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Functional renormalization and the MS scheme
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Working with scalar field theories, we discuss choices of regulator that, inserted in the
functional renormalization group equation, reproduce the results of dimensional regularization at
one and two loops. The resulting flow equations can be seen as nonperturbative extensions

of the MS scheme. We support this claim by recovering all the multicritical models in two
dimensions. We discuss a possible generalization to any dimension. Finally, we show that the method
also preserves nonlinearly realized symmetries, which is a definite advantage with respect to other

regulators.
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I. INTRODUCTION

Dimensional regularization (dimreg), together with
modified minimal subtraction (M—S),1 is the most widely
used regularization and renormalization method in particle
physics. It owes its popularity mainly to its simplicity and
to the fact that it respects gauge invariance, one of the
cornerstones of particle physics models. It is also remark-
ably selective: in the language of momentum cutoffs, it
extracts only the logarithmic divergences, which for most
applications turn out to contain the important information
(in particular, the beta functions of the marginal couplings).
However, in its standard implementation, dimreg, it is a
purely perturbative device, and it works only in even
dimensions.

On the other hand, the functional renormalization
group (FRG) equation (FRGE) is a convenient way of
implementing Wilson’s idea of integrating out modes
one momentum shell at the time. At its core lies a
choice of a ‘“regulator” function R; that suppresses
the contribution of low momentum modes to the path
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'In the FRG one follows the flow of renormalized quantities.
Therefore, for a meaningful comparison, we have to supplement
dimreg by a renormalization prescription.
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integral.” The regulator depends on a scale parameter k with
dimension of mass, and the derivative with respect to k
gives the contribution to the effective action of an infini-
tesimal momentum shell. The contribution to the functional
integral of a momentum shell of thickness Ak can be
written as a loop expansion. The Z-loop term is of order
(Ak/k)?, so that the continuous FRGE (Ak/k — 0) looks
like a one-loop equation [1]. In the 1PI formulation, the
FRGE reads [2-5]

(1.1)

2 -1
ar, _ho (BT YR,
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where the functional I'; is a scale-dependent version of the
effective action (EA), generally called the effective average
action (EAA) and 7 = log(k/kg). We refer to [6-10] for
reviews of this equation and its applications. The one-loop
nature of the FRGE is manifest in the presence of a single
trace (momentum integration). In fact, the FRGE can be
represented graphically as

T, = % , (1.2)

*The “regulator” only cuts off the IR end of the propagator and
it does not remove UV divergences from the functional integral.
However, when one computes the derivative of the effective
action with respect to k, one is taking the difference of two
functional integrals that only differ in their low energy parts, and
the UV divergences cancel. In practice, the trace in (1.1) is made

. dR
UV finite by the presence of the term —*.
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where the double line represents the full propagators and the
crossed circle represents the insertion of the regulator 0,R).
The counterpart of this simplicity is that the equation is only
exact if one takes into account all possible terms in the action.
Since it is practically impossible to solve the exact equation,
its effectiveness hinges crucially on a good choice of
approximation. There are three main systematic expansion
schemes. We briefly recall their definition, and then discuss
the relation among them, and to standard perturbation theory.

A. Loop expansion

This is an expansion in powers of /. We write for the
EAA:

Clgl = Sald) + S RTLg. (1)

Inserting (1.3) in the flow equation (1.1) one can reproduce
the usual beta functions of perturbation theory. First, intro-
ducing S in the right-hand side (rhs) of (1.1), one calculates
the one-loop beta functional 9,I"; ;. Integrating over k from A
to k' gives the one-loop EAAT', -, and using this in the rhs of
(1.1) one calculates the two-loop beta functional 9,I'; ;. The
procedure can be iterated. Since in many cases the loop
expansion coincides with the expansion in the marginal
coupling constant, this approximation scheme is close to
standard weak-coupling perturbation theory.

B. Vertex expansion

The EAA can be Taylor expanded in powers of the field:

N =Y / oo [ T 1002

(1.4)

where p,, are the external momenta. By functionally differ-
entiating Eq. (1.1) one obtains an infinite sequence of flow
equations for the n-point functions '), The vertex expan-
sion consists in truncating this sequence at some finite order.
The first three equations of the sequence for a Z,-invariant
scalar theory can be represented graphically as follows:

1 (1.5a)
athf) == —5
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(1.5b)
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Here the black dots represent full vertices. The vertex
expansion is clearly a good approximation in weak field
situations, and is widely used in particle physics, where one
generally deals with just a few quanta of the field. In this
approximation one retains the full momentum dependence.

C. Derivative expansion

When one is interested in low energy phenomena, one
can expand the action in powers of derivatives. This is close
to many applications of the effective field theory approach.
For a single scalar field the expansion starts with

rlgl = [ a(Vio) + 20007+ 00%) (19

where V, and Z; are arbitrary functions of the field.
Inserting in Eq. (1.1) one obtains flow equations for V,
Z, etc. This is complementary to the vertex expansion,
because one retains the full field dependence, but only the
lowest powers of momentum.

These expansions give rise to different forms of pertur-
bation theory, where different parameters are assumed to be
small, and a statement that is perturbative in one expansion
is generally nonperturbative in the others. Thus for exam-
ple, the leading order of the derivative expansion, which is
called the local potential approximation (LPA), consists in
retaining in (1.6) only the running potential V; and to put
Z, = 1. The beta function of the potential that can be
obtained in this way from the FRGE contains information
about infinitely many orders of the vertex expansion, and to
all loop orders. If furthermore the potential is assumed to be
a finite polynomial, then one is working simultaneously in
the derivative and vertex expansion. Similarly, truncating
the vertex expansion to a finite order gives n-point
functions that include all orders of the derivative expansion
and of the loop expansion, and the EA calculated at a given
order of the loop expansion contains information that
includes all orders of the derivative and vertex expansion.

Regardless of the choice of approximation scheme
for the FRG equations, each one is able to reproduce
standard epsilon-expansions for any regulator choice, if a

076012-2



FUNCTIONAL RENORMALIZATION AND THE ...

PHYS. REV. D 103, 076012 (2021)

high-enough order of approximation is considered. This
has been shown since the early years of the FRG [1,11,12].
Yet again, in comparison to standard FRG schemes,
dimreg/MS occupies a somewhat privileged position for
this kind of calculations, as they can be performed more
simply in the latter scheme. For a nice direct comparison of
the two kinds of computations, FRG versus dimreg/MS,
see for instance Ref. [13].

In practice, in applications of perturbative quantum field
theory to particle physics, one generally considers two-,
three- and four-point functions at a finite order of the loop
expansion, and therefore one is working simultaneously in
the vertex and in the loop expansion. This is what we shall
refer to as “standard perturbation theory.” A different
implementation of the weak coupling expansion is possible
in presence of background fields, since perturbation theory
can then account for the full dependence of the vertices on
the latter variables. This is what might be called “functional
perturbation theory.” The application of dimreg to such
functional methods [14-16] has been recently revived in
the study of conformal field theories [17]. In these respects,
our study could be interpreted as an attempt to extend these
methods to the nonperturbative domain.

Focusing again on a scalar field and starting from a bare
action that contains only a quartic interaction A¢)*, one can
compute the two-, three- and four-point functions at some
finite loop order L, by means of a functional integral,
Feynman diagrams etc. How does one obtain such higher-
loop information from the FRGE, which is a one-loop
equation? One has to recall that the FRGE is only exact
when one uses the full propagator and the full vertices. The
propagators and vertices that appear in the vertex expansion
can be expanded in loops, and this gives rise to the higher-
loop effects in the beta function. Integrating the flow from a
bare action S at some UV cutoff scale A down to k=0
gives the desired terms in the EA. We shall discuss this in
some detail in Sec. VL

In summary, one of the most interesting features of the
FRGE is the availability of various approximation schemes
that sometimes allow us to follow the flow of infinitely
many couplings in a single stroke and to go beyond
standard perturbation theory. On the other hand, the
arbitrariness in the choice of the regulator means that
much of the information contained in the flow is unphys-
ical. One has to learn to extract physical information
from it.

Since the strengths and weaknesses of the FRGE and of
dimreg/MS are quite complementary, it would be useful to
transfer some of the strengths of one method to the other, or
at least to use them in a complementary way, so as to
overcome the respective weaknesses. This paper is a first
attempt in this direction. The main question that we shall
address is the following: is there a choice of regulator that
reproduces the beta functions of the MS scheme in the
standard perturbative domain? We provide here a positive

answer to this question: we show that by bending the
standard rules and procedures of the FRG it is possible to
reproduce the results of dimreg/MS, at least up to two
loops. In this way, we will make manifest the kind of
unphysical features that one has to impose on a regulator so
as to reproduce the results of dimreg. For this reason we
will talk about a “pseudoregulator” that, upon use in the
FRG equation, reproduces the beta functions of MS.

More importantly, having shown that the MS pseudor-
egulator reproduces the results of dimreg in the perturbative
domain, we have a tool that potentially provides a non-
perturbative extension of dimreg/MS. We will indeed show
that with the pseudoregulator one can find and study all
multicritical fixed points in two dimensions, as well as the
critical Sine-Gordon theory. It is remarkable that in this
way one can even write the potentials of these models in
closed form. Furthermore, the use of this tool is not limited
to even dimensions, as we shall show by considering the
Wilson-Fisher fixed point in three dimensions.

The use of dimreg is really of great advantage when one
deals with gauge theories. We will not attempt here to use
the MS pseudoregulator in the FRGE for gauge theories,
but we will show that it has definite advantages in the
treatment of nonlinearly realized symmetries.

The paper is organized as follows. In Sec. II we state the
problem in a precise way, in the most straightforward and
simplified setting: the case of a linear scalar field theory in
the LPA. The solution of the problem and our pseudor-
egulator are given in Sec. III. We also explore some of the
intrinsic freedom in the construction of the pseudoregula-
tor, and we exhibit a one-parameter family of regulators
that continuously connects the results of standard FRG
regulators with those of the MS pseudoregulator.

In Sec. IV, we account for the inclusion of the field’s
anomalous dimension. This transition only requires minor
generalizations of the pseudoregulator, allowing for some
more free parameters, which come along with correspond-
ing forms of “RG improvement” in the one-loop flow
equations. Section V further shows that the same pseudor-
egulator is appropriate for the O(9?) of the derivative
expansion. This discussion offers us the chance to address
two exploratory applications of the MS functional RG
equations. The first is the description of nonperturbative
critical phenomena, namely two-dimensional multicritical
scalar theories. We perform this study with the main goal to
test the physical content of the “RG improvement,” which
is the imprint of the FRG origin of our MS equations. The
second application is provided by nonlinear O(N) models
in two dimensions, whose interest in this context lies in the
interplay between nonlinearly realized symmetries and the
FRG equations.

An even more general truncation is needed to reproduce
the two-loop MS beta functions in massive four-
dimensional ¢* theory [the perturbatively renormalizable
linear O(N) model]. This is discussed in Sec. VI. This

076012-3



BALDAZZI, PERCACCI, and ZAMBELLI

PHYS. REV. D 103, 076012 (2021)

exercise serves as a proof that by means of the FRG and our
pseudoregulator one can, by considering large-enough
truncations, obtain MS flow equations which are beyond
a one-loop form.

Finally, in Sec. VII we explore the role of dimensionality
in our construction. In fact, while dimreg/MS is usually at
work in an even number of dimensions d, the FRG
equations can be obtained and applied for continuous d.
We show that the latter feature can be preserved while
taking the limit from the FRG to MS.

Section VIII contains some concluding remarks and
an outlook on possible future developments. Several
Appendixes account for the details and the subtleties of
the computations presented.

II. STATEMENT OF THE PROBLEM

In order to make our idea more precise, let us begin by
stating the conditions that are generally imposed on a
regulator for the FRG equation. A regulator is an additive
modification of the inverse two-point function, and is
therefore a function of a single momentum ¢, or rather
its modulus z = ¢2, depending on an scale k. The regulator,
which is denoted Ry (z), is typically assumed to satisfy the
following conditions:

(1) To be positive (must suppress modes).

(2) To be monotonically increasing with &, for all z.

(3) To be monotonically decreasing with z, for

all k.

(4) limg_o R;(z) = 0 for all z.

(5) For z > k%, R, goes to zero sufficiently fast, e.g., as

an exponential.

(6) Ri(0) = k2.

The first three conditions are obvious properties of a cutoff.
The fourth guarantees that the path integral reproduces the
standard partition function for k£ = 0. The fifth condition
ensures that high momentum modes are integrated out
unsuppressed and guarantees the UV convergence of the
rhs of the flow equation. The sixth and last condition
provides a sort of normalization. For certain purposes, one
may sometimes forgo the last two conditions and consider
cutoffs that either do not decrease very fast for large
momenta or even diverge when z — 0. These six conditions
are useful in that they provide a clear physical interpretation
for the coarse graining implemented by the regulator, and
they ensure control on the UV and IR end points of the
momentum integrals. However, they are not needed in the
derivation of the FRG equation, which would keep its exact
one-loop form for any regulator choice.

Both z and the function R;(z) have dimension of mass
squared, so we can write

y=z/k, (2.1)

where r is a dimensionless “cutoff profile.” The following
are typical choices:

0) =5 (22)

2
ry) = eyzy_ -, (2.3)
r(y) =(1=y)0(1 —y). (2.4)

The third choice has been argued to provide “optimized”
results, in a certain class of models and truncations [18,19].
For certain purposes its nondifferentiability is an issue, but
it has the great advantage of allowing an analytic evaluation
of momentum integrals. Note that k plays the role of an
infrared cutoff: its effect is to give a mass of order k to
the modes with /z < k, and no mass to the modes with
Vz > k.

Introducing the cutoff in the functional integral and then
performing the Legendre transform leads to the FRGE
(1.1). We note that the trace on the rhs is IR and UV finite,
and that the equation contains no reference to a bare action
or UV physics.

In order to extract useful information from the exact
equation one has to approximate it in some way. For
definiteness, let us focus on a single scalar field in
the LPA

r) = [ o002+ v@). @9

Inserting in the FRGE we obtain the “beta functional”

- 1 O,R;,
atvk - 2(477,’)d/2 Qd/Z |:Pk I VZ:| ’ (26)
where
1 ©
Q,[W] = ) A dzz"'W(z) (2.7)

is the momentum integral. Assuming Z, symmetry and
Taylor expanding the potential

Vi) = S

(2.8)

we can derive infinitely many beta functions f,, = k%.
These are obtained by expanding both sides of (2.6) in
powers of the field and equating the coefficients. For
arbitrary regulator, and in any dimension, for the first
few couplings this leads to
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Bs= 2(4”)11/2 <6/14Qd/2 {m} 26Qa/2 {(Pk I /12)2} >’ (2.9b)
I ) N Ok ], [ Ok

Pe = 2(4r)i2 < 9023Q.4/2 [( ) ] + 4304446 Q/2 [(Pk n /12)3} 18Qa/2 [(Pk n 22)2} ) (2.9¢)

We note that these are one-loop beta functions, since no
resummation is involved. They coincide with the first three
equations of the vertex expansion, namely Eqgs. (1.5), when
the n-point functions are evaluated at zero momentum. In
order to have more explicit formulas, we can use the
optimized regulator (2.4) that gives

0 atRk B 2 k2(n+1) (2 10)
"L(Py+ )| T(n+1) (k4 )" '
Then, the first beta functions are
Jed+2 /14
= — , 2.11
,BZ (4ﬂ>d/2l—~(% + 1) (k2 +/12)2 ( a)
Ps= K o __ (2.11b)
T A \©@rn)? @ +n?)
ﬁ - kd+2 % /12
© (@4n)7PrEd+1) (K + 2,)*
Asle Ag
30 — 2.11
O ) 211

One can also calculate the beta functions of this theory at
one loop using dimreg/MS. The corresponding expres-
sions read

(-1

S S A B 2.12
b T 212
(_1)d/2 13/2—2 /1;1/2—1
Bu = 32 + 26 , (2.12b)
(4r) 2 \ 7T - 1) r(9)
(_1)d/2 ; lg/z—:% 3/2—2
= 154 154406 —2——
P (47)4/2 41“(%-2)jL orE-)
24/2-1
4+ 2) . (2.12¢)
I

In fact, one can even derive a functional perturbative beta
function for V, analogous to (2.6) [17]. (We shall discuss
this in Sec. IIT A.)

|

The beta functions obtained by the two procedures are
strikingly different. In the beta functions derived from the
FRG, the dimension is carried by k, and there are
denominators that automatically produce decoupling when
one crosses the mass threshold k*> =/,. In the beta
functions of dimreg the dimension is always carried by
powers of 4,, and threshold effects are not accounted for. In
fact such beta functions are only valid at energies much
higher that 4,.

The difference persists also in the massless limit. In the
beta functions obtained from the FRGE, it is enough to put
Ay, = 0. In the dimreg calculation, the massless limit has to
be taken after fixing the dimension. Then, many terms are
absent from the start. For example, in d = 4 the first term in
(2.12c) is absent because of the Gamma in the denominator.
Then taking 4, — O kills the last term. Altogether in d = 4
and in the massless limit the beta function of 4,, is
proportional to A44,,, for all n =1,2,3....

In spite of these differences, there is a close relationship
between these two sets of beta functions. To see this, note
that, for a generic regulator, the Q functional with £ =
n + 1 and 4, = 0 (which is dimensionless) is universal, i.e.,

0 oOR 2
"pr T+ 1)’

(2.13)

independently of the shape of the regulator. The reason for
this is that in this case the integrand is a total derivative:

© | OR © s ) =y (y)
dZZn 1 Yk — / dvy” 12 ,
A Pt o T )

_/“d %i( y >
o Tndy\y+r(y))

The universal result will hold even if the regulator does not
satisfy all the requirements that are listed in the beginning
of Sec. II: it is enough that r(c0) = 0 and r(0) > 0.

In the presence of a mass 4,, we can expand the Q
functional for k% > A,:

O,R, ©_(—1)I0(£+ )
On |:Pk+ﬁ2 } ,Z:F r(j+1)

(2.14)

O,R
ZQ,,[ J+’;,] (2.15)
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We see that the term j = n — # + 1 in the sum is universal
and equal to

2(—1)n=r! n—£+1
L()(n—¢+2)"7

(2.16)

The beta functions of dimensional regularization consist
exactly of all these universal terms, all the remaining ones
being set simply to zero.

This exposes very clearly both the strength and the
weakness of dimreg. The universal terms in the beta
functions are the ones that may be more easily linked to
physically observable quantities, and dimreg very effi-
ciently extracts only these terms. On the other hand,
threshold effects do not have a universal form, but are
still physical, and dimreg does not see them.

The main question we wish to address is whether the beta
functions of dimreg can be obtained directly from the
FRGE. This will be the case provided R;, is such that

O,Ry ]_ 2(=1)"H! A

O {(Pk + )] T@T(n-£+2)

(2.17)

Thus the question becomes one about the existence of a
regulator that gives (2.17). It is immediately clear that any
standard regulator, satisfying the criteria given at the
beginning of this section, cannot fulfill this requirement.
To understand why, it is sufficient to consider the case
A, = 0, in which case the requirement (2.17) becomes

O,R, 2
= ) . 2.18
Ql’l|: Pi :| F(}’l + 1) Z.n+1 ( )
This implies that
1 0 r—yr 1
B - Spnir. (219
) O Gy ST 19

Using integration by parts and the standard properties of
regulators, we obtain

=N R (6 6=\ S
< _n)Q"{P‘;}_<n+l_ n >F(n+1)

O, Ry

(2.20)

2 0
Ttk | p2(n—t41) =
Cn [(Pk+m2>4 ¢ rm% by

m2(n=t+1) (

Here we introduced the more conventional notation m?

for the mass parameter A,, and defined m = m/k.
The integral in this @ functional is convergent for

that, for £ # n + 1, gives Q,, [%] = 0. Since the integrand in
k

this Q functional is positive, this implies that R, = 0. While
R, cannot be identically vanishing, it appears possible to
reproduce MS beta functions by giving up some of the
requirements that are usually made of regulators and taking
the R, — 0 limit in a suitable way, as we shall discuss in the
next section.

III. THE MS PSEUDOREGULATOR

The desired “pseudoregulator” depends, in addition to
the scale k, also on a dimensionless parameter ¢ and a mass
u, which play a similar role as the ¢ and y parameters of
dimreg:

(3.1)
or equivalently

(3.2)

() = hgy[(%) - 1},

where ji = u/k. A derivation and an explaination of this
ansatz are given in Appendix A. Calculations have to be
performed with a finite positive € and the limit € — 0 must
be taken at the end of all calculations. Note that expanding
for small €

2
R (z) = ezlog <%> + O(e?). (3.3)

The function (3.1) grossly violates the defining proper-
ties of a regulator, as spelled out in the beginning of Sec. II.
Aside from the fact that it vanishes in the limit e — 0, itis a
growing function of z and goes to zero for z — 0.
Nevertheless, it does what we asked for. Calculating the
Q functional, we obtain

L P = YOy = i/20;r
(y+r+m?)’

’

ﬂz)%r(l + )0 =1 —n+{)

km I'(n)T(?)

|
£>(n+1+¢€)/(1+¢€) and is defined elsewhere by
analytic continuation. In the limit ¢ — 0 it goes to zero
except at the points where the second I' function in the
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numerator has a pole, namely when #Z —n — 1 is zero or a
negative integer. In this way we recover (2.17). We note that
for n < ¢ —2 the final result (2.17) is identically zero
because of the presence of the gamma function on the
denominator. Since £ is an integer, n must be integer in
order to have a nonzero result: since, for the beta functions
of the LPA, n =d/2, this implies that only in even
dimensions we get a nonzero result. This agrees with the
standard lore that dimreg only works in even dimensions.

Sometimes one needs the Q functionals for n < 0. One
can obtain them by observing that

O.R,
O [(Pk T m2>4

oy (A AR
~tng ) l(dz> o) +ny Y

where j is an integer such that n + j > 0. Evaluating this
expression for the pseudoregulator, we get

O.R
17k )f:| - 25_,,7055’1. (35)

On [(Pk + m?

This agrees with the analytic continuation of (2.17).

A. The effective potential in the LPA

We complete the discussion of the LPA approximation of
a scalar theory by giving the functional equation for the
potential:

- - d ~ L
OF; = -aVi+ (§-1)iV+ -V G0

where Vk = k_de, QE = kl_(fl(ﬁ and Cqg = m This

agrees with the beta functional in d = 4 discussed in [17].
For comparison, the optimized regulator leads to the form

- - d ~ 1
3th = —de + (E— 1>¢V;( + Cdrw, (37)

where c; = We observe that (3.6) picks exactly

(4 )‘”ZF["H]
the terms of the expansion of (3.7) with the right power of
V" to give a dimension-d operator. Equations (3.6) and
(3.7) are one-loop results, and in this sense can be said to be
perturbative, but they contain infinitely many terms of the
vertex expansion and thus are not perturbative in the
standard sense.

Equation (3.6) can be applied only to even dimensions,
so it does not admit the Wilson-Fisher fixed point as a
solution in d = 3. This was to be expected, since dimreg
only works in even dimensions. We anticipate however
that generalizations to continuous d (including also odd
integers) are possible, and will be discussed in Sec. VII.

Equation (3.6) has been used in [20-24] to obtain several
new results on statistical models. In d = 2 the correspond-
ing fixed-point equation has the critical Sine-Gordon
solution

m?
V, = —gcos(\/S—JE¢), (3.8)

where m is an arbitrary mass. This result holds independ-
ently of the shape of the regulator [25].

A related question is whether this pseudoregulator can
reproduce some of the (multi)critical theories in d = 2. It
turns out that the answer is positive, as we shall discuss in
greater detail in Sec. VA, where we consider a larger
truncation.

B. An external field problem

As a somewhat different application, let us consider a
free scalar field with mass m? in an external metric G- Let
A = -V, V¥ be the covariant Laplacian. In this case we can
take over previous formulas for the pseudoregulator, simply
reinterpreting z = A. We refer to [26] for several examples
of this type, both in Lorentzian and Euclidean signature.
The Euclidean beta functional is

O.R
ort =5 MZQ«, e by

d/2 in—
- (—1)"/%”& CUA oo
(4m)? TG -j+1) 7

(3.9)

where B,;(A) are the heat kernel coefficients of the
operator A and consist of integrals of powers of the
curvature tensor and its covariant derivatives. Note that
the sum terminates at j = d/2, because of the poles in the
Gamma function in the denominator. We get

Oy = —41—ﬂ (42Bo(A) = By(4))

for d = 2, and

ot = s (B 0(a) - (8) + 800 )

(4n)?

for d = 4. These formulas give the cutoff dependence of the
effective action for the external metric, generated by the
scalar field. By integrating these formulae from some
ultraviolet scale A down to k = 0, one obtains the effective
action for the metric. See [27,28] for some calculations of
this type.
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C. A first generalization

In the definition (3.1) we have used an external, arbitrary
mass scale u. One could use instead a dimensionful
coupling of the theory. In particular, in a massive theory,
one could use m instead of y. In the discussion of the two-
loop beta functions, it will be convenient to actually use a
mixture of the two. Therefore, let us generalize the
pseudoregulator to

) ZkZ €
n - (=) -

Note that m is a running parameter, so when we evaluate the
QO functional (2.17) it gives rise to an additional term
depending on the beta function of the mass 3, = 9,m?*:

(3.10)

8tRk - 2(_1)n—f+1
(Py +m?)’| T(O)T(n—¢+2)
x (1 —Iz’ﬁ"ﬁ>m2<"-f“>. (3.11)

m

QH {

The term with the beta function of the mass is a higher-loop
effect, so at one loop this pseudoregulator still reproduces
the result of dimreg.

We note that the above discussion could be generalized
replacing m by any combination of couplings with the
dimension of mass. This would give rise to additional beta
functions in the rhs of (3.11) and may be useful in higher-
loop calculations.

In the massless case (m = 0) one has to set b = 0 and
introduce by hand an IR regulator in the Q functionals:

O.R, O,R,
Q"{ Pr } =~ Cn [(Pk +ﬂ2>4'

(3.12)

The limit 4 — 0 has to be taken in the very end. Note that
this IR regulator mass is not necessarily equal to the dimreg
parameter u, but we will not need this degree of generality,
so the same mass will be used in both roles. Then we obtain

O,Ry 2(=1)"H! 2(n—£+1)

o [(Pk + ;42)4 TTOTn-c12)" . (3.13)

As we already said above, this formula gives zero for
n <[ —1. Taking the limit for y - 0 we get zero for
n > [+ 1. So the result is

DR,
Py

(3.14)

Q |: — i atRk :| _ 25f,n+1

i [(Pk 1)) T+ 1)

We note that only one combination of £ and n gives a non-
vanishing result, which corresponds to the universal result
of Eq. (2.13).

D. Interpolation with the optimized regulator
The Q functionals for the optimized regulator have been
given in (2.10). Now let us consider the following one-
parameter family of regulators:
ra(y) = a(1-y)o(1 -y). (3.15)
For a # 1 they violate the normalization condition, but
otherwise they are acceptable regulators. In fact, the

parameter a is used to optimize the results [29-31].
The corresponding Q functionals are given by

0 OR, | 2ak*nh ]
"L(Pe+m?) | (at+m?)" T(n+1)

1—a

a+m?

x2F1<f,n,n+1,— ) (3.16)

If #<n+1 and m > 0, then these are monotonically
increasing functions of a, which are equal to (2.10) for
a =1 and decrease monotonically to zero when a — 0.
If #>n—+1 and 7/ > 0, they grow as functions of a and
they go to zero when a — 0. For 7z = 0 they are monotonic
functions on the interval 0 < a < 1, with either a zero
or a pole for a — 0 depending whether £ <n+1 or
¢>n-+1. Remarkably, the Q functionals #=n+1, m=0
are independent of a and equal to (2.13). Thus, the
universality of these Q functionals is not spoiled by the
regulator not being normalized.

On the other hand, if we set a = 0 the regulator vanishes
identically and so do all the beta functions, including the
universal ones. This means that the limit a — 0 is not
continuous. We would like to find a way to obtain at least
the universal beta functions also for @ = 0. One can achieve
this by introducing an additional parameter e. Consider
the following interpolating regulator R, = k*r(y, >, €, a),
with

~—2(2—b)€,,h—2b6 I+e

Fy, i, e,a) = (a+ (1 - a)ji
—y>9<1 —aiey)

For ¢ — 0 it reduces to (3.15) and for a — 0 it reduces to
(3.10). Thus we can go continuously from the optimized
regulator to the pseudoregulator reproducing dimreg by
following a curve of the form shown in Fig. 1. In this way
the limit @ — 0 can be made continuous. The price one
pays is that for e # 0 one does not have a good regulator in
the sense of Sec. II. In any case we obtain the desired result
that all the nonuniversal beta functions go continuously to
zero, while the universal ones remain constant.

Let us see how the evaluation of the Q-functionals
proceeds. We have

y

(3.17)
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O,Ry,
(P + m?)

o

(2 -"L2)5,er

— 20, r — 2201 — i
YOI %% iy (3.18)

] k2(n=t+1) /ood \2r
= yy""
‘ F(”) 0

(y +r+m?)’

Using (3.17), the fraction in the integral can be written as the sum of three pieces:

e<1— @y )
a—+e

= 2a
- ((1 _ a)m—4€y1+€ Ta +ﬁ12)f
2) 26(1 —a)(l bﬂmz)m;leyl—}—e ay
_<(1—a)ﬁ’l;4€ 1+€+a+m)f ate ’
3) - 2((1 + (1 _ a)ﬁ1 4ey1+e

—y) _a y
I- )
(1 = @)yl + a + m?)” a—f—ey( a—i—e)

(3.19)

where m2 = ji>~’m’. Performing the integral, the Q functional is the sum of three pieces
ate\n 1 -1 —4e (ate\1+e€
1):20 ( ~) 2 F |7, 2 A+ & (a ) ( ) ,
(a+m)F(n—|—l) l1+e l+e’ a+ m?

2¢(1 —4e b ate\n+l+e -1 ~ —4e (a+e\l+e
2) & 1__/))_ ( )~2 2F1 .1+ 2+ n ;(a ) b~(2a) ’

I'(n)(n+1+e€) 2m?) (a+m?)? 1+ l1+e a+m
3) B 2 ( (1 — d) ;4€(u+5)1+€ a+e) a4+ e\l

F(n) ((1 _ (1) —4e(a+e)l+e +a+m )f a :

Taking the limit ¢ — 0

- 2a 1
(a+m*)’T(n+1)

2) =0,

3) > 0.

a—1
F ¢ n,1+n—s|,
201 a+ﬁ12]

0.05F

0.04 -

0.03}

0.02}

0.01r

0.00 -
0.0 0.2 0.4 0.6 0.8 1.0
a

FIG. 1. A path in the a — e plane interpolating smoothly
between the optimized cutoff and the pseudocutoff of dimreg.

Then sending a — 1 we get (2.10). If a # 0 we can also
take the two limits in the reverse order and obtain the same
result. For a — 0 the previous expressions are not well
defined, so in this case we have to take ¢ — 0 after the a
limit. For a — 0

1) =0,
rai+4L)re—-1—-+4+
2) S2¢el 1 _é:% ( + l+e) ( 1+e)
2 'm? (1+ e)L(£)T(n)
% (@)ﬁm (n— f+l+]‘+"€)
m
3) = 0.

Then taking the limit ¢ — 0 we get (3.11).

IV. BEYOND THE LPA

In any quantum field theory application, and in the FRG
framework as well, the choice of a regularization scheme
should be tailored to a specific model and computation. In
the process of relaxing the approximations used to solve the
exact FRG equations, it is thus inevitable to reconsider the
regulator choice. In this section we discuss the adjustment
of the MS pseudoregulator to the transition from the LPA to
the inclusion of the running wave function renormalization.
In the following, after the construction of a more general
family of pseudoregulators, we discuss its application to
scalar field theory. We show how these pseudoregulators
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are appropriate for investigations within the LPA’ approxi-
mation, which differs from the LPA only for the inclusion
of a field- and momentum-independent wave function
renormalization factor. The next layer of complexity,
namely the O(9%) derivative expansion including the field
dependence of the wave function renormalization, will be
addressed in Sec. V.

From the point of view of standard perturbation theory,
the step from the LPA to the LPA’ already involves the
resummation of an infinite class of Feynman diagrams—
those self-energy-like one-particle-reducible corrections to
the internal propagator lines which are accounted for by a
nontrivial field’s anomalous dimension—and therefore
goes beyond finite-order perturbative calculations.

A. Role of the wave function renormalization

If the kinetic term in the action contains a nontrivial wave
function renormalization factor Z; # 1, one usually
includes this global factor inside Ry

Ri(2) & ZiRi(2). (4.1)
There are several reasons in favor of this choice. First of all,
it allows to take over the regulators already working in the
LPA, as the relevant regularized kinetic term is then in the
functional form z + R;(z). Furthermore, it is motivated by
the desired invariance under rigid rescalings of the fields,
also called reparameterizations. In other words, it allows to

remove Z; from the flow equations by simply rescaling the
fields according to their quantum dimension

d=2+n
%:——3—i, (4.2)
where
Ny = _8t IOg Zk (43)

is the field anomalous dimension. While the former
motivation is just a matter of convenience, the latter is
deeper and less arbitrary. In fact, this choice is the one that
minimizes the spurious breaking of reparameterization
invariance due to the truncation of the exact FRG equation
[6,32-34].

Following the choice of Eq. (4.1). the flow equations
receive further RG resummations encoded in the appear-
ance of #; on the rhs as

OR(2) = Zi(O,R(2) — mRi(2)).

(4.4)
While the first term on the rhs gives rise to the Q
functionals already discussed in Sec. II, the second term
leads to the following new integrals

0oy = ji(r i

o] us

Also for these new Q functionals we see that the term
j=n—-¢+1 has no explicit k dependence, but it is
not universal. For instance, the exponential regulator of
Eq. (2.2) would give

log(2) n=1
Q{mﬂ]= log3) n=2, (4.6)
tlog(3%) n=3

while the optimized regulator (2.4) leads to

Re] 1
Q"m“ CT(n+2)

This exemplifies the arbitrariness in the construction of an
MS pseudoregulator for calculations beyond the LPA.

If we straightforwardly apply the recipe Eq. (4.1), we
obtain a divergent result:

(4.7)

Rk L ( m2)n £+1
O [(Pk + mz)f} N PE(} [F(K)F(n -7+2)

X(l_nZI)ﬂ'

Therefore, including the wave function renormalization in
the pseudoregulator requires some additional work. In the
following we explore a family of pseudoregulators which
achieve the goal of reproducing one-loop MS results, plus
RG resummations, in the ¢ — 0 limit.

(4.8)

B. An extended family of pseudoregulators

The first requirement on a new pseudoregulator which is
appropriate for the LPA’, is that it reduces to the pseudor-
egulator we have adopted for the LPA in the Z; — 1 limit.?
Hence we consider a generalization of Eq. (3.1) which
amounts to the introduction of two new parameters Z; > 0

and o:
k2 €
Rk(Z) = Zozze [(E) Zl+€ - Z:| .

While the most common choice, as in Eq. (4.1), would be
Zo =1 and o = 1/e¢, we prefer to keep the two variables
arbitrary for the time being. We define

(4.9)

3For simplicity we set b = 0.
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Gi(q®) = (Zeg® + Vi + Ri(g?))™ (4.10)

as the regularized propagator. With our pseudoregulator
this reads

1

from which it is manifest that having a vanishing (Z,Z7 —
Z) would tremendously simplify the task of evaluating the
loop integrals. Though we restrain from this simplifying
assumption, we still assume that this difference is small. We
calculate all loop integrals by means of their Taylor series in
this difference around zero.

G, = , 4.11 s :
k ZO(Zﬂk )e e _(Z, 75— 7))z + V! ( ) Then the generic Q functional becomes
eZ (¢ + o ( —O"Yk)(k4) 2+ omy
0,[G{0,R,] = ” Z(zozvf M / dzz"*
(p+1)Jo (Z ( ) e 4 VD
- €ZyZy* i (ZoZ7 = Zy)" ( (ng2> '{if
(1+e)l(n)'(Z) I'(p+1)

n—+p
2 — I'f—+1
X[( oM) <1+€+
n+p+1 n+
I'N———IIr(7 -
+‘”7"< 1+e > ( TP

(et

ntp+1

ntp

e\ —1
>> (V;C/)Hé.—t’—p-&-l

).

)
)
) (=

(oo
))

I+e

— (4.12)

From this expression it can be clearly seen that ¢ cannot diverge for vanishing e [as a comparison of (4.1) and (4.9) would
suggest] or both terms would also diverge. On the other hand choosing a vanishing ¢ in this limit would remove any Z; and
n dependence, thus reproducing the same results of the LPA pseudoregulator. Finally, choosing ¢ to stay constant in the

€ — 0 limit leads to

G/O,R,] = 0" . 2 _ on\n T p)
OnlGLOR =TT AT n—f—l—Z; ~7,) BT
Zan(_vlkl)n—f-kl Z Z
= 2 - Fil1 1 2 1 —— 4.13
rOrm-752) | Gnk>Z”+ oM 12 twltnetni-g (4.13)
Summarizing we have
Qn [GfatRk] _ n( V,/)n_f+1 (4 143)
@—-on(l+Hy) T(OT(n-7+2) '
(2—on(1+Hy)) n—1T¢f+2)0(n=7¢)’
Q.[GiG{OR] _ 2n  ZF"(=V{)" (4.140)
2—-om(l+H,) n=-20Ff+3)(n—-¢-1) ’
where primes denote differentiation with respect to z, and we introduced the following notations:
n Zi\" Z
Hy(n,Zy,Zy) = ~ (ZI;> X ,Fy (n+ Ln+1,n+2;1 _Z](Z)’ (4.15a)
n-— IZO n—1 Zk Zk n=1 Zk
H\(n,Zy,Zy) = — — 1- — F I, 1, 21 ——, 4.15b
1(n,Zy, Zo) " Z, n+1< ZO)X<ZO ifntlnt+lnt Z ( )
n—2 2n—IZk ZO 2 pn=2 Zk 2 Zk n=2 Zk
Hy(n,Zy,Zy) = 1- — =) - 1-—) | = F 1, 1, 2;1——1]. (4.15
2(” k 0) n < n—1 Zo> <Zk> n-+ 1 < ZO ZO ! n n nt ZO ( C)
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The dependence of the H; functions on Z;/Z, signals the
expected breaking of reparameterization invariance, which
translates in nonautonomous flow equations for the dimen-
sionless renormalized couplings. An autonomous flow can
be recovered in special cases: besides the ¢ — 0 limit, other
interesting choices are

Zl;l_l}oHi(n) =0, (4.16)
lim H(n) = —1. (4.17)
Zy—0

From (4.14) we see that the second case suppresses the “RG
improvement” terms, in the same way as setting ¢ = 0, and
therefore gives back the LPA result. Thus, in summary, the
proper way to use the pseudoregulator (4.9) is to first
evaluate the integrals, then take the limit ¢ — 0 and finally
the limit Z, — 0.

Finally, it is worth stressing that the previous identities
are not restricted to the LPA’ truncation. For truncations
where Z; depends on fields and/or momentum, the relevant
wave function renormalization factor appearing inside the
pseudoregulator is to be identified with Z; evaluated at

|

im0, 7T
Zy p2—00p? ’6451,(/’)_1,

Mk =

Po

Zy pi—00p?

Here ¢, is the minimum of the potential. After taking the
derivative and the limit, we obtain

VY (o) ,
Me=— Z:Tﬂ)od/z (Q%’[G%GkatRk]
+04,1[GIGLO,R,)). (4.20)

For ¢y = 0 and in the Z; — 0 limit, this boils down to

— (_l)d/z ’1% /1(51_3 1_0@
6I(¢ —2) (4x)?? ™2 2 )

T = (421)

Within the LPA’ truncation for this pseudoregulator
we obtain what is essentially a one-loop equation with
RG improvement. Therefore in d=2, 4 we find

wﬂmﬂma/wq

(22)7 Gi(4*)*Gi((q + p)»)ORi(4?)

preferred values of momentum and fields, for instance
minimizing the potential and the inverse propagator. In the
simplest cases the latter are vanishing values. Then the
simple propagator G, of Eq. (4.10), and the loop integrals
given in the previous equations, would arise after a
polynomial expansion of Z, to obtain derivative vertices
which are local in field space and in spacetime.

C. Scalar field with a generic potential and its
anomalous dimension

As a first example of application of the above pseudor-
egulator, let us turn to a simple scalar field theory within the
LPA’ truncation. We consider a most generic effective
potential, which can be parametrized as follows

n /ln n
V, = Zz,/z;qb . (4.18)
n=0 :

The anomalous dimension #; is computed by extracting
from the exact FRG equation the contributions to the
quadratic part of the two-point function

(4.19)
bo

|
n = 0. To reproduce a nonvanishing 5 with this pseudor-
egulator we need to consider larger truncations, as detailed
in Sec. VL

Now we consider the equation for the potential and we
calculate the beta functions

1
0,V = 2(an) Q1[G 0,(ZiRy)), (4.22)
n -n/2 8natvk
=", 17 L 4.23
ﬁ 2’7 k (8¢) =0 ( )

We list the initial beta functions in the Z; — O limit:

*Note that we drop the k subscript in #; from this point on.
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p =1n/1 P il D 1= o) 2287 (4.24a)
1 2 F(g)(4 )d/Z 2 34 5 .
(=1)¥2 N\ (A7
=nh+ —m(l-05|4 2 . 4.24b
b 112+(4ﬂ)d/2 o3 3r(4—1)+4r( ( )
2
3 (_l)d/Z n /ld/2_3 ﬂd/z—z /1d/2—1
=i+ —5 (1-05 ) (B3 33y = As =, 4.24
P e ) B P g (424
By =21 +( e <1 ”) <x4 G + 6232 " + (42345 4+ 322) 2 +2 'g/z_]) (4.244)
A4 —05 4 d AN 345 6 . .
(4m)4/> 2)\°r(g-3) ( -2) YTEg-1) @)

Ind=6,if 1, - 0 and 4,54 = 0, we get the universal
one-loop result, plus RG resummations

G n
= l-0=]), 4.25
1= (1-3) 2
343 n

=—-——"=(1-02]. 4.26
== (1= 73) 20

Solving these equations and expanding in A5

2 2 o

= = - +0(25), (4.27
7 6(4r)* +543  6(4x)®  72(4n)° %), (4.27)

it can be checked that it is possible to adjust ¢ to reproduce
the correct two-loop result [35] for either 7 (6 = —26/3) or
p3 (6 =—250/9) but not both simultaneously.5 In fact,
recovering the full two-loop RG equations requires larger
truncations, as we discuss in Sec. VL

V. THE 0(8*) DERIVATIVE EXPANSION

The pseudoregulators introduced in the previous section
are also apt for application to a larger class of truncations
which accounts for a possible field dependence of the wave
function renormalization, the O(9?) of the derivative
expansion. While this kind of more elaborate approxima-
tion is often an optional for many models, it is in some
cases a necessity already as a zeroth order approach, such
as for instance in the applications to nonlinear sigma
models or for conformal field theories in two dimensions.
For this reason, in this section we address these two
examples. They allow us to account for a trivial generali-
zation of the LPA’ formulas given in the previous section,
and also to discuss more subtle points about the scope of an
MS pseudoregulator, such as its applicability to strongly

>The situation does not change if we insert also the RG
improvement proportional to f3,/1,, which is finite in the limit
/12 - 0.

interacting field theories and to models with nonlinear
symmetries.

A. Multicritical models

We consider the following truncation of I';

rigl = [ o (Vi) + 3 200,009). (5.1

This kind of ansatz is general enough to capture the
emergence of a tower of multicritical ¢>” scalar field
theories below the fractional upper critical dimensions
d, =2p/(p—1), and to provide good estimates of their
properties in d = 2 [36-38]. As these conclusions apply to
conventional FRG regulator choices, it is interesting to
check whether these nice results can be obtained even with
an MS pseudoregulator.

The flow equations of the functions V; and Z; for the
pseudoregulator (4.9) can be obtained from those presented
in Appendix B for the more general case of O(N) models.
More specifically, they correspond to Egs. (B4) and (BS),
ford=2and N=1° Rescaling the field

¢ = Z,(0)71/2¢, n=-0,10gZ,(0) (5.2)

and introducing the dimensionless renormalized functions

u(@) =k72Vilg),  Gl(d) = Zi(0)'Zi(g),  (5.3)

these flow equations read

®Here and in the following sections we identify the wave
function renormalization of the single-field theory of Eq. (5.1)
with the one of the radial mode in the linear O(N) model, which
is Z,(¢) in Eq. (B5). Notice that this choice is not the conven-
tional one for FRG studies, which usually associate the single-
field Z; to the N — 1 limit of the Goldstone-modes wave
function renormalization.
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~ 1
v = =2 +g¢”§< . <1 -0 )Ck'vjc’, (5.4a)
~ 1
0,k = nly +Q¢C;{ -I-— (1 - 0%)
é‘/l C/
3 5.4b
) { Ck+ <Ck) } (5.40)

Now we search for the scaling solutions for this system
of equations. Setting the Z, parity and normalizations
conditions

(5.5a)
£(0) = o, (5.5b)

the previous system of equations has the following family
of fixed points

2— 2 P
v, = =2 52 cos —arctan \/ —— |, (5.6a)
167 Nz 1-®

{o=Go(1 -0, (5.6b)
- [4mngo ~

It is remarkable that with the MS pseudoregulator the
scaling solutions can be written in closed form: usually in
the FRGE they are only known numerically. These sol-
utions manifestly preserve reparameterization invariance:
the normalization factor {, cannot influence observable
quantities as it can be eliminated from the action (5.1) by
rescaling ¢. Depending on the sign of m?, the fixed-point
potential can have a maximum or a minimum for zero field.

Note that ¢, diverges for ®> = 1. In order to have a
potential v, which is smooth at this point and is bounded
from below we impose

v |ge, = finite, V¥ n (5.7a)
lim v, = +o0. (5.7b)
=00
From (5.7a) we get the quantization rule:
/3
sin— =0, 5.8
i (5.8)
such that
1
n=-—, p=123.., (5.9)
p

while (5.7b) can be fulfilled by adjusting the sign of >
(while the modulus remains free):

m* 0 if (=1)VVI =41, (5.10)
In this way v, acquires the typical shape of a (p — 1)-
critical potential.

To compute the critical exponents associated to these
fixed points, we linearize the RG flow around them and
look for eigenperturbations. In other words, we insert
vy = v, + e%v, & = ¢, + e8¢ and n =, + 6y into
Eq. (5.4), and expand them to the first order in the
perturbations ov, 6¢ and 5. For oy # 0 the corresponding
8¢ is complex and furthermore singular at ®* = 1. We
therefore impose on = 0. In this simplified case the

linearized equations read
o0 = —260 + Lo/ — L (161
2 4z

2
i 5§:|
* C* s

st 5o+ (1 g1
954’*”5C+2¢5C+ (1 0'2>

5 1 /5 ! 1" ! 5

X [— ¢ +3 C 25: +<C—*— (C) > C] (5.11b)
g g - &) )&

The condition of fixed # results in LPA-like perturbations

with vanishing 6.
Besides the trivial solutions

x ¢7! [51}” - (5.11a)

0=-2, ov=1, (5.12a)
e:—2+g, v =, (5.12b)
0 =0, ov = v,, (5.12¢)

we find the even eigenperturbations
0= -2+ 2nn, (5.13a)
Sv = cos <1l4+29arctan\/q)22>, (5.13b)

n 1-®
and the odd eigenperturbations
1\ 2

0= —2+2r1<n+§) , (5.14a)

/ 2— 2-on 4420 /
ov= 2+9 ———arctan 1_(1)2) (5.14b)

where # assumes its fixed-point value (5.9). Enforcing
regularity of 6v at the pole of { requires n = 1,2, 3.... From
the largest even parity eigenvalue (n = 1), excluding the
unit operator, we get the critical exponent v
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(5.15)

In Table I we summarize these results for the critical
exponents # and v and compare them to FRG estimates
obtained by means of the optimized regulator and with the
homogeneous regulator, as well as with the exact values.
Comparing Eq. (5.9) with the exact result

3

ﬂ:m, (5.16)

we see that for large p our result is off by a factor 3,
whereas v correctly tends to 1/2.

B. The nonlinear ¢ model

Addressing the nonlinear ¢ model with the MS pseudor-
egulator requires only a simple generalization of the
truncation we just studied, to account for a multiplet of
fields, rather than a single one. We therefore start from the
following truncation of 'y for a O(N)-invariant multiplet of
scalars:

TABLE L. Estimates of the critical exponents 7, and v, for the
two-dimensional ¢?? multicritical scalar models. The first three
columns present FRG estimates: the first obtained with the MS
pseudoregulator, the second with the optimized regulator of
Eq. (2.4), the third with a homogeneous regulator. Finally, the
last column shows the exact results, from conformal field theory
methods.

This work opt. [37, 38] hom. [36] exact [39]
1 0.25 0.2132 0.309 0.25
Vs 0.666667 . 0.863 1
13 0.111111 0.1310 0.200 0.15
U3 0.5625 0.566 0.556
N4 0.0625 0.0910 0.131 0.1
Uy 0.533333 0.545 0.536
s 0.04 0.0679 0.0920 0.0714
Us 0.520833 0.531 0.525
Ne 0.0277778 0.0522 0.0679 0.0535714
Vg 0.514286 0.523 0.519
17 0.0204082 0.0521 0.0416667
vy 0.510417 0.517 0.514
g 0.015625 0.0412 0.0333333
vg 0.507937 0.514 0.511
19 0.0123457 0.0334 0.0272727
Vg 0.50625 0.511 0.509
1o 0.01 0.0277 0.0227273
vy 0.505051 0.509 0.508
M 0.00826446 0.0233 0.0192308
vy 0.504167 0.508 0.506

ril - [ ddx(uku)) L2000

1
+1Yk<P)3ﬂﬂ3”P>7 (5.17)

where the N fields ¢“ are in the fundamental representation
of O(N), and p = ¢“¢*/2 is the corresponding local
invariant. We further define the radial wave function
renormalization

Zi(p) (5.18)

=Z(p) + pYi(p)-
In Appendix B we show the flow equations of this model in
the present truncation, for general d and adopting the
pseudoregulator of Eq. (4.9) in the Z;, — O limit. For the
especially interesting case d = 2, we obtain

1 (U, +2pU A
— kAR (N 5.1
o= (AP -0 gH. o
. (Z, +2pZ})) (Z + pY})
07, = kT2 (N )2k TR
1k 471'Zk ( ) 471'Zk
3p(Z,)* pZi (Y — Zy)
el A VR Y s 2l Bl 24 5.19b
* 472 + ) 2772 (5.190)

Here we suppressed the RG improvement by setting
o = 0; the effect of a nonvanishing ¢ will be addressed in a
moment.

As it stands, this action could still describe a linear
model. If we make the assumptions

Zulp) =%, (5.200)
re
- 1 /1 -1
=—=(=—-2 , 5.20b
) = () (5.200)
U,=-h i -2 (5.20c¢)
k= k Z: P> .
the EAA becomes
a pb
Fk[¢] /dd |:2ngz ( ab + ¢ ¢ )6 ¢aaﬂ¢b
1
— hy Z—k—Zp] (5.21)

which describes a nonlinear 6 model with values in a sphere

SN of radius Z,:l/ * and coupled to an external source
[40]. In this case the symmetry group is extended to
O(N + 1). Inserting this ansatz in the flow equations (5.19)
one deduces the correct one-loop beta functions
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N-1

Oigk = —?gz, (5.22a)
N 2

n = —8, IOng = %gk’ (522b)

d,hy = 0. (5.22¢)

Thus, the flow equations (5.19) maintain the form of
the ansatz in Eq. (5.20), that is to say, they preserve the
nonlinearly realized O(N + 1)/O(N) symmetry. This
might appear trivial as we are applying one-loop RG
equations, but it is not so for two reasons. First, this
compatibility extends beyond one-loop order as we observe
in the following by the inclusion of the RG improvement.
Second, because this conclusion does not hold for finite e,
i.e., within the realm of ordinary FRG computations. In
fact, it is well known that the FRG regulator, being a
deformation of the two-point function of the N fields,
explicitly breaks the nonlinear part of the O(N + 1)
symmetry. For this reason, most FRG applications to
nonlinear sigma models have adopted different formula-
tions based on the background field method [27,41-48].
Let us then turn to the RG improvement, which leads us
beyond the one-loop approximation. To this end we should
note that the pseudoregulator in Eq. (4.9) has a factor Z¢°,
but here Z; should be replaced by Z;g;* to be compatible
with the ansatz of Eq. (5.20). Then, with this little adjust-
ment of the pseudoregulator, for a generic o we get

N - g
0 gy = ——=5, 5.23
19k Ax + Ug% ( a)
_ 2Ng; (5.23b)
T= 4 1 g’ '
d,hy = 0. (5.23¢)

Even though the previous flow equations hold in d = 2, itis
possible to apply them in d = 2 + ¢ by simply augmenting
them with their e-dependent canonical dimensional part. In
so doing, one can recover the e-expansion description of the
nontrivial fixed point which exists for e > 0. We defer this
discussion to the end of Sec. VII.

VI. THE TWO-LOOP BETA FUNCTIONS

In the previous sections we have shown that the ¢ — 0
limit of the FRG beta functions for the MS pseudoregulator
reduces them to well-known MS one-loop RG equations,
possibly up to a resummation. We have shown this in the
LPA, in the LPA’ and in the O(9?) derivative expansion. In
this section we show how to reproduce the two-loop result
in four dimensions, by considering larger truncations and
by taking the ¢ — 0 limit in a suitable way.

Although the computation of the beta function of the
quartic coupling was discussed by several authors already,
see Refs. [49-56], part of the arguments adopted in those
works do not apply to the MS pseudoregulator, which is not
an IR regulator. Furthermore, we crucially rely on analytic
continuation of divergent integrals, such that parametric
limits are allowed to not commute, whereas standard FRG
regulators render all integrals convergent. In addition, we
also compute the two-loop running of the mass.

We closely follow the notations and the arguments of the
first FRG work addressing this task, namely Ref. [49]. We
therefore focus on the linear O(N) models with bare action

sl = [e{loporue) e

Y|

Unlp) = m*p + = p°. (6.1b)

[\

Note that compared to Eq. (2.8), we have changed the
notation to A, = m? and A, = 3/, and the bars denote bare
couplings. In a massless scheme such as MS, the two-loop
beta function of the quartic coupling is universal and mass
independent, such that it is usually possible to assume
m? = 0 right from the start. We instead focus on a massive
theory in the symmetric regime for technical reasons. In
fact, we are going to adopt an FRG pseudoregulator which
does not regulate IR divergences. This does not prevent us
from analysing the massless theory though, as we are
allowed to take the m” — 0 limit of any IR safe quantity
after the loop integrals are computed.

In our regularization scheme, it is further