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Thermalization processes induced by quantum monitoring in multi-level systems
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We study the heat statistics of a multi-level N-dimensional quantum system monitored by a
sequence of projective measurements. The late-time, asymptotic properties of the heat charac-
teristic function are analyzed in the thermodynamic limit of a high, ideally infinite, number M
of measurements (M — oo). In this context, the conditions allowing for an Infinite-Temperature
Thermalization (ITT), induced by the repeated monitoring of the quantum system, are discussed.
We show that ITT is identified by the fixed point of a symmetric random matrix that models the
stochastic process originated by the sequence of measurements. Such fixed point is independent on
the non-equilibrium evolution of the system and its initial state. Exceptions to ITT, to which we
refer to as partial thermalization, take place when the observable of the intermediate measurements
is commuting (or quasi-commuting) with the Hamiltonian of the quantum system, or when the time
interval between measurements is smaller or comparable with the system energy scale (quantum
Zeno regime). Results on the limit of infinite-dimensional Hilbert spaces (N — o), describing con-
tinuous systems with a discrete spectrum, are also presented. We show that the order of the limits
M — o and N — oo matters: when N is fixed and M diverges, then ITT occurs. In the opposite
case, the system becomes classical, so that the measurements are no longer effective in changing
the state of the system. A non trivial result is obtained fixing M/N? where instead partial ITT
occurs. Finally, an example of partial thermalization applicable to rotating two-dimensional gases

is presented.

I. INTRODUCTION

Quantum monitoring refers in general to the action of
performing a sequence of quantum measurements on a
system or a portion of it [IH4]. Being the single quan-
tum measurement a dynamical process with probabilistic
nature, it is customary to associate to any sequence of
measurements a stochastic process obeying, over time, to
a specific probability distribution [2 [5]. Such distribu-
tion usually depends on properties that rely on both the
system and the measured observable, and also external
sources of noise [0} [7].

The study of sequences of quantum measurements,
especially projective ones, is present in several physi-
cal systems and applications, ranging from fundamen-
tal quantum physics and quantum Zeno phenomena [8-
18], quantum metrology and sensing [I9H26] to quan-
tum thermodynamics [27H40], both at the theoretical
and experimental level. In particular, protocols imple-
menting repeated measurements have been already suc-
cessfully applied to investigate the quantum Zeno ef-
fect/dynamics [I5], [16], [32]. Instead, in quantum metrol-
ogy repeated measurements can be used to probe the
phase evolution of an atomic ensemble thanks to inter-
leaved interrogations and feedback corrections, see for
example [20, 23] and, recently, also to carry out quantum
noise sensing, as shown e.g. in [24H26]. In addition, an ac-
tive line of research focuses on the characterization of the
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thermodynamics principles that rule the statistics of the
measurement outcomes, with several contributions mak-
ing use of quantum fluctuation theorems and Jarzynski
relations [41H47]. Within this framework, since each mea-
surement entails a sudden energy variation with a given
probability, one can also analyze the probability distri-
bution of the heat exchanged by a monitored quantum
system with its surroundings, as done in Refs. [35] 89] for
two and three-level quantum systems. Moreover, also the
monitoring of local observables in quantum many-body
systems have been recently investigated [48, [49]. Specifi-
cally, in [48] it has been observed that the measurement
outcomes of a macroscopic observable may evolve by fol-
lowing a Brownian diffusion dynamics, while in [49] the
interplay between unitary Hamiltonian driving and ran-
dom local projective measurements is analyzed at the
quantum transition point of a quantum lattice spin sys-
tems, by showing that local measurement processes gen-
erally tend to suppress quantum correlations.

In this paper, we study the asymptotic behaviour of
a N-level quantum system subjected to a randomly dis-
tributed sequence of quantum projective measurements.
As figure of merit, we consider the statistics of the heat
distribution exchanged by the system with its surround-
ings. Our main motivation is three-fold. (i) There is
an inherent difference in the response of a quantum sys-
tem to a sequence of projective measurements depending
whether it has a finite number of levels (say N) or it is
continuous; thus, we aim at investigating how the limit
of large IV affects the results found for finite IV such as
the ones presented in [35,39]. (%) For spin-s systems, the
classical limit is retrieved for s — oo, so a natural ques-
tion is to study how the effects of quantum measurements
change by varying/increasing the quantum spin label s
counting the possible projections s,, whose number is
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2s+1 that plays the role of the number of levels N [in the
sense that the observables, including the ones measured
in the monitoring process, are operators with dimension
(2s+1) x (2s +1)]. (i) We are also motivated by re-
cent experimental results obtained on negatively charged
nitrogen-vacancy (NV) centers [38]. An NV center is a
localized impurity in diamond lattice based on a nitro-
gen substitutional atom and a nearby vacancy. In the
NV experiment in [38], it has been possible to locally ad-
dress the impurity and perform a sequence of quantum
projective measurements along the z-axis, not commut-
ing in such case with the energy eigenbasis of the system.
In [38] it has been observed a tendency of the quantum
system towards an equilibrium thermal state with infi-
nite temperature, which can be seen as an instance of an
Infinite-Temperature Thermalization (ITT) process.

Similar behaviours can be also observed in periodically
driven quantum systems, especially those used in Floquet
engineering [50, 51]. The reason for the analogy with the
effect provided by repeated measurements as studied here
is that the measurement apparatus could be seen as a
periodic drive, and may transfer energy to the measured
system, similarly to what the periodic drive may do. As
discussed in [35], it not very important whether the time
intervals between subsequent measurements are fixed or
random obeying a certain distribution. In addition, for
a periodically driven system with a convergent Magnus
expansion, the drive allows for the system to relax to-
wards a steady-state that is locally indistinguishable from
the microcanonical ensemble of the Floquet Hamilto-
nian [52]. In particular, as argued in Refs. [53] [54], if a pe-
riodically driven quantum system is non-integrable, then
it is expected to naturally evolve towards the infinite-
temperature state, locally indistinguishable from almost
all the other quantum states. Therefore, here, the natu-
ral arising question is what is the interplay between the
number of levels of the analyzed system and the value as-
sociated to the independent parameters of the quantum
monitoring protocol, i.e., the number of measurements
and the time interval between them.

To our knowledge, in the literature there are no works
that systematically discuss how internal energy fluctua-
tions distribute over time in a N-level quantum system
subjected to M projective quantum measurements. Our
paper aims at filling this gap, by predicting the non-
equilibrium behaviour of the monitored system in the
thermodynamic limits of M and N large, both ideally
infinite. The projective measurements are defined by a
generic Hermitian observable and separated by a not-zero
time interval 7. Note that, although we will mostly con-
sider the case in which the time intervals 7 are randomly
chosen with average value 7, the obtained results do not
depend on the randomness in such time intervals.

The paper is structured as follows. In Sec.[[] we de-
scribe the non-equilibrium dynamics to which a mon-
itored N-level quantum system is subjected, while in
Sec.[IT]] the asymptotic behaviour of the quantum system
dynamics, as well as of the its heat statistics, are analysed
in the thermodynamics limit of a large (ideally infinite)
number of intermediate projective measurements. In such
a limit, ITT can occur. Exceptions to ITT are then ad-
dressed in Sec.[[V] while in Sec.[V]our theoretical findings
are tested on a spin-s particle in a magnetic field. Then,

in Sec.[VI] we show results in the thermodynamic limit
of N large, and an example of partial thermalization in
a rotating two-dimensional gas is discussed in Sec.[VII}
Finally, our conclusions are presented in Sec.[VII]

II. NON-EQUILIBRIUM DYNAMICS

Let us consider a quantum system defined in a N-
dimensional Hilbert space whereby the Hamiltonian H,
assumed to be time-independent, admits the following
spectral decomposition

N

H= ZEk|Ek><Ek|~ (1)

k=1

At time ¢ = 0~ the system is supposed to be in an arbi-
trary quantum state described by the density operator pg.
We then apply the two-point measurement scheme [55],
where a projective measurement of energy is performed
both at the initial and at the final time of the protocol.
Therefore, at time ¢ = 0T a first projective energy mea-
surement is carried out, with the result that the state of
the system after the measurement is one of the projectors
|Ex ) Ex| with probability ¢, (where ¢y, >0VE=1,...,N
and Zi\;l ¢, = 1), while the energy of the system is Fj.

Afterwards, the system undergoes a number M of con-
secutive projective measurements of the generic observ-
able

N
0= Zak\aanH (2)
k=1

where oy, and |ay) are the outcomes and eigenstates of
0, respectively. We suppose [H, O] # 0.

The monitoring protocol is detailed as follows. Be-
tween the energy measurement at time ¢ = 0T and the
first measurement of O, the system does not evolve apart
from a trivial phase, since only the Hamiltonian acts in
this time interval. After each measurement of O the state
of the system is given by one of the projectors oy Xay|
with probability m, = Tr[po|ou)cu|] [56]. During the
time-interval between the (j — 1)*® and the ;" measure-
ment of O, the system evolves according to the unitary
dynamics generated by H, i.e., U(r;) = e "7 where h
is set to unity and the waiting times 7; denote the interval
between two consecutive measurements. The latter may
not be deterministic quantities, since also 7; can be ran-
dom variables distributed by following the joint Probabil-
ity Density Function (PDF) p(7i,...,7a). The numeri-
cal simulations in the considered cases show that taking
the waiting times 7; as random variables or fixed does
not alter the results and the late-time dynamics of the
system. The probability of finding the system in |a X ay|
after the M measurement is denoted as 7y,,. Finally,
a second energy measurement is performed immediately
after the last, the M, measurement of ©. We denote by
FE,, the outcome of the second and final energy measure-
ment, whereby the final state of the system is | E,, X Ep|,
and by p,, the corresponding probability. It holds that
Pm = Y1, Tl {ak|Em)|?. Before proceeding, it is worth
observing that the number of measurements M and the
waiting times 7; depend each other through the relation



tan = Zjvil 7j, with tg, denoting the final time of the
monitoring protocol. Thus, M and 7; are independent
variables if we do not fix the value of tg,. This assump-
tion will be maintained throughout the paper.

The variation of the system internal energy AU is de-
fined as [59]

AU=E,, —E,, (3)

which is thus a random variable. By considering each pro-
jective measurement as a random exogenous genuinely-
quantum process, one can identify the internal energy
variation AU as heat @, absorbed or emitted by the sys-
tem [35].

In the following, we will denote by 7 = (71,...,7m)
the sequence of waiting times and k = (k1,...,kp) the
sequence of the outcomes obtained by measuring O in the
single protocol realization. As we are going to observe,
the most important contribution to the variation of the
system dynamics occurs during the application of the M
measurements of O. For this purpose, let us introduce the
conditional probability Py, x, to get the outcome ay,,
from the M*™™ measurement of O, provided that the first
intermediate-measurement outcome was ay,. The condi-
tional probability Py, x, obeys the relation

7~TICM = ZP]CMUQT%I . (4)

Being all the M measurements projective, one can check
that

Peutis = [ p(r) 3 T [l Yo v .

ki,....kn—1
(5)
where we have introduced the quantities

Vk,r = |a/€M N U (Tar—1) -+ [, v, [U (1)

H i, [U(Tj-1) ok, )|, Xewk, [U (72).

It is worth noting that Eq. can be rewritten, in matrix
notation, as:

M

Panslin = / P17 p(r)any | [ L0y 1)law)  (7)

=2
with
<akj—1 |L(Tj*1)|akj> = |<akj—l |U(Tj*1)|akj>|2' (8)

This expression has a clear physical interpretation in
terms of the formalism of stochastic processes. As a mat-
ter of fact, the quantity [{ag,_, |U(7j—1)|ax,)|? is the con-
ditional probability to obtain the outcome ay; from the
41 projective measurement once measured the outcome
ok, from the (j — 1)'" one. Then, each L(7) can be
seen as the transition matriz pertaining to a discrete-time
Markov chain in which the eigenstates of the observable
O play the role of the states of the Markov chain. Con-
sequently, the operator L(7) is a stochastic matriz with

rows or columns summing to 1. This property of L(7)
can be easily verified by observing that

N N

D lelL(n)law) = Y (el U(r)lawfen|UT (7)]eve)

k=1 k=1
{aelU(M U ()]ag) = 1 9)

Ve=1,...,N.

This being said, the fluctuation profile of the heat @
can be characterized by means of the characteristic func-
tion G(u) (with u € C) associated to the probability dis-
tribution P(Q). By construction, the characteristic func-
tion is defined as

Glu) = (¢2") = (BB (10)

where the average (-) is performed over a large number of
realizations of the underlying non-equilibrium dynamics.

In the following, the M-large behaviour of a monitored
N-level quantum systems is analyzed by studying the
asymptotic properties of the transition matrix L(7) as
well as the corresponding expression of G(u).

III. INFINITE-TEMPERATURE
THERMALIZATION

In this paragraph, the asymptotic behaviour of Py, |,
is studied in the limit of M > 1. The time intervals
7; are different from zero and on average greater than
the energy scale of the analysed quantum system, for any
j =1,..., M. In this way, the system dynamics is not
“frozen as an effect of the quantum Zeno regime [10} [12]
T5HI7), 57H59]. For a recent example studying the large-
time dynamics of a many-body system (fermionic lattice)
under the influence of a dephasing noice refer to [60],
while an investigation of the convergence properties of
the work distribution done by a quantum system when
the number of its degrees of freedom (along regularized
path integrals) goes to infinity is presented in Ref [61].

Let us start observing that, being {L(Tj)} ! tran-
sition matrices (expressed as a function of condltlonal
probabilities), they are symmetric stochastic operators.
In particular, since each element of the transition ma-
trix L(7;) is the square modulus of the corresponding
clement of a unitary matrix (see Eq. (§)), the L(7;)’s are
unistochastic matrices. Thus, all its eigenvalues A\ are
such that |[Ag| < 1 and at least one of them is equal to
1. More formally, one can state that —1 < A\, < 1 with
k=1,...,N. For the sake of simplicity, we also assume
that 74 = -+ = 7y = 7. In the limit of large M, the
product of the transition matrices L(7) behaves asymp-
totically as a proper combination of the projectors P—1
and Py—_; associated, respectively, to the eigenspaces
identified by A =1 and A = —1. In other terms,

LM = Pacy + (—)M1Pa s (11)

However, while we are guaranteed that the eigenvalue A =
1 actually exists for any 7, the presence of the eigenvalue
A = —1 is not so obvious. For example, in the N = 2
case, the smallest eigenvalue of L is given by A = 1 —
25sin?(¢) sin (AET) where AE denotes the energy gap of




the qubit, while ¢ is the angle that defines the rotation
bringing the eigenbasis of the Hamiltonian H over the
eigenbasis of the measurement observable O. In order to
get A = —1, not only we need to choose a very specific
value of O (i.e., an observable O such that sin(¢) = £1),

but we also need to assume 7 = % with k € Z. Tt
is clear that, apart from fine-tuned cases, the concurrence
of both these conditions in a N-level system do not take

place (especially if the time intervals 7; are randomly

distributed). As a result, one can expect on physical
grounds that Py—_; = 0 such that
LM — Py (12)

However, it is important to note that Eq. does not
imply that in the single realization of the system dynam-
ics the effects originated by the presence of rare fluctua-
tions are absent. In such case, indeed, the evaluation of
higher-order statistical moments could be still required.
For more details on the analysis of the impact of rare
fluctuations in the statistics of quantum observables, the
reader can refer e.g. to Refs. [7, B2] that analyze the prob-
lem by means of the large deviation theory.

What discussed so far holds for a generic stochastic
matrix. However, being L(7) also symmetric, one can
verify that

1 N
v) = N ; k) (13)

is such that L(7)|v) = |v) for all values of 7. This means
that |v) is invariant to the application of the stochastic
matrix L(7), or in other terms, |v) is a fized point of
L(7). If we assume that A = 1 is non degenerate, then
L(7)M=1 — Ju)v|. Thus, since the eigevector |v) does
not depend on the value of 7, we can conclude that

L(ar—1) -+~ L(m) = |v){v] (14)

also for randomly distributed 7’s, as long as the set of
7 for which A = —1 is eigenvector, or A = 1 is de-
generate, has zero measure. However, such a degener-
acy of A = 1 can occur and the corresponding analysis
is postponed to Sec.[VA] It is also worth noting that,
in the Markov chain language, the validity of Eq.
means that the underlying process is ergodic and admits
a unique asymptotic configuration, i.e., the uniform one
whereby the probabilities that the final state of the sys-
tem is one of the eigenvectors |ay) of O are the same.

Let us explore the meaning of this property in our con-
text. In the M > 1 limit, Eq. (7) becomes

Prarltr = @k [0) (v]aur,) = (15)

N
so that, regardless from the state of the system after the
first measurement of O, one has:

- 1
Ty — ZPleklﬂ-kl = N . (16)
k1

Thus, as expected, the information on the initial condi-
tion is lost as M increases. Moreover, this result is also
independent on the form of the observable O, and all the
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Figure 1: Comparison between the initial (dashed-line
histogram with blue-coloured area) and final (solid-line
histogram with red-coloured area) heat statistics for a
five-level (a) and fifteen-level system (b). The Hamilto-
nian of the system and the initial density operator py are
randomly chosen on a basis in which O is diagonal. The
number of realizations of the non-equilibrium process is
5-10% in (a) and 15 - 10% in (b). In both cases, in the
thermodynamic limit of M large (in our numerical simu-
lations M = 20), each final energy value is equiprobable
and such effect can be explained as the thermalization of
the system towards a thermal state with S = 0 (infinite
temperature). In this figure and in the following ones,
the parameter 7; = 1 is chosen.

possible outcomes |ag,, {ak,,| are equiprobable. Accord-
ingly, the state of the system after the M*" measurement
(with M >> 1) is described by the maximally mixed state

I

M =5 (17)

Note that, being pjs diagonal in every basis, the second

energy measurement (corresponding to the last measure-

ment of the whole non-equilibrium dynamics) has no ef-

fect, and also all the final energy outcomes are equiprob-
able.

These findings are explicitly verified in Fig.[T] where we



plot for a 5- and 15-level quantum system the final energy
outcomes obtained at the end of the non-equilibrium dy-
namics of Sec.@ Notice that in the figure 7; = 1, but we
verified that choosing 7; as random variables (e.g., uni-
formly distributed) the final state at the end of the mon-
itoring protocol is unaffected. The asymptotic behaviour
occurring in the limit of M large can be effectively in-
terpreted as a thermalization process towards a thermal
state with infinite temperature: T' = oo (5 = 0). This can
be understood by thinking that the measurement appara-
tus acts as a thermal reservoir with infinite energy (being
it classical), by which, through a sequence of repeated
interactions, a quantum system can reach the same equi-
librium condition. In this respect, it is worth noting that
the state of Eq. (maximally mixed state) maximizes
the von Neumann entropy, and thus corresponds to the
state associated to the absolute maximum of the entropy.
For this reason, ppy = I/N has to be considered as the
natural equilibrium state for a quantum system to which
no further constraints are imposed.

A. Heat statistics

As previously discussed, in the M — oo limit the sys-
tem “forgets” the initial state, meaning that it cannot be
inferred by measurements of the system evolution. Thus,
E,, and E,, are independent variables and G(u) factor-
izes in the product of the characteristic functions of FE,
and FE,,. The latter is given by

1 al uwE 1 iuH
GEM(U)ZNZE "= e,
n=1

since pps = [/N and thus the values that E,, can take are
uniformly distributed. Instead, the characteristic func-
tion of E,, equals to

N
Gg, (u) = Z(ak|e_iH“p0\ak> =Tr [e_i“Hpo]
k=1

with the result that
1 3 —iHu
G(u) =Gg, (v)GEg,, (u) = NTr [ezH“] Tr [e a po] .
(18)
Consequently, by analyzing G(u) at u = ie with ¢ € R,
one gets

G(e) = <€76Q> = %Tr [po ], (19)

where Z(¢) = Tr[e=“] is the partition function of the
Hamiltonian H evaluated by taking e as reference inverse
temperature. As expected, if pg is a thermal state with
inverse temperature ¢ = 3, we recover the standard re-
sult G(if) = 1, stemming directly from the Jarzynski
equality.

In Fig.[2] we show the comparison between the results
obtained by using Eq. and the estimate of G(u) from
numerical simulations of the non-equilibrium process on
the same fifteen-level systems used for Fig.[I] with py ran-
dom initial state. Excellent agreement is found.
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Figure 2: Comparison between the expression of the
characteristic function G(e) = (e7“?) (blue solid lines),
plotted in semilogarithmic scale, and the numerical values
(red dotted lines) computed for the fifteen-level system
simulated in Fig. panel (b).

Finally, from the knowledge of the characteristic func-
tion G(u), we can also derive the statistical moments of
the heat distribution. In doing this, let us compute the
n'™ derivative of G(u) with respect to u, since

Q") = (=9)"9;G(0)
5 (1) o, @)

k

where (H®) = Tr[poH"] and <Hé>0 = Tr[poH’], with
¢ integer number > 1. Note that, here, the subscripts 0
and oo refer to the initial and asymptotic quantum states
po and po.. Therefore, as expected, the first statistical
moment (@) and the variance 02(Q) = (Q?) — (Q)? are
respectively equal to

2<Q> = <‘I;I>oo - <H2>0 (21)
07(Q) = 05 (H) + o5(H).

While the first moment (Q) of the heat distribution de-
pends on the sign of (H) _ and (H),, in the large-M limit
the variance 02(Q) is an additive function summing the
variance of the initial and asymptotic energy distribu-
tions. Accordingly, thanks to this property, the variance
of the heat distribution has to be preferred than the cor-
responding first moment to get information on the onset
of thermalization in the limit of a large number of mea-
surements.

IV. PARTIAL THERMALIZATION

In the previous Sections, we have assumed that the
largest eigenvalue A = 1 of L(7) is non degenerate. Such
assumption is realistic for a generic choice of the observ-
able 0. However, interesting properties arise also if this
assumption fails. Thus, in this paragraph we will analyze
exceptions to Eq. , leading to what we can refer to
as partial thermalization. Specifically, we will discuss the
following cases: (i) L(7;) having a degenerate maximum
eigenvalue; () dynamics in the quantum Zeno regime;



(i) [0, H] small. In the latter two cases, L(7;) is close
to the identity matrix, so that the difference between
the largest and the second-largest eigenvalues becomes
small, allowing for a non-trivial interplay between the
large number of measurements and the closing gap of the
energy spectrum of the system.

A. Eigenvalues degeneracy

Let us assume that the largest eigenvalue A = 1 of L(7)
is degenerate. By construction, each element of L(7) is
> 0; thus, if L(7) is a not reducible matrix (i.e., it can-
not be put in a block diagonal form with a change of
basis) the Perron-Frobenius theorem [62] guarantees that
the largest eigenvalue is non degenerate. Therefore, we
have to consider the case in which O and H share a com-
mon non trivial invariant subspace. This implies that in
the basis {|ay)}_,, which defines the eigenstates of O,
H reads as

H,
H— (22)
Hpg

where R denotes the number of blocks of H and H,., with
r=1,..., R, areirreducible Hermitian matrices acting on
the subspaces S,.. Before proceeding further, it is worth
observing that having H diagonal on the basis of O is
a particular case of Eq.(22)), where each subspace has
dimension one. From Eq. (22)), one can get that also the
matrices L(7;) are block diagonal and can be written as

Li(7;)
L(ry) = (23)
Lp(7;)

where L, (7;) are unistochastic irreducible matrices acting
on the subspaces S, forr =1,...,Rand j =1,..., M.
In this case, the Perron-Frobenius theorem ensures that
no further degeneracy is present in each matrix L, (7;).
Therefore, we can introduce the set of eigenvectors, one
for each subspace:

|vr) = (24)

sz o)

corresponding to an R-order degeneracy of the eigen-
values of L(7). As a result, the eigenspace associated
to the 1argest eigenvalue A = 1 is R dimensional, and
Eq. (17) is no longer valid. Instead, one can find that
PkM\kl = m if |ag,) and |ag,,) both belong to the
same subspace S,, and Py, = 0 otherwise. In such
case, T,, keeps memory of the initial state. Indeed, if
|ak,, ) € Sy, then

_ 1
Tk = 77 o Z Tk . (25)

dim S,
k:lak)ES,

Since the initial and final energy projective measurements
does not mix the eigenspaces linked to the eigenvalues of
L(1), one can also write that

1
= 2
Prm dim S, Z k (26)
k:lEk>€ST

with S, such that |E,,) € S,. In the case of R = N
(namely H commuting with O: [H,0] = 0), Egs. (25)
and reduce, as expected, to Tg,, = Tk, and py, = ¢,
since in that case the evolution of the system is frozen and
all the measurements outcomes coincide.

Moreover, by still assuming the degeneracy of A = 1,
the heat characteristic function G(u) can be written as
the sum of the characteristic functions relative to each
subspace S;.:

R 1
— iHyu
= ;:1 dim s, Tr [poo e ] Tr [po

e vl L (27)

From Eq. , it can be observed that also the moments
of the heat distributions are provided by the sum of the
corresponding moments for each subspace 5.

These results have a simple physical interpretation. For
any realization of the introduced non-equilibrium pro-
cess, after the first measurement, the state of the sys-
tem is described by a vector belonging to Sy for some
7 € {1,...,R}. Since such subspaces do not mix each
other, the subsequent system evolution will take place
within Sr. As a result, in the limit of M — oo, the
monitored quantum system tends to reach the completely
mixed state in each S, separately.

An example of partial thermalization clearly showing
this feature is presented in Sec.[VII}

B. Quantum Zeno regime

Another possible exception to ITT can be observed
when the value of all the waiting times 7;, with j =
1,..., M, is on average much smaller than the inverse of
the energy scale of the system [10] 12, I5HT7, F7H59]. In
particular, let us consider here the case in which the total
time ZJM:I 7; remains constant in the limit of large-M,
thus ensuring that each waiting time 7; is infinitesimal.
In this limiting case, we expect to recover the quantum
Zeno regime that prevents the system to thermalize.

This effect can be shown by observing that in the quan-
tum Zeno regime the operators U and L are nearly close
to the identity matrix. In particular,

(ak|U (7)) = 0o — iy (o |H|ow) + O(7)  (28)

so that
(ag|L(75)|ow) = ke + O(TJ-Q). (29)

Since their sum is constant, in the large-M limit all the
waiting times 7;, j = 1,..., M, go to zero as M~ Thus,
O(77) = O(M~2) such that the conditional probability
Py, 1k, can be read as

Pty = Ok ks + (M = 1)O(M™?)

1 (30)

= 5k1,kM + O(M )
This means that, in the limit M — oo, the system is
frozen in one of the eigenstates of O, in accordance with
the quantum Zeno effect.



C. 0O and H quasi-commuting observables

Here, let us examine the case in which [H, O] is small.
Under this hypothesis, the eigenbases of both the ob-
servables are close to each other, and the unitary matrix
V with elements Vj, = (ai|E¢) is close to the iden-
tity. Being V an unitary matrix, we are allowed to
parametrize V as V = e with R Hermitian opera-
tor normalized such that ||R||z = 1 with || - ||2 the usual
L? norm. In our case, being V ~ I, the parameter ¢
is < 1. Moreover, by introducing the diagonal matrices
A(7j) = diag(e 17 ... e *ENTi) the propagator U(T;)
can be expressed in the O eigenbasis as

U(rj) = VA(rj))VT = A (T +i€(ATRA — R) + O(£?)),
(31)
or — by components — as

Uk,e(75) =
e*iEg‘rj <5k,£ +Z‘£Rk,e(e(Ek*Ee)‘rj .

1)+ 0(52)) .(32)
Accordingly, for k # ¢, the (k, £)-element of the transition
matrix L(7;) equals to

Lie(75) = |Unye()

By — Eo)T;
- 452\Rk7€|2smw

5 +0(€%). (33)

At variance, regarding the diagonal elements of L(7;),
we do not actually need to compute them, since they
are are fixed by the constraint ), Ly ,(7;) = 1. This
consideration is quite useful, since the O(£?) terms in
Eq. ., which we did not compute, would have given
rise in Ly (7;) to O(£?)-terms that cannot be neglected.
In conclusion, the transition matrix L(7;) can be put in
the following form:

L(1j) =1~ A(r;) + O(£?) (34)

where A is a real symmetric operator whose elements are
given by

Ago(T ) = —4|Ry, |? sin? (E%Ee)”, Vk 41
Akk ZAkZ (35)

k¢

By analysing Eq. , one has that, for any finite small
value of £ # 0, the system thermalizes if undergoes a non-
equilibrium process composed by M > £~2 projective
measurements. In particular, by taking a measurement
observable O allowing for a finite value of £, the system
thermalizes in the limit M — oo, while by imposing from
the beginning that £ — 0 one recovers the same findings
observed in the quantum Zeno regime also in the large-M
limit. However, a non trivial result is obtained if the two
limits are performed at the same time with the constraint
Mg? = t. In this case, assuming for simplicity Ti =T
Vji=1,...,M, we find that

L(r)M — e~ AME, (36)

mimicking a finite-time Euclidean evolution with effective
Hamiltonian A(7) for the effective time ¢. Therefore,

T = 3 {0ty ™2 g, (37)
k1

Moreover, since the bases of O and H coincide up to
O(§)-terms, a similar relation also holds for the proba-
bility p,, to measure the energy E,, after the 2°d energy
measurement of the process:

P =Y (Emle 2B, )e, . (38)

n

As final remark, we also observe that, by construction,
the operator A(7) has always a zero mode, namely an
eigenvector with vanishing eigenvalue. This entails that
the ITT and quantum Zeno regimes are recovered in the
limits ¢ — co and ¢ — 0, respectively.

V. SPIN-S SYSTEMS

To test our theoretical findings, we consider a spin-s
particle in a magnetic field taken directed along the z-
axis. In this case the quantum number s play the role of
N since the observables are described by (2s+1) x (2s+1)
matrices. Thus, the system Hamiltonian is H = —wS,,
whose spectrum (apart from a constant) is given by Ej, =
wk with £k =0,...,2s.

A. Heat statistics

Given a spin-s particle in a magnetic field, let us as-
sume that initial state pg of the spin is thermal, such that
cx = e PEr /7 with Z = Tr[e~#H] partition function. Un-
der these assumptions, it is possible to compute exactly
the probabilities associated to the heat distribution.

Being the energy levels of the spin evenly spaced, the
outcomes of @ are all the 4s + 1 values @ = w{ with
{ = —2s,...,2s. Since the spin operators S, and S, are
non-commuting with S, if we choose to measure the spin
component along these directions we will have ITT in the
limit M > 1. Then, all the possible final outcomes E,,
will have the same probability ﬁ to occur. Hence, the

probability ps(Q) to get the outcome @ = wf equals to

2s
Ze‘ﬁ“’(k_@, 0</¢<2s
B 1 k=¢
pl(Q)* Z(28+1> 25+
Z e‘ﬁw(k_e), —25<¢<0.
k=0
(39)

In this way, by explicitly computing the summations in
Eq. , as well as the partition function Z, we obtain

1 1— —,Bw(29+1 @), 0<€<23
pe(Q) = — - 40
@ n | efer — 6_5“’(25+1), —25</¢<0 (40)
with n = (1 — e @25+ (25 +1). Eq. well repro-
duces the results of the numerical simulations, as shown
in Fig.[]

B. O and H as quasi-commuting observables

Now, for a generic spin-s system with Hamiltonian H =
—wS, let us consider the measurement observable O =
n-S, withA=sinék+cos€zand S =S wX+ Sy ¥+ S5.2.
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Figure 3: Comparison between the theoretical estimate
(red solid line) of the occurrence numbers to measure the
heat outcomes w/, as provided by Eq. , and the cor-
responding histogram (blue areas). The latter has been
obtained by numerically repeating the non-equilibrium
dynamics of sequential measurements over 10° realiza-
tions on a spin s = % In the three panels, the initial
state pg has been thermal with inverse temperature, re-

spectively equal to =0, f =0.5 and g8 = 1.

On the one hand, it is worth noting that, if & = 0,
then [0, H] = 0. Thus, by considering £ < 1 (i.e., [0, H]
small), it holds that O = ¢S, + S, + O(£2). On the other
hand, we know that the eigenvalues of the spin operator
S, are indexed by m € {—s,—s+1,..., s} corresponding
to the state vector |m). Hence, from the application of
the first-order perturbation theory on the observable O,
we have that in the limit of small £ the eigenstates |, )
of O are equal to

|y = |m) +¢ Z

m’'#m

S0y v o). )

Since Eq. contains only the matrix elements of S, in
the S, -eigenbasis, it is now easy to compute the matrix V'
up to higher order terms in & by means of the expansion
V =€ =T+ iR+ O(£2). As a result, we find:

Ry = —\/ (s —=m)(s+m+ 1) m+1

_ 5\/(5 —m)(s+m + 1) my1. (42)

In this way, concerning the transition matrix L(7), the
effective Hamiltonian A(7) (real symmetrlc operator)
obeying Eq. is given by A(r) = Asin® “r, whose
only non-zero elements are

Ammt1 = —=s(s+1) + m(m — 1)
Amm—1=—8(s+1)+m(m+1) (43)
Apom = 2(s(s + 1) —m?).
As shown in Appendix A, the operator A can be diago-
nalized in the limit s > 1. The eigenvalues of A are equal
to
ap = k(k + 1) s (44)

with £ =0, ...,2s, while the 2s components vi(m) of the
kth eigenvector vy, are given by

(45)

vk(m) = 2k+1Pk (m)

2s s
with m = —s,—s+1,...,s. In Eq. , P, denotes the
Legendre polynomial of order k.

This result suggests that, in the limit of s > 1, the op-
erator A can be expressed in terms of the orbital angular
momentum L = L,Xx + L,§ + L.Z of a single quantum
particle. By setting =+ = cos , the eigenvalues and eigen-
states of A coincide with the spectrum of L2 provided
that we limit ourselves to the sector H 4 of the particle
Hilbert space such that L, 4 = 0. Notice that the lat-
ter, in standard notation, corresponds to the part of the
spectrum of A with m = 0. This means that A can be
written as

~ T2 2 2
ALy + Ly + plL; (46)
with ¢ — oo. Under this limit, the euclidean evolution

automatically excludes all the states that do not belong
to Hy4.
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Figure 4: Comparison between the spectra of the stochas-
tic matrices L(7) with s = 300 and different values of
T, expressed in terms of the rescaled variable % The
plotted values of 7 belongs to the set {1,2,...,7}, and
are respectively identified by the blue diamond, orange
circle, yellow x-mark, and purple solid lines and green,
cyan circle and red x-mark dotted lines. We can observe
that, for ’;—; smaller than a critical value (numerically
determined to be ~ 0.934), all the data collapse on the
same curve as predicted by Eq. . In turn, for ’;—; <1
we observe the quadratic behavior provided by Eq. ,

namely f(%) ~1-— (%)2

VI. LARGE-N LIMIT

In this paragraph we determine analytical expressions
describing the behaviour of a monitored quantum system
in the limit of an infinite-dimensional Hilbert-space. Un-
der this hypothesis, the theses of the Perron-Frobenius
theorem are no longer valid [62], and, thus, it is no guar-
anteed that the largest eigenvalue A = 1 of L(7) is non-
degenerate.

For simplicity, let us take a spin-s system, with Hamil-
tonian H = —S, /s, and, as (intermediate) measurement
observable, the Hermitian operator O = S, (not commut-
ing with the Hamiltonian). The scaling of the system
Hamiltonian with s has the usual purpose to maintain
finite the range of the spectrum of H as s grows, and
to help to retrieve the classical limit of an unit spin for
5§ — 00.

Here, we are interested in predicting the thermalization
of the analysed spin-s system to the maximally mixed
state, also in the limit of large-s (s > 1, ideally infinite).

In Fig.[d] we show the eigenvalues \j, of the transition
matrix L(7), with Ag =1 > -+ > A > -+ > g, for
different choices of 7. From the numerical simulations,
we observe that the eigenvalues A\, tend to accumulate
around \g = 1. Moreover, it is also evident that, in the
limit s > 1, the behavior of the highest eigenvalues is
described by a universal function:

) =1(5) (47)

2s

with f(0) = 1. This scaling relation is valid up to the

critical value % in correspondence of which a transition

occurs. Notice that we have checked this evidence also
for larger values of s. The critical value g—’; is found to be
~ 0.934 and it corresponds to the eigenvalue Ag(7) ~ 0.3.
As shown in Fig.[5] a similar pattern is also present in
the eigenvectors of the matrix L(7). One can see that
the eigenvectors, corresponding to small values of the in-
dex k that labels them (so that % < 1), are indepen-
dent on 7. Indeed, from Fig.[f] one can observe that
the the eigenvalues of the stochastic matrix L(7), during
their time evolution, behave as a propagating wave-front
bouncing back and forth as time increases. In particular,
each bounce is in correspondence of vertical lines — iden-
tified by specific labels of the eigenvalues of L(7) — that
moves closer and closer to the central label of the matrix,
by maintaining “frozen” the eigenvalues with the largest
value. Moreover, the time instants, in which a bounce
occurs, correspond to a cusp in the eigenvalue distribu-
tion in Fig.[dl This evidence has been observed in the
numerical simulations implemented for Figs.[] and [5}

Independently of the nature of such transition, only the
eigenvalues of L(7) close to 1 can affect the ITT. Thus,
for our purposes, we will just focus on the spectrum of
L(7) that obeys to the scaling relation (7)), and we will
analyze how the function f behaves if its argument % is
small.

In doing this, let us consider the case 7 < 1 (for which
of course g—’j < 1). In this limit, the scaling relation
is valid for every k = 0,1,...,2s. Moreover, for small 7,
(U (7)|owe) = Ore — iZ (| S:|ae) + O(7?), so that for
k#4L

-2
@MMﬂMdZ;ﬂWM&M0F+OU%7 (48)

while the diagonal elements are determined by imposing
the constraint that L(7) is a stochastic matrix. Thus,
being {|ay)} the set of the eigenstates of S,, we find that

L(r) =1— 1A+ 0(), (49)

where A is the operator introduced in the previous para-
graph and defined by Eq. ([43).

We conclude that in the limit s > 1 the spectrum of
L(7) is given by the eigenvalues

2

4s?
with £ = 0,...,2s. In this regard, it is worth noting that
k(k +1) ~ k2 up to higher orders in s~! with the result
that

Me(m) =1 E(k+1)+0(r?) (50)

2
Me(T)=1-— (Tk> +0(7*), (51)
2s
in agreement with Eq. for f(x) = 1—224+0(23). Ac-
cordingly, supported by our numerical analysis, we have
that for large s the value of the greatest eigenvalues of
L(r) (with 7% < 1) is correctly described by Eq. (5I)),
also for finite 7. However, in the limit M > 1 only the
eigenvalues close to A\g = 1 actually matter, since all the
others are exponentially suppressed. Thus, when both M
and s are large, one has that

LM ~ <11 - (T)2A>M ~eMITA L (59)

2s



Figure 5: Color plot of the matrix of eigenvectors of L(T)
for different values of 7 (i.e., 7 = 1,2,3,4,6,7 from the
top to the bottom and from left to right), with s = 300.
For visualization purposes, we plot on the y-axis of each
panel the logarithm of each matrix element, while on the
x-axis there is the index k that labels each eigenvalue
(the larger k, the larger the eigenvalue). We can observe
that, in spite of the structures developed for the larger
values of 7, the eigenstates on the right of each panel,
corresponding to the higher part of the spectrum, are
practically the same as long as 7k/2s < 1.

A different result is obtained depending on the order of
the limits M — oo and s — oco. Indeed, if we perform
the limit M — oo while s is finite, only the null eigenvec-
tor of A (corresponding to k =0 and \g = 1) “survives”
(is propagated over time without being nullify by a re-
peated sequence of products) and the system thermalizes
to an infinite-temperature state. Such finding is in ac-
cordance with our results obtained with a finite Hilbert
space dimension and non-separable Hamiltonian. Con-
versely, by performing the limit s — oo with M finite,
we get L(7)™ — 1. This means that the system be-
comes classical as s — 00, so that the measurements are
no longer effective in changing the state of the system.
Quite remarkably, also in this case, a non trivial res2ult is
ing 45 =1
constant. Indeed, one gets L(7)™ — e~ that corre-
sponds again to a finite time Fuclidean evolution with
effective Hamiltonian A, similarly to Eq. for the case
of O and H quasi-commuting observables.

obtained if we perform the two limits keeping
M
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VII. ROTATING TWO-DIMENSIONAL GAS

As example of partial ITT relevant for rotating two-
dimensional gases [63], let us consider a particle of mass
m = 1 moving in the z-y plane and subjected to an
anisotropic harmonic potential with frequencies w; # wo,
along the x and y directions respectively. Thus, the
Hamiltonian is given by

1
H = 3 (pi —|—p§ + wiz? + w§y2)

1 1
w1 (alam + 5) + wo (a;;ay + 5) (53)

where p;, py denotes the momentum components of the
particle in the z, y directions, and a,, a, are the anni-
hilation operators associated to the particle along = and
y. The energy eigenstates are given by |n;,n,) to which
correspond the energy values £ = win, + wany, being
|ny) and |n,) the 1D harmonic oscillator states along x
and y, respectively. As measurement observable O, let us
choose the pseudo-angular momentum

1
A/ W12

L is block diagonal on the eigenbasis of H. This can be
seen by noting that ayaj|ng,ny) o [ny — 1,n, + 1) and

i
L= 3 (a;ay — azam) =

(wayps — w1zpy). (54)

alay|ng, ny) o< [ng+1,n,—1). Thus, the action of L can-
not generate any state with a different value of n, + ny.
In other terms, each block with a given n = n, + ny is
invariant under the action of the pseudo-angular momen-
tum. Moreover, by computing the matrix elements of the
pseudo-angular momentum, we can observe that, within
each subspace with constant n, (i) L acts as (twice) the
y-component of a spin-s = n/2 operator in the basis of

the z-component, and (ii) L is not further reducible.

In conclusion, the thermalization process only involves
the energy eigenstates |n,,n,) spanning a subspace with
a fixed n = n; + ny, and the system behaves as a col-
lection of independent spin-s systems with 0 < s < oo.
Our findings are no longer valid if w1 = wy = w. In
such case, indeed, L becomes proportional to the angu-
lar momentum operator w(yp; — xp,) associated to an
isotropic two-dimensional harmonic oscillator that com-
mutes with H. Thus, no evolution is possible as well as
ITT. It would be interesting to study the effect of re-
peated measurements of the pseudo-angular momentum
in the slightly anisotropic case, with the aim to investi-
gate in the interacting case whether and to what extent it
could be usefully employed to reach quantum Hall states
for two-dimensional rotating gases.

VIII. CONCLUSIONS

In this paper, the asymptotic behaviour of a N-level
quantum system subjected to a sequence of M projective
measurements is analyzed in the limit of M and N large.
Such behaviour has been put in relation with common
properties of the Hermitian operators H (system Hamil-
tonian) and O (intermediate measurement observable),
and peculiar characteristics of the heat distribution ex-
changed by the system with the external environment.



We have shown that, if H and O do not share any
common non trivial subspace, the final state of a moni-
tored quantum system in the large-M limit coincides with
the maximally mixed state corresponding to a canonical
thermal state with infinite temperature. We have denoted
this latter condition as Infinite-Temperature Thermaliza-
tion (ITT). Assuming the largest eigenvalues of the tran-
sition operator L to be non-degenerate, we show how the
ITT modifies the heat distribution associated to the mon-
itored quantum system. Specifically, in the ITT regime,
the initial and final energy outcomes, {E,} and {E,,}
respectively, are independent random variables and the
corresponding characteristic function G(u), with v € C,
can be factorized in two distinct contributions just de-
pending on the initial and final states.

Possible exceptions to ITT, to which we refer to as par-
tial thermalization, can occur when the largest eigenvalue
of the transition matrix operator L is non longer non de-
generate. Partial thermalization has been determined in
the following three distinct cases.

(i) Whenever the Hermitian operators H and O have
one or more eigenvectors in common, as for example
when [H,0] = 0. In such case, the ITT occurs only in
partial way, since we no longer have the complete mix-
ing of the intermediate measurement eigenvectors |ay),
k=1,...,N, at the end of the non-equilibrium quantum
process. Indeed, what one can observe is the mixing of the
eigenvectors |v,) associated to the subspaces S, in which
the Hamiltonian block matrices H, are defined. For the
sake of clarity, we recall that the Hamiltonian blocks H,.
are the operators that compose the global Hamiltonian
H of the system, once expressed in the basis of O. The
presence of R block matrices H, (and not just one) is
the reason under the onset of a degeneracy of the eigen-
value A\ = 1 of L(7), independently of the 7-values. In
this picture, the special case of [0, H] = 0 is obtained for
R=N.

(i) ITT is not obtained when the value of the waiting
times 7; is on average much smaller than the inverse of
the energy scale of the system, such that during the ap-
plication of two consecutive measurements the quantum
system does not practically evolve and remains confined
in its initial state.

(#ii) Finally, analytical and numerical results in the large-
N limit, derived on a spin-s system with s > 1, suggest
that ITT can occur in the limit of M — oo with 7 < 1
and a finite value of s. We found that the eigenvalues
of L(7) are the same for different values of 7 as long as
Tk /2s is smaller than a critical value that we estimated
to be ~ 0.934. Interestingly, the matrix of eigenvectors
displays a rich structure, but nevertheless the eigenstates
corresponding to the larger eigenvalues are practically the
same as soon as 7k/2s < 1, in agreement with the pre-
viously mentioned critical value. When, at variance, the
limit s — oo is taken with M finite, we find that for
7 < 1 the application of a sequence of quantum projec-
tive measurements does not entail state changes within
the measured quantum system, as one would expect in
the classical limit.

As further remark, we would also like to stress that, ex-
perimentally, it is not necessary to perform an ideally in-
finite number M of measurements to observe the theoret-
ical results here exposed, even those valid in the asymp-
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totic limit of M large. In this regard, one could refer
again to Ref. [38] where a sequence of quantum projective
measurements has been performed on a single nitrogen-
vacancy (NV) center in diamond. In such experiments,
indeed, a tendency of the quantum system towards an
equilibrium thermal state with infinite temperature has
been observed just after the application of less than 10
projective measurements. We thus expect that this could
be recovered also in other experimental platforms.

Our results are expected to pave the way for further in-
vestigations on monitored quantum systems, subjected to
a sequence of non-projective quantum measurements [64]
and driven by time-dependent functions through Hamil-
tonian couplings. In such contexts, the distributions of
both the heat and work, and their interplay according to
the principles of thermodynamics, will have to be evalu-
ated, e.g., by taking into account the cost of each applied
projective measurement [65 [66]. Moreover, since we have
adopted the more standard the two-point measurement
scheme, it would be interesting to extend the obtained re-
sults by using different measurement schemes, such as the
one recently explored in Refs. [67H70]. Finally, in light of
the similarities between systems subjected to a repeated
series of quantum measurements and periodically driven
systems, one could investigate both continuous, single
particle systems and many-body systems under repeated
quantum measurements, possibly near a phase transition
or in presence of an external dissipation [49], by using the
results in this paper. In this respect, a very interesting
example to be worked out in detail would be the Lipkin-
Meshkov-Glick model, whose dynamical and entangle-
ment properties have been intensively studied [71], [72]. In
this regard, for such a model even the work and heat
statistics and their relation with ground and also excited
state quantum phase transitions have been recently ad-
dressed, as shown in Refs. [73] [74] and references therein.
For the Lipkin-Meshkov-Glick model, the thermodynam-
ical limit N — oo and deviations from it was thoroughly
investigated [75H78]; therefore, if subjected to a sequence
of quantum measurements one could check (especially, in
proximity of its quantum phase transitions) how the in-
terplay between N and the number M of measurements
arises, and whether the results obtained in this paper in
the limit of large N and M apply.
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Appendix: Spectrum and eigenvectors of A

In this Appendix we to derive the spectrum and the
eigenvectors of the operator A. Let us start with the



eigenvalues equation

Zﬂmm/v(m’) = av(m), (55)
equivalent to the relation
av(m) = 2(s(s+ 1) —m?*)v(m)
— (s(s+1)—m(m+1))v(m—1)
— (s(s+1)—=m(m—1)v(m+1) (56)

with a and v arbitrary eigenvalue and eigenvector of A,
respectively. Eq. can be written as

av(m) = (s(s +1) —m?)(2v(m) —v(m + 1) —v(m — 1))
+ m(v(m+1) —v(im—1)). (57)

In the limit s — oo, we assume that v(m) is a smooth
function of the variable z = ™ € [~1,1]. Thus, we make
the ansatz v(m) = P(z) with P(z) continuous function,
so that

1

UWHﬂ):PQﬁiéP%®+2§

P"(x) +0(s77), (58)

where P'(z) and P”(z) denote, respectively, the first and
second derivatives of P(x) with respect to x. As a result,
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the eigenvalue equation , up to O(s~1) terms, is equal
to

2sx

aﬂ@=—%@@+w—§ﬁWW@+i;P@)®%

S

whereby, by taking the limit s — co, we finally get

(1—2%)P"(z) — 2¢P'(x) + aP(z) = 0. (60)
Eq. is the well-known Legendre equation. In order
to have normalizable solutions of the Legendre equation
in the interval z € [—1, 1], one has to set that the eigen-
value a belongs to the set {ax} with ar = k(k + 1) and
k integer > 0. Thus, in this case, the eigenfunctions are
proportional to the k-order Legendre polynomials Py(z).
In conclusion, by enforcing the normalization condition,

we find:
12k +1 m
Uk(m) - 2s P (?)

where the variable s at the denominator of the normal-
ization factor is required to pass from the normalization
in x to that in m.

(61)
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