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BPS Quivers of Five-Dimensional SCFTs,
Topological Strings and q-Painlevé
Equations

Giulio Bonelli, Fabrizio Del Monte and Alessandro Tanzini

Abstract. We study the discrete flows generated by the symmetry group
of the BPS quivers for Calabi–Yau geometries describing five-dimensional
superconformal quantum field theories on a circle. These flows naturally
describe the BPS particle spectrum of such theories and at the same
time generate bilinear equations of q-difference type which, in the rank
one case, are q-Painlevé equations. The solutions of these equations are
shown to be given by grand canonical topological string partition func-
tions which we identify with τ -functions of the cluster algebra associated
to the quiver. We exemplify our construction in the case corresponding
to five-dimensional SU(2) pure super Yang–Mills and Nf = 2 on a circle.
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1. Introduction

A crucial problem in quantum field theory (QFT) is understanding its non-
perturbative aspects in the concrete terms of exact computations. QFTs can
be embedded in string theory/M-theory via geometric engineering [1]. Specifi-
cally, it can be obtained as the low energy limit of a compactified string theory
in a large volume limit, which is needed to decouple its gravitational sector.
When QFT is obtained in this way, the nature of exact dualities gets unveiled
through the geometric properties of the string theory background behind it:
the string theory on the non-compact Calabi–Yau (CY) background geometry
encodes the spectral geometry of integrable systems whose solutions allow to
obtain exact results. This is possible because the non-perturbative sector of
string theory, described by D-branes, gets transferred through this procedure
to the geometrically engineered QFT. The set-up engineered by M-theory com-
pactification on CY3×S1, in the limit of large CY3 volume and finite S1 radius,
is that of a five-dimensional supersymmetric QFT on a circle, whose particles
arise from membranes wrapped on the 2-cycles of a suitable non-compact CY
manifold. As such, the counting of the BPS protected sectors of the theory
can be obtained by considering a dual picture given in terms of a topological
string on CY3. The precise dictionary between the two descriptions is obtained
by identifying the topological string partition function on the CY3 with the
supersymmetric index of the gauge theory, which is conjectured to capture
the exact BPS content of its 5d SCFT completion [2]. More generally, the su-
persymmetric index of the gauge theory with surface defects is matched with
the corresponding D-brane open topological string wave function [3,4]. The
coupling constants and the moduli of the QFT arise from the geometric engi-
neering as CY moduli parameters (Kähler and complex in the A and B-model
picture, respectively). Therefore, the QFT generated in this way is naturally
in a generic phase in which all the coupling constants can be finite. To identify



Vol. 22 (2021) BPS Quivers of Five-Dimensional SCFTs 2723

the weakly coupled regimes, one has to consider particular corners in the CY
moduli space. In such corners, the topological string theory amplitudes allow
a power expansion in at least one small parameter which is identified with
the gauge coupling, while the others are fugacities of global symmetries of the
QFT (masses and Coulomb parameters).

The problem we would like to face, in the general set-up described so far,
is that of understanding how to predict the properties of such a supersymmetric
index, given the non-compact CY manifold which realizes the five-dimensional
theory via geometric engineering. We will show that this index satisfies suit-
able q-difference equations which in the rank one case, namely for Calabi–Yau
whose mirror is a local genus one curve, are well known in the mathematical
physics literature as q-Painlevé equations [5]. These are classified in terms of
their symmetry groups as in Fig. 1. Remarkably, this classification coincides
with the one obtained from string theory considerations in [6]. This allows
to describe the grand canonical partition function of topological strings as
τ -functions of a discrete dynamical system, whose solutions encode the BPS
spectrum of the theory. From this viewpoint, the grand canonical partition
function is actually vector-valued in the symmetry lattice of the discrete dy-
namical system at hand. The exact spectrum of the relevant integrable system
can be computed from the zeroes of the grand partition function.

The solutions of the discrete dynamical system are naturally parameter-
ized in different ways according to the different BPS chambers of the theory.
We will show that the Nekrasov–Okounkov [7] presentation of the supersym-
metric index can be recovered in the large volume regions of the Calabi–Yau
moduli space which allow the geometric engineering of five-dimensional gauge
theories. The expansion parameter is schematically e−V , V being the volume of
the relevant cycle corresponding to the instanton counting parameter. Around
the conifold point, the solution is instead naturally parameterized in terms
of a matrix model providing the non-perturbative completion of topological
string via topological string/spectral theory correspondence [8]. The case of
local F0 geometry, which engineers pure SU(2) Yang–Mills in five dimensions
at zero Chern–Simons level, was discussed in detail in [9]. In this case, the
matrix model is a q-deformation of the O(2) matrix model describing 2d Ising
correlators [10,11]. The quantum integrable system arising from the quantum
Calabi–Yau geometry is two-particle relativistic Toda chain.

In this paper, we show that the discrete dynamics is determined from the
analysis of the extended automorphism group of the BPS quiver associated
to the Calabi–Yau geometry. In this respect let us recall the results [12–15]
where the BPS state spectrum of a class of four-dimensional supersymmetric
theories is generated through quiver mutations. The quiver describes the BPS
vacua of the supersymmetric theory and encodes the Dirac pairing among the
stable BPS particles. The consistency of the Kontsevich–Soibelman formula
[16] for the wall-crossing among the different stability chambers is encoded
in Y- and Q- systems of Zamolodchikov type. While this program has been
mostly studied for four-dimensional theories, recently a proposal for BPS quiv-
ers for the five-dimensional theory on a circle has been advanced in [17]. The
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five-dimensional BPS quivers are conjectured to describe the BPS spectrum of
the five-dimensional theory on R

4 ×S1 and have two extra nodes with respect
to the corresponding four-dimensional ones, representing, in properly chosen
regimes, the KK tower of states and the five-dimensional instanton monopole
which characterize the theory on a circle.

The proposal we make in this paper is that these very same quivers
also encode the q-difference equations satisfied by the SUSY index. These are
generated by studying the application of extended quiver symmetries on the
relevant cluster algebra variables τ , the latter being identified with a vector-
valued topological string grand partition function. The action of the symmetry
generators on the cluster algebra coefficients y keeps track of the discrete flows
for the τ -functions. As such, once the gauge theory is considered on a self-dual
Ω-background, we obtain that its supersymmetric index satisfies a proper set of
q-Painlevé equations generated by the extended automorphisms of the quiver.
More precisely, we identify different dynamics corresponding to different gen-
erators of the extended automorphism group. In a given patch, in which the
topological string theory engineers a weakly coupled five-dimensional theory,
the generator shifting the chosen gauge coupling induces the q-Painlevé dy-
namics, while the other independent ones act as Bäcklund transformations of
the former.

In this paper, we make a first step towards realizing the above proposal by
showing that the discrete flows induced by the extended automorphism group
on the BPS quiver generate in a simple way the full BPS spectrum of the 5d
SCFT for some examples in the rank one case. At the same time we show
that the Nekrasov–Okounkov dual partition function of the 5d gauge theory
obtained by relevant deformation of those theories solves the q-Painlevé equa-
tions associated to the same discrete flows. This will be accompanied also by
the study of the degeneration of the five-dimensional cluster algebra into the
four-dimensional one by appropriate decoupling limits. More specifically, we
explore the above connection by considering in detail the case of pure SU(2)
gauge theory, engineered by local F0 and local F1 depending on the value of the
Chern–Simons level, as well as the SU(2) gauge theory with two fundamental
flavors, or equivalently the one engineered by the local Calabi–Yau threefold
over dP3. This case gives a much richer lattice of bilinear equations than the
case of pure gauge, with four independent discrete time evolutions.

It was noticed in [18–20] that cluster algebras provide a natural frame-
work to describe q-deformed Painlevé equations, together with their higher
rank generalizations and quantization (crucial to describe the refined topo-
logical string set up). Further, following the results of [9,21] evidence was
provided for the identification of the q-Painlevé tau function with Topological
String partition function on toric Calabi–Yau threefold, or q-deformed con-
formal blocks. However, while the connection with q-Painlevé equations was
derived in many cases, only in the case of pure SU(N) gauge theory (corre-
sponding in the SU(2) case to q-Painlevé III3) bilinear equations were derived
from the cluster algebra. In this paper, we derive from the cluster algebra bilin-
ear equations for the SU(2) theory with two flavors, as well as a bilinear form
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Figure 1. Sakai’s classification of discrete Painlevé equations
by symmetry type

the q-Painlevé IV equation from the cluster algebra of the local dP3 geometry
which to our knowledge did not appear in the literature, and we discuss its
physical interpretation in terms of the (A1,D4) Argyres–Douglas theory.

Notice that, given the geometrical datum of the toric Calabi–Yau, it is
possible to obtain its associated quiver from the corresponding dimer model
[22,23], and the A-cluster variables defined from this quiver lead to bilinear
equations. In many cases these have been shown to be satisfied by dual parti-
tion functions of Topological String theory on this same Calabi–Yau [24], or by
q-deformed Virasoro conformal blocks [21,25–27]. These can also be rephrased
in terms of K-theoretic blowup equations [24,28,29].

Here is the plan of the paper. In Sect. 2 we discuss BPS quiver spec-
troscopy, by first checking our perspective with the known case of local F0

which correctly reproduces the results of [17], before turning to discuss the
new cases of local F1 and dP3 five-dimensional gauge theories. In Sect. 3 we
study the discrete BPS quiver dynamics for the above examples and the related
cluster algebras and obtain the explicit q-Painlevé equations in bilinear form.
In Sect. 4 we show that indeed the τ -functions of the specific q-Painlevé flows
can be matched with shifted Nekrasov–Okounkov partition function of the
corresponding gauge theory. In Sect. 5 we make more precise the observation
that the four-dimensional quiver can be obtained by removing two nodes from
the five-dimensional one, and show, for all the examples previously considered
that appropriate scaling limits of the cluster variables correctly reproduce the
cluster algebra of the four-dimensional subquiver, which is known to describe
the 4d BPS spectrum. In “Appendix A” we collect all the necessary formulas
for five-dimensional Nekrasov functions, while in “Appendix B” we show how
the bilinear equations of [30] can be also recovered from the cluster algebra
approach. These are seemingly different from the ones of [26], but we show
that they correspond to a different choice of initial coefficients for the cluster
algebra. “Appendix C” collects few technical points related to improved saddle
point expansion of NO partition functions used in the paper.
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2. BPS Spectrum of 5d SCFT on S1 and Quiver Mutations

The construction that generates the BPS spectrum of a supersymmetric theory
through mutations of its BPS quiver is known as mutation algorithm, and was
widely employed in the case of four-dimensional N = 2 theories [13,14,31]. We
recall that, given a quiver with adjacency matrix Bij , the mutation at its kth
node1 is defined by

μk(Bij) =

{
−Bij , i = k or j = k,

Bij + Bik|Bkj |+Bkj |Bik|
2 ,

(2.1)

The mutations of the BPS charges γi are given by

μk(γj) =

{
−γj , j = k,

γj + [Bkj ]+ γk, otherwise.
(2.2)

where we defined [x]+ = max(x, 0). In this context, each node of the quiver
represents a BPS charge in the upper-half plane, and a mutation μk encodes
the rotation of a BPS ray vector out of the upper half central charge Z-plane
(see [13,31] for a detailed description) in counterclockwise sense. If the charge is
rotated out of the upper-half plane clockwise instead, one has to use a slightly
different mutation rule

μ̃k(γj) =

{
−γj , j = k,

γk + [−Bkj ]+ γk, otherwise.
(2.3)

This construction is most effective when the BPS states lie in a “finite cham-
ber”, i.e. when the BPS spectrum consists entirely of hypermultiplets. This
is not the case for the 5d theories we are considering: due to the intrinsically
stringy origin of the UV completion of these theories, in general the BPS spec-
trum is organized in Regge trajectories of particles with arbitrary higher spin
[32,33]; such chambers of the moduli space are known as “wild chambers”. In
[17] an argument was put forward for the existence of a “tame chamber” of
the moduli space. Such a region is characterized by the fact that the higher-
spin particles are unstable and decay, and one is left with hypermultiplet and
vector multiplets only, giving a situation much similar to the four-dimensional
weakly coupled chambers.

2.1. Super Yang–Mills, k = 0

As an example, Closset and Del Zotto argued that the spectrum for local F0,
engineering pure SU(2) SY M on R

4 × S1 with Chern–Simons level k = 0,
in such a tame chamber is organized as two copies of the weakly coupled
chamber of the four-dimensional pure SU(2) gauge theory. The relevant quiver
is depicted in Fig. 2, and its adjacency matrix is

1This is an example of a cluster algebra structure that we will introduce more thoroughly
in Sect. 3.
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Figure 2. Quiver associated to local F0

B =

⎛
⎜⎜⎝

0 2 0 −2
−2 0 2 0
0 −2 0 2
2 0 −2 0

⎞
⎟⎟⎠ . (2.4)

The spectrum of this theory was originally derived by using the mutation
algorithm in [17] , by applying the sequence of mutations

m = μ2μ4μ3μ1 (2.5)

to the BPS charges. Each mutation in this context describes the change of
elementary BPS states under a change of duality frame, so that the trans-
formation m amounts to the action of a self-duality on the BPS spectrum.
The n-th iteration of this operator has the following effect on the charges γi,
i = 1, . . . , 4 of the BPS states:

mn(γ1) = γ1 + 2nδu, mn(γ2) = γ2 − 2nδu, (2.6)

mn(γ3) = γ3 + 2nδd, mn(γ4) = γ4 − 2nδd, (2.7)

with

δu = γ1 + γ2, δd = γ3 + γ4. (2.8)

The action of m corresponds to rotating out of the upper-half plane the BPS
charges in the order 1342. The towers of states obtained in this way accumulate
on the vector multiplets from one side only. Because of this, the operator m
is not sufficient: in order to construct the full spectrum in this chamber, it is
necessary to use also the second operator

m̂ = μ̂1μ̂3μ̂2μ̂4, (2.9)
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Figure 3. a Subquiver decomposition for TF0 . b Subquiver
decomposition for T ′

F0

constructed from right mutations (2.3). The shifts obtained from this operator
are

m̂n(γ1) = γ1 − 2nδu, m̂n(γ2) = γ2 + 2nδu, (2.10)

m̂n(γ3) = γ3 − 2nδd, m̂n(γ4) = γ4 + 2nδd. (2.11)

The resulting BPS spectrum consists of two vector multiplets δu, δd, and two
towers of hypermultiplets

γ1 + nδu, γ2 + nδu, γ3 + nδd, γ4 + nδd. (2.12)

These are two copies of the weakly coupled spectrum of four-dimensional
N = 2 SU(2) pure SYM, which can be thought as being associated to the
decomposition of the quiver in Fig. 2 into two four-dimensional Krönecker
subquivers, as depicted in Fig. 3a.

Let us show an alternative derivation of the above result, making use of
the group GQ of quiver automorphisms. This contains the semidirect product
Dih4�W (A(1)

1 ), where Dih4 is the dihedral group of the square, which consists
only of permutations. The automorphisms group is generated by

π1 = (1, 3)ι, π2 = (4, 3, 2, 1), TF0 = (1, 2)(3, 4)μ1μ3. (2.13)

The operator TF0 is a Weyl translation on the A
(1)
1 lattice.

This operator directly generates the whole BPS spectrum of the theory
by acting on the charges. Indeed, by applying the mutation rules (2.2) we
obtain

Tn
F0

(γ1) = γ1 + nδu, Tn
F0

(γ2) = γ2 − nδu, (2.14)

Tn
F0

(γ3) = γ3 + nδd Tn
F0

(γ4) = γ4 − nδd. (2.15)

By computing the Dirac pairing of these states, which is given by the adjacency
matrix of the quiver, in particular

〈δu, δd〉 = δT
u · B · δd = 0, (2.16)
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we see that TF0 generates mutually local towers of states

γ1 + nδu, γ4 + nδd, (2.17)

and

γ2 + nδu, γ3 + nδd. (2.18)

As n → ∞, the towers of states accumulate to the vectors δu, δd, which are
vector multiplets for the four-dimensional quivers that decompose the five-
dimensional quiver as in Fig. 3a. The mutation operators m, m̂ are related in
a simple way to the time evolution operator:

m = T 2
F0

, m̂ = T−2
F0

ι, (2.19)

where ι is the inversion. From the perspective of the full automorphism group

W̃ (A(1)
1 ) � Dih4, (2.20)

it is natural to consider also another translation operator

T ′
F0

= (2, 3)(1, 4)μ2μ4, (2.21)

whose action on the charges is(
T ′

F0

)n (γ1) = γ1 − n(γ1 + γ4),
(
T ′

F0

)n (γ2) = γ2 + n(γ2 + γ3), (2.22)(
T ′

F0

)n (γ3) = γ3 − n(γ2 + γ3),
(
T ′

F0

)n (γ4) = γ4 + n(γ1 + γ4). (2.23)

This generates different towers of hypermultiplets, which are still organized
as two copies of the weakly coupled chamber of four-dimensional super Yang–
Mills, with vector multiplets

δl = γ1 + γ4, δr = γ2 + γ3. (2.24)

In this way, we find a different infinite chamber, corresponding to the decom-
position of the 5d BPS quiver as in Fig. 3b.

We see that considering the natural translation operators associated to
the quiver automorphisms builds the correct spectrum for the tame chambers
in a simpler way, without the need to consider both left and right mutations.
This simplification occurs because we are allowing not just mutations, but
also permutations, which are relabelings of the BPS charges. This operation
of course has no effect on the resulting spectrum, which is the same as the one
emerging from using just the mutation algorithm. However, by using quiver
automorphisms, it is possible to construct more elementary dualities of the
theory, and the spectrum can be constructed more simply. This plays a crucial
rôle in more complicated cases. To illustrate this point, we discuss in the
following the cases of local F1 and dP3.
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Figure 4. a Quiver associated to local F1. b 4d subquivers
for local F1

2.2. Super Yang–Mills, k = 1

The local F1 quiver is displayed in Fig. 4a. This engineers pure SU(2) SYM
with 5d Chern–Simons level k = 1. The adjacency matrix is

B =

⎛
⎜⎜⎝

0 2 1 −3
−2 0 1 1
−1 −1 0 2
3 −1 −2 0

⎞
⎟⎟⎠ . (2.25)

The translation operator is given by

TF1 = (1324)μ3. (2.26)

As far as the spectrum is concerned, this is the same as the local F0 one.
The operators m, m̃ are easy to build

m ≡ T 4
F1

= ((1324)μ3)
4
, m̂ ≡ T−4

F1
ι. (2.27)

and the associated evolution on the vector of charges γ is

T 2n
F1

(γ) = Tn
F0

(γ) =
(
γ1 + nδu γ2 − nδu γ3 + nδd γ4 − nδd

)
, (2.28)

T 2n−1
F1

(γ) =
(
γ3 + nδd, γ4 − nδd, γ2 − nδu, γ1 + nδu,

)
. (2.29)

We see that even though the introduction of a Chern–Simons level will affect
some physical aspects, it does not modify the type of states in the spectrum:
again δu, δd correspond to the vector multiplets of the 4d subquivers depicted
in Fig. 4b. What changes, however, is the number of tame chambers: because
the symmetry group now does not include the Dih4 factor—as it is clear by
inspection of the quiver—there is not the related chamber.

2.3. Nf = 2, k = 0

When we include matter the situation is much richer, because we encounter
the new feature of multiple commuting flows, each characterizing the spectrum
in a different chamber of the moduli space. The relevant quiver is the one of
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Figure 5. Quiver for dP3

dP3, engineering the SU(2) theory with two flavors, depicted in Fig. 5. It has
adjacency matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 −1 −1
−1 0 1 1 0 −1
−1 −1 0 1 1 0
0 −1 −1 0 1 1
1 0 −1 −1 0 1
1 1 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.30)

The extended Weyl group is W̃ ((A2 + A1)(1)), which is generated by

s0 = (3, 6)μ6μ3 s1 = (1, 4)μ4μ1, s2 = (2, 5)μ5μ2, (2.31)

r0 = (4, 6)μ2μ4μ6μ2, r1 = (3, 5)μ1μ3μ5μ1, (2.32)

π = (1, 2, 3, 4, 5, 6), σ = (1, 4)(2, 3)(5, 6)ι. (2.33)

In this case, there are four commuting evolution operators, given by Weyl
translations of W̃ ((A2+A1)(1)), acting on the affine root lattice Q

(
(A2 + A1)(1)

)
[30,34]2. One has the three operators

T1 = s0s2π, T2 = s1s0π, T3 = s2s1π (2.34)

satisfying T1T2T3 = 1, and finally

T4 = r0π
3 . (2.35)

Let us consider the flow T1 first, given by

T1 = s0s2π = (3, 6)μ6μ3(2, 5)μ5μ2(1, 2, 3, 4, 5, 6). (2.36)

2For the action on the roots, see Sect. 3.3.
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Figure 6. 4d subquivers for local dP3, under T1

Its action on the BPS charges is the following:

Tn
1 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

(n + 1)γ1 + n(γ2 + γ3),
γ2,

−(n + 1)(γ1 + γ2) − nγ3,
γ4 + n(γ4 + γ5 + γ6),

γ5,
−(n + 1)(γ4 + γ5) − nγ6

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.37)

We see that T1 generates infinite towers of hypermultiplets given by

γ1 + n(γ1 + γ2 + γ3), −(n + 1)(γ1 + γ2) − nγ3, (2.38)

γ4 + n(γ4 + γ5 + γ6), −(n + 1)(γ4 + γ5) − nγ6. (2.39)

These are the BPS states corresponding to two copies of the weakly coupled
spectrum for the Nf = 1 theory in four dimensions, and correspond to the
decomposition of the 5d quiver into two 4d subquivers for Nf = 1, as in
Fig. 6. One can easily check that the towers of states are mutually local, and
as n → ∞ they accumulate on the rays

δ(1)u = γ1 + γ2 + γ3, δ
(1)
d = γ4 + γ5 + γ6, (2.40)

which are indeed the vector multiplets for the 4d Nf = 1 subquivers. More
precisely, the towers of hypermultiplets above are only half of the towers from
Nf = 1 theory. To complete the picture, here we have to consider, like in the
pure gauge case, the states constructed from right mutations: these are gen-
erated as before by powers of the inverse of the evolution operator, composed
with an inversion ι:
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Figure 7. 4d subquivers for local dP3, under T2

T−n
1 ι :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

−nγ1 − (n + 1)(γ2 + γ3)
γ2

nγ3 + (n + 1)(γ1 + γ2)
−nγ4 − (n + 1)(γ5 + γ6)

γ5
(n + 1)γ6 + n(γ5 + γ4).

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.41)

The spectrum of the Nf = 1 theory in four dimensions also includes two quarks
that for the subquivers in Fig. 6 are given by γ5, γ4 + γ6, γ2, γ1 + γ3. We see
that we recover the quarks γ5, γ2 as the states that are left invariant by T1,
while the other quarks would be their complementary in the subquiver. We
will see below how the remaining quarks can be recovered as the states that
are fixed by a different flow.

T2 is given by

T2 = s1s0π = (1, 4)μ4μ1(3, 6)μ6μ3(1, 2, 3, 4, 5, 6), (2.42)

and acts on the BPS charges as

Tn
2 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

−nγ1 − (n + 1)(γ5 + γ6)
(n + 1)γ2 + n(γ3 + γ4)

γ3
−n(γ2 + γ3) − nγ4

(n + 1)γ5 + n(γ1 + γ6)
γ6.

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.43)

Reasoning as before, we find that the spectrum in this chamber is organized
in two copies of the 4d Nf = 1 weakly coupled chamber, corresponding to the
subquiver decomposition in Fig. 7, with vector multiplets

δ
(u)
2 = γ1 + γ5 + γ6, δ

(d)
2 = γ2 + γ3 + γ4. (2.44)
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Figure 8. 4d subquivers for local dP3, under T3

Finally, we have

T3 = s2s1π = (2, 5)μ5μ2(1, 4)μ4μ1(1, 2, 3, 4, 5, 6), (2.45)

with action

Tn
3 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
−nγ2 − (n + 1)(γ1 + γ6)
(n + 1)γ3 + n(γ4 + γ5)

γ4
−nγ5 − (n + 1)(γ3 + γ4)
(n + 1)γ6 + n(γ1 + γ2)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.46)

which gives another chamber organized as two copies of four-dimensional
weakly coupled Nf = 1 depicted in Fig. 8, with vector multiplets

δ
(u)
3 = γ1 + γ2 + γ6, δ

(d)
3 = γ3 + γ4 + γ5. (2.47)

Before considering the evolution T4, let us make a remark. The picture above
suggests that there exists a relation between the different flows in terms of
permutations of the nodes of the quiver. Indeed, it is possible to check that we
have the relations

T1 = (3, 4, 5, 6, 1, 2)T2(5, 6, 1, 2, 3, 4) = (6, 1, 2, 3, 4, 5)T3(2, 3, 4, 5, 6, 1) .

(2.48)

From the point of view of the BPS spectrum, it is now clear that these
three flows will generate the same spectrum up to relabeling of states, i.e. they
will differ in what we call electric or magnetic in the field theory. Another
interesting quiver automorphism is given by

R2 = π2s1 = (3, 5, 1)(4, 2, 6)(1, 4)μ4μ1, (2.49)
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which is known as half-translation, because it satisfies R2
2 = T2 (half-translations

for T1, T3 can be obtained by using equation (2.48)). Under this quiver auto-
morphism, the BPS charges transform as

R2n+1
2 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

−(n + 1)γ2 − n(γ3 + γ4)
nγ1 + (n + 1)(γ5 + γ6)

γ1 + γ5
−(n + 1)γ5 − n(γ1 + γ6)
nγ4 + (n + 1)(γ2 + γ3)

γ2 + γ4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.50)

while of course R2n
2 = Tn

2 . Note that this generates the CPT conjugates of the
towers of states as T2, while the states that are left fixed by the action of R2

are exactly the missing quarks from our analysis of T2, so that R2 generates
the full spectrum of the two copies of Nf = 1 in the subquivers of Fig. 7.

Finally, the time evolution T4 is given by

T4 = r0π
3 = (4, 6)μ2μ4μ6μ2(4, 5, 6, 1, 2, 3), (2.51)

and acts on the BPS charges as follows:

T 3n−2
4 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1 + (γ3 + γ4) + nδ
γ2 − (γ1 + γ2) − nδ
γ3 + (γ5 + γ6) + nδ
γ4 − (γ3 + γ4) − nδ
γ5 + (γ1 + γ2) + nδ
γ6 − (γ5 + γ6) − nδ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.52)

T 3n−1
4 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1 + (γ3 + γ4 + γ5 + γ6) + nδ
γ2 − (γ1 + γ2 + γ3 + γ4) − nδ
γ3 + (γ1 + γ2 + γ5 + γ6) + nδ
γ4 − (γ3 + γ4 + γ5 + γ6) − nδ
γ5 + (γ1 + γ2 + γ3 + γ4) + nδ
γ6 − (γ1 + γ2 + γ5 + γ6) − nδ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.53)

T 3n
4 :

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1 + nδ
γ2 − nδ
γ3 + nδ
γ4 − nδ
γ5 + nδ
γ6 − nδ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.54)

We can recognize in this chamber towers of states that accumulate to the same
BPS ray δ = γ1 + · · · + γ6, representing a multiplet with higher spin s ≥ 1. In
this case, the four-dimensional interpretation is subtler and more interesting,
and we postpone it to Sect. 5.3.
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3. Discrete BPS Quiver Dynamics, Cluster Algebras and
q-Painlevé Equations

The translation operators acting on the BPS quivers we described so far can
be regarded as time evolution operators for discrete dynamical systems arising
from deautonomization of cluster integrable systems, naturally associated to
the geometric engineering of the corresponding five-dimensional gauge theories.
This allows to bridge between the BPS quiver description and classical results
in the theory of q-Painlevé equations, and actually inspired the reformulation
of the BPS quiver analysis that we presented in the previous section. Indeed,
the quivers studied in [18] are exactly the 5d BPS quivers appearing in Sect. 3.
In this respect, the q-Painlevé flows describe self-dualities (in the sense of
section) of the 4d Kaluza–Klein theory obtained by reducing the 5d gauge
theory on S1. We now turn to the study of all the examples we considered up
to now from this perspective.

3.1. Cluster Algebras and Quiver Mutations

Let us first recall the notion of cluster algebra [35,36], as well as the two
types of cluster variables that will be used throughout the paper. The ambient
field for a cluster algebra A is a field F isomorphic to the field of rational
functions in n = rk A independent variables, with coefficients in QP, where P

is the tropical semifield. The tropical semifield is defined as follows: starting
with the free abelian group (P, ·) with usual multiplication, the operation ⊕ is
defined in terms of a basis3 u of P∏

j

u
aj

j ⊕
∏
j

u
bj

j =
∏
j

u
min(aj ,bj)
j . (3.1)

The cluster algebra A is determined by the choice of an initial seed. This
is a triple (Q, τ , y), where

• Q is a quiver without loops and 2-cycles, with n vertices;
• y = (y1, . . . , yn) is an n-tuple of generators of the tropical semifield

(P,⊕, ·) (which in general will not be independent generators, because
dim P ≤ n);

• τ ≡ (τ1, . . . , τn) is an n-tuple of elements of F forming a free generating
set: they are algebraically independent over QP, and F = QP(τ1, . . . , τn).

The variables (τ , y) are called A-cluster variables. We can alternatively define
the seed as (B, τ , y) in terms of the antisymmetric adjacency matrix B of the
quiver.

Given these objects, the cluster algebra is the ZP-subalgebra of F gen-
erated recursively by applying mutations to the initial seed. A mutation μk is
an operation defined by its action on a seed:

μk(τj) =

⎧⎨
⎩

τj , j 
= k,

yk

∏n
i=1 τ

[Bik]+
i +

∏|Q|
i=1 τ

−[Bik]+
i

τk(1⊕yk)
, j = k,

(3.2)

3We allow for the free abelian group to have dimension less than n, as it will typically the
case for us.
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μk(yj) =

{
y−1

j , j = k,

yj(1 ⊕ y
sgnBjk

k )Bjk , j 
= k,
(3.3)

μk(Bij) =

{
−Bij , i = k or j = k,

Bij + Bik|Bkj |+Bkj |Bik|
2 ,

(3.4)

where we defined [x]+ = max(x, 0). It is clear from the above expression that
the coefficients yi represent an exponentiated version of the BPS charges γi.

An alternative set of variables are the so-called X-cluster variables x =
(x1, . . . , xn), taking values in F . They are defined in terms of the A-variables
as

xi = yi

n∏
j=1

τ
Bji

j , (3.5)

and their mutation rules are the same as for coefficients, but with ordinary
sum instead of semifield sum:

μk(xj) =

{
x−1

j , j = k,

xj(1 + x
sgnBjk

k )Bjk , j 
= k.
(3.6)

The X-cluster variables can be considered as coordinates in the so-called
X-cluster variety, which is endowed with a degenerate Poisson bracket, with
respect to which the X-cluster variables are log-canonically conjugated:

{xi, xj} = Bijxixj . (3.7)

Given a convex Newton polygon Δ with area S, it is possible to construct
a quiver with 2S nodes describing a discrete integrable system in the variables
xi [22,37]. Due to (3.7), in general the Poisson bracket is degenerate, as there
is a space of Casimirs equal to ker(B). For quivers arising in this way, the
quantity

q ≡
∏

i

xi (3.8)

is always a Casimir. The system is integrable on the level surface

q = 1. (3.9)

The number of independent Hamiltonians is the number of internal points of
the Newton polygon. The set of discrete time flows of the integrable system
is the group GQ of quiver automorphisms4. We will in fact work with the
extended group G̃Q that extends GQ by the inclusion of the inversion operator

4To be more precise, the discrete time flows are given by a subgroup GΔ ⊂ GQ, of auto-
morphisms preserving the Hamiltonians. These are given by spider moves of the associated
dimer model that we are not introducing here. They are very specific mutation sequences
that in this work we will rather view as Weyl translations acting on an affine root lattice.
For the cases that we will be concerned with in this paper, the two groups coincide and we
can forget about the distinction.
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ι. This operation reverses all the arrows in the quiver, and acts on the cluster
variables as

ι(xi) = x−1
i , ι(yi) = y−1

i , (3.10)

while the variables τ are invariant, consistently with the relation (3.5).
In [18] it was shown that it is possible to obtain q-Painlevé equations by

lifting the constraint q = 1, which amounts to the deautonomization of the
system. This is no longer integrable in the Liouville sense, since the discrete
Hamiltonians are no longer preserved under the discrete flows. The related
equations of motion are well-known q-difference integrable equations of math-
ematical physics, namely q-Painlevé equations: the time evolution describes
in this case a foliation, whose slices are different level surfaces of the original
integrable system, see, for example, [38] for such a description of q-Painlevé
equations. These equations can be obtained geometrically by studying configu-
rations of blowups of eight points on P

1 ×P
1, or equivalently by configurations

of nine blowups on P
2. As in the case of differential Painlevé equations [39],

this leads to a classification in terms of the space of their initial conditions,
called in this context surface type of the equation, or equivalently by their sym-
metry groups due to Sakai [5], see Fig. 1. The former are given by an affine
algebra, while the latter turns out to be given by the extended Weyl group
of another affine algebra, which is the orthogonal complement of the first one
in the group of divisors Pic(X), X being the surface obtained by blowing up
points on P

1 × P
1.

It was further argued in [18] that the time evolution given by the deauton-
omization of the cluster integrable system, when written in terms of the cluster
A-variables (τ , y), takes the form of bilinear equations, so that we can identify
the variables τ with tau functions for q-Painlevé equations. However, while
the q-Painlevé equations in terms of the X-cluster variables were derived for
all the Newton polygons with one internal point in [18], their bilinear form was
not obtained, except for the Newton polygon of local F0, corresponding to the
q-Painlevé equation of surface type A

(1)′

7 , and local F1 in [19], corresponding
to A

(1)
7 in Sakai’s classification.
In the next section, we review these two cases, before turning to the case

of dP3, which corresponds instead to the surface type A
(1)
5 . In fact, this case is

much richer, as it admits four commuting discrete flows: we will show that one
of these reproduces the bilinear equations considered in [25,26] for q-Painlevé
III1.

3.2. Pure Gauge Theory and q-Painlevé III3

Let us briefly review how q-Painlevé equations are obtained from the quivers
associated to local F0 and local F1, whose Newton polygons are depicted in
Fig. 9a, b. These correspond to the pure SU(2) gauge theory with Chern–
Simons level, respectively, k = 0, 1.
Local F0:

Let us consider first the cluster algebra associated to the quiver in Fig. 2.
This corresponds to local F0. The group GQ of quiver automorphisms contains
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Figure 9. a Newton polygon for local F0. b Newton polygon
for local F1

the symmetry group of the q-Painlevé equation qPIII3 of surface type A
(1)′

7 ,
which is the semidirect product Dih4 � W (A(1)

1 ). It is generated by

π1 = (1, 3)ι, π2 = (4, 3, 2, 1), TF0 = (1, 2)(3, 4)μ1μ3. (3.11)

The operator TF0 generates the time evolution of the corresponding q-Painlevé
equation, and is a Weyl translation on the underlying A

(1)
1 lattice. From the

adjacency matrix of the quiver

B =

⎛
⎜⎜⎝

0 2 0 −2
−2 0 2 0
0 −2 0 2
2 0 −2 0

⎞
⎟⎟⎠ , (3.12)

we see that the space of Casimirs of the Poisson bracket (3.7) is two-dimensional.
We take the two Casimirs to be

q =
∏

i

xi =
∏

yi, t = x−1
2 x−1

4 = y−1
2 y−1

4 . (3.13)

Therefore, the tropical semifield has two generators that we take to be the two
Casimirs q, t. By fixing the initial conditions for the coefficients, consistently
with equation (3.13), to be

y = ((qt)1/2, t−1/2, (qt)1/2, t−1/2), (3.14)

one finds that the action of TF0 on the coefficients yields

q = q, t = qt, (3.15)

while the tau variables evolve as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TF0(τ1) = τ2,

TF0(τ2) = τ2
2+(qt)1/2τ2

4
τ1

,

TF0(τ3) = τ4,

TF0(τ4) = τ2
4+(qt)1/2τ2

2
τ3

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T−1
F0

(τ1) = τ2
1+t1/2τ2

3
τ2

,

T−1
F0

(τ2) = τ1,

T−1
F0

(τ3) = τ2
3+t1/2τ2

1
τ4

,

T−1
F0

(τ4) = τ3,

(3.16)
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leading to the bilinear equations5

τ1τ1 = τ2
1 + t1/2τ2

3 , τ3τ3 = τ2
3 + t1/2τ2

1 . (3.17)

The actual q-Painlevé equation is the equation involving the variables x. It
takes the form of a system of two first order q-difference equations, or of a sin-
gle second-order q-difference equation, in terms of log-canonically conjugated
variables

F ≡ x1, G = x−1
2 , (3.18)

that satisfy

{F,G} = 2FG. (3.19)

Their time evolution can be studied in a completely analogous way by using
the mutation rules (3.6) for X-cluster variables, and leads to the q-Painlevé
III3 equation

GG =
(

G + t

G + 1

)2

. (3.20)

Local F1: We now consider the A-variables associated to the local F1 quiver
of Fig. 4a, engineering pure SU(2) SYM with 5d Chern–Simons level k = 1.
The adjacency matrix is

B =

⎛
⎜⎜⎝

0 2 1 −3
−2 0 1 1
−1 −1 0 2
3 −1 −2 0

⎞
⎟⎟⎠ . (3.21)

The corresponding equation is the q-Painlevé equation of surface type A
(1)
7 ,

which is a different q-discretization of the differential Painlevé III3. The time
evolution is given by

TF1 = (1324)μ3. (3.22)

The Casimirs are now

q =
∏

i

yi, t = y1y
−1
2 y2

3 . (3.23)

Consistently with this relation, we choose the following initial conditions for
the coefficients:

y = (t1/2, t1/2, t1/2, qt−3/2). (3.24)

This yields the time evolution of the Casimirs

q = q, t = q1/2t, (3.25)

5We follow the usual convention that one overline denotes a step forward in discrete time,
while one underline denotes a step backwards.
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and of the τ -variables⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TF1(τ1) = τ4

TF1(τ2) = τ2
4+t1/2τ1τ2

τ3
,

TF1(τ3) = τ1,

TF1(τ4) = τ2.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T−1
F1

(τ1) = τ3,

T−1
F1

(τ2) = τ4,

T−1
F1

(τ3) = t1/2τ2
1+τ3τ4
τ2

,

T−1
F1

(τ4) = τ1.

(3.26)

The bilinear equations obtained in this way are

τ4τ3 = t1/2τ2
1 + τ3τ4, τ2τ1 = τ2

4 + t1/2τ1τ2, (3.27)

which are the same as the equations appearing in [19]

τ(qt)τ(q−1t) = τ2 + t1/2τ(q1/2t)τ(q−1/2t) (3.28)

for the single tau function τ4 ≡ τ . The identification is achieved by noting
that ⎧⎪⎨

⎪⎩
τ1 = τ4,

τ2 = τ1,

τ3 = τ1,

(3.29)

so that the first of our bilinear equations becomes

ττ = τ2 + t1/2ττ , (3.30)

which coincides with (3.28) after using (3.25).

3.3. Super Yang–Mills with Two Flavors and qPIII1

We now turn to consider the quiver associated to dP3, engineering the SU(2)
theory with two flavors, depicted in Fig. 10. It has adjacency matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 −1 −1
−1 0 1 1 0 −1
−1 −1 0 1 1 0
0 −1 −1 0 1 1
1 0 −1 −1 0 1
1 1 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.31)

and Casimirs

a0 = (y3y6)−1/2, a1 = (y1y4)−1/2, a2 = (y2y5)−1/2, (3.32)

b0 = (y2y4y6)−1/2, b1 = (y1y3y5)−1/2, (3.33)

that satisfy

a0a1a2 = b0b1 = q−1/2, q = y1y2y3y4y5y6. (3.34)

As already discussed in Sect. 2.3, one has in this case four commuting time
evolution operators, given by Weyl translations of W̃ ((A2 +A1)(1)), which act
on the affine root lattice Q

(
(A2 + A1)(1)

)
[30,34]. These time evolutions are

not all associated to the same q-Painlevé equation: the three operators

T1 = s0s2π, T2 = s1s0π, T3 = s2s1π (3.35)
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Figure 10. Newton polygon and quiver for dP3

give rise to the q-Painlevé equation qPIII1 in the x-variables, and satisfy
T1T2T3 = 1. On the other hand, the evolution

T4 = r0π
3 (3.36)

yields q-Painlevé IV.
The time evolution of the Casimirs can be obtained easily from the X-

cluster variables: it is

T1(a0, a1, a2, b0, b1, q) = (q1/2a0, q
−1/2a1, a2, b0, b1, q), (3.37)

T2(a0, a1, a2, b0, b1, q) = (a0, q
1/2a1, q

−1/2a2, b0, b1, q) (3.38)

T3(a0, a1, a2, b0, b1, q) = (q−1/2a0, a1, q
1/2a2, b0, b1, q), (3.39)

T4(a0, a1, a2, b0, b1, q) = (a0, a1, a2, q
−1/2b0, q

1/2b1, q). (3.40)

This is the counterpart of the fact that Ti are Weyl translations acting on the
root lattice Q((A2 + A1)(1)). If α0, α1, α2 are simple roots of A

(1)
2 , and β0, β1

are simple roots of A
(1)
1 , the action of Ti as elements of the affine Weyl group

is

T1(α,β) = (α,β) + (−1, 1, 0, 0, 0)δ, T2(α,β) = (α,β) + (0,−1, 1, 0, 0)δ,
(3.41)

T3(α,β) = (α,β) + (1, 0,−1, 0, 0)δ, T4(α,β) = (α,β) + (0, 0, 0, 1,−1)δ,
(3.42)

where δ = α0 + α1 + α2 = β0 + β1 is the null root of (A2 + A1)(1). From each
one of these discrete flows, we can obtain bilinear equations for the cluster
A-variables τ . Once we choose one of the flows as time, the other flows can
be regarded as Bäcklund transformations describing symmetries of the time
evolution.
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Let us define the four tropical semifield generators to be q, t,Q1, Q2, and
the initial condition on the parameters to be

y =
(

− 1
Q2t1/2

, q1/4t1/2, Q1q
1/4,− 1

Q1t1/2
, q1/4t1/2, Q2q

1/4

)
(3.43)

which means, in terms of the original parameterization of the Casimirs,

a2
0 =

1
Q1Q2q1/2

, a2
1 = Q1Q2t, a2

2 =
1

q1/2t
, (3.44)

b20 = −q−1/2Q1

Q2
, b21 = −q−1/2Q2

Q1
. (3.45)

We now derive bilinear equations for the discrete flows of this geometry:
the time evolution for T1 is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T1(τ1) = τ3,

T1(τ2) = τ5τ6−Q2t1/2τ2τ3
τ1

,

T1(τ4) = τ6,

T1(τ5) = τ2τ3−Q1t1/2τ5τ6
τ4

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T−1
1 (τ2) = τ4τ5+Q1q1/4τ1τ2

τ3
,

T−1
1 (τ3) = τ1,

T−1
1 (τ5) = τ1τ2+Q2q1/4τ4τ5

τ6
,

T−1
1 (τ6) = τ4.

(3.46)

The action on the Casimirs is given by (3.37), that means

T1(Q1) = q−1/2Q1, T1(Q2) = q−1/2Q2, (3.47)

We then have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ2τ3 = τ5τ6 − Q2t
1/2τ2τ3,

τ5τ6 = τ2τ3 − Q1t
1/2τ5τ6,

τ2τ3 = τ5τ6 − Q1q
1/2τ2τ3,

τ5τ6 = τ2τ3 − Q
1/2
2 q1/2τ5τ6,

τi = τi(q−1/2Q1, q
1/2Q2). (3.48)

The time flow under T2 for the A-cluster variables is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T2(τ2) = τ4,

T2(τ3) = τ3τ4+q1/4t1/2τ1τ6
τ2

,

T2(τ5) = τ1,

T2(τ6) = τ1τ6+q1/4t1/2τ3τ4
τ5

,

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T−1
2 (τ1) = τ5,

T−1
2 (τ3) = −Q1t1/2τ5τ6+τ2τ3

τ4
,

T−1
2 (τ4) = τ2,

T−1
2 (τ6) = −Q2t1/2τ2τ3+τ5τ6

τ1
,

(3.49)

where the time evolution is given by

T2(t) = qt, (3.50)

leading to the bilinear equations

τ3τ2 = q1/4t1/2τ5τ6 + τ3τ2, τ6τ5 = τ5τ6 + q1/4t1/2τ3τ2, (3.51)

τ2τ3 = −Q1t
1/2τ5τ6 + τ2τ3, τ5τ6 = −Q2t

1/2τ2τ3 + τ5τ6. (3.52)

In particular, from the flow T2 it is possible to reproduce the bilinear equations
of [26], thus obtaining an explicit parameterization of the geometric quantities
ai, bi coming from the blowup configuration of P

1 × P
1 in terms of the Kähler

parameters of dP3.
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The discrete flow T3 is not independent, being simply given by T3 =
T−1
1 T−1

2 , but we write it down for completeness:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T3(τ1) = τ1τ2+Q2q1/4τ4τ5
τ6

,

T3(τ3) = τ5,

T3(τ4) = τ4τ5+Q1q1/4τ1τ2
τ3

,

T3(τ6) = τ2,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T−1
3 (τ1) = τ3τ4+q1/4t1/2τ1τ6

,

T−1
3 (τ2) = τ6,

T−1
3 (τ4) = τ1τ6+q1/4t1/2τ3τ4

τ5
,

T−1
3 (τ5) = τ3,

(3.53)

leading to the bilinear relations
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ1τ2 = τ1τ2 + Q2q
1/4τ4τ5,

τ4τ5 = τ4τ5 + Q1q
1/4τ1τ2,

τ1τ2 = q1/4t1/2τ1τ2 + τ4τ5,

τ4τ5 = q1/4t1/2τ4τ5 + τ1τ2.

, τi = τi(q1/2Q1, q
1/2Q2, q

−1t). (3.54)

3.4. Super Yang–Mills with Two Flavors, q-Painlevé IV and q-Painlevé II

On top of the previous time evolutions giving rise to qPIII1 equations, there is
another the time evolution T4 from a further automorphism of the dP3 quiver.
This gives rise to the qPIV dynamics and has the following action on the
Casimirs, dictated by (3.40):

T4(Q1) = q1/2Q1, T4(Q2) = q−1/2Q2. (3.55)

On the tau variables, this amounts to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T4(τ1) = τ4,

T4(τ2) = τ1τ2τ6+τ4τ5τ6−Q2t1/2τ2τ3τ4
τ1τ3

,

T4(τ3) = τ6,

T4(τ4) = τ1τ2τ6+τ4τ5τ6+q1/4t1/2τ2τ3τ4
τ3τ5

,

T4(τ5) = τ2,

T4(τ6) = −Q2t1/2τ1τ2τ6+q1/4t1/2τ4τ5τ6−Q2q1/4tτ2τ3τ4
τ1τ5

,

(3.56)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T−1
4 (τ1) = τ1τ2τ3+Q2q1/4τ3τ4τ5+Q2q1/2t1/2τ1τ5τ6

τ2τ6
,

T−1
4 (τ2) = τ5,

T−1
4 (τ3) = q1/4t1/2τ1τ2τ3−Q1t1/2τ3τ4τ5−Q1q1/4tτ1τ5τ6

τ2τ4
,

T−1
4 (τ4) = τ1,

T−1
4 (τ5) = τ1τ2τ3+Q2q1/4τ3τ4τ5−Q1t1/2τ1τ5τ6

τ4τ6
,

T−1
4 (τ6) = τ3.

(3.57)

At first sight this seems to lead to cubic equations. However, by following
the procedure explained in “Appendix B.2”, one obtains an equivalent set of
bilinear equations
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⎧⎪⎨
⎪⎩

τ6τ2 − q1/4t1/2τ2τ6 = −t1/2
(
Q2 + q1/2Q1

)
τ2τ6,

Q
1/2
+ q1/4τ6τ4 + Q2t1/2τ4τ6 = t1/2

(
Q2 + q1/2Q1

)
τ4τ6,

τ4τ2 − τ2τ4 = t1/2
(
Q2 + q1/2Q1

)
τ2τ4.

, τi = τi(q
1/2Q1, q−1/2Q2).

(3.58)

These provide a bilinear form for the qPIV equation, which to our knowledge
did not appear in the literature so far.

q-Painlevé II bilinear relations from “half” translations: Given the root lattice
(A2 + A1)(1), there exists another time flow that preserves a (A1 + A′

1)
(1)

sublattice only [40,41]. It corresponds to the q-Painlevé II equation, and it is
given by

R2 = π2s1, (3.59)

which is still an automorphism of the quiver in Fig. 10. Because R2
2 = T2,

this flow is also known as half-translation6. Its action on the Casimirs is a
translational motion (i.e. a good time evolution) only on the locus a0 = q−1/4,
i.e. Q+ = 1, on which it acts as

R2(a1) = q1/4a1, R2(a2) = q−1/4a2, (3.60)

corresponding to

R2(t) = q1/2t. (3.61)

Its action on the tau-variables reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R2(τ1) = τ3τ4+q1/4t1/2τ1τ6
τ2

,

R2(τ2) = τ6,

R2(τ3) = τ1,

R2(τ4) = τ1τ6+q1/4t1/2τ3τ4
τ5

,

R2(τ5) = τ3,

R2(τ6) = τ4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R−1
2 (τ1) = τ3,

R−1
2 (τ2) = τ5τ6−Q2t1/2τ2τ3

τ1
,

R−1
2 (τ3) = τ5,

R−1
2 (τ4) = τ6,

R−1
2 (τ5) = τ2τ3−Q1t1/2τ5τ6

τ4
,

R−1
2 (τ6) = τ2 .

(3.62)

By setting Q1 = Q−1
2 ≡ Q, we obtain the bilinear equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ3τ6 = τ3τ6 + q1/4t1/2τ3τ6,

τ3τ6 = τ3τ6 + q1/4t1/2τ3τ6,

τ3τ6 = τ3τ6 − Q−1t1/2τ3τ6,

τ3τ6 = τ3τ6 − Qt1/2τ3τ6,

τi = τi(q1/2t). (3.63)

We see that in fact these equations are consistent under the further requirement
Q = −1. This is because the third and fourth equations are obtained by simply
applying T−1

2 to the first and second one.
According to Sakai’s classification (see Fig. 1) and the analysis in [42],

this flow correctly points to the Argyres–Douglas theory of Nf = 2 which is, in
the four-dimensional limit, governed by the differential PII equation. It would

6Other half-translations can be analogously defined from T1 and T3.



2746 G. Bonelli et al. Ann. Henri Poincaré

be interesting to see if the relevant τ -function can be constructed from a 5d
lift of the matrix model considered in [43].

3.5. Summary of dP3 Bilinear Equations

To conclude this section, let us collect here all the flows we found for dP3

geometry together with the respective bilinear equations:

T1, qPIII1,

Q+ = q−1Q+
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ2τ3 = τ5τ6 − Q2t1/2τ2τ3,

τ5τ6 = τ2τ3 − Q1t1/2τ5τ6,

τ2τ3 = τ5τ6 − Q
1/2
+ q1/2τ2τ3,

τ5τ6 = τ2τ3 − Q
1/2
+ q1/2τ5τ6,

(3.64)

T2, qPIII1,

t = qt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ2τ3 = τ2τ3 − Q1t1/2τ5τ6,

τ5τ6 = τ5τ6 − Q2t1/2τ2τ3,

τ2τ3 = τ2τ3 + q1/4t1/2τ5τ6,

τ5τ6 = τ5τ6 + q1/4t1/2τ2τ3,

(3.65)

T3, qPIII1,

t = t/q, Q+ = qQ+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1τ2 = τ1τ2 + Q
1/2
+ q1/4τ4τ5,

τ4τ5 = τ4τ5 + Q
1/2
+ q1/4τ1τ2,

τ1τ2 = q1/4t1/2τ1τ2 + τ4τ5,

τ4τ5 = q1/4t1/2τ4τ5 + τ1τ2,

(3.66)

T4, qPIV,

Q− = qQ−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ6τ2 − q1/4t1/2τ2τ6 + (tqQ+)1/2
(
1 + Q

1/2
− q−1/2

)
τ2τ6 = 0,

Q
1/2
+ q1/4τ6τ4 + q1/4t1/2τ4τ6

−(tqQ+)1/2
(
1 + Q

1/2
− q−1/2

)
τ4τ6 = 0,

τ4τ2 − τ2τ4 − (tqQ+)1/2
[
1 + Q

1/2
− q−1/2

]
τ2τ4 = 0,

(3.67)

R2, qPII, (Q1 = Q−1
2 = −1)

t = q1/2t,

⎧⎨
⎩

τ3τ6 = τ3τ6 + q1/4t1/2τ3τ6,

τ3τ6 = τ3τ6 + q1/4t1/2τ3τ6,

(3.68)

4. Solutions

In this Section we discuss how the solutions of the discrete flow of BPS quivers
are naturally encoded in topological string partition functions having as a
target space the toric Calabi–Yau varieties associated to the relevant Newton
polygons. The corresponding geometries are given by rank two vector bundles
over punctured Riemann surfaces. Let us recall that the BPS states of the
theory are associated to curves on this geometry that locally minimize the
string tension. More specifically, hypermultiplets are associated to open curves
ending on the branch points of the covering describing the Riemann surface,
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while BPS vector multiplets are associated to closed curves7. The BPS states
are then described in this setting by open topological string amplitudes with
boundaries on those curves. The very structure of the discrete flow suggests to
expand the τ functions as grand canonical partition functions for the relevant
brane amplitudes. Specifically, we propose that

τ{mi}(si, Qi) =
∑
ni

sni
i Ztop(qminiQi) (4.1)

where q = e�, � = gs being the topological string coupling, Qi the Calabi–Yau
moduli and si the fugacities for the branes amplitudes associated to BPS states
with intersection numbers mi with the cycles associated to the Qi moduli.
These cycles represent a basis associated to the BPS state content of theory in
the relevant chamber, the intersection numbers representing the Dirac pairing
among them. It is clear from this that the expansion (4.1) for the tau function
crucially depends on the BPS chamber. Moreover, distinct flows of the BPS
quivers described in the previous sections correspond to bilinear equations in
distinct moduli of the Calabi–Yau.

These bilinear equations are in the so-called Hirota form and turn out to
be equivalent to convenient combinations of blowup equations [28,44], which
consist of many more equations, and suffice to determine recursively the non-
perturbative part of the partition function, given the perturbative contribution
[45].

In the following, we will mainly focus on the expansion of τ functions in
the electric weakly coupled frame which is suitable to geometrically engineer
five-dimensional gauge theories. In this case, the τ function coincides with the
Nekrasov–Okounkov partition function.

4.1. Local F0 and qPIII3

We first discuss the pure gauge theory case to gain some perspective. We’ll
then pass to the richer, and so far less understood, Nf = 2 case. Let us
point out here that the solution of PIII3 in the strong coupling expansion
was worked out in [9] in terms of the relevant Fredholm determinant (or the
matrix model in the cumulants expansion). In [9] also the relevant connection
problem was solved. Since we are interested in showing the classical expansion
of the cluster variables, here we discuss the different asymptotic expansion in
the weak coupling gs ∼ 0.

In our favorite example, the local F0, the cluster variable x2 = G−1,
where G satisfies (see (3.20))

G(qt)G(q−1t) =
(

G(t) + t

G(t) + 1

)2

(4.2)

7Let us notice that in the 5d theories on a circle, one finds in general also “wild chambers”
with multiplets of higher spin which can be reached via wall-crossing from the “tame” ones.
It would be interesting to realize these higher spin multiplets as curves on the spectral
geometry.
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This can be written in terms of Nekrasov–Okounkov partition functions as

G = it1/4 τ3
τ1

, (4.3)

with

τ1 =
∑
n∈Z

snZ(uqn, t), τ3 =
∑
n∈Z

sn+ 1
2 Z
(
uqn+ 1

2 , t
)

, (4.4)

where Z is the full Nekrasov partition function for which we give explicit
formulae in “Appendix A”. This case corresponds to the SU(2) pure gauge
theory with Chern–Simons level k = 0, and we set u1 = u−1

2 = u, q1 = q−1
2 = q.

The bilinear equations

τ1τ1 = τ2
1 + t1/2τ2

3 (4.5)

turn into an infinite set of equations for Z:∑
n,m

sn+m
[
Z(uqn, qt)Z(uqm, q−1t) − Z(uqn, t)Z(uqm, t)

−t1/2Z(uqn+1/2, t)Z(uqm−1/2, t)
]

= 0, (4.6)

where the coefficient for each power of s must vanish separately. Of course,
most of these equations are redundant, but everything is determined by fixing
the asymptotics, i.e. the classical contribution for the partition function. Se-
lecting the term n+m = 1, for example, we can obtain the following equation
for the t0 coefficient of Z (i.e. the perturbative contribution):

Z1-loop(uq−1/2)Z1-loop(uq1/2)
Z2
1-loop

=
1

u2 − 1
1

u−2 − 1
, (4.7)

which is the q-difference equation satisfied by Z1-loop. The term n + m = 0
allows us to determine the instanton contribution from the perturbative one
in the following way:∑

n

Z(uqn; qt)Z(uq−n; t/q) =
∑

n

Z(uqn; t)Z(uq−n; t)

−t1/2
∑

n

Z(uqn+1/2; t)Z(uq−n−1/2). (4.8)

We can express the above equation in terms of Zinst as

0 =
∑

n

t2n2
u4n

∏
ε=±1

(
u2εq2nε; q, q−1

)
∞ Zinst(uqn; qt)Zinst(uq−n; t/q)

−
∑

n

t2n2 ∏
ε=±1

(
u2εq2nε; q, q−1

)
∞ Zinst(uqn; t)Zinst(uq−n; t)

+
∑

n

t2(n+1/2)2+1/2
∏

ε=±1

(
u2εq2(n+1/2)ε; q, q−1

)
∞

Zinst(uqn+1/2; t)Zinst(uq−(n+1/2); t). (4.9)
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which gives a recursion relation for the coefficients of the instanton expansion

Zinst =
∑

n

tnZn . (4.10)

For example, the one-instanton term is fully determined just by the perturba-
tive contribution:

Z1 =
2q

(q − 1)2
(u2q; q, q−1)∞ (u2/q; q, q−1)∞ (1/u2q; q, q−1)∞ (q/u2; q, q−1)∞

(u2; q, q−1)2∞ (1/u2; q, q−1)2∞

=
2u2q

(q − 1)2(u2 − 1)2
.

(4.11)

which of course correctly reproduces the one-instanton Nekrasov partition
function.

It is possible to study the autonomous limit of the X-cluster variables by
setting

s = eη/�, q = e�, u = ea, (4.12)

and sending � → 0. In this limit one can expand the Nekrasov partition func-
tion in the Ω-background parameter as

Z(a, �, t) = exp

{
1
�2

∞∑
n=0

�
2nFn(a, t)

}
. (4.13)

The behavior of the Fourier series in this limit is determined by a discrete
version of the saddle point approximation [46]. Let us call n∗ the saddle point
for n: for given a, η the saddle point condition

η � −F ′
0(a + �n∗) + O(�2) (4.14)

can be satisfied only approximately. More precisely, denote by a∗ the “true”
saddle value, given by the condition

η = −F ′
0(a∗) + O(�2). (4.15)

In general a + �n∗ will be able to approximate this value only up to � correc-
tions. We write this as

a + �n∗ = a∗ + �x, (4.16)

where the variable x ∼ O(1) measures the offset between the true saddle
and the approximate one. We review in “Appendix C” the computation of
the leading and subleading order in the � → 0 limit for the dual partition
functions, first performed in [19]. The result is that

τ1 = e
1

�2 [η(a∗−a)+F0(a∗,t)+F1(a∗,t)+iπτSW x2+O(�)]ϑ3(τSW x|τSW ), (4.17)

τ3 = e
1

�2 [η(a∗−a)+F0(a∗,t)+F1(a∗,t)+iπτSW x2+O(�)]ϑ2(τSW x|τSW ). (4.18)

When we consider the q-Painlevé transcendent, given by the cluster variable
x−1
2 , the pre-factor simplifies, so that it is given by a ratio of theta functions:

G = x−1
2 = it1/4 τ3

τ1
= it1/4ϑ2(τSW x|τSW )

ϑ3(τSW x|τSW )
eO(�). (4.19)
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The above analysis can be easily extended to the local F1 case by making use
of the results in [18]. We do not repeat it here.

4.2. q-Painlevé III1 and Nekrasov Functions

In the case of the gauge theory with matter, let us first focus on the bilin-
ear equations generated by the translation T2. As computed in the previous
section, these are

τ3τ2 = q1/4t1/2τ5τ6 + τ3τ2, τ6τ5 = τ5τ6 + q1/4t1/2τ3τ2, (4.20)

τ2τ3 = −Q1t
1/2τ5τ6 + τ2τ3, τ5τ6 = −Q2t

1/2τ2τ3 + τ5τ6. (4.21)

Let us crucially note that these coincide with the bilinear equations stud-
ied in [26], eqs (4.5-4.8) after relabeling

(τ2, τ3) → (τ1, τ2), (τ5, τ6) → (τ3, τ4), (4.22)

and the identification

Q1 = q−θ1 , Q2 = q−θ2 . (4.23)

In the gauge theory, Q1, Q2 parameterize the masses of the fundamental hy-
permultiplets through �θi = mi, where � is the self-dual Ω-background param-
eter, while t is the instanton counting parameter. In terms of these, the time
evolution is

T2(t) = qt, (4.24)

so that the discrete time evolution shifts the gauge coupling while the masses
stay constant. We can therefore write the bilinear equations as q-difference
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
τ2(qt)τ3(q−1t) = τ2(t)τ3(t) − Q1t

1/2τ5(t)τ6(t),
τ5(qt)τ6(q−1t) = τ5(t)τ6(t) − Q2t

1/2τ2(t)τ3(t),
τ2(t)τ3(qt) = τ2(qt)τ3(t) + q1/4t1/2τ5(qt)τ6(t),
τ5(qt)τ6(t) = τ5(t)τ6(qt) + q1/4t1/2τ2(qt)τ3(t).

(4.25)

It was shown in [26] that the above bilinear equations are solved in terms of the
dual partition function for SU(2) SYM with two fundamental flavors. More
precisely, in that paper it was shown that if we define

ZD
0 ≡

∑
n

snZ(Q1, Q2, uqn, t),

ZD
1/2 =

∑
n

snZ(Q1, Q2, uqn+1/2, t) = ZD
0 (uq1/2), (4.26)

where Z is the Nekrasov partition function for the Nf = 2 theory, the τ -
functions solving (4.25) can be written as

τ2 = ZD
0 (Q1q

1/2, Q2, tq
−1/2), τ3 = ZD

0 (Q1q
−1/2, Q2, tq

1/2), (4.27)

τ5 = ZD
1/2(Q1, Q2q

1/2, tq−1/2), τ6 = ZD
1/2(Q1, Q2q

−1/2, tq1/2). (4.28)

By using also τ4 = T2(τ2), τ1 = T2(τ5), we can add to these

τ1 = ZD
1/2(Q1, Q2q

1/2, tq1/2), τ4 = ZD
0 (Q1q

1/2, Q2, tq
1/2). (4.29)
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Working in the same way as in Sect. 4.1, one can arrive at bilinear equations
for Nekrasov functions, but differently from what happened in that simpler
case, now one equation does not suffice to determine the non-perturbative
contribution from the perturbative one: we have to use both the first and
third equations of (4.25). The first equation takes the form∑

n

t2n2
u2nZ1-lZinst(Q1q

1/2, uqn; tq1/2)Z1-lZinst(Q1q
−1/2, uq−n, tq−1/2)

=
∑
n

t2n2
u−2nZ1-lZinst(Q1q

1/2, uqn; tq−1/2)Z1-lZinst(Q1q
−1/2, uq−n, tq1/2)

−t1/2Q1

∑
r∈Z+1/2

t2r2
u−2rZ1-lZinst(Q2q

1/2, uqr, tq−1/2)Z1-l

Zinst(Q2q
−1/2, uq−r, tq1/2). (4.30)

This leads to the following equation on the one-instanton contribution:

q−1/2(1 − q)[Z1(Q1q
−1/2) − Z1(Q1q

1/2)]

=
u

Q1

Z1-l(Q2q
−1/2, uq1/2)Z1-l(Q2q

1/2, uq−1/2)
Z1-l(Q1q1/2)Z1-l(Q1q−1/2)

+
1

Q1u

Z1-l(Q2q
−1/2, uq−1/2)Z1-l(Q2q

1/2, uq1/2)
Z1-l(Q1q1/2)Z1-l(Q1q−1/2)

.

(4.31)

Differently from what happened in the pure gauge case, one equation is no
longer enough to determine the partition function, because we get two occur-
rences of the function with different shifts on the mass parameter Q1. We have
to use the third equation of (4.25) that leads to∑

n

t2n2
u4nqn2

Z1-lZinst(Q1q
1/2, uqn; tq−1/2)Z1-lZinst(Q1q

−1/2, uq−n; tq3/2)

=
∑
n

t2n2
qn2

Z1-lZinst(Q1q
1/2, uqn; tq1/2)Z1-lZinst(Q1q

−1/2, uq−n; tq1/2)

+q1/4t1/2
∑

r

t2r2
qr2

Z1-lZinst(Q2q
1/2, uqr, tq1/2)Z1-lZinst(Q2q

−1/2, uq−r; tq1/2)

(4.32)

that gives an equation for the one-instanton contribution

(1 − q)
[
qZ1(Qq1/2) − Z1(Q1q

−1/2)
]

= q
Z1-l(uq−1/2, Q2q

1/2)Z1-l(uq1/2, Q2q
−1/2)

Z1-l(Q1q−1/2)Z1-l(Q1q1/2)

+ q
Z1-l(uq−1/2, Q2q

−1/2)Z1-l(uq1/2, Q2q
1/2)

Z1-l(Q1q−1/2)Z1-l(Q1q1/2)
.

(4.33)

Putting the two equations together, and using the identities (A.10) and (A.11),
we obtain the correct one-instanton contribution

Z1 =
qu2

(1 − u2)2(1 − q)2

[(
1 − u

Q1

)(
1 − u

Q2

)
+
(

1 − 1
uQ1

)(
1 − 1

uQ2

)]
,

(4.34)



2752 G. Bonelli et al. Ann. Henri Poincaré

matching the one computed by instanton counting. One can go on and compute
the higher instanton contributions in an analogous way. These two equations
are enough to determine the non-perturbative contribution order by order in
t, starting from the knowledge of the perturbative contribution, which is the
t0 term.

Let us finally note that all these bilinear equations could be written as
lattice equations on Q((A2+A1)(1)) by noting that all the various tau functions
can be obtained starting from a single one, let us say τ1, since we have

τ2 = T−1
2 (T4(τ1)) , τ3 = T1(τ1), τ4 = T4(τ1), (4.35)

τ5 = T−1
2 (τ1), τ6 = T−1

4 (T1(τ1)) , (4.36)

so that it is possible to introduce, following [34], the tau lattice

τk,m
N ≡ T k

1 Tm
2 TN

4 (τ1)

= ZD
0

(
q− N+k

2 Q1, q
N−k+1

2 Q2, q
k+N

2 u, qmt
)

.
(4.37)

In this notation the original tau-variables can be denoted by

τ1 ≡ τ0,0
0 , τ2 ≡ τ0,−1

1 , τ3 ≡ τ1,0
0 , (4.38)

τ4 ≡ τ0,0
1 , τ5 ≡ τ0,−1

0 , τ6 ≡ τ1,0
−1 , (4.39)

and the time flows are integer shifts of the indices of the tau function (4.37).
However, not all the flows are compatible with the instanton expansion: from
(3.47) and (3.55) we see that the natural expansion parameter for the solution
of the T1 and T4 flows are, respectively, Q1Q2 and Q2/Q1.

In fact, the usual Nekrasov expansion, as defined in “Appendix A” by a
converging expansion in t, can only solve the equations for T2, which have t as
time parameter: this is because if we try to solve the other equations iteratively
by starting with the perturbative contribution as defined in equation (A.7),
there is no region in parameter space where all the multiple q-Pochhammer
functions with shifted arguments entering the bilinear equations have converg-
ing expressions simultaneously. To find a solution, one should find an analogue
of the perturbative partition function (A.7) which is of order zero, not in t,
but rather in the appropriate time parameter, solving the order zero of the
bilinear equations. This indeed corresponds to an expansion of the topological
string partition function (4.1) in the corresponding patch in the moduli space
in the Topological Vertex formalism [3].

A preliminary analysis shows that, on top of the evolution in the mass
parameters, comparing with the solution in terms of Nekrasov functions, we
see that consistency requires also that

T1(u) = q1/2u and T4(u) = q1/2u. (4.40)

To see why this must hold, one has to consider tau functions related by time
evolutions of the flows T1, T4. For example, the action on the flow T1 on the
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solutions τ1, τ3 (the same considerations would hold by considering the other
tau functions):

τ3 = T1(τ1), τ1 = ZD
0 (Q1, Q2q

1/2, uq1/2, tq1/2), τ3 = ZD
0 (Q1q

−1/2, Q2, u, tq1/2).
(4.41)

Equation (4.40) is consistent with the interpretation of the flows T1, T3, T4 as
the Bäcklund transformations of T2.

5. Degeneration of Cluster Algebras and Four-Dimensional
Gauge Theory

In the previous sections we saw how the cluster algebra structure yields the
q-difference equations satisfied by the partition function of the theory, and
produces the spectrum of the theory in a weakly coupled chamber by a sys-
tematic application of the generalized mutation algorithm. Further, it was
observed in [17] that the BPS quivers describing the purely four-dimensional
theory (with all KK modes decoupled) are contained in the five-dimensional
one as subquivers with two fewer nodes: roughly, one of the additional nodes
is the five-dimensional instanton monopole, while the other corresponds to the
KK tower of states. From the point of view of cluster integrable systems and
q-Painlevé equations, this was already realized in [18]. Graphically, to go from
the 5d theory to the 4d one, one “pops” two nodes of the quiver.

We now show how it is possible to explicitly implement the operation
of deleting the two nodes that brings the five-dimensional quiver to the four-
dimensional one, at the level of the full cluster algebra, so that we recover
the four-dimensional description of the BPS states. From the gauge theory
point of view, the four-dimensional limit R

4 × S1
R → R

4 is obtained by taking
the radius of the five-dimensional circle R → 0. More precisely, one has to
scale the Kähler parameters in such a way that the KK modes and instanton
particles decouple from the BPS spectrum. This limit is usually achieved by
implementing the geometric engineering limit [47,48], and takes the form

t =
(

RΛ
2

)4−Nf

, q = e−Rgs , u = e−2aR, R → 0. (5.1)

We see that this limit amounts to sending

q → 1, t → 0,
t

(log q)4−Nf
finite. (5.2)

Because this limit involves

log q = log

(∏
i

xi

)
, (5.3)

while the other Casimir is still given by a product of cluster variables, we can
already see that it is unlikely for this limit to be able to reproduce cluster
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algebra transformations. Another way to see this is the case, consider the
relation between X- and A-cluster variables for the case of local F0:

x1 =
(

τ4
τ2

)2

(qt)1/2, x2 =
(

τ1
τ3

)2

t−1/2, (5.4)

x3 =
(

τ2
τ4

)2

(qt)1/2, x4 =
(

τ3
τ1

)2

t−1/2. (5.5)

Because of this, if we implement the limit t → 0, q → 1 by using the geo-
metric engineering prescription, the tau functions, which are given in terms
of five-dimensional Nekrasov partition function, will simply go to their four-
dimensional limit. Then, no X-cluster variable has an interesting limit. In fact,
this is instead the continuous limit of the corresponding Painlevé equation, in
which the q-discrete equations become differential equations (see, for example,
[21] for the explicit implementation of the limit on the 5d Nekrasov functions).

We will now show how to instead implement the limit q → 1, t → 0 for
the cases we considered in this paper: local F0, F1, and dP3 (respectively, 5d
pure gauge theory without and with Chern–Simons term, and the theory with
Nf = 2 hypermultiplets), in such a way that the cluster algebra structure of
the quiver is preserved: in particular we will see that:

• The mutations of the five-dimensional quiver degenerate to those of the
four-dimensional one in terms of the reduced set of variables;

• The q-Painlevé time flows (or a sub-flow, in the case of F1), which were
given by automorphisms of the five-dimensional quivers, degenerate to
appropriate sequences of mutations and permutations which are auto-
morphisms of the four-dimensional ones.

Of course, the recipe taken to implement these limit is quite general,
and we have no reason to expect it not to work for the other cases. We will
implement the limit on the X-cluster variables, because they carry no am-
biguity related to the choice of coefficient/extended adjacency matrix. The
four-dimensional cluster A-variables can then be obtained from the X-cluster
variables using the adjacency matrix as usual. However, because we are im-
plementing this limit on the X-cluster variables, we do not have an explicit
expression in terms of Nekrasov functions for the limiting system.

5.1. From local F0 to the Kronecker Quiver

Recall the expression for the Casimirs in terms of the cluster variables:

t = x−1
2 x−1

4 = x1x3/q, q = x1x2x3x4. (5.6)

Let us say that we want to decouple the nodes 3,4 on the corresponding quiver,
so that we remain with the Kronecker quiver with nodes 1,2 (the red quiver
in Fig. 3a). We need then to implement the limit

t → 0, q → 1, x1, x2 finite, (5.7)
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which, as we argued above, is different from the geometric engineering limit.
We then have to take

x3 = qt/x1 → 0, x4 =
1

x2t
→ ∞, x3x4 finite. (5.8)

We are interested in the expressions for the mutations at the remaining nodes
after decoupling, as well as for the q-Painlevé translation. For the mutations,
this case is very simple: the limit takes the form

μ1(x) =
(

x−1
1 , x2

(1+x−1
1 )2

, x3, (1 + x1)2x4

)
→
(

x−1
1 , x2

(1+x−1
1 )2

, 0, ∞
)

, (5.9)

μ2(x) =
(

x1(1 + x2)2, x−1
2 , x3

(1+x−1
2 )2

, x4

)
→ (

x1(1 + x2)2, x−1
2 , 0, ∞ )

.

(5.10)

We see that the mutations for x1, x2 do not involve the variables x3, x4, so
that no limit is actually necessary, and in fact they are already in the form
of mutations for the Kronecker subquiver. Further, these mutations preserve
the limiting value of x3, x4. In fact, the choice of the subquiver is completely
arbitrary: by this limiting procedure we can consider any of the Kronecker
subquivers of the quiver in Fig. 2. The limit is less trivial on the q-Painlevé
flow:

TF0(x) =
(

x2
(1+x3)

2

(1+x−1
1 )2

, x−1
1 , x4

(1+x1)
2

(1+x−1
3 )2

, x−1
3

)
→
(

x2
(1+x1)2

, x−1
1 , 0, ∞

)
.

(5.11)

Again the limiting value of x3, x4 is preserved, while in terms of operations of
the Kronecker quiver the q-Painlevé flow becomes

TF0 = (1, 2)μ1, (5.12)

which is an automorphism of the Kronecker quiver.

5.2. Local F1

We can proceed and take the analogous limit for local F1, for which

t = x1x
−1
2 x2

3, q = x1x2x3x4. (5.13)

We again focus on the Kronecker subquiver with nodes 1,2, and set

x3 =
(
tx−1

1 x2

)1/2 → 0, x4 = qt−1/2x
−1/2
1 x

−3/2
2 → ∞. (5.14)

The limiting behavior of the mutations is now

μ1(x) =
(

x−1
1 , x2

(1+x−1
1 )2

, x3

1+x−1
1

, (1 + x1)3x4

)
→
(

x−1
1 , x2

(1+x−1
1 )2

, 0, ∞
)

,

(5.15)

μ2(x) =
(

x1(1 + x2)2, x−1
2 , x3

1+x−1
2

, x4

1+x−1
2

)
→ (

x1(1 + x2)2, x−1
2 , 0, ∞ )

,

(5.16)

which again yields the correct limiting behavior. The q-Painlevé flow does not
have a good limiting behavior: however, its square does, since

T 2
F1

= TF0 → (1, 2)μ1 (5.17)
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Figure 11. Nf = 2 kite-subquivers for the discrete flow T2

as we saw above.

5.3. Local dP3

This case is much more interesting, because we get different decoupling limits,
and only one of them is similar to the usual four-dimensional limit, involving
t → 0. These are related to the presence of different discrete flows. We con-
sider as usual T2 first, which we have already seen to be related to the usual
weakly coupled/instanton counting picture. In analogy to what was done in
the previous cases, since

T2(t) = qt, (5.18)

we take the limit

t → 0, q → 1, (5.19)

by taking a limit on two of the cluster variables. Looking at the quiver for this
case, we recognize that the subquiver with vertices 2,3,4,6 (or equivalently
1,3,5,6) gives the BPS quiver of the four-dimensional Nf = 2 theory, as in
Fig. 11. We will focus on the former case.

Because we are “popping out” the nodes 1,5 from the quiver, we want to
achieve this by implementing the limit (5.19) directly on the cluster variables.
By studying the expressions for the Casimirs (3.32), (3.33), we find

x3x6 = Q1Q2q
1/2, x1x4 = (Q1Q2t)−1 → ∞, x2x5 = q1/2t → 0, (5.20)

so that we want to study the limit

x1 = (x4Q1Q2t)−1 → ∞, x5 = q1/2tx−1
2 → 0. (5.21)

Taking the limit on the mutations, we obtain

μ2(x) =
(

x1(1 + x2), x−1
2 , x3

1+x−1
2

, x4

1+x−1
2

, x5, (1 + x2)x6

)
→
(

∞, x−1
2 , x3

1+x−1
2

, x4

1+x−1
2

, 0, (1 + x2)x6

)
,

(5.22)

and similarly for the other mutations μ3, μ4, μ6 that all degenerate to the
mutations of the four-dimensional quiver. The discrete flow also has a “good”
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Figure 12. Nf = 2 kite-subquivers for the discrete flow T1

limit:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T2(x1) = 1+x−1
5

(1+x2)x6
,

T2(x2) =
x4(1+x5)(x6(1+x2)(1+x−1

5 )−1)
(1+x−1

2 )(1+x−1
3 (1+x−1

2 )(1+x5))
,

T2(x3) = 1+x6(1+x2)(1+x−1
5 )−1

x2(1+x−1
3 (1+x−1

2 )(1+x5)−1) ,

T2(x4) = 1+x−1
2

x3(1+x5)
,

T2(x5) =
x1(1+x2)(1+x3(1+x5)(1+x−1

2 )−1)
(1+x−1

5 )(1+x−1
6 (1+x−1

5 )(1+x2)−1) ,

T2(x6) = 1+x3(1+x5)(1+x−1
2 )−1

x5(1+x−1
6 (1+x−1

5 )(1+x2)−1)

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞,
x4

(1+x−1
2 )(1+x−1

3 (1+x−1
2 )) ,

x3
1+x2(1+x3)

,
1+x−1

2
x3

,

0,

x6 (1 + x2(1 + x3)) .

(5.23)

If we call the variables after taking the limit

x4 → X1, x2 → X2, x3 → X3, x6 → X4, (5.24)

we have that the limit of the discrete flow is

T
(4d)
2 = (3, 2, 1)μ3μ2, (5.25)

which is an automorphism of the 4d quiver. We can follow the same logic for
the other discrete flows T1, T3, T4: we will from now on discuss only the limits
on the discrete time flows, because those on the mutations are rather simple
and given by essentially the same computations as above. In the first case the
flow is

T1(Q+) = q−1Q+, Q+ = Q1Q2 (5.26)

so that the natural guess for the right limit to consider is Q+ → ∞, in analogy
with the previous case. By looking at the Casimirs, we arrive to the conclusion
that we can either decouple the nodes 1,3 or 4,6, producing the 4d Nf = 2
subquivers in Fig. 12.

The limit we want to implement is then

x4 = (x1Q+t)−1 → 0, x6 = Q+q1/2x−1
3 → ∞, (5.27)
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Figure 13. Nf = 2 kite-subquivers for the discrete flow T3

which gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1(x1) =
x3(1+x4)(1+x5(1+x1)(1+x−1

4 )−1)
x1(1+x−1

2 (1+x−1
1 )(1+x4)−1) ,

T1(x2) = 1+x5(1+x1)(1+x−1
4 )−1

x1(1+x−1
2 (1+x−1

1 )(1+x4)−1) ,

T1(x3) = 1+x−1
1

x2(1+x4)
,

T1(x4) =
x6(1+x1)(1+x2(1+x4)(1+x−1

1 )−1)
(1+x−1

4 )(1+x−1
5 (1+x−1

4 )(1+x1)−1) ,

T1(x5) = 1+x2(1+x4)(1+x−1
1 )−1

x4(1+x−1
5 (1+x−1

4 )(1+x1)−1) ,

T1(x6) = 1+x−1
4

x5(1+x1)
.

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3

(1+x−1
1 )(1+x−1

2 (1+x−1
1 ))

,

x2
1+x1(1+x2)

,
1+x−1

1
x2

,

0,

x5 (1 + x1(1 + x2)) ,

∞.

(5.28)

which is the same 4d quiver automorphism as for T2, up to permutations of
the nodes. The time evolution T3 is characterized by

T3(Q+) = qQ+, T3(t) = q−1t, (5.29)

so that the natural limit on the Casimirs is

x3x6 = Q+q1/2 → 0, x2x5 = q1/2t → ∞. (5.30)

This can be achieved by decoupling the nodes 3,5 or 2,6, keeping the subquivers
depicted in Fig. 13.

Choosing the former one for concreteness, we want to compute the limit

x3 = Q+q1/2x−1
6 → 0, x5 = q1/2tx−1

2 → ∞, (5.31)
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on the discrete evolution T3. This is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T3(x1) = 1+x4(1+x6)(1+x−1
3 )−1

x6(1+x−1
1 (1+x−1

6 )(1+x3)) ,

T3(x2) = 1+x−1
6

x1(1+x3)
,

T3(x3) =
x5(1+x6)(1+x1(1+x3)(1+x−1

6 )−1)
(1+x−1

3 )(1+x4(1+x−1
3 )(1+x6)−1) ,

T3(x4) = 1+x1(1+x3)(1+x−1
6 )−1

x3(1+x−1
4 (1+x−1

3 )(1+x6)−1) ,

T3(x5) = 1+x−1
3

x4(1+x6)
,

T3(x6) =
x2(1+x3)(1+x4(1+x6)(1+x−1

3 )−1)
(1+x−1

6 )(1+x−1
1 (1+x−1

6 )(1+x3)−1) ,

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
1+x6(1+x1)

,
1+x−1

6
x1

,

0,

x4(1 + x6(1 + x1)),
∞,

x2

(1+x−1
6 )(1+x−1

1 (1+x−1
6 ))

.

(5.32)

We see that in all the cases that yielded the time evolution of q-Painlevé
III1, the degeneration of the time flow produces the same automorphism of
an appropriate subquiver. It remains to study the flow T4, which yielded a
q-Painlevé IV time evolution, characterized by

T4(Q−) = qQ−, Q− =
Q2

Q1
. (5.33)

In terms of the Casimirs b0, b1, this leads to

x2x4x6 = (qQ−)1/2 → 0, x1x3x5 = q−1Q
−1/2
− → ∞. (5.34)

To achieve this without affecting the Casimirs a0, a1, a2 we have to decouple
either the nodes 2,5, or the nodes 3,6, or the nodes 1,4, giving the subquivers
in Fig. 14, and we will consider the first option, given by the limit

x2 = (qQ−)1/2x−1
4 x−1

6 → 0, x5 = q−1Q
−1/2
− x−1

1 x−1
3 → ∞. (5.35)

Here, something similar to what happened when we studied the degen-
eration of the q-Painlevé III3 associated to local F1 happens: recall that in
that case TF1 did not have a good degeneration limit as an automorphism of
the subquiver, but rather its square did. We observed that this was related
to the Z2-periodicity of the action of TF1 on the BPS charges. What happens
here is that not T4, but rather T 3

4 has a good action after taking the limit, in
particular only for T 3

4 it is true that

T 3
4 (x2) → 0, T 3

4 (x5) → ∞, (5.36)

consistently with the limit.
The resulting subquiver is the oriented square with arrows of valency one

and no diagonals with adjacency matrix

B =

⎛
⎜⎜⎝

0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0

⎞
⎟⎟⎠ . (5.37)
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Figure 14. Nf = 2 subquivers for the discrete flow T4

The corresponding four-dimensional gauge theory has been already clas-
sified in [14] as Q(1, 1) and shown to correspond to H3, which is the Argyres–
Douglas limit of the Nf = 3 with SU(2). All this is consistent with the reduc-
tions of the Sakai’s table in Fig. 1.

The symmetry type of the five-dimensional SU(2) Nf = 2 gauge theory
is E

(1)
3 . The reduction of the T1, T2 and T3 flows corresponds to the reduction

E
(1)
3 → D

(1)
2 , the latter being the symmetry type of the four-dimensional

SU(2) Nf = 2 gauge theory. The reduction of the T4 flow corresponds to the
reduction E

(1)
3 → A

(1)
2 , the latter being the symmetry type of the H3 theory.

According to Sakai’s classification (see Fig. 1) and the analysis in [42], this
flow correctly points to the Argyres–Douglas theory of Nf = 3 which is, in the
four-dimensional limit, governed by the differential PIV equation.

6. Conclusions and Outlook

In this paper, we studied the discrete flows induced by automorphisms of
BPS quivers associated to Calabi–Yau geometries engineering five-dimensional
quantum field theories. We showed that these flows provide a simple and ef-
fective way to determine the BPS spectrum of these theories, producing at
the same time a set of bilinear q-difference equations satisfied by the grand
canonical partition function of topological string amplitudes. In the rank one
case these are known as q-Painlevé equations and admit in a suitable region of
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the moduli space solutions in terms of Nekrasov–Okounkov, or free fermions,
partition functions.

A very attractive feature of this approach is that a simple symmetry
principle—the symmetry of the BPS quiver—provides strong constraints on
the BPS spectrum and contains a rich and deep set of information which
goes well beyond the perturbative approaches to the same theories. Indeed,
one can show that the non-perturbative completion of topological string via
a spectral determinant presentation, arising in the context of the topological
string/ spectral theory correspondence, arises naturally as solution of this sys-
tem of discrete flow equations [9]. Moreover, some of the flows associated to
the BPS quiver directly link to non-perturbative phases of the corresponding
gauge theory, as we have seen for a particular flow of the local dP3 geometry
which describe a (A1,D4) Argyres–Douglas point, see Sect. 5.3. A discussion of
the relation between Painlevé equations and Argyres–Douglas points of four-
dimensional gauge theories can be found in [42] based on the class S description
of these theories [49].

It is also very interesting that a fully classical construction, the cluster
algebra associated to the BPS quiver, contains information about the quantum
geometry of the Calabi–Yau. Indeed, the zeroes of the τ -functions of the clus-
ter algebra provide the exact spectrum of the associated quantum integrable
system, as it was shown in [9] for the local F0 geometry corresponding to rela-
tivistic Toda chain [50], and in [51,52] for its four-dimensional/non-relativistic
limit. Further evidence we provide in this paper is that the X-cluster variables
of the 5d quiver flow in the 4d limit to the X-cluster variables of the corre-
sponding four-dimensional BPS quiver, which are known to be related to the
Voros symbols, i.e. exponential of the exact quantum WKB periods of the four-
dimensional integrable system [53]. The fact the we find that standard topo-
logical string—or equivalently 5d gauge theory in the self-dual Ω-background
ε1 + ε2 = 0 rather than in the Nekrasov–Shatashvili [54] background ε1 = 0—
provides a quantization of the Calabi–Yau geometry is not fully surprising
from the view point of equivariant localization. Indeed, the difference between
the two cases resides in a different choice of one-parameter subgroup of the full
toric action, and therefore contains the same amount of information, although
under possibly very non-trivial combinatorial identities. A first instance of this
phenomenon was discussed from the mathematical perspective in [55]. For the
case at hand, the non-trivial relation between the two approaches is encoded
in a suitable limit of blow-up equations [43,56–59].

There are several directions to further investigate.

Let us notice that, with respect to the framework of [13,31], to define a
BPS chamber one should set the precise order of the arguments of the cen-
tral charges Z(γi) for all the charges γi in the spectrum. While our method
efficiently computes the spectrum, at least in the tame chambers, it doesn’t
point yet to a precise definition of the corresponding moduli values. This is
because we still miss a link with the relevant stability conditions. Our method
relies on the existence of patches in the moduli space where the topological
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string partition function allows finite radius converging expansions8. Let us no-
tice that clarifying this point would prepare the skeleton of the demonstration
that Kontsevich–Soibelman wall-crossing would be equivalent to the discrete
equations (q-Painlevé and higher rank analogues) we obtain. Moreover, the
chambers we do compute are “triangular” in the sense of [60]. In this paper,
it is shown that similar chambers exist for all the class S[A1] theories: while
multiple affinizations are generically involved, these coincide with the ones
computed with our methods, at least in the examples we work out explicitly.

We have seen that when the Calabi–Yau geometry admits several moduli
there are various inequivalent flows for the same BPS quiver, but only few of
them have a realization in terms of weakly coupled Lagrangian field theories.
In some cases the other flows correspond simply to Bäcklund transformations
mapping solutions one into the others. This is the case, for example, for the
fluxes T1, T2, T3 discussed in Sect. 3.3. We expect that the full solution to this
system of equations will be given in terms of suitable expansions of the topo-
logical vertex9 [3], while its non-perturbative completion should be given by
the spectral determinant of the corresponding Nf = 2 spectral curve. In other
cases the flows are intrinsically non-perturbative, like the flux T4 discussed in
Sect. 5.3. It would be interesting to characterize the solutions of these flows in
terms of supersymmetric indices of four-dimensional gauge theories [63–65].

We expect that the full refined topological string or equivalently the gauge
theory in the full Ω background is captured by the quantum cluster algebra.
The bilinear equations in this case are expected to have a direct relation to
the K-theoretic blow-up equations [24].

We have also shown that the X-cluster variables correctly reproduce the
ones of the four-dimensional BPS quivers under a suitable scaling limit. It
would be very interesting to further explore the relation of our results with
the ones on exact WKB methods and TBA equations [56,66,67], possibly
extending these methods to the q-difference/5d case. For the class S theories,
an important rôle should be played by the group Hitchin system [68], in the
perspective of its quantization [69,70]. An interesting open question is the
nature of the quantum periods in five dimensions and their relation to the
cluster variables appearing in the study of q-Painlevé equations.

In the four-dimensional case, the Painlevé/gauge theory correspondence
[42] extends also to non-toric cases, corresponding to isomonodromic deforma-
tion problems on higher genus Riemann surfaces, see [71,72] for the genus one
case. These have a 5d uplift in terms of q-Virasoro algebra [73] and matrix mod-
els [74,75] whose BPS quiver interpretation would be more than welcome. Also
the higher rank extension of BPS quiver flows and the associated tau-functions
is to be explored in detail. As a first example, one can consider SU(N) Su-
per Yang–Mills, whose spectral determinant in matrix model presentation was
presented in [76]. In the one period phase, this satisfies N -particle Toda chain
equations. The corresponding cluster integrable system is discussed in [19].

8See also the comments at the end of the Sect. 4.2 on this point.
9Similar considerations appeared in [61,62] for the four-dimensional case.
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More in general, our method should extend beyond the rank 1 case and q-
Painlevé systems, pointing to more general results about topological string
partition functions and discrete dynamical systems.
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A. q-Special Functions and Nekrasov Functions

The 5d instanton partition function [77,78] for N = 1 5d SU(N) SYM with
Nf fundamental flavors and Chern–Simons level k = 0, 1, . . . , N − 1 is given
by a sum over N-tuples if partitions λ(λ1, . . . , λN ) with counting parameter
t:

Zinst =
∑
λ

t|λ|ZCS
λ Zfund

λ Zgauge
λ . (A.1)

The Chern–Simons factor is given by

ZCS
λ =

N∏
i=1

Tλi
(ui; q1, q2)k, Tλ(u; q1, q2) =

∏
(i,j)∈λ

uqi−1
1 qj−1

2 , (A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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while the matter and gauge contributions can all be written in terms of the
single building block

Nλ,μ(u, q1, q2) =
∏
s∈λ

(
1 − uq

−aμ(s)−1
2 q

lλ(s)
1

)∏
s∈μ

(
1 − uq

aλ(s)
2 q

−lμ(s)−1
1

)
,

(A.3)

in the following way:

Zfund
λ =

Nf∏
i=1

N∏
α=1

Nλ,∅(Qiuα), (A.4)

Zgauge
λ =

N∏
i,j=1

1
Nλi,λj

(ui/uj ; q1, q2)
. (A.5)

The perturbative contribution is given by the following:

Zcl = e− log t
∑N

i=1(log ui)
2

2 log q1 log q2
−k

∑N
i=1(log ui)

3

6 log q1 log q2 , (A.6)

Z1-loop =

∏
1≤α	=β≤N (uα/uβ ; q1, q2)∞∏Nf

i=1

∏N
α=1 (Qiuα; q1, q2)∞

. (A.7)

Here (ui/uj ; q1, q2)∞ is the multiple q-Pochhammer symbol, defined by

(z; q1, . . . , qn)∞ ≡
∞∏

i1,...,iN=0

(
1 − z

n∏
k=1

qik

k

)
= exp

(
−

∞∑
m=1

zm

m

N∏
k=1

1
1 − qm

k

)
.

(A.8)

In all the formulae above, the following notations are used, in terms of the
four-dimensional gauge theory parameters:

uα = eβaα , Qi = e−βmi , q1 = eβε1 , q2 = eβε2 . (A.9)

An important property of the double Pochhammer symbol that has to be used
repeatedly when solving the bilinear equations, is the following:(

zq; q, q−1
)
∞

(z; q, q−1)∞
= (zq; q)∞ ,

(
zq−1; q, q−1

)
∞

(z; q, q−1)∞
=

1
(z; q)∞

, (A.10)

(zq; q, )∞
(z; q)∞

=
1

1 − z
. (A.11)

The full partition function Z(u; t) is given by Z = ZclZ1−loopZinst.

B. q-Painlevé III and IV in Tsuda’s Parameterization

We provide here the choice of parameters for the cluster algebra that repro-
duces the q-Painlevè III1 and IV equations of [30]. It turns out for this to be
useful to introduce

u1 = a1

(
b1
b0

)1/3

, u2 = a2

(
b0
b1

)1/3

, u3 = a0

(
b1
b0

)1/3

, (B.1)
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u4 = a1

(
b0
b1

)1/3

, u5 = a2

(
b1
b0

)1/3

, u6 = a0

(
b0
b1

)1/3

, (B.2)

Note that in [30] the Casimirs have a geometric meaning in terms of points
blown-up on P

1 × P
1.

B.1. qPIII

Let us consider first the case of qPIII. We choose as basis for the tropical
semifield four independent Casimirs and parameterize in terms of them the
yi’s in such a way that (3.32) and (3.33) are satisfied, together with the cor-
rect time evolution (3.37). We choose as independent Casimirs a1, a2, q, b0. To
match with [30], we also have to make a different choice for the time evolution
parameter q,

q =
∏

i

y
−1/2
i . (B.3)

Set

y1 = q−1/3b
2/3
0 a−1

1 , y2 = q1/3b
2/3
0 a−1

2 , y3 = q−4/3b
2/3
0 a1a2, (B.4)

y4 = q1/3b
−2/3
0 a−1

1 , y5 = q−1/3b
2/3
0 a−1

2 , y6 = q−2/3b
−2/3
0 a1a2. (B.5)

The time evolution is the following (we only write the relevant τ -variables):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ2 = τ4,

τ3 = a2b
2/3
0 τ3τ4+q1/3τ1τ6

τ2
,

τ5 = τ1,

τ6 = q1/3a2τ1τ6+τ3τ4b
2/3
0

τ5
,

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ1 = τ5,

τ3 = a1b
2/3
0 τ5τ6+q1/3τ2τ3

τ4
,

τ4 = τ2,

τ6 = q1/3a1τ2τ3+b
2/3
0 τ5τ6

,

(B.6)

leading to the bilinear equations

τ3τ2 = q1/3(τ5τ6 + u2τ3τ2), τ6τ5 = b
2/3
0 (u5τ5τ6 + τ3τ2), (B.7)

τ2τ3 = q1/3(u4τ5τ6 + τ2τ3), τ5τ6 = b
2/3
0 (u1τ2τ3 + τ5τ6). (B.8)

These differ from the bilinear equations of [30] by different overall factors of the
RHS, so in principle it would seem that they are different bilinear equations.
However, they are still equivalent to qPIII. If we define

f =
τ5τ6
τ2τ3

, g =
τ1τ6
τ3τ4

, (B.9)

we get the system of first-order q-difference equations

ff = a2g
g + u−1

5

g + u2
, gg =

f

a1

f + u1

f + u−1
4

, (B.10)

which is the qPIII equation appearing in [30].
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B.2. qPIV

The action of T4 on the tau function is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 = τ4,

τ2 = q4/3b
2/3
0 τ4τ5τ6+a1q5/3τ2τ3τ4+a1a2b

4/3
0 τ1τ2τ6

τ1τ3
,

τ3 = τ6,

τ4 = q5/3τ4τ5τ6+a1b
4/3
0 τ2τ3τ4+a1a2q1/3b

2/3
0 τ1τ2τ6

τ3τ5
,

τ5 = τ2,

τ6 = b
4/3
0 τ4τ5τ6+q1/3a1b

2/3
0 τ2τ3τ4+q2/3a1a2τ1τ2τ6
τ1τ5

,

(B.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 = q2/3b
4/3
0 τ1τ2τ3+q1/3a1τ1τ5τ6+a1a2b

2/3
0 τ3τ4τ5

τ2τ6
,

τ2 = τ5,

τ3 = q2/3τ1τ2τ3+q1/3a1b
2/3
0 τ1τ5τ6+a1a2b

4/3
0 τ3τ4τ5

τ2τ4
,

τ4 = τ1,

τ5 = q2/3b
2/3
0 τ1τ2τ3+q1/3a1b

4/3
0 τ1τ5τ6+a1a2τ3τ4τ5

τ4τ6
,

τ6 = τ3.

(B.12)

At a first glance, these seem trilinear, rather than bilinear, equations. However,
take linear combinations of (B.11) in such a way that the first term on the RHS
cancels out:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ6τ1b
−4/3
0 − q−5/3τ4τ3 =

τ2τ3τ4a1(q1/3b−2/3
0 −q−5/3b4/3

0 )+a1a2τ1τ2τ6(q2/3b−4/3
0 −q−4/3)

τ5
,

τ6τ5b
−2/3
0 − q−4/3τ2τ3 =

a1a2τ1τ2τ6(q2/3b−2/3
0 −q−4/3b4/3

0 )
τ1

,

τ4τ5q−1/3 − b
−2/3
0 τ2τ1 =

τ2τ3τ4a1q4/3(q−5/3b4/3
0 −q1/3b−2/3

0 )+a1a2τ1τ2τ6(1−b2/3
0 )

τ3
.

(B.13)

We see that the second equation is now bilinear! We can repeat this procedure
to obtain three bilinear equations from (B.11):

τ6τ5b
−2/3
0 − τ2τ3q

−4/3 = a1a2

(
q2/3b

−2/3
0 − b

4/3
0 q−4/3

)
τ2τ6, (B.14)

τ6τ1q
−1/3 − τ4τ3b

−2/3
0 =

(
b
4/3
0 q−1/3 − q5/3b

−2/3
0

)
τ4τ6, (B.15)

τ4τ5q
−1/3 − τ2τ1b

−2/3
0 = a1

(
b
4/3
0 q−1/3 − q5/3b

−2/3
0

)
τ2τ4. (B.16)

We can make these three second-order equations in three variables by using
the (B.12):

τ6τ2b
−2/3
0 − τ2τ6q

−4/3 = a1a2

(
q2/3b

−2/3
0 − b

4/3
0 q−4/3

)
τ2τ6, (B.17)

τ6τ4q
−1/3 − τ4τ6b

−2/3
0 =

(
b
4/3
0 q−1/3 − q5/3b

−2/3
0

)
τ4τ6, (B.18)

τ4τ2q
−1/3 − τ2τ4b

−2/3
0 = a1

(
b
4/3
0 q−1/3 − q5/3b

−2/3
0

)
τ2τ4, (B.19)

These are the bilinear equations for qPIV, with the parameterization of
[30].
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C. q-Painlevé Transcendents and Autonomous Limit

Recall from Sect. 4.1 that the solution G(t; q, u, s) to the q-Painlevé III3 equa-
tion

G(qt)G(q−1t) =
(

G(t) + t

G(t) + 1

)2

(C.1)

was expressed in terms of cluster X-variables as G = x−1
2 . In terms of dual

Nekrasov functions, this translates to

G = it1/4
ZD
1/2

ZD
0

. (C.2)

The dual partition functions here are defined as

ZD
0 =

∑
n∈Z

snZ(uqn, t), ZD
1/2 =

∑
n∈Z

sn+ 1
2 Z
(
uqn+ 1

2 , t
)

, (C.3)

where Z is the partition function of pure five-dimensional SU(2) super Yang–
Mills. It is possible to study the autonomous limit of this object, following the
discussion of [19] for the tau functions. One sets

s = eη/�, q = e�, u = ea, (C.4)

sending � → 0. In this limit, one can write the partition function as

Z(a, �, t) = exp

{
1
�2

∞∑
n=0

�
2nFn(a, t)

}
, (C.5)

so that we want to take the “semi-classical” (actually autonomous) � → 0
limit of the dual partition functions, keeping the leading and first subleading
term. Let us review the argument: in [7] it was shown that the saddle point of
Z is the Seiberg–Witten A-period: let us denote this by a∗. It is such that

η = −F ′
0(a∗) + O(�2). (C.6)

The sum over n will be dominated by terms that are close to this saddle point:
let us denote by n∗ the value of n such that a + �n is closest to a∗: in other
words, set

a + �n∗ ≡ a∗ + �x, x ∼ O(1). (C.7)

To expand ZD
0 around such value of n, we set n = n∗ + k and we sum over k.

We also invert the relation for n∗,

n∗ =
a∗ − a

�
+ x (C.8)
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in order to parameterize everything in terms of the UV Cartan parameter a
and the IR A-period a∗. The resulting saddle point expansion for ZD

0 is

ZD
0 =

∑
k

exp
{

1
�
(n∗ + k)η +

1
�2

F0(a∗ + �(k + x)) + F1(a∗ + �(k + x))
}

=
∑

k

{
1
�2

[F0(a∗) + (a∗ − a)η] +
1
�

[(x + k)η + (x + k)F ′
0(a∗)]

}

× exp
{

1
2
(x + k)2F ′′

0 (a∗) + F1(a∗)
}

= e
1

�2 [(a∗−a)η+F0(a∗)]+F1(a∗)+iπτSW x2
ϑ3(τSW x|τSW )eO(�),

(C.9)

where we defined the IR coupling constant

2πiτSW = F ′′
0 (a∗). (C.10)

An analogous computation can be done for the half-integer Fourier series:

ZD
1/2 =

∑
k

exp

{
1

�
(n∗ + k + 1/2)η

+
1

�2
F0(a∗ + �(k + 1/2 + x)) + F1(a∗ + �(k + 1/2 + x))

}

=
∑

k

{
1

�2
[F0(a∗) + (a∗ − a)η] +

1

�
[(x + k + 1/2)η + (x + k + 1/2)F ′

0(a∗)]

}

× exp

{
1

2
(x + k + 1/2)2F ′′

0 (a∗) + F1(a∗)

}

= e
1

�2 [(a∗−a)η+F0(a∗)]+F1(a∗)+iπτSW x2
ϑ2(τSW x|τSW )eO(�).

(C.11)

When we take the ratio of these two expressions, the overall factors simplify,
giving

G = x−1
2 = it1/4 ϑ2(τSW x|τSW )

ϑ3(τSW x|τSW )
eO(�). (C.12)

References

[1] Hori, K.: Mirror Symmetry, Clay Mathematics Monographs. American Mathe-
matical Society (2003)

[2] Iqbal, A., Vafa, C.: BPS degeneracies and superconformal index in diverse di-
mensions. Phys. Rev. D 90, 105031 (2014). arXiv:1210.3605

[3] Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Com-
mun. Math. Phys. 254, 425 (2005). arXiv:hep-th/0305132

[4] Dijkgraaf, R., Hollands, L., Sulkowski, P., Vafa, C.: Supersymmetric gauge theo-
ries, intersecting branes and free fermions. JHEP 02, 106 (2008). arXiv:0709.4446

[5] Sakai, H.: Rational surfaces associated with affine root systems and geometry of
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