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a b s t r a c t 
Personality traits reflect key aspects of individual variability in different psychological domains. Understanding 
the mechanisms that give rise to these differences requires an exhaustive investigation of the behaviors associated 
with such traits, and their underlying neural sources. Here we investigated the mechanisms underlying agreeable- 
ness, one of the five major dimensions of personality, which has been linked mainly to socio-cognitive functions. 
In particular, we examined whether individual differences in the neural representations of social information are 
related to differences in agreeableness of individuals. To this end, we adopted a multivariate representational 
similarity approach that captured within single individuals the activation pattern similarity of social and non- 
social content, and tested its relation to the agreeableness trait in a hypothesis-driven manner. The main result 
confirmed our prediction: processing social and non-social content led to similar patterns of activation in individ- 
uals with low agreeableness, while in more agreeable individuals these patterns were more dissimilar. Critically, 
this association between agreeableness and encoding similarity of social and random content was significant only 
in the dorsomedial prefrontal cortex, a brain region consistently involved during attributions of mental states. 
The present finding reveals the link between neural mechanisms underlying social information processing and 
agreeableness, a personality trait highly related to socio-cognitive abilities, thereby providing a step forward in 
characterizing its neural determinants. Furthermore, it emphasizes the advantage of multivariate pattern analysis 
approaches in capturing and understanding the neural sources of individual variations. 

1. Introduction 
Every human being is unique, and one important part of this unique- 

ness is determined by personality. Understanding the neural sources 
of inter-individual variability in personality is the major goal of per- 
sonality neuroscience ( Yarkoni, 2015 ). Differences across personality 
traits are reflected in different motivational, emotional, cognitive and 
behavioral responses to particular stimuli. According to many theo- 
ries, these responses are relatively stable, but manifest only in certain 
contexts ( Corr et al., 2013 ; DeYoung, 2010 ; Gray, 1982 ; Tellegen and 
Waller, 1981 ). Yet, numerous studies identifying the neural correlates 
of different personality traits have focused on spontaneous, resting state 
brain activity (e.g., Cai et al., 2020 ; Dubois et al., 2018 ; Kuper et al., 
2019 ; Mulders et al., 2018 ; Nostro et al., 2018 ), or structural brain fea- 
tures (e.g., Avinun et al., 2020 ; Lewis et al., 2018 ; Omura et al., 2005 ; 
Owens et al., 2019 ; Riccelli et al., 2017 ; Taki et al., 2013 ), in which 
indices of personality traits were rarely clearly evident, and often di- 
verged between studies. Another important limitation is that these types 
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of associations are relatively uninformative about the mechanisms that 
contribute to distinct trait-specific behaviors. 

An alternative approach holds that differences in personality af- 
fect specific cognitive mechanisms and, in turn, modulate the neural 
correlates observed during task-based neuroimaging. Such an associa- 
tion has been hypothesized between the trait agreeableness - one of 
the five broad dimensions of personality within the five-factor model 
( Costa and McCrae, 1992 ; John et al., 2008 ) - and mentalization pro- 
cesses ( Allen et al., 2017 ; Nettle and Liddle, 2008 ). Agreeable individ- 
uals have more empathic, altruistic and cooperative tendencies, which 
require the ability to understand others’ mental states, emotions and in- 
tentions ( Allen and DeYoung, 2016 ). This hypothesis has been tested 
both indirectly, by associating agreeableness with prosocial behavior 
and empathy ( Graziano et al., 2007 ; Habashi et al., 2016 ; Penner et al., 
1995 ), and directly, by showing its impact on the performance in a 
mentalizing task ( Nettle and Liddle, 2008 ). More recently, two stud- 
ies have taken a step further by investigating the neural correlates of 
ability and testing whether those correlates are related to agreeable- 
ness ( Allen et al., 2017 ; Udochi et al., 2020 ). Both studies considered 
the default network as the neural substrate of mentalization, and found 
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it to be modulated by individual variations in mentalizing ability, but 
only Udochi et al. (2020) found that it also predicted individual differ- 
ences in agreeableness. One key distinction between the two studies is 
that Allen et al. (2017) defined the default network from resting state 
functional connectivity, while Udochi et al. (2020) adopted a task-based 
approach. In particular, in the latter work the authors found that the 
default network activity during social animation processing predicted 
both social cognitive ability and agreeableness. While this finding pro- 
vides new insights on the common neural substrates of agreeableness 
and mentalization, it still remains unclear how these neural variations 
underlie behavioral differences. Do they reflect differences in processing 
social information among individuals with different degrees of agree- 
ableness? 

To test this hypothesis we used representational similarity analysis 
(RSA; Kriegeskorte et al., 2008 ) that allowed us to examine whether in- 
dividual differences in the representation of social content are related to 
differences in agreeableness of individuals. In particular, we compared 
the patterns of neural activity during social and random (i.e., non-social) 
animations viewing within each participant in order to measure on an 
individual basis how similarly the two types of contents are encoded. 
We predicted that the levels of agreeableness would correlate positively 
with the dissimilarity in neural representations of social and random 
content, and that this association will be mainly evidenced in brain re- 
gions involved in mentalization processes (i.e., mentalizing network) 
( Molenberghs et al., 2016 ; Schurz et al., 2014 ). Moreover, we hypoth- 
esized a possible correlation also with task accuracy, showing greater 
social-random pattern dissimilarity for higher accuracies. On the other 
hand, we did not expect any other trait to be related to this pattern 
dissimilarity. 

With respect to univariate approaches that relate individual differ- 
ences to differences in activation of single voxels, or activation av- 
eraged across voxels in restricted brain regions, the representational 
similarity approach is more sensitive to individual variations since it 
takes into account distributed patterns of activity, which hold much 
more information that can be compared within and between individuals 
( Etzel et al., 2020 ). On the other hand, it suffers certain limitations in in- 
ferring what type of information is encoded in the representational space 
( Naselaris and Kay, 2015 ). One way to overcome this issue is to predict 
neural dissimilarities between experimental conditions according to a 
psychological model that makes clear inferences about the observed be- 
havior ( Carlson et al., 2018 ; Ritchie et al., 2019 ). Here we adopted this 
strategy to investigate the neural sources of agreeableness trait, by bas- 
ing our predictions of social content encoding on well-established be- 
havioral facets of agreeableness and its link with mentalization ability. 
2. Methods 
2.1. Participants recruitment and personality assessment 

Participants’ recruitment involved a prescreening personality assess- 
ment that was administered through an online questionnaire, advertised 
through different recruitment services (Facebook, Sona). Five person- 
ality traits (extraversion, agreeableness, conscientiousness, neuroticism 
and openness to experience) were assessed using the Italian adaptation 
of the Big Five Inventory ( Ubbiali et al., 2013 ), which comprises 44 
items rated on a five-point Likert scale. Fifty-five participants were se- 
lected from a larger sample ( N = 143) based on their personality scores 
in order to cover uniformly all five traits derived from the five-factor 
model ( Costa and McCrae, 1992 ; John et al., 2008 ). In particular, within 
each trait the score distribution was normal (Kolmogorov-Smirnov p s’ 
> 0.15) and at least 5 subjects had scores above ± 1 SD from the Italian 
population mean ( Ubbiali et al., 2013 ). Six participants were excluded 
due to excessive motion during scanning, yielding a final sample of 49 
participants (19 males) with mean age 23.14 (SD = 4.24, range = 18–
34). None of them reported any history of neurologic or psychiatric dis- 
orders. All participants gave written informed consent prior to their par- 

ticipation in the study and received 30 euros for their participation. The 
study was approved by the Regional Ethics Committee of Friuli Venezia 
Giulia and was conducted according to the guidelines of the Declara- 
tion of Helsinki. Behavioral and demographic information are reported 
in the participants.tsv file on OpenNeuro. 
2.2. Social cognition task 

Participants were presented with short animations represent- 
ing different shapes that moved randomly or interacted in a so- 
cially meaningful way. The animations were originally developed by 
Castelli et al. (2000) and Wheatley et al. (2007) and shortened to 20 s 
for the battery of fMRI tasks used in the Human Connectome Project 
( Barch et al., 2013 ). During each of the 4 runs 5 different animations 
were presented interleaved with 15 s long fixation blocks. After each 
animation, a 3 s long instruction screen appeared prompting the partic- 
ipants to respond by pressing one of the three keys on a response pad 
positioned under their right hand. They were told to press their ring fin- 
ger if the shapes were moving randomly, their index finger if the shapes 
interacted in a socially meaningful way (as if they were taking into con- 
sideration each other feelings and thoughts), and the middle finger if 
they were not sure about the type of interaction. Each run consisted of 
2 or 3 videos of each condition. One social and one random video were 
presented prior to scanning for practice and were not reused during the 
testing phase. 
2.3. MRI acquisition 

MRI data were collected on a 3 Tesla whole-body scanner (Achieva 
Philips) equipped with an 8-channel head coil at the “S. Maria della 
Misericordia Hospital ” in Udine. For each of the four runs of the social 
cognition task, 101 functional image volumes with 37 contiguous ax- 
ial slices were collected with a T2 ∗ -weighted echo-planar sequence (TR: 
2 s, TE: 30 ms, FA: 82°, voxel size: 3 × 3 × 3 mm, acquisition matrix: 
80 × 80). A high-resolution T1-weighted anatomical image was acquired 
at the beginning of the session (170 sagittal slices, TR/TE: 8.1/3.7 ms, 
FA: 12°; voxel size: 1 × 1 × 1 mm, acquisition matrix: 240 × 240). Addi- 
tionally, to correct for spatial distortion of functional images, a pair of 
spin echo images with opposite phase encoding directions and same ori- 
entation as the functional scans, were acquired at the beginning and in 
the middle of the whole scanning session. Stimuli were presented using 
E-Prime 2 (Psychology Software Tools, Inc; Schneider et al., 2012 ) and 
delivered through MRI-compatible goggles mounted on the head coil. 
During the scanning session, participants performed three other tasks in 
a counterbalanced order, which are not reported in the present study. 
2.4. MRI quality assessment 

All MRI data were converted from DICOM format into the Brain 
Imaging Data Structure (BIDS; https://bids.neuroimaging.io/ ) using 
the Dcm2Bids tool ( https://github.com/cbedetti/Dcm2Bids ). Quality of 
structural and functional data was assessed using the MRI Quality Con- 
trol tool (MRIQC) ( Esteban et al., 2017 ) and compared to a set of quality 
metrics from the MRIQC web API ( Esteban et al., 2019 ) using the MRIQ- 
Ception tool ( https://github.com/elizabethbeard/mriqception ). Out of 
55 scanned participants, data from 6 were classified as outliers based 
on the following quality metrics: AFNI’s outlier ratio and quality index, 
intensity changes (DVARS) and frame-wise displacement (FD). A full 
report of image quality metrics is available on OpenNeuro. 
2.5. MRI preprocessing 

Results included in this manuscript come from preprocessing 
performed using fMRIPrep version 1.5.1rc2 ( Esteban et al., 2019 ; 
RRID:SCR_016216), a Nipype ( Gorgolewski et al., 2011 , 2017 ; 
RRID:SCR_002502) based tool. 
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Each T1w (T1-weighted) volume was corrected for INU (inten- 

sity non-uniformity) using N4BiasFieldCorrection v2.2.0 ( Avants et al., 
2008 ; RRID:SCR_004757) and skull-stripped using antsBrainExtrac- 
tion.sh v2.2.0 (using the OASIS template). Brain surfaces were re- 
constructed using recon-all from FreeSurfer v6.0.1 ( Dale et al., 1999 ; 
RRID:SCR_001847), and the brain mask estimated previously was re- 
fined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray-matter of 
Mindboggle ( Klein et al., 2017 ; RRID:SCR_002438). Spatial normal- 
ization to the ICBM 152 Nonlinear Asymmetrical template version 
2009c ( Fonov et al., 2009 ; RRID:SCR_008796) was performed through 
nonlinear registration with the antsRegistration tool of ANTs v2.2.0 
( Avants et al., 2008 ; RRID:SCR_004757), using brain-extracted ver- 
sions of both T1w volume and template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 
was performed on the brain-extracted T1w using fast (FSL v5.0.9; 
Zhang et al., 2001 ; RRID:SCR_002823). 

Functional data was slice time corrected using 3dTshift from AFNI 
v16.2.07 ( Cox, 1996 ; RRID:SCR_005927) and motion corrected us- 
ing mcflirt (FSL v5.0.9; Jenkinson et al., 2002 ). Distortion correc- 
tion was performed using an implementation of the TOPUP technique 
( Andersson et al., 2003 ) using 3dQwarp (AFNI v16.2.07; Cox, 1996 ). 
This was followed by co-registration to the corresponding T1w using 
boundary-based registration ( Greve and Fischl, 2009 ) with six degrees of 
freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting trans- 
formations, field distortion correcting warp, BOLD-to-T1w transforma- 
tion and T1w-to-template (MNI) warp were concatenated and applied 
in a single step using antsApplyTransforms (ANTs v2.2.0) using Lanczos 
interpolation. 

Physiological noise regressors were extracted applying CompCor 
( Behzadi et al., 2007 ). Principal components were estimated for the 
anatomical CompCor variants (aCompCor). A mask to exclude signal 
with cortical origin was obtained by eroding the brain mask, ensuring it 
only contained subcortical structures. Six aCompCor components were 
then calculated within the intersection of the subcortical mask and the 
union of CSF and WM masks calculated in T1w space, after their projec- 
tion to the native space of each functional run. Frame-wise displacement 
(FD) and DVARS ( Power et al., 2014 ) are calculated for each functional 
run using their implementations in Nipype. 

Functional data were masked using the brain mask obtained from 
fMRIPrep and 14 fMRIPrep derived confounds (six motion parameters, 
FD, standardized DVARS and six aCompCor) were removed on a voxel- 
wise level using the Denoiser tool ( https://github.com/arielletambini/ 
denoiser ). As a final step, functional data were spatially smoothed using 
a Gaussian kernel of 6 mm full-width at half-maximum. 
2.6. Behavioral data analyses 

We collected accuracy and reaction times (RTs) data. RTs were fil- 
tered for errors and outliers above 3 standard deviations from the sub- 
jects mean for each video type condition. One subject was excluded from 
the behavioral analysis because we did not collect all of his responses 
due to a response pad issue. Anticipated responses (RTs < 200 ms) were 
absent. RTs were assessed with repeated measures ANCOVA with type of 
video as within-subjects factor and five trait scores as continuous predic- 
tors. Since accuracy data were not normally distributed (Shapiro-Wilk 
test p < .05), a paired Wilcoxon signed rank test was used to assess ac- 
curacy differences between the two types of videos, and Spearman rank 
correlation was used to assess the accuracy correlations with the five 
trait measures, separately for each type of video. 
2.7. fMRI data analyses 
2.7.1. First level GLM analysis 

First level GLM analysis was performed using FSL FEAT 
( www.fmrib.ox.ac.uk/fsl ). A GLM model was built for each partic- 

ipant and each run with the two experimental conditions (social and 
random) as regressors of interest and their temporal derivatives as 
regressors of no interest. Erroneous trials and those with “not sure ”
responses were not excluded from the model. The regressors were time 
locked to the onset and duration of the video and convolved with a 
double-gamma hemodynamic response function. FILM pre-whitening 
was used to correct for autocorrelation and low-frequency drifts were 
removed using a high-pass filter with a 100 s cutoff. All following 
analyses were performed on subject-level social and random beta maps, 
averaged over the four runs (fixed effects). 
2.7.2. Group level GLM analysis 

To localize mean group effects, whole-brain group level analysis was 
performed with mixed effect (FLAME 1), as implemented in FSL, for the 
social - random contrast. Statistical map was assessed with a cluster- 
based threshold of Z > 3.1 and corrected at p = 0.05 (family-wise error 
correction). 
2.7.3. Representational similarity analysis 

We conducted a within subject representational similarity analy- 
sis (RSA) to test if the participants’ level of agreeableness will be re- 
lated to the dissimilarity between the neural patterns of activity dur- 
ing social and random content processing. As anticipated in the in- 
troduction, we expected to observe a positive correlation between the 
two measures in brain regions belonging to the mentalizing network 
( Molenberghs et al., 2016 ; Schurz et al., 2014 ), indicating that subjects 
low in agreeableness will have less distinct neural representations of 
social and random content, and vice versa. However, since agreeable- 
ness has been associated also with brain regions outside the mental- 
izing network (e.g., Cai et al., 2020 ; Liu et al., 2019 ; Riccelli et al., 
2017 ), we opted for a whole-brain parcellation scheme in our analy- 
ses, since it offers a nice middle ground between the restrictive ROI- 
based approach and the heavily corrected and computationally expen- 
sive searchlight approach. As a first step, all beta maps were divided 
into 200 non-overlapping regions using a whole-brain parcellation de- 
rived from the meta-analytic functional coactivation of the Neurosynth 
database ( https://identifiers.org/neurovault.image:39711 ). Next, rep- 
resentational dissimilarities were computed for each participant by cor- 
relating social and random response patterns from each parcel and sub- 
tracting it from 1 (i.e., higher correlation is reflected as lower dissim- 
ilarity). The participants’ dissimilarities within each parcel were then 
correlated with their agreeableness scores using Spearman’s rank-order 
correlations. The statistical significance (p-value) of the resulting corre- 
lations was obtained by computing the same correlations after permut- 
ing 30,000 times the agreeableness scores and calculating the propor- 
tion of permuted correlations that exceeded the ones yielded from non- 
permuted data. The same representational dissimilarity and behavioral 
score correlation was repeated for the remaining four trait dimensions. 
All resulting permuted p-values were corrected for multiple comparisons 
by dividing the alpha (0.05) by the number of behavioral measures 
tested (five traits and one accuracy score) and the number of parcels 
(200). 
2.7.4. Univariate analysis 

Alternatively, we wanted to assess whether the hypothesized neu- 
ral dissimilarity associated with agreeableness could be explained by 
univariate activation differences between social and non-social content. 
Therefore we calculated the difference between the average levels of 
activity (averaged betas across all voxels within each parcel) for each 
condition (social – random contrast), and correlated it with the agree- 
ableness score. All statistical procedures and subsequent multiple com- 
parison corrections were same as in the RSA. 
2.7.5. Meta-analytic decoding 

The correlational maps from the RSA and the Z maps from the GLM 
analysis were correlated with the meta-analytic activation maps of the 
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Fig. 1. Social-random contrast activations. Brain activations from the whole brain voxelwise social – random content contrast. The statistical map was assessed with 
a cluster-based threshold of Z > 3.1, corrected at p = 0.05 (family-wise error correction) and projected onto a Montreal Neurological Institute (MNI) template. The 
color bar indicates Z values. The values above the slices indicate the coordinates in MNI space. Right is right. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
terms in the Neurosynth database in order to determine what cognitive 
terms are most commonly associated with these brain regions in the lit- 
erature. Since the Neurosynth decoder compares whole-brain images, 
both comparisons were performed on unthresholded data that contain 
additional information in the form of continuous values at all voxels 
( Gorgolewski et al., 2015 ). For the RSA maps, we retained the top 10 
terms with the highest positive correlations referring to cognitive func- 
tions (i.e., anatomical terms were excluded), and afterwards we com- 
pared their correlations with the correlations observed for the GLM 
maps, in order to explore what cognitive terms associated with the RSA 
maps have similar associations with the social-random contrast. 
3. Results 
3.1. Behavioral results 

The accuracy differed significantly between the two types of video 
content (social accuracy mean: 97.6%, SD: 15.5; random accuracy mean: 
88.4%, SD: 32; Wilcoxon signed rank test V = 353.5, p = .0006, r = 0.5), 
but there were no significant correlations with trait measures (all p ’s > 
0.25; see Supplementary Table 1 for all results). For the RTs, there was 
no main effect of video type (social RTs mean: 839 ms, SD: 374; random 
RTs mean: 837 ms, SD: 477; F(1, 42) = 3.64, p = .06, !p 2 = 0.08) and 
no main effects of or interactions with trait measures (all p ’s > 0.09; see 
Supplementary Table 1 for all results). 
3.2. Neuroimaging results 
3.2.1. Whole-brain group results 

The social-random content contrast at the group level showed 
widespread bilateral activations in regions typically associated with so- 
cial content processing, comprising the fusiform gyrus, inferior and mid- 
dle temporal regions, inferior frontal gyrus and superior medial frontal 
cortex ( Fig. 1 ; Table 1 ). The results from the random-social contrast are 
included in the Supplementary material (Supplementary figure 1). 
3.2.2. Representational similarity results 

The representational similarity analysis testing whether the degree 
of agreeableness correlates with the dissimilarity in neural representa- 
tions of social and random content showed a significant positive corre- 
lation in the dorsomedial prefrontal cortex (dmPFC; r = 0.596, p < .008) 
( Fig. 2 ). Importantly, no other personality trait correlated either posi- 
tively or negatively with the social-random dissimilarity measure (Sup- 
plementary figure 2). As an additional control analysis, we included age, 
IQ (assessed with an abbreviated Raven test ( Bilker et al., 2012 ) and 
gender as covariates in the model predicting dmPFC pattern dissimi- 
larity from agreeableness. Pattern dissimilarity in the dmPFC remained 
uniquely associated with agreeableness [ F (1, 44) = 21.62, p < .0001, 

!p 2 = 0.329]. To examine whether the representational similarity of so- 
cial content, and separately of random content, in the dmPFC varied 
with levels of agreeableness, we computed the average similarity be- 
tween social videos and between random videos, and correlated those 
with the agreeableness scores. Although neither was significant (social: 
r = − 0.039; random r = − 0.067), we show the representational similar- 
ity matrices (RSM) within and between conditions in the dmPFC with 
a median split on agreeableness data (HA: high agreeableness, LA: low 
agreeableness; median = 3.7) for visualization purposes ( Fig. 3 A), to dis- 
play the differences in social-random similarities between high and low 
agreeable individuals. We assessed the within and between conditions 
similarities between the two groups with a 2-way ANOVA ( Fig. 3 B), 
and found a significant difference between the two groups only for the 
between condition similarity (group × condition: F(2, 50) = 11.14, p 
< .001, !p 2 = 0.31). As expected, the low agreeableness (LA) group 
had significantly higher representational similarity between social and 
non-social content than the high agreeableness group (HA) (Tukey ad- 
justed p < .0001). Finally, the dissimilarity correlation with task accu- 
racy showed no significant results (Supplementary figure 2). 
3.2.3. Univariate results 

The univariate analysis assessing whether the observed neural pat- 
tern dissimilarity associated with agreeableness could also be explained 
by univariate activation differences between social and non-social con- 
tent showed no significant results (Supplementary figure 3). 
3.2.4. Meta-analytic decoding results 

The meta-analytic decoding was performed to provide an empirical 
interpretation of the pattern observed in the RSA unthresholded map. 
Out of the top 10 terms referring to cognitive constructs, five were re- 
lated to social cognition, and all five had similarly high correlations for 
the GLM unthresholded map ( Fig. 4 ), suggesting that the cognitive terms 
associated with variations in agreeableness are also correlated with ac- 
tivity patterns during social vs. random processing. 
4. Discussion 

Agreeableness trait is one of the five major dimensions of person- 
ality indexing individual variations in empathy, altruism and coopera- 
tion. Previous work has linked agreeableness with socio-cognitive abili- 
ties and, in particular, with the ability to infer and reason about oth- 
ers’ mental states, also known as Theory of Mind (ToM) or mental- 
ization ( Allen et al., 2017 ; Nettle and Liddle, 2008 ). Recently, a new 
piece of evidence has strengthened this hypothesis by showing that in- 
dividual differences in both agreeableness and ToM are related to varia- 
tion in the same underlying neural network ( Udochi et al., 2020 ). Here 
we complement and extend these findings by investigating how neu- 
ral encoding of social information is related to agreeableness, therefore 
bridging the gap between neural and behavioral features of this trait. A 
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Table 1 
Significant clusters from the whole brain voxelwise social – random content contrast. 

Anatomical 
region MNI Peak Z Cluster level 

x y z size p 
R. Inferior Temporal Gyrus 43 − 55 − 15 9.34 5933 < 0.001 
R. Fusiform Gyrus 42 − 42 − 15 8.54 
R. Middle Temporal Gyrus 60 − 45 9 8.47 
R. Amygdala 21 − 4 − 13 8.46 
L. Fusiform Gyrus − 33 − 42 − 15 8.65 3089 < 0.001 
L. Inferior Temporal Gyrus − 36 − 36 − 15 8.58 
L. Inferior Occipital Gyrus − 26 − 98 − 10 8.26 
L. Hippocampus − 24 − 12 − 12 7.47 1062 < 0.001 
L. Amygdala − 27 0 − 18 6.5 
L. Superior Temporal Pole − 42 18 − 24 6.31 
L. Inferior Frontal Gyrus (operc.) − 48 15 24 5.92 
L. Inferior Frontal Gyrus (triang.) − 51 30 0 5.63 
L. Superior Medial Frontal Gyrus − 6 57 30 6.55 415 < 0.001 
R. Superior Medial Frontal Gyrus 6 54 30 6.27 
R. Supplementary Motor Area 9 15 66 5.35 
L. Middle Temporal Pole − 54 0 − 18 6.57 210 < 0.001 
L. Precuneus − 9 − 51 45 4.7 114 < 0.001 
R. Precuneus 3 − 60 42 4.22 
L. Middle Frontal Gyrus − 39 3 54 4.87 61 0.0013 
Vermis 0 − 48 − 21 4.87 38 0.0176 

Fig. 2. Agreeableness correlation with social- 
random pattern dissimilarity. Results from the 
whole brain representational similarity analy- 
sis assessing the correlation between the degree 
of agreeableness and the dissimilarity in neural 
representations of social and random content. 
The upper panel shows the dorsomedial pre- 
frontal cortex (dmPFC), the only region show- 
ing a significant positive correlation (permuta- 
tion based p -values were Bonferroni-corrected 
over all tested regions - 200). The scatterplot in 
the lower panel shows the correlation between 
the participants’ agreeableness trait scores and 
their social – random content pattern dissimi- 
larity. The latter was calculated by correlating 
social and random response patterns and sub- 
tracting it from 1 (i.e., higher correlation is re- 
flected as lower dissimilarity). 

straightforward prediction is that individuals high in agreeableness en- 
code social and non-social information in a more dissimilar fashion with 
respect to individuals low in agreeableness, and primarily in brain re- 
gions involved during mentalization. To test this prediction we adopted 
a representational similarity analysis (RSA) approach that derives the 
degree of similarity between patterns of activation for different stim- 
uli ( Kriegeskorte et al., 2008 ). Since we were interested in assessing 
whether the degree of similarity between social and non-social content 
neural representation can predict the degree of agreeableness, we com- 
pared on an individual basis patterns of brain activation during a classic 
ToM animation task in which different shapes could interact in socially 
meaningful way, or randomly ( Castelli et al., 2000 ; Wheatley et al., 
2007 ). Consistent with our predictions, we found that more agreeable 

individuals had more distinct encodings of social and random anima- 
tions, and correspondingly these encodings were more similar in indi- 
viduals with low agreeableness. Critically, this positive association be- 
tween agreeableness and representational dissimilarity of social and ran- 
dom content was significant only in the dmPFC, a brain region consis- 
tently related to attributions of mental states ( Molenberghs et al., 2016 ; 
Schurz et al., 2014 ). This assumption was also confirmed by the meta- 
analytic decoding of our RSA results, which showed strongest associa- 
tions with socio-cognitive topics. 

The dmPFC has been largely acknowledged as one of the key re- 
gions in the mentalizing network, although there is still no consensus 
regarding its functional role. Indeed, numerous meta-analyses have de- 
lineated the dmPFC involvement within different social, affective and 
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Fig. 3. High agreeableness (HA) and low 
agreeableness (LA) individuals’ representa- 
tional similarity in the dmPFC. (A) The rep- 
resentational similarity matrices (RSM) within 
and between conditions in the dmPFC with 
a median split on agreeableness data (me- 
dian = 3.7) for visualization purposes. The 
color bar indicates the Pearson’s r. (B) Aver- 
age within and between conditions similarities 
(Pearson correlation) in the HA and LA groups 
( ∗ p < .0001). (For interpretation of the refer- 
ences to color in this figure legend, the reader 
is referred to the web version of this article.) 

cognitive functions ( Binder et al., 2009 ; Kober et al., 2008 ; Kogler et al., 
2020 ; Molenberghs et al., 2016 ; Schurz et al., 2014 ; Spreng et al., 2009 ; 
Van Overwalle, 2009 ), making it even more difficult to reconcile all 
the observed data into a single picture. A different approach gather- 
ing evidence from causal and reverse inference studies, which are more 
suited for testing structure-function relationships, showed the dmPFC 
strongest functional link with social cognition and mental state infer- 
ence processes ( Lieberman et al., 2019 ). In particular, there have been 
a growing number of studies adopting multivariate pattern analyses that 
have characterized and/or decoded the neural representation of social 
information within the dmPFC (e.g., Corradi-Dell’Acqua et al., 2014 ; 
Dungan et al., 2016 ; Skerry and Saxe, 2015 ; see Wagner et al., 2018 for 
a revew). In a more comprehensive study, Tamir et al. (2016) investi- 
gated what psychological dimensions that organize the understanding 
of mental states shape also their neural representations in the brain, 
and one specific component, “rationality ”, loading highly on dimensions 
such as emotion, experience and warmth, predicted reliably the neu- 
ral patterns in the dmPFC. Although in our study we did not consider 
different dimensions of social information that would allow us to cap- 
ture what particular dimension is represented differently in individuals 
with different levels of agreeableness, we speculate that social videos 
conveyed emotional information that could be inferred from the inter- 
actions between the shapes (e.g., fear, surprise, compassion, happiness, 
irritation, etc.). Highly agreeable individuals might have spontaneously 

inferred these emotional states, increasing the pattern dissimilarity in 
the dmPFC between social and non-social videos, contrarily to individ- 
uals low in agreeableness. This speculation would also be in line with 
the supramodal representations of perceived emotions observed in the 
dmPFC ( Peelen et al., 2010 ; Skerry and Saxe, 2014 ). This hypothesis 
should however be tested with an appropriate task design, in particu- 
lar by modulating the emotional content across stimuli and assessing its 
impact on neural representations in individuals with different levels of 
agreeableness. 

Previous research on inter-individual differences in mentalization 
ability has typically focused on neurological and psychiatric conditions, 
evidencing its importance in every day functioning ( Baron-Cohen, 1995 ; 
Kerr et al., 2003 ; Richell et al., 2003 ; Snowden et al., 2003 ; Stuss et al., 
2001 ). Nevertheless, it is well acknowledged that there are substantial 
mentalization differences also in healthy adults, yet these are difficult 
to capture behaviorally, mainly due to ceiling effects observed on stan- 
dard laboratory tasks ( Koster-Hale and Saxe, 2013 ). To overcome this 
issue, one possible strategy is to assess neural variations to ambiguous 
stimuli that induce spontaneous mentalization, which we implemented 
in our study. Few other studies have adopted this approach to investi- 
gate inter-subject variability in mentalization ( Moessnang et al., 2017 ; 
Moriguchi et al., 2006 ; Udochi et al., 2020 ; Wagner et al., 2011 ), and 
most of them observed modulation of activity in the dmPFC in relation 
to trait-like scores. Specifically, higher empathy ( Wagner et al., 2011 ) 
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Fig. 4. Meta-analytic decoding. Unthresholded RSA and GLM 
maps show similar associations with social cognitive terms from 
the Neurosynth database. 

and perspective-taking scores ( Moriguchi et al., 2006 ), and lower autism 
trait ( Moessnang et al., 2017 ) were associated with a greater recruitment 
of dmPFC, suggesting a more enhanced processing of social information. 
In line with this evidence, our finding provides additional understand- 
ing regarding the distinctiveness of social information in the dmPFC 
and how it underlies individual differences. In particular, by comparing 
patterns of activity during social and non-social content processing, we 
observed that the degree to which the two information are distinguished 
in the dmPFC predicts individual variations in agreeableness, a trait re- 
lated to mentalizing ability ( Allen and DeYoung, 2016 ). It is important to 
point out that this result can reflect a different encoding of social and/or 
non-social information in individuals with different levels of agreeable- 
ness, or alternatively it can reflect differences in processes related to the 
task at hand (e.g., emotion recognition but also attentional processes, 
cognitive control, etc.). However, given the greater neural similarity for 
social videos observed in the dmPFC ( Fig. 3 ), and the frequent involve- 
ment of this region in processing social interactions (e.g., Wagner et al., 
2016 ), we are confident that differences in social process are a more 
plausible interpretation. Echoing previous correlational fMRI studies, 
we addressed a potential alternative account according to which the 
agreeableness trait could be predicted by average activation differences 
between social and non-social content. Results from this analysis showed 
no significant trait prediction, suggesting that individual variations in 
agreeableness are better reflected within representational differences of 
social and non-social information than the overall difference in activity 
they evoke. Still, we do not know if these differences in social content 
representation are functionally relevant, since we did not observe simi- 
lar relations with task performance, probably due to an insensitive be- 
havioral measure we adopted. However, it would be plausible to expect 
more dissimilar encoding of social vs. non-social information in rela- 
tion to better understanding of the events depicted in the animations. 
Future studies should implement more detailed task performance mea- 
sures to investigate the functional importance of the underlying neural 
representations. One potential limitation of this study, which probably 
reduced the power of our main brain-behavior correlation analyses, is 
the moderate sample size. Although we have adopted a sampling strat- 
egy (i.e., we selected our participants from a larger sample based on 
their personality scores), which was found to increase the power to de- 

tect moderate effect sizes in small samples without inflating the false 
positive rate ( de Haas, 2018 ), future studies should try to replicate this 
finding in larger samples. 

Lastly, but equally important, the observed task-related represen- 
tational difference underlying agreeableness argues for a different, 
behavior-based approach in studying the cognitive and neural mech- 
anisms behind personality. In personality neuroscience, agreeableness 
has been one of the least studied traits ( Allen and DeYoung, 2016 ) and 
until recently its neurobiological substrates have been explored only 
among stable brain features like structural or resting-state measures 
(e.g., Cai et al., 2020 ; Riccelli et al., 2017 ). Although these studies were 
rarely underpowered in terms of sample size, they reported very diver- 
gent findings, or even null-results (e.g., Avinun et al., 2020 ; Dubois et al., 
2018 ). One possible explanation for these inconsistent findings may in- 
volve the complexity of behaviors associated with agreeableness and its 
link with various processes such as empathy, self-regulation and moti- 
vation ( Graziano and Tobin, 2016 ). This could result in multiple brain 
systems mediating variability in the agreeableness trait, which would 
therefore be hardly identifiable with structural and resting-state brain 
measures. This explanation is in line with a recent functional connectiv- 
ity study ( Liu et al., 2019 ) in which the agreeableness trait was found 
to be correlated to a widely distributed connectivity pattern comprising 
the largest number of connections, almost four times that of other traits. 
Therefore our finding linking agreeableness to mentalization probably 
captures only one aspect of agreeableness and future studies should im- 
plement more itemized personality measures to identify other cognitive 
and neural determinants of agreeableness. 
Conclusions 

Despite its limitations, the present study represents a step forward in 
characterizing the neural determinants of agreeableness, a personality 
trait highly related to socio-cognitive abilities. Our results suggest that 
neural representations of social content in the dmPFC can vary among 
individuals with different levels of agreeableness in a functionally rel- 
evant way: more similar representations of social and non-social con- 
tent predict lower agreeableness scores, revealing the link between neu- 
ral and behavioral mechanisms underlying agreeableness. Additionally, 
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these sorts of connections between personality traits and specific cog- 
nitive abilities provide new opportunities for the development of more 
objective personality measures. 
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