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Abstract
We prove that with “high probability” a random Kostlan polynomial in n + 1 many
variables and of degree d can be approximated by a polynomial of “lowdegree”without
changing the topology of its zero set on the sphere Sn . The dependence between the
“low degree” of the approximation and the “high probability” is quantitative: for
example, with overwhelming probability, the zero set of a Kostlan polynomial of
degree d is isotopic to the zero set of a polynomial of degree O(

√
d log d). The proof

is based on a probabilistic study of the size of C1-stable neighborhoods of Kostlan
polynomials. As a corollary, we prove that certain topological types (e.g., curves with
deep nests of ovals or hypersurfaces with rich topology) have exponentially small
probability of appearing as zero sets of random Kostlan polynomials.

Keywords Random polynomials · Real algebraic geometry · Harmonic analysis

Mathematics Subject Classification 14P25 · 14P05 · 60G15

1 Introduction

Over the past few years, there has been an intense activity around the field of Random
Algebraic Geometry, whose main interest has been studying topological properties of
the zero set of random real algebraic equations.

This approach goes back to the classical work of Kac [15], who studied the expected
number of real zeroes of a random polynomial in one variable whose coefficients are
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Gaussian random variables, and was later extended and generalized in the 1990s to
systems of equations in a sequence of influential papers by Edelman, Kostlan, Shub,
and Smale [6,7,17,31–33]. More recently, in 2011, Sarnak [28] suggested to look at
the connected components of a real algebraic curve from the random point of view,
proposing a randomversion ofHilbert’s SixteenthProblem (to investigate the “number,
shape, and position” of the connected components of a real algebraic hypersurface
[35]). Since then, the area has seen much progress [9,11–13,18–21,24,25,28,29], with
a focus on the expectation of topological quantities such as the Betti numbers of
random algebraic hypersurfaces [9,12,13].

In this paper, we concentrate on the so-called Kostlan model: we sample a random
polynomial according to the rule

P(x) =
∑

|α|=d

ξα ·
((

d!
α0! · · · αn !

)1/2

xα0
0 · · · xαn

n

)
,

with {ξα}|α|=d a family of independent, standard Gaussian variables (see Sect. 3 for
more details). A main feature of this probabilistic model, in the univariate case, is
that the expectation of the number of real zeroes of a Kostlan polynomial equals

√
d

[6]. This phenomenon is called “square-root law”: essentially the Kostlan polynomial
seems to behave as if its degree is

√
d rather than d. In higher dimensions, a similar

phenomenon happens to the Betti numbers of its zero set: their expectation is of
the order O(dn/2), while the deterministic upper bound is O(dn). In this paper, we
give a further contribution in this direction, by proving the following theorem (see
Theorem 7).

Theorem A (Low-degree approximation) Let P be a random Kostlan polynomial in
n + 1 many variables and of degree d. Denote by p = P|Sn its restriction to the unit
sphere S

n ⊂ R
n+1 and by Z(p) ⊂ S

n its zero set on the sphere. With probability that
goes to one as d → ∞, the pair (Sn, Z(p)) is diffeomorphic to a pair (Sn, Z(q))

where q is the restriction to the sphere of a polynomial of degree O(
√

d log d).

Remark 1 Let us comment on the meaning of this theorem, by looking at the example
of real algebraic curves on the sphere S2. As d goes to infinity, the number D(d) of
rigid isotopy classes of smooth real curves of degree d on S

2 growths as e�(d2) [26].
This means that in the space of curves (i.e., in the space of homogeneous polynomials
of degree d) the real discriminant (i.e., the set of curves which are singular) separates
the space into super-exponentially many connected components (i.e., rigid isotopy
classes, also called chambers). Inside the space of curves of degree d, there are the
curves of degree O(

√
d log d); the number of rigid isotopy classes of these curves is

much smaller, “only” e�(d log d). Let us denote by Cd = {ci }D(d)
i=1 the set of rigid isotopy

classes of smooth curves of degree d on S
2. If we put on Cd the uniform probability

distribution (i.e., we set P(ci ) = D(d)−1 for all i), then with probability that goes to
one as d → ∞, curves are not isotopic to curves of smaller degree. However, if we
put on Cd the probability measure such that P(ci ) equals the Kostlan probability of
the corresponding chamber, then most of the mass comes from CO(

√
d log d) ⊂ Cd and

with probability that goes to one as d → ∞, curves are isotopic to curves of smaller
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degree. From the point of view of random Kostlan polynomials, curves which are not
isotopic to curves of smaller degree are inaccessible.

The idea of the proof of the previous theorem is the following. Thom’s First Isotopy
Lemma implies that, given a function p : S

n → R whose zero set Z(p) ⊂ S
n is

nonsingular, there is a small C1 neighborhood (we call it a “stable neighborhood”)
such that all functions in this neighborhood have zero sets diffeomorphic to Z(p).
However, how large this neighborhood can be depends on p and in Proposition 3 we
prove that it contains a C1-ball:

{
‖ f − p‖C1 <

δ(p)

2

}
�⇒ (Sn, Z(p)) ∼ (Sn, Z( f )), (1.1)

where δ(p) denotes the distance, in the Bombieri–Weyl norm, from p to the set of
polynomials with a singular zero set (the “discriminant,” see Sect. 4). In order to
produce a low-degree approximation of p, we first write it as p = ∑

� p�, where each
p� denotes the projection of p to the space of spherical harmonics of degree �, and
then take only the part of degree smaller than L of this expansion:

p|L =
∑

�≤L

p�.

We will prove that, choosing L = O(
√

d log d), with probability that goes to one as
d → ∞, the difference p − p|L has small enough C1-norm to be contained in the
above stable neighborhood.

From the technical point of view, this last step requires three estimates: we first
bound theC1-norm of p− p|L with its Sobolev norm (Proposition 1), then the Sobolev
norm with the Bombieri–Weyl norm of the original polynomial (which is the norm
endowing the space of polynomials with the Kostlan Gaussianmeasure, Proposition 2)
and finally we estimate the size (i.e., the probability) of a small neighborhood of the
discriminant (Proposition 4).

1.1 Consequences

All the previous estimates are quantitative and produce different outcomes for different
choices of the degree L to which we truncate the expansion of p. The most general
bound that we obtain is the following (Theorem 5): there exists c5(n) > 0 such that
for every L, σ > 1 we have:

P

{
‖p − p|L‖C1 <

δ(p)

2

}
≥ 1 −

(
c5(n)d

5n
2 +2e− L2

4d σ 2 + 1

σ

)
.

For example, choosing L to be a fraction of d = deg(p), the above σ can be tuned so
that the probability from the statement of Theorem 1 goes exponentially fast to one as
d → ∞.
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αd

Fig. 1 A random Kostlan curve has �(d) many connected components, however the probability that it has
a nest of depth αd decays exponentially fast as d → ∞ by Theorem 9

We use this idea to constraint the typical topology of (Sn, Z(p)) as follows: (i)
we identify a “family” of topological types (e.g., hypersurfaces of the sphere Sn with
more than αdn many components); (ii) we show that we need at least degree Ld to
realize this topological type (e.g., we need degree at least c(α)d to have αdn many
components); (iii) we prove that with “high probability” p can be stably approximated
by a polynomial of degree smaller than Ld (which implies its zero set cannot have
that topological type). Here are two examples of the application of this strategy.

(Theorem 8) The probability that the zero set on S
n of a Kostlan polynomial of

degree d has total Betti number larger than αdn is bounded by γ1(α)e−γ2(α)d for some
constants γ1(α), γ2(α) > 0. This was known for the case n = 1 (points on S

1) and
for the case n = 2 (algebraic curves) [10], but only in the case of maximal curves, see
Remark 10.

(Theorem 9) The probability that the zero set on S
n of a Kostlan polynomial of

degree d contains a nest of depth αdn is bounded by γ1(α)e−γ2(α)d for some constants
γ1(α), γ2(α) > 0, see Fig. 1. For example, hyperbolic hypersurfaces of degree d
(whose isotopy class is the one of a nest of spheres of depth d) have exponentially
small probability.

Remark 2 Gichev has proved a result with a flavor similar to Theorem 1: in [14,
Theorem 5.3] he shows that with probability that goes to one as d → ∞, a random
Kostlan polynomial of degree d can be approximated in the Sobolev norm with a
polynomial of degree O(

√
d log d). Unfortunately, we cannot use directly Gichev’s

result, essentially because how close should the approximation be in order to guarantee
that the zero sets are diffeomorphic depends on p (note that in (1.1) the distance
of p from the discriminant is involved). The precise point where the current paper
gets close to [14] is in Proposition 2, which is responsible for the similarities. The
difference with Gichev’s result relies on the fact that we are not showing only that
lower-degree polynomials are “near,” but they are “near enough” so that the zero sets
are diffeomorphic. The main practical difference is that Gichev compares the Sobolev
norm of the tail with the Sobolev norm of p, while in Proposition 2 we compare the
Sobolev norm of the tail with the Bombieri–Weyl norm of p. This difference is crucial
for the final estimate that wewill use in Proposition 4. (However, the use of the Sobolev
norm is often practical for us too, because it is quite easy to handle it.)
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Remark 3 Since the low-degree approximation from Theorem 1 is the projection of
p to low-degree harmonics, this could be used, in the case n = 1 and with high
probability, to improve the complexity of a certain class of algorithms in real algebraic
geometry (e.g., adaptive algorithms for real root isolation), essentially showing that
“for most polynomials” the bound on the complexity of these algorithms is better than
the absolute deterministic bound. We plan to elaborate on this idea in a forthcoming
work.

Remark 4 After this paper was written, building on our results, there was some devel-
opment on the low-degree approximation theme. In [2], Breiding, Keneshlou and the
second named author of the current paper generalized Theorem 5 from the case of
zero sets on the sphere to more general “singularities” of polynomial maps from the
sphere to Rk ; in [1], Ancona extended our method to the case of zero sets of Gaussian
random sections of high tensor power of real line bundles on a general real algebraic
manifold.

2 Spaces of Polynomials and Norms

We denote byPn,d = R[x0, . . . , xn](d) the space of real homogeneous polynomials of
degree d. We endow Pn,d with the Bombieri–Weyl norm, which is defined as follows:
writing a homogeneous polynomial in the monomial basis we set:

∥∥∥∥∥∥

∑

|α|=d

γαxα0
0 · · · xαn

n

∥∥∥∥∥∥
BW

=
⎛

⎝
∑

|α|=d

γ 2
α

α0! · · · αn !
d!

⎞

⎠
1/2

.

For every � = 0, . . . , d, we will also consider the spaceHn,� ⊂ Pn,� of homogeneous
harmonic polynomials, i.e., polynomials H such that 	Rn+1 H = 0. It turns out that
the space Pn,d can be decomposed as:

Pn,d =
⊕

d−�∈2N
‖x‖d−�Hn,�. (2.1)

The decomposition (2.1) has two important properties (see [16]):

(i) Given a scalar product which is invariant under the action of O(n + 1) on Pn,d by
change of variables, the decomposition (2.1) is orthogonal for this scalar product.

(ii) The action of O(n+1) onPn,d preserves eachHn,� and the induced representation
on the space of harmonic polynomials is irreducible. In particular, there exists a
unique, up to multiples, scalar product on Hn,� which is O(n + 1)-invariant.

The space Pn,d injects (by taking restrictions of polynomials) into the space
C∞(Sn,R) of smooth functions on the unit sphere Sn ⊂ R

n+1. We denote by

Sn,d = {p : Sn → R|p = P|SnwithP ∈ Pn,d} = Pn,d |Sn .
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the image of such injection. In particular, the two vector spaces Pn,d and Sn,d are
isomorphic:

Pn,d  Sn,d  R
N where N =

(
n + d

d

)
.

We introduce the following convention: given P ∈ Pn,d , we denote by p = P|Sn

(i.e., we will use capital letters for polynomials in Pn,d and small letters for their
restrictions in Sn,d ). Restricting polynomials in Hn,� to the unit sphere, we obtain
exactly eigenfunctions of the spherical Laplacian:

Vn,� = {h : Sn → R|	Sn h = −�(� + n − 1)h} = Hn,�|Sn .

We will consider various norms on Sn,d :
(1) The Bombieri–Weyl norm, simply defined for p = P|Sn as ‖p‖BW = ‖P‖BW.

Note that the same p : Sn → R can be the restriction of two different P1 ∈ Pn,d1
and P2 ∈ Pn,d2 (for example: take P2(x) = ‖x‖2P1(x)), it is therefore important
for the computation of the Bombieri–Weyl norm to specify the space where p
comes from, i.e., its original homogeneous degree.

(2) The C1-norm defined for p ∈ Sn,d as:

‖p‖C1 = max
θ∈Sn

|p(θ)| + max
ϕ∈Sn

‖∇Sn p(ϕ)‖,

where ∇Sn p denotes the spherical gradient, i.e., the orthogonal projection on the
unit sphere of the gradient of p.

(3) The L2-norm, defined for p ∈ Sn,d as:

‖p‖L2 =
(∫

Sn
p(θ)2 dθ

)1/2

,

where “dθ” denotes integration with respect to the standard volume form of the
sphere. In the sequel, we will denote by {y�, j } j∈J�

a chosen L2-orthonormal basis
of Vn,�.

(4) The Sobolev q-norm, defined for p = ∑
� p� (decomposed as in (2.1)) by:

‖p‖Hq =
⎛

⎝‖p0‖2 +
∑

d−�∈2N
�2q‖p�‖2L2

⎞

⎠
1/2

.

Note that ‖p0‖2 = 0 when d is odd; moreover, ‖ · ‖H0 = ‖ · ‖L2 .

The decomposition (2.1) induces a decomposition:

Sn,d =
⊕

d−�∈2N
Vn,�. (2.2)
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By property (i) above, this decomposition is orthogonal, at the same time, for the
Bombieri–Weyl, the L2 and the Sobolev scalar products. Moreover, because of prop-
erty (ii) above, the Bombieri–Weyl scalar product, the L2 and the Sobolev one are one
multiple of the others on Vn,� (viewed as a subspace of Pn,d ):

‖hn,�‖L2 = wn,d(�)‖hn,�‖BW, ‖hn,�‖Hq

= �qwn,d(�)‖hn,�‖BW ∀hn,� ∈ Vn,� ⊂ Sn,�.

In particular, ‖hn,�‖Hq = �q‖hn,�‖L2 .
The rescaling weights are given by (see [9, Example 1]):

wn,d(�) =
(
vol(Sn)�

(
n + 1

2

)
�

( d+�
2 + 1

)

�
( n+1

2 + d+�
2

)
1

2d

(
d

d−�
2

))1/2

. (2.3)

We observe also the following important fact: writing P = ∑
� P� with each P� ∈

‖x‖d−�Hn,� as in (2.1), when taking restrictions to the unit sphere we have p = ∑
� p�

with each p� the restriction to S
n of a polynomial of degree �: in other words, the

restriction to the unit sphere “does not see” the ‖x‖d−� factor, which is constant on
the unit sphere.

Proposition 1 There exists c1(n) > 0 such that for every q ≥ n+1
2 and for every

p ∈ Sn,d we have:

‖p‖C1 ≤ c1(n)d
1
2 ‖p‖Hq .

Proof Given p ∈ Sn,d , we write p = ∑
� h� with each h� ∈ Vn,�, as in (2.2). We can

estimate for θ, ϕ ∈ S
n :

|p(θ)| + ‖∇Sn p(ϕ)‖ ≤
∑

d−�∈2N
(|h�(θ)| + ‖∇Sn h�(ϕ)‖)

≤ C5(n)
∑

d−�∈2N
�

n+1
2 ‖h�‖L2 (by [30, Theorem 4])

≤ C6(n)

⎛

⎝
∑

d−�∈2N
�n+1‖h�‖2L2

⎞

⎠
1/2 (

d

2

)1/2

(by Cauchy–Schwartz inequality)

≤ c1(n)
√

d‖p‖Hq for q ≥ n + 1

2
.

By taking the supremum over θ ∈ S
n then over ϕ ∈ S

n , the proof concludes.
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3 GaussianMeasures and Random Polynomials

The spacePn,d can be turned into a Gaussian space by sampling a random polynomial
according to the rule:

P(x) =
∑

|α|=d

ξα ·
((

d!
α0! · · · αn !

)1/2

xα0
0 · · · xαn

n

)
,

with {ξα}|α|=d a family of independent, standard Gaussian variables. A random poly-
nomial defined in this way is called a Kostlan polynomial. An alternative way for
writing a random Kostlan polynomial is to expand it in the spherical harmonic basis:

P(x) =
∑

d−�∈2N

∑

j∈J�

ξ�, j ·
(

wn,d(�)‖x‖d−�y�, j

(
x

‖x‖
))

,

where {ξ�, j }�, j is a family of independent, standard Gaussian variables and
{wn,d(�)}d−�∈2N are given by (2.3).

Remark 5 Observe that both
{(

d!
α0! · · · αn !

)1/2

xα0
0 · · · xαn

n

}

|α|=d

and

{
wn,d(�)‖x‖d−�y�, j

(
x

‖x‖
)}

d−�∈2N, j∈J�

are Bombieri–Weyl orthonormal bases forPn,d .More generally, given a basis {Fk}N
k=1

forPn,d which is orthonormal for theBombieri–Weyl scalar product, a randomKostlan
polynomial can be defined by:

F(x) =
N∑

k=1

ξk Fk(x),

where {ξk}N
k=1 is a family of independent, standard Gaussian variables.

Given L ∈ {0, . . . , d}, we consider the projection Sn,d → Sn,L defined by expanding
p in spherical harmonics and taking only the termsof degree atmost L of this expansion
given by:

p :=
∑

d−�∈2N
p� �→ p|L :=

∑

d−�∈2N,�≤L

p�.

Proposition 2 There exists c2(n) > 0 such that for all t, q ≥ 0 and for every L ∈
{0, . . . , d} we have:

P

{
‖p − p|L‖Hq ≤ t‖p‖BW

}
≥ 1 − c2(n)

d2q− n
2−1e− L2

4d

t2
. (3.1)
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Remark 6 As already noted, this proposition is similar to [14, Theorem 5.3], which
would provide a lower bound for the probability of the event {‖p − p|L‖Hq ≤
t‖p‖Hq }, with an estimate which has a shape similar to (3.1).

Proof First observe that, since {‖p − p|L‖Hq ≤ t‖p‖BW} ⊂ Pn,d is a cone, denoting
by SN−1 the unit sphere in the Bombieri–Weyl norm, the required probability equals:

P

{
‖p − p|L‖Hq ≤ t‖p‖BW

}
= vol

({‖p − p|L‖Hq ≤ t‖p‖BW} ∩ S
N−1

)

vol
(
SN−1

)

= vol
({‖p − p|L‖Hq ≤ t} ∩ S

N−1
)

vol
(
SN−1

)

= 1 − vol
({‖p − p|L‖Hq > t} ∩ S

N−1
)

vol
(
SN−1

) .

We will estimate the quantity

Q(t) = vol
({‖p − p|L‖Hq > t} ∩ S

N−1
)

vol
(
SN−1

)

from above using Markov’s inequality:

Q(t) ≤ Ep∈SN−1‖p − p|L‖2Hq

t2
, (3.2)

where the expectation is computed sampling a polynomial p uniformly from the unit
Bombieri–Weyl sphere.

Moreprecisely, expanding p in an L2-orthonormal basis {y�, j } (so that {wn,d(�)y�, j }
is a Bombieri–Weyl orthonormal basis)

p =
∑

d−�∈2N

∑

j∈J�

γ�, jwn,d(�)y�, j ,

the condition that p ∈ S
N−1 writes

∑
�, j γ 2

�, j = 1. Consequently, denoting as before
“dθ” the integration with respect to the standard volume form of the sphere, we obtain
by moments computation [8]:

Ep∈SN−1‖p − p|L‖2Hq = 1

vol(SN−1)

∫

SN−1

∑

�>L

∑

j∈J�

�2qwn,d(�)2γ�, j (θ)2dθ

=
∑

�>L

∑

j∈J�

�2qwn,d(�)2
1

vol(SN−1)

∫

SN−1
γ�, j (θ)2dθ

=
∑

�>L

∑

j∈J�

�2qwn,d(�)2N−1 = (∗).
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Weuse now the fact that the cardinality of J� is O(�n−1) and that N ≤ (2d)n , obtaining
the estimate:

(∗) ≤ C1(n)d−n
∑

�>L

�2q+n−1wn,d(�)2. (3.3)

Moreover, from (2.3) we easily get:

wn,d(�)2 ≤ C2(n)d− n
2

d
1
2

2d−1

(
d

d−�
2

)
. (3.4)

Substituting (3.4) into (3.3), we get:

(∗) ≤ C3(n)d− 3n
2

∑

�>L

�2q+n−1 d
1
2

2d−1

(
d

d−�
2

)
= (∗∗).

For y ∈ R, let us denote now by {y} the nearest integer to y with the same parity as
d. Then, we can rewrite:

(∗∗) = C3(n)d− 3n
2

∫ ∞

L
{y}2q+n−1 d

1
2

2d−1

(
d

d−{y}
2

)
dy.

We apply now the change of variable y = x
√

d in the above integral, and obtain:

(∗∗) = C3(n)d− 3n
2

∫ ∞
L√
d

{x
√

d}2q+n−1 d
1
2

2d−1

(
d

d−{x
√

d}
2

)√
d dx

≤ C4(n)d− 3n
2 + 2q+n

2

∫ ∞
L√
d

x2q+n−1 d
1
2

2d−1

(
d

d−{x
√

d}
2

)
dx

≤ C4(n)d−n+q
∫ ∞

L√
d

x2q+n−1 d
1
2

2d−1

(
d

d−{x
√

d}
2

)
dx .

We need now to estimate the function:

gd(x) = x2q+n−1 d1/2

2d−1

(
d

d−{x
√

d}
2

)
.

Observe first that gd(x) = 0 whenever x >
√

d, therefore our estimate needs to be
done only for 0 ≤ x ≤ √

d.

To this end, we assume that d is even (the odd case work in an analogous way) and
establish the bound:

(
d

d−k
2

)
≤

(
d
d
2

)
e− k2

4d ∀0 ≤ k ≤ d(k with the same parity as d). (3.5)
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Let us set

B :=
( d

d−k
2

)

(d
d
2

) =
( d
2

)!
( d+k

2

)!

( d
2

)!
( d−k

2

)!

=
k
2∏

j=1

d
2 + 1 − j

d
2 + j

.

From this, it follows that:

log(B) =
k
2∑

j=1

log

(
d
2 + 1 − j

d
2 + j

)

=
k
2∑

j=1

log

(
1 − 2 · 2 j − 1

d + 2 j

)

≤
k
2∑

j=1

−2 · 2 j − 1

d + 2 j
(since log(1 − x) ≤ −x)

≤ − 2

d + k

k
2∑

j=1

(2 j − 1) (since j ≤ k/2)

= − 2

d + k

k2

4

≤ − k2

4d
(since k ≤ d).

In particular:

B = elog(B) ≤ e− k2
4d ,

which gives the desired claim (3.5).
We also record the asymptotic:

(
d
d
2

)
=

√
2

π

2d

√
d

(1 + o(1)) ,

which gives:
d1/2

2d−1

(
d
d
2

)
≤ A (3.6)

for some constant A > 0.
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We finally turn to the estimate of our function gd :

gd(x) ≤ x2q+n−1 d1/2

2d−1

(
d
d
2

)
e− x2

4 by (3.5)

≤ A · x2q+n−1e− x2
4 by (3.6). (3.7)

Using the upper bound (3.7), we have:

C4(n)d−n+q
∫ ∞

L√
d

x2q+n−1 d1/2

2d−1

(
d

d−{x
√

d}
2

)
dx

= C4(n)d−n+q
∫ √

d

L√
d

gd(x)dx

≤ C5(n)d−n+q
∫ √

d

L√
d

x2q+n−1e− x2
4 dx by (3.7)

≤ C6(n)d−n+q
∫ d

4

L2
4d

t
2q+n
2 −1e−tdt

≤ C7(n)d2q− n
2−1

∫ ∞
L2
4d

e−tdt

≤ C8(n)d2q− n
2−1e− L2

4d . (3.8)

Finally, using the estimate (3.8) into (3.2) gives the desired inequality.

Remark 7 The final estimate (3.8) from Proposition 2 takes the following interesting
shapes:

– If L = b
√

d with b > 0, then:

d2q− n
2−1e− L2

4d ≤ d2q− n
2−1e− b2

4 .

– If L = √
bd log d with b > 0, then:

d2q− n
2−1e− L2

4d ≤ d2q− n
2− b

4−1.

– If L = db with b ∈ ( 12 , 1), then there exist c1 (depending on b, q and n), c2 > 0
(depending exclusively on b) such that:

d2q− n
2−1e− L2

4d ≤ c1e
− dc2

4 .
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– If L = bd with b ∈ (0, 1), then there exist c1(depending on b, q and n), c2 > 0
(depending exclusively on b) such that:

d2q− n
2−1e− L2

4d ≤ c1e
−c2d . (3.9)

4 Stability

Let us consider the discriminant set �n,d ⊂ Sn,d consisting of all those polynomials
whose zero set on the sphere is singular:

�n,d = {p ∈ Sn,dsuch that there existsx ∈ S
nwithp(x) = 0and∇Sn p(x) = 0}.

Given p ∈ Sn,d , we denote by δ(p) its distance, in the Bombieri–Weyl norm, to�n,d :
δ(p) = min

s∈�n,d
‖s − p‖BW.

If Z1, Z2 ⊂ S
n are two smooth hypersurfaces, we will write (Sn, Z1) ∼ (Sn, Z2)

to denote that the two pairs (Sn, Z1) and (Sn, Z2) are diffeomorphic. Given f ∈
C1(Sn,R) we denote by Z( f ) ⊂ S

n its zero set. A small perturbation in the C1-norm
of a function f ∈ C1(Sn,R) whose zero set Z( f ) is nondegenerate does not change
the class of the pair (Sn, Z( f )); the next proposition makes this more quantitative.

Proposition 3 Let p ∈ Sn,d\�n,d . Given f ∈ C1(Sn,R) | ‖ f − p‖C1 <
δ(p)
2 , we

have:
(Sn, Z(p)) ∼ (Sn, Z( f )).

Proof For t ∈ [0, 1], let us consider now the function ft = p + t( f − p). Since
‖ f − p‖C1 <

δ(p)
2 , for all θ ∈ S

n we have:

| ft (θ) − p(θ)| <
δ

2
.

Moreover, since d ≥ 1, from ‖ f − p‖C1 <
δ(p)
2 we also deduce

‖ f −p‖C1√
d

<
δ(p)
2 ,

which in turn implies for every t ∈ [0, 1] and θ ∈ S
n :

∣∣∣∣
‖∇Sn ft (θ)‖√

d
− ‖∇Sn p(θ)‖√

d

∣∣∣∣ <
δ(p)

2
. (4.1)

Recall from [27, Theorem 5.1] the following explicit expression1 for δ(p):

δ(p) = min
θ∈Sn

(
|p(θ)|2 + ‖∇Sn p(θ)‖2

d

)1/2

. (4.2)

1 This expression can also be derived from [4, Theorem 19.3], where it is proved that the distance from the
real discriminant equals the reciprocal of the condition number. We prefer to quote directly [27] because it
seems that this nice work of Raffalli has been forgotten from the literature on the subject.
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Note that
(
|p(θ)|2 + ‖∇Sn p(θ)‖2

d

)1/2
equals the distance inR2 between the two vectors

v1(θ) = (|p(θ)|, 0) and v2(θ) =
(
0, ‖∇Sn p(θ)‖√

d

)
. Observe also that the two vectors

w1(t, θ) = (| ft (θ)|, 0) and w2(t, θ) =
(
0, ‖∇Sn ft (θ)‖√

d

)
, in virtue of (4.1) and (4.2),

satisfy:

w1(t, θ) ∈ B1(θ) = BR2

(
v1(θ),

δ(p)

2

)

and w2(t, θ) ∈ B2(θ) = BR2

(
v2(θ),

δ(p)

2

)
.

In particular:

(
| ft (θ)|2 + ‖∇Sn ft (θ)‖2

d

)1/2

= ‖w1(t, θ) − w2(t, θ)‖
> dR2 (B1(θ), B2(θ))

= ‖v1(θ) − v2(θ)‖ − δ(p),

where the strict inequality comes from the fact that w1 and w2 belong to the interior
of the balls.

Taking the minimum over θ ∈ S
n in the above expression gives:

min
θ∈Sn

(
| ft (θ)|2 + ‖∇Sn ft (θ)‖2

d

)1/2

> 0 ∀t ∈ [0, 1]. (4.3)

In particular, the equation { ft = 0} on S
n is regular for all t ∈ [0, 1]: whenever

ft (θ) = 0, then ∇Sn ft (θ) cannot vanish because of the strict inequality in (4.3). The
result follows now from Thom’s First Isotopy Lemma [22, Proposition 11.1] (see also
[34, Théorème 2.D.2]).

Next proposition quantifies how large is the set of stable polynomials in the Bombieri–
Weyl norm. This is a special case of [3, Theorem 21.1] (see also [5, Theorem 5.1]),
applied to the case of the real discriminant, which has degree (n + 1)(d − 1)n .

Proposition 4 There exist c3(n), c4(n) > 0 such that for every s ≥ c4(n)d2n and for
p ∈ Pn,d:

P

{
‖p‖BW ≤ sδ(p)

}
≥ 1 − c3(n)

d2n

s
.

5 Low-Degree Approximation

Theorem 5 There exists c5(n) > 0 such that for every L, σ > 1 we have:

P

{
‖p − p|L‖C1 <

δ(p)

2

}
≥ 1 −

(
c5(n)d

5n
2 +2e− L2

4d σ 2 + 1

σ

)
.
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Moreover, denoting by α(d, L) = c5(n)d
5n
2 +2e− L2

4d , there exist c6(n), c7(n) > 0 such
that for every L, d satisfying α(d, L) < 1

2 , we have:

P

{
‖p − p|L‖C1 <

δ(p)

2

}
≥ 1 − c6(n)dc7(n)e− L2

12d .

Remark 8 Of course, the previous statement is interesting if we can choose L, σ > 0
in such a way that 1

σ
goes to zero, but not too fast, and L is significantly smaller than

d, but not too small, because we still want the exponential term e− L2
4d to kill the other

factors and make the probability go to one.

Proof Let p ∈ Sn,d and L ∈ {0, . . . , d}. We have the following chain of inequalities:

‖p − p|L‖C1 ≤ c1(n)d
1
2 ‖p − p|L‖Hq (Proposition 1)

≤ c1(n)d
1
2 t‖p‖BW (Proposition 2)

≤ c1(n)d
1
2 tsδ(p) (Proposition 4) (5.1)

which hold for every q ≥ n+1
2 , t > 0 and s ≥ c4(n)d2n , with probability

P ≥ 1 −
⎛

⎝c2(n)
d2q− n

2−1e− L2
4d

t2
+ c3(n)

d2n

s

⎞

⎠ .

We now make the choices:

s = c4(n)d2nσ, t = 1

3c1(n)c4(n)d2n+1/2σ
and q = n + 1

2
.

With these choices, we have:

s ≥ c4(n)d2n (5.2)

c1(n)d
1
2 ts <

1

2
(5.3)

c2(n)
d2q− n

2−1e− L2
4d

t2
+ c3(n)

d2n

s
≤ c5(n)d

5n
2 +2e− L2

4d σ 2 + 1

σ
, (5.4)

where we have set c5(n) = c2(n)(3c1(n)c4(n))2.

Because of (5.2), we can apply the estimate in (5.1) which, using (5.3), becomes:

‖p − p|L‖C1 ≤ c1(n)d
1
2 tsδ(p) <

δ(p)

2
.
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Using (5.4), the last chain of inequalities holds with probability:

P ≥ 1 −
(

c5(n)d
5n
2 +2e− L2

4d σ 2 + 1

σ

)
.

Now denote α(d, L) = c5(n)d
5n
2 +2e− L2

4d . We have:

P

{
‖p − p|L‖C1 <

δ(p)

2

}
≥ 1 −

(
α(d, L)σ 2 + 1

σ

)

for all σ > 1. In particular,

P

{
‖p − p|L‖C1 <

δ(p)

2

}
≥ 1 − inf

σ>1

(
α(d, L)σ 2 + 1

σ

)
.

It is not hard to check that this infimum is a minimum. It is attained at σ0 =(
1

2α(d,L)

)1/3
and is equal to 2

3 (2α(d, L))
1
3 . Hence, if σ0 > 1 (i.e., α(d, L) < 1

2 ),

we have:

P

{
‖p − p|L‖C1 <

δ(p)

2

}
≥ 1 − c6(n)dc7(n)e− L2

12d ,

where we have set c6(n) = 2
3 (2c5(n))

1
3 and c7(n) = 5n

6 + 2
3 .

Proposition 6 For every a > 0, there exists b > 0 such that for sufficiently large d:

∥∥∥p − p|√bd log d

∥∥∥
C1

<
δ(p)

2
(5.5)

with probability greater than 1 − O(d−a).

Proof Let a > 0 and L = √
bd log d . Then, we have:

c6(n)dc7(n)e− L2
12d ≤ dc7(n)− b

12 ≤ O(d−a),

where the last inequality holds for b > 0 large enough. We apply now Theorem 5 with
this choice and have:

P

{∥∥∥p − p|√bd log d

∥∥∥
C1

<
δ(p)

2

}
≥ 1 −

(
dc7(n)− b

12

)
≥ 1 − O(d−a).

6 Applications to Random Topology

In this section, we show how the previous results can be used to put constraints on
the topological type of the pair (Sn, Z(p)) for p a random Kostlan polynomial. The
first result is the following more detailed version of Theorem 1 from the Introduction,
which we reformulate here making the constants and the quantifiers more precise.
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Theorem 7 For every d ∈ N and b > 0, consider the event Ed(b) ⊂ Pn,d consisting
of the set of Kostlan polynomials p such that (Sn, Z(p)) ∼ (Sn, Z(q)), with q of
degree

√
bd log d. For every a > 0, there exist b > 0 and c > 0 such that Ed(b) holds

with probability at least 1 − c
da .

Proof Let a > 0 and consider the b > 0 given by Proposition 6. Then, Proposition 3,
(5.5) implies that the pairs (Sn, Z(p)) and (Sn, Z(p|√bd log d)) are diffeomorphic and
the conclusion follows from Proposition 6.

6.1 Hypersurfaces with Rich Topology

For a topological space X , we denote by b(X) the sum of its Z2-Betti numbers
(sometimes also called the homological complexity of X ). Recall by [23] that if
P ∈ R[x0, . . . , xn]d , then the zero set of p = P|Sn has homological complexity
bounded by b(Z(p)) ≤ O(dn).

Theorem 8 For α > 0, let Mα,d ⊂ Sn,d be the set:

Mα,d := {p ∈ Sn,d |b(Z(p)) ≥ αdn}.

Then, there exist γ1(α), γ2(α) > 0 such that:

P(Mα,d) ≤ γ1(α)e−γ2(α)d .

Proof Observe first that if q ∈ R[x0, . . . , xn]L (q is just a polynomial of degree L ,
not necessarily homogeneous), then b(Z(q)) ≤ cLn for some c > 0, again by [23].
Hence, if we want b(Z(q)) > αdn we must have:

L >
(α

c

) 1
n

d.

Arguing as in the proof of Theorem 5, where now we take the projection λ = λL :
Sn,d → Sn,L choosing the value L = (

α
c

) 1
n d, we see that for every t > 0 and

s ≥ c4(n)d2n :
‖p − p|L‖C1 ≤ c1(n)d

1
2 tsδ(p)

with probability

P ≥ 1 −
⎛

⎝c2(n)
d2q− n

2−1e− L2
4d

t2
+ c3(n)

d2n

s

⎞

⎠ (Propositions 1, 2, 4)

≥ 1 −
(

c5(n, α)
e−c6(α)d

t2
+ c3(n)

d2n

s

)
by (3.9).
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Observe now that:

t = c5(n, α)1/2e− c6(α)d
4 �⇒ c5(n, α)

e−c6(α)d

t2
≤ γ3(α)e−γ4(α)d (6.1)

for some constants γ3(α), γ4(α) > 0, and

s = e
c6(α)d

4

3c1(n)d1/2c5(n, α)1/2
�⇒ c3(n)

d2n

s
≤ γ5(α)e−γ6(α)d (6.2)

for some constants γ5(α), γ6(α) > 0.
Choosing s as in (6.2) and t as in (6.1), for d > 0 large enough we have s ≥

c4(n)d2n , and c1(n)d1/2ts < 1
2 ; it follows that there exist constants γ1(α), γ2(α) > 0

such that

‖p − p|L‖C1 <
δ(p)

2
with probability P ≥ 1 − γ1(α)e−γ2(α)d . (6.3)

The condition b(Z(p)) > αdn implies that with the choice of L <
(

α
c

) 1
n d wemust

have ‖p − p|L‖C1 ≥ δ(p)
2 , for otherwise the zero set of p would be diffeomorphic to

the zero set of p − p|L which, since deg(p − p|L) < L , has homological complexity
bounded by b(Z(p − p|L)) < cLn < αdn . In particular:

{
b(Z(p)) > αdn

}
⊂

{
‖p − p|L‖C1 ≥ δ(p)

2

}
,

which combined with (6.3) implies the statement.

Remark 9 Notice that, using Theorem 5 and Remark 7, similar rarefaction estimates
can be produced for the set of hypersurface with less rich topology. For instance, those
with b(Z(p)) ≥ (d1/2+ε)n would have probability smaller than c1e−dc2/2, for some
constant c1(ε), c2(ε) > 0.

Remark 10 It is not difficult to derive from Theorem 8 a similar result for random zero
projective sets Z(p) ⊂ RPn . In this context, the previous result should be compared
with [10, Theorem 1], where the authors prove that the Kostlan measure of the set of
curves C ⊂ RP2 of degree d whose number of components is more than (d−1)(d−2)

2 +
1− ad is O(e−c2d). Theorem 8 is stronger in two senses: it applies to the general case
of hypersurfaces in RPn and it gives exponential rarefaction for all sets of the form
{b0(Z(p)) ≥ αdn} (i.e., not necessarily a linear correction from the maximal bound).

6.2 Depth of a Nest

Given p ∈ Sn,d\�n,d , its zero set Z(p) ⊂ S
n consists of a finite union of connected,

smooth and compact hypersurfaces. Fixing a point y∞ ∈ S
n (with P = 1, this point

does not belong to Z(p)), every such component of Z(p) separates the sphere S
n
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into two open sets: a “bounded” one (the open set which does not contain y∞) and
an “unbounded” one (the open set which contains y∞). The nesting graph of Z(p)

(with respect to y∞) is a graph whose vertices are the components of Z(p) and there
is an edge between two components if and only if one is contained in the bounded
component of the other. The resulting graph is a forest (a union of trees) and we say
that (Sn, Z(p)) has a nest of depth m if this forest contains a tree of depth m.

Theorem 9 For α > 0, let Nαd ⊂ Sn,d be the set:

Nα,d := {p ∈ Sn,d |Z(p)has a nest of depth ≥ αd}.

Then, there exist c1(α), c2(α) > 0 such that:

P(Nα,d) ≤ c1(α)e−c2(α)d .

Proof The proof is essentially the same as the proof of Theorem 8, after observing
that the depth of every nest of the zero set of a polynomial of degree L is smaller than
L .
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