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Abstract

Aim of this paper is to prove the second order differentiation formula for H??2 functions
along geodesics in RCD* (K, N) spaces with K € R and N < oo. This formula is new even
in the context of Alexandrov spaces, where second order differentiation is typically related
to semiconvexity.

We establish this result by showing that Ws-geodesics can be approximated up to
second order, in a sense which we shall make precise, by entropic interpolation. In turn
this is achieved by proving new, even in the smooth setting, estimates concerning entropic
interpolations which we believe are interesting on their own. In particular we obtain:

- equiboundedness of the densities along the entropic interpolations,
- local equi-Lipschitz continuity of the Schrédinger potentials,
- a uniform weighted L? control of the Hessian of such potentials.

Finally, the techniques adopted in this paper can be used to show that in the RCD setting
the viscous solution of the Hamilton-Jacobi equation can be obtained via a vanishing
viscosity method, in accordance with the smooth case.

With respect to a previous version, where the space was assumed to be compact, in
this paper the second order differentiation formula is proved in full generality.
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1 Introduction

In the last ten years there has been a great interest in the study of metric measure spaces
with Ricci curvature bounded from below, see for instance [49], [60], [61], [33], [5], [6], [31], [7],
(53], [54], [34], [28], [30], [43], [9], [52], [15], [14]. The starting points of this research line have
been the seminal papers [49] and [60], [61] which linked lower Ricci bounds on metric measure
spaces to properties of entropy-like functionals in connection with Ws-geometry. Later ([5]) it
emerged that also Sobolev calculus is linked to Wa-geometry and building on top of this the
original definition of CD spaces by Lott-Sturm-Villani has evolved into that of RCD spaces
([6], [31]).

An example of a link between Sobolev calculus and Wa-geometry is the following result
(a minor variant of a statement in [28]). It says that we can safely take one derivative of a
Wh2(X) function along an optimal geodesic test plan 7, i.e. a test plan satisfying

1
//0 5e|* dt dme () = W3 ((e0) 7, (e1)s).

Theorem 1.1 (First order differentiation formula). Let (X,d,m) be an RCD(K,c0) space,
K € R, w an optimal geodesic test plan with bounded support (equivalently: such that {~; :
t €1[0,1], v € supp(m)} C X is bounded) and f € WH2(X).

Then the map [0,1] > t — foe, € L*(m) is in C1([0,1], L3 (7)) and we have

%(f o et) — <Vf, v¢t> O €¢,

for every t € [0,1], where e, : C([0,1],X) — X, v +— 7 is the evaluation map and ¢, is any
function such that for some s # t, s € [0, 1], the function —(s—t)¢; is a Kantorovich potential
from (er)«m to (es)..

Recall that on RCD(K, 00) spaces every Wa-geodesic (y¢) between measures with bounded
density and support is such that p; < Cm for every ¢ € [0, 1] and some C' > 0 ([54]), so that
between two such measures there always exists a (unique) optimal geodesic test plan with
bounded support. Thus the theorem also says that we can find ‘many’ C' functions on RCD
spaces. We remark that such C! regularity - which was crucial in [28] - is non-trivial even if
the function f is assumed to be Lipschitz and that statements about C' smoothness are quite
rare in metric geometry.

Furthermore, projecting from 7 to p; := (e;)«7 one can see that Theorem 1.1 immediately
implies

o / fdpe = / (V£. V1) du (L.1)
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and one might think of this identity as an ‘integrated’ version of the basic formula

< Fon) = A6

valid in the smooth framework; at the technical level the proof of the claim has to do with
the fact that the geodesic (u¢) solves the continuity equation

d .
g A (Vo) =0, (1.2)

where the ¢;’s are appropriate choices of Kantorovich potentials (see also [32] in this direction),
and with the fact that Vi, = V¢, (see Lemma A.7 below).

In [29], the first author developed a second-order calculus on RCD spaces, in particu-
lar defining the space H>2?(X) and for f € H??(X) the Hessian Hess(f), see [29] and the
Appendix. It is then natural to ask whether an ‘integrated’ version of the second order dif-
ferentiation formula

d? ‘
@f(%) = Hess(f) (71, 7) for v geodesic

holds in this framework. In this paper we provide affirmative answer to this question, our
main result being:

Theorem 1.2 (Second order differentiation formula). Let (X,d, m) be an RCD*(K, N) space,

K €R and N < oo, ™ an optimal geodesic test plan with bounded support and f € H*?(X).
Then the map [0,1] > t — foe, € L%(m) is in C2([0,1], L*(w)) and we have

d2

7 (F o er) = Hess(f)(Ver, Vo) o, (13)

for every t € [0,1], where ¢y is as in Theorem 1.1.

An equivalent formulation, which is the one we shall actually prove (see Theorem 5.13)
and is more in the spirit of (1.1), is the following:

Theorem 1.3 (Second order differentiation formula (2nd form)). Let (X,d, m) be an RCD*(K, N)
space, K € R and N < oo, po,pu1 € Po(X) be such that po,p1 < Cm for some C > 0,

with compact supports and let (u;) be the unique Wa-geodesic connecting g to py. Also, let
f e H*(X).
Then the map

0,1]> t — /fdut eR
belongs to C*([0,1]) and it holds

2
jtg/fd:u't = /HeSS(f)(V@,tht)dut, (1.4)

for every t € [0,1], where ¢y is any function such that for some s #t, s € [0, 1], the function
—(s —t)¢¢ is a Kantorovich potential from p to s.

Let us comment about the assumptions in Theorem 1.2 and Theorem 1.3:



- The first order differentiation formula is valid on general RCD(K, co) spaces, while for
the second order one we assume finite dimensionality. This is due to the strategy of our
proof, which among other things uses the Li-Yau inequality; it is therefore unknown
whether such assumption is really needed.

- There exist optimal geodesic test plans without bounded support (if K = 0 or the
densities of the initial and final marginals decay sufficiently fast) but in this case the
functions ¢; appearing in the statement(s) are not Lipschitz. As such it seems hard to
have Hess(h)(V¢y, V) o e; € L(m) and thus we cannot really hope for anything like
(1.3), (1.4) to hold: this explains the need of the assumption on bounded supports.

Having at disposal such second order differentiation formula is interesting not only at the
theoretical level, but also for applications to the study of the geometry of RCD spaces. For
instance, the proofs of both the splitting theorem [28] and of the ‘volume cone implies metric
cone’ [22] in this setting can be greatly simplified by using such formula (in this direction, see
[63] for comments about the splitting). Also, one aspect of the theory of RCD spaces which is
not yet clear is whether they have constant dimension: for Ricci-limit spaces this is known to
be true by a result of Colding-Naber [21] which uses second order derivatives along geodesics
in a crucial way. Thus our result is necessary to replicate Colding-Naber argument in the
non-smooth setting (but not sufficient: they also use a calculus with Jacobi fields which as of
today does not have a non-smooth counterpart)?.

Let us discuss the strategy of the proof. Our starting point is a related second order
differentiation formula obtained in [29], available under proper regularity assumptions:

Theorem 1.4. Let (u;) be a Wa-absolutely continuous curve solving the continuity equation

d )
Tt div(Xpue) = 0,

for some vector fields (X;) € L*(TX) in the following sense: for every f € W12(X) the map
t— [ fdu is absolutely continuous and it holds

d
G [ faw= [ (9550
Assume that
(i) t +— Xy € L3(TX) is absolutely continuous,
(i) supy{|[ Xell 2 + | X¢llLoe + [V Xi][f2} < +o0.
Then for f € H**(X) the map t — [ fdu; is CH' and the formula

d2

dtQ/fd,ut:/Hess(f)(Xt,Xt)+<Vf, X+ Vx, X)) du (1.5)

holds for a.e. t € [0,1].

tadded in proof: Brué-Semola recently obtained in [13] the constant dimension property by other means.



If the vector fields X; are of gradient type, so that X; = V¢, for every t and the ‘acceler-
ation’ a; is defined as

2
%@ + W;M =i ay
then (1.5) reads as
d2
(w/fdut:/Hess(f)(V@,ngt) dut—i-/(Vf, Vag) dp. (1.6)

In the case of geodesics, the functions ¢; appearing in (1.2) solve (in a sense which we will
not make precise here) the Hamilton-Jacobi equation
d Ve

FTAC

0, (1.7)

thus in this case the acceleration a; is identically 0. Hence if the vector fields (V) satisfy
the regularity requirements (), (74) in the last theorem we would easily be able to establish
Theorem 1.2. However in general this is not the case; informally speaking this has to do with
the fact that for solutions of the Hamilton-Jacobi equations we do not have sufficiently strong
second order estimates.

In order to establish Theorem 1.2 it is therefore natural to look for suitable ‘smooth’
approximations of geodesics for which we can apply Theorem 1.4 above and then pass to
the limit in formula (1.5). Given that the lack of smoothness of Wa-geodesic is related to
the lack of smoothness of solutions of (1.7), also in line with the classical theory of viscous
approximation for the Hamilton-Jacobi equation there is a quite natural thing to try: solve,
for € > 0, the equation

+ S Ay, 05 = @,

where ¢ is a given, fixed, Kantorovich potential for the geodesic (1), and then solve

d :
Hi — div(Veing) =0, 1o = o

This plan can actually be pursued and following the ideas in this paper one can show that if
the space (X, d, m) is RCD* (K, N) and the geodesic () is made of measures with equibounded
densities, then as € | 0O:

i) the curves (uj) Wa-uniformly converge to the geodesic (1) and the measures p have
equibounded densities.

ii) the functions ¢f are equi-Lipschitz and converge both uniformly and in the W12
topology to the only viscous solution (¢;) of (1.7) with ¢ as initial datum; in particular
the continuity equation (1.2) for the limit curve holds.

These convergence results are based on Hamilton’s gradient estimates and the Li-Yau inequal-
ity and are sufficient to pass to the limit in the term with the Hessian in (1.6). For these curves
the acceleration is given by aj = —5Ap; and thus we are left to prove that the quantity

e / (V£ VAG) dis
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goes to 0 in some sense. However, there appears to be no hope of obtaining this by PDE
estimates. The problem is that this kind of viscous approximation can produce in the limit
a curve which is not a geodesic if ¢ is not c-concave: shortly said, this happens as soon as
a shock appears in Hamilton-Jacobi. Since there is no hope for formula (1.4) to be true for
non-geodesics, we see that there is little chance of obtaining it via such viscous approximation.

We therefore use another way of approximating geodesics: the slowing down of entropic
interpolations. Let us briefly describe what this is in the familiar Euclidean setting.

Fix two probability measures py = poL?, p1 = p1£?% on R% The Schrédinger functional
equations are

po = fhig p1=ghif, (1.8)

the unknown being the Borel functions f, g : R? — [0, 00), where h; f is the heat flow starting
at f evaluated at time ¢. It turns out that in great generality these equations admit a solution
which is unique up to the trivial transformation (f,g) — (cf, g/c) for some constant ¢ > 0.
Such solution can be found in the following way: let R be the measure on (R%)? whose density
w.r.t. £2¢ is given by the heat kernel ri(z,y) at time ¢ = 1 and minimize the Boltzmann-
Shannon entropy H (7 | R) among all transport plans « from g to uq. The Euler equation for
the minimizer forces it to be of the form f ® gR for some Borel functions f, g : RY — [0, 00),
where f ® g(z,y) := f(x)g(y) (we shall reprove this known result in Proposition 2.1). Then
the fact that f ® gR is a transport plan from pug to p is equivalent to (f, g) solving (1.8).

Once we have found the solution of (1.8) we can use it in conjunction with the heat flow
to interpolate from pg to p; by defining

pt = hefhiyg.

This is called entropic interpolation. Now we slow down the heat flow: fix ¢ > 0 and by
mimicking the above find f¢, ¢g* such that

po = f*h29° p1=9g"hesaf",

(the factor 1/2 plays no special role, but is convenient in computations). Then define
Pf = hic/af  h(1—p)e/29°

The remarkable and non-trivial fact here is that as e | 0 the curves of measures (piL£9)
converge to the Wa-geodesic from g to .

The first connections between Schrodinger equations and optimal transport have been
obtained by Mikami in [50] for the quadratic cost on R?; later Mikami-Thieullen [51] showed
that a link persists even for more general cost functions. The statement we have just made
about convergence of entropic interpolations to displacement ones has been proved by Léonard
in [46]. Actually, Léonard worked in much higher generality: as it is perhaps clear from the
presentation, the construction of entropic interpolation can be done in great generality, as
only a heat kernel is needed. He also provided a basic intuition about why such conver-
gence is in place: the basic idea is that if the heat kernel admits the asymptotic expansion
elogre(z,y) ~ —% (in the sense of Large Deviations), then the rescaled entropy func-
tionals e H (- |R:) converge to 3 [ d*(z,y)d- (in the sense of I'-convergence). We refer to [48]
for a deeper discussion of this topic, historical remarks and much more, and to [20] and [26]



for more recent developments about the link between optimal transport and the Schrodinger
problem.

Starting from these intuitions and results, working in the setting of RCD*(K, N) spaces
we gain new information about the convergence of entropic interpolations to displacement
ones. In order to state our results, it is convenient to introduce the Schrédinger potentials
@i, ; as

¢f = eloghy o f* Vi = ¢elogh(i_ye/29°
In the limit ¢ | 0 these will converge to forward and backward Kantorovich potentials along
the limit geodesic (1;) (see below). In this direction, it is worth to notice that while for ¢ > 0
there is a tight link between potentials and densities, as we trivially have

©f + i = elogpy,

in the limit this becomes the well known (weaker) relation that is in place between for-
ward/backward Kantorovich potentials and measures (;):

ot +1Pr =0 on supp(u),
o + wt S O on X7

see e.g. Remark 7.37 in [64] (paying attention to the different sign convention). By direct
computation one can verify that (¢7), (¢f) solve the Hamilton-Jacobi-Bellman equations

d 1 €
- 2 e — €12 < €
dt = ‘V‘Pt’ + A@t dtwt 2|V¢t‘ + 2A¢ta (1-9)
thus introducing the functions
e._ Yi—vi
t - 2
it is not hard to check that it holds
d
dt + div(V§ pf) = (1.10)
and 196 2 2
\Y%
&ﬁf | 5 | = aj, where aj = —% <2A10gp§ + |Vlog pf\Q).

With this said, our main results about entropic interpolations can be summarized as follows.
Under the assumptions that the metric measure space (X,d, m) is RCD*(K, N), N < oo, and
that pg, p1 belong to L>°(X) with bounded supports it holds:

- Zeroth order

— bound For some C' > 0 depending on K, N, pg, p1 we have pi < C for every e € (0,1)
and ¢ € [0,1].

— convergence The curves (pim) Wo- uniformly converge to the unique Ws-geodesic
(p¢) from g to py and setting py “t it holds pf = p; in L=(X) for all t € [0, 1].

- First order



— bound For any t € (0, 1] the functions {¢f}.c(o,1) are locally equi-Lipschitz. Simi-
larly for the ’s.

— convergence For every sequence g, | 0 there is a subsequence - not relabeled - such
that for any ¢ € (0, 1] the functions ¢;™ converge both locally uniformly and in
W1’2(X) to a function ¢; such that —tp; is a Kantorovich potential from p; to pyo.

loc

Similarly for the ’s.
- Second order For every § € (0,1/2) we have

— bound

1-96
sup // (|Hess (%) |2—|S + £%|Hess(log p5) E{S)pf dtdm < oo,
e€(0,1) JJ§

1-5
Sup // (JAY;|? + €| Alog p5 [*) pf dt dm < oo.
e€(0,1) JJ§

(1.11)

Notice that since in general the Laplacian is not the trace of the Hessian, there is
no direct link between these two bounds.

— convergence For every function h € W12(X) with Ah € L>(X) it holds

1-0
lim// (Vh,Vag) p; dtdm = 0. (1.12)
el0 JJs

With the exception of the convergence pfm — i, all these results are new even on smooth
manifolds (in fact, even on R?) and have been partially used in our recent paper [38], where
further analogies between entropic interpolations/Schrédinger potentials on the one hand
and Ws-geodesics/Kantorovich potentials on the other one are investigated within the RCD
framework, in particular in connection with a Benamou-Brenier-like formulation of these
problems. Such analogies have been first pointed out in [20] and [26] in the Euclidean setting,
and these papers have been source of inspiration for our [38].

The zeroth and first order bounds are both consequences of the Hamilton-Jacobi-Bellman
equations (1.9) satisfied by the ¢’s and ¢’s and can be obtained from Hamilton’s gradient
estimate and the Li-Yau inequality. The facts that the limit curve is the Ws-geodesic and
that the limit potentials are Kantorovich potentials are consequence of the fact that we can
pass to the limit in the continuity equation (1.10) and that the limit potentials satisfy the
Hamilton-Jacobi equation. In this regard it is key that we approximate at the same time both
the ‘forward’ potentials ¢ and the ‘backward’ one (: see the proof of Proposition 5.4 and recall
that the simple viscous approximation may converge to curves which are not Ws-geodesics.

Notice that these zeroth and first order convergences are sufficient to pass to the limit in
the term with the Hessian in (1.6). As said, also the viscous approximation could produce the
same kind of convergence.

The crucial advantage of dealing with entropic interpolations (which has no counterpart
in viscous approximation) is thus in the second order bounds and convergence results which
show that the term with the acceleration in (1.6) vanishes in the limit and thus eventually
allows us to prove our main result Theorem 1.2. In this direction, we informally point out that
being the geodesic equation a second order one, in searching for an approximation procedure
it is natural to look for one producing some sort of second order convergence.



The limiting property (1.12) is mostly a consequence - although perhaps non-trivial - of
the bound (1.11) (see in particular Lemma 4.10 and the proof of Theorem 5.13), thus let us
focus on how to get (1.11). The starting point here is a formula due to Léonard [44], who
realized that there is a connection between entropic interpolation and lower Ricci bounds: he
computed the second order derivative of the entropy along entropic interpolations and in this
direction our contribution has been the rigorous proof in the RCD framework of his formal
computations, thus getting

d2

a1 m) = [ 5 A(Ta009) + §Talog()) = 5 [ EA(Ta(e) + Ta(w), (113

where I's is the ‘iterated carré du champ’ operator defined as
\V4 2
r(f) = alE v pvap)

(in the setting of RCD spaces some care is needed when handling this object, see also the
Appendix for an explanation of the distinction between A and A, but let us neglect this issue
here).

Observe that if h : [0,1] — RT is a convex function, then —@ < KW(t) < h—_lg for any
€ (0,1) and thus
e h(1) | h(0)
/ W)yt = 11— 8) ~ 1(8) < 1y M) (1.14)
s _

If we assume for simplicity that K = 0 we have I'y > 0, so that (1.13) tells in particular that
t — H(p; | m) is convex for any € > 0, and if we also assume that m(X) = 1 such function is
non-negative. Therefore (1.14) gives that for any ¢ € (0,1/2) it holds

1-6 H H
sup [ [ 4R a(Da09) + G Taltog(ai)) ar < T LTI oo 15)
c€(0,1) /s -

Recalling the Bochner inequalities ([23], [9], [29])

(An)?
N

Ta(n) > [Hess(n)[fgm, Ta(n) > m,

we see that (1.11) follows from (1.15). Then with some work (see Lemma 4.10 and Theorem
5.13 for the details) starting from (1.11) we can deduce (1.12) which in turn ensures that the
term with the acceleration in (1.6) vanishes in the limit ¢ | 0, thus leading to our main result
Theorem 1.2.

Structure of the paper. In Section 2 we prove the solvability of the Schrodinger system
(1.8) in great generality and deduce some properties of the solutions. In Section 3 Hamilton’s
gradient estimate and Li-Yau Laplacian estimate are recalled and adapted to future purposes.
Section 4 is devoted to a deeper investigation of the entropic interpolations and the associated
Schrodinger potentials; in particular, we establish the zeroth, first and second order bounds
presented before and show that the entropy is C? along entropic interpolations with explicit
formulas for the first and the second derivative. The zeroth, first and second order convergences
are then proved in Section 5 and, relying on them and on the previous results, the main



theorem as well as some equivalent formulations are deduced. Finally, in the Appendix A the
reader can find all the relevant notions, results and bibliographic references related to calculus
and optimal transport on RCD spaces.
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2 The Schrodinger problem

Let (X, 7) be a Polish space, pg, 1 € Z(X) and R be a non-negative Radon measure on X2.
Recall that v € 2(X?) is called transport plan for pg, p1 provided 70 = g and 7ly = py,
where 7%, 7! : X2 — X are the canonical projections. We are interested in finding a transport
plan of the form

vy=f®gR

for certain Borel functions f,g : X — [0,00), where f ® g(z,y) := f(z)g(y). As we shall see
in this short section, in great generality this problem can be solved in a unique way and the
plan 4 can be found as the minimum of

¥~ HH|R)

among all transport plans from g to 1, where H( - |-) is the Boltzmann-Shannon entropy. For
appropriate choice of the reference measure R (which will also be our choice in the following),
this minimization problem is called Schrédinger problem, we refer to [48] for a survey on the
topic.

Let us first recall the definition of the relative entropy functional in the case of a reference
measure with possibly infinite mass (see [47] for more details). Given a o-finite measure v on
a Polish space (Y, 7’), there exists a measurable function W :Y — [0, 00) such that

2w = /erV < +o00.

Introducing the probability measure vy 1= zv_Vle_WV, for any o € 2(Y) such that [ Wdo <
400 the Boltzmann-Shannon entropy is defined as

H(olv) = H(J]VW)—/WdJ—long (2.1)
where H (o |vyy) is in turn defined as
H(o|9) = /plog(p) do if o0 = pv
+o00 ifokv

for all o € Z(Y); notice that Jensen’s inequality and the fact that o € Z(Y) grant that
[ plog(p) di is well defined and non-negative, in particular the definition makes sense. The

10



definition is meaningful, because if [ W'do < +o0 for another function W’ such that zy» <
400, then

H(J\VW)—/Wda—long:H(J|1/W/)—/W'da—logzwl.

Hence H( - |v) is well defined for all ¢ € Z(Y) such that [ Wdo < +oo for some non-negative
measurable function W with zy < 4o00.

The following proposition collects the basic properties of the minimizer of the Schrodinger
problem; we emphasize that point (i) of the statement is already known in the literature on
the subject (see in particular [45], [12] and [55]) and there are similarities between point (i7)
and some results in [12]. A complete proof has already been presented in [37] for the compact
case; here we adapt the arguments to our more general case. Notice that Radon measures on
Polish spaces are always o-finite, hence the above discussion about the Boltzmann-Shannon
entropy applies.

For sake of notation, by LP(X) we shall always mean LP(X, m); when integrability w.r.t.
a different measure is considered, this will always be specified.

Proposition 2.1. Let (X, 7,m) be a Polish space equipped with a non-negative Radon measure
m and let R be a non-negative Radon measure on X2 such that 7R = m!R = m and

mm<R<«Cmm.

Let pug = pom and @y = pim be Borel probability measures and assume that there exists a
Borel function B : X — [0,00) such that

/ e—B(ﬂc)—B(y)dR(:):,y) < 00 /Bduo < 00 /Bdul < 00. (2.2)
X2

Then the following holds.

i) Assume that
H(po ® p1 |R) < +oo. (2.3)

Then:

i-a) There exists a unique minimizer vy of H(-|R) among all transport plans from g
to M1 -

i-b) v = f ® gR for appropriate Borel functions f,g : X — [0,00) which are m-a.e.
unique up to the trivial transformation (f,g) — (cf,g/c) for some ¢ > 0.

ii) Assume that po, p1 € L>(X) and that for some ¢ > 0 it holds
R>ecm®m mn Py x Py, (2.4)
where Py := {pg > 0} and Py := {p1 > 0}. Then:

it-a) The bound (2.3) holds.
ii-b) The functions f, g given by point (i-b) above are in L' N L>(X) with

lpoll Lo (x o1 oo (x

1l polgllio < == and [ fllpollglep <
(2.5)
and ~ is the only transport plan which can be written as f' ® ¢'R for f',¢ : X —

[0,00) Borel.

11



proof

(i-a) Existence follows by the direct method of calculus of variations: the class of transport
plans is not empty, narrowly compact (see e.g. [4]) and H( - |R) is well defined therein; indeed
by assumption [ Wdo < 400 with W (z,y) := B(z)+ B(y) for all transport plan o. Moreover
by (2.1) we have that

H<o|R>=H<a|RW>—/Bduo—/Bdm—logzw,

so that H(-|R) is narrowly lower semicontinuous on the class of transport plans.
Since H(-|R) is strictly convex, uniqueness is equivalent to the existence of a v €

Adm(ug, 1) with finite entropy w.r.t. R and by (2.3) we conclude.

(i-b) The uniqueness part of the claim is trivial, so we concentrate on existence. Finiteness
of the entropy in particular grants that v <« R. Put p := j—g and let Py := {po > 0},
Py := {p1 > 0}. We start by claiming that

p>0 m®m-ae on Py x P (2.6)

Notice that since m®m and R are mutually absolutely continuous, the claim makes sense and
arguing by contradiction we shall assume that R(Z) > 0, where Z := (Py x P;) N {p = 0}.
Let s := % and for A € (0,1) let us define ®()\) : X2 — R by

P+ A(s —p)) —ulp)
A

D(N) = u ) where u(z) := zlog(z).

The convexity of u grants that ®(\) < u(s) —u(p) € L*(X?,R) (recall (2.3)) and that ®()\) is
monotone decreasing as A | 0. Moreover, on Z we have ®(\) | —oo R-a.e. as A | 0, thus the
monotone convergence theorem ensures that

i H(y+ AMpo ® p1 —) |R) — H(v|R)
1m
A0 A

Since v+ Ao ® p1 —=y) is a transport plan from pg to g for A € (0, 1), this is in contradiction
with the minimality of v which grants that the left-hand side is non-negative, hence Z is R-
negligible, as desired.

Let us now pick h € L>(X?2, ) such that 70(hvy) = 71 (hy) = 0 and ¢ € (0, HhHZiO(X277)).
Then (1 + €h)7y is a transport plan from pg to 1 and noticing that hp is well defined R-a.e.
we have

Ju(1+ ebp)sgeey = [ 11+ <h)plog((1 + chp)| dR
< /(1 +eh)p|logp|dR + /(1 +¢ch)|log(1l +eh)|dy
< |1+ eh|poox2yllPlog pll 1 x2 Ry + [(1 + €h) log(1 + eh) || oo (x2,4)

so that u((1 + eh)p) € L}(X?,R). Then again by the monotone convergence theorem we get

i PO AIYIR) —HE ) f 01 2H) )
el0 S el0 IS

dR = /hp(logp+1)dR.
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By the minimality of v we know that the left-hand side in this last identity is non-negative,
thus after running the same computation with —h in place of h and noticing that the choice
of h grants that [ hpdR = [hdy = 0 we obtain

/ hplog(p)dR =0  Vh € L°°(X?%,5) such that 70(hy) = 7} (hy) = 0. (2.7)

The rest of the argument is better understood by introducing the spaces V,~W c L' (X2, ~)
and V-, W C L®(X2,~) as follows

Vi={fe LY X% ~) : f=@® for some ¢ € LO(X,m’PO), (NS LO(X,m|P1)},
W= {h e L*(X?7) : nl(hy) = m.(hy) =0},

VEi={he L®(X?7) : /fhd7=Oerv},
W= {feLl(XQ,'y):/fhdfy—OVhEW},

where here and in the following the function ¢ @ 1 is defined as ¢ @ ¥(x,y) = ¢(z) + YV (y).
Notice that the Euler equation (2.7) reads as log(p) € *W and our thesis as log(p) € V; hence
to conclude it is sufficient to show that +W c V.
Claim 1: V is a closed subspace of L!(X2, ~).

We start by claiming that f € V if and only if f € L'(X2 ) and

flx, )+ f(@,y) = flz,y) + f(2',y) mameamem-ae (,27,y,9) € P02 X P12. (2.8)

Indeed the ‘only if’ follows trivially from v < m ® m and the definition of V. For the ‘if’ we
apply Fubini’s theorem to get the existence of 2’ € Py and y' € Py such that

f(x7y)+f(x/ay/) Zf(x,y/)-i-f(ﬂs/,y) m @ m-a.e. fE,?/GPO XPl‘

Thus f = f(-y) & (f(z',-) — f(2',y)), as desired.

Now notice that since (2.6) grants that (m ® m) < 7, we see that the condition

|P0><P1
(2.8) is closed w.r.t. L*(X?2, ~)-convergence.
Claim 2: V+ c W.

Let h € L>=(X2,~) \ W, so that either the first or second marginal of h is non-zero. Say
the first. Thus since 70y = o we have 70(hy) = fopo for some fo € L>®(X, o) \ {0}. Then

the function f := fo ®0 = fo o ¥ belongs to V and we have
[rrar= [ foonam) = [ foandiem) = [ o>

so that h ¢ V*.
Claim 3: *W C V.

Let f € LY(X2,4)\ V, use the fact that V is closed and the Hahn-Banach theorem to
find h € L®(X?,7) ~ L'(X2,~)* such that [ fhdy # 0 and [ fhdy = 0 for every f € V.
Thus h € V+ and hence by the previous step h € W. The fact that [ fhd~y # 0 shows that
f ¢ +W, as desired.

(ii-a) The bounds (2.2) and (2.4) give that [ e~ 2@ =50 d(mem)
with (2.2) again grants that H(up ® p1 | ((m @ m)

|pyxp, < 09 which together

| Fox P1) is well defined. The assumption that

13



po, p1 € L™(X) then ensures that H(up® p1 | (m@m)
by direct computations:

| Pox P1) is finite, hence the claim follows

d((m®m)|P0Xpl)
H(po® p1 |R) = H(po @ pr | (m@m)|p ) + [ log R po @ prd(m @ m)

< H(po @ pu | (m @ m)

‘P0><P1) —log(c) < oo.

(ii-b) Then let o be a transport plan from g to p; such that o = f’ ® ¢’R for suitable
non-negative Borel functions f/, ¢’. We claim that in this case it holds f’, ¢’ € L*°(X), leading
in particular to the claim in the statement about ~.

By disintegrating R w.r.t. 7%, from 7%(f’ ® ¢'R) = pom and Ry = m we get that

f(x) /g'(y) dR.(y) = po(x) < +o0, for m-ae. x (2.9)

whence ¢’ € L'(X,R,) for m-a.e. . Notice then that the sets where f’ and ¢’ are positive
must coincide with Py and P; respectively, up to m-negligible sets, so that nothing changes
in (2.9) if we restrict the integral to P;. Moreover, since from (2.4) we have that R, > em in
Py for m-a.e. x € Py, we see that ¢’ € L!(X) with

cllg'llrx) < /g’(y)de(y) for m-a.e. z € Py

and thus (2.9) yields
' < Wﬂv m-a.e. in Py,
cllg'llLrx)

which is the first inequality in (2.5), because in X\ Py we already know that f’ vanishes m-a.e.
By interchanging the roles of f’ and ¢/, the same conclusion follows for ¢'.

For the uniqueness of v, put ¢ := log f’, 1 := log ¢’ and notice that, by what we have just
proved, they are bounded from above. On the other hand

/¢®de:H(alR)>—oo

because, as already remarked in the proof of (i), (2.2) implies that H(-|R) is well defined on
Adm(ug, p1). From these two facts we infer that

pon port € LY(X? o). (2.10)

Putting for brevity p’ := f'®¢’ and arguing as before to justify the passage to the limit inside
the integral we get

L H(1—No+ M| R)|yor = /(p —p)log(p') dR

dX
~ [vovdr-0)
(by (210) = / pdn®(y — o) + / pdr(y — o)

(because o and « have the same marginals) =0.

This equality and the convexity of H(-|R) yield H (o |R) < H(v|R) and being + the unique
minimum of H(-|R) among transport plans from pug to p1, we conclude that o = ~. O
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The above result is valid in the very general framework of Polish spaces. We shall now
restate it in the form we shall need in the context of RCD spaces.

Recall that on a finite-dimensional RCD*(K, N) space (X,d, m), m satisfies the volume
growth condition (A.20), so that we can choose W = d?(-,z) for any z € X in (2.1). Setting
z = fe_d2("i)dm and

the definition (2.1) becomes

Hp|m) = Hpu| ) — / &2 (- 2)dps — log = (2.11)

and this shows that H(-|m) is well defined on Z73(X) and Wa-lower semicontinuous. Let
us also remind that on RCD spaces there is a well defined heat kernel r.[z](y) (see (A.3)
and (A.4)). The choice of working with r,/, in the following statement is convenient for the
computations we will do later on.

Theorem 2.2. Let (X,d,m) be an RCD*(K, N) space with K € R and N € [1,00) endowed
with a non-negative Radon measure m. For ¢ > 0 define R/? € 2(X?) as

dR?(z,y) := re ofa] (y) dm(z) dm(y).

Also, let po, p1 € P(X) be Borel probability measures with bounded densities and supports.

Then there exist and are uniquely m-a.e. determined (up to multiplicative constants) two
Borel non-negative functions f€, g% : X — [0,00) such that fE®@¢°RE/2 is a transport plan from
o to pi. In addition, f€, g% belong to L*°(X) and their supports are included in supp(uo) and
supp(u1) respectively.

proof Start by observing that Rg/z = Ri/Q = m and if we set B := d?(-,z) with z € X
arbitrarily chosen, then the second and third conditions in (2.2) are authomatically satisfied;
for the first one notice that

/ €_B®BdRa/2:/<e_d2(y’x)dec/2(y))e_dz(x’x)dm(x)v
X2

e W) < 1, R/% is a probability measure and recall (A.20). Hence Proposition 2.1, the
fact that the Gaussian estimates (A.5) on the heat kernel grant that there are constants
0 < ¢ <C. < 400 such that

cem@m < R/2<Com@m

in Py x P; and the fact that f¢ ® ¢°R¢/2 is a transport plan from jg to g provide us with
the conclusion. O

3 Hamilton’s and Li-Yau’s estimates

Here we recall Hamilton’s gradient estimate and Li-Yau Laplacian estimates for log h,u, where
u is a non-negative function.

Let us start with the following result, which we shall frequently use later on without
explicit mention:
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Proposition 3.1. Let (X,d,m) be an RCD*(K, N) space with K € R and N € [1,00), t >0
and ug € L?> N L™ (X) be non-negative and not identically zero. Put u; := hyug.
Then log u; € Testpy (X).

proof By (A.7) u; € Test™(X) and by (A.5) u; is locally bounded away from 0. Taking into
account the fact that log is smooth on (0, 00), the conclusion easily follows from (A.6). O

We now recall Hamilton’s gradient estimate on RCD (K, co) spaces, which is known to be
true from [42]:

Theorem 3.2 (Hamilton’s gradient estimate). Let (X,d,m) be an RCD*(K,00) space with
K € R and let ugp € LPNL*®(X) be positive with p € [1,00). Put uy := hyug for allt > 0. Then

wo|| oo
t|Vlogu* < (1 + 2K t)log (HO,L(X)>, m-a.e.
Ut

for allt > 0, where K~ := max{0, —K}.

proof In [42] this result has been stated for proper RCD (K, 00) spaces; still, the assumption
that bounded sets are relatively compact is never used so that the proof works in general
RCD spaces. We remark that in [42] the authors refer to [31], [3], [6] and [56] for the various
calculus rules and that in these latter references no properness assumption is made. O

In the finite-dimensional case, thanks to the Gaussian estimates for the heat kernel we
can easily obtain a bound independent of the L° norm of the initial datum:

Theorem 3.3. Let (X,d,m) be an RCD*(K, N) space with K € R and N € [1,00). Then
there is a constant C depending on K, N only such that for any ug € L'(X) non-negative, not
identically 0 and with bounded support the inequality

1 D?
|V log(us)|* < C(l + t) <1 +t+ Ot(:v)) m-a.e. (3.1)
holds for all t > 0, where u; := hyu and
Do(z) :== sup d(z,y).

yEsupp(uo)

In particular, for every 0 <6 <T < oo and T € X there is a constant Csr > 0 depending on
K,N,$, T,z and the diameter of supp(ug) such that for every € € (0,1) it holds

e|Vlog(uet)| < Csr(1+d(-, 7)) vt € [4,T]. (3.2)
proof Recall the representation formula (A.4)
we) = [wwnbl@ dnw) = [ w@rlbledn)  veex
supp(uo)

and that for the transition probability densities r;[y](x) we have the Gaussian estimates (A.5),
which can be simplified as

Co d?(z,y) o y
m oxp ( N 3t o C2t> < rt['r](y) < Wec V.%', Y € X,
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for appropriate constants Cy, C, Co depending only on K, N. Therefore, we have

u(y)
i =supua(o) < Cre® [ A dmy),
‘ ¢ T ! supp(uo) m(B\/f(y))
Dg (=)
inf u2t(x) Z Coe_QCQte_ Ot / % dm(y) > 0.
x supp(uo) m(B\/ft(y))

By the fact that m is uniformly locally doubling we know that it holds
m(B 5 (y) < m(B(y))C3e“YE Wy eX, t>0,

where Cs, C4 only depend on K, N. As a consequence, the above yields

el _ 058302t+04\/5+@

Ve e X, t>0.
ugt ()

We now apply Proposition 3.2 with wu; in place of ug (notice that the assumptions are fulfilled)
to get

D ()

M) <1+ 2K_t)<log Cs + 3Cot + Cyv/t + T)

#|V log(uz)|? < (1 + 2K t) log (

U2t
m-a.e., which is (equivalent to) the bound (3.1). The last statement is now obvious, noticing
that

Do() < Do) + d(z.7)
for any z € supp(up). O

A further result that we shall need soon is the Li-Yau inequality in the form proved by
Baudoin and Garofalo (see [25] for the case of finite mass and [40] for the general one).

Theorem 3.4 (Li-Yau inequality). Let (X,d, m) be an RCD*(K,N) space with K € R and
N € [1,00) and let ug € LP(X) for some p € [1,00) be non-negative. Put u; := hyug for all
t>0. Then 1K)3
A NK e 4kt
IV log ug|? < e 2Hct/3 20 + c

” TREE=T R m-a.e. (3.3)

—4Kt/3 .
for all t > 0, where %i(w is understood as % when K = 0.

We restate such inequality in the form that we shall use:

Theorem 3.5. Let (X,d, m) be an RCD*(K, N) space with K € R and N € [1,00). Then for
every 0 < 0 <T < oo and T € X there exists a constant Csr > 0 depending on K,N,6,T,%
and the diameter of supp(ug) such that the following holds.

For any ug € L*(X) non-negative, not identically zero and with bounded support and for
any € € (0,1) it holds

eAlog(ha(ug)) > —Csr(1+d*(-,2)) Vvt e [5T). (3.4)
proof Rewrite the Li-Yau inequality (3.3) as

NK e—4Kt/3
3 1 — e 2Kt/3

62Kt/3<A”t — |Vlog Ut\2> > (1-— e*QKt/?))‘Vlogu”? _
Ut

=Alogu

and use Hamilton’s gradient estimate (3.2) to control |V logu:|? in the right-hand side.  [J

17



4 The Schrodinger problem: properties of the solutions

4.1 The setting

Let us fix once for all the assumptions and notations which we shall use from now on.

Setting 4.1. (X,d, m) is an RCD*(K, N) space with K € R and N € [1,00) and po = pom,
@1 = pim are two absolutely continuous Borel probability measures with bounded densities
and supports.

For any ¢ > 0 we consider the couple (f¢,¢°) given by Theorem 2.2 normalized in such a
way that

/log(h;fs)pl dm =0, (4.1)
then we set p§ := po, pf == p1, pg = po, pi = p1 and

pi = fi g

Ji=heafe g5 = he(1-4)/29°
pi = pjm

¢; = clog ff Vi == elogg;
05 = 5 (¥f — ¢f)

for t € (0,1] for t €10,1)
for t € (0,1)

In order to investigate the time behaviour of the functions just defined, let us introduce the
weighted L? and W12 spaces. The weight we will always consider is eV with V = Md?(-, z);
because of (A.20), e~"'m has finite mass for every M > 0. For L?(X,e~"m) no comments are
required. The weighted Sobolev space is denoted and defined as

WX, e Vm) := {f e WA(X) : f,|Df| € L*(X,e”V'm)}

where |Df| is the local minimal weak upper gradient already introduced. Since V' is locally
bounded, W12(X,e~"m) turns out to coincide with the Sobolev space built over the metric
measure space (X,d,e‘vm), thus motivating the choice of the notation. The advantage of
dealing with L?(X,e~"V'm) and W12(X,e~"m) is the fact that they are Hilbert spaces, unlike
L3.(X) and W22(X).

As two different reference measures on X might be considered from now on, namely m
and e~V'm, to avoid possible misunderstandings it is worth stressing that the notations L3(X)

and WH2(X) will always mean L?(X, m), W12(X, m) respectively.
After this premise, let us begin with a couple of quantitative estimates for f;, g; and p;.

Lemma 4.2. With the same assumptions and notation as in Setting 4.1 and defining

Vg 1= inf m(B s Vs = su m(B ;(y)), 4.2
y€supp(po)Usupp(p1) ( f(y)) yEsupp(PO)BSUPP(Pl) ( \[(y)) “2)

for any x € X there exist positive constants C1, ..., Cy depending on K, N, po, p1, T only such
that the following bounds hold:
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i) For any e >0 and t € (0, 1] we have

CQdQ(‘,fE) Cs C5d2(',j?) Cs

_ _ P )< fE L _ _
HLl(X) P ( et et ) sJis P ( et * et )
(4.3)

and analogously for gi and t € [0,1).
ii) For any e € (0,1) and t € [0, 1] we have
Cr Cg — Cod?(-, )

P < N2 exp (5 . (4.4)

proof

(i) Direct consequence of the representation formula (A.4), the Gaussian estimates (A.5) and
the fact that pg and f¢ have the same support

(ii) We shall indicate by C' a constant depending only on K, N, po, p1, T whose value might
change in the various instances it appears. Start from pf = ffgf < f{llgfllr~ < ff Hg [P
then use the bounds (4.3), (2.5) and notice that the constant ¢ appearing in (2.5) is > Vs/ e €

to obtain

()

IA

CV, —Cd%(-. x
e/2 eXp<C Cd (71'))
Vet /2 et

Noticing that the the Bishop-Gromov inequality (A.18) ensures that for every s € [0,1] it
holds V, < Cm(B(Z)) and vs > Cm(By(Z))s"/?, we obtain the claim for ¢ € [1/2,1]. The
case t € [0,1/2] follows by a symmetric argument.

The following proposition collects the basic properties of the functions defined in Setting
4.1 and the respective ‘PDEs’ solved:

Proposition 4.3. With the same assumptions and notation as in Setting 4.1, the following
holds.
All the functions are well defined and for any € > 0:

a) ff,q;,p; belong to Test™(X) for allt € I, where J is the respective domain of definition
(for (p) we pick I = (0,1));

b) o7, Vi, V5 belong to Testy, (X) for allt € I, where I is the respective domain of definition.

For any ¢ > 0, € C J compact and T € X there exists M = M(K,N,po,p1,C,z) >

0 such that all the curves (ff),(g5), (pf) belong to AC(C,WT2(X)) and (), (v5), (¥5) t
AC(C,Wh2(X,e™V'm)), where J is the respective domain of definition (for (p5) we pick J =
(0,1)) and V = Md?(-,Z); their time derivatives are given by the following expressions for
a.e. t €[0,1]:

d g __ € 3 d —

aft = iAft E = *Agt

d 1 € d €

wf = ZIVeil + A S = 2 IVUEP + A

d (5 ey _ 6 ‘VﬁEP 62 € £12
dt +div(p; VI;) =0 dtﬁ 5 S <2Alogpt + |V log pf| )

Moreover, for every e > 0 we have:
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sup 1] oo () + Lip(hg) + [[ARg[[wr2cx) < 00 (4.5)
S

if (h§) is equal to any of (ff), (g7), (pf) and

Sup le™ Bl Loy + lle™ Up ()| oo (x) + AR wr2(x,e-vimy <00 (46)

if (hY) is equal to any of (¥5), (W), (97); in both cases, C is a compact subset of the
respective domain of definition I (for (p7) we pick I = (0,1)),

i) 155 € Po(X) for every t € [0,1] and (of) € C(0,1], L(X)),
iii) we have ff — f€ and gi — ¢° in L*(X) ast | 0 and t 11 respectively.

proof

Properties of (f;),(g7). Recalling (A.7) we see that f; € Test™(X) for any tg > 0. Then
the maximum principle for the heat flow, the fact that it is a contraction in W12(X) and
the Bakry—Emery gradient estimates (A.9) together with the Sobolev-to-Lipschitz property
grant that (4.5) holds for (ff). The fact that (ff) € AC(C,W?(X)) and that it solves the
stated scaled heat equation is trivial. The fact that ff — f€ in L?(X) as t | 0 follows from
the L?-continuity of the heat flow.

Properties of (¢f), (¢f). By Proposition 3.1 we know that ¢ € Testy,.(X) and from the
chain and Leibniz rules we see that

Vi = 6V{t :
t
N \foP)
Ap; =¢ — ,
i ( L

L VA[E ARV VIV 2|fo|2fo>
AYS — _ — )
VA < AR R L

These identities, (4.5) for (ff), estimate (A.8) and (4.3) imply that for any z there is M >0
such that for V := Md?(-, z) the bound (4.6) for (¢f) holds, as claimed. Similarly, we see that
IVeil? € L, ((0,1], WH(X, e~V m)).

The expressions for Vf, Apf and the equation for (ff) also grant that m-a.e. it holds

d e __ 1 12 € €
dt% = 2W90t| + 2A<Pt (4.7)

for a.e. t and since we have seen that the right-hand side belongs to L2 ((0, 1], Wh2(X, e~ V'm)),
this shows at once that (¢5) € AC)e((0,1], WH2(X, e~V m) and that (4.7) holds when the left-
hand side is intended as limit of the difference quotients in W1?(X,e~"Vm)), as claimed.
The same arguments apply to 5.
Properties of (pf), (95). The bound (4.5) for (ff), (g;) and the Leibniz rules for the gradient
and Laplacian give the bound (4.5) for (pf) and also grant that (pf) € AC..((0,1), L?(X)).
To see that this curve is absolutely continuous with values in W12(X) notice that
d €

£

=0 =5 (97 fE - f71g7)
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and recall (4.5) for ff, gi. The stated equation for (p§) is now a matter of direct computation:

9 £
S (9707 = 17897 =50 (Alog f7 + [V log f7? — Alog g — [V log g7 )
O AL
o € _ e (> _ £
_pte< 2 3 Tt 2A¢t>
= i (= (V05, Vlog pf) — A5 )
— — (V9;,Vp5) — g A0 = —div(p} V7).

It is clear that p; > 0 for every ¢,t, hence the identity

/Pi dm:/het/QfEhe(l—t)/2gg dm:/fsha/ggadm:/pﬁ dm =1

shows that pf € #(X). The fact that p has finite second moment is a direct consequence of
the Gaussian bound (4.4) and the volume growth estimate (A.20).

For the L?-continuity of pf in t = 0, 1, by the L?-continuity of the heat flow and the fact
that f¢,¢° € L> (Theorem 2.2) we see that pj — fh.9¢° and p; — h./sf g% ast — 0,1
respectively. Hence all we have to check is that

po = f*hej29° p1 = gh o f*, (4.8)

but as already noticed in the proof of Theorem 2.2, these are equivalent to the fact that
f€ ® g% RE/? is a transport plan from s to p1; hence, (4.8) holds by the very choice of (f¢, ¢°)
made.

Finally, the fact that (95) belongs to ACi,.((0,1), W2(X,e~Vm)) and satisfies the bound
(4.6) is a direct consequence of the analogous property for (%), (¢f). The equation for its
time derivative comes by direct computation:

d Vo3 IVYil* e [Vei]* e IVi* | IVeEl? (VY Vep)
98 t - _ t — ZAYE — t — ZALE t t to t
a’t T2 Y e R 1
g2 1
= —=-Alog pf — < (V2 + Vil +2(Visi, Vi) )
&2
= —§(2Alogp§ + IVlogpﬂQ),
hence the proof is complete. [l

Using the terminology adopted in the literature (see [48]) we shall refer to:
e o7 and 1; as Schrodinger potentials, in connection with Kantorovich ones;

o (1§ )te[(),l] as entropic interpolation, in analogy with displacement one.

4.2 Uniform estimates for the densities and the potentials

We start by collecting information about quantities which remain bounded as ¢ | 0.

Proposition 4.4 (Locally uniform Lipschitz and Laplacian controls for the potentials). With
the same assumptions and notations as in Setting 4.1 the following holds.
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For all 6 € (0,1) and T € X there exists C > 0 which only depends on K, N,d, T such that

lip(¢f) < C(1+d(-, 7)), m-a.e. (4.9a)
Ag§ > —C(1+d*(, 7)), m-a.e.

for every t € [0,1] and € € (0,1).
Furthermore, for all M > 0 there exists C' > 0 which only depends on K,N,d,z, M such
that

/ |AS e M0 qm < ¢ (4.10)

for every t € [4,1] and € € (0,1). Analogous bounds hold for the 1§ ’s in the time interval
0,1 4.

proof Fix § € (0,1) and = € X as in the statement and notice that the bound (3.2) yields

|Vpi| =e|Viog h%tf£| <C(1+d(,z)) vVt € [6,1], € € (0,1).

Thus recalling the Sobolev-to-Lipschitz property (A.10) we obtain the bound (4.9a). The
bound (4.9b) is a restatement of (3.4). Finally, let M > 0 and x a 1-Lipschitz cut-off function
with bounded support; notice that |h| = h + 2h~ whence

/ xe MDA dm = / xe MDA dm 2 / xe MECD (A dm.

Integration by parts, the fact that |Vd?(-,z)| = 2d(-,Z), [Vx| < 1 and 0 < x < 1 then imply
that

/Xe‘Mdz("j)lAcpilde /6‘Md2("j)|VsD§|dm+2M/d(-,:i‘)e‘Md2("i)|V90§|dm
+2/6Md2("x>(A<P§) dm

and taking into account (4.9a) and (4.9b), the bound (4.10) follows.
For 1); the argument is the same. O

The gradient estimates that we just obtained together with the Gaussian bounds on
fi,gi,p; that we previously proved have the following direct implication, which we shall
frequently use later on to justify our computations:

Lemma 4.5. With the same assumptions and notation as in Setting 4.1, the following holds.
For any e € (0,1) and t € (0,1) let hi denote any of o5, 5, V5, log pi and, for any n € N,
let H; denote any of the functions.

peIVRL™,  pylog pp[ VA", [VPElIVRE™,  Apg VA" pi (Vhi, VARY) . (4.11)

Then Hf € LY (X) for every e,t € (0,1). Moreover for every § € (0,1/2) we have

lim sup / |H;|dm =0 Ve € (0,1), z € X. (4.12)
R—004¢[5,1-6] JX\Br(Z)

Finally, (0,1) >t — [ Hf dm is continuous.
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proof
General considerations We shall repeatedly use the fact that if h; has Gaussian decay and
ho polynomial growth, i.e.

hi < c1exp(—cod®(-, 7)), ha < c3(14d“(-, 7))

for some c1,...,cq > 0, Z € X, then their product hihy belongs to L' N L% (X): the L> bound
is obvious, the one for the L!-norm is a direct consequence of the volume growth (A.20) and
explicit computations.

For what concerns the continuity of (0,1) > ¢ — [ Hf dm, notice that Proposition 4.3
yields that all the maps (0,1) > ¢ + |[VAS| € L*(X,e™Vm) and (0,1) > t = p5,|Vpi|, Apf €
L?(X) are continuous (for Ap$ use the fact that Apf = giAff + ffAgE +2(Vff,Vg) and
the continuity of (0,1) 3 t — Aff, Ag; € L*(X)). Hence all the functions in (4.11), with
the possible exception of the last one, are continuous from (0,1) to L%(X) equipped with the
topology of convergence in measure on bounded sets. Therefore the continuity of (0,1) 3 ¢t —
f H; dm for these maps will follow as soon as we show that they are, locally in ¢ € (0, 1),
uniformly dominated by an L'(X) function. Given that such domination also gives (4.12), we
shall focus on proving it.

Finally, we shall consider only the case hj = ¢f, as the estimates for 1) can be obtained

by symmetric arguments and the ones for ¥;,log p; follow from the identities ¥; = M,

2
elog pf = ¢f + 5.
Study of pf|Vhi|". By (4.9a) we know that |V¢§| has linear growth locally uniform in ¢ €
(0,1); hence |V¢§|™ has polynomial growth locally uniform in ¢ € (0, 1). Since p§ has Gaussian
bounds by (4.4), we deduce that pf|Vhi|" is, locally in ¢ € (0, 1), uniformly dominated.
Study of pf log p7|VhF|". Writing log p; = log ff + log ¢ and using (4.3) we see that |log pf|
has quadratic growth locally uniform in ¢ € (0,1). Thus the claim follows as before.
Study of |Vpf||Vh|". Notice that |[Vpi| = pi|Vlogpi| and observe that from elog p; =
o + 17 and (4.9a) we have that |V log pf| has linear growth locally uniform in ¢ € (0, 1).
Study of |Apf||VhA;|". Write

IAPE| < fEIAGE| + gfIAfT| + 267205 |V 5 || V5 |

and notice that the term p7|Ve§||Vif| can be handled as before and that by (A.7) and the
maximum principle for the heat flow we have that

Aff, Ag; are bounded in L*°(X) locally uniformly in ¢ € (0,1). (4.13)

Hence the conclusion follows from the Gaussian bounds (4.3).
Study of p; (Vhi, VARF). Notice that

VA | IAKIVSE | IVIVEF] 2095
I (f7)? VEVAE
(1AL + AL VG| + 20955 [Hess(f5) s + 2672 f5 Vo5 )

VA <o
1
S 7

f;

and therefore, using also 2¢5|V5|?[Hess(f7)|us < 95IV@5|* + g5 | Hess(f£)[4e we get

|2
HS
Pi IV i ||V A

< egi IVEIIVASE] + gfIAFEIIVEE + gf IV i |* + gf Hess(f9)[7s + 26205 V| .
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The last term in the right-hand side is dominated locally uniformly in ¢ € (0,1) by what
we already proved. Similarly, the term gf|V5|* is, locally in #, dominated thanks to the
Gaussian bounds on ¢f, a domination for gf|Aff |]Vg0t|2 then follows using (4.13). Writing
VAff = Vhi_sAf5 for any t > § > 0 and using (A.7) and the Bakry-Emery estimates (A.9)
we see that

|IVAff]| is, locally in ¢, uniformly bounded in L*°(X), (4.14)

thus a local uniform domination for eg; |V¢5||VA f£]| follows.

It remains to consider the term gf|Hess(ff)|7g: we know from (A.13) that [Hess(ff)|ys €
L?(X) and from (4.3) that ¢§ € L>(X). This is sufficient to conclude that p§ (Vh$, VAhS) €
L'(X). To prove (4.12), thanks to the dominations previously obtained, it is enough to prove
that

Rlim (1-— XR)gf\Hess(ff)\QHs dm =0 locally uniformly in ¢ € (0,1), (4.15)
—00

where for any R > 0 the function y g is a cut-off given by Lemma A.2. From (A.16) we have

€2
[ - xweestrgam < 51— xnop) V]

+(1— xr)gE ((VIE,VAS) — K|Vf{]?) dm

By (4.14), the already noticed fact that |V ff]| is also uniformly bounded in L*°(X) locally
in t € (0,1) and the Gaussian bounds (4.3) on g; we see that the second addend in the last
integral is, locally in ¢ € (0, 1), dominated by an L'(X) function.

For the first addend we write

A((1 = xr)g;) = —9: Axr — 2(Vxr, Vg;) + (1 — xr)Ag; IV fil = e f IV

and use the properties of xr given by Lemma A.2 and those of ¢f, f7, |V¢i| that we already
mentioned to deduce that A((1 — xg)gf) is bounded in L°°(X) and |Vf{|> dominated in
LY(X), both locally uniformly in ¢ € (0,1). Hence (4.15) follows from the fact that (1 —
XRr): |VXR|, Axr are identically 0 on Bg(Z).

It remains to prove that ¢ — [ pf (Vf, VApF) dm is continuous and thanks to (4.12) to
this aim it is sufficient to show that for any R > 0 the map t — [ xgpf (V§, VApS) dm is
continuous. To see this, notice that

[ xnsi (V65 V) dm =~ [ (xi (V57 V) + 07 (T Vi) ) At + s A,
(4.16)

and that the maps t + p5, 5 are continuous with values in W12(X), W12(X, e~V m) respec-
tively. Also, writing Ayf = EAf? — g|V¢§|?, using the continuity of t — ff, Aff € L*(X),

the bound (4.13), the fact that ff is bounded from below on supp(xr) by a positive constant
depending continuously on ¢ also taking into account what previously proved we see that the

integrand in the right-hand side of (4.16) is continuous as map with values in L°(X, m )
lsupp(xr)

and, locally in ¢, uniformly dominated by an L!(X)-function. This is sufficient to conclude.
g
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Proposition 4.6 (Uniform L> bound on the densities). With the same assumptions and
notations as in Setting 4.1 the following holds.
For every € X there exist constants C,C’' > 0 which depend on K, N, T, pg, p1 such that

p < Ce OO meae. (4.17)

for every t € [0,1] and for every € € (0,1).

proof From (4.4) and direct manipulation we see that there are constants ¢, ¢/, r > 0 depending
on K, N, x, pg, p1 only such that

pi(x) < ce “P@N  yr ¢ B.(z), £ €(0,1), te0,1], (4.18)

hence to conclude it is sufficient to show that there exists a constant M > 0 depending on
K, N,z, pg, p1 only such that

||p§HL°°(X) <M Ve € (07 1)7 te [Oa 1] (419)

For later purposes it will be useful to observe that from (4.18) and the volume growth estimate
(A.20) it follows that there is R > r such that

/ (PP H)dm <1 Vee (0,1), te0,1], p> 2. (4.20)
X\Ba(®)

Now fix e > 0. We know from Proposition 4.3 that (p§) € C([0,1], L2(X))NACi,.((0,1), L*(X))
and by the maximum principle for the heat equation pi < C; for all ¢ € [0, 1], thus for any
p > 2 the function Ej, : [0,1] — [0,00) defined by

Ey(t) = / (o) dm,

belongs to C([0,1]) N ACi0c((0,1)). An application of the dominated convergence theorem
grants that its derivative can be computed passing the limit inside the integral, obtaining

d

— d £ £ — : £ 1>
aEp@) :p/(Pi)p 1&Ptdm: —p/(Pt)p 1d1v(ptV19t)dm.

Then the definition of ¥, (4.9a), (4.9b) and (4.4) allow to justify the integration by parts,
whence

dp

7 E® =p-1) /(pi)pl (Vpi, Vi) dm

— (- 1) [ (VG V) dm =~ - 1) [ (55720} dm
and recalling that 9§ = 9§ — §log pf we obtain (for the same reasons as above, the integrals

are well defined) that

d

< c
dt

B, ()= —(p— 1) / (67 A +

o-1) [Gratggan @2

Now notice (the same arguments as above justify integration by parts) that
[y atog sidm = —p [(57 1 (V57 Vlogpi) dm = —p [ (57 2T P dm <0
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and choose § := % and T :=1 in (3.4) to get the existence of a constant ¢’ > 0 depending on
K, N,Z and the diameters of the supports of pg, p1 such that Ay§ > —c”(1+d?(-,z)) for any
t €10,1/2]. Thus from (4.21) we have

d _

G <= DEW0 + - 1) [(irdE.a)dm  aete o1/

and recalling (4.20) we get

d

B <P = 1E() +"(p - 1)/ (PD)Pd*( @) dm +1 < " (p — 1) Ep(t) + 1

Br(z)

for a.e. t € [0,1/2]. Then Gronwall’s lemma gives

Ep(t) < (Ep(0) + C(pl_l)

Passing to the p-th roots, writing E,(t) = ||pf||",

)e" P vt e [0,1/2).

1
“HeE)
ability measure, we have [|h||Lo(,e) T [|l|Lo () @s p — o0, we obtain

and observing that, being py; a prob-

0§l < € lpollLe, Yt € [0,1/2].

Switching the roles of pg and p; we get the analogous control for ¢ € [%, 1], whence the claim

111

(4.19) with M :=e® max{||po|| Lo, [|p1llL} O

4.3 The entropy along entropic interpolations

In [44] Léonard computed the first and second derivatives of the relative entropy along entropic
interpolations: here we are going to show that his computations are fully justifiable in our
setting. As we shall see later on, these formulas will be the crucial tool for showing that the
acceleration of the entropic interpolation goes to 0 in the suitable weak sense.

We start by noticing that a form of Bochner inequality for the Schrédinger potentials can
be deduced. Observe that in general the object I'2(f) is not a well defined measure, because
in some sense it can have both infinite positive mass and infinite negative mass; this issue is
not due to the generality of the framework we are working within, but to the fact that even
in the Euclidean space ¢f, [V¢3|, Apf need not be integrable. Nevertheless, thanks to Lemma
4.5, the action of T'a(¢) on pf can still be defined: we will put

1
(Lot pi) = [ (3801905 = 97 (V05 V KE) Y,
where hj is equal to any of ¢f, 17,95, log pf, and notice that Lemma 4.5 ensures that the
integral in the right-hand side is well defined and finite. We then have:

Lemma 4.7. With the same assumptions and notations as in Setting 4.1, for any € > 0 and
t € (0,1) we have

<r2(h§),p§> > / (|Hess(hf)As + K|VhE[2) pidm (4.22a)
ARE 2
(ra). o) 2 [ (S5 + K198 piam (4.22b)

where hi is equal to any of v§, Y5, V5, log pj.
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proof Fix e > 0,t¢ € (0,1) and, for given Z € X and R > 0, let xp € Test™(X) be a cut-
off function with support in Br4+1(Z) and such that xg = 1 in Br(Z). Then we know that
Xr+19; € Test™(X) and thus (A.16) holds for it, namely

Ty (xr+195) = (Hess(xr195)[Fis + K|V (Xr4197)[?) m.

Multiplying both sides of the inequality by x rp;, integrating over X and using the locality of
the various differential operators appearing we obtain

1
[ (GAGrs )T xiri (Vef V) )am > [ s (Hess(of) B + K|V ).
(4.23)
By monotone convergence we have that

i [ i Vi Pdm = [ 57|V P,
R—o0
‘ 2 _ 2
Jim [ g Hess(ef) fgm = [ i Hess(i) g
and thus the right-hand side of (4.23) goes to the right-hand side of (4.22a). Now notice that

A(xrp;) = XrRAP; +2(Vpi, VXR) + Pi AXR

and that the choice of x g grants that |xr|,|Vxr|,|Axr| are uniformly bounded and m-a.e.
converge to 1,0, 0 respectively as R — oco. Hence Lemma 4.5 and the dominated convergence
theorem give that the left-hand side of (4.23) goes to (I'a(h§), p§ ), thus settling the proof of
(4.22a) for hi = ¢f. The other claims follow by similar means taking (A.17) into account.
O

Now we are in position for motivating Léonard’s computations, thus getting the formulas
for the first and second derivative of the entropy along entropic interpolations.

Proposition 4.8. With the same assumptions and notations as in Setting 4.1 the following
holds.
For any € > 0 the map t — H(u5|m) belongs to C([0,1]) N C2((0,1)) and for every
€ (0,1) 4t holds

d 1
S 1w = [(95,95) dn= o [ (96 - [961) f dm, (4.240)
izH(ug [m) = <F2(19€) p5> + 62<F2(logp5) p€> = 1<F2(s05) p€> + 1<F2(1/JE) p€>
dt2 t t/)r Mt 4 t/)r Mt 2 t/) Mt 9 t/)s E . )
4.24b

proof By Lemma 4.5 we know that the central and right-hand sides in (4.24a) and (4.24b)
exist, are finite and continuously depend on ¢ € (0,1). Also, the equality between the central
and right-hand sides follows trivially from the relations 9§ = @ and ¢ log pf = @7 + 5.
Thus to conclude it is sufficient to show that t — H(u5 |m) is in C([0,1]) N C?((0,1)) and
that the identities (4.24a) and (4.24b) hold for a.e. t € (0,1).
Lemma 4.5 ensures that ¢ — H(u$|m) is continuous in (0,1). To check continuity in

t = 0,1, thanks to the fact that (pf) € C([0,1], L?(X)) by Proposition 4.3 and arguing as
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in the proof of Lemma 4.5, it is sufficient to show that pflog p$ is dominated by an L!(X)
function. To see this, write

pi log p; = gi f; log fi + fi g; log g;

and notice that for ¢ € [0,1/2] the bound (4.3) ensures that the function gf is uniformly
bounded above by a Gaussian and that log ¢g; has a quadratic growth. On the other hand, we
know by Theorem 2.2 that f§ = f© is in L, thus the maximum principle for the heat flow
and the fact that z — zlog z is bounded from below give that the L* norms of f;, f; log ff
are uniformly bounded in ¢ € [0,1/2]. As discussed in the proof of Lemma 4.5, this is sufficient
to conclude and a similar arguments yields the desired bound for ¢ € [1/2, 1].

Now fix € > 0 and for R > 0 let xr € Test™(X) be a cut-off function as given by Lemma
A.2. Notice that Lemma 4.5 grants that

/XRpf logp;dm — /pf log p; dm as R — oo for every t € (0,1). (4.25)

Also, Proposition 4.3 tells that (pf) € ACi,.((0,1), L*(X)) and that it is, locally in ¢ € (0, 1)
and in space, uniformly bounded away from 0 and co. Therefore, for u(z) := zlogz we have
that (0,1) 3 ¢ — xgru(pf) € L*(X) is absolutely continuous. In particular, so is [ xgu(p)dm
and it is then clear that

4 ru(of)dm = / xr(log(pf) + 1) 2

% &pf dm, a.e. t.

Using the formula for % pf provided by Proposition 4.3 we then get
d .
G [ rutonyam = = [ xuog(ef) + Ddiv(p907)dm = [ (V(rllon(sf) + 1), V5)picdm

_ / & (V6 VO5) dm + / (Vxr, V%) (log pf + 1)pidm.

Since |Vxg| is uniformly bounded and identically 0 on Br(Z), Lemma 4.5 grants that the last
expression in the above identity converges to [ (Vpf, Vi) dm as R — oo locally uniformly
in t € (0,1). This fact, (4.25) and the initial discussion give C''((0,1)) regularity for ¢
H(p; |m) and (4.24a).

For (4.24b), notice that from Proposition 4.3 we know that (pf) € AC;,.((0,1), WH2(X))
and (95) € AC;((0,1), Wh2(X, e~V m)) with V = Md?(-,Z), for some Z € X and M > 0
sufficiently large. Hence (0,1) > t — xgr (Vp§, VI5) € L?(X) is absolutely continuous. In
particular, so is [ xr (Vp§, VI5) dm and

d 5 € _ i € € € i €
dt/XR<thaV19t>dm—/XR(<thPt,Vﬁt>+<thavdt19t>)dm, a.e. t.

Thus from the formulas for %pi, %19% provided in Proposition 4.3 we obtain

d .
G [ Vo)am = [ (V@i 99)). V) dm

A¢(R)
T / (VA V(= LV — £ Alog(sf) — =V log(p5)[?))dm.

Bi(R)

28



Now notice that a few integration by parts and the Leibniz rule give
Ai(R) —/div(prﬂ?)(VXR, V5 )dm + /XRdiv(p§V19§)A19fdm

— [(965, 99T, Vi) [ g (VO VA5
and

1 ) g2 2 .
By(R) 2/2|V29§|2dIV(><RVp§) = 7 Xr(Vi, VATog pf) + |V log pi [*div(xrV pf)dm

52

8

52

1 XrAP; |V log pf[*dm

1
— [ SxRARITI - s (Vlog o7, VA log ) +

1 g2
+ / 5| VIE*(Vr, Vi) + 2V log 7 [*(Vxr, Vi )dm,
Since |Vxg/| is uniformly bounded and identically 0 on Bg(Z), Lemma 4.5 gives that
A(R)+ BuR) = (Ta(05),p) + 5 (Tallog i), i)  as R oo

locally uniformly in ¢ € (0,1).
This fact, the convergence of [ xg(Vp§, VI5)dm to [(Vp§, VI5)dm as R — oo (which is
also consequence of Lemma 4.5) and the initial discussion give the conclusion. U

As a first consequence of the formulas just obtained, we show that some quantities remain
bounded as ¢ | 0:

Lemma 4.9 (Bounded quantities). With the same assumptions and notations of Setting 4.1,
for any x € X we have

sup /d2(-, z)pidm < oo, (4.26a)
€(0,1), €[0,1]
sup |H (s |m)]| < oo, (4.26b)
£€(0,1),t€[0,1]
1
sup // (]V19§|2 + &%V log pﬂQ) p; dtdm < oo, (4.26¢)
ee(0,1) /0
and for any 6 € (0, %)
1-6
sz)pl) //5 (\Hess(ﬁf) QHS + £%|Hess(log pf) 2Hs>p§ dtdm < oo, (4.27a)
ee(0,
1-9
sup // (1805 + 2| Alog 57?5 dt dm < oo, (4.27b)
e€(0,1) JJ 6

proof (4.26a) follows from (4.17) and the volume growth (A.20). As regards (4.26b), notice
that (4.26a) and (2.11) give a uniform lower bound on H (u§ | m); for the upper bound notice
that (4.17) implies a uniform quadratic growth on log pf.

Let us now pass to (4.26¢) and observe that Proposition 4.4 together with (4.26a) grants

1 1
sup // |w§y2,o§dtdm+//2|v¢§|2p§dtdm<oo. (4.98)
) 3 0

€€(0,1
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As a second step, notice that (4.24a) gives

1 1 1
2 2 7d
//O Vs P dt dm = // V5 205 dt dm — 2¢ / S (5 | m)
// V5 205 dt dm + 2 (H (o | m) — H (4 | m))

so that taking into account (4.26b) and (4.28) we see that the right-hand side is uniformly
bounded for € € (0,1). Using again (4.28) we deduce that

sup / Vi |25 dt dm < oo.
€€(0,1)

A symmetric argument provides the analogous bound for (¢/7) and thus recalling that ¥ =
$(¥§ — ¢f) and elog pf = Y + ¢f we obtain (4.26¢).
Now use the fact that 9§ = —¢f + 5 log p§ in conjunction with (4.24a) to get

d €
S )y = = [ (Ve Vieghdm + 5 [ (955, Viog pf)em

\V/ 2 2
:/pgAgp‘gdm—I—;/‘ [';6‘ dm > /pf;Aapgdm.
5

Recalling the lower bound (4.9b) and (4.26a), we get that for some constant Cjs independent
on ¢ it holds

d
SHGG )2 05 e e(0,1)

and an analogous argument starting from 9§ = 9§ — §log p; yields %H (1§ |m)| 15 = GCs
for every € € (0,1). Therefore

1-6 42 d d
up [ e Im) = sup (GG HO )]s ) < o0
ccoyJs A2 ceony \dt =15 7 g W T fe=s

The bounds (4.27a) and (4.27b) then come from this last inequality used in conjunction with
(4.24b), (4.26¢) and the weighted Bochner inequalities (4.22a) and (4.22b) respectively. [

With the help of the previous lemma we can now prove that some crucial quantities vanish
in the limit € | 0; as we shall see in the proof of our main Theorem 5.13, this is what we will
need to prove that the acceleration of the entropic interpolations goes to 0 as € goes to zero.

Lemma 4.10 (Vanishing quantities). With the same assumptions and notations of Setting
4.1, for any 6 € (0, %) we have

1-6
lif(r]l e? // pi|Alog p;|dt dm = 0, (4.29a)
3
1-6
lif(r]le // p5|V log p|? dt dm = 0, (4.29b)
3
1-6
lsiﬁr]laz //6 pi|Alog p7 ||V log pf| dt dm = 0, (4.29¢)
1-6
lsif(r]laz //6 p5|V log p5 |3 dt dm = 0. (4.29d)
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proof For (4.29a) we notice that

1-46 1-6
52// p§|Alogp§|dtdm§€\/1—25\/&2// p5|Alog p§|? dt dm
é é

and the fact that, by (4.27b), the last square root is uniformly bounded in € € (0, 1).
For (4.29b) we start by observing that Lemma 4.11 below applies to pf, because by Propo-
sition 4.3 pf € Test™(X) N LY(X) and
Ap; = [iAGE + gEASF +2(V 7, Vi) € LY(X).

Hence, from the identity pf|Vlog p5|? = —pfAlog pi + Api and the fact that [ Apfdm =0
we get

1-6 1-6 1-6
52// p5|V log p§|? dt dm = —52// p;Alog p7 dt dm < 52// p;|Alog p;| dt dm
6 é é

and then conclude by (4.29a).
For (4.29c) we observe that

1-6
[ sl og i)V o 7] dr

1-6 1-6
< \/62//5 p§|A10gp§\2dtdm\/62//6 p5|V log pf|? dt dm,

and use the fact that the first square root in the right-hand side is bounded (by (4.27b)) and
the second one goes to 0 (by (4.29b)).
To prove (4.29d) we start again from the identity p|V log p§

1-6 1-6 1-6
// p5|V log p|3 dt dm = —// p‘gAlogpﬂVlogpﬂdtdm—F/ Ap7 |V log p;| dt dm.
é 0 1

After a multiplication by £? we see that the first integral on the right-hand side vanishes
as € | 0 thanks to (4.29c). For the second we start by noticing that an application of the
dominated convergence theorem ensures that

1-0 1-6
/ Ap;|Vlog pi| dt dm = hf& // Apiy/n + |V log pe |2 dt dm, (4.30)
1) 7 1)

then we observe that for every n > 0 the map z +— /i + z is in C!([0,00)) and Lipschitz
continuous therein and since |Vlogpf|? € W12(X, e Vm) for V = Md?(-,z) and suitable
T, M (recall Proposition 4.3) we deduce that \/n + |V log p5[? € W2(X, e~V'm) as well. Thus
by the chain rule for gradients, the Leibniz rule (A.15) and also using a cut-off argument in
conjunction with Lemma 4.5 to justify integration by parts, we see that it holds

1-5
‘// Api\/n+ |Vlog pf|? dt dm
5

| = —pjAlog pf +Apf to get

1-46 s
<V10gp§,V!V10gp§!2>dtdm‘
‘// 77+!V10gpt|2
1-46 5
Hess(log pf )(V log pf, V log p§ dtdm‘
‘// \/n+|V10gpt\2 3 t 2

1-6
< | pilbesstiog g s [V 1o | dt
)
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and being this true for any n > 0, from (4.30) we obtain

2

1-6 1-6
£ / Apt|V10gpt\dtdm‘<6 // pi [Hess(log p;)|ys|V log pi | dt dm
1

1-5
\/62// p§|Hess(log pf) [} dt dm
1-5
X 52// p5 |V log p5|? dt dm.
0

In this last expression the first square root is uniformly bounded in ¢ € (0,1) by (4.27a),
while the second one vanishes as ¢ | 0 thanks to (4.29b). O

Lemma 4.11. Let (X,d,m) be an RCD*(K,N) space with K € R and N € [1,00) and
h € D(A) N LY(X) with Ah € LY(X). Then

/Ahdm =0.

proof Let T € X, R > 0 and xr € Test™(X) be a cut-off function as given by Lemma A.2.
Then

‘/XRAhdm‘ = ‘/AXthm‘ = ‘/ AXthm‘ < HAXRHL‘X’(X)/ hdm.
X\Bg(Z) X\Bg(Z)

Since Lemma A.2 ensures that ||Axg|| e (x) is uniformly bounded in R, the conclusion follows
letting R — oo in the above. O

5 From entropic to displacement interpolations

5.1 Compactness

Starting from the uniform estimates discussed in Section 4, let us first prove that when we pass
to the limit as € | 0, up to subsequences Schrodinger potentials and entropic interpolations
converge in a suitable sense to limit potentials and interpolations.

To formulate the result we need to introduce the Banach space (C(X,e™V), || - lex,ev))s
where V = Md?(-, %) for some # € X and M > 0: the norm || - lo(x,e-v) is defined as

I flox.e-vy = sup | f(z)]e”V®
reX

and C(X,e™V) = {f € C(X) : fllerxe vy < oo}

Proposition 5.1 (Compactness for measures). With the same assumptions and notations as
in Setting 4.1 the following holds.

For any sequence ey, | 0 there exists a subsequence, not relabeled, such that the curves (u;™)
uniformly converge in (P2(X), Wa) to a limit curve (p) belonging to AC([0, 1], (P2(X), Wa)).
Moreover, there is C > 0 so that

w<Cm  Vtelo,1] (5.1)
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and setting p; := % it holds

pim Sy in L®(X) Yt e [0,1]. (5.2)

proof Fix € € (0,1); we want to apply Theorem A.5 to (i7) and (V¥5). The continuity of
t + pi € L?*(X) granted by Proposition 4.3 yields weak continuity of (u;) and (A.23a) is a
consequence of (4.17). From the bound (4.26¢) it follows (A.23b) and from the formula for
% pf given in Proposition 4.3 and again the L2-continuity of (p) on [0, 1] it easily follows that
(ue) and (95) solve the continuity equation in the sense of Theorem A.5. The conclusion of
such theorem ensures that (u§) is Wa-absolutely continuous with

1 1
| viae= [ v aeam,

The bound (4.26¢) grants that the right-hand side is uniformly bounded in € € (0, 1) and since
{(15)} is tight and 2-uniformly integrable by (4.17) (hence Wa-compact), this is sufficient
to ensure the compactness of the family {(uf)}. in C([0,1], (P2(X), W2)) and, by the lower
semicontinuity of the kinetic energy, the fact that any limit curve (1) is absolutely continuous.
The bound (5.1) is then a direct consequence of the uniform bound (4.19) and the convergence
property (5.2) comes from the weak convergence of the measures and the uniform bound on
the densities. 0

Proposition 5.2 (Compactness for potentials). With the same assumptions and notations
as in Setting 4.1 the following holds.

For any sequence €, | 0 there exists a subsequence, not relabeled, such that for oll T € X
and M > 0, putting V := Md?(-, Z) we have:

i) For every 6 € (0,1) there exists C > 0 which only depends on K, N,0,% such that

il 15| <CL+d*(,z)  VEels 1], e€(0,1) (5-3)

ii) The curves (@), (Y5™) converge locally uniformly on J with values in L*(X,e™V'm) to
limit curves (¢r), (V1) € ACoe(J, LY(X, e~V m)) respectively, where J := (0,1] for the
p’s, 3:=[0,1) for the ¢’s;

En

iii) For allt € J, the functions @™, ¢ also converge in C(X,e™") to w4, ;.

iv) For any § € (0,1) there exists C' > 0 which only depends on K, N,§, T such that

sup lip(pr) + sup lip(vy) < C(1+d(-, 7)), m-a.e.; (5.4)
te(s,1] t€[0,1-4]

v) Finally, up to pass to a suitable subsequence to obtain the existence of limit measures
pe as in Proposition 5.1 above, for every t € (0,1) it holds

e+ <0 on X,

5.5
o+ =0 on supp(p). (5:5)

Similarly, the curves (V5") and functions 95" converge in (0,1) to the limit curve t — ¥ :=
%(wt — ¢t) and functions 9¢ in the same sense as above.
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proof
(i) We start by claiming that for all ¢ > 0 and ¢, s € (0,1] with ¢ < s it holds

5 Vil e
e — o5l x,evmy < // e V<‘ ’ | + 2|Acpﬂ>drdm. (5.6)
t

Indeed, by Proposition 4.3 we know that (@) € AC([5,1], W"2(X,e~V'm)) with V' :=
M'd?(-,z) and M’ = M’(8) sufficiently large, for any § € (0,1). Thus for any cut-off func-
tion xp € Test™(X) with xg = 1 on Br(Z) and support in Bry1(Z), we have (xry$) €
AC1,((0,1], Wh2(X, e~V'm)) and since Wh2(X,e™V'm) ¢ LY (X,e "' m) (because e Vm is a
finite measure) a fortiori this is true for (yge™" ¢5). From the formula for 4 5% (Proposition
4.3) this implies

_ VTQ
(2 — e e vay < // V(' “l 4 Sa €|)drdm

so that the claim (5.6) follows by letting R — oo and using the monotone convergence
theorem. Denoting by Cj a constant depending on K, N, pg, p1, Z,d, but independent of €, ¢,
whose value might change on the various occurrences it appears, estimates (4.9a) and (4.10)
give

HSD§ - SpiHLl(X,efvm) < C(S’S - t‘ Ve € (07 1)7 Vi, s € [57 1] (57)
Now we observe that from (4.9a) and the fact that X is a geodesic space it follows that
|5 () — 9§ (2)] < Csd(z,2)(1 +d(2,7)) < C5(L+d*(z,2))  VYee (0,1), te[d1]. (5.8)

Which already tells that ¢f has quadratic growth (with constants possibly depending on ¢, ¢).
For p with finite second moment, integrate (5.8) w.r.t. u in the x variable to get

5(E) - / o dul < / 5(x) — 05 ()] du(z) < Cs / 1+ &) du(z)  (59)

then pick ¢ := 1, p := p1 and recall that the normalization chosen for (f¢, ¢%) in Setting 4.1
reads as [ 7 dur = 0 to deduce that sup.¢ (g 1) [¢7(Z)| < oo and thus (5.8) gives

il < Cs(1 +d*(z, 7)) Ve e (0,1)

which in turn implies sup.¢ 1) [¢5]lL1(x,e-vm) < o0. This bound in conjunction with (5.7)
gives
0l (x,e-vmy < Co Ve € (0,1), Vt € [9,1],

so that picking p := e~Vm in (5.9) we see that |¢5(z)| < Cjs for every € € (0,1), t € [§,1] and
in conclusion (5.8) gives (5.3) for the ¢§’s

Following the same lines of thought, the bound (5.3) for ¢; will follow provided we are
able to show that for some measures p® with uniformly bounded second moment it holds

sup  sup !/wtdu|<oo
te[0,1—6] e€(0,1)

for any § € (0,1). We pick p° := puj P (4.26a) gives the uniform bound on the second moment,
while multiplying by pf /2 the 1dent1ty 5 2t (o /2= = elog pf /2 and integrating we get

[ o+ [ 60t = H o[ m)
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and the conclusion follows from (4.26b) and (5.3) in conjunction with (4.26a).
(ii) By Ascoli-Arzeld’s theorem, for given z € X and C > 0 the set of functions ¢ on X such
that

ol < C(1+d%(, 7)) lip(p) < C(1+4d(, 7))
is a compact subset of C(X, e~"'m). Thus for any ¢ € (0,1) the estimates (5.3) and (4.9a) give
that {o§ : e € (0,1),t € [§,1]} is compact in C(X,e~"'m) and thus a fortiori also compact in
LY (X, e~V'm). This fact, (5.7), the arbitrariness of § € (0, 1) and again Ascoli-Arzela’s theorem
give the claim. Similarly for the ’s.
(iii) We know that for any ¢t € (0,1) we have ¢ — ¢ in L}(X,e™"m). We also noticed
that for any ¢ € (0,1) the family {¢5"},, is compact in C(X,e~"'m), thus the claim follows.
Similarly for the v’s.
(iv) We know that for any » € X it holds lip p¢(x) < lim, |, Lip((pt|Br(m)) and, since X is
geodesic, that Lip(np§| B, (I)) = SUpp, () lippf. Thus the claim follows from the bound (4.9a)
and the fact that Llp((pt‘ B (x)) <lim, . Lip(ef" |5, (x)), which in turn is a trivial consequence
of the local uniform convergence we already proved. Similarly for the ¢’s.
(v) For the inequality in (5.5) we pass to the limit in the identity

@y + ) = elog py (5.10)

recalling the uniform bound (4.19). To get the identity in (5.5) we multiply both sides of
(5.10) by p§ and integrate to obtain

/ (5 + 5)p5 dm = eH (5 | m).

Letting € = ¢, | 0 we see that the right-hand side goes to 0 by (4.26b); then we use the fact
that Wa(u;™, ue) — 0, that the functions ¢f,¥f have uniform quadratic growth and converge
locally uniformly to ¢, vy respectively to obtain that the left-hand side goes to [ ¢ + 1y dpus.
This is sufficient to conclude. ([l

5.2 Identification of the limit curve and potentials

We now show that the limit interpolation is the geodesic from pg to 1 and the limit potentials
are Kantorovich potentials. We shall make use of the following simple lemma valid on general
metric measure spaces:

Lemma 5.3. Let (Y,dy,my) be a complete separable metric measure space endowed with a
non-negative measure my which is finite on bounded sets and assume that WH2(Y) is sepa-
rable. Let  be a test plan and f € WY2(Y). Then t [ foerdm is absolutely continuous
and

‘jt/foet dﬂ" S/’df’(%)mldﬂ('y) a.e. t € [0,1], (5.11)

where the exceptional set can be chosen to be independent on f.
Moreover, if (f;) € AC([0,1], L*(Y)) N L>°([0, 1], WY2(Y)), then the map t — [ fioe dm

1s also absolutely continuous and

(j,s(/fsoede)‘s—t :/(isfs‘s_t) oetdﬂ'+§s(/ftoesdﬂ')’s_t a.e. t €[0,1].
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proof The absolute continuity of ¢t — [ f o e;dm and the bound (5.11) are trivial conse-
quences of the definitions of test plans and Sobolev functions. The fact that the exceptional
set can be chosen independently on f follows from the separability of W!2(Y) and standard
approximation procedures, carried out, for instance, in [29].

For the second part, we start by noticing that the second derivative in the right-hand
side exists for a.e. t thanks to what we have just proved, so that the claim makes sense. The
absolute continuity follows from the fact that for any tg,t; € [0, 1], tg < ¢; it holds

| [ fuoen = o dn| <| [ oo~ fyoedn] +| [ o~ fiydle).n]

gﬂbMMM%““w+ﬂ?

and our assumptions on (f;) and 7. Now fix a point ¢ of differentiability for (f;) and observe

d
aft‘ dt d(eto)*ﬂ'

that the fact that w strongly converges in L?(Y) to % fr and (e4yp).m weakly converges
to (e¢)«m as h — 0 and the densities are equibounded is sufficient to get

. - d . -
%%/Woewrhdﬂ—/dtftoetdﬁ—}lg%/Woetdﬂ.

Hence the conclusion comes dividing by h the trivial identity

/ft+hoet+h—ftoetd7r:/ftoet+h—ftoetdﬂ+/ft+hoet—ftoethr—{—
+ /(ft+h — ft)oerrn — (fien — ft) cerdm

and letting h — 0. O

We now prove that in the limit the potentials evolve according to the Hopf-Lax semigroup
(recall formula (A.25)).

Proposition 5.4 (Limit curve and potentials). With the same assumptions and notations as
in Setting 4.1 the following holds.

The limit curve (ug) given by Proposition 5.1 is unique (i.e. independent on the sequence
en 4 0) and is the only Wa-geodesic connecting py to p.

For any z € X, M > 0 and any limit curve (py) given by Proposition 5.2, (i) is in
ACoc((0,1],C(X,e7V)) N L2 ((0,1], WL2(X, eV m)), where V := Md?(-,z), and for any

to,t1 € (0,1], to < t; we have
—pt, = Qty—to (—¢1o) (5.12a)

1
/‘Pto dlu’t() - /‘ptl d:ut1 = mwg(”toaﬂtl) (5'12b)

and —(t1 — to)py, is a Kantorovich potential from g, to pu,. Similarly, for V as above
and any limit curve (1;) given by Proposition 5.2, (1) belongs to ACi,c([0,1),C(X,e™V)) N
L3 ([0,1), WH2(X, e~V'm)) and for every to,t1 € [0,1), to < t; we have

loc
—ty = Qty—to(—1,) (5.13a)
1
/¢t1 dpu, — /WO dpuey = mwg(ﬂ’tOMUH) (5.13b)

and —(t1 — to)Yy, is a Kantorovich potential from pu, to i, -
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proof
Inequality < in (5.12a). Pick z,y € X, r > 0, define

1 1

Vo= vl =

© T (B, () 1B VT (B (y) 15w

and 7" as the lifting of the only Wa-geodesic from v to v, (recall point (i) of Theorem A.6).
Since vy, v, have compact support and w" € OptGeo(vy, vy ), there exist z € X and R > 0
sufficiently large such that

supp((et)«7") C Br(Z), vt € [0,1]. (5.14)

Let x be a Lipschitz cut-off function with bounded support such that x = 1 in Br(Z). Then, let
e€(0,1)and 0 <ty < t; < 1, put &5 := x§ and observe that (35) € AC,.((0,1], L*(X)) N
L% ((0,1], WH2(X)) by Proposition 4.3 and the compactness of the support of y; thus, by

loc
Lemma 5.3 applied to ##" and t — gbf we get

].—t)to —+tt1?

d [ . - d . . .
at /‘Pfl—t)toﬂtl oepdm” > /(tl - t0)$¢§|5:(1,t)to+ttl(%) — AP0 _pytgpee, | () [Fel A7 (7).

As (5.14) implies that x(v) = 1 for all ¢ € [0,1] for w"-a.e. v, $° can be replaced by ¢° in
the inequality above and, recalling the expression for %gpi and using Young’s inequality, we
obtain

d T, t1 —to 1 P
dt/@?l—t)to-i-ttl oepdm’” > /5 > ALl _pytgren, (1) — m|fyt| dn’" (7).

Integrating in time and recalling that " is optimal we get

1 5 Ut —to
/@il dV;; — /90%0 dl/; 2 —mWQ (V:Z, V;) + //O 9 9 Aspfl—t)to-‘rttl O €t dt d’n’T.

Let £ | 0 along the sequence (g,) for which (¢;™) converges to our given (y;) in the sense
of Proposition 5.2 and use the uniform bound (4.10) and the fact that #«" has bounded
compression to deduce that

1
/Sﬁn dvy, — /S% dyy > —mW§(V§’V;)
and finally letting r | 0 we conclude from the arbitrariness of x € X that

— Pt (y) < Qtl—to(_wto)(y) v?/ € X. (5'15)

Inequality > in (5.12a). To prove the opposite inequality we fix Z € X, r > 1, again
0 <tp <ty <1andlet R >r to be fixed later. Let x € Test*(X) be given by Lemma A.2,
define the vector field X7 := x3V¢; and apply Theorem A.4 to ((t; — tO)X(al—t)tl-i—tto): the
inequality

divXy > xpAe; — [Vxal Vel

and the bounds (4.9a), (4.9b) on Vi, Ag; ensure that the theorem is applicable and we
obtain existence of the regular Lagrangian flow F¢. Notice that from (4.9a) we know that
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|XE| < C'(1+d(-,z)) for all ¢ € [tg,1] for some €’ < oo independent of R,e, therefore for
m-a.e. £ we have
d (A.22

AU (2), 7) < msy(F7(2)) * = Nt - t0) | XT_py 4a1 | (F (7)) < C'(1 + d(Ff (2), 7))

for a.e. t and thus Gronwall’s Lemma implies the existence of R independent of R, ¢ such that
for m-a.e. x it holds

veB(z) =  Fiz)eBr(@) Vtelo1]. (5.16)

We now fix R := R and put ¢ := m(BT(i*))*l(F.E)*m’B )’ where F¢ : X — C(|0, ] X) is
the m-a.e. defined map which sends = to t — Ff(z), and observe that the bound (A.21) and

the identity (A.22) provided by Theorem A.4 coupled with the estimates (4.9a), (4.9b) on
Vi, Apf and the fact that xyr € Test™(X) ensure that 7° is a test plan with

sup // 4|2 dt A () < and (er)sm® < Cm  Vtel0,1], e €(0,1), (5.17)
€€(0,1)

for some C' < oo. Now put ¢ := xry; and notice that the definition of =€ and (5.16)
ensures that for every ¢ € [0,1] we have @ = ¢f (e;).m-a.e. Moreover we have (¢f) €
AC)0((0,1], L3(X))NLZ2.((0, 1], W2(X)), thus by Lemma 5.3 applied to € and ¢ — By

we obtain

d d
dt /"D(l )ty it © € AT = dt/(p(l B+t © €t AT

d . d )
B /(to ; tl)gwi‘sz(lfﬂtlﬂto oerdm” + & / (’Dfl—t)h-i-tto ©€s dﬂ-a‘s:t
d
N /(to - tl)d7¢§|s= (1—t)tatity dm® + (t1 ~ to) /d@(l —t)t1+tto (X7) oepdm®
_ / (t to—t
b~ to— 1
= / ( ’d(P t1+tt0‘2 +e 5 A(‘Oilft)tﬁrtto) o e, dme.

Integrating in time and recalling (A.22) we deduce

t1+tto

2
t1+tt0| +e

Asofl—t)h-l—tto + (tl - t0)|ds0?1—t)t1+tt0 |2) O ey dn¢

-1
/@to oep — ¢y oepdm® = // 751 |’Yt|2 + 5 2 A@?l—t)t1+tt0 () dtdm®(y). (5.18)

Now, as before, we let € | 0 along the sequence (g,,) for which (p") converges to our given
(¢¢) in the sense of Proposition 5.2: the first property in (5.17) grants that (#¢) is tight
in 2(C([0,1],X)) (because 7y fol |4¢|? dt has locally compact sublevels and (eg).w® =
m(B,(z))~! m )) and thus up to pass to a subsequence, not relabeled, we can assume that
(men) weakly converges to some w € Z(C([0,1],X)). The second property in (5.17) and the
bound (4.10) grant that the term with the Laplacian in (5.18) vanishes in the limit and thus
taking into account the lower semicontinuity of the 2-energy we deduce that

1 ! 1
- dme > ———— 2 dtdr > ———— [ d? dm(y).
/sotooe1 oo dm > 50— /O 44|~ dt dmw > 2(t1_t0)/ (0, 71) d ()
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Now notice that (5.15) implies that

d2(707 ’71)
2(t1 — to)

for any curve -y, hence the above gives

> oty (71) = 1, (70) (5.19)

1
/soto oe; — ¢y oegdmw > ——— /dZ(%m)dﬂ(v) > /cpto oey — ¢y, oegdm
2(ty; — to)

thus forcing the inequalities to be equalities. In particular, equality in (5.19) holds for mr-a.e.
~ and since (eg)sm = LP. this is the same as to say that for m-a.e. y € B,.(z) equality

holds in (5.15). Since both sides of (5.15) are continuous in y, we deduce that equality holds
for any y € B,(Z) and the arbitrariness of r allows to conclude that equality actually holds
for any y € X.

Other properties of ¢;. From Proposition 5.2 we already know that, for any £ € X and
M >0, (¢1) € AC1oe((0,1], LY(X, e™V'm)) N LS. ((0, 1], WH2(X, e~V m)), where V := Md?(-, z).
Since ¢ is a real-valued function for all ¢ € (0, 1], (5.12a) tells us that for all z € X, t — ¢y ()
satisfies (A.26) for a.e. t € (0, 1]; taking (5.4) into account, this yields that for all § € (0,1)

and tg,t1 € [(5, 1] with ty < t1

tl 1. 2
low — pullersen < sup [PV 4y < (up 1+ de m)e )iy 1o
zeX Jitg reX

whence () € AC}o((0,1],C(X,e™V)) N L2 ((0,1], WH2(X, e V'm)).
Extracting a further subsequence - not relabeled - we can assume that the curves (u;™)
converge to a limit curve (u;) as in Proposition 5.1. We claim that for any to,t; € (0, 1],

to < t1 it holds
1
- /90151 d:uh + /90t0 d/J’to 2 77W22(Ht07:u751) (520)
2(t1 — to)

and start by observing that since (¢;) € C((0,1],C(X,e~V)) and (u¢) € AC([0, 1], (Po(X), Wa)),
by the uniform estimates (5.3) we see that both sides in (5.20) are continuous in g, ¢, hence
it is sufficient to prove (5.20) for to,t; € (0,1).
Now fix z € X and R > 0, let xr € Test>(X) be a cut-off function as in Lemma A.2 and
observe that by Proposition 4.3 t — [ xrpfpi dm belongs to C((0,1]) N ACje((0,1)) with
Vi e

d
~ 5 [ i am= [ xa( = FEE < S gt~ (Vi 998) ) + 6 (Tcm, Vo

Vs €2 €
= [n(S5E — w08 42 - 58607 + (V. V)gf
(5.21)

for a.e. t € (0,1), having also used the identity ¢f = §logpf — ¥i. By (5.3), (4.26a) and
Lemma 4.5 it is readily verified that [ xpefpfdm — [@fpfdm as R — oo for any ¢ € (0,1)
and that the rightmost side of (5.21) passes to the limit as R — oo locally uniformly in

t € (0,1). Hence after an integration in ¢ and letting R — oo in (5.21) we obtain
|V Y9e|? &2 c
—/902 dpg, +/<P§0 dpt, = // <|2t’ - 5 |Viegpjl” - 5A¢§)p§dtdm
to

39



As already noticed in the proof of Proposition 5.1, (x§) and (V95) satisfy the assumptions of
Theorem A.5, thus from such theorem we deduce that

"V e 1
il dtdm:/ ClRAt > W2, ).
J 5 A= g R )
Therefore

1 tl
—/soil duiﬁ/%o iy 2 55— 3 (i 15,) //t IVlogptIQ—*Asot)pt dt dm.
0

We now pass to the limit in € = &, | 0: we know from Proposition 5.1 that Wa(u;", p) — 0
and together with (5.3) this also grants that the left-hand side trivially converges to the left-
hand side of (5.20). The contribution of the term with |V log pf| vanishes by (4.29b) and so
does the one with Apf by (4.10) and (4.17). Hence (5.20) is proved.

Now notice that (5.12a) can be rewritten as

_(tl - t0)90t1 = ((tl - tO)@to)ca

so that in particular —(t; —to)py, is c-concave and (—(t1 —to)pe, )¢ > (t1 —to)er,- Hence both
(5.12b) and the fact that —(t1 — to)py, is a Kantorovich potential follow from

1 C
§Wz~2(utmut1) > /—(tl — to) e, dp, +/(—(t1 — to)pt; ) dptg

(5:20) 1
> /_(tl - tO)‘Ptl d:ut1 + /(tl - tO)QDtO duto > §W22(Mtoaﬂt1)-

Then (5.13b) and the other claims about (1)) are proved in the same way.

(pt) is a geodesic. Let [to,t1] C (0,1), pick t € [0,1] and put ¢ := (1 — t)t; + tto. We know
that —(t1 —to)pr, and —t(t1 —to)ye, are Kantorovich potentials from p, to py, and from gy,
to py respectively and thus by point (7i) of Theorem A.6 we deduce

1 (t1 — to)?
W) = [ 1a(—to)er) i, = 5 [ 1(0=t)e) P, = =25 WE )
0

Swapping the roles of tg,¢; and using the ’s in place of the ¢’s we then get

t/
0W2(/~‘t17,ut0) ¥ [to, t1] C [to,ta] < (0, 1).

WQ(Mtllv Nt6) tl
This grants that the restriction of (u¢) to any interval [tg,%;] C (0,1) is a constant speed
geodesic. Since () is continuous on the whole [0, 1], this gives the conclusion. Since in this
situation the Wa-geodesic connecting pg to pq is unique (recall point (i) of Theorem A.6), by
the arbitrariness of the subsequences chosen we also proved the uniqueness of the limit curve

(1) ]

Remark 5.5 (The vanishing viscosity limit). The part of this last proposition concerning
the properties of the ¢f’s is valid in a context wider than the one provided by Schrodinger
problem: we could restate the result by saying that if (¢f) solves

d c 1 212 3
90 — C 80 AQPE .22
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and ¢f uniformly converges to some g, then ¢f uniformly converges to ¢; := —Q:(—o).

In this direction, it is worth recalling that in [2] and [24] it has been developed a theory
of viscosity solutions for some first-order Hamilton-Jacobi equations on metric spaces. This
theory applies in particular to the equation

d ]. . 2
et = glin(e) (5.23)
whose only viscosity solution is given by the formula ¢; := —Q¢(—¢0).

Therefore, we have just proved that if one works not only on a metric space, but on
a metric measure space which is an RCD*(K, N) space, then the solutions of the viscous
approximation (5.22) converge to the unique viscosity solution of (5.23), in accordance with
the classical case. |

Remark 5.6. It is not clear whether the ‘full’ families 7, ); converge as € | 0 to a unique
limit. This is related to the non-uniqueness of the Kantorovich potentials in the classical
optimal transport problem. |

We shall now make use of the following lemma. It could be directly deduced from the
results obtained by Cheeger in [16], however, the additional regularity assumptions on both
the space and the function allow for a ‘softer’ argument based on the metric Brenier’s theorem,
which we propose.

Lemma 5.7. Let (Y,dy,my) be an RCD*(K, N) space with K € R and N € [1,00) and let
¢:Y - RU{—0o0} be a c-concave function not identically —oo. Let £ be the interior of the
set {¢p > —oo}. Then ¢ is locally Lipschitz on Q and

lipgp = |d¢|, m-a.e. on Q.

proof Lemma 3.3 in [36] grants that ¢ is locally Lipschitz on Q and that 9°¢(z) # () for every
x € Q. The same lemma also grants that for K C Q compact, the set U,cx0°¢(x) is bounded.
Recalling that 0°¢ is the set of (z,y) € Y2 such that

8(z) + () = 58 (z,y)

and that ¢, ¢¢ are upper semicontinuous, we see that 9°¢ is closed. Hence for K C €2 compact
the set Ucx0°¢(x) is compact and not empty and thus by the Kuratowski-Ryll-Nardzewski
Borel selection theorem we deduce the existence of a Borel map T : 2 — Y such that
T(x) € 0°(x) for every x € Q.

Pick pu € P5(Y) with supp(pu) CC Q and p < Cm for some C' > 0 and set v := T,u. By
construction, u, v have both bounded support, T is an optimal map and ¢ is a Kantorovich
potential from p to v.

Hence point (ii4) of Theorem A.6 applies and since lip ¢ = max{|D"¢|,|D~¢|}, by the
arbitrariness of u to conclude it is sufficient to show that |[D"¢| = |[D~¢| m-a.e. This easily
follows from the fact that m is doubling and ¢ Lipschitz, see Proposition 2.7 in [5]. O

With this said, we can now show that the weighted energies of the Schrodinger potentials
converge to the weighted energy of the limit ones:
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Proposition 5.8. With the same assumptions and notations as in Setting 4.1 the following
holds.

Let e, | 0 be a sequence such that (pi™), (Y;™) converge to limit curves (@), (1) as in
Proposition 5.2 and let V := Md?*(-,z) with T € X and M > 0 arbitrary. Then for every

0 € (0,1) we have
1 1
lim // e V|dps|? dt dm = // eV |dpy)? dt dm,
n—oo 5 E)

1-6 1-6
lim // e—V|d¢§n|2dtdm:// e~V |dey|? dt dm.

proof Fix § € (0,1) and argue as in the proof of Proposition 5.2 to obtain that ¢ — [ e Vi dm
is absolutely continuous in [, 1] (see in particular (5.7)) and that

1
/e_v(gpi - gpf;)dm = ;// e_V(\ngﬂZ + 5A<p§)dt dm.
6

Choosing ¢ := &, letting n — oo and using the uniform bounds (4.10), (5.3) and the volume
growth estimate (A.20) we obtain

1 1
lim 2// e V|dps|? dt dm = lim /ev(gﬁ" — 5" )dm = /ev(gm — ps)dm.  (5.25)
(5 n—oo

n—oo

(5.24)

Combining (A.26) and (5.12a) we see that for any = € X it holds

C o) = 5((pp)@)®  ae te01]

By Fubini’s theorem, the same identity holds for £ @ m-a.e. (t,x) € [§,1] x X. The identity
(5.12a) also grants that ¢, is a multiple of a c-concave function, thus the thesis of Lemma
5.7 is valid for ¢; and recalling that (¢;) € AC;,.((0,1], L'(X,e~Ym)) by Proposition 5.2 we

deduce that
14 1 dos |2
/ev(% —wa)dm:/ dt/evsotdmdt: // eV“;t' dt dm,
5 5

which together with (5.25) gives the first limit in (5.24). The proof of the second one is
analogous. 0

As a direct consequence of the limit (5.24) and the local equi-Lipschitz bounds (4.9a) we
obtain the following result. In order to state it, let us introduce the module L?(T*X,e~"m) as
{we LYT*X) : |w| € L3(X,e~Vm)}; an analogous definition can be given for L2((T*)®2X).
Corollary 5.9. With the same assumptions and notations as in Setting 4.1 the following
holds.

Let €, | 0 be a sequence such that (o), (Y5™) converge to limit curves (¢i), (Vi) as in
Proposition 5.2. Then for every § € (0,1), z € X and M > 0 we have

(dgp6 ) —  (d¢y) in  L%([0,1], L*(T*X, e~ ))
@6 - (dw) i L0, -8, (1%, V)
(dpz" ®d80 ") = (der @ dey) in - L2([6,1], L*((T*)®*X, e Vm)) (5.26)
(dys» @ dys™)  —  (dyr @ dey) in L2([0,1 — 0], L2((T*)®2X, e~V'm))
(e @die) = (dpeody)  in LA(61 - 8], L3((T%)%2X, e Vm))
where V = Md?(-, ).
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proof Let V be as in the statement and start by noticing that the closure of the differential
grants that dp$™ — dy; in L2(T*X,e~Vm) for all ¢ € (0,1]. This and the fact that (dg$") is
equibounded in L2([8,1], L?(T*X,e~Vm)), as a direct consequence of (4.9a), are sufficient to
ensure that (dg™) — (dgy) in L2([6, 1], L>(T*X, eV m)). Given that the first limit in (5.24)
grants convergence of the L2([§,1], L?(T*X,e~"m))-norms, we deduce strong convergence.
This establishes the first limit.

Now observe that for every w € L2([5,1], L*(T*X,e~"'m)) the fact that e~V |d¢S"| is
uniformly bounded in L*°([4, 1] x X) for every M > 0 in the definition of V' and the strong
L2-convergence just proved ensure that (dp$™, wi) — (dpy,wy) in L2([6,1] x X, dt @ e"V'm). Tt
follows that for any wy,ws € L2([0, 1], L*(T*X, e~V m)) we have

1 1
// eV (™, wi ) (dpf™, wa ) dtdm  — // eV (depr,wr ¢) (depr, way) dt dm
) )

and thus to conclude it remains to prove that

1 1
//5 e Vldpi" @ dgin[fgdtdm  — //6 eV |dp; ® depyfg dt dm.

Since |[v @]} = |v|* this is a direct consequence of the fact that [dg;"| is uniformly bounded
and converge to |dy;| in L2([6,1] x X, dt ® e~V'm). Hence also the third limit is established.
The other claims follow by analogous arguments. O

The estimates that we have for the functions ¢’s tell nothing about their regularity as
t | 0 and similarly little we know so far about the ¢’s for ¢t T 1. We now see in which sense
limit functions g, ¥1 exist. This is not needed for the proof of our main result, but we believe
it is relevant on its own.

Thus let us fix €, | 0 so that ¢;" — ¢, for t € (0,1] and ;™ — 1, for t € [0,1) as in
Proposition 5.2. Then define the functions ¢g, 11 : X - RU{—o0} as

wo(z):= inf ¢(z) = ltifg o),

te(0,1] (5 27)
Va(@) = it dule) = lim (o). '

Notice that the fact that the inf are equal to the stated limits is a consequence of formulas
(5.12a), (5.13a), which directly imply that for every x € X the maps ¢ — ¢¢(z) and t —
11—¢(x) are non-decreasing.

The main properties of g, 11 are collected in the following proposition:

Proposition 5.10. With the same assumptions and notations as in Setting 4.1 and for ¢g, Y1
defined by (5.27) the following holds.

i) The functions —p; (resp. —iby) I'-converge to —pg (resp. —ib1) ast 0 (resp. t11).

ii) For every t € (0,1] we have

Qt(_@o) = —¥t Qt(—¢1) = —14.
iii) It holds
| —to(x) if © € supp(po) | —pi(z) if © € supp(p1)
(@) = { —00 otherwise i(w) = { —00 otherwise
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iv) We have
1
/wopoder/wlpl dm = S W3 (o, j11)-

v) Define ¢f on {po > 0} as ¢f := clog(f¢) and let £, | 0 be such that @™, ;™ converge
to p¢, Yy as n — 0o as in Proposition 5.2.

Then the functions powy™, set to be 0 on X\ {po > 0}, converge to popo in L>°(X) as
n — oo.

With the analogous definition of p1y){" we have that these converge to piy in L>(X)
as n — o0o.

proof We shall prove the claims for g only, as those for ¢ follow along similar lines.

(i) For the I — lim inequality we simply observe that by definition —q(x) = limy o —¢¢(z).
To prove the I' — lim inequality, use the fact that —p; > —p, for 0 < ¢ < s and the continuity
of ps: for given (z;) converging to x we have

lim —i(7¢) > lim —ps(2r) = —ps(x) Vs > 0.
tl0 t}0

The conclusion follows letting s | 0.
(ii) From —¢p > —¢, we deduce that

Qi(=p0) > Qu(—ps) "BY —pry Vs e (0,1]

and thus letting s | 0 and using the continuity of (0,1] 3 ¢t — ¢(z) for all x € X we obtain

Qi(—po)(z) > —p(x) for all z € X. For the opposite inequality, notice that the second (4.3)

gives )

Gd'(,2) | G (5.28)
t t

for all ¢ € (0,1] with Cy, Cs5,Cgs depending on K, N, po, p1,7 only and v /5 as in (4.2). We

now claim that for every e € (0,1) we have

¢f <elogCy —elogvey s +elog || £ 11 x) —

elogv. > —C, elog|lfllpix) <C (5.29)

for some constant C' depending on K, N, pg, p1, Z only. Indeed, from (A.19) we see that letting
D be the diameter of supp(pg) and ¢ = ¢(D) a constant depending only on D we have

m(Bz(z)) > 2PV m(supp(p)) VY € supp(po).

Thus v, > C%2(P/Ve)+lm(supp(py)) and thus the first inequality in (5.29) follows. For the
second one we start by noticing that the first inequality in (A.5), the identity [ f®g¢° dRe/2 =
1 and the fact that the supports of f¢, g° coincide with those of pg, p1 respectively give

elog (1150 llg°llz o ) = £log / ffogdmem)
( ) ( )) supp(po) xsupp(p1) (5.30)

< slog(Clm(B)) + D? + 0262,
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for every e € (0, 1), where D is the diameter of supp(po)Usupp(p1) and B is the 1-neighbourhood
of supp(pp) U supp(p1). Then recall the normalization (4.1), the identity logp; = log¢® +
log(h, s2f° ) and use Jensens’ inequality for — log to obtain

H(py|m) = /m log p1 dm = /log(gs)m dm < log/ggm dm < log <||96HL1(X)HP1||L°°(X))a

whence log [|g%[| L1 (x) = H (p1 | m) —log [|p1]| o (x) for all & € (0, 1), which together with (5.30)
gives the second inequality in (5.29).

Therefore passing to the limit in (5.28) as ¢ = ¢, | 0 and recalling the local uniform
convergence of ¢;" to ¢, give —p; > —% + w for every t € (0, 1], where C > 0 depends
on K, N, pg, p1,Z only. It follows that

C’5d2 T Cs _ _
— > 25) > 7dQ(-,x), vt e (0,1], = ¢ B\/?(:c). (5.31)
Now fix € X and a sequence t,, | 0: the bound (5.31) grants that there are y,, € X such that
d?(z,y
Qi(—¢pr,)(z) = (ztn) = #t,,(yn)

and that these y, range in a bounded set. Thus up to pass to a subsequence we can assume
that y, — y for some y € X, so that taking into account the I' — lim inequality previously

proved we get
d*(z, yn) (5.12a)

2 X
@Y o) < i ) = Tim Qi(—g)(@) P2V lim () = i ()

2t n—o0 n—o0 n—o0

which shows that Q¢(—vo)(z) < —pi(z), as desired.
(iii) For any t € (0, 1] we have
(5.5)
wo <@ < —iy
so that letting ¢ | 0 and using the continuity of [0,1) 3 ¢ — y(z) for all z € X we deduce
that
w0 < —o on X.

Now notice that the fact that —pg < T' — lim(—¢;) implies that
¢o(v0) > %@t(%) vy € C([0,1], X). (5.32)

Let 7 be the lifting of the Wj-geodesic (p:) (recall point (i) of Theorem A.6); taking into
account that the evaluation maps e; : C(]0,1],X) — X are continuous and that supp(m) is a
compact subset of C([0, 1], X), because given by constant speed geodesics running from the
compact set supp(pg) to the compact supp(pi), it is easy to see that for every v € supp()
and t € [0, 1] we have v, € supp(u¢) and viceversa for every x € supp(u¢) there is v € supp(m)
with v = =.

Thus let © € supp(po) = supp(po) and find v € supp(m) with 79 = x: from the fact that
vt € supp(p) and (5.5) we get

(532) -
wo(x) > 1561%(%):1;%—%(%)-
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and since the continuity of [0,1) > t +— ¢y € L'(X,e~"Vm) and the uniform local Lipschitz
continuity of the ;’s (both coming from Proposition 5.2) imply local uniform convergence of
Wy to g, we conclude po(x) > ().

Thus it remains to prove that ¢y = —oo outside supp(pp). To this aim, we notice again
that the supports of f¢, ¢° coincide with those of pg, p1 and use the second inequality in (A.5)
to get

C —eo &2 (a, supp(p D i,
f5(@) = hoyofo(a /f Yy, y) dm(y) < S emer =EFERAD +dft/fadm

Vet /2

4
9; () = ho(1p) 297 (7) = /gs(y)rs(lt)/Z(xay) dm(y) < ——— /95 dm,
Ve(1—t)/2
for every ¢ € (0,1) and constants ¢; > 0 depending on K, N, pg, p1, Z only. From these bounds,
the identity pj = ffg; and the estimates (5.30) and (5.29) we deduce that

hmslog( 7 (x)) <C5706M

\ X, t€(0,1). 5.33
i < : reX, te(0,1) (533)

Now let &, | 0 be the sequence such that ¢;™,1);" converge to ¢, as in Proposition 5.2
and put S(x) 1= sup.¢(0,1),ef0,1/2) [¥i (%) < oo (recall (5.3)). The inequality

- (5.33) 2
o) = Tim g5 (@) < T enlog(p () — lim g57(2) < S(x) + 5 — e SPR(0))

n—o00 n—o00 n—o00 t

shows that if « ¢ supp(pg) we have po(z) = limy g p¢(z) = —o0, as desired.
(iv) By the point (éi7) just proven we have

/@opodm+/¢1ﬂ1 dm = /¢opodm/90lp1 dm

so that taking into account the weak continuity of ¢ — uy, the fact that the measures p; have
equibounded supports and the continuity of ¢ — ¢; (resp. t — ;) for ¢ close to 1 (resp. close
to 0) in the topology of local uniform convergence (direct consequence of the continuity in
LY(X, e_Vm) and the uniform local Lipschitz estimates provided by Proposition 5.2), we get

/SOOPO dm+/w1m dm = ltifél_/wtpt dm—/‘Pl—tPl—t dm

5.5) .. 5.12b) 1
= ltlJ%l/SDtPt dm—/m—tm—tdm( = )§W22(Mo,u1)-

(v) Since pg € L*™(X), we also have pglog(po) € L*(X). The claim then follows from the
identity pogf = €po log po — pot, the compactness of supp(pp), the local uniform convergence
of g™ to 1y as n — oo and the fact that 19 = —¢¢ on supp(po). O

Remark 5.11 (Entropic and transportation cost). For € > 0 the entropic cost from pg to p1

is defined as
(‘TE(IO(b pl) = 1an(7 ’ RE/Q)a

the infimum being taken among all transport plans v from pg := pom to p; := pym. Hence
with our notation

1 1
Tg(po,pl) :H(f\?@gsRE/Q‘RE/Z) — E/@S@@Difs@gngsm — 8(/@8p0dm+/@l)§p1dm)
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and by (iv), (v) of the previous proposition we get

. 1
lime T.(po, p1) = 5 W5 (o, f11)-
el0 2

In other words, after the natural rescaling the entropic cost converges to the quadratic trans-
portation cost, thus establishing another link between the Schréodinger problem and the trans-
port one.

We emphasize that although this argument is new, the result is not, not even on RCD* (K, N)
spaces: Léonard proved in [46] that the same limit holds in a very abstract setting provided
the heat kernel satisfies the appropriate large deviation principle ¢logr, s[x](y) ~ —%.
Since recently such asymptotic behavior for the heat kernel on RCD* (K, N) spaces has been
proved by Jiang-Li-Zhang in [41], Léonard’s result applies. Thus in this remark we simply

wanted to show an alternative proof of such limiting property. |

5.3 Proof of the main theorem

We start with the following simple continuity statement:

Lemma 5.12. With the same assumptions and notation as in Setting 4.1, let t — py = pym
be the Wa-geodesic from o to p1 and (pi)ie(o,1) and (Yt)icpo,1) any couple of limit functions
given by Proposition 5.2.

Then the maps

(0, 1] >t —  prdey S LQ(T*X)
0,1)3t — pdiy € L*(T*X)
0,1]3t = pdp,@dg € L((T)%%X)
0,1)5t = pedy@dy; € L2((T%)®2X)

are all continuous w.r.t. the strong topologies.

proof By Lemma A.8 we know that for any p < oo we have p; — p; in LP(X) as s — ¢
and thus in particular /ps — /pr as s — t. Moreover, the compactness of the supports of
po and p; implies that there exist £ € X and R > 0 such that supp(p;) C Bgr(z) for all
t € [0,1]. Consider a Lipschitz cut-off function x with support in Bg1(Z) such that x =1 in
Br(Z). The closure of the differential and the fact that ¢, — ¢; weakly in WH2(X, e=Vm) as
s —t >0 (as a consequence of () € C((0,1],C(X,e™")) N L2 ((0,1), WH(X, e 'm)), see
Proposition 5.4 and the notation therein) grant that dys — dg; weakly in L?(T*X,e™"'m)
and thus ydps — xdy; in L2(T*X). Together with the previous claim about the densities,
the fact that the latter are uniformly bounded in L°°(X) and how x is constructed, this is
sufficient to conclude that t — /pidep; € L?(T*X) is weakly continuous.

We now claim that ¢t — /pidp; € L*(T*X) is strongly continuous and to this aim we
show that their L?(T*X)-norms are constant. To see this, recall that by Proposition 5.4 we
know that for ¢t € (0, 1] the function —(1 —¢)v); is a Kantorovich potential from p; to p; while
from (5.5) and the locality of the differential we get that |de;| = |de¢| p-a.e., thus by point
(797) in Theorem A.6 we have that

1 1
/|d90t|zpt dm = m / ’d(l - t)¢t|2pt dm = WWZQ(MDI’H) = sz(Mo,Ml)-
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Multiplying the \/pideps’s by (/pr and using again the L?(X)-strong continuity of ,/p; and
the uniform L (X)-bound we conclude that t — p;dy; € L?(T*X) is strongly continuous, as
desired.

To prove the strong continuity of ¢ +— p; dp; ®dy; € L2((T*)¥?X) we argue as in Corollary
5.9: the strong continuity of ¢t — /pydy; € L?(T*X) and the fact that these are, locally in
t € (0, 1], uniformly bounded (thanks again to supp(p:) C Br(z) for all t € [0, 1]), grant both
that ¢ = [|prder @ et p2((pye2x) is continuous and that ¢ — prdpr ® der € L2((T*)®%X) is
weakly continuous.

The claims about the 1;’s follow in the same way. O

We now have all the tools needed to prove our main result. Notice that we shall not make
explicit use of Theorem 1.4 but rather reprove it for (the restriction to [0, 1 — J] of) entropic
interpolations.

Theorem 5.13. Let (X,d,m) be an RCD*(K,N) space with K € R and N € [1,00). Let
to, 1 € P2(X) be such that pg, p1 < Cm for some C > 0, with compact supports and let ()
be the unique Wa-geodesic connecting g to p1. Also, let h € H*>?(X).

Then the map

0,1]> t ~— /hduteR

belongs to C%([0,1]) and the following formulas hold for every t € [0,1]:

d
ar hd#t:/<Vh, V) dpu,
dt?/hd'ut = /Hess(h)(V@,V@) dpg,

where ¢y is any function such that for some s # t, s € [0,1], the function —(s — t)¢; is a
Kantorovich potential from p; to ps.

proof For the given ug, u1 introduce the notation of Setting 4.1 and then find &, | 0 such
that (pi"), (¢§™) converge to limit curves (¢¢), () as in Proposition 5.2.

By Lemma A.7 we know that the particular choice of the ¢;’s as in the statement does
not affect the right-hand sides in (5.34), we shall therefore prove that such formulas hold for
the choice ¢; := 1, which is admissible thanks to Proposition 5.4 whenever ¢t < 1. The case
t = 1 can be achieved swapping the roles of g, p1 or, equivalently, with the choice ¢ = —¢4
which is admissible for ¢ > 0.

Fix h € H*%(X) with compact support and for ¢ € [0, 1] set

Ha (t) r=/hdu§" H(t) ::/hdut.

The bound (4.19) grants that the H,,’s are uniformly bounded and the convergence in (5.2)
that H,(t) — H(t) for any ¢ € [0, 1].

Since (p;") € ACje((0,1), W13(X)) we have that H,, € ACi,.((0,1)) and, recalling the
formula for %pf given by Proposition 4.3, that

d d
) = / h o dm = / hdiv(pir Vo )dm = / (Vh, V) pim dm. (535
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The fact that ¥, = W, the compactness of supp(h) and the bounds (4.19) and (4.9a)
ensure that ‘%Hn(t)‘ is uniformly bounded in n and ¢ € [ty,t1] C (0,1) and the compactness
of supp(h) also allows us to use the convergence properties (5.26) and (5.2), which grant that

t1 t1
// (Vh, V) pin dtdm — // (Vh, V) pr dt dm.
to to

This is sufficient to pass to the limit in the distributional formulation of %Hn(t) and taking
into account that H € C([0, 1]) we have just proved that H € AC},.((0,1)) with

%H(t) _ / (Vh, V) pr dm (5.36)

for a.e. t € [0,1]. Recalling that ¥, = w, (5.5) and the locality of the differential we see
that
Vi = Vi prm-a.e. vVt € [0, 1), (5.37)

and thus by Lemma 5.12 we see that the right-hand side of (5.36) is continuous in ¢ € [0,1),
which then implies that H € C1([0,1)) and that the first identity in (5.34) holds for any
te0,1).

For the second derivative we assume in addition that h € Test>(X). Then we recall that
(pi") € AC1e((0,1), WH2(X)) and (95") € ACe((0,1), WE2(X, e~ V'm)) with V = Md?(-, 7)
for some z € X and M > 0 sufficiently large. Consider the rightmost side of (5.35) to get that
LH,(t) € AC1((0,1)) and

d? d d
—Hu(t) = h,V—29;")p;™ h, Vo) —pin d
a2 (t) /<v’vdt 7o+ (V vt>dtpt m

for a.e. t, so that defining the ‘acceleration’ a; as
2 2
€ €
aj = —<*Alogp§ + *IVlong)
4 8
and recalling the formula for % 7 given by Proposition 4.3 we have

d2

1 € 5 £ En : En En
(1) —/(Vh,V<—2V19t"2+at">)pt" (YA, VO div(p5 Vi) dm

1
= [ (= S(TRVIVI) + (VTR V7)), 997) + (V. Vair) ) dim
(by (A15)) = / Hess(h) (V95" V) pen dm — / (Ah + (Vh, ¥ log =) )7 i dm.

Since 9¥; = @ and Hess(h) € L?(T*®?X) with compact support, by (5.26) and (5.2) we
see that

/ Hess(h) (VO™ , VI ) psn dm "= / Hess(h)(Vy, VI;)pr dm in L},.(0,1)
and since |Vh|, Ah € L*>(X), by Lemma 4.10 we deduce that

/ (Ah+ (Vh,Viogpi") )ai"pi"dm — 0 in L},.(0,1).
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Hence we can pass to the limit in the distributional formulation of %Hn to obtain that
471 € ACj6.((0,1)) and

d2

SR = / Hess(h)(Vd;, V9,)p; dm (5.38)

for a.e. t. Using again (5.37) and Lemma 5.12 we conclude that the right-hand side of (5.38) is
continuous on [0, 1), so that H € C2([0,1)) and the second in (5.34) holds for every t € [0,1).

It remains to remove the assumption that h € Test®(X) and has compact support. To
this aim we claim that functions in Test®(X) with compact support are dense in H*?(X). To
see this, let xyr be as in Lemma A.2 and notice that the Leibniz rules for the gradient and the
Laplacian easily give that xgh — h in W1?(X) and A(xgrh) — Ah in L?(X) as R — oo for
every h € Test™(X). Hence by (A.13) we also have xgh — h in H?%(X). Taking into account
that Test™(X) is dense in H*2(X) (recall (A.14)), our claim follows.

Now let h € H*2?(X) be arbitrary and (hy) C Test™(X) with bounded support be H?2-
converging to h. Notice that we can choose the ¢;’s to be uniformly Lipschitz (e.g. by taking
¢p =y for t > 1/2, ¢y := —p for t < 1/2 and recalling Proposition 4.4 and using a cut-off
argument). The uniform L estimates (A.24), the fact that all the densities p; are supported
in a compact set B independent of ¢ € [0, 1] and the L?-convergence of hy, Vhy, Hess(hy,) to
h,Vh,Hess(h) respectively grant that as k — oo we have that

[ oy e = [ (Y60 du
/Hess(hk)(v¢tuv¢t)dﬂt — /Hess(h)(ngt,ngt)dlut

uniformly in ¢ € [0,1]. This is sufficient to pass to the limit from the formulas (5.34) for the
hi’s to the one for h and also ensures the C? regularity of ¢ [ hdp. U

5.4 Related differentiation formulas

In this last part we collect some direct consequences of Theorem 5.13. For the notion of
covariant derivative, related calculus rules as well as for the definition of the space H, é’2(X)
we refer to [29].

Theorem 5.14. Let (X,d,m) be an RCD*(K, N) space with K € R and N € [1,00). Then
the following holds:

(i) Let 7 be an optimal geodesic test plan with bounded support and h € H*%(X). Then the
map [0,1] 3t +— hoe, € L2(m) is in C?([0,1], L?(m)) and we have

d

a (h o et) = <Vh7 v¢t> O €,
d2
1w (h o et) = Hess(h)(Vér, Vo) o ey,

for every t € [0,1], where ¢y is any function such that for some s # t, s € [0,1], the
function —(s — t)¢y is a Kantorovich potential from (e4).m to (es)«T.
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(ii) Let 7 be an optimal geodesic test plan with bounded support and W € Hé’Q(X). Then
the map [0,1] 2t — (W, V) oe; € L?(m) is in C1([0,1], L*(m)) and we have

%( (W, V) oer) = (VW : (Vo @ V) oey,

for every t € [0, 1], where ¢ is as in (i).

(iii) Let po, 1, ¢¢ be as in Theorem 5.183 and W € HéiQ(TX). Then the map
0,1]5 t /(W, Vérdu €R

belongs to C1([0,1]) and the following formula holds for every t € [0,1]

d

5 | W Véndu = /VW 1 (Vor @ V) dpe.

proof
(i) Start by observing that for 7 as in the assumptions and I' € C([0,1],X) Borel with
(') > 0, the curve ¢t — 71'(I‘)_1(e,5)*7r|F fulfills the assumptions of Theorem 5.13 with the
same ¢;’s as in the current setting (and in particular, the ¢;’s can be chosen independently
of I"). Then, taking into account Lemma 5.12 it is easy to check that the maps [0,1] > ¢ —
ho ey, (Vh, V) o ey, (Hess(h)(Voy, Vi) o e;) € L(m) are all continuous, and in particular
with uniformly, in ¢ € [0, 1], bounded L?(7r)-norms.

Also, Theorem 5.13 applied to t — W(F)_l(et)*Tl'|F gives, after integration and an appli-
cation of Fubini’s theorem, that for every ¢, s € [0,1], t < s we have

/77(hoes—hoet)d7r:/7]/S (Vh,V,)oe,drdm

t

/77( (Vh,V¢s)oes — (Vh, V) o et) dm = /7]/S Hess(h)(V¢,, V) o e, drdm
t

for every n of the form n = yp with I' C C([0, 1], X) Borel, where here and below the integral
are intended in the Bochner sense. Then the fact that the linear span of such 7’s is dense in
L?(m) forces the equalities

hoes—hoet:/ (Vh, Vo) oe,dr
t

(Vh,Vos)oes — (Vh, V) oep = /S Hess(h)(Vr, Vo, ) o e, dr
t

which is the claim.

(ii) By (i) and the Leibniz rule for the covariant derivative (see [29]) we see that the claim
holds for W = > | fiVg;, with n € N and (f;), (¢;) € Test™(X). These vector fields are
dense in Hé’2(TX), hence the claim follows noticing that if W,, — W in Hé’z(T X) and the
¢¢’s are chosen uniformly Lipschitz (which as discussed in the proof of Theorem 5.13 is always
admissible) then (W, V) — (W, Vi) and VW, : (Vo @ V) — VIV 1 (Vo ® V) in
L?(X) as n — oo. Therefore, since (e;).7 < Cm for every t € [0, 1] and some C > 0, we have
that

<Wn7 v¢t> oer — <W> V(l)t> O €
(VWn :(Vor @ qut)) oep — (VW (Vo @ V(;St)) oe;
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in L?(m) uniformly in ¢ € [0, 1]. The conclusion follows.
(iii) Direct consequence of (i7) and an integration w.r.t. 7. O

A Reminders about analysis on RCD spaces

In this appendix we recall the basic definitions and properties of the various objects that we
used in the body of the paper. We also provide detailed bibliographical references.

A.1 Sobolev calculus on RCD spaces

By C(][0, 1], (X,d)), or simply C([0, 1], X), we denote the space of continuous curves with values
on the metric space (X,d) and for ¢ € [0, 1] the evaluation map e; : C([0, 1], (X,d)) — X is
defined as e;(y) := ;. For the notion of absolutely continuous curve in a metric space and
of metric speed see for instance Section 1.1 in [4]. The collection of absolutely continuous
curves on [0,1] is denoted AC([0, 1], (X, d)), or simply by AC([0, 1], X).

By Z(X) we denote the space of Borel probability measures on (X,d) and by %(X) C
Z(X) the subclass of those with finite second moment.

Let (X,d,m) be a complete and separable metric measure space endowed with a Borel
non-negative measure which is finite on bounded sets.

For the definition of test plans, of the Sobolev class S?(X) and of minimal weak
upper gradient |D f| see [5] (and the previous works [16], [57] for alternative - but equivalent
- definitions of Sobolev functions). The local counterpart of S?(X) is introduced as follows:
L2 (X) is defined as the space of functions f € L°(X) such that for all compact set 2 C X

there exists a function g € L?(X) such that f = g m-a.e. in Q and the local Sobolev class
S? (X) is then defined as

loc
S2 (X):={feLl’X):VQccX3geS*X)st. f=gmae in Q}. (A1)

The local minimal weak upper gradient of a function f € S? _(X) is denoted by |D f|, omitting
the locality feature, and defined for all Q@ CC X as |Df| := |Dg| m-a.e. in 2, where g is as
in (A.1). The definition does depend neither on €2 nor on the choice of g associated to it by
locality of the minimal weak upper gradient.

The Sobolev space W12(X) (resp. T/Vlif(X)) is defined as L*(X) N S*(X) (resp. L} . N
S2.(X)). When endowed with the norm || f[|3,10 == || f[|52 + [||[Dfl|32, W!*(X) is a Banach
space. The Cheeger energy is the convex and lower-semicontinuous functional E : L?(X) —
[0, 0] given by

1
B(f) = 2/\Df|2dm for f € WH2(X)
+00

otherwise

(X,d,m) is infinitesimally Hilbertian (see [31]) if W12(X) is Hilbert. In this case F is a
Dirichlet form and its infinitesimal generator A, which is a closed self-adjoint operator on
L?(X), is called Laplacian on (X,d,m) and its domain denoted by D(A) ¢ W2?(X). The
flow (h;) associated to E is called heat flow (see [5]), and for any f € L?*(X) the curve
t + hyf € L?(X) is continuous on [0, c0), locally absolutely continuous on (0, 00) and the only
solution of

%htf:Ahtf hef — fast]O.
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If moreover (X,d, m) is an RCD(K, o0) space (see [6]), the following a priori estimates hold
true for every f € L*(X) and ¢ > 0:

1 2
E(hf) £ 1130 (A.22)
1
AR fl[720x) < @Hf”%?(xy (A.2b)
Still within the RCD framework, there exists the heat kernel, namely a function
(0,00) x X3 (t,z,y) = nfz](y) = nlyl(z) € (0,00) (A.3)

such that

hef () = / f@nle)@) dmy) >0 (A4)

for every f € L*(X). For every z € X and ¢ > 0, 4[] is a probability density and thus (A.4)
can be used to extend the heat flow to L'(X) and shows that the flow is mass preserving
and satisfies the maximum principle, i.e.

f<c m—a.e. = h.f <c m-ae., Vt>0.

For finite-dimensional RCD*(K, N) spaces (introduced in [31]; for the distinction between
RCD and RCD* conditions see [11] and [14]) the heat kernel satisfies Gaussian estimates,
i.e. for every § > 0 there are positive constants C; = C1(K, N, J) and Cy = C2(K, N, J) such
that for every z,y € X and ¢ > 0 it holds

1 d*(z,y) ¢ d2(z, y)
Cm(B(y) T (- (d— o)t ~Cat) < nlel(y) < w(B () P (- @+ 9)i +Cat), (A5)

see [41], which adapts the approach of [58], [59] to the RCD setting.

For general metric measure spaces, the differential is a well defined linear map d from
S%(X) with values in the cotangent module L?(T*X) (see [29]) which is a closed operator
when seen as unbounded operator on L?(X). If (X,d, m) is infinitesimally Hilbertian, which
from now on we shall always assume, the cotangent module is canonically isomorphic to its
dual, the tangent module L?(TX), and the isomorphism sends the differential df to the
gradient V f. Replacing the language of L?>-normed modules with the L?’s one (see [29]), the
differential can be extended to d : S (X) — LO(T*X), where L%(T*X) denotes the family of
(measurable) 1-forms. The dual of L°(T*X) as L°-normed module is denoted by L°(TX), it
is canonically isomorphic to L°(T*X) and its elements are called vector fields. With this said,
L2 (T*X) C LYT*X) (vesp. L2 (TX) C LY(TX)) is defined as the collection of the 1-forms

loc

w such that |w| € L2 (X) (resp. the vector fields v such that |v| € L} (X)).

loc loc
The divergence of a vector field is defined as (minus) the adjoint of the differential, i.e.
we say that v € L?(TX) (resp. v € L} (TX)) has a divergence in L*(X) (resp. in L (X)),

and write v € D(div) (resp. v € D(divyy.)), provided there is a function g € L?*(X) (resp.
g € L2 (X)) such that

/fgdm:/df(v)dm Vi e WhHi(X).
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(resp. for all Lipschitz functions f with bounded support). In this case ¢ is unique and
is denoted div(v). A function f € I/Vllgf(X) has Laplacian in L7 (X), and we shall write
f € D(Ay.), if there exists g € L? (X) such that

loc
/(Z)gdm =— /(VQS, Vf)dm, V¢ Lipschitz with bounded support

and in this case, since g is unique, we set Af := g. It can be verified that
f € D(Ape) if and only if Vf € D(divj.) and in this case Af = div(Vf),

in accordance with the smooth case.

As regards the properties of d, div, A, the differential satisfies the following calculus rules
which we shall use extensively without further notice:

|df| = |Df] m-a.e. Vf e S%(X)
df =dg m-a.e. on {f = g} Vf, g € S*(X)
d(po f)=¢ o fdf Vf € S%(X), ¢ : R — R Lipschitz
d(fg) =gdf + fdg Vf,g € L®NS*X)

where it is part of the properties the fact that p o f, fg € S%(X) for ¢, f, g as above. For the
divergence, the formula

div(fv) = df(v) + fdiv(v) Vf e Wh2(X), v € D(div), such that |f], |v] € L>=(X)

holds, where it is intended in particular that fv € D(div) for f,v as above, and for the
Laplacian

Alpo f)=¢" o fldf|* + ¢ o FASf
A(fg) = gAf + fAg+2(Vf,Vyg)

where in the first equality we assume that f € D(A), ¢ € C?(R) are such that f,|df| € L>(X)
and ¢, ¢" € L*°(R) and in the second that f,g € D(A) N L>®(X) and |df],|dg| € L>®(X)
and it is part of the claims that ¢ o f, fg are in D(A). On S?_(X) as well as on D(divje.)
and D(Ay,.) the same calculus rules hold with slight adaptations. For sake of information, we
present the chain rule for differential and Laplacian, as they will be widely exploited without

further mention.
Lemma A.1 (Calculus rules). Let (X,d,m) be an RCD(K, c0) with K € R. Then:

(i) for all f € S? _(X) and ¢ : R — R such that for all C CC X there exists Ic CC R in

loc

such a way that L*(f(C)\ Ic) =0 and |, s Lipschitz it holds

d(po f)=¢'of,

where it is part of the statement the fact that o f € SZQOC(X) for ¢, f as above; analogous
statements hold for the gradient;

o4



(ii) for all f € D(Ajpe) and ¢ : R — R such that f,|df] € LiS.(X) and ¢, ¢" € L*®(R) it
holds
Alpo f)=¢" o fldfP? + ¢ o FAS
where it is part of the claims that ¢ o f € D(Aype).

The proof is based on the locality of such differentiation operators and the analogous
properties of their global counterparts defined on S?(X), D(A).

Beside this notion of L?-valued Laplacian, we shall also need that of measure-valued
Laplacian ([31]). A function f € WH2?(X) is said to have measure-valued Laplacian, and in
this case we write f € D(A), provided there exists a Borel (signed) measure p whose total
variation is finite on bounded sets and such that

/gdu =— / (Vg,Vf) dm, Vg Lipschitz with bounded support.

In this case p is unique and denoted A f. This notion is compatible with the previous one in
the sense that

dA dA
feDA), Af <mand d7mf e L*(X) & f € D(A) and in this case Af:Tmf'
On RCD(K, co) spaces, the vector space of ‘test functions’ (see [56])
Test™(X) = {f € D(A)NL®(X) : |Vf] € L®(X), Af € L®N W1’2(X)}
is an algebra dense in W12(X) for which it holds
f € Test™(X) and ¢ € C(R) = po f e Test™(X). (A.6)

Combining the Gaussian estimates on RCD*(K, N) spaces, N < oo, with the results in
[56] we see that

fel*’NL®X), t>0 = he(f) € Test™(X). (A7)
The fact that Test™(X) is an algebra is based on the property
f € Test™(X) = |dff e WH(X) with

[ 180 dm < sl (Wafilzzlldailoe + 1liasi3-)
(A.8)

and actually a further regularity property of test functions is that
f € Test™(X) = |df|* € D(A),
so that it is possible to introduce the measure-valued I's operator ([56]) as

jdf|?
2

La(f) :=A —(Vf,VAf)m Vf € Test™(X).
By construction, the assignment f +— I's(f) is a quadratic form.
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An important property of the heat flow on RCD(K,c0) spaces is the Bakry—Emery
contraction estimate (see [6)):

dhe 1> < e ?Rhy(ldf?) Ve WHA(X), t > 0. (A.9)

We also recall that RCD (K, 00) spaces have the Sobolev-to-Lipschitz property ([6], [28]),
ie.

feWhA(X), |df| € L®(X) = 3f = f m —a.e. with Lip(f) <||df|||lz=, (A.10)

and thus we shall typically identify Sobolev functions with bounded differentials with their
Lipschitz representative; in particular this will be the case for functions in Test*(X).

A well-known consequence of lower Ricci curvature bounds (see e.g. [17], [18], [19]) is the
existence of ‘good cut-off functions’, typically intended as cut-offs with bounded Laplacian;
for our purposes the following result will be sufficient:

Lemma A.2. Let (X,d,m) be an RCD*(K, N) space with K € R and N € [1,00). Then for
all R > 0 and z € X there exists a function xg : X — R satisfying:

(i) 0<xr <1, xg =1 on Bgr(z) and supp(xr) C Br+1(z);
(ii) xr € Test™(X).
Moreover, there exist constants C,C’" > 0 depending on K, N only such that
VxRl x) < C, [AXR] Lex) < C". (A.11)

The proof can be obtained following verbatim the arguments given in Lemma 3.1 of [52]
(inspired by [8], see also [35] for an alternative approach): there the authors are interested
in cut-off functions such that x = 1 on Bgr(x) and supp(x) C Ba2g(x): for this reason they
fix R > 0 and then claim that for all z € X and 0 < r < R there exists a cut-off function
x satisfying (i), (ii) and (A.11) with C,C" also depending on R. However, as far as one is
concerned with cut-off functions x where the distance between {x = 0} and {x = 1} is always
equal to 1, the proof of [52] in the case R = 1 applies and does not affect (A.11). As regards
the assumption N < oo, this can not be avoided either in [52] or [35]; in [8] the construction of
cut-off functions is carried out in RCD(K, 00) spaces, but it only allows to separate relatively
compact sets and balls in an RCD(K, 00) space need not be relatively compact.

A direct consequence of the existence of such cut-off functions is that
{feL? (X):VQ cc X 3g € Test®(X) s.t. f =g m-a.e. in Q}
—{f € D(Awe) N LX) ¢ [V € LX), Af € W2(X) }.

loc

(A.12)

Indeed the ‘C’ inclusion is obvious, while for the opposite one if f belongs to the second set
and Q C X is a bounded open set, consider a cut-off function x € Test*(X) with compact
support and y = 1 on Q: it is clear that xf € Test™(X) and xf = f on Q. We shall call the
set in (A.12) the space of local test functions and denote it Test}s, (X).

The existence of the space of test functions and the language of L?-normed L*°-modules
allow to introduce the spaces W22(X) as follows (see [29]). We first consider the tensor
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product L?((T*)®2X) of L?(T*X) with itself. The pointwise norm on such module is denoted
| - |ys (as in the smooth case it coincides with the Hilbert-Schmidt one) and : is the scalar
product inducing it. Then we say that a function f € W12(X) belongs to W??2(X) provided
there exists A € L?((T*)®?X) symmetric, i.e. such that A(vy,v2) = A(ve,v1) m-a.e. for every
v1,ve € L?(TX), for which it holds

[Vgl?
2

In this case A is unique, called Hessian of f and denoted by Hess(f). The space W%?2(X)
endowed with the norm

/hA(Vg, Vg)dm = /— (Vf,Vg)div(hVg) — h(V [,V ) dm Vg, h € Test™(X).

£ 122y = 1 F 12200 + 1AFIT20rex) + IHess(F) 17 2(eye2x)

is a separable Hilbert space which contains Test®(X) and in particular is dense in W12(X).
It is proved in [29] that D(A) ¢ W22(X) with

/|Hess(f)||2_|s dm < /(Af)2 — K|Vf?dm  Vfe D(A). (A.13)

The space H??2(X) is defined as the closure of D(A) in W%?2(X) and following the arguments
in Proposition 4.3.18 in [29] it is not difficult to see that

Test™(X) is dense in H>?(X). (A.14)
It is unknown whether H%?2(X) = W22(X) or not. We recall that
d(Vf,Vg) = Hess(f)(Vg,-) + Hess(g)(Vf,-)  Vf,g € Test™(X) (A.15)

and that the Hessian is a local operator, i.e. Hess(f) = Hess(g) m-a.e. on {f = g}. Using this
latter fact, for f € Test{> (X) we can define Hess(f) as the element in the L°-completion of
L2((T*)®2X) defined by

Hess(f) :== Hess(g) m —a.e. on {f =g} Vg € Test™(X).

The Bochner inequality on RCD(K, o0) spaces takes the form of an inequality between
measures ([29] - see also the previous contributions [56], [62]):

La(f) > (|Hess(f) 2HS + K|df|2)m Vi € Test™(X), (A.16)
and if the space is RCD*(K, N) for some finite N it also holds ([23], [9]):
2
Ts(f) > ((Aj\";) + K|df|2>m Vf € Test™(X). (A.17)

Notice that since the Laplacian is in general not the trace of the Hessian, the former does not
trivially imply the latter (in connection to this, see [39]).

As regards the geometric features of finite-dimensional RCD* (K, N) spaces, we recall the
Bishop-Gromov inequality in the form we shall need (see [60], [61]): for any = € supp(m)
and for any 0 < r < R < oo it holds

m(By(2))  Jo sinh(ty/—K/(N - D))"t s.(2) > <Sinh(7“ —K/(N - ))>N_1

m(Br(z)) ~ [Fsinh(t\/~K/(N - 1))N-ldt  sr(z) ~ \sinh(R\/-K/(N — 1))

(A.18)
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(with standard adaptations and caveat if K > 0) where
: 1 =
50 (2) = limsup 2m(Bro(a) \ Brl2).
sl0 0

A couple of interesting consequences are the following: m is uniformly locally doubling with
an explicit expression for the local doubling constant, i.e. for all x € X and r > 0 it holds

m(Ba,(z)) < 2V cosh (2\/ N_f(l 7‘) Nﬁlm(Br(:n)); (A.19)

and for all z € X there exists a constant C' > 0 depending on it (and on K, N) such that the
following volume growth condition is satisfied

m(B,(x)) < Ce“", vr > 0. (A.20)

We conclude the section recalling the notion of Regular Lagrangian Flow, introduced
by Ambrosio-Trevisan in [10] as the generalization to RCD spaces of the analogous concept
existing on R as proposed by Ambrosio in [1]:

Definition A.3 (Regular Lagrangian Flow). Given (v;) € L'([0,1], L*(TX)), the function
F :[0,1] x X — X is a Regular Lagrangian Flow for (v;) provided:

i) [0,1] 2 t — Fy(x) is continuous for every x € X

ii) for every f € Test>®(X) and m-a.e. x the map t — f(F;(z)) belongs to W11([0,1]) and

d

SHE@) =df@)(F(2)  ae te(o1]

iit) it holds
(Fi),m < Cm vt € [0,1]
for some constant C > 0.

In [10] the authors prove that under suitable assumptions on the v;’s, Regular Lagrangian
Flows exist and are unique. We shall use the following formulation of their result (weaker
than the one provided in [10]):

Theorem A.4. Let (X,d,m) be an RCD(K, o) space and (v;) € L'([0,1], L*(TX)) be such
that vy € D(div) for a.e. t and

div(vy) € L*(]0,1], L*(X)) (div(ve))™ € LY([0,1], L=(X)).

Then there exists a unique, up to m-a.e. equality, Regular Lagrangian Flow F for (vy).
For such flow, the quantitative bound

1
(Fam < exp /0 I (div(wr)) ey ) m (A.21)

holds for every t € [0,
its metric speed ms(F.

| and for m-a.e. x the curve t — Fy(z) is absolutely continuous and
x)) at time t satisfies

msy(F.(x)) = |v|(F(x)) a.e. t €[0,1]. (A.22)

1
(

To be precise, (A.22) is not explicitly stated in [10]; its proof is anyway not hard and can
be obtained, for instance, following the arguments in [29].
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A.2 Optimal transport on RCD spaces

It is well known that on R¢, curves of measures which are W-absolutely continuous are in
correspondence with appropriate solutions of the continuity equation ([4]). It has been
proved in [32] that the same connection holds on arbitrary metric measure spaces (X,d, m),
provided the measures are controlled by C'm for some C' > 0, the formulation of such result
which we shall need is:

Theorem A.5 (Continuity equation and Ws-AC curves). Let (X,d,m) be infinitesimally
Hilbertian, (p:) C 2 (X) be weakly continuous and t — v, € LO(TX) be a family of vector
fields, possibly defined only for a.e. t € [0,1]. Assume that the map t — [ |v¢|2dp is Borel
and:

e < Cm Vt € [0,1] for some C >0 (A.23a)
1
/0 /|Ut]2d,ut dt < o0 (A.23Db)

and that the continuity equation

d .
T + div(vgpe) = 0,

is satisfied in the following sense: for any f € WH3(X) the map [0,1] > t — [ fdus is

absolutely continuous and it holds

d
dt/fd'ut :/df(vt) d,ut a.e. t.

Then (1) € AC([0,1], (2(X), Wa)) and

il = [Iof e ae. te 0,1

Recall that given f : X — R the upper and lower slopes |D* f|,|D~ f|] : X — [0, 00] are
defined as 0 on isolated points and otherwise

i) T @) — S “fl(w) = T LW =@
D 1) = T =52 D@ = sy

Yy—x

Similarly, the local Lipschitz constant lip(f) : X — [0, 0o] is defined as 0 on isolated points
and otherwise as

lipf(z) := max{|D* f|(z), D~ f|(2)} = limsup W

If f is Lipschitz, then its Lipschitz constant is denoted by Lip f. We also recall that the
c-transform ¢ : X — RU{—o0} of a function ¢ : X — R U {—o0} is defined as

2 x
o) = it T )
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and that ¢ is said to be c-concave provided ¢ = ¥ for some . Also, given g, 1 € P2(X),
a function ¢ : X — RU{—o0} is called Kantorovich potential from pg to p; provided it is
c-concave and

1
/@dqur/@Cdul = §W22(M0,M1)-

It is worth recalling that on general complete and separable metric spaces (X, d) we have that
for po, u1 € £ (X) with bounded support there exists a Kantorovich potential from pg to pg
which is Lipschitz and bounded.

This can be obtained starting from an arbitrary Kantorovich potential ¢ and then defining

2 Z
d (2,?/) _¢C(y)}

:= min { C| inf
e(x) mln{ ) Inf
for C sufficiently big.

With this said, we recall the following version of Brenier-McCann theorem on RCD spaces
((i) comes from [27] and [54], (#¢) from [6] and [31], (¢i¢) from [5] and (iv) from [36]).
Theorem A.6. Let (X,d,m) be an RCD(K,00) space and po,p1 € P2(X) with bounded
support and such that pg, u1 < Cm for some C > 0. Also, let ¢ be a Kantorovich potential
for the couple (po, p1) which is locally Lipschitz on a neighbourhood of supp(po). Then:

i) There exists a unique geodesic (ug) from po to py, it satifies
pe < C'm  Vt e€[0,1] for some C' >0 (A.24)

and there is a unique lifting 7 of it, i.e. a unique measure w € Z(C([0,1], X)) such
that (e)«m = p for every t € [0,1] and ffol |42 dt d7r () = W2 (o, p11)-

ii) For every f € WY2(X) the map t — [ f duy is differentiable at t =0 and

d
G [ fmy= - [ 4596

iii) The identity
|[de|(70) = [DT¢l(70) = d(v0, 1)
holds for m-a.e. 7.

i) If the space is RCD*(K,N) for some N < oo, then (i), (ii), (iii) holds with p; only
assumed to be with bounded support, with the caveat that (A.24) holds in the form: for
every 6 € (0,1/2) there is C5 > 0 so that u, < C5m for every t € [0,1 — 4.

A property related to the above is the fact that although the Kantorovich potentials
are not uniquely determined by the initial and final measures, their gradients are. This is
expressed by the following result, which also says that if we sit in the intermediate point of
a geodesic and move to one extreme or the other, then the two corresponding velocities are
one the opposite of the other (see Lemma 5.8 and Lemma 5.9 in [28] for the proof):

Lemma A.7. Let (X,d,m) be an RCD(K, o) space with K € R and (ut) C P2(X) a Ws-
geodesic such that py < Cm for every t € [0,1] for some C > 0. Fort € [0,1] let ¢, ¢, : X = R
be locally Lipschitz functions such that for some s, s’ # t the functions —(s—t)¢y and —(s'—t)¢;
are Kantorovich potentials from ps to ps and from ps to pg respectively.

Then

Vor = Vou Ht-a.e.
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On RCD spaces, Ws-geodesics made of measures with bounded density also have the weak
continuity property of the densities expressed by the following lemma. The proof follows by
a simple argument involving Young’s measures and the continuity of the entropy along a
geodesic (see Corollary 5.7 in [28]):

Lemma A.8. Let (X,d,m) be an RCD(K,00) space with K € R and (1) C P2(X) a Wa-
geodesic such that py < Cm for every t € [0,1] for some C > 0. Let p; be the density of
ot -
Then for any t € [0,1] and any sequence (t,)nen C [0,1] converging to t there exists a
subsequence (tn, )ken such that
Ptn, —7 Pt; M-a.e.

as k — oo.

We conclude recalling some properties of the Hopf-Lax semigroup in metric spaces,
also in connection with optimal transport. For f : X — RU {+oc} and ¢t > 0 we define the
function Q;f : X - RU{—o0} as

d?(z,y)
%

Qif(z) :== yig( + f(y) (A.25)

and set ¢, :=sup{t >0 : Qf(z) > —oo for some = € X}; it is worth saying that ¢, does not
actually depend on z, since if Q. f(x) > —oo, then Qsf(y) > —oo for all s € (0,¢) and all
y € X. With this premise we have the following result (see [5]):

Proposition A.9. Let (X,d) be a length space and f : X — RU {+oc}. Then for all x € X
the map (0,ty) >t — Quf (x) is locally Lipschitz and

d 1/.. 2

&Qtf(x) + 3 (hpQJ(m)) =0 a.e. t € (0,t,) (A.26)
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