figure 7.5: Numerical results for the SRREs for the complex harmonic chain. The numerical data
for q = 1, 2, n = 1, 2 and ω0 = 0.1 and 0.01 are compared with the CTM predictions (7.3.49) and
(7.3.50), to which they clearly approach. Notice that the convergence is slower for smaller ω0. For
ω0 = 0.1 we have an approximate equipartition, but this is not the case for ω0 = 0.01.

7.4.1 Symmetry resolved moments and entropies

The Hamiltonian of the anisotropic Heisenberg model (also known as XXZ chain) is

HXXZ =
∑

j

[
σxj σ

x
j+1 + σyj σ

y
j+1 + ∆σzjσ

z
j+1

]
, (7.4.1)

where σi, i = x, y, z are the Pauli matrices. The model has a conformal quantum critical point
for ∆ = 1, it is gapless when |∆| ≤ 1 and gapped when |∆| > 1. We consider this model in the
antiferromagnetic gapped regime with ∆ > 1.

The XXZ chain is solvable by Bethe Ansatz techniques; unfortunately this framework is not very
effective to study the entanglement properties both in the coordinate [172] and in the algebraic [372,
373,375–380,645] approach. On the other hand, the CTM solution for the XXZ chain is a powerful
tool to compute the entanglement entropies; in this approach, the reduced density matrix is related
to the partition function of the six-vertex model on a strip with a cut. In Ref. [180] HCTM has
been found to be of the form (7.2.3) with

εj = 2εj, ε = arccosh∆, (7.4.2)

and nj being some fermionic number operators. Since in the thermodynamic limit, the ground-
state of the gapped XXZ spin-chain is doubly degenerate we should clarify which state we are going
to deal with in this section. The entanglement Hamiltonian (7.2.3) together with (7.4.2) selects
by construction the ground state that does not break the inversion symmetry, i.e. the one that in
the limit of large ∆ is (|N1〉+ |N2〉)/

√
2 where |Ni〉 are the two possible Néel states. However, we

prefer to work with the more physical symmetry breaking state |Ni〉. In CTM approach this can
be constructed with an entanglement Hamiltonian of the form (7.2.3) where the sum over j starts
from 1 rather than 0, i.e.

HCTM =

∞∑

j=1

εjnj , εj = 2εj, ε = arccosh∆. (7.4.3)
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In the remaining part of this section we always focus on the symmetry breaking ground state with
the above HCTM. If one is interested into the other state, analogous results may easily be derived.

The entanglement spectrum is obtained by filling in all the possible ways the single particle
levels in (7.4.3) (i.e. setting all nj equal either to 0 or 1). The resulting levels are equally spaced
with spacing 2ε and highly degenerate. The degeneracy of the level 2εs, with s =

∑
j j (see (7.4.2))

is Dh(s), the number of partitions of s into smaller non-repeated integers (including zero). (Notice
we use the non-standard symbol Dh(s) instead of q(s) to avoid confusion with q, the charge sector.)

We want to characterise how the entanglement of the semi-infinite line A with respect to its
complement splits into the different sectors with fixed magnetisation Sz ≡

∑
j σ

z
j /2. We indicate

with q the possible values, in the subsystem A, of the difference of the magnetisation with respect to
the antiferromagnetic Néel state chosen as a reference configuration. Such variable q is quantised in
terms of integer numbers (each spin flip leads to a change of magnetisation of ±1), i.e. q ∈ Z. With
a slight abuse of language, we will refer to q as the magnetisation, although it is a magnetisation
difference. To derive the SRREs, we first write Zn(q), defined in (1.4.17), as

Zn(q) =
∑

s∈Sq
λns , (7.4.4)

where λs are the eigenvalues of the RDM and the sum is restricted to the levels with fixed value
of q. Using Eq. (7.2.2) and the explicit expression of the entanglement spectrum from Eq. (7.4.3),
we can write

Zn(q) =

∑

s

Fh(q, s)e−2nεs

(∑

s

Dh(s)e−2εs
)n , (7.4.5)

where Fh(q, s) is the number of eigenvalues at level s with magnetisation q. The degeneracies
Fh(q, s) have been studied in Ref. [364] with a combination of perturbation theory and integrability

arguments. The final result for the bipartition of our interest is Fh(q, s) = Ph( s−mh(q)
2 ) [364], with

Ph(n) the number of integer partitions of n and mh(q) = q(2q−1). Using this result and changing
variable in the sum of the numerator in Eq. (7.4.5) as (s−mh(q))/2→ s, we obtain

Zn(q) = e−2nεq(2q−1)

∑

s

Ph(s)e−4nεs

(∑

s

Dh(s)e−2εs
)n , (7.4.6)

where we have also exploited that Ph(n) is non vanishing only if n is a positive integer.

The two sums in (7.4.6) can be conveniently rewritten in terms of generating functions

∑

s=0

Ph(s)xs =

∞∏

k=1

1

1− xk ,
∑

s=0

Dh(s)ys =
∞∏

k=1

(1 + yk). (7.4.7)

Setting x = e−4nε and y = e−2ε in (7.4.7) and plugging them into (7.4.6) we obtain

Zn(q) =
e−2nεq(2q−1)

∞∏

k=1

(
1− e−4nεk

) ∞∏

k=1

(
1 + e−2εk

)n . (7.4.8)
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We remark that Z1(q) is normalised to one, i.e.
∑

q∈ZZ1(q) = 1, as it should be from the definition
(7.4.4). This is consistent with the interpretation of Z1(q) as a probability. The denominator of
Eq. (7.4.8) can be expressed in terms of theta functions and then Zn(q) reads

Zn(q) =
2

1+n
3 [κ(e−ε)]

n
12 e−4nε(q− 1

4
)2

[κ(e−2εn)κ′(e−2εn)]
1
6

{
[κ′(e−ε)]−

2
3 − [κ′(e−ε)]

4
3

}n
8
θ3 (e−2εn)

, (7.4.9)

where κ and κ′ are defined as

κ(u) ≡ θ2
2(u)

θ2
3(u)

, κ′(u) =
√

1− κ(u)2 =
θ2

4(u)

θ2
3(u)

. (7.4.10)

Notice that q = 1/4 is exactly the mean magnetisation of the subsystem in the critical limit ε→ 0,
as we can check by computing q̄ =

∫
dqqZ1(q), since we are dealing with the symmetry breaking

ground state. Notice that the dependence on q in Eq. (7.4.9) is entirely encoded in the Gaussian
factor and it is symmetric for q → 1/2 − q. Moreover, exploiting the asymptotic behaviours [98],
we have that in the critical regime Zn(q) becomes

Zn(q) '
√

21+nεn

π
e−

π2

24ε(n−
1
n)e−4nε(q− 1

4
)2
, (7.4.11)

where we keep the Gaussian factor in order to have a meaningful result. Once the resolved moments
Zn(q) have been worked out, the SRREs follow straightforwardly

Sn(q) =
1

1− n
∞∑

k=1

[
n log

(
1− e−4εk

)
− log

(
1− e−4nεk

)]
, (7.4.12)

and, taking the limit n→ 1,

S1(q) =

∞∑

k=1

[
4εk

e4εk − 1
− log

(
1− e−4εk

)]
. (7.4.13)

Notice that as ∆ � 1, Sn(q) → 0 (see also Figure 7.6), since in this limit the selected antiferro-
magnetic ground state is a product state. If we would have considered the non-symmetry breaking
ground state (|N1〉 + |N2〉)/

√
2, ∆ � 1 we would have found Sn(q) → log 2, as for the total en-

tropy [20, 182, 246]. We stress that although there is entanglement equipartition, the functions
Sn(q) are not equal to the total entropies Sn because there is a non-vanishing fluctuation term like
in Eq. (1.3.5) for n = 1.

Remarkably, the expressions (7.4.12) and (7.4.13) for the SRREs and SREE do not depend on
q for any value of n, i.e. they exactly satisfy the equipartition of entanglement for any value of ∆.
In the critical case, only the leading terms satisfy such equipartition [85,90].

The relation between the correlation length of the model and ε, in the critical regime ξ � 1,
is [179]

log ξ ' π2

2ε
+O(ε0) , (7.4.14)

which combined with Eqs. (7.4.11) provides the expansions of the SRREs in the critical regime

Sn(q) =
1

12

(
1 +

1

n

)
log ξ − 1

2
log

(
log ξ

π

)
+

1

2
log 2 +

log n

2(1− n)
,

S1(q) =
1

6
log ξ − 1

2
log

(
log ξ

π

)
+

log 2− 1

2
.

(7.4.15)



126CHAPTER 7. ENTANGLEMENT RESOLUTION IN GAPPED INTEGRABLE SYSTEMS

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

Figure 7.6: Magnetisation resolved moments and entropies for the XXZ spin-chain. The left panel
shows the results for Zn(q), Eq. (7.4.8), against q for different values of n = 1, 2, 3 and ∆ = 1.1, 3.
In the middle panel, we report again Zn(q) at fixed q and as function of ∆ (full lines). As a
comparison, we also report the asymptotic expansion (7.4.11) for ∆ close to 1 (dashed lines). In
the right panel, we report Sn(q) and its critical limit, respectively Eq. (7.4.12) and Eq. (7.4.15), as
function of ∆ for n = 1, 2, 3. We recall that Sn(q) does not depend on q because of entanglement
equipartition.

We notice that the term −1
2 − 1

2 log(log ξ/π) appearing in S1(q) in Eq. (7.4.15) is canceled exactly
by the fluctuation entanglement entropy once we consider the total von Neumann entanglement
entropy. Indeed, using that the probability is ph(q) = Z1(q), we write the fluctuation entropy as
−
∫
dqZ1(q) logZ1(q). Using (7.4.9), computing the gaussian integral in q and then taking the

critical limit, we find

−
∫ ∞

−∞
dqZ1(q) logZ1(q) =

1

2
+

1

2
log(log ξ/π), (7.4.16)

which exactly cancels the contribution from the configurational entropy. This is in complete
analogy with what has been found for critical systems for the log log ` term [90] (see also Chapter 2).

In Figure 7.6 we report symmetry resolved moments and entropies. The possible values of q
are just integers, but since Zn(q) becomes quickly small as q increases, we consider arbitrary real
values. As anticipated, Zn(q) has a peak at q = 1/4 and shows a clear Gaussian shape for all ∆.
The exact result (7.4.8) is well approximated by its critical limit (7.4.11) for ∆ close to 1, but the
approach is not uniform and it is worse for larger q (as well as larger n). Clearly, the maximum
of Zn(q) is a decreasing function of n. In the last panel of Figure 7.6, we report the SRREs as
functions of ∆ (as we stressed because of equipartition, they do not depend on q). Notice that the
window of ∆ for which the critical limit of Sn(q) in Eq. (7.4.15) is a good approximation of the
exact expression (7.4.12) is wider for smaller values of q.

7.4.2 Charged moments via Fourier series

The charged moments are obtained from the resolved ones Zn(q) by inverting the formula (1.4.17),
i.e.

Zn(α) =
∞∑

q=−∞
Zn(q)eiqα. (7.4.17)

Plugging in the above equation the result for Zn(q) in Eq. (7.4.8) and using the definition of the
theta function θ3(z|u) (7.3.26), we obtain

Zn(α) =
θ3( α2 − inε|e−4εn)

∞∏

k=1

(
1− e−4nεk

) ∞∏

k=1

(
1 + e−2εk

)n . (7.4.18)
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Setting α = 0 and exploiting the infinite product representation of θ3(z|u) [368], we get

Zn(0) =

∞∏

k=1

(
1 + e−2εnk

)

∞∏

k=1

(
1 + e−2εk

)n , (7.4.19)

as found in [20]. As for Zn(q) in Section 7.4.1, we can express Zn(α) in terms of theta functions
obtaining

Zn(α) =
2

1+n
3 e−

n
4
ε [κ(e−ε)]

n
12

[κ(e−2εn)κ′(e−2εn)]
1
6

{
[κ′(e−ε)]−

2
3 − [κ′(e−ε)]

4
3

}n
8

θ3(α2 − inε | e−4εn)

θ3 (e−2εn)
. (7.4.20)

Zn(α) in the critical regime is obtained using the asymptotic expansions of the theta functions [98],
finding

Zn(α) ' 2−
1−n

2 e−
π2

24ε(n−
1
n)e−

α2

16nε
+iα

4 . (7.4.21)

Taking the logarithm of Zn(α) and using (7.4.14) we have

logZn(α) '
[

1

12

(
1

n
− n

)
− α2

8π2n

]
log ξ + i

α

4
− (1− n)

log 2

2
. (7.4.22)

Here, the linear term in α is just the mean magnetisation in A, q̄ = 1/4.
The leading term in Eq. (7.4.22) is very suggestive. Indeed, for the critical compact boson, in

the case of A being an interval of length ` embedded in an infinite 1D system, logZn(α) diverges
logarithmically with ` as [84]

logZn(α) '
[

1

6

(
1

n
− n

)
− α2

2π2n
K

]
log `+ . . . , (7.4.23)

as we have already remarked in Sec. 3.2.1. The prefactor of Eq. (7.4.22) is exactly half of the
conformal result (7.4.23) for K = 1

2 , which is the Luttinger parameter at ∆ = 1. The multiplicative
factor 1/2 is simply understood because in our geometry there is a single endpoint instead of two
as in the conformal case. It is natural to wonder under what hypotheses this can happen since we
have seen that it is not true for the harmonic chain. Moreover, for the SRREs, the CFT result is
Sn(q) − Sn = −1

2 log((2K/π) log `) + O(`0) [84, 85], which is the same as in Eq. (7.4.15) with the
replacement `→ ξ and with K = 1/2.

7.5 Full counting statistics in the gapped XXZ spin chain

The process of measurement in quantum mechanics is intrinsically probabilistic: the measure of a
given observable generically provides different outcomes in identically prepared systems. Hence,
the probability distribution (PDF) of an observable is a natural quantity to consider in any quan-
tum mechanical system and provides much more information than the average value of the same
observable. In many-body systems, these PDFs, or equivalently their full counting statistics (FCS),
have been the subject of intensive investigations since many years with a focus mainly on local
observables (i.e. defined in a given point or lattice site) or global ones (i.e. extensive quantities
involving the entire system). Only in recent time, the attention shifted to observables with support
on a finite, but large, subsystem embedded in a thermodynamic one, partially motivated by some
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Figure 7.7: Entanglement spectra of the gapped XXZ spin chain in the three configurations we
consider here. Left: Semi-infinite line. Center: A block of ` contiguous spins with ` even. Right:
A block with ` odd. We report the logarithm of the eigenvalues of the reduced density matrix εn
in units of 2ε, with ε = arccosh∆, as function of δSz` (cf. (7.5.1)). Each tilted square signals the
presence of an eigenvalue with degeneracy given by the nearby number. The dashed-red parabolas
are envelopes of the location of the largest eigenvalue of the RDM at fixed δSz` . Notice that in the
left and in the center, the towers of degeneracies are independent of δSz` . Conversely, on the right,
i.e. for odd blocks, there are two towers depending on the parity of δSz` .

cold atomic experiments [383–388] and by the connection with the entanglement entropy of the
same subsystem [66–68, 389, 390, 392–395, 650]. In spite of a large recent literature on the sub-
ject [272, 396–421], results based on integrability for one-dimensional exactly solvable interacting
models are still scarse (see [409,410]).

The FCS of a conserved charge within an extended subsystem is strictly related to the charged
moments introduced in Eq. (1.4.16) in order to study the SRREs. Thus, it is natural to adapt
the techinques developed for the entanglement resolution to the computation of the FCS. In this
section, we provide an explicit exact calculation for the PDF and for the FCS of the total transverse
magnetisation within an extended subsystem in an infinite XXZ spin chain. As also done in Sec. 7.4,
we focus on the antiferromagnetic gapped regime with ∆ > 1 and, being the total transverse
magnetisation (

∑
j σ

z
j /2) conserved, the FCS can be directly obtained from the entanglement

spectrum of the subsystem. Indeed, the RDM ρ` of the subsystem is organised in blocks of fixed
magnetisation (quantised in terms of integers or half-integers up to `/2 depending on the parity
of `). Following the discussion in Sec. 7.4.1, it is convenient to focus on the difference of the block
magnetisation with the Néel state, i.e.

δSz` ≡
∑̀

j=1

(σzj
2
− (−1)j

2

)
. (7.5.1)

The probability of a measurement of the subsystem magnetisation with outcome δSz` = q is just
the trace of the block of ρ` in the sector with δSz = q, i.e.

P (q) = Trρ`Πq =
∑

s∈Sq
λs , (7.5.2)

where Πq is the projector on the sector of magnetisation δSz = q, λs are the eigenvalues of ρ`, and
Sq stands for all the eigenvalues in that magnetisation sector (notice that

∑
q P (q) = Trρ` = 1 by



7.5. FULL COUNTING STATISTICS IN THE GAPPED XXZ SPIN CHAIN 129

construction). Similarly the FCS generating function is defined as (they can be also written as the
n = 1 charged moments in Eq. (1.4.16))

G(λ) ≡ Trρ`e
iλδSz` =

∑

q

P (q)eiqλ; (7.5.3)

its derivatives in λ = 0 provide the moments of the observables δSz` . Hence the exact knowledge
of the entanglement spectrum also provides the FCS of the total transverse magnetisation (in
general it provides the FCS of any conserved charge). As discussed in Sec. 7.4 for the ground state
of the XXZ spin chain in the gapped regime, the entanglement spectrum has been obtained in
Ref. [364]. We exploit its knowledge here to reconstruct the PDF and the FCS of the subsystem
magnetisation.

7.5.1 Recap on the entanglement spectrum

As done in Sec. 7.4.1, in the following we consider an infinite XXZ chain in the symmetry broken
ground state, i.e. the one that for large ∆ converges to the Néel state. This state is doubly
degenerate, so there are two equivalent states which are mapped into each other by the translation
of one site. As already discussed in Sec. 7.4.1, when the subsystem is half of the chain, the result
for the degeneracy of the eigenvalues of its RDM, ρ`, with δSz` = q at level s is given by Fh(q, s) =

Ph( s−mh(q)
2 ) [364], with mh(q) = q(2q+ 1) (the other degenerate state –sometimes called Antineel

for ∆ → ∞– is obtained by sending q → −q with the net effect of having mh(q) = q(2q − 1)).
The first panel of Fig. 7.7 reports the structure of the entanglement spectrum of a semi-infinite
subsystem based on this result. Exploting (7.4.9) with n = 1 and (1.4.17), we obtain p(q) when
the subsystem is half of the inifinite chain. It reads

ph(q) =
e−2εq(2q+1)

θ3 (iε|e−4ε)
(7.5.4)

where ε is given by (7.4.2). The subscript h has been introduced just to stress that the result
(7.5.4) holds for the case of semi-infinite subsystem, in contrast with the results reported in the
following subsections for finite blocks.

Now, still following the approach of Ref. [364], we explain how to use these results to obtain the
entanglement spectrum of a finite large interval. As long as ` is larger than the correlation length,
the reduced density matrix ρ` of a single interval with two boundaries factorises into ρL⊗ρR, where
ρL/R are the reduced density matrices for the semi-infinite lines having the left/right end-point
of the interval. The combination of these two spectra into a single one is graphically reported in
Fig. 7.7. We show both cases for even and odd subsystems (center and right respectively). For
an even subsystem we should combine two different spectra mL(x) = mh(x) = x(2x + 1) and
mR(x) = ma(x) = x(2x − 1) from left and right. Conversely, for odd blocks, the left and the
right spectra to combine are equal, e.g. mL(x) = mR(x) = x(2x + 1). The final results for the
degeneracies are reported in the figure. In the even case, we have that the degeneracy at fixed q
at level s can be written as Fe(q, s) = Pe(

s−me(q)
2 ) with me(q) = q2 and pe generated by

∑

s=0

Pe(s)x
s =

∏

k≥1

(1 + xk)2

1− xk , (7.5.5)

leading to the generating function for the total degeneracy De(s) of level s

∑

s=0

De(s)x
s =

∏

k≥1

(1 + xk)2. (7.5.6)
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Figure 7.8: Full counting statistics generating functions G(λ) for the gapped XXZ spin chain for
three values of ∆. The left (right) panel is the real (imaginary) part of G(λ). The symbols are
the iTEBD data that perfectly match the superimposed analytic predictions (full lines for odd `
and dashed for even `). The data are for infinite chains and subsystems equal to ` = 200 (circles)
or 201 (squares). Notice that the real parts for even and odd q are qualitatively similar, but
quantitatively different.

Notice that while the generating function for De(s) is the square of the one for Dh(s), the same
is not true for Pe. Again we employ the convention Pe(x) = 0 for negative numbers and for
half-integers.

For odd blocks, it is more complicated to combine the two spectra for even and odd q. The
degeneracies of both sectors have the generating function

∑

s=0

Pb
o (s)xs =

∏

k≥1

(1− x2k)3

(1− xk)2(1− x4k)2
, (7.5.7)

where even (odd) powers of x correspond to even (odd) values of q. However, a single generating
function for different q is not a too useful tool to write symmetry resolved quantities. Exploiting
some identities of theta functions θ2,3, we can extract the even and the odd part of (7.5.7) we are
interested in. After some algebra we get (for x > 0)

∑

s=0

Po(s, q)xs =
(θ2(x4))

1−(−1)q

2 (θ3(x4))
1+(−1)q

2∏
k≥1(1 + x2k)(1− (−x)k)(1− xk) , (7.5.8)

which does depend on the parity of q. Hence the degeneracy of the level s with fixed q is

Fo(q, s) = Po(s−mo(q)), (7.5.9)

with mo(q) = q2 − q. Indeed mo(q) and mo(q) + 1 are the two parabolas in Fig. 7.7, envelopes of
the largest eigenvalues of the RDM for even and odd q respectively. The generating function for
the total degeneracy Do(s) of level s is the same as De/h(s) in Eq. (7.5.6).

7.5.2 Full counting statistics: even number of sites

The easiest way to get the PDF pe(q) for the interval is to combine the PDFs at the right and left
boundary as

pe(q) =
∞∑

q1=−∞
pL(q1)pR(q − q1) =

∞∑

q1=−∞
ph(q1)ph(q1 − q), (7.5.10)
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where we used that the PDF at the two boundaries are pL(q) = ph(q1) and pR(q) = ph(−q). The
sum is easily rewritten as

pe(q) = N 2e−2ε(q2−1/4)
∞∑

q1=−∞
e−2ε(2q1+q+1/2)2

. (7.5.11)

The remaining sum over q1 does not depend on q, for integer q. Hence the PDF is Gaussian

pe(q) = Nee
−2q2ε, (7.5.12)

and the normalisation factor is N−1
e =

∑
q e
−2q2ε = θ3(e−2ε). The FCS is the Fourier series (7.5.3)

which immediately leads to

Ge(λ) =
θ3

(
λ
2 , e
−2ε
)

θ3(e−2ε)
. (7.5.13)

Notice that this is real and even in λ. As a cross check, the same result is re-obtained by directly
summing over the eigenvalues of the RDM with the degeneracies reported in Fig. 7.7 (to perform
the sum, one exploits (7.5.5) the product representation of the θ3 function [368]).

The FCS generating function is directly measured in iTEBD simulations [422], as explained in
details, e.g., in Refs. [406, 416]. The results in the thermodynamic limit for three values of ∆ > 1
and for ` = 200 are shown in Figure 7.8. The agreement is always excellent (data and predictions
are superimposed) for all considered values of ∆. We mention that as ∆ gets close to 1, one should
consider much larger values of ` to reach such good agreement due to the diverging correlation
length at the isotropic point.

7.5.3 Full counting statistics: odd number of sites

Also for this case, the PDF can be obtained combining two single-boundary ones as

po =

∞∑

q1=−∞
pL(q1)pR(q − q1) =

∞∑

q1=−∞
ph(q1)ph(q − q1), (7.5.14)

where we used that the PDF at the two boundaries are the same. Again, the sum is easily rewritten
as

po(q) = N 2e−2ε(q2−q)
∞∑

q1=−∞
e−2ε(2q1−q)2

. (7.5.15)

However, this time the remaining sum does depend on the parity of q. Performing this sum, the
PDF is

po(q) = Noe
−2ε(q2−q) ×

{
θ3(e−8ε) , q even,

θ2(e−8ε) , q odd,
(7.5.16)

with N0 easily obtained from the normalisation.
The FCS is the Fourier series (7.5.3) which, after some manipulations using the properties of

theta functions, leads to

Go(λ) =

(
θ3

(
iε− λ

2 , e
−4ε
)

θ3(iε, e−4ε)

)2

. (7.5.17)

Notice that this FCS has a non-vanishing and non-trivial imaginary part, but satisfy Go(λ)∗ =
Go(−λ). Again, as a cross check, this result is re-obtained by directly summing over the eigenvalues
of the RDM with the degeneracies reported in Fig. 7.7.
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Also for odd `, the analytical prediction (7.5.17) is tested against iTEBD simulations in Figure
7.8. In these simulations, we measure the FCS of the operator Sz` and not δSz` ; hence the numer-
ical data have been divided by eiλ/2. After this normalisation, the agreement between data and
prediction is extremely good in all considered cases.

7.5.4 Byproduct: symmetry resolved entropies

In order to further highlight the relation between the FCS and the SRREs, in this subsection we
compute the SRREs for subsystems made by a finite number of sites. The symmetry resolution
of the entanglement spectrum reported in Figure 7.7 allows us to access the symmetry resolved
moments (1.4.17) as

Zn(q) ≡
∑

s∈Sq
λns =

∑
j Fα(q, s)e−2nεs

(∑
j Dα(s)e−2εs

)n , (7.5.18)

where α ∈ {h, e, o} and Fα(q, s) and Dα(s) are respectively the degeneracies of the s-th eigenvalue
for fixed q and total for the three cases of interest. In the definition of the SRREs given by (1.4.18)
only the ratio Zn(q)/Zn1 (q) matters and therefore the dependence on Dα(s) cancels leading to

Zn(q)

Zn1 (q)
=

∑
sFα(q, s)e−2nεs

(∑
sFα(q, s)e−2εs

)n =

∑
s Pα(s)e−2anεs

(∑
s Pα(s)e−2aεs

)n , (7.5.19)

where α ∈ {h, e, o} and in the last equality we used Fα(q, s) = Pα( s−mα(q)
a ) (with a = 2 for semi-

infinite and even `, while a = 1 for odd `) and shifted the sum as (s−mα(q))/a→ s (notice that
the actual value of mα(q) is unessential).

Combining (7.5.19) with α = h and (7.4.7), we recover the SRREs for the semi-infinite line
given by (7.4.12).

Now we derive the entropies for a finite interval of both even and odd length. For even `, the
two sums in (7.5.19) with α = e can be rewritten in terms of generating functions (7.5.5) (with
x = e−4nε), obtaining

Se
n(q) =

∞∑

k=1

[
log

(1 + e−4nεk)2

1− e−4nεk
− n log

(1 + e−4εk)2

1− e−4εk

]

1− n . (7.5.20)

Very importantly, the SRREs are not the double of the single resolved entropies (7.4.12) for the
half line as it is the case for the total one (mathematically this is a consequence of the relation
between the generating function for De(s) and Dh(s), but not for Pe and Ph). Also, these SRREs
are independent of q and hence satisfy the equipartition of entanglement [85] exactly.

In the very same fashion, we can repeat the calculation for odd `, setting α = o in (7.5.19) and
obtaining the more cumbersome expression

So
n(q) =

1

1− n

[ ∞∑

k=1

(
n log(1 + e−4εk)(1− e−2εk)(1− (−)ke−2εk)

− log(1 + e−4εnk)(1− e−2εnk)(1− (−)ke−2εnk)

)

+
1 + (−)q

2
(log θ3(e−8εn)− n log θ3(e−8ε) +

1− (−)q

2
(log θ2(e−8εn)− n log θ2(e−8ε)

]
. (7.5.21)
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Hence, for odd `, the SRREs do depend on the parity of q and the equipartition of entanglement
is explicitly broken.

We finally mention, as a highly non-trivial crosscheck, that it is possible, but cumbersome, to
sum over the various sectors q in order to recover the total entanglement through (1.3.5), both for
even and odd `.

7.6 Closing remarks

In this Chapter we found exact results for the SRREs of half line in infinite integrable systems in
the gapped regime. We considered two models for which the RDM (and therefore the entanglement
spectrum) of the subsystem can be obtained through the Baxter CTM. We applied this tool to
investigare the symmetry resolution of entanglement in the massive regime of the complex harmonic
chain and for the XXZ chain in the antiferromagnetic gapped regime. Finally, we computed the
FCS of the transverse magnetisation in gapped XXZ chains within a spin block of length `, for `
larger than the correlation length.

Let us mention some possible directions for future investigations motivated by the results we
have presented in this Chapter. A first and natural question is to understand what happens when
integrability is absent: while a general treatment seems impossible, the results for the entanglement
spectrum in Refs. [364,381] suggests that in some non-trivial regimes general results may be derived.
Finally, one expects that the symmetry resolved entanglement should help in reconstructing the
entanglement (or modular) Hamiltonian, but it is still unclear how. This issue is very timely given
the large current effort devoted to understand the structure of the entanglement Hamiltonians
both in field theories and lattice models, as we will explain in Chapter 12.

7.A Details for the complex harmonic chain

7.A.1 A two-site chain with complex oscillators

For a single harmonic chain with two sites, the RDM has been worked out e.g. in [167]. The
entanglement Hamiltonian of one site is

HA = εβ†β. (7.A.1)

For this site, the β’s are related to the a’s as

β = a cosh θ + a† sinh θ , (7.A.2)

which is the specialisation of Eq. (7.3.12) to the case of A being one site. Here eθ = (1 +ω2
0/4)1/4,

but its explicit value is unimportant. Hence, in terms of the ladder operators a, a†, HA can be
rewritten as

HA = ε

(
1

2
(a†2 + a2) sinh 2θ + a†a cosh2 θ + aa† sinh2 θ

)
. (7.A.3)

Rather then one real harmonic oscillator, we consider a complex one, which is the same as two
real harmonic oscillators described by the ladder operators a†i , ai, i = x, y such that the only non-

vanishing commutators are [ai, a
†
i ] = 1, i = x, y. Therefore, the entanglement Hamiltonian of these

two real harmonic oscillators is simply the sum of two single ones:

HA =
∑

i=x,y

ε

(
1

2
(a†2i + a2

i ) sinh 2θ + a†iai cosh2 θ + aia
†
i sinh2 θ

)
. (7.A.4)
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Let us rewrite Eq. (7.A.4) in terms of the particle and antiparticle ladder operators a and b in
Eq. (7.3.13), i.e.

ax =
1√
2

(a+ b) a†x =
1√
2

(a† + b†)

ay =
1√
2i

(a− b) a†y =
1√
2i

(b† − a†).
(7.A.5)

One can check that [a, a†] = [b, b†] = 1, while all other commutators vanish. Plugging Eqs. (7.A.5)
into Eq. (7.A.4), we obtain

HA = ε
(

(a†b† + ab) sinh 2θ + (a†a+ b†b) cosh2 θ + (aa† + bb†) sinh2 θ
)
, (7.A.6)

or, equivalently (up to an additive constant we can absorb in the normalisation factor of the RDM)

HA = ε
(

(a†b† + ab) sinh 2θ + (a†a+ bb†) cosh 2θ
)
. (7.A.7)

One can bring Eq. (7.A.7) into a diagonal form through Bogoliubov transformations, i.e.

α = cosh θ a+ sinh θ b†, α† = cosh θ a† + sinh θ b,

γ = sinh θ a+ cosh θ b†, γ† = sinh θ a† + cosh θ b,
(7.A.8)

where [α, α†] = [γ, γ†] = 1, while [α, γ] = 0. As a result, one finds that the RDM for one single
complex harmonic oscillator ρ1 has the form

ρ1 = Ke−HA , HA = ε
(
α†α+ γ†γ

)
. (7.A.9)

Since the operators γ and α commute, we can rewrite Eq. (7.A.9)

ρ1 = Ke−H
(α)
A ⊗ e−H

(γ)
A . (7.A.10)

7.A.2 The Bogoliubov transformation for a chain of arbitrary length

For a real harmonic chain of arbitrary length 2L, the entanglement Hamiltonian for half system
is [167]

HA =
L−1∑

j=0

εjβ
†
jβj , (7.A.11)

where the eigenvalues εj depend on L and in the thermodynamic limit are given by Eq. (7.3.10)
while for L = 1 by Eq. (7.A.1).

The ladder operator βj as function of the local ladder operators are given by Eq. (7.3.12), i.e.

βj =
∑

i∈A
gjiai + hjia

†
i . (7.A.12)

Hence, the entanglement Hamiltonian in terms of local operators is

HA =
∑

j

εj
∑

i1,i2

(
g∗i1jgji2a

†
i1
ai2 + g∗i1jhji2a

†
i1
a†i2 + h∗i1jgji2ai1ai2 + h∗i1jhji2ai1a

†
i2

)
. (7.A.13)
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Therefore, the entanglement Hamiltonian of a complex chain is just the sum of two real ones with
local ladder operators aa,j with a = x, y as in the case of two oscillators in the previous subsection.
Such HA can be rewritten in terms of the particle and antiparticle ladder operators in Eq. (7.3.13),
obtaining (up to constants)

HA =
∑

j

εj
∑

i1,i2

(
(g∗i1jgji2 + h∗i1jhji2)(a†i1ai2 + b†i1bi2) + g∗i1jhji2a

†
i1
b†i2 + h∗i1jgji2ai1bi2

)
, (7.A.14)

which we can put in the diagonal form

HA =
∞∑

j=0

εj(α
†
jαj + γ†jγj), (7.A.15)

by the transformation (7.3.14).





Chapter 8

Symmetry resolved entanglement in
2d systems via dimensional reduction

We continue with the study of entanglement resolution in 2d many-body systems of free bosons and
fermions by dimensional reduction. When the subsystem is translational invariant in a transverse
direction, this strategy allows us to reduce the initial two-dimensional problem into decoupled one-
dimensional ones in a mixed space-momentum representation. While the idea straightforwardly
applies to any dimension d, here we focus on the case d = 2 and derive explicit expressions for two
lattice models possessing a U(1) symmetry, i.e., free non-relativistic massless fermions and free
complex (massive and massless) bosons. Our derivation gives a transparent understanding of the
well known different behaviours between massless bosons and fermions in d ≥ 2: massless fermions
presents logarithmic violation of the area which instead strictly hold for bosons, even massless.
This is true both for the total and the symmetry resolved entropies. Interestingly, we find that
the equipartition of entanglement into different symmetry sectors holds also in two dimensions at
leading order in subsystem size; we identify for both systems the first term breaking it. All our
findings are quantitatively tested against exact numerical calculations in lattice models for both
bosons and fermions. This Chapter is based on Ref. [100].

8.1 Introduction

One of the most fascinating aspects of the entanglement entropy in the ground states of extended
quantum systems is that it scales with the area of a subsystem rather than its volume, as it happens,
instead, for generic eigenstates in the middle of the spectrum. We have already mentioned in the
introduction that this feature is known as area law [15]. In higher dimensions, massless systems
behave rather differently depending on the fine details of the model. It is impossible to mention
all aspects of the problem, but the most striking feature is that while free massless non-relativistic
fermions show logarithmic violations of the area law [97, 423–430, 650], in free massless bosons it
strictly holds [170, 194, 423, 431–433]. Despite in general it is not known how the entanglement
scales in interacting massless bosons and fermions, there are indications that the structure found
for free systems should be robust also against interactions, see e.g. Refs. [188,434–444].

A natural and transparent way to see this fundamental difference between free bosons and
fermions is dimensional reduction, a strategy for the computation of the entanglement entropy
first suggested in [170] and since then exploited in many different circumstances. The idea is very
simple: if the subsystem of a free 2d model is translational invariant in one compact direction
(that we call transverse, say along the y-axis), we can perform Fourier transform in this direction
and reduce the problem to the sum of 1d ones, for which exact results are known. Two examples
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N

` `

N
L

Figure 8.1: The geometries of the 2d systems we study in this Chapter: along the longitudinal
x-direction the system is either infinite (left) or finite with length L (right). In both cases, periodic
boundary conditions are imposed along the transverse y-direction of size N . The geometry is then
either an infinite cylinder (left) or a torus (right). The entangling region is always a periodic strip
of length ` along the x-axis, as highlighted in green.

of geometries for which the dimensional reduction works are shown in Figure 11.1 and they are
the only ones we will consider in this Chapter. Actually, this technique can be straightforwardly
applied in generic dimensions d (with d − 1 compact ones), but we focus here in 2d for clarity
of the presentation (the only difference in the final result is just the sum over many transverse
components).

The organisation of the Chapter is the following. In Sec. 8.2 we will do a brief recap of the
needed 1d results for bosons [98] and fermions [90,91]. Secs. 8.3 and 8.4 are the core of the Chapter,
where we derive our results for total and symmetry resolved entropies for fermions and bosons,
respectively, by applying the dimensional reduction. Step by step, we benchmark our analytic
results against exact numerical computations. We draw our conclusions in Sec. 8.5.

8.2 One-dimensional recap

In this section, we provide an overview of the the results about one-dimensional models that we
will need for the dimensional reduction in the following sections.

We start by considering the one-dimensional tight binding model, i.e., the free spinless fermions
described by the Hamiltonian

HFF = −1

2

∑

i

(
c†i+1ci + c†ici+1

)
+
∑

i

µc†ici, (8.2.1)

where µ is the chemical potential. We only focus on the ground state here. When |µ| < 1 the
theory is gapless. The Jordan Wigner transformation maps the model to the spin-1/2 XX chain
in a magnetic field. We consider the subsystem A to be an interval made of ` consecutive sites.
For large `, the asymptotic scaling of the entanglement entropies is given by [268,445]

Sn =
1 + n−1

6
log (2` sin kF ) +

Υn(0)

1− n , (8.2.2)

where kF = arccos(µ/2) is the Fermi momentum. The leading logarithmic term in Eq. (8.2.2)
is universal and follows from conformal field theory [17, 20, 21, 62]; in contrast, the non-universal
constant Υn(0) has been derived using the Fisher-Hartwig conjecture [268]. For a finite system
of length L with PBC’s, the same form also holds replacing ` with L

π sin π`
L [20]. In the one-

dimensional tight-binding model, the generalised Fisher-Hartwig conjecture has been also used to
obtain the asymptotic behaviour of the SRREs at leading and subleading orders [90, 91]. The
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charged moments are

logZn(α) =
ikF `

π
α−

[
1

6

(
n− 1

n

)
+

2

n

( α
2π

)2
]

log 2` sin kF + Υn(α) + o(1), (8.2.3)

where Υn(α) has been defined in Eq. (2.3.16). Taking the Fourier transforms and expanding for
large `, one gets for the SRREs at the leading orders [90]

Sn(q) = Sn −
1

2
log

(
2

π
log(2` sin kF )

)
+

log n

2(1− n)
+ o(1). (8.2.4)

The first term breaking equipartition appears at order O(1/(log `)2) [90].

Exact results are available also for free bosonic systems on the lattice, i.e., for the harmonic
chain. In this case, one exploits the Baxter corner transfer matrix (CTM) approach [179], as we
reviewed in Chapter 7. In the following, we will mainly be interested in systems with a U(1)
internal symmetry. We then consider a complex bosonic theory which on the lattice is a chain of
complex oscillators (we dub complex or double harmonic chain). The entanglement resolution has
been also investigated for off-critical quantum bosonic chains through the Baxter’s CTM for the
bipartition in two semi-infinite systems, as we described in Chapter 7.

8.3 Two-dimensional Free Fermions

In this section we compute the REEs and the SRREs in the ground state of a two-dimensional
free fermionic system. For the total entropies, our results confirm the known logarithmic violation
of the area law [424–428], which generalises also to the symmetry resolved analogue.

8.3.1 The model and the bipartition

Let us consider a quadratic fermionic system on a two-dimensional square lattice with isotropic
hopping between nearest-neighbour sites. It is described by the following Hamiltonian

HFF = −1

2

∑

〈i,j〉
(c†i cj + c†jci) + µ

∑

i

c†i ci, (8.3.1)

where µ is the chemical potential for the spinless fermions ci, with i = (i1, i2) a vector identifying
a given lattice site, and 〈i, j〉 stands for nearest neighbours. Specifically, we consider a set of N
coupled identical parallel chains, hence N is the finite length along one direction (say the y-axis).
In the other direction, say the x-axis, the system is either infinite or finite with length L. PBC’s
are imposed along the y-axis. The subsystem A is a (periodic) strip of length ` along the x-axis,
(see Figure 11.1). Given the special geometry we consider, we can take the Fourier transform along
the transverse y direction. The partial Fourier transforms c̃j1,r and its inverse are

c̃j1,r =
1√
N

N−1∑

j=0

cj1,je
−2πijr/N , cj1,j2 =

1√
N

N−1∑

r=0

c̃j1,re
2πij2r/N , (8.3.2)

leading to the Hamiltonian in mixed space-momentum representation

HFF =

N−1∑

r=0

H
k

(r)
y
. (8.3.3)
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The operator H
k

(r)
y

is the Hamiltonian in the k
(r)
y = 2πr

N transverse momentum sector:

H
k

(r)
y

= −1

2

L∑

i=1

(
c̃†i,r c̃i+1,r + h.c.

)
+
∑

i

µr c̃
†
i,r c̃i,r, (8.3.4)

where
µr = µ− cos k(r)

y , (8.3.5)

and L is the length of the chain along the x-axis. In this way, the Hamiltonian is mapped to a sum
of N independent one-dimensional chains with chemical potential µr depending on the transverse

momentum k
(r)
y .

We focus on the critical regime of the whole 2d system, which is in attained for 0 < µ < 2. In
terms of the one dimensional systems, this constraint on µ means that all transverse modes with
|µr| < 1 are critical, while the others are not. This inequality is satisfied for

r ∈ Ωµ =

[
0,

arccos(µ− 1)N

2π

[
∪
]
N

(
1− arccos(µ− 1)

2π

)
, N − 1

]
. (8.3.6)

The inner extremes of the intervals are not part of Ωµ. The case µ = 0 deserves particular
attention: when dealing with a finite number of chains, also the mode r = 0 has to be removed
from Ωµ. This difference is irrelevant in the limit N → ∞ when the fraction of critical chains is

simply given by arccos(µ−1)
π .

Since the Hamiltonian is a sum of different sectors, the ground state density matrix factorises
and so does the RDM

ρA =
N⊗

r=1

ρA
k

(r)
y

=
⊗

r∈Ωµ

ρA
k

(r)
y
. (8.3.7)

In the last equality, we stress that the only relevant modes are the ones corresponding to critical
1d chains. The blocks corresponding to non-critical chains are projectors on the 1d vacuum state,
i.e. without fermions. As a consequence, hereafter, we only take into account the gapless modes,
which belong to Ωµ. The RDM ρA

k
(r)
y

of the 1d subsystem associated to the r-th mode can be

written as [169,171,366]

ρA
k

(r)
y

= detC
k

(r)
y

exp


∑

i,j

[log(C−1

k
(r)
y

− 1)]i,j c̃
†
i,r c̃j,r


 , (8.3.8)

where the matrix C
k

(r)
y
≡ 〈c̃†i,r c̃j,r〉 is the correlation matrix restricted to the r-th subsystem A. The

entanglement entropy is easily expressed in terms of the eigenvalues of such correlation matrix.
We start by considering the model in the thermodynamic limit in the longitudinal (x) direction,

i.e., L → ∞ (Figure 11.1, left panel). For the ground-state of N infinite chains the correlation
matrix C of the whole (two-dimensional) subsystem can be written as

C = ⊕rCk(r)
y
, (8.3.9)

where C
k

(r)
y

reads

C
k

(r)
y

(i, j) =
sin kFr (i− j)
π(i− j) , kFr = arccosµr, (8.3.10)

as a function of the Fermi momentum kFr of each r-th chain (µr is given in Eq. (8.3.5)). This is
due to the factorisation of the Hilbert space into the different modes, which corresponds to a block
diagonal structure of the correlation matrix: each block is associated to a transverse mode and,
as a consequence, to a given 1d ground state.
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8.3.2 Rényi and Entanglement Entropies

From the structure of the Hamiltonian in Eq. (8.3.3), the Rényi entropies can be computed by
invoking the one-dimensional results [268]: the entanglement entropy is additive on tensor products
and therefore decomposes as

S2d
n


⊗

r∈Ωµ

ρA
k

(r)
y


 =

∑

r∈Ωµ

S1d
n,r, S1d

n,r =
1

6

(
1 +

1

n

)
log(2` sin kFr ) + Υn + o(1), (8.3.11)

where Υn is Υn(α = 0)/(1− n) in Eq. (2.3.16).

Note that in our setting, the Fermi momentum of each transverse mode-chain can be explicitly
written down as

sin kFr =

√
1−

(
µ− cos

(
2πr

N

))2

. (8.3.12)

Plugging this relation into Eq. (8.3.11) we get

S2d
n =

fN (µ)N

6

(
1 +

1

n

)
log(2`) + fN (µ)NΥn +

1

12

(
1 +

1

n

) ∑

r∈Ωµ

log

[
1−

(
µ− cos

(2πr

N

))2
]
,

(8.3.13)
where fN (µ) denotes the fraction of critical modes (i.e., the number of modes belonging to Ωµ

divided by N). It is useful to define also the quantity

AN (µ) =
1

2N

∑

r∈Ωµ

log

[
1−

(
µ− cos

(
2πr

N

))2
]
, (8.3.14)

so that we have

S2d
n =

1

6

(
1 +

1

n

)(
fN (µ) log 2`+AN (µ)

)
N +NfN (µ)Υn, (8.3.15)

As aforementioned, when N →∞ the prefactor of the logarithmic term simply becomes

Nf∞(µ) = N
arccos(µ− 1)

π
. (8.3.16)

In the left panel of Figure 8.2 we report fN (µ) as function of N for a few values of µ, showing the
approach to N →∞.

In the right panel of Figure 8.2 we report a similar plot for AN (µ), as function of N for four
different values of µ. As N increases, it approaches an asymptotic value that can be explicitly
calculated. In fact, in the limit of large N , the sum in Eq. (8.3.13) turns into

1

2

∑

r∈Ωµ

log

∣∣∣∣∣1−
(
µ− cos

(
2πr

N

))2
∣∣∣∣∣→

N

2π

∫ arccos(µ−1)

0
dx log

(
1− (µ− cos(x))2

)
− 1− log(2π

√
µ(2− µ)) + logN

2
,

(8.3.17)

where we have subtracted the (divergent) contribution from the upper extreme of integration,
corresponding to the modes r = {f∞(µ)N, (1 − f∞(µ))N}, which are excluded from the sum in
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Figure 8.2: Left panel: The fraction of critical modes, fN (µ), is plotted as a function of length N
of the transverse direction for four different values of chemical potential µ. The curves approach
the constant value reported in Eq. (8.3.16) and plotted as dashed lines. Right panel: The function
AN (µ) in Eq. (8.3.14) as a function of N for four different values of chemical potential µ. For all
µ, the curves approach A∞(µ) reported as dashed lines including the correction up to O(1/N),
which are clearly important to have a good match even for N as large as 200.

the left hand side (see Eq. (8.3.6)). The explicit computation of the integral gives

N

2π

∫ arccos(µ−1)

0
dx log

(
1− (µ− cos(x))2

)
=

− N

2π

[
π log(1 + 4µ+ 2µ2 − 2(1 + µ)

√
µ2 + 2µ)+ arccos(µ− 1) log(4(1 + µ+

√
µ2 + 2µ))+

+ Im(Li2(e2i arccos(µ−1)) + 2Li2(ei arccos(µ−1)(1 + µ+
√
µ2 + 2µ)))

]
, (8.3.18)

where Li2 is the dilogarithmic function Li2 ≡
∑∞

k=1
zk

k2 . Once again, the case µ = 0 deserves
particular attention because also the divergence coming from the lower extreme of integration in
(8.3.17) has to be subtracted (i.e., the limits µ → 0 and N → ∞ do not commute). Thus, one
has to carefully perform a Taylor expansion of the integrand around both extremes of integration.
The final result is

AN (0)→ A∞(0) = − log 2− 2− 2 log π + 2 logN

N
. (8.3.19)

The logarithmic correction for small values of N is evident in Figure 8.2 for all values of µ, but it
is more pronounced for µ = 0, as clear from the analytic expressions. Hence the total entropy for
large N is

S2d
n =

f∞(µ)N

6

(
1 +

1

n

)
log 2`+

N

6

(
1 +

1

n

)
A∞(µ) + f∞(µ)NΥn, (8.3.20)

which we recall is valid at order o(`0) and O(N0). We will see that to have a good agreement with
numerical data at finite but large `, it is needed to keep the logN contribution in AN (µ).

When both ` and N are large, it is useful to look at the special case of the subsystem A being
a square strip with N = `, when Eq. (8.3.20) is rewritten as

S2d
n =

f∞(µ)

6

(
1 +

1

n

)
` log 2`+ `

1

6

(
1 +

1

n

)
A∞(µ) + f∞(µ)`Υn +O(`0). (8.3.21)

(Actually, any choice of N and ` proportional to each other, N = a`, would be equivalent, with
just an overall factor a, but for simplicity let us just think to a = 1.) Let us briefly comment
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Eq. (8.3.21). It shows the expected logarithmic correction to the area law and our derivation
gives a clearer understanding of such behaviour: it is a simple consequence of the fact that we are
dealing with an extensive a number of critical chains, i.e. proportional to N = `, whose entropy
obeys a logarithmic scaling so that each of them contributes proportionally to log ` to the total
entropy. Moreover, it also agrees with the result obtained by the application of Widom conjecture
(see, e.g., [424–426]) that provides an explicit formula for the prefactor of the leading term of the
entanglement entropy of free fermions in any dimension, i.e., S1 = C`d−1 log ` + O(`d−1), with C
given by

C =
1

12(2π)

∫

∂Λ

∫

∂Γ(µ)
|nx · np|dSxdSp, (8.3.22)

where Λ is the considered subsystem with volume normalised to one, Γ(µ) is the volume in momen-
tum space enclosed by the Fermi surface, np, nx are the unit normals to the boundaries of these
volumes and the integration is carried over the surface of both domains. In the case of interest for
this Chapter, given the compactification along the y direction, the Fermi surface is defined by the
solutions of Sp = 0 (with Sp = µ− cos kx − cos ky). By performing the line integrals, Eq. (8.3.22)
becomes

C =
arccos(µ− 1)

3π
, (8.3.23)

in agreement with Eq. (8.3.21). We stress that while the leading terms in the two approaches are
identical, the dimensional reduction provides an explicit prediction also for the subleading term
proportional to `, as in Eq. (8.3.21), which cannot be derived by Widom conjecture.

Some generalisations.

The same approach is straightforwardly adapted to the computation of the entanglement entropies
in the case of Dirichlet (open) boundary conditions (DBC’s) along the transverse direction (y-
axis), i.e., imposing cj1,0 = cj1,N = 0. Although these boundary conditions break the translational
invariance in the transverse direction, one can use the Fourier sine transform (rather than the
standard one). The only final difference is that the set of modes Ωµ in (8.3.6) corresponding to
critical chains will now start from r = 1 (instead of r = 0). The same strategy applies when the
total system is a finite block of L sites along the x-direction, with PBC’s (see the right panel in
Figure (11.1)). In this case, the only difference is that the scaling of the one-dimensional Rényi
entropies for a system with PBC’s reads

S1d
n,j =

1 + n

6n
log
(2L

π
sin
(π`
L

)
sin kFj

)
+ Υn. (8.3.24)

Therefore, we have for any finite N

S2d
n =

n+ 1

6n

[
fN (µ) log

( L
2π

sin
(π`
L

))
+AN (µ)

]
N + fN (µ)NΥn, (8.3.25)

and similarly for large N with fN (µ)→ f∞(µ) and AN (µ)→ A∞(µ).

Numerical checks.

We now benchmark the results for the total entropies against exact numerical calculations obtained
by the free-fermion techniques reported in Sec. 1.4.3. In Figure 8.3 we report the numerical data
of the Rényi entropies for different values of the index n and chemical potential µ, both for infinite
(panel (a)) and finite (panel (b)) system size. We fix the transverse direction N to be equal to the
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Figure 8.3: Leading scaling behaviour of the Rényi entropies S2d
n of 2d free fermions both for

infinite (a) and finite system size L (b) in the longitudinal direction. In the transverse direction,
we fix the periodic size N to equal `, the subsystem length in the longitudinal direction. The
numerical results (symbols) for different values of µ and n are reported as function of `. They
match well the theoretical prediction of Eqs. (8.3.21) and (8.3.25); the dashed lines in (a) are
the leading behaviour ∝ ` log ` which is clearly not enough accurate. The non-universal coefficient
proportional to the area, 2`, in Eq. (10.3.26) is well captured by the numerics, as highlighted in
(c).

longitudinal subsystem length `, so that the subsystem A is a square with PBC in the transverse
direction. We also properly choose the values of µ and ` such that `f`(µ) is an integer number to
eliminate effects due to partial fillings of modes. The theoretical predictions for the leading scaling
in Eqs. (8.3.21) and (8.3.25) are also reported for comparison. These include both the leading
term and the subleading one proportional to the area (2`) between the subsystem A and the rest
of the system.

It is evident that the analytical results correctly describe the data. We also report (as dashed
lines) the sole leading universal behaviour ∝ ` log `: this universal term alone does not match
the data for these values of `, highlighting the importance of the subleading terms ∝ ` that we
calculated analytically here. In the panel (c) of the same figure, we plot the data for the von
Neumann entropy where we subtracted the leading term f`(µ)` log ` to show the non-universal
subleading terms found in Eq. (8.3.21) alone.

8.3.3 Symmetry Resolved Entanglement Entropies

The same dimensional reduction technique can further be used to compute the SRREs. Indeed,
from Eq. (8.3.1) the particle number Q =

∑
i c
†
i ci is a conserved U(1) charge of the model in

arbitrary dimension. The strategy is exactly as before: we consider a finite system in the transverse
direction with PBC and so reduce to a one-dimensional problem for the charged moments and then,
via Fourier transform, we get the SRREs.

Charged moments.

Because of the factorisation of the RDM (8.3.7) and of the additivity of the conserved charge, we
can rewrite

ρnAe
iQAα =

⊗

r∈Ωµ

ρn
A,k

(r)
y
eiQ

(r)
A α , (8.3.26)
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Figure 8.4: Leading scaling behaviour of the real and imaginary part of the charged moments
logZ2d

n (α) in 2d free fermionic model for an infinite cylinder with transverse length N = `, equal
to the subsystem length in the longitudinal direction. The numerical results (symbols) for several
values of α and n are reported as function of ` for different µ’s. Different colours represent different
choices of the parameters n, α, µ. The corresponding analytic predictions (continuous lines), Eqs.
(8.3.28) and (8.3.34), are also reported.

where Q
(r)
A is the charge operator restricted to the r-th transverse mode. This factorisation allows

us to rewrite in terms of the one-dimensional results for the charged moment

logZ2d
n (α) =

∑

r∈Ωµ

logZ1d
n,r(α), (8.3.27)

and, using the explicit 1d result Eq. (8.2.3), the sum is performed as

logZ2d
n (α) ' iq̄α −

[
1

6

(
n− 1

n

)
+

2

n

( α
2π

)2
]

(fN (µ) log 2`+AN (µ))N + NfN (µ)Υn(α).

(8.3.28)

The first term in Eq. (8.3.28) is purely imaginary and it is the average number of particle within
A, for large N explicitly given by

q̄ =
N`

π2

∫ arccos(µ−1)

0
dx arccos(µ− cosx). (8.3.29)

It is extensive in the subsystem volume (N`), as it should, and at half-filling, µ = 0, it reproduces
the simple result q̄ = N`/2.

In Eq. (8.3.28), it is useful to write Υn(α) as

Υn(α) = Υ(n) + γ(n)α2 + ε(n, α), ε(n, α) = O(α4), (8.3.30)

where

γ(n) =
ni

4

∫ ∞

−∞
dw[tanh3(πnw)− tanh(πnw)] log

Γ(1
2 + iw)

Γ(1
2 − iw)

. (8.3.31)

In Ref. [90] it has been shown that the quadratic approximation of Eq. (8.3.30) is appropriate
for many of applications since ε(n, α) � γ(n)α2. In particular, this approximation allows for an
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explicit analytic computation of the symmetry resolved moments Zn(q). Therefore, hereafter we
will keep only the terms up to O(α2) and we rewrite (8.3.28) in the compact form as:

logZ2d
n (α) ' logZ2d

n (0) + iq̄α− α2(BnfN (µ) log 2`+ Cn)N, (8.3.32)

with

Bn =
1

2π2n
,

Cn =
AN (µ)

2π2n
− fN (µ)γ(n).

(8.3.33)

In Figure 8.4 we report the numerical data both for the real and the imaginary part of logZ2d
n (α)

for different values of n and α. Here the system is an infinite cylinder of circumference ` and
the subsystem A is again a periodic square strip with longitudinal length equal to `. Here and
throughout this section, the values of µ and ` are chosen such that `f`(µ) is an integer number.
Moreover, when µ = 0, we focus on the case ` even. The theoretical prediction in Eq. (8.3.28)
is also reported for comparison, showing that the analytical result correctly describes the data
as long as |α| < π (as well known already in 1d, see e.g. [90, 91]). The oscillating corrections to
the scaling become relevant when α moves close to ±π. The reason is that some terms in the
generalised Fisher-Hartwig approach become larger and Eq. (8.2.3) is not a good approximation
at the considered intermediate values of ` [90,91]. In the figure it is evident that these oscillations
arise also for n = 1, contrarily to what happens for α = 0.

A simple but interesting generalisation of the calculation we just presented concerns the ge-
ometry of a torus as depicted in the right of Figure 11.1. The longitudinal size of the system
is L. The charged moments are again obtained by summing up the contribution of the different
transverse modes as critical 1d chains, using the finite size form with the chord length. Summing
up the contributions of the the transverse modes we get

logZ2d
n (α) '

' iαq̄ −
[

1

6

(
n− 1

n

)
+

2

n

( α
2π

)2
]
N

[
fN (µ) log

[2L

π
sin
(π`
L

)]
+AN (µ)

]
+NfN (µ)Υn(α).

(8.3.34)

Symmetry resolution.

We now can compute the Fourier transform Z2d
n (q) of the charged moments using the leading order

terms of Z2d
n (α) taking into account the effect of the non-universal pieces. This Fourier transform

is

Z2d
n (q) =

∫ π

−π

dα

2π
e−iqαZ2d

n (α) ' Z2d
n (0)

∫ π

−π

dα

2π
e−i(q−q)α−α

2bn , (8.3.35)

where the coefficient of the quadratic term is

bn = NBnfN (µ) log 2`+ CnN. (8.3.36)

For large subsystem size ` and/or N , we can treat the integral by means of the saddle point
approximation and use as domain of integration [−∞,+∞], getting

Z2d
n (q) ' Z2d

n (0)e
− (q−q)2

4N(BnfN (µ) log 2`+Cn)

√
1

4πN(BnfN (µ) log 2`+ Cn)
, (8.3.37)
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Figure 8.5: The probability Z2d
1 (q) for 2d free fermions with chemical potential µ = 0 (left) and

µ = 0.5 (right). The red symbols are the numerical values and blue lines are the analytical
prediction (8.3.37). In the main frame Z2d

1 (q = q̄) is shown as a function of `, whereas in the inset
we fix ` and Z2d

1 (q) is plotted as a function of q.

where Z2d
n (α) is given in Eq. (8.3.28) and we report it again for completeness in a coincise form

for α = 0

Z2d
n (0) =

(
(2`)fN (µ)eAN (µ)

)− 1
6

(n− 1
n

)N
eΥ(n)NfN (µ). (8.3.38)

In full analogy to the 1d case, the probability distribution functions given by these moments are
still Gaussian with mean q̄ and variance that for large ` and N grows as

√
N log `. An equivalent

result was already obtained in Refs. [91, 94] for Fermi gases in arbitrary dimension using the
Widom’s conjecture. The novelty of this formula is an exact prediction for the coefficient Cn that
renormalises the variance at order O(`) and, as we will see, will play a crucial role for an accurate
computation of the SRREs.

Let us briefly discuss the terms that have been neglected in the derivation of Eq. (8.3.37)
which are the same as in 1d [90]. The main approximation is to ignore ε(n, α) in Eq. (8.3.31)
which induces a correction going like 1/(N log `). Finally the corrections coming from having
replaced the extremes of integration ±π with ±∞ are really small: they decay as e−π

2bn/bn, i.e.,
exponentially in N .

The accuracy of Eq. (8.3.37) is checked for different values of µ in Figure 8.5 where we report
the numerically calculated Fourier transforms and the analytical prediction. It is evident from
the data in the main frames and in the insets that both the ` and the q dependence of Zn(q) is
perfectly captured by our approximation.

With these ingredients at our disposal, we are ready to compute the asymptotic behaviour of
the SRRE, given by

S2d
n (q) =

1

1− n log

[ Z2d
n (q)

Z2d
1 (q)n

]
' 1

1− n log
Z2d
n (0)

(Z2d
1 (0))n

e−
(q−q)2

4bn

e
−n(q−q)2

4b1

(4πbn)−1/2

(4πb1)−n/2
. (8.3.39)

After some simple algebra, we can write

S2d
n (q) = S2d

n −
1

2
log

(
2N

π
(f∞(µ) log(2`) + f∞(µ)δn +A∞(µ))

)
+

log n

2(1− n)
+

(q − q)2π4 n

1− n
(γ(1)− nγ(n))

N [f∞(µ) log(2`) + f∞(µ)κn +A∞(µ)]2
+ · · · , (8.3.40)
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Figure 8.6: SRREs S2d
n (q) of 2d free fermions for n = 1, 2, 3 and different values of µ. We fix the

transverse direction N = `, equal to the length of the subsystem in the longitudinal direction. In
the left panel the numerical data (symbols) of 2d free fermions for q = q̄ are compared with the
theoretical predictions of Eqs. (8.3.40) and (8.3.43). In the right panel we show four values of q
(namely q − q̄ = 0, 1, 2, 3). The data are almost coinciding on this scale, so in the inset we report
their difference which is perfectly captured by the theoretical prediction.

where S2d
n is the total Rényi entropy,

δn = −2π2n(γ(n)− γ(1))

1− n , (8.3.41)

and

κn = −π2(γ(1) + nγ(n)). (8.3.42)

Eq. (8.3.40) provides the leading behaviour for large ` and N as well as the non-universal additive
constants, and a q-dependent subleading correction which scales as N−1(log `)−2. Such correction
provides the first term in the expansion for large ` and N which depends on the symmetry sector.
As in the corresponding 1d calculation [90], it can be calculated from the subleading terms of the
variance of Z2d

n (q), in particular the additive non-universal constant Cn in Eq. (8.3.33). So while
few leading terms satisfy the equipartition of entanglement, we can precisely identify the first term
that breaks it. Taking now the limit for n→ 1 of (8.3.40), we get the von Neumann entropy

S2d
1 (q) = S2d

1 −
1

2
log

(
2N

π
(f∞(µ) log(2`) + f∞(µ)δ1 +A∞(µ))

)
− 1

2
+

+ (q − q)2π4 (γ(1) + γ′(1))

N [f∞(µ) log(2`) + f∞(µ)κ1 +A∞(µ)]2
+ · · · (8.3.43)

These predictions for the SRREs are compared with the numerical data in Figure 8.6. In the
left panel we consider the scaling with ` of Sn(q̄) and it is evident that the numerical data perfectly
match with the theoretical prediction in Eqs. (8.3.40) and (8.3.43). The corrections in (q− q̄) are
suppressed as 1/(N(log `)2) and the curves in the right panel seem to be on top of each other on
the scale of the plot. In order to appreciate their distance, in the inset we report the differences
with Sn(q̄) (focusing on n = 1) and we show that they are well described by our prediction. The
agreement is excellent even for relatively small values of ` and N of the order of 20.

We quickly discuss now what happens in the case of the torus geometry: we only report the
final results, since the calculations are only a slight modification of the previous ones. The Fourier
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Figure 8.7: Left panel: Z2d
1 (q = q̄) of 2d free fermions for different values of µ and finite torus of

longitudinal length L = 64. We fix the transverse size N equal to the subsystem length `. Red
symbols correspond to numerical data. The blue lines show the analytical prediction (8.3.44). The
inset shows Z2d

1 (q) for ` = 10 as a function of q. Right panel: SRREs S2d
n (q) of 2d free fermions for

n = 1, 2 and different µ’s and q: the numerical data (symbols) are compared with the theoretical
prediction (continuous lines) of Eq. (8.3.46). As (q − q̄) increases, the neglected terms become
more relevant, therefore the agreement between numerics and analytical predictions worsens.

transform of Eq. (8.3.34) is

Zn(q) ' Z2d
n (0)

e
− (q−q)2

4N[ 1
2π2n

(fN (µ) log( 2L
π sin(π`L ))+AN (µ))−fN (µ)γ(n)]

√
4Nπ

[
1

2π2n

(
fN (µ) log

(
2L
π sin

(
π`
L

))
+AN (µ)

)
− fN (µ)γ(n)

] (8.3.44)

where

Z2d
n (0) = eΥ(n)NfN (µ)

(
eAN (µ)

(
2L

π
sin(

π`

L
)

)fN (µ)
)− 1

6
(n− 1

n
)N

. (8.3.45)

The SRREs are then easily worked out as

S2d
n (q) = S2d

n −
1

2
log

[
2N

π

(
f∞(µ) log

(
2L

π
sin(

π`

L
)

)
+ f∞(µ)δn +A∞(µ)

)]
+

log n

2(1− n)
+

(q − q)2π4 n

1− n
(γ(1)− nγ(n))

N [f∞(µ) log
(

2L
π sin(π`L )

)
+ f∞(µ)κn +A∞(µ)]2

+ · · · . (8.3.46)

These results are tested with numerics in Figure (8.7).

8.4 Two-dimensional Free Bosons

In this section we consider the entanglement entropy and its partition into the different charge
sectors for a lattice discretisation of the complex Klein–Gordon theory, namely coupled complex
harmonic oscillators on a two-dimensional square lattice. Here we will apply the same strategy of
the previous section to recast, once again, our problem into the sum of uncoupled one-dimensional
chains.
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8.4.1 Rényi and Entanglement Entropies

Let us examine a two-dimensional system of L × N real coupled oscillators, where L and N are
the lengths along the x– (longitudinal) and y–direction (transverse), respectively (see Figure 11.1).
The 2d Hamiltonian describing a real 2d square lattice of harmonic oscillators is

HB =
1

2

L∑

x=1

N∑

y=1

[
p2
x,y + ω2

0q
2
x,y + κx(qx+1,y − qx,y)2 + κy(qx,y+1 − qx,y)2

]
, (8.4.1)

where qx,y, px,y and ω0 are coordinate, momentum and self-frequency of the oscillator at site (x, y)
while κx and κy are the nearest-neighbour couplings. As in the one-dimensional case, the 2d lattice
of complex oscillators is

HCB(p(1) + ip(2), q(1) + iq(2)) = HB(p(1), q(1)) +HB(p(2), q(2)). (8.4.2)

If we define p = p(1)+ip(2)
√

2
and q = q(1)+iq(2)

√
2

, Eq. (8.4.2) becomes

HCB =

L∑

x=1

N∑

y=1

[
p†x,ypx,y + ω2

0q†x,yqx,y+

+κx(qx+1,y − qx,y)
†(qx+1,y − qx,y) + κy(qx,y+1 − qx,y)

†(qx,y+1 − qx,y)
]
.

(8.4.3)

Imposing PBC’s along the y-direction, we can exploit the translational invariance and use Fourier
transform in the transverse direction, to get the mixed space-momentum representation

qx,y =
1√
N

N−1∑

r=0

q̃x,re
2πiry/N , (8.4.4)

and similarly for px,y. We set κy = κx = 1 to shorten the notation (indeed they can be absorbed
by a canonical transformation). The Hamiltonian (8.4.2) then becomes

HCB =
L∑

x=1

N−1∑

r=0

p̃†x,rp̃x,r + ω2
r q̃
†
x,r q̃x,r + (q̃x+1,r − q̃x,r)†(q̃x+1,r − q̃x,r). (8.4.5)

where
ω2
r = ω2

0 + 4 sin2 πr

N
. (8.4.6)

Because of the additivity of the independent transverse chain modes in Eq. (8.4.5), the entangle-
ment entropy can be computed by using the 1d results, as we did for free fermions.

As already discussed in Chap. (7), the ground-state reduced density matrices of each 1d chain
is obtained by means of corner transfer matrices, for the bipartition of the infinite chain in two
halves. Therefore, the entanglement spectrum associated to the r-mode/chain along the y direction
is given by Eq. (7.3.10), specialised to the frequency ωr, i.e., the eigenvalues of the entanglement
Hamiltonian are now given by

ε
(r)
j = εr(2j + 1), (8.4.7)

where the energy levels are

εr =
πI(
√

1− κ2
r)

I(κr)
, κr =

1

2
(2 + ω2

r − ωr
√

4 + ω2
r ). (8.4.8)
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Figure 8.8: Entanglement entropies in the 2d lattice of complex oscillators. (a): S2d
n in the non-

critical regime, against the length of the transverse direction N , for different ω0 and n at fixed
subsystem size ` = 50. Periodic BC are imposed along y. The symbols correspond to numerical
data, while continuous lines are the analytic predictions (8.4.10). Different colours denote different
choices of the parameters n and ω0. (b): Entanglement entropy S2d

1 in the critical regime ω0 → 0.
Solid lines are the prediction (8.4.12) for different ω0 and N . The smaller ω0, the better Eq.
(8.4.12) works. The additive constant c1d

1 is numerically extrapolated through a fitting procedure
for a chain. (c): Same as in (a), but with DBC’s along the transverse direction. The theoretical
prediction is Eq. (8.4.14).

The parameter κr is obtained by solving the equation ω2
r = (1− κr)2/κr.

In our semi infinite strip, each mode gives a contribution to the entanglement entropy which
can be computed through the CTM approach. Since they are independent, such contributions
simply add up leading to

S2d
n =

2

1− n
N−1∑

r=0

∞∑

j=0

(
n log[1− e−(2j+1)εr ]− log[1− e−(2j+1)nεr ]

)
. (8.4.9)

This result is valid for arbitrary integer N . We can now take the limit of large transverse direction.
The sum becomes an integral in ζ = r/N , we can write (εr → ε(ζ))

S2d
n =

2N

1− n

∫ 1

0
dζ

∞∑

j=0

(
n log[1− e−(2j+1)ε(ζ)]− log[1− e−(2j+1)nε(ζ)]

)
, (8.4.10)

and in the limit n→ 1

S2d
1 = 2N

∫ 1

0
dζ
∞∑

j=0

(
(2j + 1)ε(ζ)

e(2j+1)ε(ζ) − 1
− log[1− e−(2j+1)ε(ζ)]

)
. (8.4.11)

These results for the entanglement entropies are numerically tested in panel (a) of Figure 8.8
using the free-boson techniques reported in Sec. 7.3.4 (from the numerical expression of the charged
moments in Eq. (7.3.56), one easily finds TrρnA setting α = 0 and, eventually, the replica limit by
taking the derivative with respect to n and n→ 1). The considered subsystem is a strip, periodic
in the transverse direction (hence of length N) and of longitudinal size equal to `, but such that
` is much larger than the correlation length of the system (of order ω−1

0 ) and so the entanglement
is just the double of the one for a semi-infinite subsystem. We have fixed ` = 50 which is large
enough for the considered values of ω0. Eqs. (8.4.10) and (8.4.11) perfectly predict the prefactor
of the area-law term, in all cases when the thermodynamic limit along the transverse direction is
a good approximation.
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We now discuss the critical regime ω0 → 0. Here we do not set ω0 = 0 from the beginning,
but we take a very small ω0 and then take the large ` limit. The two limits are known to not
commute in 1d [177]. Although the technique to obtain the 2d results from 1d one is the same
for bosons and fermions, the physics is very different. Indeed, while for fermions the N chains in
the Hamiltonian (8.3.3) are all critical, just with renormalised chemical potentials (8.3.5), for free
bosons only the zero-mode chain is critical and all the other have a gap given by Eq. (8.4.6) that
does not close as ω0 → 0. This different behaviour is the origin of the logarithmic multiplicative
correction to the area law for massless fermions, while massless bosons follow a strict area law,
with additive logarithmic corrections. While these physical results are well known in the literature
(see, e.g., [423]) we find their explanation with dimensional reduction particularly clear.

We can now sum the contributions of the various transverse modes to get the total entangle-
ment entropy. For the zero-mode with r = 0 we take the result from the massive Klein-Gordon
theory [177]. Summing up the various contributions, we have for the two-dimensional lattice
complex oscillators

S2d
n =

n+ 1

3n
log `+ n log(− log(ω0`)) + c1d

n +

+
2

1− n
N−1∑

r=1

∞∑

j=0

(
n log[1− e−(2j+1)εr ]− log[1− e−(2j+1)nεr ]

)
. (8.4.12)

Here the first line is the zero gapless transverse mode and the second is the sum over all massive
ones. The additive constant c1d

n is non-universal and is not predicted by field theory; we will fix it
numerically with a standard fit of the 1d system. All the chains with r > 0 give a O(1) contribution
in ` since, for large enough `, it holds ` � ω−1

r ; hence they give rise to an area-law scaling (i.e.,
∝ N). The panel (b) of Figure 8.8 confirms the accuracy of the prediction (8.4.12) for the critical
regime as a function of N .

Some generalisations.

As in the fermionic case, let us mention that this technique can also be applied when imposing
DBC’s along the transverse direction, i.e., qi,0 = qi,N = pi,0 = pi,N = 0. Because of the breaking of
translational invariance, we can simply use the Fourier sine transform for q̃x,y and p̃x,y. The key
difference with respect to the periodic case is that the frequencies of the transverse modes are

ω2
r = ω2

0 + 4 sin2 πr

2N
, r = 1, · · · , N − 1. (8.4.13)

Thus, within these BC, the frequencies are all different from zero, even for ω0 = 0. The Rényi
entanglement is

S2d
n =

2

1− n
N−1∑

r=1

∞∑

j=0

(
n log[1− e−(2j+1)εr ]− log[1− e−(2j+1)nεr ]

)
. (8.4.14)

We can now take the limit of large N , similarly to what done in Eq. (8.4.10) for ω0 > 0, to get

S2d
n =

2N

1− n

∫ 1

0
dζ
∞∑

j=0

(
n log[1− e−(2j+1)ε(ζ)]− log[1− e−(2j+1)nε(ζ)]

)

− 2

1− n
∞∑

j=0

(
n log[1− e−(2j+1)ε0 ]− log[1− e−(2j+1)nε0 ]

)
, (8.4.15)
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where we need to subtract the contribution from the zero mode, since in Eq. (8.4.14) the sum
starts from r = 1 rather than 0. The accuracy of Eq. (8.4.14) is checked by numerics in the panel
(c) of Figure 8.8 in which the agreement is perfect.

8.4.2 Symmetry Resolved Entanglement Entropies

Here we compute the contributions to the entanglement entropy coming from the different U(1)
symmetry sectors for the 2d lattice of oscillators. The conserved charge reduced to the subsystem
is just the 2d generalisation of QA in Eq. (7.3.17).
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Figure 8.9: Logarithm of the charged moments logZn(α) for the 2d lattice of oscillators in the off-
critical regime. Top panels: Plots as a function of N , for different n and ω0, imposing PBC’s (left)
and DBC’s (right) along the transverse direction. Bottom panel: Plots against α for different ω0

and N (again with PBC’s (left) and DBC’s (right)). In the right panels, numerical data (symbols)
are compared with the analytic predictions (solid lines) of Eq. (8.4.17). In the left panels, data
are compared with the analytic prediction for DBC’s, which is the same as Eq. (8.4.16), but the
sum starts from r = 1 rather than r = 0.

Charged moments.

For the 2d lattice and for a subsystem being a periodic strip, the charged moments are obtained
as a sum of the N independent chains as

logZ2d
n (α) =

N−1∑

r=0

∞∑

j=0

[
2n log[1− e−(2j+1)εr ]− log[1− e−(2j+1)nεr+iα]− log[1− e−(2j+1)nεr−iα]

]
,

(8.4.16)



154 CHAPTER 8. SYMMETRY RESOLVED ENTANGLEMENT IN 2D SYSTEMS

and, taking the limit of large N

logZ2d
n (α) = N

∫ 1

0
dζ

∞∑

j=0

[
2n log[1− e−(2j+1)ε(ζ)]− log[1− e−(2j+1)nε(ζ)+iα]+

− log[1− e−(2j+1)nε(ζ)−iα]
]
. (8.4.17)

Notice that logZ2d
n (α) is real and even in α. We plot logZ2d

n (α) as a function of α and N in
Figure 8.9 (left panels) together with the corresponding numerical data (for the numerical details
see the Sec. 7.3.4). The agreement is perfect for all considered values of n, α,N , and ω0. We
find that for all α, logZ2d

1 (α) is a monotonously increasing function of the self frequency of the
oscillators, ω0. As a function of α, they have a single maximum at α = 0. The plots as a function
of N show that the integral in Eq. (8.4.17) well predicts the prefactor of the area-law term of
Zn(α) in the massive case, N � ω−1

0 . To obtain the data in the figure we fix ` = 50 which is
much larger than the correlation length at all considered ω0; hence, by cluster decomposition,
they approach the double of the prediction (8.4.17). We also analyse the scaling of the charged
moments for DBC’s along the transverse direction. The corresponding results are also displayed
in the right panels of Figure 8.9. The computation through the dimensional reduction perfectly
works for every ω0.

In the critical regime, ω0 → 0, the subsystem is a finite strip of longitudinal length ` and the
resulting pattern is similar to the case encountered when α = 0. Using Eq. (7.3.41) and assuming
that `� ξ, we obtain

log
Z2d
n (α)

Z2d
n (0)

' 2

n

[( α
2π

)2
− |α|

2π

]
log `+

−
N−1∑

r=1

∞∑

j=0

[
log[1− e−(2j+1)nεr+iα] + log[1− e−(2j+1)nεr−iα]

]
, (8.4.18)

where the second line is an additive (`-independent) term that represents the contribution of the
chains with r > 0.

Symmetry resolution.

In order to get the symmetry resolution it is convenient to first rewrite logZ2d
n (α) in the limit

N →∞ as

logZ2d
n (α) = N

∫ 1

0
dζ log


 θ4(0|e−nε(ζ))
θ4(α2 |e−nε(ζ))

∞∏

j=1

(1− e−(2j−1)ε(ζ))2n

(1− e−(2j−1)nε(ζ))2


 ≡ Nfn(α). (8.4.19)

where θ4 is defined in Eq. (7.3.26). Then, the Fourier transform Z2d
n (q) is

Z2d
n (q) =

∫ π

−π

dα

2π
e−iqα

N−1∏

r=0

Z1d
n,r(α), (8.4.20)

i.e., it is the convolution of the Fourier transforms Z1d
n,r(q) of Z1d

n,r(α). This formula can be easily
evaluated for any finite N , even very large. In order to test its accuracy we take the Fourier
transform of the numerical data for Z2d

n (α) in the previous section and compare it with Eq. (8.4.20).
The results are shown in Figure 8.10 where the symmetry resolved moments are plotted both
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Figure 8.10: Z2d
n (q) in the 2d harmonic lattice for different values of ω0, q, and n, as a function of

N (left panel) and q (right panel). Data (symbols) are compared with the analytic prediction (solid
lines) of Eq. (8.4.20). Z2d

1 (q) is peaked at q = 0, which is the average charge in the subsystem.
Here we do not test the large N result (11.3.13).

against N and q for different values of ω0. The agreement is excellent. Note that Zn(q) is peaked
at q = 0, which is the average charge in the subsystem.

For large N , we can use Eq. (8.4.19) so that Eq. (8.4.20) can be rewritten as

Z2d
n (q) '

∫ π

−π

dα

2π
e−iqαeNfn(α). (8.4.21)

Given that we are interested in the large N limit, the integral may be performed by saddle point
method, with the only maximum of fn(α) in α = 0, as we can see in Fig. 8.9. Therefore, the
integral becomes

Z2d
n (q) ' eNfn(0)

∫ ∞

−∞

dα

2π
e−iqαe

−Nα2

2

∫ 1
0 dζ

θ′′4 (0|e−nε(ζ))

4θ4(0|e−nε(ζ)) = Z2d
n (0)

e
− q2

2g(n)N

√
2πNg(n)

, (8.4.22)

where we defined

g(n) ≡
∫ 1

0
dζ

θ′′4(0|e−nε(ζ))
4θ4(0|e−nε(ζ)) . (8.4.23)

The probability distributions given by these moments are Gaussian with mean q̄ = 0 and variance
that grows as

√
N . Unfortunately it is difficult to test Eq. (11.3.13) against numerical calculations

because we would need rather large values of N . We instead checked that indeed Eq. (8.4.20)
converges for large N to (11.3.13). Anyhow, we will show the corresponding plot only for the
SRREs below.

The last step now is to use Eq. (8.4.20) to calculate the SRREs

S2d
n (q) =

1

1− n log

[ Z2d
n (q)

Z2d
1 (q)n

]
, (8.4.24)

whose limit n→ 1 is the SREE

S2d
1 (q) ' −∂nZ

2d
n (q)|n=1

Z2d
1 (q)

+ logZ2d
1 (q). (8.4.25)

Using the previously obtained Z2d
n (q), we have analytic predictions valid for any N . In Figure 8.11

we test the accuracy of this prediction for the entropy in each symmetry sector for N as large as
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200. The figure clearly shows that for these relatively small values of N , the equipartition of the
entanglement does not hold, even though for n = 1 data start becoming parallel to each other,
suggesting a possible onset of equipartition.

In order to understand if and how equipartition is attained at larger values of N , we work out
the large N limit. In the limit N →∞ plugging Eq. (11.3.13) into Eq. (8.4.24), we obtain

S2d
n (q) =

1

1− n log
Z2d
n (0)

(Z2d
1 (0))n

e
− q2

2N

(
1

g(n)
− n
g(1)

)
(2πNg(1))n/2

(2πNg(n))1/2
. (8.4.26)

The first ratio in Eq. (8.4.26) just gives the total Rényi entropy of order n, while the non-trivial
dependence on n of g(n) is responsible for the breaking of the equipartition of the entanglement.
After some algebra, we obtain

S2d
n (q) = S2d

n −
1

2
log(2πN)− 1

2(1− n)
log

g(n)

g(1)n
− q2

2(1− n)N

(
1

g(n)
− n

g(1)

)
, (8.4.27)

whose limit n→ 1 is

S2d
1 (q) = S2d

1 −
1

2
log(2πN)− q2

2N

g′(1) + g(1)

g(1)2
+

1

2

(
g′(1)

g(1)
− log g(1)

)
. (8.4.28)

Hence, we have shown that the leading terms in the expansion for large N satisfy the equipartition
of entanglement. The first term breaking it is at order 1/N and has an amplitude proportional to q2.
Unfortunately, as already mentioned, it is difficult to test numerically the validity of Eq. (8.4.27)
because it requires too large value of N . A posteriori, the reason of this peculiar behaviour is
easily understood from Eqs. (8.4.27) and (8.4.28): the prefactor of the equipartition breaking term
multiplying q2/N is −103.485 . . . for n = 1 and −1793.66 . . . for n = 2, very large in both cases.
Hence, we should get to values of N of order of thousands in order to see equipartition and this
is not simply done numerically. What instead we can easily do is to test that for large N the
analytic prediction (8.4.24) tends indeed to the predicted asymptotic behaviour (8.4.27). This is
shown in the left of Figure 8.11 where we see that very large values of N are required to recover
the asymptotic behaviour, especially for large values of q and n. Hence equipartition is attained
for larger and larger values of N as q and n grow, as very clear from the figure.

8.5 Closing remarks

In this Chapter we exploited dimensional reduction for the computation of Rényi and symmetry
resolved entropies of two-dimensional systems of free fermions and bosons with a translational
invariant geometry in the transverse direction.

The different structure of the entanglement equipartition in 2d bosonic and fermionic systems
clearly shows how such intriguing phenomenon is related to the gaussianity of the probability dis-
tribution of the conserved U(1) charge, which generically follows from the central limit theorem
emerging from the large number of elementary constituents. Yet, there are important counterex-
amples, like the 1d free boson we discussed in Chapter 7, which affect also the physics of some 2d
systems we considered here. Understanding the fine details of entanglement equipartition, such as
the precise conditions for its validity and the form of the first subleading term breaking it, remains
an important open issue.

Having understood how dimensional reduction works for the symmetry resolved entanglement
in 2d free theories is also the starting point for studying interacting ones, e.g. along the lines of
Refs. [284, 436, 444] for the total entanglement, but a lot of challenging work is still necessary to
get results in this direction.
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Figure 8.11: Left: Numerical results for the SRREs S2d
n (q) of the 2d lattice of complex oscillators.

The numerical data for q = 0, 1, 2, n = 1, 2 and ω0 = 0.5 are compared with the predictions
(8.4.24) and (8.4.25) finding perfect agreement. For these relatively small values of N , equiparti-
tion of entanglement does not hold, even though for n = 1 data start approaching the asymptotic
behaviour described by Eq. (8.4.28) and plotted through the dashed lines. Right: We plot the
analytic prediction for the SRREs (8.4.24) (full lines) valid at any N together with its asymp-
totic expansion (8.4.27) (dashed lines), showing that for large N equipartition of entanglement is
recovered. Notice that, as n and q grow, equipartition occurs at much larger values of N .





Chapter 9

Symmetry resolved entanglement in a
long-range system

In this Chapter, we investigate the symmetry resolution of entanglement in the presence of long-
range couplings. To this end, we study the SREE in the ground state of a fermionic chain that has
dimerised long-range hoppings with power-like decaying amplitude, a long-range generalisation of
the Su-Schrieffer-Heeger model. This is a system that preserves the number of particles. The
entropy of each symmetry sector is calculated via the charged moments of the reduced density
matrix. We exploit some recent results on block Toeplitz determinants generated by a discon-
tinuous symbol to obtain analytically the asymptotic behaviour of the charged moments and of
the symmetry resolved entropies for a large subsystem. At leading order we find entanglement
equipartition, but comparing with the short-range counterpart its breaking occurs at a different
order and it does depend on the hopping amplitudes. This Chapter is based on Ref. [102].

9.1 Introduction

One of the most fundamental properties of entanglement is its behaviour with the size of the sub-
system considered. So far, we have considered cases in which the mass gap is zero, the correlation
length diverges, and the area law is corrected by a logarithmic term proportional to the central
charge of the CFT that describes the low-energy spectrum of the model [17,19–21,172,446]. Nev-
ertheless, this scenario changes and becomes more involved for systems with long-range couplings.
For instance, in that case, the ground state entanglement entropy may display a logarithmic growth
even if the mass gap is not zero, as occurs in the long-range Kitaev chain [447–450]. In general,
other more exotic behaviours may arise, depending on the specific form of the couplings [451]. The
theoretical study of long-range systems has also been stimulated by the development of experimen-
tal techniques that allow to simulate them in a laboratory [452–455]. In fact, Rényi entanglement
entropies and generalisations have been experimentally measured in these ion-trap setups, espe-
cially out of equilibrium [80,89,456].

Given the relevance of this subject, we intestigate the symmetry resolution of entanglement in
the presence of long-range couplings. Natural questions are if the SRRE, as the total one, presents
different behaviours with the size of the subsystem, whether it satisfies equipartition, and if yes
what are the subleading terms breaking it. The goal of this Chapter is to address these questions
and to study how the total ground state entanglement splits into the contributions coming from
the symmetry sectors of a gapped model with long-range couplings.

More specifically, the physical system that we will examine is the Su-Schrieffer-Heeger (SSH)
model with long-range hoppings. The short-range version, a dimerised tight-binding fermionic

159
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chain, was initially introduced to analyse solitons in conducting polymers such as polyacety-
lene [457, 458]. In recent years, it has attracted a lot of interest because it supports two topo-
logically distinct phases [459–461]: a topologically non-trivial phase, which presents zero energy
states exponentially localised at the edges of the open chain, and a trivial phase, which is just an
insulator without boundary modes. The relation between the entanglement properties and these
two topological phases has been also investigated (see e.g. [462–465]). Here we extend the SSH
chain by including long-range dimerised hoppings whose amplitude decays with a power law — this
is a gapped U(1) symmetric theory that preserves the number of particles. Other long-range gen-
eralisations of the SSH chain have been considered in the arena of topological insulators [466–470].

The organisation of the Chapter is the following. In Sec. 9.2, we introduce the SSH chain with
long-range hoppings and we calculate the ground state two-point correlation function. In the first
part of Sec. 9.3, we use the latter to obtain the charged moments in the thermodynamic limit.
In particular, we derive their asymptotic behaviour for a large interval by applying some recent
results on block Toeplitz determinants with discontinuous symbols. In the second part of Sec. 9.3,
we employ these results to analyse the SREE and finally find an asymptotic expression for it. We
also benchmark the analytic results against exact numerical computations. We conclude in Sec. 9.4
with some remarks and discussions.

9.2 Su-Schrieffer-Heeger model with long-range hoppings

We would like to analyse the SRREs in a system with long-range couplings. We will in particular
consider the following fermionic chain with dimerised long-range hoppings

H = −
N∑

n=1

N/2∑

l=1

Jl
1 + (−1)nδ

2
c†ncn+l + h.c. (9.2.1)

and periodic boundary conditions cn+N = cn. This Hamiltonian commutes with the particle
number operator Q =

∑
i c
†
ici. We are going to consider the case where the hopping amplitude

decays with the distance between sites as a power law, i.e.

Jl =

{
(l + 1)−ν , l odd

0, l even.
. (9.2.2)

The parameter ν ≥ 0 characterises the dumping of the hopping with the distance. For simplicity,
we only allow hoppings between even and odd sites. In order to enrich the later discussion on
the SRREs, we have taken dimerised hoppings and, therefore, the hopping amplitudes between
even-odd and odd-even sites differ when δ 6= 0. Thus the Hamiltonian is invariant under two-site
translations. If δ = ±1, the chain is fully dimerised and there is not hopping between even-odd
(odd-even) sites. In the case δ = 0, the chain is homogeneous and corresponds to the long-range
analogue of the tight-binding model. This Hamiltonian can be easily diagonalised by performing
a Fourier plus a Bogoliubov transformation. In the diagonal basis, it reads

H =

N−1∑

k=0

ω(θk)

(
d†kdk −

1

2

)
, (9.2.3)

where θk = 2πk/N and ω(θ) is the dispersion relation. In the thermodynamic limit N → ∞, we
replace θk by a continuous variable θ ∈ [−π, π] and the dispersion relation can be written in the
form

ω(θ) =
√
F (θ)2 −G(θ)2, (9.2.4)
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with

F (θ) =
1

2ν+1

[
e−iθLiν(ei2θ) + eiθLiν(e−i2θ)

]
, (9.2.5)

and

G(θ) = − δ

2ν+1

[
e−iθLiν(ei2θ)− eiθLiν(e−i2θ)

]
. (9.2.6)

Here Liν(z) denotes the polylogarithm function of order ν [473]. The appearance of this function
is due to the infinite-range hoppings with power-law decaying amplitude. The properties of the
polylogarithm with the dumping exponent ν originate the features of the long-range SSH model
that differ from the short-range systems. In particular, Liν(z) diverges at z = 1 when 0 ≤ ν < 1,
while it has a finite value for ν > 1. This will be fundamental in the later analysis of the
entanglement resolution. In the dispersion relation, such behaviour of the polylogarithm causes it
to diverge at θ = 0,±π when 0 ≤ ν < 1, while it is always finite for ν > 1. For δ > 0 and ν ≥ 0,
the dispersion relation is always strictly positive, ω(θ) > 0, and therefore the mass gap is not zero.
The gap closes when δ = 0, the non-dimerised chain, as ω(θ) vanishes at θ = ±π/2. In any case,
since the dispersion relation is non-negative, the ground state of H is the Bogoliubov vacuum, |0〉,
defined by the property dk |0〉 = 0, for all k.

As the Hamiltonian is quadratic, the ground state two-point correlation functions are the only
ingredient that we will need to calculate exactly the (symmetry resolved) entanglement entropy in

such state [167]. Since the particle number is conserved, we have 〈0| c†nc†m |0〉 = 〈0| cncm |0〉 = 0,

while it will be useful to arrange the correlations of the form 〈0| c†ncm |0〉 in a N × N matrix V
with entries

Vl,l′ = 2

〈
0

∣∣∣∣∣

(
c†2l
c†2l+1

)
(c2l′ , c2l′+1)

∣∣∣∣∣ 0
〉
− δl,l′ , l, l′ = 1, . . . , N/2. (9.2.7)

In the thermodynamic limit N →∞, V is a block Toeplitz matrix,

Vl,l′ =
1

2π

∫ 2π

0
G(θ)eiθ(l−l

′)dθ, (9.2.8)

generated by the 2× 2 symbol

G(θ) =

(
0 ei(

θ
2
−2ξ(θ))

e−i(
θ
2
−2ξ(θ)) 0

)
, (9.2.9)

where

cos(2ξ(θ)) =
F (θ/2)√

F (θ/2)2 −G(θ/2)2
, sin(2ξ(θ)) =

iG(θ/2)√
F (θ/2)2 −G(θ/2)2

, (9.2.10)

and the functions F (θ) and G(θ) are defined in Eqs. (9.2.5) and (9.2.6). Note that the 2× 2 block
structure of the matrix V is a consequence of the two-site translational invariance of the chain.

9.3 Symmetry resolved entanglement entropy

In this section, we focus on the calculation of the SRREs in the ground state |0〉 of the long-range
SSH model. We start by computing exactly the charged moments for this model and then, from
their Fourier transforms, we evaluate the SRREs.
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9.3.1 Charged moments

Since the long-range SSH model is a system described by a quadratic fermionic Hamiltonian, the
reduced density matrix ρA = TrHB |0〉 〈0| satisfies the Wick theorem and its charged moments,
defined in Eq. (1.4.16), can be computed from the two-point correlation matrix V introduced in
Eq. (9.2.7). More specifically, see Refs. [84, 90,167],

Zn(α) = det

[(
I + VA

2

)n
eiα +

(
I − VA

2

)n]
, (9.3.1)

where VA denotes the restriction of V to subsystem A. We will employ this expression to compute
numerically the charged moments and the SRREs by diagonalizing the correlation matrix V .

If we take into account that the eigenvalues of VA lie on the real interval [−1, 1] and we use the
residue theorem, then the previous expression can be rewritten as the contour integral [90,268]

logZn(α) =
1

2πi
lim
ε→1+

∮

C
fn(λ/ε, α)

d

dλ
logDA(λ)dλ, (9.3.2)

where the integration contour C encloses the interval [−1, 1],

fn(λ, α) =

(
1 + λ

2

)n
eiα +

(
1− λ

2

)n
, (9.3.3)

and DA(λ) denotes the characteristic polynomial of VA, i.e. DA(λ) = det(λI − VA).
The previous discussion is valid for any subsystem A. Here we will focus on one consisting of a

single interval of ` contiguous sites. In this case, the restriction VA is a `× ` block Toeplitz matrix
with symbol the 2× 2 matrix G(θ) of Eq. (9.2.9). To deduce the large ` behaviour of DA(λ) and,
therefore, of the charged moments Zn(α), we will apply the results on the asymptotic behaviour of
block Toeplitz determinants obtained in Ref. [450]. In particular, if the symbol Gλ(θ) = λI −G(θ)
satisfies detGλ(θ) 6= 0 and is a piecewise continuous function in θ with jump discontinuities at
θ = θ1, . . . , θR, then

logDA(λ) =
`

4π

∫ 2π

0
log detGλ(θ)dθ +

log `

4π2

R∑

r=1

Tr[log G−λ,r(G+
λ,r)
−1]2 +O(1), (9.3.4)

where G±λ,r are the lateral limits of Gλ(θ) in the jump discontinuity at θ = θr,

G±λ,r = lim
θ→θ±r

Gλ(θ). (9.3.5)

Eq. (9.3.4) is a generalisation of the Fisher-Hartwig conjecture for block Toeplitz determinants
[474, 475]. If the symbol Gλ(θ) has continuous entries in θ, then there is no logarithmic term in
the asymptotic expansion of logDA(λ), and Eq. (9.3.4) simplifies to

logDA(λ) =
`

4π

∫ 2π

0
log detGλ(θ)dθ +O(1). (9.3.6)

This is the Szegő-Widom theorem [476].
Let us first consider the case δ = 0 when the chain is not dimerised and the mass gap is zero.

In this situation, the symbol Gλ(θ) presents a jump discontinuity at θ = π due to the zeros of the
dispersion relation ω(θ). The lateral limits at this point are

G±λ,π = λI ± σy, (9.3.7)
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where σy is the Pauli matrix. Thus, by applying the result of Eq. (9.3.4), we conclude that there
is a logarithmic term in logDA(λ),

logDA(λ) = log(λ2 − 1)`+
log `

2π2

(
log

λ− 1

λ+ 1

)2

+O(1). (9.3.8)

If we plug this result into the contour integral of Eq. (9.3.2), we obtain that the charged moments
for δ = 0 are of the form

logZn(α) = i
α`

2
+Bn(ν, 0, α) log `+O(1), (9.3.9)

where

Bn(ν, 0, α) =
1

π3i
lim
ε→1+

∮

C

fn(λ/ε, α)

1− λ2
log

(
1 + λ

1− λ

)
dλ. (9.3.10)

This integral has already appeared in Ref. [90], where it is explicitly worked out. The final result
is

Bn(ν, 0, α) = −
[

1

6

(
n− 1

n

)
+

α2

2π2n

]
. (9.3.11)

Bn(ν, 0, α) is equal to the coefficient of the logarithmic term of the charged moments for the ground
state of the tight-binding model, see Eq. (8.2.3). This is a consequence of the fact that for δ = 0
the ground state is always a Fermi sea, independently of the values of ν. Therefore, when the
long-range chain of Eq. (9.2.1) is not dimerised, i.e. δ = 0, the discussion on the SRREs follows
similar lines as for the short-range chain of Ref. [90, 91].

In order to get a behaviour different from the short-range case, we need to dimerise the chain,
that is, to take δ 6= 0. Now the source of discontinuities in the symbol Gλ(θ) is the polylogarithm
function Liν(z) that encodes the long-range hoppings. In the interval 0 ≤ ν < 1, Liν(z) diverges
at the point z = 1. This divergence produces a jump discontinuity in Gλ(θ) at θ = 0 for 0 ≤ ν < 1
and δ 6= 0 with lateral limits

G±λ,0 = λI + cos ξ0σz ± sin ξ0σy, (9.3.12)

where σy and σz are the Pauli matrices and

cos ξ0 =
sin(πν/2)√

δ2 cos2(πν/2) + sin2(πν/2)
, (9.3.13)

and

sin ξ0 =
δ cos(πν/2)√

δ2 cos2(πν/2) + sin2(πν/2)
. (9.3.14)

According to Eq. (9.3.4), this discontinuity gives rise to a logarithmic term in logDA(λ). If we
plug Eq. (9.3.12) into Eq. (9.3.4), we find that

logDA(λ) = log(λ2 − 1)`+ b0(λ) log `+O(1), (9.3.15)

for 0 ≤ ν < 1 and δ 6= 0, with

b0(λ) =
2

π2

(
log

√
λ2 − cos2 ξ0 + sin ξ0√

λ2 − 1

)2

. (9.3.16)

For ν > 1, the polylogarithm Liν(z) converges in all the unit circle z = eiθ. This implies that
the symbol Gλ(θ) has continuous entries in θ when ν ≥ 1 and δ 6= 0. In this case, there is no
logarithmic term in logDA(λ), and

logDA(λ) = log(λ2 − 1)`+O(1). (9.3.17)
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In what follows, we will focus on the range 0 ≤ ν < 1 and δ 6= 0. If we insert Eq. (9.3.15) in
Eq. (9.3.2), we obtain the following asymptotic behaviour for the charged moments of ρA

logZn(α) = i
α`

2
+Bn(ν, δ, α) log `+O(1), (9.3.18)

when 0 ≤ ν < 1 and δ 6= 0. The coefficient Bn(ν, δ, α) is given by the contour integral

Bn(ν, δ, α) =
1

2πi
lim
ε→1+

∮

C
fn(λ/ε, α)

db0(λ)

dλ
dλ, (9.3.19)

which, following similar steps as in Ref. [450], can be reduced to the real integral

Bn(ν, δ, α) =
4

π2

∫ 1

cos ξ0

gn(λ, α) log

( √
1− λ2

√
λ2 − cos2 ξ0 + sin ξ0

)
dλ, (9.3.20)

where

gn(λ, α) = n
(1 + λ)2n−1 + cosα

[
(1 + λ)n−1(1− λ)n − (1 + λ)n(1− λ)n−1

]
− (1− λ)2n−1

(1 + λ)2n + 2[(1 + λ)(1− λ)]n cosα+ (1− λ)2n
.

(9.3.21)

In Fig. 9.1, we check numerically the asymptotic behaviour for the charged moments Zn(α)
predicted in Eq. (9.3.18). We obtain an excellent agreement once the subleading corrections are
taken into account. Unfortunately, to our knowledge, there are no results in the theory of block
Toeplitz determinants that allow us to extract analytically these corrections, as a difference with
the short-range case [182,445]. Nevertheless, from the analysis of the numerical data, we conjecture
that the first subleading terms in Eq. (9.3.18) are of the form Cn(ν, δ, α) + Dn(ν, δ, α)`−D

′
n(ν,δ,α).

The value of the coefficients Cn(ν, δ, α), Dn(ν, δ, α) and D′n(ν, δ, α) for different sets of parameters
can be estimated by a fit with the numerical data, as we explain in detail in the caption of Fig. 9.1.

Compared with the short-range systems, the most striking feature of the charged moments in
the ground state of the long-range SSH model is the appearance of a log ` term in logZn(α) when
the dumping exponent is 0 ≤ ν < 1, even though the mass gap is not zero. On the contrary, in
systems with short-range couplings, such term arises when the mass gap vanishes, as it is evident
from Eq. (3.2.1). In the gapped short-range systems studied so far, such as for example the complex
harmonic chain [98] and the XXZ spin chain [99], there is no logarithmic term in logZn(α) and
its real part saturates to a constant in the limit ` → ∞, as occurs in our case when ν ≥ 1.
The presence of this logarithmic term for gapped systems is a genuine feature of the long-range
hoppings.

Here the coefficient Bn(ν, δ, α) of the logarithmic term in logZn(α) is not universal. It vanishes
when ν ≥ 1 and it smoothly tends to zero in the limit ν → 1−. An interesting case is ν = 0:
starting from Eq. (9.3.12), then Eq. (9.3.19) simplifies for any δ 6= 0 to the same integral of
Eq. (9.3.10), obtained when δ = 0, and therefore

Bn(0, δ, α) = −
[

1

6

(
n− 1

n

)
+

α2

2π2n

]
. (9.3.22)

Notice that this is equal to the coefficient of the logarithmic term of logZn(α) in the gapless tight-
binding model reported in Eq. (3.2.1). Nevertheless, it is important to recall that in our case the
system is gapped if δ 6= 0 and, moreover, when ν = 0 the hopping couplings, which extend over
the whole chain, do not decay with the distance between sites.



9.3. SYMMETRY RESOLVED ENTANGLEMENT ENTROPY 165

−0.74

−0.7

−0.66

−0.62

−0.58

−0.54

100 500 900 1300 1700 2100 2500 2900

lo
g
Z
n
(α
)
−
iα
`/
2

`

α = 2.37 (extrapolated)

α = 2.37 (numerics)

α = 0.66 (extrapolated)

α = 0.66 (numerics)

n = 2 ν = 0.6 δ = 0.75

1

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

100 500 900 1300 1700 2100 2500 2900

`

α = 2.37 (extrapolated)

α = 2.37 (numerics)

α = 0.66 (extrapolated)

α = 0.66 (numerics)

n = 1.3 ν = 0.2 δ = 0.5

1

Figure 9.1: Numerical check of the asymptotic behaviour derived in Eq. (9.3.18) for the charged
moments of ρA for two different sets of couplings ν and δ. The points indicated as numerics have
been directly obtained from Eq. (9.3.1) by exact diagonalisation of the correlation matrix VA. Using
these points we have estimated the first O(1) corrections in Eq. (9.3.18): we have subtracted from
them the leading contribution Bn(ν, δ, α) log ` and then, with the resulting points, we have fitted
the function Cn(ν, δ, α) +Dn(ν, δ, α)`−D

′
n(ν,δ,α). The extrapolated points have been obtained from

the numerics ones by subtracting the term Dn(ν, δ, α)`−D
′
n(ν,δ,α) with the values for Dn(ν, δ, α) and

D′n(ν, δ, α) found in the fit. The continuous line represents Bn(ν, δ, α) log `+Cn(ν, δ, α), taking for
Cn(ν, δ, α) the value given by the fit.

The coefficient Bn(ν, δ, α) presents remarkable properties also as a function of the parameters
α and n. It will be useful to consider the difference

∆n(ν, δ, α) = Bn(ν, δ, α)−Bn(ν, δ, 0). (9.3.23)

In general, ∆n(ν, δ, α) has the following power series expansion in α around α = 0,

∆n(ν, δ, α) =

∞∑

j=1

∆(2j)
n (ν, δ)α2j , (9.3.24)

with ∆
(2)
n < 0. This is in contrast to the tight-binding chain [90, 91], for which ∆n = −1/(2π2n)

(equal to the cases δ = 0 and ν = 0 analysed in Eqs. (9.3.10) and (9.3.22) respectively), i.e.
it is a quadratic function in α, as also happens in the critical limit of the complex Harmonic
chain [98] and in all cases present in the literature. Moreover, in these short-range models, ∆n

is proportional to 1/n, something that, in general, does not hold in our case.This fact will have
important consequences in the SRRE of the long-range SSH.

9.3.2 Symmetry resolution via Fourier transform

Now we can derive from Eq. (9.3.15) the asymptotic behaviour of the Fourier tranforms of the
charged moments Zn(α) for 0 ≤ ν < 1, defined in Eq. (1.4.17). In our case, using the results of
the previous subsection, they can be rewritten in the form

Zn(q) =
Zn(0)

2π

∫ π

−π
e−iα(q−`/2)e∆n(ν,δ,α) log `+O(1)dα. (9.3.25)

In this expression we have factorised the α = 0 contribution, which behaves for large ` as

Zn(0) = eBn(ν,δ,0) log `+O(1), (9.3.26)
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Figure 9.2: In the left panel, we represent the O(1) term of the exponent of the integrand of
Eq. (9.3.25), obtained numerically using Eq. (9.3.1) for two different interval lengths. We have
fitted a function of the form

∑8
j=1 b2jα

2j to the points of the case ` = 1500. The continuous line
represents this function using the coefficients arising from the fit. In the right panel, we analyse
the q = `/2 Fourier coefficient Zn(q) of the charged moments. The points have been obtained from
the diagonalisation of the correlation matrix VA through Eq. (9.3.1). The red line corresponds to
performing the numerical integration of Eq. (9.3.25) without including the O(1) terms while in the
blue curve we have added the O(1) term estimated in the fit with the ` = 1500 points of the left
plot of the present Figure.

and eventually yields the total Rényi entanglement entropy,

Sn =
1

1− n logZn(0) =
Bn(ν, δ, 0)

1− n log `+O(1). (9.3.27)

As we already pointed out for the charged moments, despite the mass gap of the system does not
vanish, we find a logarithmic growth of the entanglement rather than the usual saturation to a
constant value [20,50,182].

The coefficient ∆n(ν, δ, α) in the integrand of Eq. (9.3.25) is the difference defined in Eq. (9.3.23).
As we have already mentioned, we do not have analytical methods to obtain the subleading terms
in ` that appear in the exponent of this integrand. In Fig. 9.2, we have studied numerically the
O(1) term for a particular set of couplings. In general, this term is an even function in α and,
therefore, can be expressed as a power series of the form

∑∞
j=1 b2jα

2j . In the left panel of Fig. 9.2,
we have fitted this function, truncated at order eight, to the numerical points. In the right panel
of Fig. 9.2, we have calculated Zn(q) for q = `/2 as a function of ` both diagonalising exactly the
correlation matrix and using Eq. (9.3.1) (dots) as well as integrating numerically the expression
in Eq. (9.3.25) (continuous lines). In the latter case, we have performed the integration both ne-
glecting the O(1) term (red line) and including it by taking the function fitted in the left panel of
this figure (blue line). From this plot it is clear that Eq. (9.3.25) matches with the exact numerical
points if we take into account the O(1) term.

From the large ` expansion of Zn(q) in Eq. (9.3.25), we conclude that at leading order Zn(q)
are Gaussian functions of q

Zn(q) ∼ Zn(0)
e

− (q−`/2)2

4

∣∣∣∣∆(2)
n (ν,δ)

∣∣∣∣ logL

2

√
π
∣∣∣∆(2)

n (ν, δ)
∣∣∣ log `

, (9.3.28)
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centred at q = `/2 and with variance 2∆
(2)
n (ν, δ) log `. Recall that ∆

(2)
n is the coefficient of the

α2 term of the quantity ∆n(ν, δ, α) that we introduced in Eq. (9.3.24). Plugging this result into
Eq. (1.4.18), we find that the SRRE in the ground state of the long-range SSH model behaves for
large ` as

Sn(q) = Sn −
1

2
log log `+ Υn(ν, δ)

(q − `/2)2

log `
+ Υ′n(ν, δ) + o(1/ log `), (9.3.29)

in the interval 0 ≤ ν < 1, with

Υn(ν, δ) =
1

4(n− 1)


 1∣∣∣∆(2)

n (ν, δ)
∣∣∣
− n∣∣∣∆(2)

1 (ν, δ)
∣∣∣


 , (9.3.30)

and

Υ′n(ν, δ) =
1

1− n log


(2
√
π)n−1

∣∣∣∆(2)
1 (ν, δ)

∣∣∣
n/2

∣∣∣∆(2)
n (ν, δ)

∣∣∣
1/2


 . (9.3.31)

Let us discuss the result in Eq. (9.3.29). The leading terms for large ` (up to O(1)) do not
depend on the charge q; at first order in `, they are given by the total Rényi entanglement entropy
Sn in Eq. (9.3.27). Moreover, note that the coefficient of the double logarithmic correction is 1/2,
as in the short-range case. In Ref. [121], it was proven that, for CFTs with an internal Lie group
symmetry, the coefficient of such term is equal to half of the dimension of the group, which here is
U(1). Thus, somehow, the long-range hoppings do not spoil this result. The first term that breaks
equipartition is at order O((log `)−1) and its amplitude is governed by the coefficient Υn(ν, δ)
defined in Eq. (9.3.30). The presence of such term is a novelty with respect to what happens in
the critical short-range systems, where the first term breaking the equipartition occurs at order
O((log `)−2). In the case of the tight-binding model, the modes Zn(q) are also Gaussian in the large
` limit, but the variance is proportional to 1/n, cf. Eq. (8.2.3). The latter implies that the term of
order O((log `)−1) in the SRRE vanishes. On the contrary, in our case, the variance, which is given

by the coefficient ∆
(2)
n (ν, δ), has a complicated dependence on n. For this reason, the O((log `)−1)

term does not cancel in the long-range case, as it would occur if ∆
(2)
n (ν, δ) ∝ 1/n. This is precisely

the situation at ν = 0, for which ∆
(2)
n (0, δ) = −1/(2π2n), and therefore Υn(ν = 0, δ) = 0, i.e. the

correction at O((log `)−1) disappears. In this case, the additive term Υ′n(ν, δ) in Eq. (9.3.29) reads

Υ′n(ν = 0, δ) =
1

2

log n

1− n +
1

2
log

π

2
, (9.3.32)

and it is the same as that of the tight-binding model [90].
The asymptotic expression found in Eq. (9.3.29) properly describes the SRREs for values of `

that are not accessible numerically by diagonalising the correlation matrix. In Fig. 9.3, we check
that the SRREs obtained by integrating numerically Eq. (9.3.25) match the exact values computed
from the diagonalization of the correlations. Nevertheless, for the range of ` considered in the right
panel of this figure, the SRREs are still far from behaving as Eq. (9.3.29) predicts in the large `
limit. In fact, from that plot is clear that the difference Sn(q)− Sn is not in general a monotonic
decreasing function on `, as Eq. (9.3.29) actually is. In Fig. 9.4, we take larger values of ` and
we show that the SRREs computed through the numerical integration of Eq. (9.3.25) tend to the
asymptotic expression of Eq. (9.3.29) when ` > 10200, an unreasonably large number. Such a
gigantic scale is not a consequence of any peculiar feature of the long-range SSH model, but just
a very unfortunate coincidence. In general, one does not expect such enormous scale to observe
the predicted asympotic behaviour. For example, in the tight-binding model, the SRRE tends to
the asymptotic behaviour when the length of the interval is ` > 102, see Ref. [90].
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Figure 9.3: In the left panel, we study the SRRE n = 2 as a function of the charge q for an
interval of fixed length ` = 1500. Note that we subtract the entanglement entropy Sn. The
points ◦ have been obtained by computing numerically the charged moments through Eq. (9.3.1).
The continuous line corresponds to integrating numerically Eq. (9.3.25), taking as O(1) term the
function fitted in the left plot of Fig. 9.2,

∑8
j=1 b2jα

2j . We indicate by × the values that this
curve takes when q is an integer. In the right panel, we analyse the SRRE n = 2 by varying the
length of the interval ` for different fixed values of the charge. As in the left plot, the points have
been obtained by calculating numerically the charged moments applying Eq. (9.3.1) while the lines
correspond to integrating numerically Eq. (9.3.25) with the same O(1) term as before.

9.4 Closing remarks

In this Chapter, we have derived exact results for the SRREs of an interval of size ` in an infinite
quadratic fermionic chain with dimerised long-range couplings, decaying as a power law with the
distance. A general feature of systems with this kind of couplings is that they effectively behave
as a short-range model above a certain value of the dumping exponent ν of the coupling, while
below such value they genuinely display a long-range character [452]. Here we have seen that this
also occurs when we study the symmetry resolution of the ground state entanglement.

Let us indicate some possible directions for future investigations. Here we have taken as
subsystem a single interval of contiguous sites. Our analysis can be straightforwardly extended to
disjoint intervals by applying the results on minors of (block) Toeplitz matrices derived in Ref. [477]
for the study of the entanglement entropy of disjoint intervals in quadratic, homogeneous fermionic
chains. This multipartite geometry also opens the way to examine the entanglement negativity,
which is a quantifier of the entanglement in mixed states both total [151, 152, 163, 478, 479, 559]
and symmetry resolved [88, 101, 116, 118]. Finally, it would be interesting to explore the effect
of the long-range couplings also in interacting systems, e.g. the XXZ spin chain [452]: one may
wonder whether the universal prefactor of the logarithmic term of the charged moments [84] keeps
its universal behaviour or is affected by the long-range couplings, as happens in the (dimerised)
free case. A final intriguing related calculation concerns the study of the symmetry resolution of
long-range hierarchical models, generalising known results for the total entanglement [480,481].
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Figure 9.4: Analysis of the SRRE n = 2 as a function of the length of the interval ` for differ-
ent charges q. The continuous curves represent the result obtained by integrating numerically
Eq. (9.3.25), using the function fitted in the left panel of Fig. 9.2 as O(1) term, while the dashed
ones correspond to the asympotic prediction of Eq. (9.3.29). Note that, comparing with Fig. 9.3,
here we have considered larger intervals, up to ` = 10500. In the plot on the left, we have re-
moved the contribution from the Rényi entanglement entropy while in the right one we have also
subtracted the term −1/2 log log `.





Chapter 10

Symmetry resolved Page curves

Given a statistical ensemble of quantum states, the corresponding Page curve quantifies the average
entanglement entropy associated with each possible spatial bipartition of the system. In this
Chapter, we study a natural extension in the presence of a conservation law and introduce the
symmetry resolved Page curves, characterising average bipartite symmetry resolved entanglement
entropies. We derive explicit analytic formulae for two important statistical ensembles with a
U(1)-symmetry: Haar-random pure states and random fermionic Gaussian states. In the former
case, the symmetry resolved Page curves can be obtained in an elementary way from the knowledge
of the standard one. This is not true for random fermionic Gaussian states. In this case, we derive
an analytic result in the thermodynamic limit based on a combination of techniques from random-
matrix and large-deviation theories. We test our predictions against numerical calculations and
discuss the sub-leading finite-size corrections. This Chapter is based on Ref. [106].

10.1 Introduction

Consider an isolated quantum system S in a random pure state |ψ〉. Taking a bipartition S = A∪B,
one may ask what is the corresponding entanglement entropy [10]. The answer is encoded in an
elegant formula conjectured by Page [30], now a classical result in quantum mechanics. Page’s
contribution is one of the first steps towards a systematic characterisation of entanglement in
random quantum states, with important applications in different fields, ranging from the black-hole
information paradox [31–35] to foundations in statistical mechanics [36,37]. From the point of view
of many-body physics, Page’s formula provides qualitative insight into generic systems, as random
states are expected to capture the behavior of either eigenstates of typical Hamiltonians [482,484–
487,523], or of states generated by a sufficiently chaotic dynamics [488,489]. In addition, it shows
the power of random ensembles to characterise entanglement-related quantities. This is particularly
interesting, given the established difficulty to study them in many-body systems [13,15,21].

In his work, Page considered pure states distributed according to the Haar measure and focused
on the averaged von Neumann entanglement entropy S1, describing what is now known as the
Page curve. Although it is non-trivial, its form becomes elementary in the limit of large Hilbert-
space dimensions: given the Hilbert space H = HA ⊗HB associated with the system bipartition
S = A ∪B, Page’s formula gives

S1 = min(log dA, log dB) +O(1), (10.1.1)

where dA, dB are the dimensions of HA, HB. That is, up to subleading corrections, the average
entanglement entropy of a subsystem is the maximal one, meaning that typical states display
almost maximal bipartite entanglement.
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Page’s formula, which built upon earlier results [490,491], was later proven in Refs. [492–495],
and inspired generalisations in a series of works characterising higher entanglement moments [496–
500], large deviations [500–509], entanglement spectrum [510–512], mixed-state purity [513] and
negativity [514–520]. Recently, some of these results were also extended to ensembles of random
Gaussian states, capturing the typical behavior of non-interacting systems. In particular, moti-
vated by studies of entanglement in random spin chains [521, 522, 524–526], the Page curve for
fermionic Gaussian states was computed for finite systems in Ref. [527], while further results were
obtained in the thermodynamic limit [528–530], see Ref. [487] for a review.

In this context, an important problem is the characterisation of entanglement in random en-
sembles displaying a conserved quantity, a setting which resembles more closely typical many-
body systems. While a number of previous studies have focused on the standard entanglement
entropy [487, 500, 508, 514, 530], a very natural question pertains to its symmetry resolved (SR)
version [84–86] (see also [531]).

In this Chapter, we investigate the SREE in the two statistical ensembles discussed above:
Haar-random and fermionic Gaussian random states, with an additional U(1) symmetry. We
derive explicit analytic formulae for the corresponding symmetry resolved Page curves. First,
following Ref. [500], we show that the latter can be derived in an elementary way for Haar-random
states. This is not true for random fermionic Gaussian states. In this case, we show that an
analytic result can be obtained in the thermodynamic limit, based on a combination of techniques
from random-matrix (RM) and large-deviation theories. We test our predictions against numerical
calculations and discuss the sub-leading finite-size contributions.

The rest of this Chapter is organised as follows. In Sec. 10.2 we study the ensemble of Haar-
random pure states, and show that the SR Page curve can be related in an elementary way to
the standard one. The ensemble of random fermionic Gaussian states is discussed in Sec. 10.3.
Using a combination of different techniques, we derive an explicit analytic formula valid in the
thermodynamic limit, and provide exact numerical results at finite system sizes. Our conclusions
are consigned to Sec. 10.4.

10.2 Haar-random pure states

We start by studying an ensemble of Haar-random pure states with a U(1) charge. This can
be realised, for instance, as the ensemble of states constructed by following up to late times a
stochastic unitary dynamics with a U(1) charge [532–534]. We focus on a lattice of L two-level
quantum systems, associated with the Hilbert space H =

⊗L
j=1Hj , where Hj ' C2, and introduce

the explicit symmetry operator

Q̂ =
1

2

L∑

j=1

(σzj + 1) (10.2.1)

where σzj are Pauli matrices (we use the notation Q̂ or Q̂A to distinguish the charge operators from

the eigenvalues Q). We can decompose the Hilbert space as H =
⊕L

M=0H(M), where H(M) ⊂ H
is the charge eigenspace associated with the eigenvalue M . Finally, we introduce the ensemble of
random states |ψ〉 drawn out of the uniform Haar distribution over the set of all states in H(M).

We will consider a bipartition S = A∪B, where A and B contain ` and L−` sites, respectively.
Differently from the case studied in [30], the Hilbert space H(M) does not factorise into a tensor
product, but we have the decomposition

H(M) =

M⊕

Q=0

HA(Q)⊗HB(M −Q) . (10.2.2)
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Here HA(Q) is the eigenspace of QA associated with eigenvalue Q, and similarly for HB(M −Q).

Ensembles of Haar-random states over spaces admitting a decomposition of the form (10.2.2)
were studied recently in Ref. [500], where analytic formulae for the Page curve and its variance
were derived. In fact, the results presented in Ref. [500] also allow one to directly obtain the
SREE, as we now explain.

Given |ψ〉 ∈ H(M), we can exploit the structure of H(M) in Eq. (10.2.2) to write

|ψ〉 =
M∑

Q=0

√
pQ |φQ〉 (10.2.3)

where |φQ〉 ∈ HA(Q) ⊗ HB(M − Q) is a normalised state, while pQ ≥ 0, with
∑

Q pQ = 1. The
reduced density matrix over A then reads

ρA =

M∑

Q=0

pQρA(Q) , (10.2.4)

where

ρA(Q) = trB(|φQ〉 〈φQ|) . (10.2.5)

Here we used

trB(|φQ〉 〈φQ′ |) = δQ,Q′ρA(Q) , (10.2.6)

which follows from the definition of |φQ〉. Our goal is to compute the average entropy of the density
matrix ρA(Q) in (10.2.5).

It was shown in Ref. [500] that the uniform measure over H(M) factorises as

dµM (ψ) = dν (p0, . . . , pM )
M∏

Q=0

dµ (φQ) , (10.2.7)

where dµ (φQ) is the uniform measure over pure states in each sector HA(Q)⊗HB(M −Q), while
dν (p0, . . . , pM ) is the multivariate beta distribution [500]

dν (p0, . . . , pM ) =
1

Z δ(
∑

Q

p(Q)− 1)
∏

Q

p(Q)dA(Q)dB(Q)dp(Q). (10.2.8)

The constant Z is introduced to normalise the measure to unity. Eq. (10.2.7) immediately yields
the SR Page curve. Indeed, using (10.2.5), we can write the averaged bipartite Rényi entropies as

Sn(Q) =
1

1− n

∫
dµ (φQ) log TrρnA(Q). (10.2.9)

Eq. (10.2.7) implies that |φQ〉 is distributed according to the invariant measure over HA(Q) ⊗
HB(M − Q). Therefore, we are left with the problem of computing the average entanglement
entropy of a random state in a factorised Hilbert space, which is the problem studied by Page [30,
487]. For the case of the von Neumann entanglement entropy, n = 1, we can thus apply directly
Page’s formula, and, for dA(Q) ≤ dB(Q), the final result reads

S1(Q) = Ψ (dA(Q)dB(Q) + 1)−Ψ (dB(Q) + 1)− dA(Q)− 1

2dB(Q)
, (10.2.10)
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where Ψ(x) = Γ′(x)/Γ(x) is the digamma function (here, Γ(x) is the Gamma function), while
dA(Q) and dB(Q) are the dimensions of HA(Q) and HB(M −Q), namely

dA(Q) =

(
`

Q

)
, dB(Q) =

(
L− `
M −Q

)
. (10.2.11)

For dA(Q) > dB(Q), we can simply exploit the symmetry under exchange A↔ B: the final result
is obtained from Eq. (10.2.10) by exchanging dA(Q)↔ dB(Q).

We now consider the thermodynamic limit of Eq. (10.2.10). This is performed by taking
L→∞, and keeping the ratios

ξ =
`

L
, m =

M

L
, q =

Q

L
, (10.2.12)

constant. In this limit, the SREE behaves like S1(Q) ' log dA(Q), and a simple computation
yields

S1(Q)

L
= ξ log ξ − q log q − (ξ − q) log(ξ − q)− 1/(2L) log L+ o(1/L) . (10.2.13)

Importantly, we see that this formula does explicitly depend on the charge sector Q, breaking the
equipartition at leading order O(L). This is similar to what has been predicted for the SREE in
thermodynamic states of integrable systems [109]. However, it is different than what has been
observed so far in the study of the zero-temperature entanglement resolution, see, e.g. Ref. [85].
Our result is related to the specific order of limits we are taking, i.e. L → ∞ with q fixed.
Conversely, we see that the next-to-leading term is independent of Q. Eq. (10.2.13) holds for
dA(Q) ≤ dB(Q), i.e.

ξ log ξ−q log q−(ξ−q) log(ξ−q) < (1−ξ) log(1−ξ)−(m−q) log(m−q)−(1−ξ−m+q) log(1−ξ−m+q) .
(10.2.14)

When this inequality is not satisfied, the SREE is obtained from Eq. (10.2.13) replacing ξ ↔ 1−ξ,
q ↔ m − q. Interestingly, we see that, in the thermodynamic limit, the SR Page curve does not
depend explicitly on m when (10.2.14) holds. Moreover, up to subleading corrections, Eq. (10.2.13)
gives us the maximal value of the entropy for the bipartition HA(Q)⊗HB(M −Q), i.e. log dA(Q).

The number entropy The number entropy defined in Eq. (1.3.5) is obtained as an integral
over the probability distribution (10.2.8). The calculation is technically rather cumbersome, but
fortunately can be found in disguise in Ref. [500] (see appendix B there), where it is calculated
via the replica trick. Here, we only report the final result, which reads

Snum = Ψ(dM + 1)−
∑

Q

dA(Q)dB(Q)

dM
Ψ(dA(Q)dB(Q) + 1), (10.2.15)

where dM =
∑

Q dA(Q)dB(Q) is the dimension of the Hilbert space H(M).
We can also easily extract the thermodynamic limit from the finite-size result in Eq. (10.2.15).

In order to simplify the derivation, we note that, in this limit, the averaged number entropy equals
the number entropy of the averaged probability, as E[p(Q)] becomes peaked around q = mξ. The
latter is given by E[p(Q)] = dA(Q)dB(Q)/dM , as one can obtain by integrating p(Q) over the
distribution (10.2.8) [500]. By taking the thermodynamic limit of dA(Q), dB(Q), we find

Snum =− L
∫ ξ

0
dq E[p(Q)] log E[p(Q)] = 0 + o(L),

Sc =L

∫ ξ

0
dq E[p(Q)]S1(Q) = L((m− 1) log(1−m)−m logm) + o(L). (10.2.16)
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The configurational entropy Sc coincides with the total entanglement entropy S1(ρA), satisfying
the sum rule in Eq. (1.3.5). In order to compute the first sub-leading contribution to the number
entropy, we can expand E[p(Q)] quadratically around q = mξ, yielding

Snum = −N−1L

∫ ξ

0
dq e−

(q−mξ)2
2σ log(N−1e−

(q−mξ)2
2σ ), (10.2.17)

where

σ = (1−m)mξ(1− ξ)/L, N = L

∫ ξ

0
dq e−

(q−mξ)2
2σ . (10.2.18)

By performing the integral in Eq. (10.2.17), we get

Snum =
1

2
log(2πm(1−m)ξ(1− ξ)L) +

1

2
. (10.2.19)

To summarise, we have found that the number entropy is sub-leading with respect to the total
entropy and it scales as the logarithm of the variance of p(Q), with a prefactor which does not
depend on m, ξ but it is equal to 1/2. This can be connected to the result for conformal field
theories with an internal Lie group symmetry [121], where the authors showed that the coefficient
of such term is equal to half of the dimension of the group, which here is U(1). Thus, despite we
are not at criticality, this result is not spoiled and it seems to be even more general.

10.3 Random fermionic Gaussian states

We now move on to study the ensemble of fermionic random Gaussian states with a U(1) sym-
metry [487]. We take a model of L fermionic modes associated with the creation and annihilation

operators cj , c
†
j with {c†j , ck} = δj,k. The charge is the particle number

Q̂ =

L∑

j=1

c†jcj . (10.3.1)

We recall that Gaussian states can be defined as the states satisfying Wick’s theorem [537] and
that, in the case where the particle number is fixed, they are completely specified by the covariance
matrix

Ci,j = 〈ψ|c†icj |ψ〉 . (10.3.2)

The ensemble of random Gaussian states with fixed particle number M can be defined by the
ensemble of covariance matrices C = V †C0(M)V , where V is drawn out of the uniform Haar
distribution over the unitary group U(L) and

C0(M) = diag(1, . . . , 1︸ ︷︷ ︸
M

, 0, . . . , 0︸ ︷︷ ︸
L−M

) . (10.3.3)

This distribution can be achieved as the late-time limit of stochastic Gaussian dynamics.
In this case, it is not possible to apply directly the logic of the previous section. While, given a

random Gaussian state |ψ〉, we can still write the decomposition (10.2.3), the projected states |φQ〉
are in general not Gaussian. Therefore, one cannot compute the corresponding bipartite entan-
glement entropy in terms of random Gaussian ensembles. Nevertheless, in the next subsection we
show that the SR Page curve can be computed analytically in the thermodynamic limit (10.2.12),
where we have the scaling

S1(Q) ∼ Ls1(q) + o(L) . (10.3.4)
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In the next subsections we will compute s1(q) as a function of ξ, defining the SR Page curve. Our
approach is based on a combination of the Gärtner-Ellis theorem [538], detailed in Sec. 10.3.1, and
the Coulomb-gas (CG) method of RM theory [539,540], explained in Sec. 10.3.2.

10.3.1 SR entanglement from the Gärtner-Ellis theorem

In principle, the SREE could be computed using the strategy outlined in Sec. 1.4.2. However, the
Fourier transform in (1.4.17) introduces some technical complications from the analytic point of
view. In this section, we provide an alternative approach valid in the thermodynamic limit, which
is based on an application of the Gärtner-Ellis theorem from large deviation theory [538]. This
method has been recently introduced in Ref. [109] to compute the SREE of thermodynamic states
in quantum integrable models.

Let us denote by ρ the density matrix of the subsystem A. First, using

[ρ,ΠQ] = 0 , (10.3.5)

and the fact that Πn
Q = ΠQ for any power n, we can write

tr[ρn(Q)] = pn(Q)
tr[ρn]

(p1(Q))n
, (10.3.6)

where we have introduced

pn(Q) =
tr[ΠQρ

n]

tr[ρn]
. (10.3.7)

Therefore, the averaged SRRE is

E[Sn(Q)] =
1

1− n (E [log pn(Q)]− nE [log p1(Q)]) + E [Sn] , (10.3.8)

where Sn is the standard (non-resolved) Rényi entropy, while E[·] now denotes the average over
the ensemble of random Gaussian states.

In order to proceed, we make the assumption that

E [log pn(Q)] = log E [pn(Q)] + o(L) , (10.3.9)

namely that, up to sub-leading-order corrections, we can bring the average “inside the logarithm”.
We have tested numerically the validity of this assumption, cf. 10.3.4, which can be justified
invoking the concentration of measure for fermionic random Gaussian states [527, 530]. Now,
it is immediate to see that E [pn(Q)] ≥ 0 and

∑
Q E [pn(Q)] = 1. Therefore, E [pn(Q)] can be

interpreted as a probability distribution. Setting q = Q/L, we expect on physical grounds that
E [pn(Q)] follows a large deviation principle in the large-L limit, that is,

E [pn(Q)] ∼ e−In(q)L , (10.3.10)

where In(q) is referred to as the rate function [538]. To compute it, we define the generating
function

Gn(w) = E




tr
[
ρnewQ̂

]

tr[ρn]


 , w ∈ R , (10.3.11)

and

fn(w) = lim
L→∞

1

L
logGn(w) . (10.3.12)
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The Gärtner–Ellis theorem [538] states that we can compute In(q) as the Legendre transform of
fn(w), namely

In(q) = wn,qq − fn (wn,q) , (10.3.13)

where wn,q is determined by the condition

d

dw
(fn(w)− wq)

∣∣∣∣
w=wn,q

= 0 . (10.3.14)

Finally, introducing the density of SRRE

sn(q) = lim
L→∞

Sn(qL)

L
, (10.3.15)

and using (10.3.8), we obtain

sn(q) = sn +
1

1− n [−In(q) + nI1(q)] , (10.3.16)

where

sn = lim
L→∞

E [Sn]

L
, (10.3.17)

is the density of the standard (non-resolved) Rényi entropy. The SREE is obtained taking the
limit n→ 1

s1(q) = s1 + I1(q) +
dIn(q)

dn

∣∣∣
n=1

. (10.3.18)

10.3.2 The Coulomb-gas approach

In order to obtain the SRRE, we need to compute the function fn(w) in Eq. (10.3.12). To this
end, we make use of the CG approach [539, 540]. In the context of fermionic random Gaussian
states, this method has been recently applied in Refs. [528–530] to compute average bipartite
entanglement entropies and their large deviations. Here, we briefly review the aspects of these
works directly relevant for our purposes.

As mentioned, the covariance matrix (10.3.2) contains full information about the corresponding
Gaussian state, encoding also its bipartite entanglement entropy [169]. In particular, given a
region A containing ` sites, and denoting by CA the `× ` matrix with CAi,j = Ci,j for i, j ∈ A, the
corresponding Rényi entropy reads

Sn =
1

1− n
∑̀

j=1

log
[
λnj + (1− λj)n

]
. (10.3.19)

Here {λj}`j=1 are the eigenvalues of CA, satisfying 0 ≤ λj ≤ 1. When C is sampled according to
the invariant measure discussed above, the eigenvalues λj are random variables. Their probability
distribution, P [{λj}], is known [539], and takes the form

P [{λi}] =
1

N
∏

j<k

|λj − λk|2
∏̀

i=1

λM−`i (1− λi)L−`−M , (10.3.20)

where N is a normalisation constant. This distribution defines the β-Jacobi ensemble (with β = 2),
see Refs. [541–543] for applications in different physical contexts .
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In principle, Eq. (10.3.20) allows one to compute the expectation value of arbitrary functions
of the eigenvalues. However, for finite ` this is often complicated, as averages involve integrals in
`-dimensional spaces. When ` → ∞, the problem can be simplified using a standard method of
RM theory, consisting in a mapping between the eigenvalues λj and a Coulomb gas of repulsive
point charges [539]. In order to see how it works, we consider a function g({λk}) and write its
expectation value as

E[g({λk})] =
1

N

∫ 1

0

∏̀

j=1

dλj e
−`2E[{λj}]g({λk} , (10.3.21)

with

E[{λi}] = − 2

`2

∑

i<j

log |λi − λj | −
(M − `)

`2

∑

i

log λi −
(L−M − `)

`2

∑

i

log (1− λi) .

Within the CG formalism, E[{λi}] is interpreted as the energy of a gas of charged particles with
coordinates λj ∈ [0, 1] and subject to an external potential. The integral (10.3.21) is the thermal
partition function for the CG. In the large-` limit, the configuration of the particles may be
described in terms of the normalised density ρ(λ) = `−1

∑
j δ(λ− λi), and the multiple integral in

Eq. (10.3.21) can be cast into a functional integral over all possible densities ρ(λ), i.e.

E[g] =

∫
Dρ e−`2E[ρ]g[ρ] . (10.3.22)

To the leading order in `, E[ρ] reads

E[ρ] =−
∫ 1

0
dλ

∫ 1

0
dµρ(λ)ρ(µ) log |λ− µ|+

∫ 1

0
dλρ(λ)V (λ) + u

{∫ 1

0
dλ ρ(λ)− 1

}
, (10.3.23)

where we introduced the Lagrange multiplier u enforcing normalisation, and the effective potential

V (λ) =−
(
m

ξ
− 1

)
log λ−

(
1−m
ξ
− 1

)
log (1− λ) , (10.3.24)

where m, ξ are the density of fermions and the rescaled interval length introduced in Eq. (10.2.12).

The functional integral (10.3.22) can be computed via the saddle-point method, and the average
is dominated by the typical distribution function ρ∗(λ) satisfying δE[ρ]/δρ|ρ=ρ∗ = 0. The solution
is known [544,545] and reads

ρ∗(λ) =
1

2πξ

√
(ν+ − λ) (λ− ν−)

λ(1− λ)
, (10.3.25)

with λ ∈ [ν−, ν+] and ν± = [
√
m(1− ξ)±

√
ξ(1−m)]2. Eq. (10.3.25) allows us to compute directly,

in the thermodynamic limit, averages of extensive quantities which can be written as sums over
the eigenvalues, by replacing them with integrals over λ ∈ [ν−, ν+]. For example, the averaged
Rényi entropy (10.3.19) can be computed as

E[Sn] = `

∫ ν+

ν−
dλρ∗(λ)σn(λ) , (10.3.26)

where σn(λ) = 1
1−n log [λn + (1− λ)n], see Ref. [529] for an explicit expression of this integral.
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Figure 10.1: Left/middle panel: Comparison between the asymptotic results derived in sub-
section 10.3.3 and the exact values of the average entanglement entropy sn(q) computed nu-
merically for L → ∞ (symbols). They have been obtained by using the extrapolation form
s1(q) = a− 1/(2L) logL+ b/L. Insets show data for different values of L. The solid line for n = 1
corresponds to Eq. (10.3.35) and its extension to ξ > m according to Eq. (10.3.36). Right panel:
The average number entropy in Eq. (10.3.42) for different values of m, ξ, L.

10.3.3 Exact SR Page curves

We finally combine the techniques outlined in the previous subsections, and obtain an analytic
result for the SREE. Our starting point is the computation of fn(w) defined in Eq. (10.3.12). Once
again, we can use a typicality argument and exchange the order of the expectation value and the
logarithm in Eqs. (10.3.8), (10.3.12). We are left with the task of computing

fn(w) = E[log tr(ρnewQ̂)]− E[log tr(ρn)] . (10.3.27)

Following the previous subsection, we write the rhs in terms of the eigenvalues λj of the reduced
covariance matrix CA. In particular, we have

log tr(ρnewQ̂) =
∑̀

j=1

log
[
ewλnj + (1− λj)n

]
. (10.3.28)

In the thermodynamic limit `→∞, we can apply the CG approach and obtain

lim
L→∞

E[log tr(ρnewQ̂)]

L
= ξ

∫ ν+

ν−
dλρ∗(λ) log(ewλn + (1− λ)n). (10.3.29)

Consequently, In(q) in Eq. (10.3.13) reads

In(q) = wn,qq − ξ
∫ ν+

ν−
dλρ∗(λ) log(ewn,qλn + (1 − λ)n) + ξ

∫ ν+

ν−
dλρ∗(λ) log(λn + (1 − λ)n)].

(10.3.30)

The value of wn,q is fixed by Eq. (10.3.14), which can be rewritten as

q = ξ

∫ ν+

ν−
dλρ∗(λ)

ewn,qλn

ewn,qλn + (1− λ)n
. (10.3.31)

Plugging wn,q into the expression for In(q) in Eq. (10.3.30), we get the density of SRRE sn(q)
in Eq. (10.3.16). From Eq. (10.3.31), we see that wn,q can be obtained by inverting the equation
numerically, after evaluating simple integrals. We followed this procedure to generate plots of the
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function sn(q) for n > 1, as reported in Fig. 10.1. For generic n, we were not able to find an
analytical expression of wn,q. However, Eq. (10.3.31) can be computed explicitly and inverted in
the limit n→ 1 (see [106] for the details). In this case, we find

w1,q = log

[
q(−1 +m− q + ξ)

(m− q)(q − ξ)

]
, (10.3.32)

and, according to Eq. (10.3.18), we are left with

s1(q) = −(w1,q − w′1,q)q + ξ

∫ ν+

ν−
dλρ∗(λ) log(ew1,qλ+ (1− λ))

− ξ
∫ ν+

ν−
dλρ∗(λ)

(1− λ) log(1− λ) + ew1,qλ(log λ)

(ew1,q − 1)λ+ 1
−
∫ ν+

ν−

dλ

2π

√
(λ− ν−)(ν+ − λ)

(1− λ)

ew1,qw′1,q
(ew1,q − 1)λ+ 1

.

(10.3.33)

In order to simplify our computation, we observe that, from Eq. (10.3.31),

∫ ν+

ν−

dλ

2π

√
(λ− ν−)(ν+ − λ)

(1− λ)

ew1,q

(ew1,q − 1)λ+ 1
= q, (10.3.34)

which can be straightforwardly substituted in the last term of Eq. (10.3.33) giving −w′1,qq. This
implies that we do not need the compute w′1,q, as it cancels out in Eq. (10.3.33). The remaining
integrals can be solved following the techniques used in Ref. [529]. Putting all together, we arrive
at the final result (for q ≤ ξ ≤ m)

s1(q) =
(−1 +m)q(−1 + ξ) log(1−m)

q −mξ +
m(q − ξ)(1− ξ) logm

q −mξ +
m(q − ξ)(−1 + ξ) log(m− q)

q −mξ

− q log q − (1−m)q(1− ξ) log(1−m+ q − ξ)
q −mξ + ξ log ξ + (q − ξ) log(ξ − q) . (10.3.35)

We remark that the equipartition of the entanglement entropy is explicitly broken also in this case.
For ξ > m, we can obtain the SREE using the symmetries of the problem [487]. In particular, it
is not difficult to show that the following relations hold (making explicit the dependence on ξ and
m)

s1(m; q; ξ) = s1(ξ; q;m), m < ξ ≤ 0.5 (10.3.36)

s1(m; q; ξ) = s1(1− ξ;m− q;m), 0.5 < ξ ≤ 1−m (10.3.37)

s1(m; q; ξ) = s1(m;m− q; 1− ξ), 1−m < ξ ≤ 1−m+ q. (10.3.38)

Eq. (10.3.35) is our main result, which will be further discussed in the next subsection.
Finally, let us compute the averaged number entropy. To this end, we assume again that,

in the thermodynamic limit, it equals the number entropy of the averaged probability. Using
E[p(Q)] = e−LI1(q)N [where N is a normalisation constant], we have that E[p(Q)] is peaked around
q = mξ, and to the leading order in L we have

Snum =− L
∫ ξ

0
dq E[p(Q)] log E[p(Q)] = 0 + o(L),

Sc =L2

∫ ξ

0
dq E[p(Q)]s1(q) = L { (ξ − 1) log(1− ξ) + ξ[(m− 1) log(1−m)−m logm− 1]}+ o(L).

(10.3.39)
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This implies that the sum rule in Eq. (1.3.5) is satisfied and the number entropy is sub-leading with
respect to the total entropy. In order to find the first sub-leading term, we can expand E[p(Q)]
quadratically around q = mξ, and we obtain

Snum = −N−1 L

∫ ξ

0
dq e−

(q−mξ)2
2σ log(N−1 e−

(q−mξ)2
2σ ), (10.3.40)

where

σ = (1−m)mξ(1− ξ)/L, N = L

∫ ξ

0
dq e−

(q−mξ)2
2σ . (10.3.41)

By comparing this result with Eq. (10.2.18), this computation shows that the expressions for
E[p(Q)] for Haar-random and random Gaussian states are the same in the thermodynamic limit.
Therefore, remarkably, we get the same result for the first sub-leading correction to the number
entropy

Snum =
1

2
log(2πm(1−m)ξ(1− ξ)L) +

1

2
. (10.3.42)

10.3.4 Numerical results

We have tested Eq. (10.3.35) against numerical computations. We have sampled the ensemble
of random Gaussian states at finite system sizes by generating covariance matrices V †C0(M)V ,
where C0(M) is defined in Eq. (10.3.3) and V is drawn from the uniform distribution over U(L).
For each Gaussian state, we have computed the SREEs following the method outlined in Sec. 1.4.2,
using that the charged moments can be expressed in terms of the eigenvalues of the correlation
matrix CA, i.e.

Zn(α) =
∏̀

j=1

[λnj e
iα + (1− λj)n] . (10.3.43)

For fixed m, ξ, we have considered 103 random samples. The SRREs are obtained by taking the
mean value over them. We have repeated this procedure for different system sizes, L, and we
have extrapolated the data at finite L in order to recover the thermodynamic limit L→∞. This
allows us to compare the numerical data against the analytical predictions found in the previous
subsection.

In Fig. 10.1, we show the comparison between the extrapolated data in the thermodynamic
limit and the density of the SR entropies for different values of q,m, ξ, n. In all cases, the error
associated with the finite-number of samples and the fitting procedure is not visible in the scales
of the plot, and is therefore omitted. As in the case of Haar-random pure states, we see that
the SR Page curves are not symmetric with respect to ξ = 0.5, and are vanishing for ξ < q and
ξ > 1 −m + q. The numerical results are found to be in excellent agreement with our analytic
predictions.

It is interesting to discuss the finite-size corrections and our fitting procedure. Interestingly,
our numerical results convincingly show that the sub-leading corrections to sn(q) are proportional
to (1/2) logL/L, independent of q, m and ξ, cf. the inset of Fig. 10.1. Accordingly, we have
performed a fit of our data against the function

s1(q) = a− 1/(2L) logL+ b/L . (10.3.44)

We note that the sub-leading behavior is exactly the same as that for Haar random pure states, cf.
Eq. (10.2.13). We note also that the sub-leading behavior −(1/2) logL to the SREEs Sn(q) have
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been observed in other contexts when the total entropies are extensive, see for instance Ref. [132,
136]

Finally, we have tested the first sub-leading correction to the number entropy described in Eq. (10.3.42)
in the right panel of Fig. 10.1. We find that the agreement improves as the system size L increases,
being excellent for L = 60.

10.4 Closing remarks

In this Chapter, we have considered the computation of the SR Page curves for two important sta-
tistical ensembles with a U(1)-symmetry: Haar-random pure states and random fermionic Gaussian
states. In the former case, we have shown how an exact result can be obtained in an elementary
way for finite systems and in the thermodynamic limit. This is not true for fermionic Gaussian
states. Still, we were able to compute the corresponding SR Page curve in the thermodynamic
limit. Our main technical tools have been the Coulomb gas method and the Gärtner-Ellis theorem.
We expect that our approach could allow for the computation of SRREs in other situations where
the latter are extensive.

One could wonder whether similar calculations can be extended to ensembles of random bosonic
Gaussian states. As pointed out in Ref. [487], however, the only bosonic Gaussian state with a
fixed particle number is the vacuum state. In addition, while one could choose an ensemble of
bosonic Gaussian states with a fixed average number of particles, the very definition of SREE
requires an exact conservation law. Obviously, one could also consider complex bosons and in that
case the U(1) symmetry is easily implemented and the SREE is always well defined, as in the field
theory case [111]. We are not aware of any work in this direction.

Our results are expected to be relevant in a number of cases. They could be used as a com-
parison in more general situations, for instance to evaluate non-Gaussian effects in the SREE of
thermodynamic states in interacting integrable systems [109]. Finally our results might be relevant
for the information paradox in charged black holes in analogy to the role played by the original
the Page curve for the neutral case. In particular, the results for replica wormholes [34,35] should
have a counterpart also for charged black holes.



Chapter 11

Entanglement asymmetry as a probe
of symmetry breaking

Not only symmetry, but also symmetry breaking is a pillar of modern quantum physics. Still,
quantifying how much a symmetry is broken is an issue that has received little attention. In
extended quantum systems, this problem is intrinsically bound to the subsystem of interest. Hence,
in this Chapter, we borrow methods from the theory of entanglement we have learnt so far to
introduce a subsystem measure of symmetry breaking that we dub entanglement asymmetry. As
a prototypical illustration, we study the entanglement asymmetry in a quantum quench of a spin
chain in which an initially broken global U(1) symmetry is restored dynamically. We adapt the
quasiparticle picture for entanglement evolution to the analytic determination of the entanglement
asymmetry. We find, expectedly, that larger is the subsystem, slower is the restoration, but also
the counterintuitive result that more the symmetry is initially broken, faster it is restored, a sort
of quantum Mpemba effect. This Chapter is based on Ref. [549].

11.1 Introduction

Since the introduction of this thesis, we have dealt with symmetries and the special place they hold
in every branch of physics, from relativity to quantum mechanics, passing through gauge/gravity
duality and numerical algorithms. However, sometimes it happens that, when a parameter reaches
a critical value, the lowest energy configuration respecting the symmetry of the theory becomes
unstable and new asymmetric lowest energy solutions can be found. This phenomenon does not
require an input, whence the name spontaneous symmetry breaking. Other times a symmetry can
be explicitly broken, in the sense that the Hamiltonian describing the system contains terms that
manifestly break it. The present Chapter fits in this framework: our main goal is to find a tool
that measures quantitatively how much a symmetry is broken.

To be more specific, the setup we are interested in is an extended quantum system in a pure
state |Ψ〉, which we divide into two spatial regions A and B. The state of A is described by the
reduced density matrix ρA = TrB(|Ψ〉 〈Ψ|). We consider a charge operator Q that generates a
global U(1) symmetry group, hence satisfying Q = QA + QB. If |Ψ〉 is an eigenstate of Q, then
[ρA, QA] = 0 and ρA displays a block-diagonal structure, which has allowed us to compute the
SREE (see Sec. 1.3). Here we consider the opposite situation: a state |Ψ〉 that breaks the global
U(1) symmetry. Therefore, [ρA, QA] 6= 0 and ρA is not block-diagonal in the eigenbasis of QA.
The goal of this Chapter is to introduce a quantifier of the symmetry breaking at the level of the
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subsystem A, which is the entanglement asymmetry defined as

∆SA = S(ρA,Q)− S(ρA). (11.1.1)

Here ρA,Q =
∑

q∈Z ΠqρAΠq, where Πq is the projector onto the eigenspace of QA with charge
q ∈ Z. Thus ρA,Q is block-diagonal in the eigenbasis of QA. In Fig. 11.1, we pictorially show how
ρA,Q is obtained from ρA. A similar quantity, but for the full system, was introduced in Ref. [107]
to study the inseparability of mixed states.

The entanglement asymmetry (11.1.1) satisfies two natural properties to quantify symmetry
breaking: (i) ∆SA ≥ 0, because by definition it is equal to the relative entropy between ρA and
ρA,Q, ∆SA = Tr[ρA(log ρA − log ρA,Q)], which is actually non-negative [10]; (ii) ∆SA = 0 if and
only if the state is symmetric since, in this case, ρA is block diagonal in the eigenbasis of QA and
ρA,Q = ρA.

A replica construction — The entanglement asymmetry can be computed from the moments of
the density matrices ρA and ρA,Q by exploiting the replica trick [17, 20]. Indeed, simply defining
the Rényi entanglement asymmetry as

∆SAn =
1

1− n
[
log Tr(ρnA,Q)− log Tr(ρnA)

]
, (11.1.2)

one has that lim
n→1

∆SAn = ∆SA. As usual, the advantage of this construction is that for integer n,

∆SAn can be accessed from (charged) partition functions. Indeed, using the Fourier representation
of the projector Πq, the post-measurement density matrix ρA,Q can be alternatively written in the
form

ρA,Q =

∫ π

−π

dα

2π
e−iαQAρAeiαQA , (11.1.3)

and its moments as

Tr(ρnA,Q) =

∫ π

−π

dα1 . . . dαn
(2π)n

Zn(α), (11.1.4)

where α = {α1, . . . , αn} and

Zn(α) = Tr




n∏

j=1

ρAe
iαj,j+1QA


 , (11.1.5)
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Figure 11.1: The density matrices ρA and ρA,Q entering in the definitions (11.1.1) and (11.1.2)
of the entanglement asymmetries. In the eigenbasis of the subsystem charge QA, ρA generically
displays off-diagonal elements. Under a projective measurement of QA, we get ρA,Q, where the
off-diagonal blocks are annihilated. The difference ∆SAn between the entanglement entropies of
these matrices is our probe of symmetry breaking.
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with αij ≡ αi − αj and αn+1 = α1. Notice that, if [ρA, QA] = 0, then Zn(α) = Zn(0), which
implies Tr(ρnA,Q) = Tr(ρnA) and ∆SAn = 0. Furthermore the order of terms in Eq. (11.1.5) matters
because [ρA, QA] 6= 0. We will refer to Zn(α) as charged moments because they are a modification
of Eq. (1.4.16). With these definitions in mind, the plan of the following part is to test their
effectiveness both in and out-of equilibrium in Secs. 11.2 and 11.3, respectively. We conclude in
Sec. 11.4.

11.2 Tilted Ferromagnet

As warm up, we consider an infinite spin chain prepared in the tilted ferromagnetic state

|θ;↗↗ · · · 〉 = ei
θ
2

∑
j σ

x
j | ↑↑ · · · 〉. (11.2.1)

For θ 6= πm, m ∈ Z, this state breaks the U(1) symmetry associated to the conservation of the
total transverse magnetisation Q = 1

2

∑
j σ

z
j . When θ = πm, it corresponds to a fully polarised

state in the z-direction, for which the transverse magnetisation is preserved. The angle θ controls
how much the state breaks this symmetry and, therefore, the state (11.2.1) is an ideal testbed for
the entanglement asymmetry, although it is a trivial product state. Let the subsystem A consist
of ` contiguous sites of the chain; then ∆SA = 0 for θ = πm and ∆SA > 0 otherwise. Since the
state is separable, Tr(ρnA) = 1, and Zn(α) is straightforwardly obtained as

Zn(α) =
n∏

j=1

f(cos(θ), αj,j+1)` where f(λ, α) = iλ sin
(α

2

)
+ cos

(α
2

)
. (11.2.2)

Plugging Eq. (11.2.2) into the Fourier transform (11.1.4), we obtain

∆SAn =
1

1− n log


cos2n`

(θ
2

)∑̀

p=0

(
`

p

)n
tan2np

(θ
2

)

 . (11.2.3)

In Fig. 11.2, we plot this entanglement asymmetry as a function of θ ∈ [0, π]. As expected, it
vanishes for θ = 0, π while it takes the maximum value at θ = π/2, when all the spins point in
the x direction and the symmetry is maximally broken. Between these extremal points, ∆SA is a
monotonic function of θ (but this is not true for all n). For a large interval, it behaves as

∆SAn =
1

2
log `+

1

2
log

πn
1

n−1 sin2 θ

2
+O(`−1). (11.2.4)

The limit θ → 0 is not well defined in Eq. (11.2.4). Indeed, the limits ` → ∞ and θ → 0 do not
commute: to recover the symmetry, one should take first θ → 0 in Eq. (11.2.2) and then consider
the large interval regime.

11.3 Quench to the XX spin chain

We now analyse the time evolution of the entanglement asymmetry after a quantum quench. We
prepare the infinite spin chain in the state

|Ψ(0)〉 =
|θ;↗↗ · · ·〉 − |−θ;↗↗ · · ·〉√

2
, (11.3.1)
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Figure 11.2: The Rényi entanglement asymmetry ∆SAn in Eq. (11.2.4) for the tilted ferromagnetic
state as a function of the tilting angle θ for different values of the replica index n.

which is the cat version of the symmetry-breaking state in Eq. (11.2.1). We then let it evolve

|Ψ(t)〉 = e−itH |Ψ(0)〉, (11.3.2)

with the symmetric XX Hamiltonian ([H,Q] = 0)

H = −1

4

∞∑

j=−∞

[
σxj σ

x
j+1 + σyj σ

y
j+1

]
. (11.3.3)

This Hamiltonian is diagonalised via the Jordan-Wigner transformation to fermionic operators
cj = (c†j , cj) followed by a Fourier transform to momentum space [550]. The one-particle dispersion
relation is ε(k) = − cos(k).

11.3.1 The analytic computation

We now embark in the exact computation of the time evolution of the charged moments (11.1.5).
The reader uninterested in these details can skip directly to the next paragraph in which we discuss
the results for the entanglement asymmetry.

We choose as initial state the linear combination of Eq. (11.3.1), instead of Eq. (11.2.1), because
the corresponding reduced density matrix is a Gaussian operator in terms of cj . We can then use
Wick theorem to express ρA(t) in terms of the two-point correlation matrix

Γjj′(t) = 2Tr
[
ρA(t)c†jcj′

]
− δjj′ , (11.3.4)

with j, j′ ∈ A [169]. If A is a subsystem of length `, then Γ(t) has dimension 2`×2` and entries [339]

Γjj′(t) =

∫ 2π

0

dk

2π
G(k, t)e−ik(j−j′), (11.3.5)

with

G(k, t) =

(
cos ∆k −ie−2itε(k) sin ∆k

ie2itε(k) sin ∆k − cos ∆k

)
,

cos ∆k =
2 cos(θ)− (1 + cos2 θ) cos(k)

1 + cos2 θ − 2 cos(θ) cos(k)
. (11.3.6)
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Figure 11.3: Time evolution of Zn(α, t) after the quench (11.3.2) for n = 2 (upper panel) and
n = 3 (lower panel). We plot it as a function of t/` for several values of θ, ` and αj,j+1. The
symbols were obtained numerically using Eq. (11.3.7) and the continuous lines correspond to the
analytic prediction (11.3.9).

Under the Jordan-Wigner transformation, the transverse magnetisation is mapped to the fermion
number operator and eiαQA turns out to be Gaussian, too. Therefore, Zn(α) in Eq. (11.1.5)
is the trace of the product of Gaussian fermionic operators, ρA and eiαj,j+1QA . Employing their
composition properties [174,551] (see also Sec. 1.4.3), we express Zn(α) as a determinant involving
the corresponding correlation matrices, finding

Zn(α, t) =

√√√√√det



(
I − Γ(t)

2

)n

I +

n∏

j=1

Wj(t)




, (11.3.7)

with Wj(t) = (I + Γ(t))(I − Γ(t))−1eiαj,j+1nA and nA is a diagonal matrix with (nA)2j,2j = 1,
(nA)2j−1,2j−1 = −1, j = 1, · · · , `. We use Eq. (11.3.7) to numerically compute the time evolution
of the Rényi entanglement asymmetry ∆SAn (t) and test the analytical predictions presented in
what follows.

At time t = 0, for large `, Zn(α, 0) ∼ eA(α)`/2n−1 with

A(α) = log
n∏

j=1

eiσj/2f(cos(θ), αj,j+1 − σj), (11.3.8)

where σj = 0 if |αj,j+1| ≤ π/2 and σj = π otherwise (f(λ, α) is defined in Eq. (11.2.2)). Therefore,
∆SAn (t = 0) behaves asymptotically as Eq. (11.2.4). After the quench, the natural ballistic regime
is the scaling limit t, `→∞ with ζ = t/` fixed [339,629] in which we expect

Zn(α, t) = Zn(0, t)e`(A(α)+B(α,ζ)). (11.3.9)

For the function B(α, ζ) we conjecture

B(α, ζ) = −
∫ 2π

0

dk

2π
min(2ζ|ε′(k)|, 1) log

n∏

j=1

f(ei∆k , αj,j+1), (11.3.10)
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and ε′(k) = dε(k)/dk (likely this expression can be rigorously derived by properly adapting the
calculations for the symmetry resolved entanglement [132, 133, 135], but this is far beyond the
scope of this Chapter). This cumbersome expression does not come out of a magician hat, but
from the quasiparticle picture [44,47,589]: the time evolution of the entanglement is given by the
pairs of entangled excitations shared by A and B that are created after the quench and propagate
ballistically with momentum ±k. Let us explain how to apply this idea to deduce Eq. (11.3.10).
According to Refs. [552, 553, 607], in the quench protocol analised here, the U(1) symmetry is
restored in the large time limit, i.e. ∆SAn (t) → 0. Therefore, Zn(α, t) has to tend to Zn(0, t),
which implies B(α, ζ)→ −A(α) as ζ →∞. Considering Eq. (11.3.8), we notice that, at t = 0 and
large `, Zn(α, 0) factorises into

Zn(α, 0) ∼ 2

n∏

j=1

eiσj/2

2
Tr(ρA(0)ei(αj,j+1−σj)QA). (11.3.11)

The expectation value Tr(ρA(0)eiαQA) is the full counting statistics of the transverse magnetisation
in the subsystem A. We can now take advantage of the fact that |Ψ(0)〉 is also the ground state of
a XY spin chain 1 to exploit the knowledge of the FCS in that system [272, 396, 400, 421, 554]. In
particular, employing the results of Ref. [421], we can rewrite A(α) in Eq. (11.3.8) as an integral
in momentum space

A(α) = −B(α, ζ →∞) =

∫ 2π

0

dk

2π
log

n∏

j=1

f(ei∆k , αj,j+1). (11.3.12)

Now, using the quasiparticle picture, the integrand in Eq. (11.3.12) can be interpreted as the
contribution to B(α, ζ) from each entangled excitation of momentum k created after the quench.
Since they propagate with velocity |ε′(k)|, the number of these pairs shared between A and its
complement at time t is determined by min(2t|ε′(k)|, `). Combining these two ingredients, we
get Eq. (11.3.9). This approach makes also clear the crucial role that entanglement plays in
the restoration of the symmetry. In Fig. 11.3, we check Eq. (11.3.9) against exact numerical
computations performed using Eq. (11.3.7) for different values of n, θ, and α, finding a remarkable
agreement: note that Eq. (11.3.9) is exact for ` → ∞ and the points are closer to the curves for
larger `.

11.3.2 The entanglement asymmetry after the quench

The entanglement asymmetry ∆SAn (t) for any ζ = t/` in the scaling limit t, ` → ∞ is obtained
by plugging the charged moments (11.3.9) into Eq. (11.1.4). The resulting curves are plotted
in Fig. 11.4 as a function of ζ for several values of θ, finding a remarkable agreement with the
exact numerical values (symbols). We can also write a very effective closed-form approximation of
∆SAn (t). Indeed when in Eq. (11.3.9) A(α) + B(α, ζ) is close to zero, the Fourier transform can
be done analytically as

∆SAn (t) ' π2b(ζ)`

24
, b(ζ) =

sin2 θ

2
−
∫ 2π

0

dk

2π
min(2ζ|ε′(k)|, 1) sin2 ∆k, (11.3.13)

which is independent of the replica index n. This approximation becomes exact in the limit of
large ζ and its effectiveness also for not too large ζ is proven by the inset of Fig. 11.4.

1The corresponding parameters h, γ of the XY chain (see Eq. (12.5.1)) are given by γ2 + h2 = 1 and cos2 θ =
(1− γ)/(1 + γ).



11.3. QUENCH TO THE XX SPIN CHAIN 189

0 100 200 300 400
0

0.5

1

1.5

2

t

∆
S
A n

θ = 4/5 n = 2 ` = 100

θ = π/3 n = 2 ` = 100

θ = 3/2 n = 3 ` = 100

θ = π/3 n = 2 ` = 60

1 2 3 4
0

1

2

·10−2

t/`

∆
S
A n
/`

Figure 11.4: Time evolution of the Rényi entanglement asymmetry ∆SAn (t) after the
quench (11.3.2). The symbols are the exact numerical results for various values of `, n, and
θ. The continuous lines are our prediction obtained by plugging Eq. (11.3.9) into (11.1.4) and
(11.1.2). In the inset, we check the asymptotic behavior (11.3.13) (full lines) and (11.3.14) (dashed)
of ∆SAn (t) for large t/`.
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We now discuss some relevant features of the entanglement asymmetry and show that it encodes
a lot of new physics. First, as expected, ∆SAn t) tends to zero for large ζ (i.e. large t) and the U(1)
symmetry, broken by the initial state, is restored. This is analytically shown by Eq. (11.3.13) that
indeed at leading order in large ζ is

∆SAn (t) =
π

1152

(
1 + 8

cos2 θ

sin4 θ

) `
ζ3
, (11.3.14)

i.e. it vanishes for large times as t−3 for any value of θ. Another characteristic, following from
having a space-time scaling, is that larger subsystems require more time to recover the symmetry,
as it is clear from Fig. 11.4 and Eq. (11.3.13): this justifies the significance of the definition of
∆SAn in terms of ρA rather than the full state |Ψ〉. Finally, a very odd and intriguing feature is
that the more the symmetry is initially broken, i.e. the larger θ, the smaller the time to restore
it. This is a quantum Mpemba effect: more the system is out of equilibrium, the faster it relaxes.
At a qualitative level this is a consequence of the fact that for larger symmetry breaking there
is a sharper drop of the (entanglement) asymmetry at short time, see Fig. 11.4, before the truly
asymptotic behavior takes place. Furthermore, we can quantitatively understand the quantum
Mpemba effect: from Eq. (11.3.14) the prefactor of the t−3 decay is a monotonously decreasing
function of θ in [0, π/2]. Thus the quantum Mpemba effect is not as controversial as its classical
version [555]. To the best of our knowledge this awkward effect was not known in the literature,
showing the power of the entanglement asymmetry to identify new physics.

11.4 Closing remarks

In this Chapter, we introduced the entanglement asymmetry, a probe to study how much a sym-
metry is broken at the level of subsystems of many-body systems. As an application to show its
potential, we have studied its dynamics after a quench from an initial state breaking a U(1) symme-
try and evolving with a Hamiltonian preserving it. We showed that the entanglement asymmetry
detects neatly all the physical relevant features of the dynamics and in particular the restoration
of the symmetry at late times. It also identifies the appearance of an unexpected Mpemba effect, a
phenomenon that very likely happens in many settings that can be studied through the entangle-
ment asymmetry. It is then very important to study other quench protocols (e.g. different initial
state, interacting Hamiltonians, etc.) and understand how to modify the quasiparticle description,
following e.g. Ref. [556], to describe these more general situations.

We can easily imagine many other applications of the entanglement asymmetry. The first
one is in equilibrium situations that have been left out here. In this respect, it would be useful
to recast the charged moments (11.1.5) in terms of twist fields [20, 156] within the path-integral
approach: this would allow us to explore more complicated situations, e.g. the symmetry breaking
from SU(2) to U(1), which are also relevant in high-energy physics. Similarly, our setup can be
extended to non-Abelian symmetries [121] to explore, e.g., how the asymptotic behavior of ∆SA
with the subsystem size of Eq. (11.2.4) depends on the symmetry group.

Finally, ∆SA(t) can be experimentally accessible by developing a protocol based on the random
measurement toolbox [557,558]. This would require the post-selection of data from an experiment
like the one in [80], but with an initial state breaking the U(1) symmetry.
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Chapter 12

The Negativity Hamiltonian: An
operator characterization of
mixed-state entanglement

In the context of ground states of quantum many-body systems, the locality of entanglement
between connected regions of space is directly tied to the locality of the corresponding entanglement
Hamiltonian (EH): the latter is dominated by local, few-body terms. In this Chapter, we introduce
the negativity Hamiltonian as the (non hermitian) effective Hamiltonian operator describing the
logarithm of the partial transpose of a many-body system. This allows us to address the connection
between entanglement and operator locality beyond the paradigm of bipartite pure systems. As
a first step in this direction, we study the structure of the negativity Hamiltonian for fermionic
conformal field theories and a free fermion chain: in both cases, we show that the negativity
Hamiltonian assumes a quasi-local functional form, that is captured by simple functional relations.
This Chapter is based on Ref. [559].

12.1 Introduction

The EH fully characterises the “local” properties of entanglement in a many-body system - that is,
it allows to understand whether the RDM can be interpreted as the exponential of a local operator
composed solely of few-body local terms. In the context of quantum field theory, this principle
of locality is an established pillar - the Bisognano-Wichmann theorem [244, 301]. Such locality is
at the heart of several physical phenomena - from topological order, to the nature of area laws in
gapped systems-, and is the key element at the basis of theory and experiments aimed at large-scale
reconstructions of the RDM [560–562]. However, it is presently unknown whether it is possible
to associate locality and entanglement in a similar way for the case of mixed-state entanglement,
that encompasses a variety of scenarios of key experimental and theoretical relevance - from mixed
states, to correlations between partitions in pure states.

In this Chapter, we introduce and investigate the negativity Hamiltonian - an operator that
allows us to cast the relation between locality and entanglement (in particular, that related to
Peres-Horodecki criterion) for general mixed states.

For the case of a subpartition of A = A1 ∪A2, we define the negativity Hamiltonian NA as

ρT1
A = Z−1

A e−NA . (12.1.1)

Clearly NA is non-hermitian because negative eigenvalues of ρT1
A are the signature of mixed-state
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entanglement. Nevertheless, it is still natural to wonder about the locality properties of NA and
about the location of its eigenvalues in the complex plane.

After discussing the definition of NA for both bosonic (spin) and fermionic systems in Sec. 12.2,
we unveil the operator structure of NA for two relevant cases: (1+1)-d fermionic conformal field
theory (Secs. 12.3 and 12.4) and a tight-binding model of spinless fermions on a chain (Sec. 12.5).
Both cases show a characteristic quasi-local (in a sense to be specified below) structure - a first
demonstration of the relation between entanglement and locality at the operator level beyond
the case of complementary partitions. On top of its conceptual relevance, and similarly to what
has been discussed in the context of pure states for the case of local EHs, this fact enables some
immediate consequences: i) interpreting the negativity spectrum, i.e. the analog of the pure-state
entanglement spectrum for mixed states [515,563], ii) simulating this object in nowadays available
quantum platforms [80] iii) applying well-established statistical mechanics tools such as tensor
networks [42,317] and quantum Monte Carlo [564] to access the entire partial transpose ρT1

A .

12.2 The partial transpose operation

The partial transposition introduced in Sec. 1.1 has also an interpretation in terms of a time-
reversal transformation or mirror reflection in phase space [60]. Namely, considering the one-
to-one correspondence between density matrices and Wigner distribution functions W (q, p) then
ρA → ρTA ⇐⇒ W (q, p) → W (q,−p). This can be conveniently observed starting from a bosonic
density matrix written in a coherent state basis, since time-reversal transformation (T ) can be
identified with the complex conjugation [163]. Taking |α〉, a bosonic coherent state, one has

(|α〉 〈α∗|) T−→ |α∗〉 〈α| = (|α〉 〈α∗|)T . (12.2.1)

In the case of fermionic systems, the equivalence above does not hold and the definition of
partial transposition differs when looking at the density matrix or at the Wigner distribution
function. In a coherent state basis the RDM reads [163,165,173,565]

ρA =
1

Z

∫
d[ξ] d[ξ̄]e−

∑
j ξ̄jξj 〈{ξj}| ρA |{ξ̄j}〉 |{ξj}〉 〈{ξ̄j}| . (12.2.2)

Here ξ, ξ̄ are Grassman variables and |ξ〉 = e−ξc
† |0〉,〈ξ̄| = 〈0| ε−cξ̄ are the related fermionic

coherent states. The partial time reversal, analog of Eq. (12.2.1), is [163]

|ξ〉 〈ξ̄| T→ |iξ̄〉 〈iξ| . (12.2.3)

The partial time reversal ρR1
A , obtained by acting with (12.2.3) in (12.2.2) only in A1, provides

the fermionic negativity considering the trace norm of ρR1
A , although its spectrum is not real in

general [164].
In the following section we discuss in details the partial transpose operation of fermionic Gaus-

sian states, both using the bosonic and the fermionic definition. Then, we show how for Gaussian
states the correlation matrices suffice to compute all the properties of the systems [163,164,173].

12.2.1 From bosonic to fermionic negativity

For a bosonic system, the partial transpose of the reduced density matrix ρTA1 with respect to
A1 is defined by performing a standard transposition in the Hilbert space associated to A1, HA1 ,
according to the definition (1.1.12). However, the same is not true for fermions because of the
anticommutation relations.
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To construct the partial transpose for fermionic systems, let us start by writing the density
matrix in terms of Majorana operators aj , which are defined in terms of the fermionic operators

cj obeying {c†k, cj} = δkj as {
a2j−1 = cj + c†j ,

a2j = i(cj − c†j).
(12.2.4)

We consider a system S = A1 ∪ A2 and denote with the subscripts {m1, . . . ,m`1} the operators
in the subset A1 and with {n1, . . . , n`2} the ones in the subset A2; here `1(`2) corresponds to the
number of sites in subsystem A1(A2). One can write [173]:

ρA =
∑

κ,τ

wκ,τa
κ1
m1
. . . a

κ2`1
m2`1

aτ1n1
. . . a

τ2`2
n2`2

(12.2.5)

where we defined κ = (κ1, . . . , κ2`1) and τ = (τ1, . . . , τ2`2) with κj , τj = 0, 1. We define the

moduli |κ| = ∑2`1
j=1 κj and |τ | = ∑2`2

j=1 τj . Since the physical fermionic states must commute with
the parity operator one has that the sum of the moduli of κ and τ must be even. The partial
transpose (1.1.12) leaves unaltered the state in A2 and exchanges the states in A1 as

ρT1
A =

∑

κ,τ

(−1)f(κ)wκ,τa
κ1
m1
. . . a

κ2`1
m2`1

aτ1n1
. . . a

τ2`2
n2`2

(12.2.6)

where

(−1)f(κ) =

{
0 |κ| mod 4 ∈ {0, 3}
1 |κ| mod 4 ∈ {1, 2}

. (12.2.7)

The easiest way to see this is to perform the partial transpose in the occupation number basis and
then write the density matrix in terms of Majorana operators.

Having understood how the standard partial transpose acts on the fermionic degrees of freedom
written in terms of Majorana operator, we move on to consider Gaussian states. They can be
written in the form

ρA =
1

Z
e

1
4

∑
klWklakal , (12.2.8)

where W is a 2` × 2` matrix (` size of the system described by ρA), with eigenvalues ∈ R. The
latter is related to the correlation matrix Γ (i.e. the matrix with elements Γi,j = 1

2〈[ai, aj ]〉, see
also Sec. 1.4.3) by the relation

Γ = tanh
W

2
. (12.2.9)

Here Γ has eigenvalues between [−1, 1]. It is convenient to introduce the block structure of Γ as

Γ =

(
ΓA1A1 ΓA1A2

ΓA2A1 ΓA2A2

)
. (12.2.10)

Using Eq. (12.2.6) it can be shown that [173]

ρT1
A =

1− i
2

O+ +
1 + i

2
O− (12.2.11)

where O± =
∑
κ,τ o

±
κ,τa

κ1
m1
. . . a

κ2`1
m2l1

aτ1n1
. . . a

τ2`2
n2l2

with

o±κ,τ =

{
±i(−1)

|κ|−1
2 wκ,τ |κ| odd

i(−1)
|κ|
2 wκ,τ |κ| even.

(12.2.12)
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The operators O± are Gaussian and can be written as

O+ = O†− =
1

Z
e

1
4

∑
kl(NA)klakal (12.2.13)

where NA is related (as in Eq. (12.2.9)) to the correlation matrix Γ+ defined according to the
following equation:

Γ+ =

(
−ΓA1A1 iΓA1A2

iΓA2A1 ΓA2A2

)
. (12.2.14)

It is clear that the partially transposed reduced density matrix (12.2.11) is not a Gaussian operator,
but rather the sum of two of them. Even more troubling, it does not satisfy additivity nor
subadditivity and fails to capture, for this reason, some topological features of fermionic Majorana
systems such as the entanglement due to zero-energy modes in Kitaev’s chain [163].

For all the above reasons, a different partial transpose has been introduced for fermionic sys-
tems starting from the analogy with the time-reversal transformation [163–165]: we have already
understood that the action of the fermionic partial transpose (R) is not just exchanging bra and
ket but also multiply them by i (see Eq. (12.2.3)). This definition can be readily generalised to
multi-particle states. Considering a system S = A1 ∪A2 one has

(|{ξj}j∈A1{ξj}j∈A2〉 〈{χ̄j}j∈A1{χ̄j}j∈A2 |)R1 = |{iχ̄j}j∈A1{ξj}j∈A2〉 〈{iξj}j∈A1{χ̄j}j∈A2 | ,
(12.2.15)

with obvious meaning of all the actors in the formula. In the occupation number basis, the above
equation reads [163]

(|{nj}j∈A1{nj}j∈A2〉 〈{n̄j}j∈A1{n̄j}j∈A2 |)R1 = (−1)φ({nj ,n̄j})×|{n̄j}j∈A1{nj}j∈A2〉 〈{nj}j∈A1{n̄j}j∈A2 | .
(12.2.16)

Here the term φ({nj , n̄j}) is a phase factor depending on the occupation number

φ({nj , n̄j}) =
τA1(τA1 + 2)

2
+
τ̄A1(τ̄A1 + 2)

2
+ τA2 τ̄A2 + τA1τA2 + τ̄A1 τ̄A2 + (τ̄A1 + τ̄A2)(τA1 + τA2),

(12.2.17)
with τA1 =

∑
j∈A1

nj (τA2 =
∑

j∈A2
nj) and τ̄A1 =

∑
j∈A1

n̄j (τ̄A2 =
∑

j∈A2
n̄j). Hence the

definition in Eq. (12.2.16) is equivalent to a standard partial transposition up to phase factor
depending on the parity of the two subsystems, as in Eq. (12.2.17). In terms of Majorana operators,
the transformation in Eq. (12.2.16) can be rewritten as

ρR1
A =

∑

|κ|+|τ |even
wκ,τ i

|κ|a
κm1
m1 · · · a

κm2l1
m2l1

a
τn1
n1 · · · a

τn2l2
n2l2

(12.2.18)

where we used the notation a0
x = 1, a1

x = ax. The matrix ρR1
A satisfies three necessary properties

for a partial transposition:

1. (ρR1
A )R2 = ρRA,

2. (ρR1
A )R1 = ρA,

3. (ρ1 ⊗ ρ2 · · · ρn)R1 =
(
ρR1

1 ⊗ ρR1
2 ⊗ · · · ⊗ ρR1

n

)
.

Notice that ρ
RA1
A is nothing but O+ in Eq. (12.2.11). This density operator is not Hermitian and,

in general, has complex eigenvalues. Nevertheless, one can still define a fermionic logarithmic
negativity as [163]

E = log Tr

√
(ρR1
A )†ρR1

A (12.2.19)
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where the object (ρR1
A )†ρR1

A is Hermitian and its spectrum is positive. This expression can be
slightly generalised defining the fermionic Rényi negativities as [163]

En =

{
log[Tr(ρR1

A )†ρR1
A ) . . . ρR1

A )†ρR1
A )], n even,

log[Tr(ρR1
A )†ρR1

A ) . . . ρR1
A )†)], n odd,

(12.2.20)

from which E = lim
ne→1

Ene .
In spite of the name, the fermionic negativity has nothing to do with the negativeness of the

spectrum of (ρR1
A ). It can be however proved that is a proper entanglement monotone [478] and it

has been shown that can detect entanglement when the standard negativity fails [163].

12.3 The Bisognano-Wichmann theorem

The Bisognano-Wichmann (BW) theorem gives a general structure for the entanglement Hamilto-
nian of the ground state of a relativistic invariant quantum field theory with Hamiltonian density
H(x), when considering a bipartition between two half spaces of an infinite system. In formulas,
considering a d-dimensional system, x = {x1, . . . , xd}, and a partition A = {x|x1 > 0}, the EH of
the ground state is HA = 2π

∫
x∈A dx x1H(x) + c, where c is a normalization constant. This result

does not depend on the dimensionality of the system or on any apriori knowledge of the ground
state and can be applied to a large variety of systems and quantum phases. For conformal invariant
theories, the BW theorem is easily generalised to some different geometries by conformal mappings
[189,242,566,567]. Nevertheless, in general it is not an easy task to get analytic expressions, even
in CFTs. One of these examples is the modular Hamiltonian for the ground state of the free 1 + 1
dimensional massless Dirac fermion for several disjoint intervals on the infinite line [256,568,569].
We report here the result by slightly adapting it to the massless 1+1 dimensional real (Majorana)
field Ψ(t, x). It is a doublet made by the two real fields

Ψ(t, x) =

(
ψ1(t, x)
ψ2(t, x)

)
. (12.3.1)

The normal ordered component of the energy-momentum tensor of the Majorana field correspond-
ing to the energy density reads

Ttt(t, x) ≡ i

2
: [((∂xψ1)ψ1 − ψ1∂xψ1) (x+ t)− ((∂xψ2)ψ2 − ψ2∂xψ2) (x− t)] : . (12.3.2)

The modular Hamiltonian for two disjoint intervals A ≡ [a1, b1]∪ [a2, b2] on the line can be written
as the sum HA = Hloc + Hq−loc, where the local term Hloc and the quasi-local term Hq−loc are
defined respectively as

Hloc = 2π

∫

A
βloc(x)Ttt(0, x)dx,

Hq−loc = 2π

∫

A
βq−loc(x)Tq−loc(0, x, x̄)dx,

(12.3.3)

with Ttt(0, x) the energy density in Eq. (12.3.2), while Tq−loc(0, x, y) is given by

Tq−loc(t, x, y) ≡ i : [ψ1(x+ t)ψ1(y + t)− ψ2(x− t)ψ2(y − t)] : . (12.3.4)

The other functions in Eq. (12.3.3) can be written as

βq−loc(x) =
1

w′(x)
βq−loc(x) =

βloc(x̄(x))

x− x̄(x)
, (12.3.5)
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with

w(x) = log

[
−(x− a1)(x− a2)

(x− b1)(x− b2)

]
,

x̄(x) =
(b1b2 − a1a2)x+ (b1 + b2)a1a2 − (a1 + a2)b1b2

(b1 − a1 + b2 − a2)x+ a1a2 − b1b2
.

(12.3.6)

Here x and x̄(x) belong to different intervals in A (if x ∈ A1 then x̄ ∈ A2 and viceversa). In the
limit b1 → a2 we get back a single interval and so the quasi-local part vanishes.

We will make explicit use of this example in the following.

12.4 The Negativity Hamiltonian and its quasi-local structure

To build the negativity Hamiltonian, we should first recall the path integral construction of the
(bosonic) partial transpose [151, 152]. The partial transposition corresponds to the exchange
of row and column indices in A1 which naturally leads to a space inversion within A1. On a
fundamental level, this fact can be deduced from CPT theorem. Indeed, the partial transposition
is equivalent to a partial time reversal that, by CPT, is the same as a parity operation in the
world-sheet combined with a charge conjugation. This second construction holds true also for ρR1

A

in fermionic systems.
Therefore, starting from the entanglement hamiltonian for two disjoint intervals and doing a

spatial inversion of the interval A1 = [a1, b1], one obtains the partial time reversal of the density
matrix. Although this procedure is fully general, the entanglement hamiltonians of disjoint inter-
vals are known only in few cases [256,568–574]. In particular, the result for Majorana fermions can
be obtained from the previous section without any further effort. We mention that one can easily
derive also the result for the Dirac field, which can be written in terms of two Majorana spinors.
In this case, the negativity (entanglement) hamiltonian is the sum of the two negativity (entan-
glement) hamiltonians for each real component of the complex field [256]. Only the definition of
Ttt(0, x) and Tq−loc(t, x, y) in terms of a real or complex fermionic field change.

Starting from the EH HA for the massless Majorana fermion Ψ(t, x) reported in Eq. (12.3.3),
and performing this inversion, we get after simple algebra

NA = NA,loc + iNA,q−loc,

NA,loc = 2π

∫

A
βRloc(x)Ttt(0, x)dx,

NA,q−loc = 2π

∫

A
βRq−loc(x)Tq−loc(0, x, x̄

R(x))dx,

(12.4.1)

where

βRloc(x) =
1

wR(x)′
, βRq−loc(x) =

βRloc(x̄
R(x))

x− x̄R(x)
, (12.4.2)

with

wR(x) = log

[
−(x− b1)(x− a2)

(x− a1)(x− b2)

]
,

x̄R(x) =
(a1b2 − b1a2)x+ (a1 + b2)b1a2 − (b1 + a2)a1b2

(a1 − b1 + b2 − a2)x+ b1a2 − a1b2
.

(12.4.3)

Here Ttt(0, x) is the one in Eq. (12.3.2) while Tq−loc(0, x, x̄) in defined in Eq. (12.3.4).
The structure of Eq. (12.4.1) is very suggestive: it consists of a local term proportional to the

energy density and an additional non local part given by a quadratic expression in the fermionic
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Figure 12.1: Negativity Hamiltonian corresponding to ρR1
A for real fermions on two adjacent inter-

vals of equal length ` on the infinite line. The symbols correspond to numerical data, while the
solid lines correspond to the discretised form of Eq. (12.4.1). The right panel is NA,loc, while the
left one is |NA,q−loc|. Here we have a1 = 0, b1 = ` = a2, b2 = 2`.

field. The latter, however, has a mild non-locality: each point x ∈ A1 is coupled to only a
specific y = x̄R ∈ A2 (that is a consequence of the mirror symmetry for equal intervals). Thus,
following [256], we refer to NA,q−loc as a quasi-local operator. Its existence is the reason of the

imaginary components in the spectrum of NA, which is one characteristic treat of ρR1
A . The shape

of |NA,q−loc| (see also Fig. 12.1) is compatible with the results of the negativity contour [581]
suggesting that the largest contribution to the negativity comes from the boundary region between
A1 and A2.

12.5 Lattice Negativity Hamiltonian and numerical checks

In this section we review the numerical procedure that we used to benchmark our analytical results.
We consider lattice systems described by the quadratic Hamiltonian

H(λ, γ) =
i

2

∞∑

l=−∞

(1 + γ

2
a2la2l+1 −

1− γ
2

a2l−1a2l+2 + λa2l−1a2l

)
. (12.5.1)

The one-particle energy levels are

Λk =

√
(λ− cos k)2 + γ2 sin2 k (12.5.2)

where k ∈ [−π, π] is the physical momentum. For (λ, γ) = (1, 1) the system is critical and Lorentz
invariant at low energy, so its critical behavior is described by the conformal field theory of a free
massless real fermion with central charge equal to 1/2. Thus, the Hamiltonian (12.5.1), H(1, 1), is
the ideal setting to compute the lattice negativity Hamiltonian NA and benchmark the analytical
expression in Eq. (12.4.1).

The elements of the covariance matrix of the ground state of the Hamiltonian (12.5.1) are

Γ2j1−1,2j2 = −Γ2j2,2j1−1 = gj2−j1 , (12.5.3)

where

gj = − i
π

1

j + 1
2

. (12.5.4)
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Figure 12.2: Negativity Hamiltonian for a real free fermion and for the geometry of two disjoint
intervals at distance d of equal length ` on the infinite line. The symbols correspond to numerical
data, while the solid lines correspond to the discretised form of NA (12.4.1), both the local part
(left panel) and the quasi-local one (right panel).

If now we focus on two intervals A = A1 ∪ A2, adjacent or disjoint and of arbitrary lengths, the
correlation matrix ΓA is obtained from the Γ above simply restricting to the subsystem of interest
and leading to the block structure of Eq. (12.2.10). If the total length of A is `1 +`2, the covariance
matrix has dimension 2(`1 + `2)× 2(`1 + `2). From this, the covariance matrix Γ+ corresponding
to the fermionic partial transpose is obtained by building Eq. (12.2.14).

Intervals of equal length `1 = `2: Because of the gaussianity of ρR1
A [163], the numerical

evaluation of the negativity Hamiltonian amounts to compute the single particle operator NA

defined as NA =
∑

ij(NA)i,jψjψi, related to the covariance matrix as NA = log 1+Γ+

1−Γ+
[169, 171].

We focus on two equal adjacent intervals A = A1 ∪ A2 made up of ` sites labelled by 1 ≤ j ≤
2`. In this case, the point x̄R in Eq. (12.4.3) is just x̄R = 2` − x and so the quasi-local term
lies entirely on the antidiagonal. As a consequence, in Fig. 12.1 we show only the subdiagonal
(NA)j,j+1 (a similar behaviour can be found for (NA)j+1,j) and the antidiagonal (NA)j,2`−j which
correspond, respectively, to the local and to the quasi-local parts of NA. The agreement between
lattice exact and field-theoretical discretised NA is remarkable over the all parameter regime, and
even for modest system sizes. Small discrepancies up to a few percent are present far from the
boundaries: those have very little effects on the negativity, as they affect only very small (in
absolute value) eigenvalues of the partial transpose. We verified that the other matrix elements of
NA are negligible, in the sense that they are subleading as `→∞ (in the same sense as subleading
terms in the EH are negligible, see Refs. [167,464,575–580]).

We now move to another geometry. In Fig. 12.2 we report the case of two equal disjoint
intervals at distance d and we benchmark once again our analytical result found in Eq. (12.4.1).
The curves again show a good agreement with the numerical computation, since the discrepancy
is at most ∼ 6%.

Intervals of different length `1 6= `2: Finally, we analyse in Fig. 12.3 the case of two disjoint
intervals of different length, `1 6= `2 for a real fermion. In this case, the reflected point x̄R (12.4.3)
is not on the antidiagonal and does not correspond to an integer number. Consequently its contri-
butions “spread” to the neighbouring integer. Such an effect is well shown in the right panel of 12.3
in which it is clear that the largest terms of the quasi-local parts of the negativity Hamiltonian
are centered around x̄R. A more quantitative analysis of the quasilocal terms would require a
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Figure 12.3: Negativity Hamiltonian for a real free fermion and for two disjoint intervals of different
length `1 6= `2. In this case, the discretised form of NA correctly reproduces the local behavior of
the negativity Hamiltonian (left panel). However, the reflected point x̄R is not an integer living
on the antidiagonal, as in the case of two intervals of equal length. Therefore, we only plot the
location of x̄R, Eq. (12.4.3), in order to show that its shape is compatible with the structure of
the quasi-local part of NA. Here we fix `1 = 2`2 = 2d = 4 (right panel).

weighted sum of the nearby elements to get the correct continuum limit, a procedure similar to
the one exploited for the entanglement Hamiltonian in Refs. [301, 464, 580, 582, 583] (steps in this
direction can be already found in [585]). Such analysis is beyond the scope of this thesis and for
this reason we focus on the local term which instead is easily discretised. This is shown in the left
panel of Fig. 12.3. Also in this case, the field theory prediction correctly matches the numerics,
with small deviations that are at most ∼ 6% for the system sizes considered.

12.6 Closing remarks

In this Chapter we initiated the study of the negativity Hamiltonian in many-body quantum sys-
tems. Although our field theoretical construction in terms of the EH of disjoint intervals is very
general, its applicability relies crucially on the exact knowledge of the latter, that is not always
available. We hope that this will spark further studies on disjoint intervals’s EH and, at the same
time, the search for alternative constructions of NA. Furthermore, we stress that the knowledge of
this operator encodes the entire information content about the entanglement in the mixed states.
This is remarkable with respect to the scalar quantities used to compute the entanglement (e.g.
the negativity), which do not allow to reconstruct the whole partial transpose reduced density
matrix. We expect that the quasi-local structure of the negativity Hamiltonian can be generalised
to other contexts, at least for free fermions, such as a single interval in an infinite system at finite
temperature [242], or two disjoint intervals in the presence of a point-like defect [571]. At present,
it is unclear whether this quasi-local structure survives to finite interaction strengths and in higher
dimensions. Having established an explicit approximate functional form for the negativity Hamil-
tonian paves the way for a direct reconstruction of partial transposes in experiments, utilizing, e.g.,
Hamiltonian reconstruction methods that have already been combined with the BW theorem [561].
These applications would allow a direct measurement of the negativity spectrum, something that
is presently unachievable by any method other than full state tomography. Moreover, it may be
possible to design efficient classical or hybrid classical-quantum algorithms for the ab initio de-
termination of NA, similarly to what has been done for the EH following a BW inspired ansatz
[560,562,584].





Chapter 13

Symmetry decomposition of
negativity of massless free fermions

We consider the problem of symmetry decomposition of the entanglement negativity in free
fermionic systems. The negativity admits a resolution in terms of the charge imbalance between
the two subsystems. We introduce a normalised version of the imbalance resolved negativity which
has the advantage to be an entanglement proxy for each symmetry sector, but may diverge in the
limit of pure states for some sectors. Our main focus is then the resolution of the negativity for
a free Dirac field at finite temperature and size. We consider a tripartite geometry and exploit
conformal field theory to derive universal results for the charge imbalance resolved negativity. To
this end, we use a geometrical construction in terms of an Aharonov-Bohm-like flux inserted in
the Riemann surface defining the entanglement. We interestingly find that the entanglement neg-
ativity is always equally distributed among the different imbalance sectors at leading order. Our
analytical findings are tested against exact numerical calculations for free fermions on a lattice.
This Chapter is based on Ref. [101].

13.1 Introduction

In this Chapter, we consider a many-body system with an internal global symmetry and address the
question of how mixed state entanglement splits into contributions arising from distinct symmetry
sectors. For mixed states, the pioneering work is Ref. [116], where it was proven that whenever
there is a conserved extensive charge, the negativity admits a resolution in terms of the charge
imbalance between the two subsystems, as already explained in Sec 1.3. Here, we first point
out that by properly normalising the imbalance sectors (as also done in Ref. [89]) one obtains
a clearer resolution of the entanglement in the imbalance; then we show that the imbalance-
decomposition of negativity also holds using the partial transpose definition for free fermions we
reviewed in Chapter 12. We then use such decomposition to study the symmetry resolution of
the entanglement of free fermions at finite temperature and size, exploiting the same field theory
methods used for the total negativity [151, 479]. Thus, the spacetime geometry we are interested
in is a torus defined by two periods which, in our units, are 1 and τ = iβ/L, where β = 1/T is
the inverse temperature. The partition functions depend on the boundary conditions along the
two cycles, which specify the spin structure of the fermion on the torus. Let z be a holomorphic
coordinate on the torus: it has the periodicities z = z + 1 and z = z + τ . The holomorphic
component of the fermion on the torus satisfies four possible boundary conditions

ψ̃k(z + 1) = e2πiν1ψ̃k(z), ψ̃k(z + τ) = e2πiν2ψ̃k(z), (13.1.1)
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where ν1 and ν2 take the values 0 or 1
2 . The anti-holomorphic component is a function of z̄ and

satisfies the same boundary conditions as the holomorphic part. We denote the ν = (ν1, ν2) sector
where ν = 1, 2, 3, 4 corresponds to (0, 0), (0, 1/2), (1/2, 1/2), (1/2, 0), respectively (for standard
fermions, the physical boundary conditions are anti-periodic along both cycles and so ν = 3, but
the other spin structures have important applications too). The Chapter is organised as follows.
In Sec. 13.2, after a brief summary of the results found in [116], we motivate our work by simple
examples for a tripartite geometry, using both the standard and the fermionic partial transpose
operation to explore the block-diagonal structure of the reduced density matrix. In Sec. 13.3, we
apply the method based on the replica trick and described in detail in Sec. 4.2 to provide results
for charged and imbalance resolved negativity for a tripartite setting. Numerical checks for free
fermions on the lattice are also presented as a benchmark of the analytical results. We draw
our conclusions in Sec. 13.5. One appendix is also included to give details about the numerical
computations.

13.2 Charge imbalance resolved negativity

In this section, we present the symmetry resolution of the standard and fermionic partial transpose
of the density matrix. Simple examples will lead to a general definition of the imbalance resolution
of entanglement negativity, both fermionic and bosonic (see Sec. 1.3 for the latter). We closely
follow Ref. [116], but we normalise differently the partial transpose in each symmetry sector, so
that the symmetry resolved negativity is a genuine indicator of entanglement in the sector.

13.2.1 Imbalance entanglement via bosonic partial transpose

In the presence of symmetries, the RDM has a block diagonal structure which allows to identify
contributions to the entanglement entropy from individual charge sectors. In order to understand
how symmetry is reflected in a block structure of the density matrix after partial transpose, we
start with a simple example, taken from Ref. [116]. Consider a particle in one out of three boxes,
A1, A2, B, described by a pure state |Ψ〉 = α |100〉+ β |010〉+ γ |001〉. The RDM of A = A1 ∪ A2

is ρA = TrB|ψ〉〈ψ| = |γ|2 |00〉 〈00|+ (α |10〉+ β |01〉)(α∗ 〈10|+ β∗ 〈01|), i.e.

ρA =




|γ|2 0 0 0
0 |β|2 α∗β 0
0 β∗α |α|2 0
0 0 0 0


 , (13.2.1)

in the basis {|00〉 , |01〉 , |10〉 , |11〉}. This matrix is clearly block diagonal with respect to the total
occupation number NA = N1 + N2, where N1 and N2 respectively denote the particle number of
the subsystem A1 and A2. According to Eq. (1.1.12), the partial transpose of ρA is

ρT1
A =




|γ|2 0 0 αβ∗

0 |β|2 0 0
0 0 |α|2 0
βα∗ 0 0 0


 . (13.2.2)
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The total negativity is N =
∣∣∣12 |γ|2 −

√
1
4 |γ|4 + |αβ|2

∣∣∣. Once we reshuffle the elements of rows and

columns in the basis of {|10〉 , |00〉 , |11〉 , |01〉}, we get

ρT1
A =




|α|2 0 0 0
0 |γ|2 αβ∗ 0
0 βα∗ 0 0
0 0 0 |β|2


 , (13.2.3)

which has a block structure where each block is labelled by the occupation imbalance q = N2−N1

(we call it q rather than qimb as in Sec. 1.3 to simplify the notation):

ρT1
A
∼=
(
|α|2

)
q=−1

⊕
(
|γ|2 αβ∗

βα∗ 0

)

q=0

⊕
(
|β|2

)
q=1

. (13.2.4)

The structure of the above example is easily generalised to a many-body ρA, leading to the
definition of the charge-imbalance resolved negativity defined in Eq. (1.3.12).

We now discuss the important “pathological” case when p(q) = 0 for some values of the
imbalance q, but ρT1

A (q) is non-zero and so the negativity of the sectors diverges, although the
total one is finite. For example, this happens setting γ = 0 in Eq. (13.2.1); in this case ρA
corresponds to a pure state. Actually, it is obvious that every time that ρA is a pure state there
will be some p(q) = 0 because N1 +N2 is fixed and hence also the parity of N1 −N2 is (so all the
p(q)’s where q has a different parity vanish). In such case, the origin of the problem can be traced
back to the fact that the (pure-state) entanglement (entropy) is better resolved in terms of N1 or
N2 rather than in the imbalance, i.e. the symmetries of ρA and ρT1

A are larger than in the standard
mixed case. However, mixed states with some zero p(q) can be also easily built, although they
are difficult to encounter as mixed states in physical settings (and they all correspond to states
in which there is more symmetry than the imbalance). To understand the situation better, let us
recall that p(q) is always the sum of some diagonal elements of both ρT1

A (q) and ρA. For the latter,
the diagonal elements are the populations of states in the Fock basis. Hence, we need at least a
few zero populations to have a vanishing p(q) (and, e.g., this will never happen in a Gibbs state at
finite temperature). In the matrix ρA, if the populations in a given sector of the total charge are
zero, the entire block is zero (and hence the entanglement entropy of the sector is zero). However,
when taking the partial transpose, the off-diagonal elements are reshuffled in the matrix and, after
being re-organised in terms of the imbalance, we can end up with some blocks with all zeros on
the diagonal (and so p(q) = 0) but with non-zero off-diagonal elements. In these instances, we
cannot normalise with p(q). (Have always in mind the example of Eq. (13.2.1) with γ = 0: there
are two sectors in ρA with zero populations, N1 + N2 = 0, 2; after the partial transposition, they
both end up in imbalance q = 0, see Eq. (16.3.8) which has non-zero off-diagonal terms). Anyhow,
it makes sense that the imbalance negativity diverges in these cases. We are indeed facing sectors
that have exactly zero populations, but still have some quantum correlations. In practice, as we
shall see in the next section, these vanishing p(q) are encountered only in the limit of a pure state
(e.g. for T → 0) and so diverging imbalance negativity signals that the state is getting pure and
that a better resolution of the entanglement is in N1 or N2 rather than in the imbalance.

The example of tripartite CFT.

As a first simple example to show the importance of the normalisation p(q) in the definition of
imbalance resolved negativity, we reanalyse a simple known result [116] for the ground state of a
Luttinger liquid (with parameter K) in a tripartite geometry. Thus, the results in this subsection
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describe gapless interacting 1d fermions. We focus on two adjacent intervals of length `1 and `2
respectively embedded in an infinite line.

Following [116], we start with the computation of the charged moments of the partial transpose

NT1
n (α) ≡ Tr((ρT1

A )neiQ̂α) = 〈TnVα(u1)T 2
−nV−2α(v1)TnVα(v2)〉 , (13.2.5)

where, in the right hand side, we use the correspondence with the 3-point correlation function of
fluxed twist field TnVα with scaling dimension

∆n(α) =
1

24

(
n− 1

n

)
+
K

2n

( α
2π

)2
, ∆T 2

no
= ∆no ∆T 2

ne
= 2∆ne/2. (13.2.6)

Using these scaling dimensions, one finds

logNT1
n (α) = logRn −

K

2n

(α
π

)2
log
[ `21`

2
2

(`1 + `2)ε3

]
, (13.2.7)

where Rn are neutral Rényi negativities and ε is an ultraviolet cutoff. Notice in Eq. (13.2.7) only
Rn does depend on the parity of n [151], while the α dependence is the same for even and odd n.

Upon performing a Fourier transform of Eq. (13.2.7), we obtain, through the saddle-point
approximation, the (normalised) charge imbalance RN

Rn(q) = Rn

∫ π
−π

dα
2π e
−i(q−q̄)αe−α

2bn/2

[
∫ π
−π

dα
2π e
−i(q−q̄)αe−α2b1/2]n

' Rn

√
(2πb1)n

2πbn
e
− (q−q̄)2

2
( 1
bn
− n
b1

)
, (13.2.8)

where q̄ is the expectation value of the charge operator Q̂ and

bn =
1

π2n
log
[ `21`

2
2

(`1 + `2)ε3

]
. (13.2.9)

The saddle-point approximation holds for two intervals of length `1, `2 → ∞ embedded in an
infinite line at zero temperature. The replica limit ne → 1 is easily taken since there is no parity
dependence in the imbalance part. For large `1, `2 →∞ (hence bn →∞), we get

N (q) = N + o(1), (13.2.10)

i.e. we found the equipartition of negativity in the different imbalance sectors at leading order
for large subsystems. This behaviour is reminiscent of the equipartition of entanglement entropy
in a pure quantum system that possesses an internal symmetry [85]. It is clear that negativity
equipartition can be shown only by properly normalising the partial transpose in each sector as
done here. As an important difference compared to the entanglement entropies, we do not have
additional log log ` [90] corrections to the symmetry resolved quantities.

13.2.2 Imbalance entanglement of fermions via partial TR

Now we are ready to understand the block structure of the fermionic partially transposed density
matrix and how the fermionic negativity splits according to the symmetry. We first revisit the
simple example of the previous section in Eq. (13.2.1) for fermions. According to Eq. (12.2.16),
the partial transpose of ρA in Eq. (13.2.1) is

ρR1
A =




|γ|2 0 0 iαβ∗

0 |β|2 0 0
0 0 |α|2 0

iβα∗ 0 0 0


 , (13.2.11)
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i.e. the partial transpose transformation does not spoil the block matrix structure according to
the occupation imbalance q = N2 −N1:

ρR1
A
∼=
(
|α|2

)
q=−1

⊕
(
|γ|2 iαβ∗

iβα∗ 0

)

q=0

⊕
(
|β|2

)
q=1

. (13.2.12)

The (total) fermionic negativity is

N =
|γ|2
2


−1 +

√√√√1

2
+
|αβ|2
|γ|4 +

√
1

4
+
|αβ|2
|γ|4 +

√√√√1

2
+
|αβ|2
|γ|4 −

√
1

4
+
|αβ|2
|γ|4


 . (13.2.13)

For a many-body state, the analogue of the commutation relation in Eq. (1.3.9) now reads

[ρR1
A , N̂2 − N̂R1

1 ] = 0, (13.2.14)

while the (normalised) charge imbalance resolved negativity is given by

N (q) =
Tr|(ρR1

A (q))| − 1

2
, ρR1

A (q) =
PqρR1

A Πq

Tr(Πqρ
R1
A )

. (13.2.15)

We also define the charge imbalance resolved RN

Rn(q) =

{
Tr(ρR1

A (q)ρR1
A (q)† . . . ρR1

A (q)ρR1
A (q)†), n even,

Tr(ρR1
A (q)ρR1

A (q)† . . . ρR1
A (q)), n odd,

(13.2.16)

from which N (q) =
1

2

(
lim
ne→1

Rne(q) − 1
)

. It is important to stress that the diagonal elements

of ρR1
A are the same as ρT1

A (the TR operation does not touch the diagonal elements) and so the
probabilities p(q) are identical for both the standard and the fermionic partial transpose. Thus,
all the considerations for the vanishing of p(q) in the previous subsection apply also here. For the
example of Eq. (13.2.12), the imbalance negativities are N (±1) = 0 and

N (0) = 1
2

(
−1 +

√
1
2 + |αβ|2

|γ|4 +
√

1
4 + |αβ|2

|γ|4 +

√
1
2 + |αβ|2

|γ|4 −
√

1
4 + |αβ|2

|γ|4

)
with p(0) = |γ|2. As a

further check,
∑

q p(q)N (q) gives back the total negativity in Eq. (13.2.13).

13.3 Charged moments of the partial transpose

In this section, we adapt the replica approach to the charged entropies of Sec. 4.2 to the charged
of the fermionic partial transpose defined as

Nn(α) =

{
Tr(ρR1

A (ρR1
A )† . . . ρR1

A (ρR1
A )†eiQ̂Aα), n even,

Tr(ρR1
A (ρR1

A )† . . . ρR1
A eiQ̂Aα), n odd.

(13.3.1)

Hence, in order to compute the imbalance resolved negativity, we need to study the composite
operator ρR1

A (ρR1
A )†. The charged moments in Eq. (13.3.1) are defined for two subsystems A1 and

A2 with different twist matrices respectively denoted by TR1
α and Tα. We will focus on the case

n = ne, which is the relavant case for the computation of negativity. The new twist matrix TR1
α

for the transposed subsystem is given by

TR1,n
α = −T−1

α . (13.3.2)
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The two matrices, Tα and TR1
α , are simultaneously diagonalisable. Consequently, we can de-

compose our problem into n decoupled copies in which the fields have different twist phases along
the two subsystems. As a result, Nn(α) is decomposed as

Nn(α) =

(n−1)/2∏

k=−(n−1)/2

ZR1,k(α), (13.3.3)

where ZR1,k(α) is the partition function for fields with twist phases equal to e2πi( kn+ α
2πn) and

−e−2πi( k
n

+ α
2πn

), respectively along A2 and A1. The probability p(q) is the Fourier transform of

N1(α) = Tr[ρR1eiQ̂α], that, with a minor abuse of terminology, we dub charged probability. In
this case, the twist matrices along the two intervals are just phases given by Tα = eiα and TR1

α =
T−1
α = e−iα.

A Fourier transform leads us to the imbalance resolved negativities (13.2.16)

ZR1,n(q) =

∫ π

−π

dα

2π
e−iαqNn(α), p(q) =

∫ π

−π

dα

2π
e−iαqN1(α), (13.3.4)

from which

Rn(q) =
ZR1,n(q)

pn(q)
, N (q) =

1

2

(
lim
ne→1

Rne(q)− 1
)
. (13.3.5)

Let us stress the replica limit for Rn(q) is lim
ne→1

ZR1,ne(q)

p(q)
, i.e. while it is sufficient to set n = 1

in the denominator, the numerator requires an analytic continuation from the even sequence at
ne → 1. These relations are the same appearing in Sec. 1.4.2, with the only difference that now
we employ the fermionic definition for the partial transpose. In the following section, we compute
the imbalance resolved entanglement negativity for a tripartite geometry.

13.4 Symmetry resolved negativities in a tripartite geometry

Let us study the negativity of two subsystems consisting of two adjacent intervals A1, A2, of
lengths `1, `2 out of a system of length L. We place the branch points at u1 = −`1/L = −r1, v1 =

u2 = 0, and v2 = `2/L = r2 and the multivalued fields ψk take up a phase −e−2πi( k
n

+ α
2πn

) at

u1, −e2πi( k
n

+ α
2πn

)e2πi( k
n

+ α
2πn

) at v1 and e−2πi( k
n

+ α
2πn

) at v2. By introducing a gauge field Akµ, as
explained in Sec. 4.2, we have to impose proper monodromy conditions such that the field is
almost pure gauge except at the branch points, where delta function singularities are necessary to
recover the correct phases of the multivalued fields. Hence, the flux of the gauge fields is given by

1

2π
εµν∂νA

k
µ(x)

= −
(
k

n
+

α

2πn
− 1

2

)
δ(x− u1) +

(
2k

n
+

α

πn
− 1

2

)
δ(x− v1)−

(
k

n
+

α

2πn

)
δ(x− v2). (13.4.1)

Through bosonisation, Z
(ν)
R1,k

(α) can be written as a correlation function of vertex operators Va(x) =

e−iaφk(x) as

Z
(ν)
R1,k

(α) =
〈
V k
n

+ α
2πn
− 1

2
(u1)V− k

n
− α

2πn
+ 1

2
(v1)V− k

n
− α

2πn
(v1)V k

n
+ α

2πn
(v2)

〉

=
〈
V k
n

+ α
2πn
− 1

2
(u1)V− 2k

n
− α
πn

+ 1
2
(v1)V k

n
+ α

2πn
(v2)

〉
. (13.4.2)
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Using the correlation function of vertex operators on a torus reported in [269], the final result is 1

Z
(ν)
R1,k

(α) = |θ1(r1|τ)|−2( k
n

+ α
2πn
− 1

2
)( 2k
n

+ α
πn
− 1

2
)|θ1(r2|τ)|−2( k

n
+ α

2πn
)( 2k
n

+ α
πn
− 1

2
)

|θ1(r1 + r2|τ)|2( k
n

+ α
2πn

)( k
n

+ α
2πn
− 1

2
) ×
∣∣∣ ε
L
∂zθ1(0|τ)

∣∣∣
−∆k(α)∣∣∣

θν(( kn + α
2πn)(r2 − r1) + 1

2r1|τ)

θν(0|τ)

∣∣∣
2
,

(13.4.3)

where

∆k(α) = −6
k2

n2
− 6

kα

n2π
− 3

α2

2n2π2
+ 3k

1

n
+ 3

α

2nπ
− 1

2
− 2θ(−k)(

3k

n
+

3α

2nπ
), (13.4.4)

and θ(x) is the step function. It is important to note that for k < 0, we have to modify the flux
at u1 and v1, π, by inserting an additional 2π and −2π fluxes. Essentially, we need to find the
dominant term with the lowest scaling dimension in the mode expansion, as discussed in more
details in [101]. Putting together the various pieces and using Eq. (13.3.3), the logarithm of the
charged moments of ρR1

A are given by

logN (ν)
n (α) = logNn,0(α) + logN

(ν)
n,1(α), (13.4.5)

where the spin-independent part is

logNn,0(α) = logRn −
α2

2π2n
log
∣∣∣θ1(r1|τ)2θ1(r2|τ)2θ(r1 + r2|τ)−1

( ε
L
∂zθ1(0|τ)

)−3∣∣∣,

logRn =−
(n2 − 4

12n

)
log
∣∣∣θ1(r1|τ)θ1(r2|τ)

( ε
L
∂zθ1(0|τ)

)−2∣∣∣

−
(n2 + 2

12n

)
log
∣∣∣θ(r1 + r2|τ)

( ε
L
∂zθ1(0|τ)

)−1∣∣∣.

(13.4.6)

The spin structure dependent term is

logN
(ν)
n,1(α) = 2

(n−1)/2∑

k=−(n−1)/2

log
∣∣∣
θν(( kn + α

2πn)(r2 − r1) + r1
2 |τ)

θν(0|τ)

∣∣∣. (13.4.7)

Although our main focus is the state with ν = 3, we notice that N
(1)
n,1(α) above is strictly infinite

because θ1(0|τ) = 0. This is related to the fermion zero mode in this sector and is not a prerogative
of the charged quantities.

In the case of intervals of equal lengths `1 = `2 = ` the charged logarithmic negativity (i.e.,
Eν(α) ≡ lim

ne→1
logN (ν)

ne (α)) simplifies as

Eν(α) = E(ν) − α2

2π2
log
∣∣∣θ1(r|τ)4θ(2r1|τ)−1

( ε
L
∂zθ1(0|τ)

)−3∣∣∣,

with E(ν) =
1

4
log
∣∣∣θ1(r|τ)2θ(2r|τ)−1

( ε
L
∂zθ1(0|τ)

)−1∣∣∣+ 2 log
∣∣∣
θν( r2 |τ)

θν(0|τ)

∣∣∣, (13.4.8)

where r = `/L.

1Differently from Eq. (41) in [479] or Eq. (80) in [163], rather then using the absolute values we explicitly change
the phase π → −π for k < 0.
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Eq. (13.4.8) represents our final field theoretical result for the charged logarithmic negativities
in a tripartite geometry with two equal intervals. We now test this prediction against exact
lattice computations obtained with the techniques reported in Appendix 13.A. However, for a
direct comparison without fitting parameters, we have to take into account the non-universal
contribution coming from the discretisation of the spatial coordinate, i.e. the explicit expression
for the cutoff ε in (13.4.8) that does depend also on α, but not on the size and temperature. We can
exploit the latter property to deduce its exact value from the knowledge of the lattice negativities
at T = 0 in the thermodynamic limit that can be determined via Fisher-Hartwig techniques. The
numerical results for the charged negativities are shown in Fig. 13.1, where four panels highlight the
dependence on `, T , α, and `/L, respectively. The agreement with the parameter-free asymptotic
results (13.4.8) is always excellent. Let us critically discuss these results. First, it is known for
α = 0, the logarithmic negativity saturates at finite temperature once `T � 1 [479], i.e., obeys
an area law; conversely the top-left panel of Fig. 13.1 shows that E(α) follows a volume law. This
scaling can be also inferred analytically from the high-temperature limit reported in the following
subsection. In the top-right panel of the same figure, we observe that E(α) has a plateau at low
temperatures, i.e when T � 1/L so that the temperature is smaller than the energy finite-size gap
(of order 1/L); consequently the system behaves as if it is at zero temperature with exponentially
small corrections in TL. For larger T a linear decrease sets up for low enough T , before an
exponential high temperature behaviour takes place (this is not shown in the picture, but see next
subsection). In the bottom-left panel, we show that the difference E(α, T )− E(α, 0) is a universal
function of β/L and `/L: we verify this behaviour by looking at various system sizes, L, and
showing that they all collapse on the same curve. The agreement also slightly improves as L
increases, as it should.

Let us conclude this subsection reporting the result for the charged probability N1(α) =

Tr[ρR1eiQ̂α] that requires to specialise the above discussion to the case n = 1. Hence, N
(ν)
1 (α)

reduces to one mode, k = 0, and Eq. (13.4.1) becomes

1

2π
εµν∂νA

0
µ(x) =

( α
2π

)
δ(x− u1)−

(α
π

)
δ(x− v1) +

( α
2π

)
δ(x− v2). (13.4.9)

As detailed in [101], we need to find the dominant term, i.e. with the lowest scaling dimension, in
the mode expansion. In particular, it turns out that for |α/π| > 2/3 an additional −2π flux has
to be inserted at v1 while an additional 2π has to be added at u1 or, equivalently, at v2. This is
the only difference with respect to no 6= 1, when the 2π flux has to be inserted only in u1. Hence,
the final expression is given by

N
(ν)
1 (α) =





|θ1(r1|τ)|−
α2

π2 |θ1(r2|τ)|−
α2

π2 |θ1(r1+r2|τ)|
α2

2π2

|εN/L∂zθ1(0|τ)|−
3α2

2π2

∣∣∣ θν(| α
2π
|(r2−r1)|τ)

θν(0|τ)

∣∣∣
2

|α| ≤ 2π
3

f(r1, r2; |α|) θ1(r1+r2|τ)||απ |(| α2π |−1)

|εN/L∂zθ1(0|τ)|−
3|α|(−|α|+2π)

2π2 −2

∣∣∣ θν(| α
2π
|(r2−r1)+r1|τ)

θν(0|τ)

∣∣∣
2

|α| > 2π
3

(13.4.10)

where f(x, y; q) = 1
2 [x2(q−1)(−2q+1)y2q(−2q+1)+x↔ y]. The cutoff related to the charged probability

is denoted as εN . Its explicit expression, for a lattice regularisation of the Dirac field, is given
in [101]. This introduction of a new symbol εN is necessary in order to avoid confusion with the
cutoff ε obtained in the replica limit as ne → 1. The analytical prediction in Eq. (13.4.10) is
compared with the exact lattice computations at different β in the bottom-right panel of Fig. 13.1.

13.4.1 Low and high temperature limits.

In this section we report the low and high temperature limits of the charged Rényi negativity.
Actually, the results that we are going to derive in the following for the tripartite geometry can
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Figure 13.1: Charged negativity E(α) in a tripartite torus with subsystem length `1 = `2 = `.
CFT results (13.4.8), lines, against numerics on the lattice, symbols. Top-left: E(α) as a function
of ` for α = 0.5. We consider different values of β = 1/T : in particular, GS stands for ground
state, i.e. T = 0 while TL refers to the thermodynamic limit T = 0, L→∞. System size is fixed
to L = 200 sites, except for the TL curve. Top-right: E(α) as a function of the temperature T
for different values of α and `, with L = 200. The subtraction of the value E(α, T = 0) cancels
the dependence on the cutoff and the resulting curves are universal. Bottom-left: Scaling collapse
of the charged negativity as a function of β/L and `/L. We fix α = 0.5. Bottom-right: The

charged probability N
(3)
1 (α) for tripartite geometry as a function of α. We set L = 100. Analytical

prediction in Eq. (13.4.10) are compared with the exact lattice computations at different β. Notice
the discontinuities at α = ±2/3π.
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be much more easily deduced by mapping the results in the complex plane (13.2.7) (i.e. both
L, β →∞) to a cylinder periodic in either space or time (obtaining the forthcoming Eqs. (13.4.15)
and (13.4.22), respectively). It is however a highly non trivial check for the correctness of our
formulas that these results are re-obtained in the proper limits.

In the low temperature limit where τ = iβ/L→ i∞, we can take advantage of the relation

lim
β→∞

θ1(z|iβ/L) = 2e−πβ/(4L) sinπz +O(e−2πβ/L). (13.4.11)

In this way we obtain for the spin-independent part

logNn,0(α) = logRn −
α2

2π2n
log

∣∣∣∣∣∣

(
L

πε

)3 sin2
(
π`1
L

)
sin2

(
π`2
L

)

sin
(
π(`1+`2)

L

)

∣∣∣∣∣∣
+O(e−2π/(LT )), (13.4.12)

while using the product representation of the theta function [368], the spin structure dependent
term (13.4.7) can be rewritten as

logN
(3)
n,1(α) =

= 2

∞∑

j=1

(−1)j+1

j

1

sinh(πjβ/L)

(
cos(j(r1 − r2)α/n)

sin(πjr2)− sin(πjr1)

sin(πj(r2 − r1)/n)
− n

)
. (13.4.13)

Thus, at the leading order, Eq. (13.4.12) is the whole story at zero temperature, since in the replica
limit the above expression contributes to the charged negativity as

E(3)
1 (α) = lim

ne→1
logN

(3)
ne,1

(α) = 4e−π/(LT )

(
cos((r1 − r2)α)

cos(π(r2 + r1)/2))

cos(π(r2 − r1)/2)
− 1

)
. (13.4.14)

Putting everything together, in the low temperature limit the logarithmic charged negativity of
two adjacent intervals for spatially antiperiodic fermions is given by

E(α,LT � 1) = E − α2

2π2n
log

∣∣∣∣∣∣

(
L

πε

)3 sin2
(
π`1
L

)
sin2

(
π`2
L

)

sin
(
π(`1+`2)

L

)

∣∣∣∣∣∣
+O(e−2π/(LT )), (13.4.15)

where E(LT � 1) = 1
4 log

∣∣∣( Lπε)
sin(

π`1
L

) sin(
π`2
L

)

sin(
π(`1+`2)

L
)

∣∣∣. We can also study the low-temperature behaviour

of Eq. (13.4.10), which reads

N1(α,LT � 1) '




− α2

2π2 log | L3

π3ε3N

sin2(
π`1
L

) sin2(
π`2
L

)

sin(
π(`1+`2)

L
)
|, |α| ≤ 2π

3

(2π−|α|)|α|
2π2 log | L3

π3ε3N

sin2(
π`1
L

) sin2(
π`2
L

)

sin(
π(`1+`2)

L
)
| − log | L2

π2ε2N
sin(π`1L ) sin(π`2L )|. |α| > 2π

3 .
(13.4.16)

To investigate the high temperature behaviour, τ = iβ/L → 0, we can use the modular
transformation rules for the theta functions:

θ1(z|τ) =− (−iτ)−1/2e−iπz
2/τθ1(z/τ | − 1/τ),

θ3(z|τ) =(−iτ)−1/2e−iπz
2/τθ3(z/τ | − 1/τ),

(13.4.17)
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and the asymptotic form of the θ1 function in the small β limit

θ1(z/τ | − 1/τ) = −2ie
−πL

4β sinh(
πzL

β
) +O(e

3πL
β

(z−3/4)
), 0 ≤ z ≤ 1/2. (13.4.18)

Therefore, the leading terms of the spin-independent part of the charged negativities can be written
as

logNn,0(α) = logRn +
(`1 − `2)2α2

2πnβL
− α2

2π2n
log
∣∣∣
( β
πε

)3 sinh2
(
π`1
β

)
sinh2

(
π`2
β

)

sinh
(
π(`1+`2)

β

)
∣∣∣+O(e−πLT ),

(13.4.19)
while for the spin structure dependent term (13.4.7) we find

logN
(3)
n,1(α) = − π

2βL

[(
n2 − 1

3n

)
(`2 − `1)2 + n`1(`2 − `1) + n`21

]
− (`2 − `1)2α2

2πLβn
+

− 2

∞∑

j=1

(−1)j

j

1

sinh(πjLβ )


cosh

(j(`1 − `2)α

βn

)sinh(π`2j/β)− sinh(π`1j/β)

sinh
(
π(`2−`1)j

nβ

) − n


 . (13.4.20)

For fixed `1,2/β and τ = iβ/L→ 0 we get

E(3)
1 (α) = −π`1`2

2βL
− (`2 − `1)2α2

2πLβ
, (13.4.21)

and therefore,

E(α,LT � 1) = E − α2

2π2n
log
∣∣∣
( β
πε

)3 sinh2
(
π`1
β

)
sinh2

(
π`2
β

)

sinh
(
π(`1+`2)

β

)
∣∣∣+O(e−πLT ), (13.4.22)

where E(LT � 1) = 1
4 log

∣∣∣( βπε)
sinh(

π`1
β

) sinh(
π`2
β

)

sinh(
π(`1+`2)

β
)

∣∣∣. This limit confirms analytically the volume law

behaviour observed in Fig. 13.1.

The high-temperature limit of the charged probability N1(α) in Eq. (13.4.10) is

N1(α,LT � 1) '




− α2

2π2 log | β3

π3ε3N

sinh2(
π`1
L

) sinh2(
π`2
L

)

sinh(
π(`1+`2)

L
)
| |α| ≤ 2π

3 ,

(2π−|α|)|α|
2π2 log | β3

π3ε3N

sinh2(
π`1
L

) sinh2(
π`2
L

)

sinh(
π(`1+`2)

L
)
| − log | β2

π2ε2N
sinh(π`1L ) sinh(π`2L )|. |α| > 2π

3

(13.4.23)

Let us conclude the subsection comparing these new results with those for the standard
(bosonic) charged negativity reported in Eq. (13.2.7). At zero temperature and in the thermody-
namic limit `i � L, Eq. (13.4.12) matches exactly the bosonic negativity (13.2.7) (at K = 1 to
describe free fermions) obtained in the same limit. As discussed deeply in Ref. [479] for the Rényi
negativity (at α = 0), this shows that the choice of charged moments of the fermionic partial
transpose we made in Eq. (13.3.1) provides a partition function evaluated on the same worldsheet
Rn as the one for the moments of the standard charged partial transpose in [116].
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Figure 13.2: Imbalance resolved negativities for a few different values of q, L = 200, `1 = `2 =
` = 30, with ne → 1 (left-panel) and n = 2 (middle-panel). The dashed black lines are the
truly asymptotic result (13.4.31) showing equipartition, while the solid lines include the first cor-
rection due to the cutoffs as in Eq. (13.4.30). The dashed coloured lines are the ratio between
the Fourier transforms without exploiting the saddle point approximation. For small q, the field
theory prediction (in which the lattice cutoffs are included) well describes the numerical data. In
the right-panel, ` = 40 is fixed, we report two system sizes and two values of q and plot N (q) as a
function of T . The coloured lines are Eq. (13.4.30) while the dashed one represents Eq. (13.4.31).
The plot confirms the equipartition of negativity. Moreover, for large T , N (q) becomes a universal
function of π`T .

13.4.2 Symmetry resolution

Again for conciseness of the various formulas, in this subsection we focus on the case `1 = `2 = `
(when also a closed-form expression for the spin-dependent part is easier to write), but more general
formulas are similarly derived. Since we are ultimately using a saddle point approximation to make
the Fourier transform (13.3.4), the charged moments (13.3.1) can be truncated at Gaussian level
in α as

N (ν)
n (α) = R(ν)

n e−bnα
2/2, (13.4.24)

where

bn =
1

π2n
log
∣∣∣θ1(r1|τ)4θ(2r1|τ)−1

( ε
L
∂zθ1(0|τ)

)−3∣∣∣. (13.4.25)

The Fourier transform reads

Z(ν)
R1,n

(q) = R(ν)
n

∫ π

−π

dα

2π
e−iqαe−α

2bn/2, (13.4.26)

where we used that the expectation value of the charge imbalance operator QA for a free Dirac
field is q̄ = 0 at any temperature. In the saddle point approximation the integration domain is
extended to the whole real line and we end up in a simple Gaussian integral, obtaining

Z(ν)
R1,n

(q) ' R
(ν)
n√

2πbn
e−

q2

2bn . (13.4.27)

Through a similar analysis, we compute

p(ν)(q) =

∫ π

−π

dα

2π
e−iqαN (ν)

1 (α), (13.4.28)
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which through the saddle-point approximation reads

p(q) ' e
− q2

2bN√
2πbN

bN =
1

π2
log
∣∣∣θ1(r1|τ)4θ(2r1|τ)−1

(εN
L
∂zθ1(0|τ)

)−3∣∣∣. (13.4.29)

Let us note that for α ∈ [−π, π], the quantity Nν
1 (α) has a global maximum for α = 0 and two

local maxima for α = ±π, see Fig. 13.1 (bottom-right). However, since Nν
1 (±π) < Nν

1 (0), we can
neglect the contributions to the integral coming from the regions close to the extrema at α = ±π.
Once again, let us stress the difference between the cutoff εN and the cutoff ε obtained in the
replica limit b = limne→1 bne , whose lattice expression are reported in [101] Putting everything
together, we obtain

R(ν)
n (q) = R(ν)

n

√
(2πbN )n

2πbn
e
− q2

2
( 1
bn
− n
bN

)
, N (ν)(q) =

1

2

(
eE

(ν)

√
bN
b
e
− q2

2
( 1
b
− 1
bN

) − 1
)
. (13.4.30)

When the O(1) terms are negligible with respect to the leading order ones in the variance, bN ' b,
hence

N (ν)(q) ' N (ν), (13.4.31)

i.e. exact equipartition of negativity in the different imbalance sectors at leading order, as shown
for the bosonic negativity in Sec. (13.2.1). A similar result holds even if `1 6= `2 in the low/high
temperature limits, it would be sufficient to modify the expression of the variances in Eqs. (13.4.25)
and (13.4.29).

It is instructive to explicitly write down the first term breaking the equipartition. For large L,
we can expand the exponential in Eq. (13.4.30) as

e
− q2

2
( 1
b
− 1
bN

) ' 1− q2 log(|ε/εN |)π2

6(logL)2
≡ 1− γ

(logL)2
q2, (13.4.32)

and √
bN
b
' 1 +

γ′

logL
, (13.4.33)

where γ and γ′ are implicitly defined, also in terms of the cutoffs ε and εN . To sum up, we get

N (ν)(q) ' N (ν)
(

1 +
γ′

logL
− γ

(logL)2
q2 + . . .

)
, (13.4.34)

where we have derived the leading q-dependent contributions and shown that the equipartition is
broken at order 1/(logL)2.

In Fig. 13.2 we test the accuracy of our predictions against exact lattice numerical calculations.
It is evident that equipartition is broken for all the values of `, T, L we considered and the effect is
more pronounced as |q| is increased. However, the main smooth part of corrections to the scaling
is captured by Eq. (13.4.30), see the full line in the plots, and does not come as a surprise. Also
the presence of further subleading oscillating (in q) corrections have been observed for the resolved
entropies [90] and were expected. In our case, such corrections are enhanced by the presence of
the maxima at α = ±π in N1(α), see Fig. 13.2, that provide large corrections to the scaling in
p(q). Indeed, taking the Fourier transforms without making the saddle-point approximation, the
agreement between numerics and field theory is perfect. As `� 1/T , all these corrections become
smaller and imbalance resolved negativity flattens in q, mainly as a consequence of the lowering
of the maxima at α = ±π in N1(α), see Fig. 13.2.
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13.5 Closing remarks

We studied the entanglement negativity in systems with a conserved local charge and we found
it to be decomposable into symmetry sectors. The fermionic partial transpose operation does not
spoil the result found for the standard partial transposition operation [116]: the resulting operator
that commutes with the partial transpose density matrix is not the total charge, but rather an
imbalance operator, which is essentially the difference operator between the charge in the two
regions. We introduced a normalised version of the charge imbalance resolved negativity (both
fermionic and bosonic) which has the great advantage to be an entanglement proxy also for the
symmetry sectors, e.g. it vanishes if the standard partial transpose has only positive eigenvalues in
the sector. The price to pay is that the normalised symmetry resolved negativity diverges (for some
sectors) in the limit of pure states, as a consequence of the fact that the imbalance is no longer
the best quantity to resolve the entanglement. Another interesting property of this normalisation
for the sector partial transpose is the negativity equipartition, i.e. the entanglement is the same in
all imbalance sectors, in full analogy to entropy equipartition for pure states [85].

There are different aspects left open for further study. One may use the corner transfer matrix
to investigate the symmetry decomposition of negativity in gapped one-dimensional models by
combining former studies of the total negativity [357] with those for symmetry resolution [98]
(and Chapter 7). Eventually, the generalisation of one-dimensional results to higher dimensions
can be done using the dimensional reduction approach, as already done for the total negativity
in [479]. Decoupling the initial d-dimensional problem into one-dimensional ones in a mixed space-
momentum representation [100] would allow to generalise the above results to higher dimensional
Fermi surfaces.

13.A Numerical methods

In this appendix, we report how to numerically calculate the charged negativity associated with
the partial TR (12.2.18) for free fermions on a lattice described by the hopping Hamiltonian on a
chain

HFF = −
L−2∑

j=0

f †j+1fj + f †0fL−1 + H.c., (13.A.1)

with anti-periodic condition (corresponding to the ν = 3 sector discussed in the main text). The
technique is a straightforward generalisation to α 6= 0 of the one presented in [479]. This method
is used throughout the main text to obtain all lattice numerical results.

Even though we use the computational basis of the Majorana modes, for particle-number
conserving systems such as the lattice model in Eq. (13.A.1), the covariance matrix is simplified

into the form σ2⊗Γ, with Γ = I−2C, Cij = Tr(ρf †i fj) is the correlation matrix and σ2 is the second
Pauli matrix (see Ref. [303] for a more detailed discussion). For a thermal state, the single-particle
correlator reads

Cij =
∑

k

u∗k(i)uk(j)
eβωk + 1

, (13.A.2)

where ωk and uk(i) are the single-particle eigenvalues and eigenvectors of the Hamiltonian (13.A.1).
For a bipartite Hilbert space HA ⊗HB where A = A1 ∪ A2, the covariance matrix takes a block
form

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
, (13.A.3)
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where Γ11 and Γ22 are the reduced covariance matrices of the two subsystems A1 and A2, respec-
tively, while Γ12 and Γ†21 contain the cross correlations between them. By simple Gaussian states’
manipulations, the correlation matrices associated with ρR1

A , (ρR1
A )† can be written as ( [479] and

Eq. (12.2.14))

Γ± =

(
−Γ11 ±iΓ12

±iΓ21 Γ22

)
. (13.A.4)

The objects we are interested in are Nne = Tr[(ρR1(ρR1)†)ne/2eiQ̂α] and N1(α) = Tr[ρR1eiQ̂α].
The imbalance of the relativistic Dirac field corresponds to the discretised operator Q̂ = N̂A1∪A2−
1/2(`1+`2). Notice that in this basis, Q̂ is not the difference, but the sum of the number operators.
Furthermore, it presents a shift compared to the number operator of the non-relativistic fermions.
The single particle correlation matrix associated to the normalised composite density operator
ρx = ρR1(ρR1)†/Zx is [174,479]

Γx = (1 + Γ+Γ−)−1(Γ+ + Γ−), (13.A.5)

where the normalisation factor is Zx = Tr(Γx) = Tr(ρ2
A). In terms of eigenvalues of correlation

matrices, we can write [479]

logNn(α) =− iα`1 + `2
2

+
N∑

j=1

log

[(
1− νx

j

2

)n/2
+ eiα

(
1 + νx

j

2

)n/2]
+

+
n

2

N∑

j=1

log
[
ζ2
j + (1− ζj)2

]
,

(13.A.6)

where νx
j and ζj are eigenvalues of the matrices Γx (13.A.5) and C (13.A.2), respectively. In terms

of the eigenvalues ν’s of Γ+ (13.A.4), the charged normalisation N1(α) is

logN1(α) = −iα`1 + `2
2

+
N∑

j=1

log

[(
1− νj

2

)
+ eiα

(
1 + νj

2

)]
. (13.A.7)

Taking the Fourier transform of the numerical data for Nne(α) and N1(α), we finally obtain the
imbalance resolved negativities.





Chapter 14

Quench dynamics of Rényi
negativities and the quasiparticle
picture

The study of the moments of the partially transposed density matrix provides a new and effective
way of detecting bipartite entanglement in a many-body mixed state. In this Chapter, we study
the time evolution after a quantum quench of the moments of the partial transpose, and several
related quantities, such as the Rényi negativities. By combining CFT results with integrability,
we show that, in the space-time scaling limit of long times and large subsystems, a quasiparticle
description allows for a complete understanding of the Rényi negativities. We test our analytical
predictions against exact numerical results for free-fermion and free-boson lattice models, even
though our framework applies to generic interacting integrable systems. This Chapter is based on
Ref. [586].

14.1 Introduction

As already remarked in the introduction of this thesis, during the last decades, the study of
entanglement became a powerful tool to explore the out of equilibrium dynamics of quantum
systems. For closed bipartite systems, the von Neumann and the Rényi entropies of reduced
density matrices can be used as bona fide measures of the entanglement shared between the two
complementary parts. However, for mixed states, the entanglement can be studied via the partial
transpose of the RDM.

Unfortunately, computing the negativity or measuring it experimentally in quantum many-
body systems is a daunting task. This fact sparked a lot of activity aiming at finding alternative
entanglement witnesses for mixed states always starting from the partially transposed RDM. To
this aim, several protocols to measure the moments Tr(ρT1

A )n of the partial transpose have been
proposed [88,456,587,588] culminating with the actual experimental measure in an ion-trap setting
using shadow tomography [88, 456]. However, these moments are not direct indicators of the sign
of the eigenvalues of ρT1

A and hence of entanglement. Nevertheless, some linear combinations
of them are sufficient conditions (known as pn-PPT conditions, see below) for the presence of
negative eigenvalues in the spectrum [88, 456] and so are witnesses of entanglement in mixed
states. However, in contrast with the logarithmic negativity, for which a quasiparticle picture was
derived in Ref. [589], results for the dynamics of the moments of the partial transpose are available
only for CFTs [581,590,591].

219
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Here, by combining CFT and integrability, we derive the quasiparticle picture describing the
dynamics of the moments of the partial transpose, and several related quantities, after a quantum
quench in integrable systems. Specifically, we consider the Rényi negativities En = log(Tr(ρT1

A )n).
Note that En are not proper entanglement measures, although the limit lim

ne→1
Ene , with ne an

even integer, defines the logarithmic negativity. In the following, we denote E(b)
n the standard

negativity defined according to Eq. (1.1.12) (that is an entanglement monotone for both bosonic

and fermionic systems) and E(f)
n the fermionic one (that exist only for fermionic models), in

according to Eq. (12.2.20).

We also consider the ratios Rn as

Rn =
Tr(ρT1

A )n

TrρnA
. (14.1.1)

The ratios Rn are studied in CFT [151,152,250,251,592], due to their universality. Recently, they
were studied at finite-temperature critical points [593], and to probe thermalization [594,595] (note
that in Chapter 13 we refer to the ratios Rn as Rényi negativities, unlike here). Here we derive
the quasiparticle picture for both En and Rn, focusing on the situation in which the subsystem A
is made of two equal-length intervals at distance d. The formulas that we derive hold in the space-
time scaling limit of t, `, d→∞, with the ratios t/`, d/` fixed. Furthermore, these results allow us
to obtain predictions for all the pn-PPT conditions introduced in Refs. [88,456]. Interestingly, we
argue that the ratios Rn in the space time scaling limit become proportional to the Rényi mutual
information. Finally, we provide numerical benchmarks of our results for both free-fermion and
free-boson models, although they are expected to hold for generic integrable systems.

After the introuction of the pn-PPT conditions in Sec. 14.2, in Sec. 14.3 we review the CFT
predictions for the out-of-equilibrium behavior of the Rényi negativities. Specifically, in Sec. 14.3.1
we derive the out-of-equilibrium behavior of the Rényi negativities and the ratios Rn in CFTs. In
Sec. 14.4 we introduce the quasiparticle picture (in section 14.4.1) for the spreading of entangle-
ment and negativity, generalizing it to the moments of the partial transpose in section 14.4.2. In
section 14.5 we present numerical benchmarks for free bosonic (in section 14.5.1) and fermionic
theories (in Sec. 14.5.2). In section 14.5.3 we discuss the quasiparticle predictions for the pn-PPT
conditions. Finally, in Sec. 14.6 we draw our conclusions and we discuss some possible extensions
of this Chapter.

14.2 Entanglement detection through partial transpose moments

Despite several sufficient conditions for entanglement in mixed states have been developed in
the literature, many of them cannot be straightforwardly implemented experimentally since they
require the knowledge of the full density matrix [13]. This is for instance the case of the PPT
condition. To overcome this difficulty, it was shown in [456] that the first few moments of the
partial transpose can be used to define some simple yet powerful tests for bipartite entanglement.
Given ρT1

A , we denote its k-th order moment as

pk ≡ Tr(ρT1
A )k, (14.2.1)

with p1 = Tr(ρT1
A ) = 1 and p2 equal to the purity p2 = Trρ2

A. The p3-PPT condition states that
any positive semi-definite partial transpose satisfies [456]

p3p1 > p2
2, (14.2.2)
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or, in other words, if p3 < p2
2, then ρA violates the PPT condition and must therefore be entangled.

The condition in Eq. (14.2.2) belongs to a more general set of conditions, dubbed Stieltjesn,
involving inequalities among the moments pk of order up to n. They were introduced in [88]
together with a set of experimentally accessible conditions for detecting entanglement in mixed
states. The condition Stieltjes3 is equivalent to p3−PPT, and so we rename here the Stieltjesn-
conditions as pn-PPT. As examples, p5-PPT and p7-PTT read, respectively [88]

D5 ≡ det



p1 p2 p3

p2 p3 p4

p3 p4 p5


 ≥ 0, D7 ≡ det




p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

p4 p5 p6 p7


 ≥ 0, (14.2.3)

from which one deduces easily the rationale for higher order condition.

14.3 Quench dynamics of Rényi negativities in CFT

In this section we review the CFT calculation of the temporal evolution of the Rényi negativities
between two intervals after a global quench in CFT as derived in Ref. [590]. We consider A =
A1 ∪A2, where the intervals A1 and A2 can be either adjacent or disjoint (see Fig. 1.1).

14.3.1 Out-of-equilibrium dynamics of the Rényi negativities

Before discussing the out-of-equilibrium dynamics after a quantum quench of the Rényi negativ-
ities in CFTs, it is useful to recall the imaginary time formalism for the description of quantum
quenches [44–46]. The family of initial states that are easy to work with in CFT have the form
e−τ0H |ψ0〉, with |ψ0〉 being a boundary state. The expectation value of a local operator O is then

〈O(t, x)〉 = Z−1 〈ψ0| eiHt−τ0HO(x)e−iHt−τ0H |ψ0〉 , (14.3.1)

where the damping factors e−τ0H have been introduced to make the path integral absolutely
convergent (see below), and Z = 〈ψ0|e−2τ0H |ψ0〉 is the normalisation factor. The correlator in
Eq. (14.3.1) may be represented by a path integral in imaginary time τ as [45]

〈O(t, x)〉 = Z−1

∫
[dϕ(x, τ)]O(x, τ = τ0 + it)e

−
∫ τ2
τ1

Ldτ 〈ψ0|φ(x, τ2)〉〈φ(x, τ1)|ψ0〉 , (14.3.2)

where L is the (euclidean) Lagrangian corresponding to the dynamics induced by H, τ1 can be
identified with 0 and τ2 with 2τ0. As shown in [44, 46], the computation of the path integral in
Eq. (14.3.2) can be done considering τ real and only at the end analytically continuing it to the
complex value τ = τ0 + it.

In this way, the problem of the dynamics is mapped to the thermodynamics of a field theory
in a strip geometry of width 2τ0 and boundary condition |ψ0〉 at the two edges of the strip in the
imaginary time direction. At this point we have all the ingredients to derive the dynamics of the
Rényi negativities after a global quench in CFT. To calculate the time-dependent Tr(ρT1

A )n one
has to compute the correlator

Tr(ρT1
A )n = 〈T̃ n(ω1)Tn(ω2)Tn(ω3)T̃ n(ω4)〉 , (14.3.3)

where the expectation value has to be calculated in the field theory confined in a strip, and where
we denoted by ωi = ui + iτ the complex coordinate on the strip (ui ∈ R and 0 < τ < 2τ0). It
is convenient to employ the conformal transformation z = ieπω/(2τ0), which maps the strip onto
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Figure 14.1: Time dependence of the Rényi negativities for quasiparticles with linear dispersion.
We consider two disjoint subsystems with equal length ` at distance d = 0 (a), d < ` (b), d ≥ `
(c). The piece-wise linear behavior is described by Eq. (14.3.4).

the half plane, where the four point correlation functions of the twist fields can be computed by
knowing that they behave as primary fields with scaling dimenions ∆n (cf. (1.4.15)). After the
analytic continuation to real time, in the space-time scaling limit t, |ui−uj | � τ0, from Eq. (14.3.3),
the Rényi negativities En (cf. Eq. (1.4.14)) read [590]

En = − π
τ0

[
2∆nt+ ∆n

(
`1 + `2

2
−max(t, `1/2)−max(t, `2/2)

)
+ (∆(2)

n /2−∆n)

× (max(t, (`1 + `2 + d)/2) + max(t, d/2))−max(t, (`1 + d)/2)−max(t, (`2 + d)/2)
]
, (14.3.4)

where ∆
(2)
n is in Eq. (1.4.15), and we defined `1 = |u1 − u2|, `2 = |u3 − u4|, and d = |u3 − u2|

(see Fig. 1.1). In deriving Eq. (14.3.4) we neglected an additive time-independent constant that
originates from the correlation function of the twist fields, and that depends on the details of
the CFT under consideration. This is justified because Eq. (14.3.4) holds in the scaling limit
`1, `2, d, t→∞ with their ratios fixed, and it describes only the leading behavior of the Rényi neg-
ativities En in that limit, otherwise the computation of the four-point correlation function (14.3.3)

would be non-trivial. Crucially, Eq. (14.3.4) depends on both ∆n and ∆
(2)
n . Notice that even

for finite d, En exhibits a linear behavior at short times, due to the first term in Eq. (14.3.4).
This signals that En are not good measures of the entanglement or the correlation between A1

and A2. The reason is that for t � d no correlation can be shared between A1 and A2 because
the maximum velocity in the system is finite (see Fig. 14.1). We stress that Eq. (14.3.4) is not
directly applicable to microscopic integrable models: Eq. (14.3.4) is only valid for CFT, in which
there is a perfect linear dispersion, i.e., only one velocity. This is not the case in integrable lattice
models, where the excitations have a nonlinear dispersion. In the next sections, we will show how
to adapt Eq. (14.3.4) to describe the dynamics of the Rényi negativities after a quantum quench
in microscopic integrable systems.

Finally, the dynamics of the ratio Rn in Eq. (14.1.1) can be derived combining Eq. (14.3.4)
with the results for TrρnA in [46]. The final result reads [590]

logRn =
π∆

(2)
n

τ0

× (−max(t, (`1 + `2 + d)/2)−max(t, d/2)) + max(t, (`1 + d)/2) + max(t, (`2 + d)/2). (14.3.5)

In contrast with Eq. (14.3.4), Eq. (14.3.5) does not depend explicitly on ∆n, but only on ∆
(2)
n .

Before concluding, it is useful to discuss the qualitative behavior of E(f/b)
n and − log(R

(f/b)
n ).

The typical behavior of the Rényi negativities, as obtained from Eq. (14.3.4), is reported in Fig. 14.1
for three typical values of the distance d between the two intervals of equal length `. En is
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Figure 14.2: Illustration of the dynamics of −logR
(f/b)
n for two disjoint subsystems with equal

length ` at distance d. On the left we report the shape of −logR
(f/b)
n with a single velocity of

quasiparticles. On the right, there is a graphical representation for the quasi-particle spreading of
entanglement (for the case with all quasi-particles having the same velocity v = 1 as in a CFT).
Horizontal slices of the dark orange region count the quasiparticles shared between the two disjoint
sets at a given time.

always a piecewise linear function and it is negative at any time. For d = 0 one has a two-slope
linear behavior followed by a saturation to a volume-law scaling at long times. At intermediate
distance 0 < d < ` the behavior is more complicated with a change in the sign of the slope. For

d > `, E(f/b)
n exhibits an initial linear decrease followed by a saturation, and a dip-like feature at

d/2 ≤ t ≤ d/2 + `.

The dynamics of −log(R
(f/b)
n ) (cf. Eq. (14.3.5)) is shown in Fig. 14.2 for two equal-length

intervals. For t < d/2, it vanishes; for d/2 ≤ t ≤ (d + `)/2 it linearly increases, then it linearly
decreases with the same (in absolute value) slope until t ≤ (d + 2`)/2, when it vanishes and
stays zero for all larger times. Therefore, at a given time t, it is proportional to the width of
the intersection between the two shaded areas starting from A1 ∪ A2 and showed in Fig. 14.2
(b). In other words, it is proportional to the total number of entangled pairs shared between A1

and A2. This property suggests that in the scaling limit, Rn becomes an indicator of the mutual
entanglement between the intervals, although in general it is not an entanglement monotone.

Let us remark that Eq. (14.3.5) is identical to the evolution of the Rényi mutual information
in Eq. (1.1.10) apart from the prefactor. We will come back to the connection between these two
quantities in the following sections.

14.4 Quasiparticle picture for the Rényi negativities in integrable
systems

The goal of this section is to adapt Eq. (14.3.4) and Eq. (14.3.5) to describe the dynamics of the
Rényi negativities and the ratios Rn after a quantum quench in integrable systems. The main
observation is that Eq. (14.3.4) and Eq. (14.3.5) admit an interpretation in terms of a simple
hydrodynamic picture, a.k.a. the quasiparticle picture.

14.4.1 Quasiparticle picture

The quasiparticle picture for the entanglement dynamics after a global quantum quench has been
proposed in Ref. [46]. The underlying idea is that the pre-quench initial state has very high energy
with respect to the ground state of the Hamiltonian governing the dynamics; hence it can be seen
as a source of quasiparticle excitations at t = 0. We assume that quasiparticles are uniformly
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created in uncorrelated pairs with quasimomenta (k,−k) and traveling with opposite velocities
v(k) = −v(−k) (for free models the uncorrelated pair assumption can be released, see [596–599]; for
interacting integrable models it has been argued that the pair structure is what makes the quench
integrable [600]). Quasiparticles produced at the same point in space are entangled, whereas
quasiparticles created far apart are incoherent. The quasiparticles travel through the system as
free-like excitations. At a generic time t, the von Neumann entropy and the Rényi entropies
between a subsystem A and the rest is proportional to the total number of quasiparticles that
were created at the same point at t = 0 and are shared between A and its complement at time t
(see Fig. 14.1 (a)). Let us focus on the quasiparticle picture for the Rényi entropies in free models
(the quasiparticle picture has been derived rigorously for free-fermion models in Ref. [339]). In
formulas it reads as

S
(n)
A (t) =

∫
dk

2π
s

(n)
GGE(k) min(2|v(k)|t, `). (14.4.1)

Here ` is the length of subsystem A, and v(k) is the group velocity of the fermionic excitations.

Importantly, in Eq. (14.4.1) s
(n)
GGE(k) is the density (in momentum space) of the Rényi entropies

of the GGE thermodynamic state [601–603] that describes the steady state after the quench.
Eq. (14.4.1) predicts a linear growth for t ≤ `/(2vmax), with vmax ≡ maxk(v(k)) the maximum
velocity in the system, and then saturates to an extensive value at t→∞.

For n = 1, i.e., for the von Neumann entropy the validity of Eq. (14.4.1) for a generic inter-
acting integrable model has been conjectured in Ref. [47, 48]. Eq. (14.4.1) remains essentially the

same. Precisely, the contribution of the quasiparticles to the von Neumann entropy s
(1)
GGE is the

density of GGE thermodynamic entropy. The group velocities of the quasiparticles are obtained
as particle-hole excitations over the GGE thermodynamic macrostate [48, 604]. This conjecture
has been explicitly worked out in several cases [47, 48, 605, 606] and tested against numerics in
several interacting integrable models. [47,48,607,608] Eq. (14.4.1) has been generalised to describe
the steady-state value of the Rényi entropies [347–349]. On the other hand, the full-time dynam-
ics of the Rényi entropies is still an open problem, with the exception of one model [609, 610].
Eq. (14.4.1) can be straightforwardly generalised to describe the dynamics of the mutual infor-
mation between two intervals. This allows to reveal how quantum information is scrambled in
integrable systems [611,612]. Remarkably, the quasiparticle picture for the logarithmic negativity
has been derived in Ref. [246]. By combining the quasiparticle picture with the framework of the
Generalized Hydrodynamics [613, 614] it is possible to describe the entanglement dynamics after
quenches from inhomogeneous initial states [615–620]. The quasiparticle picture for the entangle-
ment dynamics has been also tested in the rule 54 chain, which is believed to be a representative
“toy model” for generic interacting integrable systems [609, 610]. Very recently, the quasiparti-
cle picture has been generalised to take into account dissipative effects, at least in free-fermion
and free-boson models [621–624], to describe the evolution of the symmetry-resolved entanglement
entropies [132,133], and for the characterization of the prethermalization dynamics [625].

To proceed it is useful to compare Eq. (14.4.1) with the CFT prediction for the dynamics of
the Rényi entropies [46]

S
(n)
A = − 1

1− n
π∆n

2τ0
min(2t, `). (14.4.2)

A crucial observation is that Eq. (14.4.1) can be formally obtained from the CFT result in
Eq. (16.4.11) by replacing t→ |v(k)|t, integrating over the quasiparticles with quasimomentum k,

and replacing −π∆n/(2τ0)→ s
(n)
GGE .
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14.4.2 The quasiparticle description for Rényi negativities

The quasiparticle picture described above can be adapted to describe the Rényi negativities E(f/b)
n

and the ratios log(R
(f/b)
n ), in integrable systems after a global quench.

Indeed, similarly to the Rényi entropies, from Eqs. (14.3.4) and (14.3.5), by using Eq. (1.4.15),

after replacing −π∆n/(2τ0) → εn, −π∆
(2)
n /(2τ0) → ε

(2)
n , and by integrating over k, one obtains

that

E(f/b)
n =

∫
dk

2π

[
4εn|v|t+ 2εn

(
`1 + `2

2
−max(|v|t, `1/2)−max(|v|t, `2/2)

)

− (2εn − ε(2)
n )
(
max(|v|t, (`1 + `2 + d)/2) + max(|v|t, d/2)

−max(|v|t, (`1 + d)/2)−max(|v|t, (d+ `2)/2)
)]
, (14.4.3)

while the ratios R
(f/b)
n read

log(R(f/b)
n ) =

∫
dk

2π
ε(2)
n

(
max(|v|t, d/2)−max(|v|t, (`1 + d)/2)

−max(|v|t, (`2 + d)/2) + max(|v|t, (`1 + `2 + d)/2)
)
. (14.4.4)

We defined

ε(2)
n (k) ≡

{
εn(k) oddn

2εn/2(k) evenn
, εn(k) = s

(n)
GGE(k). (14.4.5)

Clearly, Eq. (14.4.5) mirrors the structure of Eq. (1.4.15).
It is interesting to remark that by comparing Eq. (14.4.4) with the quasiparticle picture for

the Rényi mutual informations [48] I
(n)
A1:A2

, one obtains

log(R(f/b)
n ) =





(1− n/2)I
(n/2)
A1:A2

n even

(1− n)
I

(n)
A1:A2

2 , n odd.

(14.4.6)

Moreover, by taking the replica limit ne → 1 in E(f/b)
ne , we recover the quasiparticle prediction for

the negativity [589]

E(f/b) =

∫
dk

2π
ε1/2(k)

(
max(2|v|t, d)−max(2|v|t, `1 + d)

−max(2|v|t, `2 + d) + max(2|v|t, `1 + `2 + d)
)
. (14.4.7)

It was pointed out in [589] that Eq. (14.4.7) is the same as for the Rényi mutual information (of
any index) by replacing ε1/2 with the density of Rényi entropy. We stress that the same prediction
is valid for both standard (bosonic) partial transpose and for the fermionic one.

Finally, it is useful to observe that Eq. (14.4.6) can be derived by using that if A1 ∪ A2 is in
a pure state then Tr((ρT1

A )n) can be expressed in terms of Tr(ρnA1
). More precisely, one can prove

that [152]

Tr(ρT1
A )n =

{
TrρnA1

n odd

(Trρ
n/2
A1

)2 n even
(14.4.8)

where ρA1 = TrA2ρA. Now, one can recover Eq. (14.4.6) by using Eq. (14.4.8), and the definition

in Eq. (1.1.10), and that if A1 ∪A2 is in a pure state, S
(n)
A1

= S
(n)
A2

. The fact that the result of the
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quasiparticle picture (14.3.4) is not sensitive to A1 ∪A2 not being in a pure state reflects that the
initial state has low entanglement and that during the dynamics the entanglement is transported
ballistically.

Finally, for Eq. (14.4.3) and Eq. (14.4.4) to be predictive one has to fix the function sGGE(k)
(cf. Eq. (14.4.5)). Here we focus on out-of-equilibrium protocols for free-fermion and free-boson
models. In this situation, sGGE(k) is determined from the population of the modes ρ(k) of the
postquench Hamiltonian in the stationary state (see Refs. [49, 626] for a pedagogical review).
Actually, since ρ(k) are conserved they can be equivalently computed in the initial state, without
solving the dynamics. Specifically, one has that

s
(n,f/b)
GGE (k) = ± log(±ρ(k)n + (1∓ ρ(k))n), (14.4.9)

where the upper and lower signs are for fermionic and bosonic systems, respectively (and not
to fermionic and bosonic negativity). We remark that, although the quasiparticle prediction in
Eqs. (14.4.3) and (14.4.4) is expected to be valid also for interacting integrable models, the full
quasiparticle picture for the Rényi entropies is not known.

14.5 Time evolution of Rényi negativities in free models: Numer-
ical results

In this section we provide numerical benchmarks for the results of Sec. 14.4.2. As an example
of free-bosonic system, we consider the harmonic chain. Our results for free-fermion systems are
tested against exact numerical data for a fermionic chain.

14.5.1 Mass quench in the harmonic chain

Let us start discussing the dynamics of the Rényi negativities after a mass quench in the harmonic
chain. The harmonic chain is described by the Hamiltonian

H =
1

2

L−1∑

n=0

p2
n +m2q2

n + (qn+1 − qn)2, q0 = qL, p0 = pL, (14.5.1)

where L is the number of lattice sites, qn and pn are canonically conjugated variables, with
[qn, pm] = iδnm, and m is a mass parameter. The harmonic chain can be diagonalised in Fourier
space and is equivalent to a system of free bosons. The dispersion relation of the bosons is given
by [49]

e(k) = [m2 + 2(1− cos(k))]1/2. (14.5.2)

The group velocities are obtained from the single particle energies e(k) as

v(k) =
de(k)

dk
= sin(k)[m2 + 2(1− cos(k))]−1/2, (14.5.3)

and the maximum one is vmax = maxkv(k). In the mass quench protocol, the system is prepared
in the ground state |ψ0〉 of the Hamiltonian (14.5.1) with m = m0. At t = 0 the mass parameter
is quenched from m0 to a different value m and the system unitarily evolves under the new
Hamiltonian H(m), namely |ψ(t)〉 = e−iHt |ψ0〉. The density ρ(k) (cf. Eq. (14.4.9)) of the bosons
is written in terms of the pre- and post-quench dispersions e0(k) and e(k) as [45,46,49]

ρ(k) =
1

4

(
e(k)

e0(k)
+
e0(k)

e(k)

)
− 1

2
. (14.5.4)
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For free bosonic systems the Rényi negativities can be constructed from the two-point correlation
functions 〈qiqj〉, 〈pipj〉 and 〈qipj〉. Indeed, given a subsystem A containing ˜̀ sites, which could
be either all in one interval or in disjoint intervals, the reduced density matrix for A can be
studied [171,590] by constructing the ˜̀× ˜̀matrices QAij = 〈qiqj〉 , PAij = 〈pipj〉 and RAij = Re 〈qipj〉,
where the superscript A means that the indices i, j are restricted to subsystem A. Crucially,
a similar strategy can be used to construct the Rényi negativities (for the details we refer to
Ref. [590]). The main idea is that the net effect of the partial transposition with respect to a
subinterval A1 is the inversion of the signs of the momenta corresponding to the sites belonging
to A1.

For the following, we restrict ourselves to the physical situation with A made of two disjoint
parts, i.e., A = A1 ∪ A2, with A1, A2 two equal-length intervals of length `. We denote as d the

distance between A1 and A2 (see Fig. 1.1). We only discuss the ratios − log(R
(b)
n ) (cf. Eq. (14.1.1)).

The results are shown in Fig. 14.3. Panels (a) and (b) show the quantities − log(R
(b)
n )/` for

adjacent intervals, i.e., d = 0. The data are for several values of the intervals’ length ` up to

` ≤ 80. Since we are interested in the scaling limit, we plot −log(R
(b)
n )/` versus the rescaled time

t/`. For two adjacent intervals, the ratio exhibits a linear growth for t/` ∼ 1.25, which reflects
the maximum velocity being vmax ∼ 0.4. For larger times we observe a slow decrease toward zero
for t/`→∞. This slow decay is due to the slower quasiparticles with v < vmax. The solid line is
the theoretical prediction in Eq. (14.4.4). At finite ` and t the data exhibit some small corrections
from Eq. (14.4.4), which is recovered in the scaling limit t, `→∞ with their ratio fixed.

It is also useful to investigate directly the validity of Eq. (14.4.6), which establishes a relation-

ship between R
(f/b)
n and the mutual information. To this aim, we introduce the difference d

(f/b)
n

as

d(f/b)
n =





log(R
(f/b)
n )− (1− n/2)I

(n/2)
A1:A2

n even

log(R
(f/b)
n )− (1− n)

I
(n)
A1:A2

2 , n odd
(14.5.5)

As it is clear from the insets in Fig. 14.3, d
(b)
n is very small in the region of linear growth, i.e.,

for 2vmaxt/` ≤ 1 (an obvious fact, since in the scaling limit it is just 0 − 0). At fixed `, in the

non-trivial region, i.e. for larger values of the scaling variable 2vmaxt/`, d
(b)
n is larger. However,

at fixed t/`, the deviations d
(b)
n decrease with increasing `, and in the scaling limit ` → ∞ one

recovers Eq. (14.4.6). Precisely, the data suggest a behavior d
(b)
n ∝ 1/`.

14.5.2 Quench in a free fermion chain

We now discuss numerical results for free-fermion systems described by the Hamiltonian

H =

L∑

j=1

(
1

2
[c†jc
†
j+1 + cj+1cj + c†jcj+1 + c†j+1cj ]− hc

†
jcj

)
, (14.5.6)

where {ci, c†j} = δij are anti-commuting fermionic operators, h is a coupling parameter, e.g. a
magnetic field, and we neglect boundary terms (we are interested in the thermodynamic limit
L → ∞). A Jordan-Wigner transformation maps the Hamiltonian to the well-known transverse
field Ising chain. However, the spin RDM is not simply mapped to the fermion RDM for two
disjoint intervals [174, 627]. Instead, for the case of adjacent intervals they are mapped into each
other and so the following results for fermions apply also to the spin variables.

In terms of the momentum space Bogoliubov fermions the Hamiltonian is diagonal and the
single-particle energies are

e(k) = [h2 − 2h cos(k) + 1]1/2. (14.5.7)
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Figure 14.3: Logarithms of the moments of the (bosonic) partial transpose after the mass quench
from m0 = 1 to m = 2 in the harmonic chain. The quantity −log(Rbn)/` is plotted versus
rescaled time t/`, with ` the intervals’ length. The analytical predictions represented by continuous
lines correspond to Eq. (14.4.4). The insets represent Eq. (14.5.5) and they prove the validity of
Eq. (14.4.6), i.e. the connection between the ratio Rn and the Rényi mutual information.

We consider the non-equilibrium unitary dynamics that follows from a quench of the field h at
t = 0 from h0 to h 6= h0. In order to parametrise the quench it is useful to introduce the angle
∆(k) as [45]

cos(∆(k)) =
1 + hh0 − (h+ h0) cos(k)

e(k)e0(k)
. (14.5.8)

As for free-bosons, the central object to obtain the quasiparticle prediction is the density ρ(k) of
the Bogoliubov fermions. This is given by [628,629]

ρ(k) =
1

2
(1− cos(∆(k))). (14.5.9)

The reduced density matrix can be completely characterised [171] by the two-point correlation
functions restricted to the subsystem A. From the covariance matrix associated to ρA, one can
build the covariance matrix corresponding to the partial time reversal ρR1

A (see Ref. [163–165,478,

479, 630]). The fermionic Rényi negativities E(f)
n introduced in Eq. (12.2.20) can be efficiently

computed in terms of the eigenvalues of the covariance matrix.

We discuss the numerical results for R
(f)
n for two adjacent intervals in Fig. 14.4, for the quench

with h0 = 10 and h = 2. The data for −log(R
(f)
n ) exhibit a linear behavior up to t/` ∼ 0.5,

reflecting that vmax ∼ 1. Similar to the bosonic case, finite-size corrections are present, although
the analytical prediction in Eq. (14.3.5) is recovered in the scaling limit. In the inset, we also
investigate these scaling corrections. The symbols are the data at fixed t/` = 0.5 while the x-axis
shows 1/`. The crosses are the theoretical results in the scaling limit. The solid lines are fits to
the behavior 1/`, and are clearly consistent with the data.

14.5.3 Quasiparticle predition for the pn-PPT conditions

Using the quasiparticle predictions obtained in the previous sections for the Rényi negativity, one
can write down the quasiparticle formulas for the pn-PPT conditions introduced in Sec. 14.2,
see Eq. (14.2.3). For instance, the p3-PPT condition quantifies the violation of Eq. (14.2.2).
Specifically, the condition D3 ≡ p3 − p2

2 < 0 signals the presence of quantum entanglement. As
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Figure 14.4: Logarithms of the moments of the (fermionic) partial transpose after a quench in

the fermionic chain (with h0 = 10 and h = 2) for two adjacent intervals. Both −log(R
(f)
n )/` and

E(f)
n /` are plotted versus rescaled time t/`, with ` the intervals’ length. The analytical predictions

represented by continuous lines correspond to Eq. (14.4.3) (top panels) and (14.4.4) (bottom
panels). The insets investigate the finite-size scaling corrections: the symbols are for the fermionic
negativity at fixed t/` = 0.5; the crosses are the theoretical results in the thermodynamic limit;
the solid lines are linear fits.

explained in Sec. 14.2, other conditions Dn ≥ 0 can be obtained by considering higher moments
of the partial transpose.

We numerically investigate the pn-PPT conditions in Fig. 14.5 for n = 3, 5, 7, and for quenches
in both the fermionic and harmonic chains. We focus on the situation with two adjacent intervals
and we are interested in understanding how the pn-PPT conditions are violated as a function of
time. The results in Fig. 14.5 are obtained by using the quasiparticle picture prediction. As it is
clear from the figure, all pn-PPT conditions are violated at short times in both models. At infinite
times all the pn-PPT conditions give zero. These results are consistent with the behavior of the
logarithmic negativity [589].

Also the fine structure of these pn-PPT conditions is very interesting. In the short-time region
with a lot of entanglement (compare with the previous figures for Rn) all the conditions are
violated. As the time increase and the entanglement becomes much less, the first condition to be
satisfied is p3 (i.e. D3 > 0) and only after the other one (the panel on the left is particularly clear
in this respect) This implies that higher and higher pn-PPT conditions are necessary to detect
the very little amount of entanglement present at large time. This fact is not surprising, but it is
remarkable that it is captured so neatly by the quasiparticle picture.

14.6 Closing remarks

We derived the quasiparticle picture for the dynamics of the moments of the partially transposed
reduced density matrix after a quantum quench in integrable systems, and several related quantities
such as the Rényi negativities En and the ratios Rn. An interesting result is that the ratio Rn is
proportional to the Rényi mutual information. Furthermore, this ratio is qualitatively similar to
the negativity and so it is then an indicator of the entanglement barrier for the quench dynamics
at intermediate time [589, 631–633]. Moreover, our results allow us to derive the behavior of the
pn-PPT conditions, which in contrast with standard entanglement measures for mixed states, such
as the logarithmic negativity, are easily computable and experimentally measurable for quantum
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Figure 14.5: The pn-PPT conditions for n = 3, 5, 7 for the quasiparticle predictions of the moments
of the partial transpose introduced in Eq. (14.2.1). The quench parameters are h0 = 10, h = 2
for the fermionic chain and m = 2,m0 = 0.1 for the harmonic chain. We plot the quantity Dn in
Eq. (14.2.3). The pn-PPT condition is Dn ≥ 0. To compare data for different n we multiply the
D5 by 10 and D7 by 106 for bosons (` = 30). For fermions the D5 is multiplied by 107 and D7 by
1019 (` = 50). The violation of these conditions for at least one value of n reveals the presence of
entanglement between A1 and A2.

many-body systems [88, 456]. We tested our predictions against exact numerical results for both
free-fermion and free-boson systems.

A natural followup of the results presented here is to test numerically the equality between
Rényi mutual informations and the ratios Rn for interacting integrable models. Another important
research direction is to investigate the Rényi negativities and the ratios Rn in the presence of
dissipation [623].



Chapter 15

Rényi entropies and negativity for
massless Dirac fermions at conformal
interfaces and junctions

We investigate the ground state of a (1+1)-dimensional conformal field theory built with M species
of massless free Dirac fermions coupled at one boundary point via a conformal junction/interface.
Each CFT represents a wire of finite length L. We develop a systematic strategy to compute
the Rényi entropies for a generic bipartition between the wires and the entanglement negativity
between two non-complementary sets of wires. Both these entanglement measures turn out to grow
logarithmically with L with an exactly calculated universal prefactor depending on the details of
the junction and of the bipartition. These analytic predictions are tested numerically for junctions
of free Fermi gases, finding perfect agreement. This Chapter is based on Ref. [634].

15.1 Introduction

The remarkable scaling behaviour of the REEs in Eq. (1.4.13) is altered at leading order by the
presence of a boundary [20]. For conformally invariant boundary conditions (bc’s), the entan-
glement entropy can be studied via boundary CFT [635–637], a framework that already found a
large number of applications in condensed matter and particle physics, such as quantum impurity
problems [638], the multi-channel Kondo problem [639], D-brane physics [640] etc. For a finite size
CFT of length 2L with conformal invariant bc’s at the two edges, the Rényi entanglement entropy
between the half-chain A = [0, L] and the other half is [20, 21]

Sn(A) =
c

12

(
1 +

1

n

)
log

L

ε
+ . . . , (15.1.1)

up to finite terms that depend on the bc’s. At leading order in L/ε→∞, Eqs. (1.4.13) and (15.1.1)
differ by a factor 2. This is heuristically understood because the two geometries differ by the num-
ber of entangling points and, in general, one expects the entanglement entropy to be proportional
to the size of the boundary of the subsystem. In both geometries mentioned above the origin of
the entanglement relies on the presence of completely transmissive entangling points, resulting in
some degree of quantum coherence among the subsystem and its complement. Conversely, when
the entangling points are completely reflective because of some additional boundary conditions,
the subsystems decouple, and the entanglement entropy between them vanishes.

A natural generalisation of the above scenarios regards the intermediate setting in which the
entangling points are partially transmitting and reflecting [641]. In the literature, such special

231
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Figure 15.1: The conformal junction: M wires are joined together at x = 0 by a conformally
invariant scattering matrix S. We consider a tripartition in three sets A,B,C with MA,MB,MC

wires each. The entanglement between A and B is given by the negativity (1.1.14). A bipartite
configuration is simply obtained by letting MC = 0.

situations are known as permeable interfaces, defects, or impurities (and indeed we will refer to
them using all these equivalent names). A crucial result is that for free massless theories the defect
is marginal [642] and so can alter the leading behaviour of the entanglement entropy. Conversely,
interactions make the defect either relevant or irrelevant [642] ending up asymptotically in a
completely reflective or transmitting situation, respectively, as shown also by the scaling of the
entanglement entropy itself [643, 644]. For free theories in the presence of a conformal interface
(i.e., scale invariant) Sakai and Satoh exploited boundary CFT to show that the scaling of the
entanglement entropy, (15.1.1) for n = 1, is modified as [645]

S(A) =
ceff(
√
T )

6
log

L

ε
+ . . . , (15.1.2)

where T is a parameter which represents the transmission probability and ceff(
√
T ), dubbed as

effective central charge, is a monotonic function of its argument satisfying

ceff(0) = 0, ceff(1) = c. (15.1.3)

Ref. [645] focuses on the free massless boson, but Eq. (15.1.2) with a different ceff(
√
T ) has been

subsequently derived also for free massless fermions both by means of CFT [571, 646, 647], and
explicitly solving microscopic models [648–652] in the same universality class. While the scaling in
Eq. (15.1.2) is expected to be a generic feature of conformal invariant (1+1)-dimensional systems,
the explicit functional form of the effective central charge depends both on the theory and the
details of the interface, eventually encoded in a interface operator (or, equivalently, in a bound-
ary state as explained in [646]). We mention that a class of completely transmissive interfaces,
dubbed topological interfaces, has been also considered in the literature [653–659]. While their ef-
fective central charge is always c, and they could be erroneously considered trivial, the O(1) terms
shrugged off in Eq. (15.1.2) still contains important information about the boundary conditions,
strictly related to the boundary entropy of Affleck-Ludwig [247].

The permeable interface between two CFTs can be generalised to a junction of M wires.
The resulting geometry is depicted in Fig. 15.1 in which the junction is fully characterised by a
scattering matrix S between the wires. Imposing that this matrix S preserves conformal invariance,
one finds consistency conditions that have been studied and solved for a large number of physical
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configurations [660–668]. The bipartite entanglement in these conformal (or star) junctions has
been studied in Refs. [650,669–671] but focusing on the entanglement between a single wire and the
remaining M−1 ones. A unifying framework to compute the entanglement of a generic bipartition
among the wires of the junctions is still missing.

The conformal junction is also a very obvious setup for the study of multipartite entanglement
because it is made of several wires and it is very natural to wonder about the entanglement between
a subset of them, not only two complementary subsystems. In this respect, the first configuration
that comes to mind is the tripartition in A,B,C with MA,MB,MC wires each, as depicted in
Fig. 15.1. To study the entanglement of this tripartition, one can integrate out the MC wires in
C, to get the reduced density matrix ρA∪B. Then the entanglement between A and B with the
mixed density matrix ρA∪B is measured by the negativity. In the presence of a defect, it has been
computed for a bipartite geometry with M = 2 [672], exploiting its relation with the 1/2-Rényi
entropy for the bipartition of a pure state, but for a genuinely tripartite geometry at a junction
there are no results yet.

The main goal of this Chapter is to provide a general framework to deal with the entanglement
through permeable junctions of M (1 + 1)-dimensional free-fermion CFT. Following Refs. [641,
645], the strategy is to constrain the form of the general boundary state in a folded theory. Then,
being the theory free, we can reduce the problem to the computation of a charged partition function
in the presence of this boundary state. This approach also allows us to compute the negativity in
a tripartite geometry by properly implementing a partial transpose operation for free fermions.

The Chapter is organised as follows. In Sec. 15.2 we review the folding trick which turns
the problem of constructing conformal interfaces into the one of building boundary states. We
review the construction of fermionic boundary states and we compute the partition functions
in the junction geometry. Using this result and the replica trick, we obtain the entanglement
entropy analytically for a generic bipartition between wires. In Sec. 15.3, we combine the previous
formalism with the replica trick for the fermionic negativity. This allows us to obtain an analytic
prediction that we benchmark against numerical computations in Sec. 15.4. In the same section,
we also describe an alternative technique for the computation of the entanglement of a fermion
gas on a star graph modelling the junction of interest. We draw our conclusions in Sec. 15.5.

15.2 CFT approach: Rényi entropies

In this section we present the CFT approach for the evaluation of the entanglement in permeable
junctions of (1+1)-dimensional free-fermion CFTs, following closely Refs. [641,645,646]. As a first
application, we employ this method to compute the Rényi entropies between an arbitrary number
of wires at the junction.

Let us consider M wires of length L, each of them described by a CFT denoted by

CFTj , j = 1, . . . ,M. (15.2.1)

In Euclidean space-time, the junction looks like a booklet (with each page corresponding to one
CFT) bound along the imaginary axis at x = 0, see the left panel of Fig. 15.2. As custom in this
kind of systems, we are going to work in the folded picture in which the system is represented as
a single CFT

M-CFT = CFT1 ⊗ · · · ⊗ CFTM , (15.2.2)

i.e. the world-sheet is a single infinite strip of width L (we are dealing with a finite size quantum
system at zero temperature, so the space-time coordinate w satisfies Re(w) ∈ [0, L]) where M
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Figure 15.2: The folding procedure. The junction in Euclidean spacetime is the booklet with the
CFTs bound in x = 0 (left panel). The folding consists in merging together the M CFTs in a
worldsheet being a single infinite strip with an appropriate boundary state |S〉 at x = 0 (middle
panel). To compute the entanglement, we cut the system for |w| < ε and w > |L| (dashed lines)
and map the M-CFT onto a rectangle of size log L

ε × π (right) with Re(z) ∈ [log ε, logL] and
Im(z) ∈ [−π/2, π/2].

copies of the CFT live. See the middle panel of Fig. 15.2 for a pictorial representation. The
joining between the distinct wires is specified by the boundary conditions along the lines

Re(w) = 0, Re(w) = L. (15.2.3)

We require that the boundary condition at Re(w) = L decouples the replicas, and can be thus
described by a boundary state |B〉 factorised as

|B〉 = |B1〉 ⊗ . . . |BM 〉 , (15.2.4)

with |Bj〉 being a boundary state of CFTj . Instead, we assume that the boundary conditions at
Re(w) = 0 (describing the defect/junction), in general couple explicitly distinct wires. We denote
by |S〉 the associated boundary state in M-CFT. In the remainder of the Chapter, the precise
details of the boundary state |B〉 appearing at Re(w) = L would not matter and so we do not
specify more about it. The physical motivation is that, as long as it decouples the wires, we do not
expect that its features affect (at least at leading order) the correlation properties among distinct
wires. In contrast, this is not the case for the boundary state |S〉, and for this reason we have to
be very careful about its characterisation.

In order to have under control ultraviolet and infrared divergences in the entanglement entropy,
a standard trick [17, 18, 242, 246, 673] consists in cutting the theory for |w| < ε and |w| > L (see
Fig. 15.2, middle panel). The cut strip can then be mapped into a rectangle by the conformal
transformation

z = logw. (15.2.5)

The semicircles |w| = ε and |w| = L are mapped respectively onto the segments

z ∈ log ε+ i[−π/2, π/2], z ∈ logL+ i[−π/2, π/2]. (15.2.6)

The defect line at Re(w) = 0 is split into the two lines Im(z) = ±π/2. This mapping is shown in
the right panel of Fig. 15.2.

The partition function in this geometry can be written as

Z = 〈S| exp (−πH) |S〉 , (15.2.7)
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where π is the height of the rectangle (see Fig. 15.2), while the hamiltonian is

H =
2π

log L
ε

(
L0 + L̄0

)
, (15.2.8)

with L0, L̄0 being generators of the Virasoro algebra of CFT1 ⊗ . . .CFTM .

So far, everything is general and no assumption on the bulk theory or the boundary state |S〉
has been made yet. However, the knowledge of |S〉 is required to evaluate the partition function
(and, by replicas, the entanglement). From now on, we thus restrict the analysis to massless free
fermions for which we can provide a precise characterisation for the boundary state |S〉.

15.2.1 Boundary states for free-fermions

In this section, we first review the construction of boundary states for a theory of many species
of massless Majorana fermions [641, 671]. Then we discuss the straightforward generalisation to
Dirac fermions, obtained through a doubling of the degrees of freedom [269].

We consider M species of Majorana fermions. This CFT has central charge c = M/2 and it is
described in terms of the left/right chiral fermionic fields

ψj , ψ̄j , j = 1, . . . ,M. (15.2.9)

In radial quantisation [269], restricting the analysis to the Neveu-Schwarz (NS) sector, one can
decompose the fermionic fields in their Laurent modes

ψj(z) =
∑

k∈Z+1/2

ψjk
zk+1/2

, ψ̄j(z̄) =
∑

k∈Z+1/2

ψ̄jk
z̄k+1/2

. (15.2.10)

(In the Ramond sector, k would be integer and the discussion would be slightly more involved due to
the presence of a zero mode for k = 0.) Within this convention, the creation/annihilation operators
of a fermion of the j-th species in the mode k (k > 0) are ψj∓k. The number k is (proportional
to) the momentum of the particle. More precisely, one can show that the commutation relations
between the fermionic fields and the Virasoro operators L0, L̄0 are

[L0, ψ
j
−k] = kψj−k, [L̄0, ψ̄

j
−k] = kψ̄j−k. (15.2.11)

The effect of the scattering matrix S at the junction (as in in Fig. 15.1) is nothing but a consistency
condition for the boundary state |S〉 reading

(
ψjk + iSjj′ψ̄

j′
−k

)
|S〉 = 0, (15.2.12)

where, hereafter, repeated indices are summed over. It has been shown [647,674], that in order to
preserve conformal invariance at the boundary, S must be orthogonal

S ∈ O(M). (15.2.13)

In particular the possible k-dependence of the scattering matrix is ruled out by scale invariance.
The solution for |S〉 of Eq. (15.2.12) is simply

|S〉 =
∏

k∈N−1/2

exp
(
iSjj′ψ

j
−kψ̄

j′
−k

)
|0〉 , (15.2.14)
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with |0〉 being the vacuum of the theory. Notice that the different values of k are decoupled, a
fact that will simplify the forthcoming computations. Nevertheless, in general, different species of
particles are coupled, due to the possible occurrence of non-diagonal terms in the matrix S. Those
terms represent physically the amplitudes of transmission between different wires and cause the
entanglement among them.

We now consider a theory of M free Dirac fermions (having central charge c = M), for which
the associated fields are

Ψj , Ψ†
j
, Ψ

j
, Ψ

†j
, j = 1, . . . ,M, (15.2.15)

where Ψ and Ψ† represent the particles/antiparticles respectively. This theory is equivalent to
a theory with 2M Majorana fermions, and so the previous derivation is valid also in this case.
The number of degrees of freedom is doubled and one should take an orthogonal real 2M × 2M
scattering matrix S ∈ O(2M). However, if we further impose that the global U(1) symmetry

Ψ→ eiθΨ, Ψ† → e−iθΨ† (15.2.16)

is preserved by the boundary conditions, there are additional constraints on the scattering matrix.
This requirement corresponds to the property that a left/right particle can be produced from the
vacuum (through the boundary state) together with its right/left antiparticle only. Requiring
that this symmetry is preserved by the boundary conditions, we end up into a complex unitary
scattering matrix

S ∈ U(M), (15.2.17)

that constrains the boundary state |S〉 as

(
Ψ†

j
k + iSjj′Ψ

j′

−k
)
|S〉 = 0,

(
Ψj
k + iSjj′Ψ

†j′
−k

)
|S〉 = 0, (15.2.18)

with S̄ being the matrix complex conjugated to S. The solution of such constraint is

|S〉 =
∏

k∈N−1/2

exp
(
iSjj′Ψ

†j
−kΨ

j′

−k + (Ψ↔ Ψ†)
)
|0〉 . (15.2.19)

A property of the state |S〉 in Eq. (15.2.19) is that it contains two decoupled contributions, depend-
ing on the right and left moving particles. We will use this property to simplify the computations
in the following sections.

15.2.2 Rényi entropies for a generic bipartition between wires

We describe how to compute the n-th Rényi entropies of a subset made up of MA ≤M wires via
the replica trick. Given a subsystem A of a generic QFT, the Rényi entropies (1.1.5) of integer
order n can be obtained in a replicated theory with n copies of the QFT, i.e. in QFT⊗n, which
are cyclically joined along A by a branch-cut connecting the i-th and the (i + 1)-th replica [20].
The moments of the reduced density matrices can be then written in terms of a ratio of partition
functions as [20,21]

Tr (ρnA) =
Zn
Zn1

, (15.2.20)

where Zn is the partition function of the replicated theory while Zn1 is just the partition function
of a single replica raised to the n-th power.
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In the case of the bulk free Dirac fermion, the partition function Zn can be further factorised
using the replica diagonalisation as, e.g., shown in [176] and exploited in Chapters 2, 4, 13. Within
this method, the replicated partition function Zn can be rewritten as

Zn =

n−1
2∏

p=−n−1
2

Z1

(
αp =

2πp

n

)
. (15.2.21)

Plugging Eq. (15.2.21) for Zn into Eq. (15.2.20) one has Tr (ρnA) =
∏
p (Z1(αp)/Z1) in which the

ratio Z1(αp)/Z1 can be expressed as the vacuum expectation value of the operator associated to
the action of the U(1) symmetry restricted to A, namely

Z1(α) = 〈0|eiαQA |0〉. (15.2.22)

Here QA is the charge operator which counts the difference between particles and antiparticles in
the subsystem A, while |0〉 is the vacuum of the theory. Notice that these charged partition sums
are the same appearing in the calculation of the SREEs 1.4.2.

While Ref. [176] and most of the subsequent literature focus on the ground state of the system
in the absence of boundaries, the same considerations apply more generically and in particular to
the case of interest here. The reason is that the boundary state of interest (15.2.19) is Gaussian
(it is an exponential of a bilinear of fermions) and thus the functional measure is Gaussian too: in
other words, the theory is free both in the bulk and at the boundary. Hence, in our specific case,
we start from the theory M-CFT = CFT1⊗ . . .CFTM and we replicate it n times, ending up with
M-CFT⊗n. Then, to compute Zn we perform a diagonalisation in replica space and end up with
the product of n charged partition functions which are given by Eq. (15.2.7) with the insertion of
the appropriate flux, i.e. (with our normalisation Z1 = 1)

Z1(α) = 〈S| eiαQAqL0+L̄0 |S〉 . (15.2.23)

Here the modular parameter

q = exp

(
− 2π2

log (L/ε)

)
, (15.2.24)

has been introduced for later convenience. Our goal then becomes the computation of

Z1(α) =
∏

k∈N−1/2

〈0| exp
(
−i(S†)jj′Ψj

kΨ
†j′
k + (Ψ↔ Ψ†)

)
qL0+L̄0eiαQA×

exp
(
iSjj′Ψ

†j
−kΨ

j′

−k + (Ψ↔ Ψ†)
)
|0〉 , (15.2.25)

in the limit q → 1, corresponding to L
ε → ∞. For this purpose, we firstly decompose S, which is

a unitary M ×M matrix, in a block diagonal form

S =

(
SAA SAB
SBA SBB

)
. (15.2.26)

Here A stands for the MA species belonging to the subsystem A, while B refers to the remaining
MB = M −MA species. Further, we split the set of indices j = 1, . . . ,MA +MB, associated to all
the species, in the following two sets

a = 1, . . . ,MA, b = 1, . . . ,MB (15.2.27)
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to shorthand the species of A and B respectively. In this way, the charge operator QA is

QA =
∑

k∈N−1/2

Ψa
−kΨ

a
k + Ψ̄a

−kΨ̄
a
k − (Ψ→ Ψ†), (15.2.28)

where the summation over the index a is understood.
We consider the contribution to the partition function (15.2.25) coming from the single Laurent

mode k, which requires the evaluation of

〈0| exp
(
−i(S†)jj′Ψj

kΨ
†j′
k

)
qL0+L̄0eiαQA exp

(
iSjj′Ψ

†j
−kΨ

j′

−k
)
|0〉 . (15.2.29)

The details of this computation can be found in [634], where we have found the analytic expression
of the U(1) charged partition function in Eq. (15.2.25), which reads

Z1(α) ∝
∏

k∈N−1/2

det
(

1 + 2(S†AASAA + (1− S†AASAA) cosα)q2k + q4k
)2
. (15.2.30)

According to Eq. (15.2.21), the n-sheeted partition function Zn can be written finally as

Zn =

n−1
2∏

p=−n−1
2

Z1(α = 2πp/n) ∝

n−1
2∏

p=−n−1
2

∏

k∈N−1/2

det
(

1 + 2(S†AASAA + (1− S†AASAA) cos(2πp/n))q2k + q4k
)2
, (15.2.31)

which is the main result of this section, although not yet written in a very transparent form.
From Eq. (15.2.31) it is clear that in the presence of several wires belonging to A, MA ≥ 1,

there are MA factorised contributions depending on the eigenvalues of 1 − S†AASAA and coming
from the presence of the determinant of a MA ×MA matrix. In other words, if we define

Zn,Ta =

n−1
2∏

p=−n−1
2

∏

k∈N−1/2

(
1 + 2((1− Ta) + Ta cos(2πp/n))q2k + q4k

)2
, (15.2.32)

as the contribution coming from the generic eigenvalue Ta ∈ Spec(1− S†AASAA), one has

Zn =

MA∏

a=1

Zn,Ta , (15.2.33)

where Ta can be interpreted as generalised effective transmission probabilities. Plugging this
relation in the definition of the Rényi entropies in Eq. (1.1.5), one gets

Sn(A) =

MA∑

a=1

Sn,Ta , (15.2.34)

with

Sn,Ta =
1

1− n log
Zn,Ta
Zn1,Ta

(15.2.35)



15.3. CFT APPROACH: FERMIONIC NEGATIVITY 239

being the Rényi entropies associated to each Ta.
For the sake of completeness, we provide the explicit result for the partition functions and for

the entanglement entropies in the relevant limit L
ε → ∞. Since the total entropy is just given by

the sum of MA independent contributions with effective transmission Ta it is sufficient to write
only one term. For convenience, we also define a parameter α′, being a function of α and the
effective transmission Ta, satisfying

2 cosα′ = 2(1− Ta + Ta cosα). (15.2.36)

The infinite product appearing in Eq. (15.2.30) which gives the U(1) partition function is explicitly
evaluated in [634], obtaining

Z1(α)

Z1(0)
=

(
θ3

(
α′
2π , q

)

θ3(0, q)

)2

. (15.2.37)

In the limit q → 1, the leading term of the partition function gives

log
Z1(α)

Z1(0)
' 1

log q

(
Li2(−eiα′) + Li2(−e−iα′)− 2Li2(−1)

)
= −

(
α′

2π

)2

log
L

ε
, (15.2.38)

with α′ given by (15.2.36). Summing over the n values of the flux α, one gets straightforwardly
the n-th Rényi entropies plugging Eq. (15.2.38) into Eq. (15.2.21). After some long but simple
algebra, the final result is

Sn,Ta =


 2

π2(n− 1)

bn/2c∑

p=1

arcsin2

(√
Ta cos

(2p− 1)π

2n

)
 log

L

ε
, (15.2.39)

which matches the one in Ref. [650] where also the analytic analytical continuation to n→ 1 can
be found and it is not repeated here. We stress that the major advance in this section compared
to the existing literature [650,671] has been to understand how the elements of SAA combine (via

the eigenvalues of (1 − S†AASAA)) to give the entanglement entropy of more than one wire, while
previous studies focused on a single one. This result is also preparatory to the calculation of the
negativity reported in the following section.

15.3 CFT approach: Fermionic Negativity

In this section we apply the CFT formalism to the calculation of the (fermionic) negativity between
two subsets of wires of a conformal junction. We will proceed via the evaluation of the Rényi
negativity for even n = ne and then we will study the replica limit ne → 1.

15.3.1 Rényi negativities

We consider the conformal junction of Fig. 15.1 with the subsystems A,B, and C formed by three
sets of wires. We are interested in the (fermionic) negativity between A and B. We denote by
Ẑn the partition function in the n-sheeted Riemann surface built in such a way to implement
the partial transpose in the subsystem B (see Refs. [151, 152, 163, 164], Sec. 12.2 for more details
on the partial transpose also for the fermionic case). Ẑn can be further factorised using the
replica diagonalisation, such that it becomes the product of n single-replica U(1) charged partition
functions, similarly to what has been done for Zn in the previous section, but with some differences.
Let us focus on even n = ne, which is the only necessary object to compute the negativity. The
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needed charged partition Ẑ1(α) has twisting phases equal to eiα in A and ei(π−α) in B, i.e. it
reads [163,479]

Ẑ1(α) = 〈0|eiαQAe−i(α−π)QB |0〉 . (15.3.1)

The operator eiαQA implements the U(1) symmetry restricted to A, while e−i(α−π)QB inverts the
flux (α → −α) and it introduces an additional phases −1 along B, which is the combined net
effect of the partial transpose operation on fermionic systems. The final result of this approach is
that the ne-th Rényi negativity can be computed as

Ene ≡ log Tr
(
|ρRBAB|ne

)
= log Tr

(
(ρRBAB)ne

)
=

ne−1
2∑

p=−ne−1
2

log
Ẑ1(α = 2πp/ne)

Ẑ1(0)
. (15.3.2)

In the presence of boundaries, the U(1) charged partition function straightforwardly becomes

Ẑ1(α) = 〈S| qL0+L̄0eiαQA−i(α−π)QB |S〉 =
∏

k∈N−1/2

〈0| exp
(
−i(S†)jj′Ψj

kΨ
†j′
k + (Ψ↔ Ψ†)

)
qL0+L̄0×

eiαQA−i(α−π)QB exp
(
iSjj′Ψ

†j
−kΨ

j′

−k + (Ψ↔ Ψ†)
)
|0〉 , (15.3.3)

Eq. (15.3.2) with (15.3.3) holds for a generic tripartite fermionic system with no assumption.
To proceed for the calculation of the wire junction we restrict to the following specific situation:

• MA,MB,MC = 1, so that the total number of wires is M = 3.

• S is not only unitary but also Hermitian, which means that S2 = 1 and its eigenvalues can be
just ±1. For some physical systems (including the Schrodinger junction in the next section),
the hermiticity of the S matrix is a necessary condition for physical consistency. Hence this
is not at all a very restrictive assumption.

With these working assumptions it is possible to obtain nice analytic results in a rather compact
form. More general expressions (e.g. for more wires) can also be obtained, but at the price of more
cumbersome computations and less intelligible final results without any major physical insight.

It is clear from Eq. (15.3.3) that for M = 3 the key object to be evaluated is

〈0| exp
(
−iSjj′Ψj

kΨ
†j′
k

)
qL0+L̄0eiαQA−i(α−π)QB exp

(
iSjj′Ψ

†j
−kΨ

j′

−k
)
|0〉 =

det


1 + q2kS




SAA −e−i2αSAB e−iαSAC
−ei2αSBA SBB −eiαSBC
eiαSCA −e−iαSCB SCC




 , (15.3.4)

where we used the commutation relations between qL0+L̄0eiαQA−i(α−π)QB and the fields and the
formula for the vacuum expectation value [634]. The determinant of the 3 × 3 matrix appearing
in (15.3.4) can be evaluated directly, but it is useful to discuss first the constraints due to the
unitarity of S. We define the matrix O as

O = S




SAA −e−i2αSAB e−iαSAC
−ei2αSBA SBB −eiαSBC
eiαSCA −e−iαSCB SCC


 , (15.3.5)

and we verify the following properties:
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• O is unitary (OO† = 1) and its eigenvalues are phases;

• det(O) = 1 and the product of the eigenvalues is 1;

• O = SO†S and the spectrum of O is thus invariant under complex conjugation, a feature
that relies on our hermiticity assumption S = S†.

These properties imply that the spectrum of O has to take this form

Spec (O) = {1, eiα̂′ , e−iα̂′}, (15.3.6)

with α̂′ a real parameter depending on S and α, defined by the following property

2 cos α̂′ + 1 = Tr(O), (15.3.7)

which is a consequence of Eq. (15.3.6). The determinant det(1 + q2kO) can be thus computed
taking the product over the eigenvalues of O as follows

det
(

1 + q2kO
)

= (1+q2k)(1+q2keiα̂
′
)(1+q2ke−iα̂

′
) = (1+q2k)(1+q2k(Tr(O)−1)+q4k). (15.3.8)

Evaluating Tr(O) and using again the unitarity of S, we can rewrite Eq. (15.3.8) as

det
(

1 + q2kO
)

= (1 + q2k)(1 + 2 cos α̂′q2k + q4k), (15.3.9)

and the explicit expression of α̂′ as a function of the S matrix is

2 cos α̂′ = −1+S2
AA+S2

BB+S2
CC+(−1−S2

CC+S2
BB+S2

AA) cos(2α)+2(S2
BB−S2

AA) cosα. (15.3.10)

Notice that α̂′ does only depend on the diagonal entries of the matrix S and on the flux α.
Putting all the pieces together, we express the partition function Ẑ1(α) as

Ẑ1(α) =
∏

k∈N−1/2

(1 + q2k)2(1 + 2 cos α̂′q2k + q4k)2. (15.3.11)

We find the same formal structure of the partition function which appeared for the Rényi entropies
in Eq. (15.2.30), up to the replacement α′ → α̂′. Analogously to Eq. (15.2.38), for L/ε � 1, we
have

log
Ẑ1(α)

Ẑ1(0)
' −

(
α̂′

2π

)2

log
L

ε
, (15.3.12)

with α̂′ given by Eq. (15.3.10), which is the main result of this section. Indeed, by plugging this
result into Eq. (15.3.2), we obtain the Rényi negativities

Ene = −
( 1

4π2

(ne−1)/2∑

p=−(ne−1)/2

arccos2
(
S2
CC + (−1− S2

CC + S2
BB + S2

AA) cos(2πp/ne)
2+

+(S2
BB − S2

AA) cos(2πp/ne)
) )

log
L

ε
. (15.3.13)
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15.3.2 Analytic continuation

The representation of Ene as a sum, appearing in Eq. (15.3.13), gives an expression valid only when
ne is an even natural number. To proceed to the calculation of the negativity, we should provide
its analytic continuation for ne being a generic number in the complex plane. To this goal, the
strategy we device is the following:

• The U(1) partition function Ẑ1(α) in Eq. (15.3.12) can be expressed through an integral
representation in the limit q → 1

log
Ẑ1(α)

Ẑ1(0)
=

∑

k∈N−1/2

2 log[(1 + q2k)−2(1 + 2 cosα′q2k + q4k)]

' − 1

log q

∫ ∞

0

dt

t
[log(1 + 2 cosα′t+ t2)− 2 log(1 + t2)]; (15.3.14)

• The sum over the value of fluxes (15.3.13) can now be performed inside the integral. Through
some simple trigonometric identities, this leads to an analytic continuation of the integrand.

• The final result is an integral, which represents our analytic continuation.

Let us report here the final result of this computation:

E =
log(L/ε)

π2

∫ 1

0

dt

t

log
((x1 −

√
−c2 + x2

1)1/2 + (x1 +
√
−c2 + x2

1)1/2)((x2 −
√
−1 + x2

2)1/2 + (x2 +
√
−1 + x2

2)1/2)

2(1 + t)
.

(15.3.15)

15.4 Schroedinger junction

In this section, we describe a fermion gas on a star graph modelling a junction made up of M wires
of length L, joined together through a single defect. We introduce a slightly different framework
(compared to the existing ones in the literature) which allows us to efficiently perform exact
numerical computations also for the negativity. The CFT predictions of the previous sections are
checked against these exact numerical results.

15.4.1 Correlation functions

Let us consider a star graph like the one in Fig. 15.1 where now on each wire there is a gas made
of N spinless fermions. The M wires are decoupled everywhere but in the vertex of the graph
and their mixing is described by a non-trivial scattering matrix. We consider the ground state
of such system with N particles. The same system has been studied in Ref. [650] by the overlap
matrix approach [669, 676] which is the starting point of our analysis. Each point of the junction
is parametrised by a pair

(x, j), x ∈ [0, L], j = 1, . . . ,M, (15.4.1)

where j is the index identifying the wire and x > 0 the spatial coordinate along the wire. The
bulk hamiltonian of the system is

H =

M∑

j=1

∫ L

0
dx

1

2

(
∂xΨ†j(x)

)
(∂xΨj(x)) , (15.4.2)
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with Ψj ,Ψ
†
j being the fermionic fields associated to the j-th wire (also called Schroedinger field,

from which the name Schroedinger junction). We consider a scattering matrix

Sij , i, j = 1, . . . ,M, (15.4.3)

describing the defect at x = 0, which has to be hermitian and unitary [650,663]

S = S†, SS† = 1. (15.4.4)

The most general boundary condition along the junction is

λ(1− S)Ψ(0)− i(1 + S)∂xΨ(0) = 0, (15.4.5)

where Ψ = {Ψj}j=1,...,M , λ is an arbitrary real parameter with the dimension of mass. To fully
specify the problem, we also need to impose boundary conditions at the external edges of each
wire that generically take the form

(∂xΨi)(L) = µiΨi(L), (15.4.6)

where µi are again real parameters with the dimension of mass. In order to simplify the treatment,
it is possible to diagonalise S via a unitary transformation U and its eigenvalues are just ±1. It is
custom [663,664] to introduce a set of unphysical fields {ϕj(x)}

Ψi(x) =

M∑

j=1

Uijϕj(x), (15.4.7)

so that in terms of these ϕj(x), the boundary conditions decouple as

∂xϕi(0) = ηiϕi(0),

∂xϕi(L) = µ′iϕi(L),
(15.4.8)

where the µ′i’s are linear function of the µi’s whose form is irrelevant. For the junction to be scale-
invariant, we require each of the dimensionful parameters ηi and µi to be either 0 or∞. The choice
corresponds to either Neumann (∂xϕi = 0) or Dirichlet (ϕi = 0) boundary conditions at x = 0
and x = L. We impose Dirichlet boundary conditions (µi =∞) at x = L for all wires. Conversely,
the values of ηi being 0 or ∞ depends on the diagonalisation of the S matrix, see [650, 663, 664].
Hence, the unphysical fields ϕj(x) have Dirichlet bc’s at x = L and either (Neumann or Dirichlet)
at x = 0, so that it is natural to use the short-hand notation

ND Neumann-Dirichlet, DD Dirichlet-Dirichlet, (15.4.9)

to refer to the two possibbilities. For these two possible boundary conditions, the single-particle
wavefunctions are

φDD(n, x) =

√
2

L
sin

nπx

L
, n = 1, . . .

φND(n, x) =

√
2

L
cos

(n− 1/2)πx

L
, n = 1, . . . .

(15.4.10)

We work in the ground state with fixed particle number N for each wire, so that the correlation
function is

〈ϕi(x)ϕj(y)〉 = δij ×
{
CDD(x, y), DD bc’s

CND(x, y), ND bc’s,
(15.4.11)
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with

CDD(x, y) =
N∑

n=1

φDD(n, x)φDD(n, y) =
sin N+1/2

L π(x− y)

2L sin π(x−y)
2L

− (y → −y)

CND(x, y) =
N∑

n=1

φND(n, x)φND(n, y) =
sin N

L π(x− y)

2L sin π(x−y)
2L

+ (y → −y).

(15.4.12)

Going back to the physical fields {Ψj}j , linear algebra straightforwardly gives

Cij(x, y) ≡ 〈Ψ†j(x)Ψi(y)〉 =

(
1 + S

2

)

ij

CND(x, y) +

(
1− S

2

)

ij

CDD(x, y). (15.4.13)

The matrices 1±S
2 are the projectors over the eigenspaces of S with eigenvalues ±1 respectively.

The correlation functions (15.4.13) are continuous kernel of the spatial variables. While it is
possible to work directly with such kernels (as done, e.g., in Refs. [394,677]), it is more convenient
to work with a finite-dimensional representation of such correlation. In [634], a representation
which is particularly useful for numerical applications has been derived and it is equivalent to the
overlap matrix approach [669]. The main result reads

C =
1− S

2
⊗
(

1 Q
0 0

)
+

1 + S

2
⊗
(

0 0
Q† 1

)
, (15.4.14)

with Q being a N ×N matrix defined by

Qn,n′ = 2

∫ 1

0
dx sin (nπx) cos

((
n′ − 1

2

)
πx

)
=

2n

π (n2 − (n′ − 1/2)2)
. (15.4.15)

15.4.2 The Rényi entropies between two arbitrary sets of wires

A useful auxiliary quantity for the computation of the entanglement entropy and negativity is the
matrix Γ = 1 − 2C (sometimes referred to as covariance matrix). Using Eq. (15.4.13) and the
finite-dimensional representation of the correlation matrix in the previous section, we can express
it as

1− Γ2 = 4C(1− C) = (1− S2)⊗ (CND − CDD)2. (15.4.16)

When Γ refers to the entire system, given that S2 = 1, it is zero in the “wire space”. However,
Eq. (15.4.16) has a very convenient form for the restriction of Γ to a subsystem A made of MA

wires because of the tensor product structure in internal and spatial coordinates. It is in fact
enough to replace S → SAA, i.e. the projected S-matrix to obtain ΓAA, the covariance matrix
restricted to the subsystem of interest:

1− Γ2
AA = (1− S2

AA)⊗ (CND − CDD)2, (15.4.17)

with SAA being a MA×MA matrix. In general 1−S2
AA ≥ 0, and so 1−Γ2

AA is positive semidefinite.
We recall that the matrix representation for (CND − CDD)2 is

(CND − CDD)2 =

(
1−QQ† 0

0 1−Q†Q

)
. (15.4.18)

Since 1−QQ† and 1−Q†Q have the same spectrum, the spectrum of (CND −CDD)2 is obtained
by two copies of the spectrum of 1−QQ†.
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To start, let us recover the results [650] for the case when A is a single wire. First, taking
M = 2 and the completely transmissive S-matrix

S =

(
0 1
1 0

)
, (15.4.19)

the correlation function of a single wire A satisfies

1− Γ2
AA = (CND − CDD)2. (15.4.20)

The spectral properties of 1 − Γ2
AA are then the one of a gas on the line [−L,L] bipartite as

A = [0, L] and B = [−L, 0]. For a generic S-matrix of two wires [641,663]

S =

(√
1− |s|2 seiφ

s̄e−iφ −
√

1− |s|2
)
, (15.4.21)

ΓAA is
1− Γ2

AA = |s|2(CND − CDD)2, (15.4.22)

and so the eigenvalues of 1 − Γ2
AA are just rescaled by a factor |s|2, in agreement with what

known [650] from the overlap matrix. In the case of A being one of the M wires in a junction, in
the above equation is enough to replace s with the transmission coefficient of A.

Once the covariance matrix ΓAA is known, the entanglement Rényi entropies are [171]

Sn(A) =
1

1− nTr log

((
1 + ΓAA

2

)n
+

(
1− ΓAA

2

)n)
=
∑

Ta
Sn,Ta , (15.4.23)

Using the basic property about the spectrum of a tensor product

Spec(X ⊗ Y ) = {xiyj}ij , xi ∈ Spec(X), yj ∈ Spec(Y ), (15.4.24)

we get that the Rényi entropies between A and the complementary wires B are

Sn(A) =
∑

Ta
Sn,Ta , (15.4.25)

where the Ta’s are the eigenvalues of 1 − S2
AA, which play the role of a transmission probability,

and Sn,Ta is the Rényi entropies of a single wire with transmission probability Ta. This analytic
results for the microscopic model perfectly match Eq. (15.2.39) in CFT. We also notice that the
relation Sn(A) = Sn(B) comes from the fact that 1 − S2

AA and 1 − S2
BB have the same non-zero

spectrum (i.e., the same eigenvalues up to the vanishing ones).
To conclude this subsection, we present a numerical test for the validity of the CFT result for

the logarithmic scaling of the Rényi entropies. Since the case of A consisting of a single wire has
been discussed and tested in Ref. [650], we focus here on a four-wire junction and the subsystem
A consisting of two wires. The S matrix is chosen of the form

S = U




−
√

1− s2 −s 0 0

−s
√

1− s2 0 0
0 0 −1 0
0 0 0 1


U−1, U =




1 0 0 0
0 − cos θ − cos θ sin θ sin2 θ
0 sin θ − cos2 θ cos θ sin θ
0 0 sin θ cos θ


 .

(15.4.26)
The numerical results are reported in Fig. 15.3 finding a perfect agreement with CFT.
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Figure 15.3: Left panel: The Rényi entropies Sn(A) in a four-wire junction where A is made up
of two wires. We choose different values of s, θ, n and we plot it as a function of the number of
particles N . The lines show the curve Cn(s, θ) logN + b0 + b1N

−1/n where the coefficients bi are
fitted using the data for N ≥ 80. The coefficients Cn(s, θ) are obtained by summing over the
single-wire results, as explained in Eq. (15.2.39). Right panel: The coefficient of the logarithmic
term of the negativity between two wires (A and B) as a function of θ, with fixed s = 0.75. The
solid line corresponds to Eq. (15.3.15) while the points have been obtained through a fit of the
numerics with the form a logN + b0 + b1N

−1.

15.4.3 Entanglement negativity

We now consider a tripartition A ∪ B ∪ C, where A (B) contains MA (MB) wires, and we study
the entanglement negativity between A and B. This amounts to project the scattering-matrix S
over a subset of rows/columns belonging to A ∪B. In particular, we denote

(CA∪B)ij(x, y) ≡ 〈Ψ†j(x)Ψi(y)〉, i, j = 1, . . . ,MA +MB, (15.4.27)

as the correlation function of A ∪B, and

(SA∪B)ij ≡ Sij , i, j = 1, . . . ,MA +MB, (15.4.28)

as the restriction of the scattering matrix; SA∪B is not unitary in general, and it satisfies the
following relations

(SA∪B)† = (SA∪B), 0 ≤ (SA∪B)2 ≤ 1. (15.4.29)

Using the matrix representation of the correlation function C in Eq. (15.4.14) and restricting it to
A ∪B, we obtain a (2N(MA +MB), 2N(MA +MB)) matrix CA∪B. The covariance matrix ΓA∪B
has the natural block form

ΓA∪B =

(
ΓAA ΓAB
ΓBA ΓBB

)
, (15.4.30)

from which we construct the matrix [163,173]

Γ×A∪B ≡
2

1 + Γ2
A∪B

(
−ΓAA 0

0 ΓBB

)
. (15.4.31)
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The latter matrix Γ×A∪B is the crucial object to write the Rényi negativities Ene which indeed
are [163]

Ene ≡ log Tr (|ρA∪B|ne) =

Tr log

((
1 + Γ×A∪B

2

)ne/2
+

(
1− Γ×A∪B

2

)ne/2)
+

ne
2

Tr log

((
1 + ΓA∪B

2

)2

+

(
1− ΓA∪B

2

)2
)
, (15.4.32)

The above equation is valid for arbitrary real ne (i.e. also for a non-even integer) and so the
negativity E is obtained just by taking ne = 1.

Eq. (15.4.32) gives the Rényi negativities in terms of the correlation matrices that, once nu-
merically evaluated, provides a test of the CFT results for the coefficient of the logarithm obtained
in Sec. 15.3. For the numerical evaluation, we focus on a three-wire junction and on the two-
parameter family of scattering matrices given by

S = U



−
√

1− s2 −s 0

−s
√

1− s2 0
0 0 −1


U−1, U =




1 0 0
0 − cos θ sin θ
0 sin θ cos θ


 . (15.4.33)

We select as subsystems A and B the first two wires and compute numerically the Rényi negativity
for several values of s, θ, and N . In Fig. 15.3 we reported the coefficient of the logarithm obtained
as follows. We fixed s = 0.75 and we selected some values of θ; for each value of (s, θ), we calculated
numerically the negativity, for several values of N up to 200. We fitted the obtained numerical
results with a logN + b0 + b1N

−1. Fig. 15.3 finally reports the best fit of a as a function of theta
and compares it to the corresponding analytic result in Eq. (15.3.15), finding perfect agreement.

15.5 Closing remarks

In this Chapter we investigated the entanglement entropy and negativity for the ground state
of M species of free massless Dirac fermions coupled at one boundary point via a conformal
interface/junction.

We stress that our results apply to some different physical situations, too. For example, our
predictions are expected to hold also for lattice models of free fermions, in particular for M tight
binding chains of length L joined at a single common vertex (as, e.g., done in [651] for M = 2).
Furthermore, the logarithmic prefactors we obtained for entropy and negativity should appear also
in the study of a star junction of M infinite CFT, but when the subsystems consist of segments
of length ` starting from the interface.

We conclude the Chapter discussing few outlooks. The main focus of this work has been
the free-fermion CFT, but our formalism can be easily adapted to free complex boson too, to
study, e.g., the entanglement entropy and negativity across junctions of harmonic chains. The
same formalism can be further applied to the study of some out-of-equilibrium protocols for free
CFTs in the presence of defects (see, e.g., [644, 652, 672, 678]). Another interesting open problem
is the generalisation to other CFTs such as the compact boson, WZW models (see [656] for the
interfaces of WZW), or minimal models. In all those cases we do not expect any kind of replica
diagonalisation, due to the lack of Gaussian measures, but still one could employ the replica
construction to investigate the negativity, as well as other entanglement measures.





Chapter 16

Entanglement barrier and its
symmetry resolution: theory and
experiment

The operator entanglement (OE) is a key quantifier of the complexity of the RDM, and in out-
of-equilibrium situations —e.g. after a quantum quench from a product state—, it is expected
to exhibit an entanglement barrier. The OE of the RDM initially grows linearly as entanglement
builds up between the local degrees of freedom, it then reaches a maximum, and it ultimately decays
to a small finite value as the reduced matrix converges to a simple stationary state through standard
thermalization mechanisms. Here, we report the results of the first experimental measurement of
the OE of a subsystem’s RDM in a quantum many-body system performing a new data analysis
of the published experimental results of Ref. [80]. The OE thus obtained displays the expected
barrier as long as the experimental system is large enough. For smaller systems it is absent. As
U(1) symmetry plays a key role in our analysis, we introduce the notion of symmetry resolved
operator entanglement (SROE), in addition to the total OE. To gain further insights into the
SROE, we provide a thorough theory analysis of this new quantity in chains of non-interacting
fermions, which, in spite of their simplicity, capture most of the main features of OE and SROE. In
particular, we uncover three main physical effects: the presence of a barrier in any charge sector,
a time delay for the onset of the growth of SROE, and an effective equipartition between charge
sectors.

16.1 Introduction

As we discussed in the previous chapters, the investigation of the dynamics of isolated quantum
many-body systems is still one of the main challenges of quantum mechanics. Recent develop-
ments in quantum simulation, opening the possibility of generating and probing complex quantum
states, have stimulated the investigation of out-of-equilibrium phenomena such as quantum chaos,
thermalization and many-body localization [679–682]. Owing to the highly tunable experimental
settings it has been possible to engineer Hamiltonian dynamics of closed quantum systems, rang-
ing from integrable to chaotic systems, and measure non-trivial observables, as the entanglement
growth following a quantum quench [80, 81, 683, 684] or out-of-time ordered correlators [685, 686].
In typical situations when a system is driven out of equilibrium, any subsystem’s RDM evolves
non-trivially in time, approaching a stationary state. The evolution of the subsystem density ma-
trix, during this process, can be appropriately characterised in terms of its operator entanglement

249
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(OE), i.e. the entanglement entropy of an operator viewed as a state in operator space [687–690].

The OE is an interesting quantity in a wide variety of situations, and for multiple reasons. Most
prominently, in 1d systems, the OE is a quantifier of the approximability of a quantum operator
by matrix product operators (MPO) [631, 689–694]. Moreover, the OE often captures important
universal properties of the dynamics [631,689–691,694–699]. For instance, the OE of the evolution
operator U(t) = e−iHt grows linearly in ergodic phases [631, 695], but only logarithmically in
localised phases [631,691]. Another example is the OE of a local operator O evolving in Heisenberg-
picture, O(t) = eiHtOe−iHt, which grows linearly in systems with chaotic dynamics [695] but only
logarithmically for integrable dynamics [697–699]. The time evolution of the OE is also closely
related to other fundamental entanglement measurements such as negativity [151, 152, 163, 173],
temporal entanglement [700–702], and reflected entropy [703,704] The main operator we will focus
on in this Chapter is the RDM of a subsystem. Its OE has been theoretically shown to exhibit
an entanglement barrier [631, 696, 705]: after a quantum quench from a shortly-correlated state,
the OE of the subsystem density matrix initially grows linearly and then decays at longer times,
thus displaying a barrier-shaped curve. The initial linear growth is a consequence of the generic
linear growth of the (state) entanglement entropy after a quench [44,47], while the decay at later
times reflects the convergence of the RDM towards a simple stationary state, through the standard
mechanism of thermalization [706–708] (or relaxation to a Generalised Gibbs ensemble [709–711])
for isolated quantum systems. A similar barrier is also observed for the density matrix of the
full system when the latter undergoes dissipative evolution [692,694]. Such entanglement barriers
have important consequences in terms of the simulability of the dynamics after a quantum quench.
Indeed, as any MPO with bond dimension χ has an OE which is at most logχ [631,712], we know
that, to approximate a density matrix ρ with OE equal to S, we will need a bond dimension at
least as large as eS . Consequently, a high value of the OE at the top of the barrier signals the
impossibility to use (low bond dimension) MPO methods to simulate the dynamics of the system.

Inspired by the relevance of the entanglement barrier, our goal is to show it can be observed
in an experimental quantum many-body system, using the randomised measurement data from
trapped ion experiments [80]. The randomised measurement toolbox [558] has enabled measuring
state-agnostically properties of the underlying quantum state such as purity and Renyi entangle-
ment entropies [80, 558, 713] negativities [88, 89], state fidelities [714] and scrambling [557] with a
lower measurement cost compared to quantum state tomography.

The experimental setup of Ref. [80] also offers a hint to study how the OE is affected by the
presence of a U(1) symmetry. This gives us the chance to introduce the notion of symmetry
resolution for operator entanglement as it has been done for state entanglement. In this Chapter
we start the investigation of decomposition in symmetry sectors of the OE. The first challenge is
to identify the most appropriate supercharge operator (i.e. the operator in the space of operators)
responsible for a decomposition in symmetry sectors of the OE. Such identification allows us to
introduce the notion of symmetry resolved operator entanglement (SROE) 1.

The presence of an entanglement barrier in the different symmetry sectors and its relation with
the specifics of the dynamics is uncharted territory and is interesting both from a purely theoretical
standpoint and from the point of view of numerical simulations. In general, the intermediate
“bumps” characterising the dynamics of OE represent an obstacle for an efficient simulation of
the operator. It would be interesting to discover if and in which regime the existence of such a
barrier does depend on the symmetry sector, and therefore if, in the case of small entanglement,
it is possible to represent the operator as an MPO in any of them.

The Chapter is organised as follows. In Sec. 16.2 we provide a bird’s eye view about both

1We note, however, that a slightly different definition of SROE, with respect to the one in this Chapter, was
already introduced in Ref. [694])
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the experimental results from the randomised measurement protocol and the theoretical ones. In
Sec. 16.3 we introduce formally the operator entanglement (OE) and its symmetry resolution. In
Sec. 16.4, using a combination of CFT and of exact analytical and numerical calculations in critical
free fermion chains, we study the SROE of the RDM ρAB of a subsystem A ∪B after a quantum
quench. Finally we draw our conclusions.

16.2 Summary of the main results

Here we provide a short summary of the results about the operator entanglement and its symmetry
resolution. The main points are also illustrated in Fig. 16.1. The results are twofold, but in the
following sections we will mainly focus on the second point of the following list. More details about
the first one can be found in [716].

1. With a new analysis of the published experimental data of Brydges et al. [80], we were
able to identify and measure for the first time the OE and SROE of a subsystem’s density
matrix in a many-body quantum system. We employ the randomised measurements tool-
box [558] and introduce a new efficient method to post-process experimental data in order to
extract higher-order density matrix functionals. A schematic of this procedure is shown in
Fig. 16.1a). Subsequently, in Fig. 16.1b)-d), we show the experimentally measured OE and
SROE, respectively, as in Eq. (16.3.2), which are supported by tensor network simulations
modelling the full experiment. Our main observations are summarised here:

(a) We witness the entanglement barrier for OE and for SROE, in a given symmetry sector,
for a bipartite subsystem A∪B made up of four out of twenty ions. This barrier equally
presents bump structures due to finite size effects.

(b) We provide experimental evidence of the absence of the entanglement barrier when the
finite size effects are too large (e.g. for a subsystem of four out of ten ions of the chain).

(c) We observe a rough qualitative satisfactory agreement of SROE with the numerical
results, for some symmetry sectors. The sizeable deviation between theory and ex-
periment are mainly explained because of the small populations in the corresponding
symmetry sectors, that we understand using perturbation theory analysis and due to
the low measurement statistics performed in the experiment.

2. To gain insights into SROE and into its own entanglement barrier, we provide a thorough
theory analysis in chains of non-interacting fermions, which in spite of their simplicity capture
the main physical features of OE and SROE. In particular, for these models we obtain the
general formula in Eq. (16.4.21), which governs the evolution of the SROE. This formula
allows us to uncover three main physical effects, which we expect to appear more generically
in chains of qubits, beyond the simple non-interacting fermion ones. These effects are:

(a) the appearance of a barrier for SROE in any charge sector, which resembles the be-
haviour of the total OE;

(b) a delay time for the onset of the SROE that grows linearly with the charge sector of
the subsystem;

(c) the effective equipartition in the scaling limit of large time and subsystem size for small
charges (see Eq. (16.4.22)), where by equipartition we mean that the SROE is equally
distributed among the different symmetry sectors.
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Figure 16.1: Overview of the results: a) Schematic of the method to post-process the experimen-
tal data. After the quench dynamics, randomised measurements are performed. The collected
bit-strings are used to estimate OE and the SROE with a method we dub batch shadows esti-
mator. b)-d) Experimental results for the operator entanglement of the RDM (of 4 ions out of

20) S(2)(ρAB) and its symmetry resolution S
(2)
q (ρAB), as in Eqs. (16.3.2)-(16.3.19), after a global

quantum quench. The points correspond to the experimental data, the curves are numerical results
obtained via tensor network algorithms with (solid) or without (dashed) dissipation considered.
The entanglement barrier is visible for the total operator entanglement and the symmetry sector
q = 0. c)-e) Symmetry resolution of the OE of the RDM after a global quantum quench in a
free fermion chain under unitary evolution. c) Numerical data (symbols) with subsystem length
`A = 120 compared with quasiparticle prediction (16.4.21) (continuous lines). This plot shows the
three main features of the SROE in the thermodynamic limit, i.e. the barrier in each sector q, the
delay time and the equipartition for small q. e) Symmetry resolution of the OE of the RDM after
a global quantum quench, for 4 sites out of a 20 sites chain. Comparing with the experimental
results in d), we can spot several qualitative features of OE although the model is short ranged
and there is no dissipation.
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These effects are visible in Fig. 16.1c). There we plot OE and SROE of the RDM, for a
bipartition A ∪ B, where A and B are of lengths `A and `B respectively (here ` ≡ `A +
`B = 256). The numerical results are obtained for a quench in the tight-binding model
from the Neel state (the calculation is performed in a finite periodic chain of total size
L = 8× (`A + `B)). The solid lines correspond to Eq. (16.4.21).

16.3 Operator entanglement and symmetry resolution

In this section we introduce formally the OE, discuss its connection with mixed state entanglement,
and introduce its symmetry resolution in the presence of an additive global conserved charge.

16.3.1 Definition of Operator Entanglement

Let us now introduce the concept of OE for an operator O which acts non trivially in A ∪B and
admits the Schmidt decomposition [631]

O√
Tr(O†O)

=
∑

i

λiOA,i ⊗OB,i, (16.3.1)

where
∑

i λ
2
i = 1, the operatorsOA,i (same forOB,i) obey the orthonormality condition Tr[O†A,i, OA,j ] =

δij and the normalisation factor
√

Tr(O†O) ensures that we deal with properly normalised opera-
tors. From this decomposition, we can quantify the entanglement properties of an operator through
the definition of the Rényi n-OE

S(n)(O) ≡ 1

1− n log
∑

j

λ2n
j . (16.3.2)

whose limit n→ 1 gives the OE

S(O) ≡
∑

j

−λ2
j log λ2

j . (16.3.3)

16.3.2 Symmetry resolved operator Entanglement

In the presence of a global symmetry, the total OE of the reduced density splits in different charge
sectors, similarly to the SREE. To understand how this happens and the consequent notion of
SROE in a system with U(1) symmetry, let us focus first on a minimal illustrative example: a
3-qubits system, whose qubits are labeled A, B and C, in a state of the form (|α|2 + |β|2 + |γ|2 = 1)

|ψ〉ABC = α |001〉+ β |010〉+ γ |100〉 . (16.3.4)

This is an eigenstate of the total charge operator Q =
∑

j=A,B,C Qj with Qj = (1 +Zj)/2, and Zj
the Pauli Z-operator acting on qubit j. The RDM of the subsystem AB is

ρAB = |α|2 |00〉 〈00|+ (β |01〉+ γ |10〉) (β∗ 〈01|+ γ∗ 〈10|) . (16.3.5)

Importantly, ρAB commutes with QA +QB.
We can now vectorise the reduced density matrix in such a way that the first (second) ket

contains the degrees of freedom of A (B) in this way (see also Eq. (16.3.9)):

|ρAB〉 = |α|2 |00〉A |00〉B + |β|2 |00〉A |11〉B +

+ |γ|2 |11〉A |00〉B + βγ∗ |01〉A |10〉B +

+ β∗γ |10〉A |01〉B .
(16.3.6)
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From this state, it is possible to build the density matrix |ρAB〉 〈ρAB| and, by tracing it over B,
to obtain the reduced density matrix associated to the operator ρAB, which reads

TrB |ρAB〉 〈ρAB| = |β|4 |00〉 〈00|
+ |β|2|γ|2(|01〉 〈01|+ |10〉 〈10|)
+ (|α|2 |00〉+ |γ|2 |11〉)(|α|2 〈00|+ |γ|2 〈11|).

(16.3.7)

By reshuffling the elements of the basis, we find out that the matrix has a block-diagonal decom-
position as

TrB |ρAB〉 〈ρAB| ∼=
(
|γ|2|β|2

)
q=−1

⊕
(
|β|4 + |α|4 |α|2|γ|2
|α|2|γ|2 |γ|4

)

q=0

⊕
(
|β|2|γ|2

)
q=1

. (16.3.8)

It is clear that each block is now labelled by the imbalance between the charge in A and in its
copy coming from the vectorization of ρAB.

Although very neat, the former example does not yet explain how and why in full generality
the OE of the reduced density matrix of a symmetric state splits in charge sectors. To show the
rationale for a generic many-body system, we can use again the standard notion of vectorised form
of an operator for the reduced density matrix ρAB. This is nothing but the mapping

ρAB =
∑

ij

(ρAB)ij |i〉 〈j| → |ρAB〉 =
∑

ij

(ρAB)ij |i〉 |j〉 , (16.3.9)

where |i〉 is an arbitrary basis in the Hibert space of AB. Now, our goal is to find a supercharge
QAB, i.e. the superoperator commuting with |ρAB〉 〈ρAB| in terms of which we define the SROE.
We exploit the obvious relation for QAB = QA +QB

QABρAB =
∑

ij

(ρAB)ijQAB |i〉 〈j|

→
∑

ij

(ρAB)ij(QAB |i〉) |j〉 = QAB ⊗ 1 |ρAB〉
(16.3.10)

and similarly ρABQAB → 1⊗QTAB |ρAB〉. Therefore, from the commutation relation [QAB, ρAB] =
0, we naturally define the supercharge operator as

QAB = QAB ⊗ 1− 1⊗QTAB, (16.3.11)

satisfying

QAB |ρAB〉 = 0. (16.3.12)

The form of this supercharge appears to us far from obvious a priori. As a consequence, being
QAB Hermitian, we find that

[QAB, |ρAB〉 〈ρAB|] = 0, (16.3.13)

and exploiting QAB = QA +QB, by tracing over the subsystem B, we get

[QA,TrB |ρAB〉 〈ρAB|] = 0. (16.3.14)

This commutation relation implies that TrB |ρAB〉 〈ρAB| has a block diagonal structure with each
block corresponding to an eigenvalue q of the supercharge QA. The SROE is just the OE in each
of these blocks.
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After the vectorised form allowed us to simply identify the right quantum number, we can come
back to the definition (16.3.2) of the OE in terms of the Schmidt eigenvalues and show how to
modify it for the SROE. What we mean by ‘symmetry resolved operator Schmidt decomposition’
is that the RDM for the subsystem AB is of the general form

ρAB√
tr[ρ2

AB]
=
∑

q

∑

j

λ
(q)
j O

(q)
A,j ⊗O

(−q)
B,j , (16.3.15)

where
Tr[O

(q1)
A,j1

O
(q2)
A,j2

] = Tr[O
(q1)
B,j1

O
(q2)
B,j2

] = δq1,q2δj1,j2 , (16.3.16)

and q is the eigenvalue of QA.

Because of the normalization of the l.h.s of Eq. (16.3.15), we have
∑

q

∑
j(λ

(q)
j )2 = 1, so that the

coefficients (λ
(q)
j )2 define a certain probability distribution. Since the terms in the Schmidt decom-

position are naturally organised into charge subsectors, it is natural to consider the SROE, namely
the entropy of the probability distribution conditioned to each of the charge sectors. Defining the
probability in the charge sector q as

p(q) ≡
∑

j

(λ
(q)
j )2, (16.3.17)

we have
S(ρAB) =

∑

q

p(q)Sq(ρAB) +
∑

q

−p(q) log p(q), (16.3.18)

where the SROE of ρAB in the charge sector q is

Sq(ρAB) ≡
∑

j

−
(λ

(q)
j )2

p(q)
log

(λ
(q)
j )2

p(q)
. (16.3.19)

and, for a generic Rényi index n, as

S(n)
q (ρAB) ≡ 1

1− n log
∑

j

(λ
(q)
j )2n

p(q)n
. (16.3.20)

16.3.3 Operator Entanglement and entanglement criteria

There is a connection between operator entanglement and the more familiar concept of ‘state’
entanglement where one is interested in showing that ρAB cannot be written as a convex mixture

of product states ρAB =
∑

i piρ
(i)
A ⊗ ρ

(i)
B , pi ≥ 0 [715]. Let λi be the operator Schmidt decompo-

sition of the operator O = ρAB. According to the realignement/computable cross norm criterion
(CCNR) [717,718] For all separable states (not entangled) states, we have

∑

i

λi ≤ 1/
√

tr
[
ρ2
AB

]
(16.3.21)

The connection between the CCNR criterion and OE, which are the quantities that can accessed
experimentally, has been recently discussed in Ref. [719] here we show a slightly weaker but much
compact entanglement condition: Using the CCNR criterion, one can prove that the Rényi 2-OE
and the Rényi 2-entropy R(2) for a separable system must satisfy the following inequality

S(2)(ρAB) ≤ − log(tr
[
ρ2
AB

]
), (16.3.22)

Conversely, if S(2)(ρAB) > − log(tr
[
ρ2
AB

]
), i.e. if ρAB is more ‘operator mixed’ than ‘state mixed’,

ρAB is necessarily entangled.
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16.4 Symmetry resolved operator entanglement in free fermionic
chains

We have shown in Fig. 16.1 that most of the qualitative features for OE and SROE can be also
observed in free-fermion chains under unitary evolution, despite the model is short ranged and
there is no dissipation. This connection led us to wonder whether one could extract the main
physical treats of the OE and SROE of the RDM by studying the unitary time evolution of free
fermions in the thermodynamic limit. Therefore, in this section, we show that in this regime the
problem can be tackled analytically, unveiling some interesting properties of the SROE, such as
the time delay of the charge sectors or the equipartition.
To achieve our goal, the calculation of the SROE by the definition (16.3.19) is a difficult task,
especially for an analytic derivation. Therefore, we can apply a trick similar to what has been
done for the standard entanglement resolution, i.e. connecting it with the computation of the
charged moments of the RDM. Using the vectorised version of the operator ρAB, they are defined
as

Zn(α) ≡ 1

(Tr[ρ2
AB])n

Tr[(TrB(|ρAB〉 〈ρAB|))n eiαQA ], (16.4.1)

and their Fourier transform gives

Zn(q) =

∫ π

−π

dα

2π
e−iqαZn(α),

S(n)
q (ρAB) =

1

1− n log
Zn,q(ρAB)

Zn1,q(ρAB)
,

(16.4.2)

where q is the eigenvalue of QA.

16.4.1 Free-fermion techniques for the OE

For the eigenstates of quadratic lattice Hamiltonians, it is possible to compute the entanglement
entropies in terms of the eigenvalues of the correlation matrix of the system. We will show that
this trick can be applied also for the computation of the OE and, more in general, of the charged
moments (16.4.1).
Let us take a free-fermionic chain of length L with U(1) symmetry, described by the Hamiltonian

H = −1

2

L∑

i=1

(c†i+1ci + h.c.) (16.4.3)

where c†i (ci) is the creation (annihilation) operator such that {ci, c†j} = δij and cL+1 = c1, c
†
L+1 =

c†1, i.e. we impose periodic boundary conditions. The reduced density matrix for a subsystem
A∪B, ρAB, where A∪B = [1, `A]∪ [`A + 1, `A + `B] consists of two adjacent intervals, can be put
in a diagonal form as

ρAB =

`A+`B⊗

k=1

e−λkd
†
kdk

1 + e−λk
, (16.4.4)
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where e−λk = nk
1−nk , with nk the occupation number at a given wave vector k and dk’s are also

fermionic operators satisfying {dk, d†k′} = δkk′ . It is more convenient to write Eq. (16.4.4) as

ρAB =

`A+`B⊗

k=1

|0〉k 〈0|k + e−λk |1〉k 〈1|k
1 + e−λk

=

`A+`B⊗

k=1

[(1− nk) |0〉k 〈0|k + nk |1〉k 〈1|k],
(16.4.5)

so that by applying the vectorisation trick in Eq. (16.3.9) for ρAB, we get

|ρAB〉√
Tr[ρ2

AB]
=

`A+`B⊗

k=1

1√
Zk

[(1− nk) |0〉k |0〉k̃ + nk |1〉k |1〉k̃]

=

`A+`B⊗

k=1

1√
Zk

[1− nk + nkd
†
kd̃
†
k] |0〉 ,

(16.4.6)

where Zk = n2
k + (1 − nk)2 and the d̃†k’s are new creation operators that anti-commute with all

the dk’s, and |0〉 is the state annihilated by all the dk’s and d̃k’s. The 2(`A + `B) × 2(`A + `B)
correlation matrix of the state |ρAB〉 reads

〈ρAB|
(
d†k
d̃k

)(
dk′ d̃

†
k′

)
|ρAB〉

=
δkk′

Zk

(
n2
k nk(1− nk)

nk(1− nk) (1− nk)2

)
.

(16.4.7)

In the basis of dk, d̃k’s, the supercharge operator takes the form

Q =
∑

k

d†kdk −
∑

k

d̃†kd̃k. (16.4.8)

We can collect the operators into the vector f = (d1, . . . d`A+`B , d̃
†
1 . . . d̃

†
`A+`B

)t such that Q reads

Q = f †f − (`A + `B), where `A + `B is an additive constant.

At this point, to evaluate the charged moments in Eq. (16.4.1), we need to focus on the
subsystem A, i.e. we can restrict the supercharge operator to QA and the correlation matrix to
the subspace corresponding to the subsystem A. Going back to the spatial basis and diagonalising
this matrix, we get 2`A real eigenvalues ξi between 0 and 1.
Therefore, one can compute the charged moments of the RDM built from |ρAB〉 in terms of the
eigenvalues as

Zn(α) = e−iα(`A+`B)
2`A∏

a=1

(ξna e
iα + (1− ξa)n). (16.4.9)

Using the results in Eq. (16.4.2), we can compute exactly the SROE for the RDM of a free fermionic
chain. We mention that this trick also allows the computation of the total OE as

S(n)(ρAB) =
1

1− n

2`A∑

a=1

(log[ξna + (1− ξa)n)]. (16.4.10)
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16.4.2 Charged moments: a quasiparticle picture

Let us now consider a global quantum quench from an initial conformal invariant state with an
evolution Hamiltonian given by the continuum limit of Eq. (16.4.3). The emerging quasiparticles
will move with one single velocity and, in the space-time scaling limit t, `A, `B � τ0 (with τ0 an
ultraviolet cutoff), the charged moments are given by

logZn(α) =
π∆α

n

τ0
[t−Max(Min(`A, `B)/2, t)−Max(Max(`A, `B)/2, t) + Max(t, (`A + `B)/2)] ,

(16.4.11)
where

∆α
n =

1

12

(
n− 1

n

)
+

1

n

( α
2π

)2
. (16.4.12)

From this result valid for a CFT, one can formulate a quasiparticle picture for the charged moments
of free fermionic models with global conserved U(1) charge, whose quench dynamics starts from
initial states that are also invariant under U(1) symmetry. This is obtained from the CFT result
in Eq. (16.4.11) by first replacing t → |v(k)|t, with |v(k)| the velocity of quasiparticles, that for
conformal invariant systems is fixed to be v(k) = 1. Then we can integrate over the quasiparticles
with quasimomentum k, and replace π∆α

n/(τ0) → 2zn(k, α), which is the density (in momentum
space) of the thermodynamic charged moments in the stationary state, obtaining

logZn(α) =

∫ π

−π

dk

2π
2zn(k, α)

[
t|v(k)|−

Max(Min(`A, `B)/2, t|v(k)|)−Max(Max(`A, `B)/2, t|v(k)|) + Max(t|v(k)|, (`A + `B)/2)
]
.

(16.4.13)

We remind that a similar trick has been used in Chapter 14. In order to have a predictive formula,
one has to fix the function zn(k, α) in Eq. (16.4.13). Here we focus on out-of-equilibrium protocols
for free-fermion models, whose time evolution is given by the Hamiltonian in Eq. (16.4.3). In this
case zn(k, α) is determined from the population of the modes nk of the postquench Hamiltonian
in the stationary state [49,626] and it reads

zn(k, α) = log[eiαnnk + (1− nk)n]− iα/2. (16.4.14)

We focus the attention on a quench from the Néel state, for which nk = 1/2 and the quasiparticle
picture for the charged moments reads

logZn(α) = (2(1− n) log 2 + 2 log(cos(α/2)))

∫ π

−π

dk

2π

[
t|v(k)| −Max(Min(`A, `B)/2, t|v(k)|)+

−Max(Max(`A, `B)/2, t|v(k)|) + Max(t|v(k)|, (`A + `B)/2)
]
,

(16.4.15)

where |v(k)| = | sin(k)| and, for the sake of conciseness, we can introduce the function

J (t) =

∫ π

−π

dk

2π

[
t|v(k)| −Max(Min(`A, `B)/2, t|v(k)|)+

−Max(Max(`A, `B)/2, t|v(k)|) + Max(t|v(k)|, LA/2)
]
. (16.4.16)

The quasiparticle prediction for the total OE is also easily obtained as

S(n)(ρAB) =
1

1− n logZn(0). (16.4.17)
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16.4.3 Time delay, barrier and equipartition

From the computation of the charged moments done above, the symmetry resolved moments read

Znq) = 22(1−n)J (t)

∫ π

−π

dα

2π
e−iαq

(
cos

α

2

)2J (t)
. (16.4.18)

As already pointed out for the usual symmetry resolved entropies in [132, 133], this quantity
assumes negative values for J (t) < |q|. This allows us to identify a delay time tD such that the
SROE in a given charge sector starts only after tD. The equation J(tD) = |q| reads (as long as
vM tD < 1

2Min(`A, `B) self-consistently and vM ≡ max(v(k)) = 1)

J (t) =

∫ π

−π

dk

2π
| sin(k)|t < |q|, (16.4.19)

and we can conclude that tD = π|q|/2 for |q| < Min(`A, `B)/π. Therefore, the SROE is given by

S(n)
q (ρAB) =

{
0, t ≤ tD
2J (t) log 2 + logZ1(q) t > tD

(16.4.20)

We remark that this expression does not depend on the replica index n. In the regime J (t) > |q|,
for large J (t), we obtain

S(n)
q (ρAB) = 2J (t) log 2 − (J (t) + q) log(1 + q/J (t)) − (J (t) − q) log(1 − q/J (t)). (16.4.21)

The comparison between this formula and the numerical results in the tight-binding model chain
is displayed in the top-right panel of Fig. 16.1. The solid lines correspond to the saddle-point
approximation in Eq. (16.4.21) for t > tD. The agreement is good and we can also observe that
there are some charge sectors with zero entanglement for t < tD. However, for t > (`A + `B)/2
the discrepancy between the numerics and the analytical prediction in Eq. (16.4.21) is larger. One
explanation could be that at finite `A and t the data exhibit some small corrections, and our
prediction is recovered only in the scaling limit t, `A, `B →∞ with their ratio fixed.
For |q| � J (t) we find from Eq. (16.4.21)

S(n)
q (ρAB) = J (t)

(
2 log 2− q2

J (t)2

)
. (16.4.22)

This result states that for small |q| there is an effective equipartition of the OE with violations of
order q2/(`A + `B).

We observe that the SROE is small both at short and at large times, so it can be captured
by an MPO with small bond dimension. However, it blows up linearly in the transient regime
t ≤ (`A + `B)/(2), preventing efficient simulation using the MPO representation, whose bond
dimension would blow up exponentially in that time window. This also happens for the total
OE [631]. At short times, the RDM is still very close to the one of the pure state, and one does not
gain much by approximating ρAB instead of the corresponding state; this trick becomes efficient
only at later times.
We conclude by commenting the bottom-right panel of Fig. 16.1, obtained through the free-fermion
techniques described in Sec. 16.4.1. We show that the dynamics of the SROE in the different charge
sectors is affected by the finite size of the system, which is much smaller with respect to the result
showed in the panel above of the same Figure. In particular, one can observe the entanglement
barrier only in the sector q = 0, while for q = 1 the data present a plateaux followed by a decrease
due do the finite size of the system.
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16.5 Closing remarks

This Chapter is devoted to analyse the OE of the RDM after a global quantum quench and its
symmetry resolution. These quantities blow up linearly in time, before they decrease and saturate
to a finite value. The presence of this barrier is strongly affected by the finite size of the system, as
can be demonstrated experimentally. This feature is also visible for free fermionic systems evolving
under unitary evolution, which have been our main focus since they fit with the topics/techniques
of the previous Chapters of this thesis. However, let us summarise again all the results we have
found in [716].

The experimental results, also supported by tensor network simulations, have been obtained
by a post-processing method of randomized measurements data that has practical applications
to probe non-linear properties of quantum many-body systems. We observe the presence of the
entanglement barrier of the RDM of a partition of 4 ions out of L = 10, 20 both for the total OE
and for the charge sector q = 0 and L = 20. However, the finite size effects prevent the appearance
of such a barrier in the charge sectors q = ±1 and for q = 0, L = 10. When L = 20, in the charge
sectors q = ±1, the available statistics only allows us to explore the early time behaviour of the
SROE.

For small system sizes L, the phenomenology mentioned above can be also observed in free
fermionic systems without dissipation. Therefore, guided by conformal field theory and free-
fermion techniques, we show that the semiclassical picture of moving quasiparticles [44] can be
adapted in this context, leading to a general conjecture for the charged OEs whose Fourier trans-
form gives the desired SROE. Beyond the barrier, we observe a delay time proportional to the
charge sector and an effective equipartition for small q.

Because of this phenomenology, we expect our main physical findings to show up for rather
generic quench protocols. However, it would be very interesting to engineer situations in which
some of them are absent, e.g. with the entanglement barrier appearing only in given charge sectors,
breaking equipartition.

The combination of CFT and exact calculations in critical free-fermion chains allows to compute
the SROE of other operators, such as the thermal density matrix ρβ and the local operators evolving
in Heisenberg picture O = eitHOe−itH , too. The main trait of the former case is that the leading
order term of the SROE corresponds to the total OE, which diverges logarithmically in the the
subsystem size, `A, at low temperatures, i.e. when the RDM is very close to the one of the ground
state, while it is bounded (in `A) at finite temperature β. The fact that the leading term coincides
with the total OE resembles the entanglement equipartition for the usual symmetry resolution,
and it can be traced back to the conformal invariance of the system also in this case. For the latter
operator and free fermion Hamiltonians, one can study the SROE of a Jordan-Wigner string and it
turns out that it grows logarithmically in time, while the fermion creation/annihilation operators
satisfy the operator area law. These are preliminary steps towards the general understanding of
the symmetry resolution of OE, which certainly deserves further investigation.

To conclude, the study of the OE and its interplay with symmetries leave space for further
investigations about the connection between entanglement measures and the charge operators
defined in the enlarged Hilbert space, as in Eq. (16.3.14). We will come back to this in the
conclusions of this thesis.
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Conclusions

Despite each Chapter contains its own conclusions, which are more related to the specific topic we
dealt with, here we want to give a more general overview about the possible aspects that could
deserve further investigations.

The core of this thesis has been the study of entanglement in theories with global conserved
charges. However, it would be natural to ask whether similar procedures could be applied in
systems endowed with local symmetries, and, therefore, a possible connection with the study
of entanglement in gauge theories. This problem is quite challenging because it turns out that
the Hilbert space of physical states, i.e., gauge-invariant states, does not admit a tensor product
decomposition in terms of the Hilbert space of states in a region A and its complement. Thus, it
is not clear how to compute the entanglement by simply using the definition of reduced density
matrix. One possible approach for defining the entanglement entropy was given in [219]: the
authors work with gauge-invariant states, and the algebra of operators acting in the region A
and its complement B. They argue that this algebra has a non-trivial centre for gauge theories,
and this centre is responsible for the space of gauge-invariant states not having a tensor product
decomposition. Therefore, by diagonalising the centre and going to sectors where it takes a fixed
value, the Hilbert space of gauge-invariant states in each sector does admit a tensor product
decomposition, leading to a definition of the density matrix and the entanglement entropy. Another
possible approach consists in working on a spatial lattice, embedding the space of gauge-invariant
states in a bigger space obtained by taking the tensor product of the Hilbert spaces on each link of
the lattice [221, 222]. This admits a tensor product decomposition in terms of the Hilbert spaces
for the set of links of interest. It would be interesting if using one of this two approaches, one can
use the tools adopted in this thesis, like the charged moments and the approach of Chapter 3, to
study this subject.

This idea of enlarging the Hilbert space reminds other possible ways to quantify the entangle-
ment. One of this involves the purification of a mixed state. Let us appeal (for the last time!)
to our travel friends Alice and Bob to specify a bit better what we mean by purification, without
any details about how this operation can be done. To achieve this goal, we need to introduce a
possible third adversary, Eve, such that we start from a pure state |Ψ〉 living in the Alice’s, Bob’s
and Eve’s Hilbert space

|Ψ〉 ∈ HA ⊗HB ⊗HE . (17.0.1)

Then we trace over Eve’s Hilbert space, HE , producing a mixed state ρAB. The purification is a
process which transforms the mixed state ρAB into pure states, meaning that the final state of Alice
and Bob has to be pure and hence not entangled with anything else. The adversary Eve is out of
the game, whatever operation and measurements she performs. This procedure allows recovering
a pure state starting from a mixed one and can be defined, for example, by properly enlarging
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the original Hilbert space of our theory [720–723]. If we introduce an Hilbert space which is the
identical copy of the original one, the entanglement entropy computed from the canonically purified
state living in this doubled Hilbert space provides the reflected entropy [703, 704]. Despite this
quantity, like the entanglement of purification, has been introduced in the context of AdS/CFT
because it posseses an understandable gravity dual, it would be interesting to study what we can
learn from it in the presence of a global charge. As done for the negavity, this process would
require to understand what is the correct quantum number and, therefore, the charge with respect
to which one should perform the resolution.

It should be clear from this work that the investigation of the entanglement in different contexts
allows, on one hand, to explore lots of aspects of quantum many-body systems. On the other hand,
it also gives the possibility to learn several techniques which are extremely powerful, ranging from
the realm of integrability to quantum field theory. We hope that the work collected in this thesis
will stimulate future investigations in this fascinating field of research.
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[293] H. Casini, E. Testé, and G. Torroba, Relative entropy and the RG flow, JHEP 03, 08 (2017).

[294] H. Casini, I. S. Landea, and G. Torroba, The g-theorem and quantum information theory,
JHEP 10, 140 (2016).

[295] H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav. 25, 205021
(2008).

[296] D. D. Blanco, H. Casini, L. Y. Hung, and R. Myers, Relative Entropy and Holography.
JHEP 08, 060 (2013).

[297] D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, Relative entropy equals bulk
relative entropy, JHEP 06, 004 (2016)

[298] G. Sarosi and T. Ugajin, Relative entropy of excited states in two dimensional conformal
field theories, JHEP 07, 114 (2016).

[299] T. Ugajin, Mutual information of excited states and relative entropy of two disjoint subsys-
tems in CFT, JHEP 10, 184 (2017).

[300] G. Sarosi and T. Ugajin, Relative entropy of excited states in conformal field theories of
arbitrary dimensions, JHEP 02, 060 (2017).

[301] R. Arias, D. Blanco, H. Casini, and M. Huerta, Local temperatures and local terms in
modular Hamiltonians, Phys. Rev. D 95, 065005 (2017).

[302] V. Balasubramanian, J. J. Heckman, and A. Maloney, Relative Entropy and Proximity of
Quantum Field Theories, JHEP 05, 104 (2015).

[303] P. Ruggiero and P. Calabrese, Relative Entanglement Entropies in 1+1-dimensional con-
formal field theories, JHEP 02, 039 (2017).

[304] S. Murciano, P. Ruggiero, and P. Calabrese, Entanglement and relative entropies for low-
lying excited states in inhomogeneous one-dimensional quantum systems, J. Stat. Mech.
034001 (2019).

http://dx.doi.org/10.1088/1742-5468/2014/09/P09025
 https://doi.org/10.1103/PhysRevLett.127.040603
 https://doi.org/10.1103/PhysRevA.104.022414 
 https://doi.org/10.22331/q-2022-02-02-642
http://dx.doi.org/10.1103/PhysRevLett.117.041601
http://dx.doi.org/10.1103/PhysRevLett.117.041601
http://dx.doi.org/10.1103/PhysRevLett.113.051602
http://dx.doi.org/10.1103/PhysRevLett.113.051602
http://dx.doi.org/10.1007/JHEP03(2017)089
http://dx.doi.org/10.1007/JHEP10(2016)140
http://dx.doi.org/10.1088/0264-9381/25/20/205021
http://dx.doi.org/10.1088/0264-9381/25/20/205021
http://dx.doi.org/10.1007/JHEP08(2013)060
http://dx.doi.org/10.1007/JHEP06(2016)004
http://dx.doi.org/10.1007/JHEP07(2016)114
 http://dx.doi.org/10.1007/JHEP10(2017)184
http://dx.doi.org/10.1007/JHEP02(2017)060
http://dx.doi.org/10.1103/PhysRevD.95.065005
http://dx.doi.org/10.1007/JHEP05(2015)104
http://dx.doi.org/10.1007/JHEP02(2017)039
http://dx.doi.org/10.1088/1742-5468/ab00ec
http://dx.doi.org/10.1088/1742-5468/ab00ec


282 BIBLIOGRAPHY

[305] A. J. A. James, R. M. Konik, P. Lecheminant, N. J. Robinson, and A. M. Tsvelik,
Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-
Abelian bosonization to truncated spectrum methods Rep. Progr. Phys. 81, 046002 (2018).

[306] V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys.
74, 197 (2002).

[307] K. M. R. Audenaert and J. Eisert, Continuity bounds on the quantum relative entropy, J.
Math. Phys. 46, 102104 (2005).

[308] J. Zhang, P. Ruggiero, and P. Calabrese, Subsystem Trace Distance in Quantum Field
Theory, Phys. Rev. Lett. 122, 141602 (2019).

[309] J. Zhang, P. Ruggiero, and P. Calabrese, Subsystem trace distance in low-lying states of
(1 + 1)-dimensional conformal field theories, JHEP 10, 181 (2019).

[310] J. Zhang and P. Calabrese, Subsystem distance after a local operator quench, JHEP 02, 056
(2020).

[311] Y. Nakataa, T. Takayanagia, Y. Takia, K. Tamaoka and Z. Weia, Holographic Pseudo
Entropy, Phys. Rev. D 103, 026005 (2021).

[312] A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka, Z. Weia, Pseudo-Entropy in Free
Quantum Field Theories, Phys. Rev. Lett. 126, 081601 (2021).

[313] V. P. Yurov and A. B. Zamolodchikov, Truncated conformal space approach to scaling Lee-
Yang model, Int. J. Mod. Phys. A 05, 3221 (1990).

[314] V. P. Yurov and A. B. Zamolodchikov, Truncated fermionic space approach to the critical
2-D Ising model with magnetic field, Int. J. Mod. Phys. A 06, 4557 (1991).

[315] S. Murciano, P. Calabrese, and R. M. Konik, Post-Quantum Quench Growth of Renyi
Entropies in Low Dimensional Continuum Bosonic Systems, Phys. Rev. Lett. 129, 106802
(2022).

[316] A. Elben, B. Vermersch, M. Dalmonte,I. Cirac and P. Zoller, Rényi Entropies from Random
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[319] U. Schollwöck A. J Daley, C. Kollath and G Vidal, Time-dependent density-matrix
renormalization-group using adaptive effective hilbert spaces, J. Stat. Mech. P0404005
(2004).

[320] S. R. White and A. E. Feiguin, Real-time evolution using the density matrix renormalization
group, Phys. Rev. Lett. 93 076401, (2004).

[321] F. Verstraete and J. I. Cirac, Continuous matrix product states for quantum fields, Phys.
Rev. Lett., 104 190405, (2010).

https://doi.org/10.1088/1361-6633/aa91ea
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1063/1.2044667
http://dx.doi.org/10.1063/1.2044667
http://dx.doi.org/10.1103/PhysRevLett.122.141602
http://dx.doi.org/10.1007/JHEP10(2019)181
http://dx.doi.org/10.1007/JHEP02(2020)056
http://dx.doi.org/10.1007/JHEP02(2020)056
http://dx.doi.org/ 10.1103/PhysRevD.103.026005
http://dx.doi.org/10.1103/PhysRevLett.126.081601
https://doi.org/10.1142/S0217751X9000218X
https://doi.org/10.1142/S0217751X91002161
https://link.aps.org/doi/10.1103/PhysRevLett.129.106802
https://link.aps.org/doi/10.1103/PhysRevLett.129.106802
 https://doi.org/10.48550/arXiv.1709.05060 
 https://doi.org/10.48550/arXiv.1008.3477 
 https://doi.org/10.1103/PhysRevLett.98.070201 
 https://doi.org/10.1088/1742-5468/2004/04/P04005 
 https://doi.org/10.1088/1742-5468/2004/04/P04005 
 https://doi.org/10.1103/PhysRevLett.93.076401 
 https://doi.org/10.1103/PhysRevLett.104.190405 
 https://doi.org/10.1103/PhysRevLett.104.190405 


BIBLIOGRAPHY 283

[322] J. Haegeman, J. I. Cirac, T. J. Osborne, and F. Verstraete, Calculus of continuous matrix
product states, Phys. Rev. B, 88 085118, (2013).

[323] A. Tilloy and J. I. Cirac, Continuous tensor network states for quantum fields, Phys. Rev.
X 9 021040 (2019).

[324] J. Voit, One-dimensional fermi liquids, Rep. Progr. Phys., 58 977, (1995).

[325] A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge University
Press, 2 edition, (2003).

[326] D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno, 1d-1d coulomb drag signature of a
luttinger liquid, Science, 343 631, (2014).

[327] S. Wang, S. Zhao, Z. Shi, F. Wu, Z. Zhao, L. Jiang, K. Watanabe, T. Taniguchi, A. Zettl,
C. Zhou and F. Wang, Nonlinear luttinger liquid plasmons in semiconducting single-walled
carbon nanotubes, Nature Mat., 19 986, (2020).

[328] J.-S. Caux and P. Calabrese, Dynamical density-density correlations in the one-dimensional
bose gas, Phys. Rev. A, 74 031605, (2006).

[329] A. H. van Amerongen, J. J. P. van Es, P. Wicke, K. V. Kheruntsyan, and N. J. van Druten,
Yang-yang thermodynamics on an atom chip, Phys. Rev. Lett., 100 090402, (2008).

[330] B.Lake, A. M. Tsvelik, S. Notbohm, D. A. Tennant, T. G. Perring, M. Reehuis, C. Sekar,
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[408] S. Humeniuk and H. P. Büchler, Full Counting Statistics for Interacting Fermions with
Determinantal Quantum Monte Carlo Simulations, Phys. Rev. Lett. 119, 236401 (2017).

http://dx.doi.org/10.1209/0295-5075/98/20003
https://doi.org/10.1103/PhysRevB.86.174202
https://doi.org/10.1209/0295-5075/100/60009
https://doi.org/10.1103/PhysRevA.91.012303
https://doi.org/10.1140/epjst/e2018-800043-4
https://doi.org/10.1140/epjst/e2018-800043-4
http://dx.doi.org/10.1088/1367-2630/9/1/007
https://doi.org/10.1088/1751-8113/40/16/001
https://doi.org/10.1103/PhysRevLett.98.170602
https://doi.org/10.1103/PhysRevLett.100.165706
http://dx.doi.org/10.1103/PhysRevE.87.022114
http://dx.doi.org/10.1088/1742-5468/2013/05/P05001
https://doi.org/10.1103/PhysRevLett.111.080402
https://doi.org/10.1103/PhysRevLett.111.080402
http://dx.doi.org/10.1088/1742-5468/2014/11/P11006
http://dx.doi.org/10.1088/1742-5468/2014/11/P11006
http://dx.doi.org/10.1088/1367-2630/18/10/103015
http://dx.doi.org/10.1103/PhysRevB.95.035119
http://dx.doi.org/10.1103/PhysRevB.95.035119
http://dx.doi.org/10.1088/1751-8121/aa87dd
http://dx.doi.org/10.1103/PhysRevB.96.235109
http://dx.doi.org/10.1103/PhysRevLett.119.236401


288 BIBLIOGRAPHY

[409] A. Bastianello, L. Piroli, and P. Calabrese, Exact local correlations and full counting statis-
tics for arbitrary states of the one-dimensional interacting Bose gas, Phys. Rev. Lett. 120,
190601 (2018).

[410] A. Bastianello and L. Piroli, From the sinh-Gordon field theory to the one-dimensional Bose
gas: exact local correlations and full counting statistics, J. Stat. Mech. (2018) 113104.

[411] G. Perfetto, L. Piroli, and Andrea Gambassi, Quench action and large deviations: Work
statistics in the one-dimensional Bose gas, Phys. Rev. E 100, 032114 (2019).

[412] G. Del Vecchio Del Vecchio, A. Bastianello, A. De Luca, G. Mussardo, Exact out-of-
equilibrium steady states in the semiclassical limit of the interacting Bose gas, SciPost
Phys. 9 002, (2020).

[413] V. Gritsev, E. Altman, E. Demler and A. Polkovnikov, Full quantum distribution of contrast
in interference experiments between interacting one-dimensional Bose liquids, Nature Phys.
2, 705 (2006).

[414] V. Eisler and Z. Racz, Full Counting Statistics in a Propagating Quantum Front and Ran-
dom Matrix Spectra, Phys. Rev. Lett. 110, 060602 (2013).

[415] I. Lovas, B. Dora, E. Demler, and G. Zarand, Full counting statistics of time of flight
images, Phys. Rev. A 95, 053621 (2017).

[416] M. Collura and F. H. L. Essler, How order melts after quantum quenches, Phys. Rev. B
101, 041110 (2020).

[417] M. Collura, Relaxation of the order-parameter statistics in the Ising quantum chain, SciPost
Phys. 7, 072 (2019).

[418] M. Arzamasovs and D. M. Gangardt, Full Counting Statistics and Large Deviations in a
Thermal 1D Bose Gas, Phys. Rev. Lett. 122, 120401 (2019).

[419] M. N. Najafi and M. A. Rajabpour, Formation probabilities and statistics of observables as
defect problems in the free fermions and the quantum spin chains, arXiv:1911.04595.

[420] M. Collura, A. De Luca, P. Calabrese, and J. Dubail, Domain-wall melting in the spin-1/2
XXZ spin chain: emergent Luttinger liquid with fractal quasi-particle charge, Phys. Rev. B
102 180409(R), (2020).

[421] F. Ares, M. A. Rajabpour, J. Viti, Exact full counting statistics for the staggered magneti-
zation and the domain walls in the XY spin chain Phys. Rev. E 103, 042107 (2021)

[422] G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev.
Lett. 93, 040502 (2004).

[423] T. Barthel, M.-C. Chung, and U. Schollwöck, Entanglement scaling in critical two-
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