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Introduction

The present thesis collects some results which I have obtained in the past three
years for different nonlinear problems by means of topological methods. We start
with planar systems of equations, then we pass to planar systems of differen-
tial equations with periodic boundary conditions. The so found results will be
suitably generalized firstly to an infinite-dimensional setting and then to the
case of a finite-dimensional system of partial differential equations. We will
next focus our attention to nearly integrable Hamiltonian systems again in the
infinite-dimensional case. The thesis is concluded by some related problems
arisen independently of the main lines of our research.

The first chapter of the thesis focuses on topological degree and its applications
to some generalizations of the Poincaré–Bohl theorem for planar maps defined
over a bounded domain Ω in R2. A central role in the study of these kind of
problems is played by the normal cone. When Ω is convex and x̄ ∈ ∂Ω , the
normal cone is defined as

NΩ(x̄) =
{
v ∈ R2 : ⟨v, x− x̄⟩ ≤ 0 , for every x ∈ Ω

}
.

Here, as usual, ⟨· , ·⟩ denotes the euclidean scalar product in R2, with associated
norm ∥·∥. It is well known that if f satisfies an avoiding cones condition, namely

f(x) /∈ NΩ(x) , for every x ∈ ∂Ω , (1)

then the equation f(x) = 0 has a solution x ∈ Ω . Its proof can be found for
example in [42, 65]. Our research work focuses on the case when Ω is not convex.
In this case, we have to adopt a more general definition of normal cone like
the one provided in e.g., [91]). Since it could well happen that the normal cone
reduces to a point for some x̄ ∈ ∂Ω, the avoiding cones condition at those points
x̄ gives no restriction for f(x̄). Nonetheless we will show that, if the avoiding
cones condition (1) holds, the topological degree remains a positive number,
provided that ∂Ω is sufficiently regular.

There are many other possible definitions of normal cone in the nonconvex
case (see [91, page 232] for a clarifying survey), and several theorems on the
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existence of equilibria are available (see, e.g., the review paper [65]). The main
novelty of our approach is allowing the normal cones to vanish at certain points,
still recovering the existence result at least in the planar case. More precisely
our purpose is to consider the case where Ω is an open and bounded planar set,
whose boundary ∂Ω is a Jordan curve, f : Ω → R2 is a continuous function such
that 0 /∈ f(∂Ω) and provide some conditions on the behavior of the function f
at the boundary which guarantee that the Brouwer topological degree deg(f,Ω)
is a positive number. It is well known that, in such a case, there will be some
x ∈ Ω such that f(x) = 0 .

Let we start with a definition

Definition. Let S ⊆ R we can define the iterated derived sets of S as

S(1) = S ′ , S(n+1) = [S(n)]′ .

We call S a vanishing set if, for some positive integer N , the iterated derived set S(N)

is empty.

Here is the precise statement of our result.

Theorem 1. Assume ∂Ω to be a Jordan curve, piecewise graph of a continuous function.
Let γ : [0, 1] → R2 be a continuous parametrization of ∂Ω, with the property that there
are a countable number of non-overlapping intervals [aj, bj], contained in [0, 1], on the
interior of which γ is of class C1, and S = [0, 1] \⋃j ]aj, bj[ is a vanishing set. If

f(x) /∈ NΩ(x) , for every x ∈ ∂Ω .

Then, deg(f,Ω) ≥ 1 .

This result is achieved by steps. In the first part we prove that the theorem is
valid when ∂Ω is a “curved polygon”, namely a piecewise C1 curve, and in this
setting we are also able to give an upper bound to the degree of f with respect
to Ω ; while in the second part we extend the result to the case when ∂Ω is a
piecewise regular Jordan curve in which case we lose the upper bound on the
degree. The proof is quite peculiar since it mixes geometrical tools with an-
alytical ones. Entering into details the proof in the first case relies on Hopf’s
theorem, the so called Umlaufsatz that gives the rotation index of the tangent
vector to a piecewise regular C1 curve. (For the original statement and proof
made by Hopf in 1935 see e.g.[61].) The second part is based firstly on a gen-
eralization of Hopf’s Theorem to normal cones defined by Dini derivatives and
a generalization of Darboux’s theorem to Dini derivatives for continuous func-
tions. These two results are of independent interest and in particular the second
one finds an application in proving existence results for planar systems of or-
dinary differential equations with the methods of the topological degree (e.g.
[47]) as we will see in Chapter 4.
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Darboux’s theorem states that the derivative of a C1 function has the intermedi-
ate value property; we will show that the same holds true for Dini derivatives
of a continuous function.

Theorem 2. Let F : [a, b] → R be a continuous function such that, for some µ ∈ R,

D+F (a) > µ > D−F (b) .

Then, there is a ξ ∈ ]a, b[ such that

D−F (ξ) ≥ µ ≥ D+F (ξ) .

As an immediate consequence of the above theorem we obtain the following
corollaries describing how the value of a Dini derivative at a point depends on
the values of Dini derivatives in a neighborhood of that point.

Corollary. Let F : I → R be a continuous function, defined on some interval I , and
let τ0 be a point of I . Consider the set

E = {τ ∈ I : D+F (τ) ≤ D−F (τ)} .

If τ0 is a cluster point for E from the left, then

D−F (τ0) ≥ lim inf
τ→τ−0
τ∈E

D+F (τ) .

Similarly, if τ0 is a cluster point for E from the right, then

D+F (τ0) ≤ lim sup
τ→τ+0
τ∈E

D−F (τ) .

The next step consists in proving that Theorem 1 remains true if S ′, the derived
set of S, is finite. The same argument holds assuming that S ′ is an infinite set,
with a finite number of cluster points; iterating the reasoning an arbitrary finite
number of times the proof is thus completed.

In Chapter 2 we consider the following periodic problem

(P)

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) ,

where f : R3 → R and g : R3 → R are continuous functions, T -periodic in their
first variable. In this chapter we further develop the theory of lower-upper so-
lutions, concentrating on the periodic problem, by the use of topological degree
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methods. Our purpose is to give a general definition of a lower and an upper
solution with the aim of obtaining the existence of a solution to problem (P).
The use of lower and upper solutions in boundary value problems goes back to
the papers of Peano [86] in 1885, Picard [87] in 1893, Scorza Dragoni [96] in 1931
and Nagumo [77] in 1937. The first results for the periodic problem were ob-
tained by Knobloch [64] in 1963. At present a huge literature on this subject has
developed, dealing with different types of boundary conditions for ordinary
and partial differential equations of elliptic or parabolic type (see, e.g., [29, 31]
and the references therein).

Let us recall the classical definition of lower/upper solutions for the periodic
problem

(P )

{
x′′ = f(t, x) ,

x(0) = x(T ) , x′(0) = x′(T ) .

In the scalar case when f : [0, T ] × R → R is continuous, the C2-functions
α, β : [0, T ] → R are said to be lower/upper solutions of problem (P ), respec-
tively, if

α′′(t) ≥ f(t, α(t)) , β′′(t) ≤ f(t, β(t)) .

for every t ∈ [0, T ], and

α(0) = α(T ) , β(0) = β(T ) , α′(0) ≥ α′(T ) , β′(0) ≤ β′(T ) .

We say that (α, β) is a well-ordered pair of lower/upper solutions if α ≤ β. It
is well known that, when such a pair exists, problem (P ) has a solution x such
that α ≤ x ≤ β.

When the inequality α ≤ β does not hold, we say that the lower and up-
per solutions are non-well-ordered. In this case, further conditions have to be
added in order to avoid resonance with the positive eigenvalues of the differ-
ential operator −x′′ with T -periodic conditions (recall that 0 is an eigenvalue,
and all the other eigenvalues are positive) thus recovering existence results.
See [4, 30, 51, 56, 59, 83] for results in this direction.

Let us first recall the definition of lower solution given in [52]. A continu-
ously differentiable function α : R → R is said to be a lower solution for prob-
lem (P) if it is T -periodic and the following properties hold:

(i) there exists a unique function yα : R → R such that{
y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ;
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(ii) yα is continuously differentiable, and

y′α(t) ≥ g(t, α(t), yα(t)) , for every t ∈ R ;

(iii) there are two positive constants δ,m such that, when |y − yα(t)| ≤ δ,{
y < yα(t)−m|x− α(t)| ⇒ f(t, x, y) < α′(t) ,

y > yα(t) +m|x− α(t)| ⇒ f(t, x, y) > α′(t) .

An analogous definition is provided for an upper solution β : R → R, and an
existence result is proved for problem (P) assuming α ≤ β, the so called well-
ordered case.

We will generalize the above definition in two directions. First of all, con-
dition (iii) will be removed. Moreover, the function α will not need to be dif-
ferentiable on all its domain, and the function yα will be allowed to have some
discontinuity points. In proving this result we make use of Theorem 2 and its
corollary. At the same time a deeper analysis of the results in [29] leads to a
thorough insight in the study of Dini derivatives of real functions that will be
the main argument of the second appendix of the thesis. Moreover, after hav-
ing proved the existence of a solution of problem (P) in the well-ordered case,
we will then be able to prove an existence result also in the non-well-ordered case
(namely α ̸≤ β) under some growth conditions on f and g in order to avoid
resonance.

A natural application of our results is provided by the periodic problem as-
sociated with the scalar equation

(ϕ(x′))′ = h(t, x, x′) , (2)

which can be written in the form of problem (P), with f(t, x, y) = ϕ−1(y) and
g(t, x, y) = h(t, x, ϕ−1(y)). Here, ϕ : I → J is an increasing homeomorphism
between two intervals I and J containing 0 , and ϕ(0) = 0 . Typical examples
in the applications involve the choice ϕ(υ) = |υ|p−2υ, leading to the so-called
“scalar p-Laplacian” operator (cf. [22]), or ϕ(υ) = υ/

√
1 + υ2, providing a “mean

curvature” operator (cf. [80]), or ϕ(υ) = υ/
√
1− υ2, providing a “relativistic”

operator (cf. [15]). (See [52] for a detailed discussion in this direction.) A lower
solution for the periodic problem associated with (2) is usually defined as a
continuously differentiable function α : [0, T ] → R such that α′(t) ∈ I for every
t, with α(0) = α(T ), α′(0) ≥ α′(T ) and

(ϕ(α′))′(t) ≥ h(t, α(t), α′(t)) , for every t ∈ [0, T ] .

We will see that our definition extends also this one, with the natural choice
yα(t) = ϕ(α′(t)). Similarly for what concerns an upper solution. We remark
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moreover for our problem (P) no monotonicity assumptions on f(t, x, y) are
made. Indeed, even in the simpler case f(t, x, y) = f(y), the inequalities in
(i) resemble some sign condition, which may be satisfied also if f is not an
increasing function.

The existence result in the well-ordered case α ≤ β is based on assuming (like
in [52]) the existence of some bounding curves, in order to control the solutions
in the phase plane. The construction of these curves can be easily carried out in
concrete examples, assuming a Nagumo-type condition (see again [52]).

The non-well-ordered case requires to add an extra technical condition on the
lower and upper solutions, namely we will assume the existence of a whole
family of bounding curves; existence that is again verified under some type of
Nagumo conditions.

The third and the fourth chapter of the thesis is focused on several existence
results for periodic solutions of ODEs both in finite-dimensional and in infinite-
dimensional settings by means of perturbation theory and degree theory, and
for PDEs at least in the finite-dimensional case.

Chapter 3 deals with the methods of lower–upper solutions for both finite
and infinite-dimensional second order ODE.

Bebernes and Schmitt [10] generalized the scalar well-ordered case to a sys-
tem of type (P ), in RN ; we slightly generalize this result at the beginning of
our analysis. The first advancement we made in this direction is to prove an
existence result for a system in RN when the components of the lower/upper
solutions can be both well-ordered and non-well-ordered. In order to avoid res-
onance with the higher part of the spectrum, for simplicity we ask the function
f to be globally bounded in the non-well-ordered components (other even more
general choices can be done.

We conclude the chapter with the generalization of the previous result (un-
der suitable hypotheses) to the case of a system in an infinite-dimensional Hil-
bert space. The problem has been analyzed by Schmitt and Thompson [95] in
1975 for boundary value problems of Dirichlet type. However, when facing the
periodic problem, they needed to assume the space to be finite-dimensional.
In our work the lack of compactness is recovered by assuming the lower and
upper solutions to take their values in a Hilbert cube. Moreover, we ask the
function f to be globally bounded and completely continuous in the non-well-
ordered components. It can be seen that these assumptions resemble that of an
infinite-dimensional version of the Poincaré–Miranda Theorem as given in [68].

The study of periodic solutions for infinite-dimensional Hamiltonian sys-
tems has been already faced by several authors, see, e.g., [9, 18, 36, 45, 49]. Our
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approach does not need a Hamiltonian structure, and could be applied also
to systems with nonlinearity depending on the derivative of x, provided some
Nagumo-type condition is assumed. Such kind of systems were studied, e.g.,
in [95].

The proof of our result in the finite-dimensional case is based on construct-
ing an auxiliary problem that coincides with the given one on a sufficiently big
closed set and interpolate the given problem with a suitable one outside it. To
prove the existence of a solution of the problem, topological degree theory is
applied; the solution so found is a solution of the original problem since it ful-
fills a suitable a priori bound that guarantees that its trajectory is confined in
the region where the original problem has not been modified. In the infinite-
dimensional case one more step is needed: we have to approximate the infinite
system with a convenient finite-dimensional one, applying the theorem for the
finite-dimensional case and prove the convergence of the so found solutions to
a solution of the original problem.

In Chapter 4 we further extent the results of the previous chapter to the PDE
counterpart in the finite-dimensional case with different boundary value prob-
lems. In particular we deal with a boundary value problem for a system of the
type { Lun = Fn(x, u1, . . . , uM) in Ω ,

Bun = 0 on ∂Ω ,
n = 1, . . . ,M .

In this setting, Ω is a regular bounded domain in RN , and the differential oper-
ator L : W 2,r(Ω) → Lr(Ω) is of elliptic type:

(Lw)(x) = −
N∑

l,m=1

alm(x)∂
2
xlxm

w(x) +
N∑
i=1

ai(x)∂xiw(x) + a0(x)w(x) ,

with ai ∈ L∞(Ω), for i = 0, . . . , N and alm ∈ C(Ω), alm = aml , for l,m = 1, . . . , N ,
with the assumption that there exists ā > 0 such that

N∑
l,m=1

alm(x)ξlξm ≥ ā∥ξ∥2 , for every (x, ξ) ∈ Ω× RN .

We may assume without loss of generality that a0 ≥ 0 . We take r > N , so that
W 2,r(Ω) is compactly imbedded into C1(Ω). The function F : Ω × RM → RM

is assumed to be Lr - Carathéodory; moreover, with regard to the boundary
operator B : C1(Ω) → C(∂Ω), we assume that ∂Ω is the disjoint union of two
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closed sets Γ1 and Γ2 (the cases Γ1 = ∅ or Γ2 = ∅ are admitted), and take

Bw :=


w on Γ1 ,
N∑
i=1

bi(x)∂xiw + b0(x)w on Γ2 .

Here bi ∈ C1(∂Ω), for i = 0, . . . , N , and there exists b̄ > 0 such that

b0(x) ≥ 0 and
N∑
i=1

bi(x)νi(x) ≥ b̄ , for every x ∈ ∂Ω .

The vector ν(x) = (ν1(x), . . . νN(x)) is the unit outer normal to Ω at x ∈ ∂Ω. The
boundary condition on Γ1 is the (homogeneous) Dirichlet condition and the one
on Γ2 is the (non-homogeneous) regular oblique derivative condition.

We want to ensure the existence of a solution of problem (P ), i.e., a function
u ∈ W 2,r(Ω) satisfying the differential equation almost everywhere in Ω and
the boundary condition pointwise. A function with these properties is usually
called “strong solution” in the literature. This will be done by introducing the
concepts of lower and upper solutions in this setting.

For sake of simplicity we do not deal with nonlinearities depending on ∇u;
nonetheless our results can be adapted to such a situation, by adding a Nagumo
type assumption. Moreover, our choice of taking the same differential operator
and boundary conditions for all components has mainly intended to simpli-
fying the exposition, even if our arguments are also suited to a more general
setting.

We will follow a semi-abstract approach like the one in [50], with the pur-
pose of highlighting the main features needed in order to obtain the existence
result. In this way, slight modifications lead to similar results for different prob-
lems. For example, differential operators of parabolic type may also be consid-
ered. Entering now for a moment into details, in this hypotheses we can deal
with the problem{ Lun = Fn(x, t, u1, . . . , uM) in Q ,

Bun = 0 on ∂Q ,
n = 1, . . . ,M .

where L : W 2,1
r (Q) → Lr(Q) is defined as follows:

Lw = ∂tw −
N∑

l,m=1

alm(x, t)∂
2
xlxm

w +
N∑
i=1

ai(x, t)∂xiw + a0(x, t)w .
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and the boundary boundary operator B : C1,0(Q) → C(∂Q) defined as

Bw :=



w on Γ1 × [0, T ] ,
N∑
i=1

bi(x, t)∂xiw + b0(x, t)w on Γ2 × [0, T ] ,

w − τTw in Ω× {0} ,
τ(−T )w − w in Ω× {T} .

where
(τsw)(x, t) = w(x, t+ s) ,

and thus having Dirichlet-periodic conditions on Γ1, and Robin-periodic on Γ2.

Concerning the problem of non-well-ordered lower and upper solutions, we
refer to [4, 30, 57, 59, 83]. An abstract approach to the theory of lower and upper
solutions has also been proposed in [1, 2]. Fewer results are known for systems.
We refer to [84, Chapter 8] for systems of elliptic or parabolic equations, where
some type of monotonicity is assumed in order to get the existence results.

In Chapter 5 we establish the existence of periodic solutions bifurcating from an
infinite-dimensional invariant torus for a nearly integrable Hamiltonian system.
The finite-dimensional case was treated in [5, 14, 24, 39, 40] by assuming the
existence of an invariant torus made of periodic solutions all sharing the same
period, under some non-degeneracy conditions. More precisely if we denote
by H(I, φ) = K(I) the Hamiltonian of a completely integrable system in R2N in
action–angle variables, we can write the corresponding system{

φ̇ = ∇K(I)

−İ = 0 .

Assume that there is a I0 ∈ RN such that

detK′′(I0) ̸= 0 (3)

and consider now the perturbed system{
φ̇ = ∇K(I) + ε∇IP (t, φ, I)

−İ = ε∇φP (t, φ, I) ,

where P (·, φ, I) is T -periodic, and P (t, ·, I) is τk-periodic in φk, for every k =
1, . . . , N . Assume that there exist some integers m1, . . . ,mN for which

T∇K(I0) = (m1τ1, . . . ,mNτN) . (4)
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Then, for |ε| small enough, there are at leastN+1 solutions (φ(t), I(t)) satisfying

φ(t+ T ) = φ(t) + T ∇K(I0) , I(t+ T ) = I(t) , for every t ∈ R , (5)

and these solutions are near to some solutions of the unperturbed problem, i.e.,
briefly,

φ(t) ≈ φ(0) + t∇K(I0) , I(t) ≈ I0.

Since P (·, φ, I) also mT -periodic for every positive integer m, one could
search the so-called “subharmonic solutions” namely “periodic solutions” hav-
ing period mT , as well. We refer to [40] for a complete description of the prob-
lem, and for a more general statement.

The above result was recently extended in [41] for systems of the type
φ̇ = ∇K(I) + ε∇IP (t, φ, I, z)

−İ = ε∇φP (t, φ, I, z)

Jż = Az + ε∇zP (t, φ, I, z) ,

where J =
( 0 −IM
IM 0

)
denotes the standard 2M × 2M symplectic matrix and A

is a symmetric non-resonant matrix. Assuming (3), (4) and that ∇P , the gradient
of P with respect to (φ, I, z), is uniformly bounded, the existence of at leastN+1
solutions (φ(t), I(t), z(t)) satisfying (5) and z(t+T ) = z(t) was proved, when |ε|
is small enough.

In this thesis we will show how to extend the above results to an infinite-
dimensional setting. Let X and Z be the separable Hilbert spaces replacing
RN and R2M , respectively. The spaces X and Z may be infinite-dimensional,
finite-dimensional, or even reduced to {0}. If X is finite-dimensional, the cases
Z = {0} and Z finite-dimensional correspond to the settings in [40] and [41],
respectively. In the case when X or Z are infinite-dimensional, we will be able
to prove the bifurcation of at least one periodic orbit from an invariant torus,
which can also be infinite-dimensional. The multiplicity problem remains open.

In proving our existence result in infinite-dimensions, we suppose all the
functions to be Lipschitz continuous on bounded sets, and the perturbing term
∇P to be uniformly bounded. Moreover, we need a special structure of the
autonomous Hamiltonian function; roughly speaking, the functions involved
must be decomposable in a sequence of finite-dimensional blocks.

We conclude this chapter showing how the previous results apply to systems
where second order systems are coupled with linear ones (focusing in particular
on the case when the second order system is given by a relativistic or mean
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curvature operator) and to “superintegrable systems”. We will consider the
following kind of coupling

d

dt
(∇Φ ◦ ẋ) = ε∇xF (t, x, z)

Jż = Az + ε∇zF (t, x, z) .

(6)

Denoting by Φ∗
j the Legendre–Fenchel transform of Φj system (6) can be

written as a Hamiltonian system
ẋ = ∇Φ∗(y)

ẏ = ε∇xF (t, x, z)

Jż = Az + ε∇zF (t, x, z) .

The choice

Φ(y) =
∞∑
j=1

(
1−

√
1− ∥y⃗j∥2

)
,

and its dual, namely

Φ(y) =
∞∑
j=1

(√
1 + ∥y⃗j∥2 − 1

)
.

transforms the first equation of system (6) respectively in

d

dt

˙⃗xj√
1− ∥ ˙⃗xj∥2

= ε∇x⃗jF (t, x, z) , j = 1, 2, . . .

or
d

dt

˙⃗xj√
1 + ∥ ˙⃗xj∥2

= ε∇x⃗jF (t, x, z) , j = 1, 2, . . .

The study of systems of the form
φ̇ = ∇K(I) + η2∇IP (t, φ, I, z)

−İ = η2∇φP (t, φ, I, z)

Jż = ηAz + η2∇zP (t, φ, I, z) ,

with associated Hamiltonian function

H(t, φ, I, z) = K(I) +
η

2
⟨Az , z⟩+ η2P (t, φ, I, z) ,

extends to an infinite-dimensional setting [41, Theorem 4.1], which was moti-
vated by the study of perturbations of superintegrable systems, cf. [75].
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The thesis is concluded by two appendices in which we deal with some spinoffs
of our research. Appendix A gives a characterization of the property of having
equal p-norms when p varies in some infinite set P ⊆ [1,+∞). As a result we
will prove that the above property is equivalent to the following condition:

µ({x ∈ E : |f(x)| > α}) = µ({x ∈ E : |g(x)| > α}) for all α ≥ 0 .

The resulting condition resembles in some way a reverse Cavalieri’s principle
that links the volume of two solids with the areas of the corresponding parallel
sections. Recently this result has been applied to the inverse problem of recov-
ering the non-linearity for the one dimensional variable exponent p(x)-Laplace
equation from the Dirichlet-to-Neumann map (see e.g. [19]).

Appendix B investigates some properties of Dini derivatives of arbitrary real
functions. We will show that for a continuous function f , the following theorem
holds.

Theorem 3. If f : I → R is upper well behaved, namely for every compact interval
J ⊆ I there exists xj such that f(xj) = max f(J) , then the set

Vf := {x ∈ I : D−f(x) < D+f(x)} .

is totally disconnected.

The hypothesis is verified if f is continuous although other weaker assumptions
preserve this property. Quite surprisingly a function with this property did not
have to be nowhere continuous and we will construct a function f whose set
Vf coincides with the entire domain, and nevertheless f is continuous on an
infinite set possibly having infinitely many cluster points. The study of this kind
of functions raises interest not only in and of itself but because it can give some
ideas and also tools to further investigate and maybe extend Theorem 1. The
proof of Theorem 3 relies deeply on the theory of continued fractions building
up a bridge with Appendix A since this is the main tool used by Stieltjes in 1894
(as can be seen in [98]) to build up one of the central examples.



Chapter 1

The Poincaré–Bohl theorem and the
avoiding cones condition

1.1 An historical overview

In this chapter we deal with the Poincaré-Bohl Theorem and we explore some
possible extensions and variations in the planar case. This theorem is strictly
correlated to topological degree theory, differential geometry and topology. Its
origins dates back to the pioneering work of Poincaré in 1883 when, search-
ing for particular solutions to the three–body problem, he discovered that their
existence depends on the solvability of a nonlinear system of n equations in n
unknowns. To tackle this problem he generalized the Bolzano’s Theorem in the
following way:

Theorem. Let f1, . . . , fn be continuous functions of n real variables x1, . . . , xn , with

xi ∈ [−ai, ai] for all i = 1, . . . , n ,

and that for all i, fi is always positive for xi = ai and always negative if xi = −ai.
Then there exists ξ1, . . . , ξn such that

fi(ξ1, . . . , ξn) = 0 for all i = 1, . . . , n.

This result was announced in 1883 in a note in Comptes-Rendus de l’Aca-
démie des sciences de Paris [88] and developed in 1884 in another article in the
Bulletin Astronomique [89] although with an incomplete proof. In 1904, Piers
Bohl published on the “Journal de Crelle” [16] an article on the asymptotic be-
havior of a mechanical system in the neighborhood of an equilibrium point and
he proved several theorem on the existence of solution of systems of n equa-
tions in n unknowns defined over K =

∏n
i=1[−ai, ai]. As a corollary he obtained

the following result:

17
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Theorem. If g : K → RN is continuous and doesn’t vanish on the domain there exist
u ∈ ∂K and µ < 0 such that g(u) = µu.

He also proved the analogous result for the n- dimensional ball. Another step in
this direction is the Poincaré-Miranda Theorem. The theorem stated in 1883 by
Jules Henri Poincaré (nowadays known as the Poincaré-Miranda Theorem) was
rediscovered in 1940 by Silvio Cinquini who gave an incomplete proof [25]. One
year later Carlo Miranda proved the equivalence of this theorem with Brouwer
fixed point theorem [74]. For a very complete and detailed historical account on
this topic see for example [69]. Recently Alessandro Fonda and Paolo Gidoni in
[42] have proved a variant of the Poincaré-Bohl theorem assuming an “avoid-
ing cones” hypothesis obtaining a generalization of the Poincaré-Bohl theorem
for convex domains or more generally to domains that are diffeomorphic to a
convex set in RN .

In this chapter we focus on the planar case dropping the convexity hypoth-
esis. To achieve this goal we have to adopt a more general definition of normal
cone like the one in e.g., [91]:

NΩ(x̄) =

{
v ∈ RN : lim sup

x→x̄
x∈Ω

⟨v, x− x̄⟩
∥x− x̄∥ ≤ 0

}
.

This is the polar of the Bouligand cone (also named contingent cone). It has
been called regular normal cone in [91, def. 6.3]. Since it could well happen that
NΩ(x̄) = {0} for some x̄ ∈ ∂Ω, the avoiding cones condition at those points x̄
gives no restriction for f(x̄). As a first step in Section 1.2 we treat the case when
the boundary of Ω is a “curved polygon” namely a piecewise C1 curve. One
of the most important tools in Section 1.3 is the Hopf’s Theorem (the so called
Umlaufsatz). This result is highly important, linking the notion of curvature
and Euler characteristic, and it was proved in 1935 for curved polygons (see e.g.
[61]). In the same section we obtain a generalization of the Darboux Theorem
and the Umlaufsatz to Dini derivatives. 1 We conclude giving a generalization
of the Poincaré-Bohl theorem in that framework completing the analysis made
in [42].

Let us explain our main results, first introducing some notation. Since ∂Ω is
a Jordan curve, there is a continuous function γ : [0, 1] → R2, whose restriction
to [0, 1[ is injective, with γ(0) = γ(1) and γ([0, 1]) = ∂Ω. Let us start assuming
that ∂Ω is a piecewise regular Jordan curve. By this we mean that there are

0 = a0 < a1 < · · · < an−1 < an = 1 ,

1These two simple results seem not to be present in literature.
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such that, for every j = 1, 2, . . . , n, if we look at the function γj : [aj−1, aj] → R2,
restriction of γ to the closed interval [aj−1, aj], this function is of class C1, and
γ ′
j(s) ̸= 0 for every s ∈ [aj−1, aj]. Then, writing

γ ′
−(aj) = γ ′

j(aj) , γ ′
+(aj) = γ ′

j+1(aj) ,

it may be that γ ′
−(aj) ̸= γ ′

+(aj). Among these, there could be inward and out-
ward corner points (see Section 1.2 for a precise definition). Let us denote by Nι

the number of inward corner points (or cusps).

We will first prove the following result.

Theorem 1.1.1. Assume ∂Ω to be a piecewise regular Jordan curve, and that

f(x) /∈ NΩ(x) , for every x ∈ ∂Ω . (1.1)

Then, 1 ≤ deg(f,Ω) ≤ Nι + 1.

As we already said, at certain points aj it may happen that NΩ(aj) = {0}, in
which case f(aj) has no cone to avoid. Let us illustrate this with an example.
Using complex notation, we consider the function f : C → C defined as f(z) =
z2. As for the set Ω, if we took the disk centered at the origin with radius 1,
condition (1.1) would be violated at the point (1, 0). So, we modify the disk in
a small neighborhood of that point, by creating an inner corner, as in Figure 1.
Now condition (1.1) is satisfied, and Theorem 1.1.1 tells us that 1 ≤ deg(f,Ω) ≤
2 (of course, we all know that deg(f,Ω) = 2 in this case).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1.1: Local deformation of the boundary.

The proof of Theorem 1.1.1 is provided in the next section. An important tool
will be Hopf’s Theorem (the so-called Umlaufsatz), adapted to our situation.
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The extension of Theorem 1.1.1 to sets having an infinite number of corners
is discussed in Section 1.3, where we focus our attention on sets whose bound-
ary is piecewise the graph of a continuous function. This difficult task is not
fully achieved here, since we eventually need to assume some additional reg-
ularity of the boundary. However, in view of some striking examples of sets
whose boundary is locally the graph of nowhere differentiable functions (see,
e.g., the one in [34]), we expect that further generalizations would require a
much deeper insight in the theory of continuous functions (we will return on
this argument in Appendix B). As expected, in this framework we lose the up-
per estimate on the degree, and finally only prove that deg(f,Ω) ≥ 1.

Nevertheless, with the aim of extending Theorem 1.1.1, we will provide in
Section 1.3.1 a generalization of Hopf’s Theorem to some cases where the curve
bounding the set Ω is not regular, and in Section 1.3.3 an extension of Darboux
Theorem involving the Dini derivatives. These results could also have an inde-
pendent interest.

The existence of equilibria of functions defined on sets in abstract spaces
with very irregular boundaries has been investigated in [13, 27, 28], typically in
situations when the associated topologically degree is equal to 1.

Let us end this introduction by saying that Theorem 1.1.1 and its extension in
Section 1.3 could be generalized assuming the vector field f(x) to avoid some
more general upper semicontinuous multivalued map having closed convex
values.

1.2 Proof of Theorem 1.1.1

Following the usual habit, we assume that γ : [0, 1] → R2 parametrizes ∂Ω in
the counter-clockwise direction. Also, without loss of generality, we may ask that
γ(0) = γ(1) is a regular point, i.e., that γ ′

+(0) = γ ′
−(1), and that γ ′

−(aj) ̸= γ ′
+(aj),

for j = 1, 2, . . . , n− 1. Moreover, for simplicity we may also assume that γ is an
arc-length parametrization.

1.2.1 The angular function

Denoting by P(R) the collection of all subsets of R, we define a multivalued
function ω : [0, 1] → P(R), the so-called angular function, as follows.

In the open intervals ]aj−1, aj[ , the function will be single-valued, hence we
can write

γ ′(s) = eiω(s) , when s ∈ ]aj−1, aj[ , (1.2)
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(recall that ∥γ ′(s)∥ = 1) while at the points aj , corresponding to corners or cusps,
ω(aj) will be a closed interval [αj, βj]. Moreover, the multivalued function ω :
[0, 1] → P(R) will be upper semicontinuous (cf. [7, page 41]). We now enter into
details.

Since we have assumed that γ(0) is a regular point, we define ω(0) to be
single-valued, such that eiω(0) = γ ′

+(0) and ω(0) ∈ [0, 2π[ . Then, the function
ω(s) is uniquely defined on [0, a1[ , by continuity, asking that (1.2) holds, and it
is single-valued there.

Let us explain how ω(s) is defined on [a1, a2[ . Since γ ′
−(a1) ̸= γ ′

+(a1), it is
easily seen that we have the following alternative: either

(i ) there is an ε > 0 such that γ(a1) + λγ ′
−(a1) /∈ Ω, for every λ ∈ ]0, ε[ ,

in which case we say that γ ′
−(a1) “points outward”, so that γ(a1) is an “outward

corner point”, or

(ii ) there is an ε > 0 such that γ(a1) + λγ ′
−(a1) ∈ Ω, for every λ ∈ ]0, ε[ ,

in which case we say that γ ′
−(a1) “points inward”, so that γ(a1) is an “inward

corner point”.

Figure 1.2: Inward and outward corner points for a curved polygon.

In case γ ′
−(a1) points outward, let

α1 = lim
s→a−1

ω(s) . (1.3)

Such a limit exists and is finite, since γ(s) = γ1(s) on [0, a1] and γ1 : [0, a1] → R2

is of class C1, with ∥γ ′
1(s)∥ = 1 for every s ∈ [0, a1]. Moreover, eiα1 = γ ′

−(a1).
Let β1 ∈ ]α1, α1 + π] be such that eiβ1 = γ ′

+(a1), and define ω(a1) = [α1, β1].
Now there is a unique way to define ω(s) on ]a1, a2[ , in such a way that (1.2)
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holds, preserving the upper semicontinuity of the multivalued function ω on
the whole interval [0, a2[ . Notice that it has to be

β1 = lim
s→a+1

ω(s) . (1.4)

In case γ ′
−(a1) points inward, let instead

β1 = lim
s→a−1

ω(s) , (1.5)

so that eiβ1 = γ ′
−(a1), and let α1 ∈ [β1 − π, β1[ be such that eiα1 = γ ′

+(a1). De-
fine ω(a1) = [α1, β1], and extend ω(s) on ]a1, a2[ , in such a way that (1.2) holds,
preserving the upper semicontinuity on the whole interval [0, a2[ . In this case,
it has to be

α1 = lim
s→a+1

ω(s) . (1.6)

The definition of ω(a2) is analogous to that of ω(a1), and we can continue
recursively, thus defining ω(s) on [aj−1, aj[ , for every j = 1, 2, . . . , n. When we
arrive at the last interval, we define ω(1) just by continuity: ω(1) = lims→1− ω(s).

Figure 1.3: The avoiding cones condition for the set Ω. Notice that in C the normal
cone reduces to {0} so there is no restriction for f in this point.
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The following lemma will be crucial in the proof of Theorem 1.1.1.

Lemma 1.2.1. One has that
ω(1) = ω(0) + 2π .

Proof The function ω : [0, 1] → P(R) defined above is upper semicontinuous
and, since γ(0) = γ(1) is a regular point, there must exist an integer N for which
ω(1) = ω(0) + 2πN . If there are no singular points, i.e. if n = 1, we can apply
Hopf’s Theorem [61], stating that for any simple closed C1-curve γ in the plane
it has to be N = 1.

Let us now assume n ≥ 2. We will approximate the curve γ with a C1-curve
γ̃ : [0, 1] → R2, by smoothing the angles. We will thus correspondingly obtain
an approximation of the multivalued function ω by a continuous single-valued
function ω̃ : [0, 1] → R.

Let us explain how γ̃ is defined, assuming for simplicity n = 2, i.e., that a1 is
the only point of discontinuity of γ ′. Recalling that ω is upper semicontinuous
and ω(a1) = [α1, β1], for any ε ∈

]
0, π

2

[
there is a δ > 0 such that

s ∈ [a1 − δ, a1 + δ] ⇒ dist(ω(s), [α1, β1]) ≤ ε .

(Here and in the following, dist(A,B) = inf{∥x − y∥ : x ∈ A, y ∈ B}.) Take δ
small enough, and consider the rectangle I1 = [a1 − δ, a1 + δ] × [α1 − ε, β1 + ε].
We want the function ω̃ to coincide with ω on [0, a1 − δ]∪ [a1 + δ, 1], while in the
interval [a1− δ, a1+ δ] we will construct a C1-function whose graph is contained
in I1 and smoothly glues the endpoints (a1 − δ, ω(a1 − δ)) and (a1 + δ, ω(a1 + δ)).

Let B(γ(a1), r) be the open planar disk centered at γ(a1) with a small radius
r > 0, so small that its boundary is crossed only twice by the curve γ. This
choice is possible since there surely are r̄ > 0 and δ̄ > 0 such that, if r ∈ ]0, r̄]
and dist(γ(s), γ(a1)) = r for some s ∈ ]a1 − δ̄, a1 + δ̄[ , then γ ′(s) is transver-
sal to ∂B(γ(a1), r). Moreover, there is a ε̄ > 0 such that, if |s − a1| ≥ δ̄, then
dist(γ(s), γ(a1)) ≥ ε̄. It will then be sufficient to choose r ≤ min{r̄, ε̄}. With this
choice of r > 0, there will be an “entrance point” A = γ(a) and an “exit point”
B = γ(b). Notice that a < a1 < b, and b − a can be made arbitrarily small, by
reducing the radius r.

Consider the segment AB joining A and B, and take the straight line L,
parallel to AB, at a small distance ε̂ > 0 from it, lying between the segment
itself and the center of the ball γ(a1). Let A′ andB′ be the intersections of L with
the lines

LA = {γ(a) + tγ ′(a) : t ∈ R} and LB = {γ(b) + tγ ′(b) : t ∈ R} ,
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Figure 1.4: The case of a cusp.

respectively. Let A′′ and B′′ be the points on the segment A′B′ such that AA′

and A′A′′ have the same length, as well as for for BB′ and B′B′′. Taking ε̂ small
enough, the vector from A′′ to B′′ will have the same direction of the vector
from A to B. Consider the circular arc CAA′′ , starting at A, arriving at A′′, and
tangent to both L and LA. Similarly, consider the circular arc CBB′′ , starting at
B, arriving at B′′, and tangent to both L and LB. The curve γ̃ will be defined
as follows (see Figure 2): γ̃(s) coincides with γ(s) for s < a, i.e., until it reaches
the point A; then, it follows the circular arc CAA′′ until A′′; at this point, it goes
straight toB′′, thus remaining on the line L; then, it follows the circular arc CBB′′

until B, where it rejoins the curve γ. (Notice that, since we must be careful to
parametrize γ̃ in such a way that γ̃(b) = B, this curve will be regular but not
necessarily parametrized by arc-length any more.) Finally, γ̃(s) coincides with
γ(s) for s > b.

In the above construction, the constants r ε, δ and ε̂ can be chosen to be
arbitrarily small. Moreover, the angle function ω̃ : [0, 1] → R, defined by

γ̃ ′(s)

∥γ̃ ′(s)∥ = ei ω̃(s) ,

with ω̃(0) = ω(0), is monotone as s varies in [a, b], and continuous. These facts
guarantee that

dist(ω̃(s), ω(s)) ≤ π + 2ε < 2π , for every s ∈ [0, 1] .

By Hopf’s Theorem, ω̃(1) = ω̃(0)+2π, hence also ω(1) = ω(0)+2π, thus finishing
the proof.
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Figure 1.5: An example of angle-smoothing

1.2.2 The avoiding cones condition

We consider the restriction of our function f : Ω → R2 to the boundary of Ω.
More precisely, let us define the new function

g = f ◦ γ : [0, 1] → R2 \ {0} .

Passing to polar coordinates, in complex notation, we can write

g(s) = ρ(s)eiφ(s) ,

for some continuous functions ρ : R → ]0,+∞[ and φ : R → R. Since γ(0) =
γ(1), the number φ(1) differs from φ(0) by an integer multiple of 2π, and

deg(f,Ω) =
φ(1)− φ(0)

2π
.

It will be useful to consider the multivalued function Θ : [0, 1] → P(R)
defined as

Θ(s) =

{
Ø , if s = aj and γ ′

−(aj) points inward ,

ω(s)− 1
2
π + 2πZ , otherwise .

We can thus introduce an auxiliary cone N ∗
Ω(γ(s)), made of the origin and the

union of all the half-lines starting from the origin determined by the angles in
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Θ(s). Precisely,

N ∗
Ω(γ(s)) =

{
{0} , if s = aj and γ ′

−(aj) points inward,

{αeiθ : α ≥ 0, θ ∈ Θ(s)} , otherwise.
(1.7)

In the sequel we will often use without further mention the elementary prop-
erties of this kind of cones, like e.g. being closed sets, translation invariant
and rotation equivariant. Notice also that neither NΩ(γ(s)) nor N ∗

Ω(γ(s)) can be
larger than a half-plane.

Lemma 1.2.2. The cones NΩ(γ(s)) and N ∗
Ω(γ(s)) coincide. Therefore, the avoiding

cones condition (1.1) is equivalent to

φ(s) /∈ Θ(s) , for every s ∈ [0, 1] .

Proof We analyze several different situations.

If s ̸= aj for every j = 1, 2, . . . , n − 1, the boundary of Ω is smooth at γ(s),
hence NΩ(γ(s)) is just a single half-line, orthogonal to γ ′(s), with angle ω(s)− 1

2
π.

It thus coincides with N ∗
Ω(γ(s)).

Assume that s = aj and that γ ′
−(aj) points inward, so that Θ(aj) = Ø and

N ∗
Ω(γ(s)) = {0}. We want to prove that NΩ(γ(aj)) = {0}, as well. Let us translate

γ(aj) to the origin and rotate the reference system of axes in such a way that
the two straight lines passing through it determined by γ ′

−(aj) and γ ′
+(aj) are

symmetric with respect to the vertical axis and, roughly speaking, the set Ω
locally stays below its boundary. More precisely, if these two lines coincide,
in which case we have an inner cusp, they will be equal to {(x1, x2) : x1 =
0}; otherwise, the first one will have a positive slope m, and the second one
a negative slope −m. We may also assume, in both cases, that there are two
constants r̄ > 0 and µ > 0 such that

{(x1, x2) : x2 < µ|x1|} ∩B(0, r) ⊆ Ω , for every r ∈ ]0, r̄] .

Let v = (v1, v2) be a vector with ∥v∥ = 1. We distinguish three cases.

Case 1: v2 ≤ µ|v1|. Then, choosing x = r
2
v, we have that

⟨v, x⟩
∥x∥ = 1 .

Case 2: v2 > µ|v1| and v1 ≥ 0. Here we choose x = (ϵ, µϵ), with ϵ > 0 small
enough, and we have that

⟨v, x⟩
∥x∥ ≥ µ√

1 + µ2
v2 . (1.8)

Case 3: v2 > µ|v1| and v1 < 0. We then take x = (−ϵ, µϵ), with ϵ > 0 small
enough, and we have (1.8) again.
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We have thus shown, in all the three cases, that v /∈ NΩ(0). Since it cannot
contain any unitary vector v, the cone NΩ(0) is reduced to {0}.

Assume now that s = aj and that γ ′
−(aj) points outward. In this case,

ω(aj) = [αj, βj], so that Θ(aj) = [αj − 1
2
π, βj − 1

2
π] + 2πZ. As above, we translate

γ(aj) to the origin and take a reference system of axes so that the two straight
lines passing through the origin determined by γ ′

−(aj) and γ ′
+(aj) are symmet-

ric with respect to the vertical axis. If they coincide (in which case αj = π/2 and
βj = 3π/2 mod 2π), we have an outer cusp, and they will be equal to {(x1, x2) :
x1 = 0}; otherwise, the first one will have a negative slope −m, and the second
one a positive slope m (in this case, αj = π − arctan(m) and βj = π + arctan(m)
mod 2π). We want to prove that, in the first case, NΩ(0) = {(x1, x2) : x2 ≥ 0}
while, in the second case, NΩ(0) = {(x1, x2) : x2 ≥ 1

m
|x1|}. This will imply that

NΩ(0) = N ∗
Ω(0).

Let us consider the case of an outer cusp. We first prove the following inclu-
sion {(x1, x2) : x2 > 0} ⊆ NΩ(0). Let v be a vector in {(x1, x2) : x2 > 0}, and let
mv > 0 be such that v ∈ {(x1, x2) : x2 ≥ mv|x1|}. There is a r̄ > 0 such that

Ω ∩B(0, r) ⊆
{
(x1, x2) : x2 < − 2

mv

|x1|
}
, for every r ∈ ]0, r̄] .

Therefore, for any r ∈ ]0, r̄] and every x ∈ Ω∩B(0, r)\{0}, one has that ⟨v, x⟩ < 0,
showing that v ∈ NΩ(0). Since NΩ(0) is closed (cf. [91, Proposition 6.5]), we
conclude that {(x1, x2) : x2 ≥ 0} ⊆ NΩ(0).

To prove the opposite inclusion, let v = (v1, v2) be such that v2 < 0. There
exist cv > 0 and µ̃v > 0 such that, for every nonzero vector x = (x1, x2) with
x2 ≤ −µ̃v|x1|, one has

⟨v, x⟩
∥x∥ ≥ cv . (1.9)

Now, there is a r̄v > 0 such that

Ω ∩B(0, r) ⊆ {(x1, x2) : x2 < −µ̃v |x1|} , for every r ∈ ]0, r̄v] .

Therefore, for any r ∈ ]0, r̄v] and every x ∈ Ω ∩ B(0, r) \ {0}, one has that (1.9)
holds, showing that v /∈ NΩ(0).

Assume now that γ ′
−(aj) points outward, but is not a cusp. Let us first prove

the inclusion {(x1, x2) : x2 > 1
m
|x1|} ⊆ NΩ(0). Let v be a vector in {(x1, x2) : x2 >

1
m
|x1|}, and let m′

v ∈ ]0,m[ be such that v ∈ {(x1, x2) : x2 ≥ 1
m′

v
|x1|}. There is a

r̄ > 0 such that

Ω ∩B(0, r) ⊆ {(x1, x2) : x2 < −m′
v |x1|} , for every r ∈ ]0, r̄] .
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Therefore, for any r ∈ ]0, r̄] and every x ∈ Ω∩B(0, r) \ {0}, one has that ⟨v, x⟩ <
0, showing that v ∈ NΩ(0). Since NΩ(0) is a closed cone, we conclude that
{(x1, x2) : x2 ≥ 1

m
|x1|} ⊆ NΩ(0).

Let us now prove the opposite inclusion. Let v = (v1, v2) /∈ {(x1, x2) : x2 ≥
1
m
|x1|}, and let µv > m be such that v /∈ {(x1, x2) : x2 ≥ 1

µv
|x1|}. There is a r̄ > 0

such that

{(x1, x2) : x2 < −µv |x1|} ∩B(0, r) ⊆ Ω , for every r ∈ ]0, r̄] .

Assume v1 ≥ 0, and hence v2 < 1
µv
v1. Then, taking x = (δ,−µvδ), for any

sufficiently small δ > 0 we have that x ∈ Ω, and

⟨v, x⟩
∥x∥ =

1√
1 + µ2

v

(v1 − v2µv) > 0 ,

showing that v /∈ NΩ(0). The case v1 ≤ 0 is analogous.

The proof of the lemma is thus completed.

1.2.3 Conclusion of the proof

Recalling that γ(0) is a regular point and that, by Lemma 1.2.2,

φ(0) /∈ ω(0)− 1
2
π + 2πZ ,

there is a K ∈ Z such that

ω(0)− 1
2
π + 2πK < φ(0) < ω(0)− 1

2
π + 2π(K + 1) . (1.10)

Then, by continuity and Lemma 1.2.2, it has to be that

φ(s) > ω(s)− 1
2
π + 2πK , for every s ∈ [0, a1[ . (1.11)

(Notice that ω(s) is single-valued in [0, a1[ , and in each interval ]aj−1, aj[ .) When
we arrive at s = a1, we have two possibilities: either γ ′

−(a1) points outward, or
it points inward. If it points outward, then

φ(a1) /∈ Θ(a1) = ω(a1)− 1
2
π + 2πZ = [α1, β1]− 1

2
π + 2πZ . (1.12)

By (1.11) and (1.3), we know that

φ(a1) = lim
s→a−1

φ(s) ≥ lim
s→a−1

ω(s)− 1
2
π + 2πK = α1 − 1

2
π + 2πK ,

hence, by (1.12) and (1.4), it has to be

φ(a1) > β1 − 1
2
π + 2πK = lim

s→a+1

ω(s)− 1
2
π + 2πK .

Consequently, if s > a1 and s is sufficiently near a1, then φ(s) > ω(s) − 1
2
π +

2πK. This inequality will persist, by continuity and Lemma 1.2.2, for every
s ∈ ]a1, a2[ .



1.2 Proof of Theorem 1.1.1 29

On the other hand, if γ ′
−(a1) points inward, there is no cone to avoid. How-

ever, by (1.11), (1.5) and (1.6),

φ(a1) = lim
s→a−1

φ(s) ≥ lim
s→a−1

ω(s)− 1
2
π + 2πK = β1 − 1

2
π + 2πK >

> α1 − 1
2
π + 2πK = lim

s→a+1

ω(s)− 1
2
π + 2πK .

Hence, by the same argument as above, we will have that φ(s) > ω(s) − 1
2
π +

2πK, for every s ∈ ]a1, a2[ .

Iterating this process, we have that

φ(s) > ω(s)− 1
2
π + 2πK , for every s ∈

n⋃
j=1

]aj−1, aj[ ,

and finally, by continuity, Lemma 1.2.1 and (1.10),

φ(1) ≥ ω(1)− 1
2
π + 2πK = ω(0)− 1

2
π + 2π(K + 1) > φ(0) .

Since φ(1)− φ(0) is an integer multiple of 2π, we then deduce that

φ(1)− φ(0) ≥ 2π ,

i.e., that deg(f,Ω) ≥ 1.

In order to show that deg(f,Ω) ≤ Nι + 1, let us go back to [0, a1[ . Arguing as
above, by (1.10) we have that

φ(s) < ω(s) + 3
2
π + 2πK , for every s ∈ [0, a1[ .

If γ ′
−(a1) points outward,

φ(a1) < α1 +
3
2
π + 2πK , (1.13)

and we see that, if s > a1 and s is sufficiently near a1, then φ(s) < ω(s) + 3
2
π +

2πK, and this inequality will persist for every s ∈ ]a1, a2[ .

Now, if γ ′
−(aj) points outward for every j, we would have

φ(s) < ω(s) + 3
2
π + 2πK , for every s ∈

n⋃
j=1

]aj−1, aj[ ,

and, by Lemma 1.2.1 and (1.10),

φ(1) ≤ ω(1) + 3
2
π + 2πK = ω(0) + 3

2
π + 2π(K + 1) < φ(0) + 4π .

Then, φ(1)− φ(0) ≤ 2π, so that deg(f,Ω) ≤ 1.
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On the other hand, if γ ′
−(a1) points inward, there is no control like (1.13),

and it could be as well that

α1 +
3
2
π + 2πK < φ(a1) < β1 +

3
2
π + 2πK ,

giving an increase of 1 in the final computation of the degree. Clearly, the same
could happen for any of the Nι inward corner points.

The proof of Theorem 1.1.1 is thus completed.

1.3 An extension of Theorem 1.1.1

The aim of this section is to extend Theorem 1.1.1 to the case when ∂Ω is piece-
wise the graph of a continuous function. However, this difficult task will not be
completely achieved, and we will eventually need to assume some additional
regularity on that set. Moreover, as may be expected, in this framework we will
lose the upper estimate on the degree, and finally only prove that deg(f,Ω) ≥ 1.

Let us start by giving a precise definition of what we mean by “piecewise
graph of a continuous function”. As usual, ∂Ω is a Jordan curve parametrized
by a continuous function γ : [0, 1] → R2, in counter-clockwise direction.

Definition 1.3.1. We say that ∂Ω is piecewise the graph of a continuous function
if there are

0 = â0 < â1 < · · · < âm−1 < âm = 1 ,

such that, writing pk = γ(âk),

the closed polygonal curve Γ = p0p1 · · · pm has no self-intersections ;

moreover, denoting by νk the outer normal to the segment pk−1pk joining the two points
pk−1 and pk, for every k = 1, 2, . . . ,m there are hk > 0 and a continuous function
gk : pk−1pk → [−hk, hk] such that, defining the rectangles

Rk = pk−1pk + [−hk, hk]νk ,
we have that

Ω ∩Rk = {p+ yνk : p ∈ pk−1pk , y ∈ [−hk, gk(p)[ } ,
∂Ω ∩Rk = {p+ yνk : p ∈ pk−1pk , y = gk(p)} .

Notice that the polygonal curve Γ, being a piecewise regular Jordan curve,
can be parametrized by a piecewise regular function γΓ : [0, 1] → R2 such that
γΓ(âk) = γ(âk), for every k = 1, 2, . . . ,m. Then, there is an associated angular
function ωΓ : [0, 1] → P(R), defined precisely as in Section 1.2 (to simplify the
exposition, we may assume that γΓ(0) is a regular point for Γ, i.e., that γ ′

Γ(0) =
γ ′
Γ(1)). Notice that there are no cusps for Γ, and that ωΓ(1) = ωΓ(0) + 2π, by

Lemma 1.2.1.
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Figure 1.6: The parametrization of the boundary of Ω in the case of a piecewise regular
Jordan curve.

Let us now introduce the concept of “vanishing set”. Given a set S, we
denote by S ′ the derived set of S, i.e., the set of cluster points of S.

Definition 1.3.2. Looking at the iterated derived sets

S(1) = S ′ , S(n+1) = [S(n)]′ ,

we call S a vanishing set if, for some positive integer N , the iterated derived set S(N)

is empty.

We will prove the following extension of Theorem 1.1.1.

Theorem 1.3.3. Assume ∂Ω to be a Jordan curve, piecewise graph of a continuous
function. Let γ : [0, 1] → R2 be a continuous parametrization of ∂Ω, with the property
that there are a countable number of non-overlapping intervals [aj, bj], contained in
[0, 1], on the interior of which γ is of class C1, and S = [0, 1] \⋃j ]aj, bj[ is a vanishing
set. If the avoiding cones condition (1.1) holds, then deg(f,Ω) ≥ 1.

The proof will be carried out in the next four subsections. We will first need
to extend Hopf’s Theorem in this new setting, and to characterize the normal
cones with the new angular function, similarly as in Lemma 1.2.2. We will then
make a small detour to provide us with some useful properties of the Dini
derivatives (which could also have some independent interest). The proof of
Theorem 1.3.3 will then be given first assuming the number of intervals [aj, bj]
to be finite, and finally in its general form.
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1.3.1 An extension of Hopf’s Theorem

We need to define the angular function ω : [0, 1] → P(R) in the case when ∂Ω is
piecewise the graph of a continuous function. This will eventually lead us to an
extension of Hopf’s Theorem.

So, take some x ∈ ∂Ω, and assume first that x = γ(s) for some s ∈ ]âk−1, âk[ .
After a roto-translation Sk, in which the segment pk−1pk becomes horizontal,
of the type [ck, dk] × {0}, we have a corresponding continuous function Fk :
[ck, dk] → R, whose graph is the transformation of the graph of gk by Sk, and
Sk(Ω) locally “stays below” this graph. More precisely, we can write Sk = Tk ◦
Rk, where Tk is a translation and Rk is the rotation around the origin with angle

θ̂kΓ = π − ωΓ

(
âk−1 + âk

2

)
.

(Notice that ωΓ is constant on ]âk−1, âk[ .) The interval [ck, dk] has the same length
as the segment pk−1pk, and we will have that

Sk(γ(s)) = (t(s), Fk(t(s))) ,

with t(s) ∈ ]ck, dk[ continuously determined by s ∈ ]âk−1, âk[ through the for-
mula

t(s) = ck +
dk − ck
âk − âk−1

(âk − s) .

Moreover, t(âk−1) = dk, t(âk) = ck, and

Fk(t(s)) = [Sk ◦ gk ◦ S−1
k ](t(s), 0) .

To simplify the notation, we will now write F instead of Fk, and t instead of
t(s). We consider the four Dini derivatives

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)

h
, D+f(x) = lim sup

h→0+

f(x+ h)− f(x)

h
,

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)

h
, D−f(x) = lim sup

h→0−

f(x+ h)− f(x)

h
.

Let

L−(t) = {(x1, x2) ∈ R2 : x1 ≤ 0 , x2 = D−F (t)x1} ,
L+(t) = {(x1, x2) ∈ R2 : x1 ≤ 0 , x2 = D+F (t)x1} ,
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where it is implicitly assumed that

D−F (t) = −∞ ⇒ L−(t) = {0} × [0,+∞[ ,

D−F (t) = +∞ ⇒ L−(t) = {0}× ]−∞, 0] ,

D+F (t) = −∞ ⇒ L+(t) = {0} × [0,+∞[ ,

D+F (t) = +∞ ⇒ L+(t) = {0}× ]−∞, 0] .

Let θ−(t), θ+(t) be the two real numbers in [π
2
, 3π

2
] such that, in complex notation,

L−(t) = {αeiθ−(t) : α ≥ 0} , L+(t) = {αeiθ+(t) : α ≥ 0} .

(Notice that, whenever the right and left derivatives exist and are finite, the case
θ−(t) < θ+(t) corresponds to an inward corner point, while the case θ−(t) >
θ+(t) corresponds to an outward corner point.) We thus define

ω(s) = [α(s), β(s)] ,

where
α(s) = θ+(t(s))− θ̂kΓ , β(s) = θ−(t(s))− θ̂kΓ , (1.14)

with the convention that [a, b] = [b, a] when b < a.

Now we look at the cases when s = âk, for some k = 1, 2, . . . ,m. At these
points, the limits from the left have to be made with one reference function,
while those from the right concern a different one. For example, looking at s =
âk, the angle θ+(t(âk)) must be defined through the function Fk : [ck, dk] → R,
with t(âk) = ck, while θ−(t(âk)) is defined using Fk+1 : [ck+1, dk+1] → R, with
t(âk) = dk+1. Once this is done, the definition of ω(âk) is

ω(âk) = [α(âk), β(âk)] ,

where
α(âk) = θ+(t(âk))− θ̂kΓ , β(âk) = θ−(t(âk))− θ̂k+1

Γ , (1.15)

with the usual convention for [a, b] when b < a.

Having defined the multivalued function ω : [0, 1] → P(R), we can now
state an analogue of Hopf’s Theorem.

Theorem 1.3.4. Assume that ∂Ω is piecewise the graph of a continuous function. Then,

ω(1) = ω(0) + 2π .
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Figure 1.7: The avoiding cones condition for the set Ω in a point x of the boundary of
Ω.

Proof We know that ωΓ(1) = ωΓ(0) + 2π and, for every s ∈ [0, 1],

α′ , β′ ∈ ωΓ(s) ⇒ |α′ − β′| < π .

Moreover, recalling the assumption that ∂Ω is piecewise the graph of a contin-
uous function,

s ∈ ]âk−1, âk[ ⇒ dist(ωΓ(s), ω(s)) ≤
π

2
.

The conclusion easily follows.

1.3.2 A characterization of normal cones

We now give a characterization of normal cones, similarly as in Section 1.2,
when ∂Ω is piecewise the graph of a continuous function. It will be useful to
consider the following multivalued function Θ : [0, 1] → P(R). Recalling how
we have defined ω(s) = [α(s), β(s)], we set

Θ(s) =

{
Ø , if α(s) > β(s) ,

ω(s)− 1
2
π + 2πZ , if α(s) ≤ β(s) .
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We can thus introduce an auxiliary cone N ⋆
Ω(γ(s)), made of the origin and the

union of all the half-lines starting from the origin determined by the angles in
Θ(s), as in (1.7).

Lemma 1.3.5. The cones NΩ(γ(s)) and N ⋆
Ω(γ(s)) coincide. Therefore, the avoiding

cones condition (1.1) is equivalent to

φ(s) /∈ Θ(s) , for every s ∈ [0, 1] .

Proof We fix s ∈ [0, 1] and assume first that s ∈ ]âk−1, âk[ , for some k. After
operating the roto-translation Sk, we can assume that the segment pk−1pk coin-
cides with [ck, dk] × {0}. Moreover, without loss of generality, we can assume
that ck < 0 < dk and that Sk(γ(s)) coincides with the origin.

Let α(s) > β(s), so that Θ(s) = Ø and N ⋆
Ω(γ(s)) = {0}. We want to prove

that NΩ(γ(s)) = {0}, as well. In this case, there are two real constants µ̄ > ν̄
such that, for every µ ≤ µ̄ and every ν ≥ ν̄, the half-lines

ℓ+µ = {(x1, x2) : x1 ≥ 0, x2 = µx1} , ℓ−ν = {(x1, x2) : x1 ≤ 0, x2 = νx1}
intersect the set Ω infinitely many times in every small neighborhood of the
origin. Hence, for every v ∈ R2\{0}, it is possible to find a vector xwith ∥x∥ = 1
on one of such half-lines for which ⟨v, x⟩ = δ > 0. Hence, there is a sequence of
points (xn)n of Ω \ {0} on this half-line such that xn → 0 and ⟨v, xn⟩ = δ∥xn∥.
Therefore, if v ̸= 0, then v /∈ NΩ(γ(s)).

Assume now that α(s) = β(s), so that ω(s) is single-valued and N ⋆
Ω(γ(s)) is

a half-line. For every ε > 0 there are two sectors Sε1 ⊆ Sε2, with the following
properties. First of all, both sectors are symmetrical with respect to N ⋆

Ω(γ(s)).
The sector Sε2 has angular amplitude equal to π + 2ε, and there is a r̄ > 0 such
that Sε2 ∩ B(0, r) contains Ω ∩ B(0, r), for every r ∈ ]0, r̄[ . The sector Sε1 has
angular amplitude equal to π − 2ε, and every half-line of this sector intersects
the set Ω infinitely many times in every small neighborhood of the origin.

Let v ̸= 0 be a vector not belonging to the half-line N ⋆
Ω(γ(s)). Then, taking

ε > 0 small enough, it is possible to find a half-line in Sε1 and a point x on it,
with with ∥x∥ = 1, for which ⟨v, x⟩ = δ > 0. Then, there is a sequence of points
(xn)n of Ω \ {0} on this half-line such that xn → 0 and ⟨v, xn⟩ = δ∥xn∥, showing
that v /∈ NΩ(γ(s)). We have thus proved that NΩ(γ(s)) ⊆ N ⋆

Ω(γ(s)).

On the other hand, let v ∈ N ⋆
Ω(γ(s)) be a vector with norm ∥v∥ = 1. For

every ε > 0, there is a r̄ > 0 such that, for every x ∈ Ω ∩ B(0, r̄), being x ∈ Sε2,
one has

⟨v, x⟩
∥x∥ ≤ cos

(π
2
− ε
)
. (1.16)

Since ε is arbitrary, this shows that v ∈ NΩ(γ(s)), and since NΩ(γ(s)) is a cone,
we have proved that N ⋆

Ω(γ(s)) ⊆ NΩ(γ(s)).
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Finally, let α(s) < β(s). In this case, Θ(s) = [α(s)− 1
2
π, β(s)− 1

2
π] + 2πZ, and

N ⋆
Ω(γ(s)) is a cone whose angular amplitude is ι(s) = β(s)−α(s). We distinguish

two subcases.

Case 1: ι(s) < π. For every ε ∈ ]0, 1
2
(π − ι(s))[ there are two sectors Sε1 ⊆ Sε2,

symmetrical with respect to N ⋆
Ω(γ(s)). The sector Sε2 has angular amplitude

equal to π−ι(s)+2ε, and there is a r̄ > 0 such that Sε2∩B(0, r) contains Ω∩B(0, r),
for every r ∈ ]0, r̄[ . The sector Sε1 has angular amplitude equal to π − ι(s) − 2ε,
and every half-line of this sector intersects the set Ω infinitely many times in
every small neighborhood of the origin. The proof now is the same as the one
seen above in the case α(s) = β(s).

Case 2: ι(s) = π. In this case, N ⋆
Ω(γ(s)) is the half-plane {(x1, x2) : x2 ≥ 0}. For

every ε > 0 there is a sector Sε, symmetrical with respect to the vertical axis,
having angular amplitude equal to 2ε, and there is a r̄ > 0 such that Sε ∩B(0, r)
contains Ω ∩ B(0, r), for every r ∈ ]0, r̄[ . Let v = (v1, v2) be a vector with ∥v∥ =
1 and v2 > 0. Then, for every sufficiently small ε > 0, taking r ∈ ]0, r̄[ , we
see that, for every x ∈ Ω ∩ B(0, r), being x ∈ Sε, the inequality (1.16) holds
true. Since ε is arbitrary, this shows that v ∈ NΩ(γ(s)). We have thus proved
that NΩ(γ(s)) contains the open set {(x1, x2) : x2 > 0}. Being a closed cone, it
contains {(x1, x2) : x2 ≥ 0}, hence N ⋆

Ω(γ(s)) ⊆ NΩ(γ(s)). Then, equality must
hold, since NΩ(γ(s)) cannot be larger than a half-plane.

In the case when s = âk for some k ∈ {0, 1, . . . ,m}, the proof is essentially
the same, in view of (1.15), taking care of distinguishing the behaviour to the
left from the one to the right. We avoid the details, for briefness.

1.3.3 A generalized version of Darboux’s Theorem

In the following theorem and related corollary, we provide some important
properties of the Dini derivatives, in the spirit of Darboux’s Theorem.

Theorem 1.3.6. Let F : [a, b] → R be a continuous function such that, for some µ ∈ R,

D+F (a) > µ > D−F (b) . (1.17)

Then, there is a ξ ∈ ]a, b[ such that

D−F (ξ) ≥ µ ≥ D+F (ξ) .

Proof By Weierstrass Theorem, the function F̃ (t) = F (t) − µt has a maximum
in [a, b]. By (1.17), a maximum point ξ must be in ]a, b[ . Then, D−F̃ (ξ) ≥ 0 ≥
D+F̃ (ξ), and since

D−F̃ (ξ) = D−F (ξ)− µ , D+F̃ (ξ) = D+F (ξ)− µ ,

the result follows.



1.3 An extension of Theorem 1.1.1 37

The following corollary will play an important role in the proof of Theo-
rem 1.3.3.

Corollary 1.3.7. Let F : I → R be a continuous function, defined on some interval I ,
and let τ0 be a point of I . Consider the set

E = {τ ∈ I : D+F (τ) ≤ D−F (τ)} .

If τ0 is a cluster point for E from the left, then

D−F (τ0) ≥ lim inf
τ→τ−0
τ∈E

D+F (τ) . (1.18)

Similarly, if τ0 is a cluster point for E from the right, then

D+F (τ0) ≤ lim sup
τ→τ+0
τ∈E

D−F (τ) . (1.19)

Proof Let us prove (1.18). Assume by contradiction that the opposite inequality
holds. Then, we can find a δ > 0 and a real number µ such that [τ0 − δ, τ0] ⊆ I
and

D+F (τ) > µ > D−F (τ0) , for every τ ∈ [τ0 − δ, τ0[∩E . (1.20)

Fix τ̄ ∈ [τ0 − δ, τ0[∩E. By Theorem 1.3.6, there is a ξ ∈ ]τ̄ , τ0[ such that

D−F (ξ) ≥ µ ≥ D+F (ξ) .

Then, we see that ξ ∈ E and, by (1.20), it should beD+F (ξ) > µ, a contradiction.
The proof of (1.19) is analogous.

1.3.4 The proof of Theorem 1.3.3

The proof will be divided in three steps.

Step 1. First, we assume that the number of intervals [aj, bj] is finite. Hence,
besides assuming that ∂Ω is piecewise the graph of a continuous function, we
also ask that there are

0 = a0 < a1 < · · · < an−1 < an = 1 ,

such that, for every j = 1, 2, . . . , n, the restriction of γ to the open interval
]aj−1, aj[ is of class C1, and γ ′

j(s) ̸= 0 for every s ∈ ]aj−1, aj[ . Notice that, in
this setting, the limits lims→a±j

γ ′(s) do not have to exist.
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In the following, for simplicity, we will ask that γ(0) = γ(1) is a regular
point, i.e., that γ ′

+(0) = γ ′
−(1). Let us start by assuming that each point aj is

contained in the interior of some ]âk−1, âk[ .

We consider the function g = f ◦ γ : [0, 1] → R2 \ {0} and, extending it by
1-periodicity, we write

g(s) = ρ(s)eiφ(s) ,

for some continuous functions ρ : R → ]0,+∞[ and φ : R → R.

Being φ(0) /∈ Θ(0), let K ∈ Z be such that

β(0) + 2πK < φ(0) + 1
2
π < α(0) + 2π(K + 1) . (1.21)

(Here, since ω(0) is single-valued, α(0) = β(0).) By continuity and Lemma 1.3.5,
it has to be that

φ(s) + 1
2
π > β(s) + 2πK , for every s ∈ [0, a1[ .

We know that a1 ∈ ]âk−1, âk[ , for some k ∈ {1, 2, . . . ,m}. We consider the
corresponding function t : ]âk−1, âk[→ ]ck, dk[, and set τ0 = t(a1). Then, recall-
ing (1.14), there exists some δ > 0 for which

φ(t−1(τ)) + 1
2
π > θ−(τ)− θ̂kΓ + 2πK , for every τ ∈ ]τ0, τ0 + δ[ .

Then, by (1.19), recalling (1.14) again,

φ(a1) +
1
2
π = lim sup

τ→τ+0

φ(t−1(τ)) + 1
2
π

≥ lim sup
τ→τ+0

θ−(τ)− θ̂kΓ + 2πK

≥ θ+(τ0)− θ̂kΓ + 2πK = α(a1) + 2πK . (1.22)

(Here the set E plays no role.) We have two possibilities.

Case 1: D−Fk(τ0) ≥ D+Fk(τ0). Then, by Lemma 1.3.5 and (1.22), it has to be that

φ(a1) +
1
2
π > β(a1) + 2πK . (1.23)

Case 2: D−Fk(τ0) < D+Fk(τ0). Then, α(a1) > β(a1), and from (1.22) we get (1.23)
again.

On the other hand, by (1.14) and (1.18),

β(a1) = θ−(τ0)− θ̂kΓ ≥ lim inf
τ→τ−0

θ+(τ)− θ̂kΓ .
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(Even here the set E plays no role.) So, by (1.23), there are a sufficiently small
ε > 0 and a strictly increasing sequence (τn)n such that limn τn = τ0 and, setting
sn = t−1(τn), by (1.14),

φ(a1) +
1
2
π − ε > θ+(τn)− θ̂kΓ + 2πK = α(sn) + 2πK = β(sn) + 2πK .

(Here α(sn) = β(sn), being γ of class C1 on ]a1, a2[ .) Since sn → a1, by continuity,
for n large enough,

φ(sn) +
1
2
π > β(sn) + 2πK .

Hence, by Lemma 1.3.5 and the continuity of φ and β on ]a1, a2[ ,

φ(s) + 1
2
π > β(s) + 2πK , for every s ∈ ]a1, a2[ .

Iterating this procedure on each interval ]aj−1, aj[ , we thus prove that

φ(s) + 1
2
π > β(s) + 2πK , for every s ∈ ]aj−1, aj[ .

By continuity and Theorem 1.3.4, recalling that ω(1) is single-valued and using
also (1.21),

φ(1) + 1
2
π ≥ β(1) + 2πK = α(1) + 2πK = α(0) + 2π(K + 1) > φ(0) + 1

2
π .

Since φ(1)− φ(0) is an integer multiple of 2π, we then deduce that

φ(1)− φ(0) ≥ 2π ,

and the proof is completed. In the case when some aj coincides with some âk
the proof is easily adapted, in view of the definition given in (1.15), taking care
of the different functions involved when approaching aj from the left and from
the right.

Step 2. As a second step, we now assume that there are a countable number of
non-overlapping intervals [aj, bj], contained in [0, 1], on the interior of which γ
is of class C1, and that the singular set

S = [0, 1] \
∞⋃
j=0

]aj, bj[

has a finite number of cluster points a′1 < a′2 < · · · < a′N .

Keeping the same notations as above, for simplicity we ask that γ(0) = γ(1)
be a regular point, and we first assume that each point a′1, a′2, . . . , a′N is contained
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in the interior of some ]âk−1, âk[ . Let K ∈ Z be such that (1.21) holds. Then, by
induction, using the result proved in Step 1, we see that

φ(s) + 1
2
π > β(s) + 2πK , for every s ∈ [0, a′1[ .

We know that a′1 ∈ ]âk−1, âk[ , for some k ∈ {1, 2, . . . ,m}. We consider the corre-
sponding function t : ]âk−1, âk[→ ]ck, dk[, and set τ ′0 = t(a′1). Using (1.19), we see
like in (1.22) that φ(a′1) +

1
2
π ≥ α(a′1) + 2πK (here the set E plays no role). We

now have two possibilities.

Case 1: D−Fk(τ
′
0) ≥ D+Fk(τ

′
0). Then, by Lemma 1.3.5, it has to be that

φ(a′1) +
1
2
π > β(a′1) + 2πK . (1.24)

Case 2: D−Fk(τ
′
0) < D+Fk(τ

′
0). Then, α(a′1) > β(a′1), and we get (1.24) again.

Now, using (1.18), there is a strictly decreasing sequence (sn)n such that

lim
n
sn = a′1 , α(sn) ≤ β(sn) , lim

n
α(sn) ≤ β(a′1) .

(In this case, the set E plays a crucial role.) By (1.24), taking ε > 0 small enough,

φ(a′1) +
1
2
π − ε > α(sn) + 2πK ,

for every sufficiently large n. Being Θ(sn) = [α(sn), β(sn)] − 1
2
π + 2πZ, with

α(sn) ≤ β(sn), by Lemma 1.3.5 we have that

φ(a′1) +
1
2
π − ε > β(sn) + 2πK ,

so that, by continuity, for n large enough,

φ(sn) +
1
2
π > β(sn) + 2πK .

We can now use the argument at the end of Step 1 to show that

φ(s) + 1
2
π > β(s) + 2πK , for every s ∈ ]a′1, a

′
2[ .

Iterating this procedure, we easily conclude the proof. The case when some a′j
coincides with some âk is treated similarly, as already observed above.

Step 3. We have thus shown that the topological degree is a positive number
if S ′, the derived set of S, is finite. We can now repeat the argument in Step 2
assuming that S ′ is an infinite set, with a finite number of cluster points. And
this procedure can be carried on an arbitrary finite number of times. Since we
have assumed that S is a vanishing set, we will eventually reach an iterated
derived set having only a finite number of points. The proof is then completed
using once again the argument in Step 2.



Chapter 2

Well-ordered and non-well-ordered
lower and upper solutions for
periodic planar systems

2.1 Introduction

The method of lower and upper solutions for scalar second order differential
equations of the type

x′′ = g(t, x, x′)

can be dated back to the pioneering papers by Picard [87], Scorza Dragoni [96]
and Nagumo [77], dealing with separated boundary conditions. Its full exten-
sion to the periodic problem is due to Knobloch [64]. Further extensions to par-
tial differential equations of elliptic or parabolic type have also been proposed,
and there is nowadays a huge literature on this subject. For a rather complete
historical and bibliographical account, we refer to the book [29].

Recently Fonda and Toader [52], extended the main idea in the definition of
lower and upper solutions to planar systems of ordinary differential equations,
with the aim of finding bounded solutions through the method of Ważewski [103].
As a by-product, the theorem of Massera [66] provided also the existence of pe-
riodic solutions. It is the aim of this chapter to further develop this theory, con-
centrating on the periodic problem, by the use of topological degree methods.

We consider the periodic problem

(P )

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) ,

41
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where f : R3 → R and g : R3 → R are continuous functions, T -periodic in
their first variable. Our purpose is to give a general definition of a lower and
an upper solution with the aim of obtaining the existence of a solution to prob-
lem (P ).

In the first part we introduce our main definitions and provide some re-
marks and preliminaries needed in the sequel. In the second part we prove an
existence result in the well-ordered case α ≤ β, assuming (like in [52]) the ex-
istence of some bounding curves, in order to control the solutions in the phase
plane. The construction of these curves can be easily carried out in concrete
examples, assuming a Nagumo-type condition (see [52] or Lemma 2.4.2 below).

The next step is to extend the result dealing with the non-well-ordered case.
Here we need to ask an extra technical condition on the lower and upper solu-
tions; it remains an open question if it could possibly be avoided. Moreover, we
assume the existence of a whole family of bounding curves. This assumption is
again verified under some type of Nagumo conditions.

We conclude presenting some variants of our main theorems and discuss on
the possibility of further extending the theory to higher dimensional systems.

2.2 Main definitions and preliminaries

For any function ν : R → R we use the notation

ν(τ−) = lim
t→τ−

ν(t) , ν(τ+) = lim
t→τ+

ν(t) .

Definition 2.2.1. A continuous function α : R → R is said to be a lower solution for
problem (P ) if it is T -periodic and there exist a T -periodic function yα : R → R and a
finite number of points 0 = τ0 < τ1 < · · · < τn = T such that the following properties
hold:

1. the restriction of α [resp. yα] to each open interval ]τk−1, τk[ , with k ∈ {1, . . . , n},
is continuously differentiable [resp. differentiable];

2. α′(τ±k ) and yα(τ±k ) exist in R for every k ∈ {1, . . . , n}, with

α′(τ−k ) ≤ α′(τ+k ) and yα(τ
−
k ) ≤ yα(τ

+
k ) ; (2.1)

3. for every t ∈ ∪nk=1 ]τk−1, τk[ ,{
y < yα(t) ⇒ f(t, α(t), y) < α′(t) ,

y > yα(t) ⇒ f(t, α(t), y) > α′(t) ,
(2.2)
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and
y′α(t) ≥ g(t, α(t), yα(t)) . (2.3)

Definition 2.2.2. A continuous function β : R → R is said to be an upper solution
for problem (P ) if it is T -periodic and there exist a T -periodic function yβ : R → R
and a finite number of points 0 = τ0 < τ1 < · · · < τn = T such that the following
properties hold:

1. the restriction of β [resp. yβ] to each open interval ]τk−1, τk[ , with k ∈ {1, . . . , n},
is continuously differentiable [resp. differentiable];

2. β′(τ±k ) and yβ(τ±k ) exist in R for every k ∈ {1, . . . , n}, with

β′(τ−k ) ≥ β′(τ+k ) and yβ(τ
−
k ) ≥ yβ(τ

+
k ) ; (2.4)

3. for every t ∈ ∪nk=1 ]τk−1, τk[ ,{
y < yβ(t) ⇒ f(t, β(t), y) < β′(t) ,

y > yβ(t) ⇒ f(t, β(t), y) > β′(t) ,
(2.5)

and
y′β(t) ≤ g(t, β(t), yβ(t)) . (2.6)

In what follows, when dealing with a couple (α, β) of a lower and an upper
solution, we will assume, without loss of generality, that the points {τ0, τ1, . . . , τn}
provided in the previous definitions are the same, both for α and β. Moreover,
since we are dealing with T -periodic functions, it is worth defining the sets

J :=
{
t = τk + ιT | k ∈ {1, . . . , n} , ι ∈ Z

}
, I := R \ J .

Therefore, (2.1), (2.4) hold with τk replaced by any τ ∈ J , and (2.2), (2.3), (2.5),
(2.6) hold for every t ∈ I.

Remark 2.2.3. When dealing with the periodic problem associated with the scalar equa-
tion

(ϕ(x′))′ = h(t, x, x′) , (2.7)

the usual definitions of lower/upper solutions are contained in the above ones, tak-
ing f(t, x, y) = ϕ−1(y), g(t, x, y) = h(t, x, ϕ−1(y)), and defining yα(t) = ϕ(α′(t)),
yβ(t) = ϕ(β′(t)). Indeed, the conditions α(0) = α(T ), β(0) = β(T ) permit to con-
tinuously extend the functions α, β : [0, T ] → R to the whole real line R, and the
conditions α′(0) ≥ α′(T ), β′(0) ≤ β′(T ) are included in (2.1), (2.4). The possibility of
having some discontinuity points τk can be useful in the applications, e.g., when taking
as a lower solution the maximum of two or more smooth lower solutions, and as an
upper solution the minimum of two or more smooth upper solutions.
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From (2.2) we have that

α′(t) = f(t, α(t), yα(t)) , for every t ∈ I , (2.8)

and yα(t) is the only value for which this identity holds. Similarly, from (2.5) we
have

β′(t) = f(t, β(t), yβ(t)) , for every t ∈ I , (2.9)

and yβ(t) is uniquely defined on I by this identity.

It is well known in the case of scalar second order equations that if a function
is at the same time a lower and an upper solution, then it is a solution. Let us
write the analogous statement in our situation.

Proposition 2.2.4. Let x : R → R be at the same time a lower and an upper solution
for problem (P ). Then, there exists a function y : R → R such that (x, y) is a solution
of problem (P ).

Proof. Denote by yα and yβ the functions provided by Definitions 2.2.1 and 2.2.2
taking x = α and x = β, respectively. From (2.8) and (2.9) we deduce that

x′(t) = f(t, x(t), yα(t)) and yα(t) = yβ(t) , for every t ∈ I .
Then, from (2.1) and (2.4) we first see that x′(τ−k ) = x′(τ+k ), thus implying that x :
R → R is continuously differentiable; moreover, on one hand we have yα(τ−k ) ≤
yα(τ

+
k ), and on the other hand

yα(τ
−
k ) = yβ(τ

−
k ) ≥ yβ(τ

+
k ) = yα(τ

+
k ) ,

showing that yα(τ±k ) = yβ(τ
±
k ) for every k. We can thus define

y(t) =

{
yα(t) , if t ∈ I ,
yα(t

±) , if t ∈ J ,

a continuous function.

Since x : R → R is continuously differentiable, y : R → R and f : R3 → R
are continuous, from (2.8) we deduce that x′(t) = f(t, x(t), y(t)) for every t ∈ R.
Moreover, by (2.3) and (2.6) we get y′(t) = g(t, x(t), y(t)) for every t ∈ I; since
y : R → R and g : R3 → R are continuous, we first see that y : R → R is
continuously differentiable, and then also that y′(t) = g(t, x(t), y(t)) for every
t ∈ R, thus completing the proof.

We will need the following estimates involving our lower and upper solu-
tions, where we adopt the usual definition of the Dini derivatives:

D±F (t0) = lim inf
t→t±0

F (t)− F (t0)

t− t0
, D±F (t0) = lim sup

t→t±0

F (t)− F (t0)

t− t0
.
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Proposition 2.2.5. If α is a lower solution for problem (P ), then

D±yα(τ) ≥ g(τ, α(τ), yα(τ
±)) , for every τ ∈ J .

If β is an upper solution for problem (P ), then

D±yβ(τ) ≤ g(τ, β(τ), yβ(τ
±)) , for every τ ∈ J .

Proof. Let us fix k and consider the restrictions of the functions yα and yβ to the
interval [τk, τk+1], redefining the two functions at the extremes in such a way
to make them continuous. Then, since both yα and yβ are differentiable in the
interval ]τk, τk+1[ , by [43, Corollary 3.7] we have

D−yα(τk+1) ≥ lim inf
t→τ−k+1

D+yα(t) = lim inf
t→τ−k+1

y′α(t)

≥ lim inf
t→τ−k+1

g(t, α(t), yα(t)) = g(τk+1, α(τk+1), yα(τ
−
k+1)) ,

and
D+yβ(τk) ≤ lim sup

t→τ+k

D−yβ(t) = lim sup
t→τ+k

y′β(t)

≤ lim sup
t→τ+k

g(t, β(t), yβ(t)) = g(τk, β(τk), yβ(τ
+
k )) .

Similarly, we have

D+yα(τk) ≥ lim inf
t→τ+k

D−yα(t) = lim inf
t→τ+k

y′α(t)

≥ lim inf
t→τ+k

g(t, α(t), yα(t)) = g(τk, α(τk), yα(τ
+
k )) ,

and

D−yβ(τk+1) ≤ lim sup
t→τ−k+1

D+yβ(t) = lim sup
t→τ−k+1

y′β(t)

≤ lim sup
t→τ−k+1

g(t, β(t), yβ(t)) = g(τk+1, β(τk+1), yβ(τ
−
k+1)) ,

thus ending the proof.

2.3 Well-ordered lower and upper solutions

We will say that (α, β) is a well-ordered couple of lower/upper solutions of
problem (P ) if α and β are respectively a lower and an upper solution of prob-
lem (P ), and α(t) ≤ β(t) for every t ∈ R. The following result generalizes that
part of [52, Theorem 2.5] concerning the existence of periodic solutions.
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Theorem 2.3.1. Assume the existence of a well-ordered couple (α, β) of lower/upper
solutions of problem (P ). Set A = minα and B = max β, with A < B. Let there exist
two continuously differentiable functions γ± : [A,B] → R such that, for every t ∈ R
and x ∈ [α(t), β(t)],

γ−(x) < min{yα(t−), yβ(t+)} ≤ max{yα(t+), yβ(t−)} < γ+(x) ,

and
g(t, x, γ−(x)) < f(t, x, γ−(x))γ

′
−(x) (2.10)

g(t, x, γ+(x)) > f(t, x, γ+(x))γ
′
+(x) . (2.11)

Then there exists at least one solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) and γ−(x(t)) < y(t) < γ+(x(t)) ,

for every t ∈ R.

Some remarks are in order.

1) We will discuss in Section 2.5 on the possibility of reversing the inequalities
in (2.10) and (2.11).

2) We will provide in Lemma 2.4.2 some Nagumo-type conditions which guar-
antee the existence of the curves γ±.

3) The assumption A < B is inessential, since if A = B we have that α = β,
hence by Proposition 2.2.4 we immediately get a solution.

2.3.1 Proof of Theorem 2.3.1

2.3.1.1 An auxiliary problem

Let Φ : R3 → R2 be defined as

Φ(t, x, y) = (f(t, x, y), g(t, x, y)) .

Fix D > 0 such that

−D < γ−(x) < γ+(x) < D , for every x ∈ [A,B] .

Define
∥α′∥∞ = max

t∈[0,T ]
|α′(t±)| , ∥β′∥∞ = max

t∈[0,T ]
|β′(t±)| , (2.12)

µ1 = max
t∈[0,T ]

|f(t, α(t), γ±(α(t)))| , µ2 = max
t∈[0,T ]

|f(t, β(t), γ±(β(t)))| ,



2.3 Well-ordered lower and upper solutions 47

choose
MX > max{µ1, µ2, ∥α′∥∞, ∥β′∥∞} , (2.13)

and
MY > ∥γ′±∥∞MX . (2.14)

We interpolate the vector field Φ(t, x, y) on {A ≤ x ≤ B , γ−(x) ≤ y ≤ γ+(x)}
with a constant vector field on {A ≤ x ≤ B , |y| ≥ D}. Precisely, we define
Φ̂ : R× [A,B]× R → R2 as

Φ̂(t, x, y) =



(MX ,MY ) , if y ≥ D ,

Φ(t, x, γ+(x)) +
y − γ+(x)

D − γ+(x)

(
(MX ,MY )− Φ(t, x, γ+(x))

)
,

if γ+(x) ≤ y ≤ D ,

Φ(t, x, y) , if γ−(x) ≤ y ≤ γ+(x) ,

Φ(t, x, γ−(x))−
y − γ−(x)

D + γ−(x)

(
(−MX ,−MY )− Φ(t, x, γ−(x))

)
,

if −D ≤ y ≤ γ−(x) ,

(−MX ,−MY ) , if y ≤ −D .

We will write Φ̂(t, x, y) =
(
f̂(t, x, y), ĝ(t, x, y)

)
.

By the use of the auxiliary functions

ζ(s;µ, ν) =


µ , if s < µ ,

s , if µ ≤ s ≤ ν ,

ν , if s > ν ,

and

e(s;µ, ν) = s− ζ(s;µ, ν) =


s− µ , if s < µ ,

0 , if µ ≤ s ≤ ν ,

s− ν , if s > ν ,

we define, for every (t, x, y) ∈ R3,

f̃(t, x, y) =f̂
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e
(
y;−D,D

)
,

g̃(t, x, y) =ĝ
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e
(
x;α(t), β(t)

)
,
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so to introduce the modified problem

(P̃ )

{
x′ = f̃(t, x, y) , y′ = g̃(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) .

We will write Φ̃(t, x, y) =
(
f̃(t, x, y), g̃(t, x, y)

)
. In the space

C0
T =

{
v ∈ C0([0, T ],R2) : v(0) = v(T )

}
we introduce the open set

V = {u ∈ C0
T | (t, u(t)) ∈ V for every t ∈ [0, T ]} , (2.15)

where, see Figure 2.1,

V = {(t, x, y) ∈ R3 | α(t) < x < β(t) , γ−(x) < y < γ+(x)} .

Our aim is to prove that there exists a solution u = (x, y) of problem (P̃ ) belong-
ing to V . Since f̃ = f and g̃ = g on the set V , then u will solve also (P ).

2.3.1.2 No solutions of (P̃ ) outside V

We show that all the solutions u = (x, y) of system (P̃ ) are such that (t, u(t)) ∈ V ,
for every t ∈ R.

Let us start proving a preliminary lemma.

Lemma 2.3.2. For every t ∈ I, the following inequalities hold:{
f̃(t, x, y) < α′(t) , if x ≤ α(t) and y < yα(t) ,

f̃(t, x, y) > α′(t) , if x ≤ α(t) and y > yα(t) ;
(2.16)

{
f̃(t, x, y) < β′(t) , if x ≥ β(t) and y < yβ(t) ,

f̃(t, x, y) > β′(t) , if x ≥ β(t) and y > yβ(t) ;
(2.17)

{
g̃(t, x, yα(t)) < y′α(t) , if x < α(t) ,

g̃(t, x, yβ(t)) > y′β(t) , if x > β(t) .
(2.18)

Moreover, for every τ ∈ J ,{
g̃(τ, x, yα(τ

±)) < D±yα(τ) , if x < α(τ) ,

g̃(τ, x, yβ(τ
±)) > D±yβ(τ) , if x > β(τ) .

(2.19)
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Proof. Let us prove the first inequality in (2.16). Suppose t ∈ I, x ≤ α(t) and
y < yα(t). We have that

f̃(t, x, y) = f̂
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
+ e(y;−D,D)

= f̂
(
t, α(t) , ζ

(
y;−D,D

))
+ e(y;−D,D) .

We need to consider three different cases.

Case 1. If γ−(α(t)) ≤ y < yα(t), then

f̃(t, x, y) = f̂(t, α(t), y) = f(t, α(t), y) < α′(t) .

Case 2. If −D ≤ y < γ−(α(t)), then

f̃(t, x, y) = f̂(t, α(t), y)

= f(t, α(t), γ−(α(t)))−
y − γ−(α(t))

D + γ−(α(t))

[
−MX − f(t, α(t), γ−(α(t)))

]
≤ f(t, α(t), γ−(α(t))) < α′(t) .

Case 3. If y < −D then, by (2.13),

f̃(t, x, y) = f̂(t, α(t),−D) + y +D = −MX + y +D < −MX < α′(t) .

Hence, the first inequality in (2.16) is proved. The second one can be proved
analogously, as well as the inequalities in (2.17).

We now prove the first inequality of (2.18). Let x < α(t). Since −D <
γ−(α(t)) ≤ yα(t) ≤ γ+(α(t)) < D, we have

g̃(t, x, yα(t)) = ĝ
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
yα(t);−D,D

))
+ e
(
x;α(t), β(t)

)
= ĝ(t, α(t), yα(t)) + x− α(t)

< ĝ(t, α(t), yα(t))

= g(t, α(t), yα(t)) ≤ y′α(t) .

The second inequality in (2.18) follows analogously, and a similar computation
proves the ones in (2.19).

Let us define the sets

ANW = {(t, x, y) ∈ R3 | x < α(t) , y > yα(t
+)} ,

ASW = {(t, x, y) ∈ R3 | x < α(t) , y < yα(t
−)} ,

ANE = {(t, x, y) ∈ R3 | x > β(t) , y > yβ(t
−)} ,

ASE = {(t, x, y) ∈ R3 | x > β(t) , y < yβ(t
+)}

(see Figure 2.1).
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Figure 2.1: A sketch of the section at a fixed time t of the regions where to study
the dynamics of u′ = Φ̃(t, u). Notice that the vertical lines x = α, x = β and the
horizontal lines y = yα, y = yβ move in time, while the curves γ± are fixed.

Lemma 2.3.3. For every solution u = (x, y) of

x′ = f̃(t, x, y) , y′ = g̃(t, x, y) , (2.20)

the following assertions hold true:

(t0, u(t0)) ∈ ANW ⇒ (t, u(t)) ∈ ANW for every t < t0 ,

(t0, u(t0)) ∈ ASE ⇒ (t, u(t)) ∈ ASE for every t < t0 ,

(t0, u(t0)) ∈ ANE ⇒ (t, u(t)) ∈ ANE for every t > t0 ,

(t0, u(t0)) ∈ ASW ⇒ (t, u(t)) ∈ ASW for every t > t0 .

Proof. We will prove only the validity of the first assertion, since the others fol-
low similarly. We argue by contradiction and assume the existence of t1 < t0
and of a solution u = (x, y) of (2.20) such that (t, u(t)) = (t, x(t), y(t)) ∈ ANW for
every t ∈ ]t1, t0] and (t1, u(t1)) = (t1, x(t1), y(t1)) ∈ ∂ANW , where (see Figure 2.2)

∂ANW ={(t, x, y) ∈ R3 | x = α(t) , y ≥ yα(t
+)}

∪ {(t, x, y) ∈ R3 | x ≤ α(t) , yα(t
−) ≤ y(t) ≤ yα(t

+)} . (2.21)
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Figure 2.2: A sketch of the boundary of the set ANW . It consists of a wall x =
α(t), a floor y = yα(t

+) and a possible step yα(t
−) ≤ y < yα(t

+). For simplicity,
the function yα is drawn as being piecewise constant.

Without loss of generality we can assume the existence of δ > 0 such that ]t1, t1+
δ] ⊆ I. We defineG(t) = x(t)−α(t), for every t ∈ [t1, t1+δ]. We haveG(t1+δ) < 0
and, from (2.16),

G′(t) = x′(t)− α′(t) = f̃(t, x(t), y(t))− α′(t) > 0 ,

for every t ∈ ]t1, t1 + δ]. Hence, G(t1) < 0. We conclude that x(t) < α(t) for
every t ∈ [t1, t0]. So, being x(t1) < α(t1), recalling (2.21), we necessarily have
yα(t

−
1 ) ≤ y(t1) ≤ yα(t

+
1 ).

If y(t1) = yα(t
+
1 ), then the function H(t) = y(t) − yα(t

+) is continuous in the
interval [t1, t0] with H(t1) = 0 and H(t) > 0 for all t ∈ ]t1, t0]. Recalling that
x(t) < α(t) for all t ∈ [t1, t0], by (2.18) or (2.19) we have

D+H(t1) = y′(t1)−D+yα(t1) = g̃(t1, x(t1), yα(t
+
1 ))−D+yα(t1) < 0 ,

leading again to a contradiction.
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The case yα(t−1 ) ≤ y(t1) < yα(t
+
1 ) could arise only if t1 ∈ J . However, such a

situation is not possible, indeed we would have the existence of δ > 0 such that
H(t) < 0 for every t ∈ (t1, t1 + δ) which gives a contradiction, since we have
assumed (t, u(t)) ∈ ANW for every t ∈ ]t1, t0[ .

We have thus proved that the sets ANW , ASE are invariant in the past, while
the sets ANE, ASW are invariant in the future. We also define the sets

AW = {(t, x, y) ∈ R3 | x < α(t) , yα(t
−) ≤ y ≤ yα(t

+)} ,
AE = {(t, x, y) ∈ R3 | x > β(t) , yβ(t

+) ≤ y ≤ yβ(t
−)} ,

(see Figure 2.1).

Lemma 2.3.4. If u = (x, y) is a solution of (2.20) such that (t0, u(t0)) ∈ AW , then
there exists δ > 0 such that

t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ANW ,

t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ASW .

Similarly, if u = (x, y) is a solution of (2.20) such that (t0, u(t0)) ∈ AE , then there
exists δ > 0 such that

t ∈ ]t0 − δ, t0[ ⇒ (t, u(t)) ∈ ASE ,

t ∈ ]t0, t0 + δ[ ⇒ (t, u(t)) ∈ ANE .

Proof. We give the proof of the first part of the statement, the second one being
similar. Let u = (x, y) be a solution of (2.20) such that (t0, u(t0)) ∈ AW . If
y(t0) = yα(t

+
0 ) then, defining as above the function H(t) = y(t)− yα(t

+),

D+H(t0) = y′(t0)−D+yα(t0) = g̃(t0, x(t0), yα(t
+
0 ))−D+yα(t0) < 0 ,

using (2.18) or (2.19). So, there exists δ > 0 such that y(t) < yα(t
+) = yα(t

−) and
x(t) < α(t) for every t ∈ ]t0, t0 + δ[ .

On the other hand, if yα(t−0 ) ≤ y(t0) < yα(t
+
0 ), then t0 ∈ J and the strict

inequalities y(t0) < yα(t
+
0 ) and x(t0) < α(t0) provide the same conclusion as

before by a continuity argument.

We now give the proof for t < t0. If y(t0) = yα(t
−
0 ) then

D−H(t0) = y′(t0)−D−yα(t0) = g̃(t0, x(t0), yα(t
−
0 ))−D−yα(t0) < 0 ,

and we get the existence of δ > 0 such that y(t) > yα(t
−) = yα(t

+) and x(t) <
α(t), for every t ∈ ]t0 − δ, t0[ . On the other hand, if yα(t−0 ) < y(t0) ≤ yα(t

+
0 ), we

reach the same conclusion, by continuity.
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Lemma 2.3.5. If u = (x, y) is a solution of (P̃ ), then

α(t) ≤ x(t) ≤ β(t) , for every t ∈ R . (2.22)

Proof. Suppose that there exists a solution u = (x, y) of (P̃ ) such that x(t0) <
α(t0) for a certain t0 ∈ [0, T ]. If (t0, u(t0)) ∈ ANW , then, from Lemma 2.3.3, we
have that (t, u(t)) ∈ ANW for every t ∈ R. Moreover, from (2.16) we get

t ∈ I ⇒ (x− α)′(t) = f̃(t, x(t), y(t))− α′(t) > 0 ,

a contradiction, since x− α is a periodic function.

The same reasoning can be adopted if (t0, u(t0)) ∈ ASW . Finally, if (t0, u(t0))
belongs to AW , Lemma 2.3.4 brings us to the previous contradicting situations.

A similar argument can be adopted in order to show that there are no solu-
tions u = (x, y) of (P̃ ) such that max[0,T ](x− β) > 0.

Lemma 2.3.6. If u = (x, y) is a solution of (P̃ ), then

γ−(x(t)) < y(t) < γ+(x(t)) , for every t ∈ R . (2.23)

Proof. We already know from Lemma 2.3.5 that any solution of (P̃ ) is such that
α(t) ≤ x(t) ≤ β(t) for every t ∈ [0, T ]. We claim that |y(t)| < D, for every
t ∈ [0, T ]. Indeed, if the function y has minimum at t = tm such that y(tm) < −D,
then we would have

y′(tm) = g̃(tm, x(tm), y(tm)) = −MY < 0 ,

a contradiction. Similarly, max[0,T ] y < D must hold.

We now define the periodic function F−(t) = y(t)− γ−(x(t)). Let sm ∈ [0, T ]
such that F−(sm) = min[0,T ] F− . If F−(sm) ≤ 0, we get the following contradic-
tion:

F ′
−(sm) = y′(sm)− γ′−(x(sm))x

′(sm)

= g̃(sm, x(sm), y(sm))− γ′−(x(sm))f̃(t, x(sm), y(sm))

= ĝ(sm, x(sm), y(sm))− γ′−(x(sm))f̂(t, x(sm), y(sm))

= ⟨Φ̂(sm, x(sm), y(sm)), (−γ′−(x(sm)), 1)⟩

=

(
1− γ−(x(sm))− y(sm)

D + γ−(x(sm))

)〈
Φ(sm, x(sm), γ−(x(sm))) , (−γ′−(x(sm)), 1)

〉
− γ−(x(sm))− y(sm)

D + γ−(x(sm))

〈
(MX ,MY ), (−γ′−(x(sm)), 1)

〉
< 0 ,

where we have used both (2.10) and (2.14). So, min[0,T ] F− > 0 . Similarly we can
prove that max[0,T ] F+ < 0 , where F+(t) = y(t) − γ+(x(t)), thus concluding the
proof.
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2.3.1.3 A topological degree argument

We define the operators

L : C1
T → C0

T , L
(
x
y

)
=

(
x′

y′

)
,

where C1
T = {v ∈ C1([0, T ],R2) : v(0) = v(T )} and

Ñ : C0
T → C0

T , Ñ
(
x
y

)
(t) =

(
f̃(t, x(t), y(t))
g̃(t, x(t), y(t))

)
. (2.24)

So, a solution u(t) =
(
x(t)
y(t)

)
of problem (P̃ ) corresponds to a solution of

Lu− Ñu = 0 . (2.25)

In the previous section we have found the a priori bound V for all the pos-
sible solutions of problem (P̃ ). In order to apply the degree theory we need to
consider an open ball BR containing V . By the above arguments, we can deduce
that if u solves (2.25), then u /∈ ∂BR , so that the coincidence degree dL(L−Ñ ,BR)
is well defined. We refer to [70] for more details on this topic.

Since (2.22) and (2.23) hold, we can rewrite system (2.20) as

x′ = y + p(t, x, y) , y′ = x+ q(t, x, y) ,

where

p(t, x, y) = f̂
(
t, ζ
(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
− ζ
(
y;−D,D

)
,

q(t, x, y) = ĝ
(
t , ζ

(
x;α(t), β(t)

)
, ζ
(
y;−D,D

))
− ζ
(
x;α(t), β(t)

)
,

are bounded functions. We now introduce the functions

Fλ(t, u) = Fλ(t, x, y) =
(
y + λp(t, x, y) , x+ λq(t, x, y)

)
,

and the problems

(Qλ)

{
u′ = Fλ(t, u) ,

u(0) = u(T ) .

We define the Nemytskii operator related to the family of problem (Qλ) as

(Mλu)(t) = Fλ(t, u(t)) ,
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Since the function (p, q) : [0, T ] × R2 → R2 is bounded, by a classical argument
we can find a sufficiently large R > 0, such that, for every λ ∈ [0, 1], all the
periodic solutions of (Qλ) satisfy

∥u∥2∞ = sup
t∈[0,T ]

[x2(t) + y2(t)] < R2 .

Since for λ = 0 we have an autonomous linear problem ruled by the function
G(u) = G(x, y) =

(
y, x
)
, by [23, Lemma 1] we can conclude that

dL(L − Ñ ,BR) = dL(L −M1,BR) = dL(L −M0,BR) = deg(G, BR) = −1 ,

where deg(G, BR) denotes the Brouwer degree of the function G on the ballBR =
{(x, y) ∈ R2 | x2 + y2 < R2} and BR is the set of continuous functions having
image in BR. We have so found a solution of problem (P̃ ) belonging to the set
BR. However, such a solution belongs indeed to the a priori bound V , and so it
is also a solution of problem (P ), thus concluding the proof of Theorem 2.3.1.

2.3.2 An important consequence of the proof

We first recall the definition (2.15) of the open set

V = {u ∈ C0
T | (t, u(t)) ∈ V for every t ∈ [0, T ]} , (2.26)

where
V = {(t, x, y) ∈ R3 | α(t) < x < β(t) , γ−(x) < y < γ+(x)} .

Let us introduce the Nemytskii operator related to problem (P ) as

N : C0
T → C0

T N
(
x
y

)
(t) =

(
f(t, x(t), y(t))
g(t, x(t), y(t))

)
.

Corollary 2.3.7. Under the assumptions of Theorem 2.3.1, if there are no solutions
of (P ) in ∂V , then

dL(L −N ,V) = −1 .

Proof. Since Φ = Φ̃ on V , and so N = Ñ on V , the additional assumption per-
mits us to evaluate the coincidence degree also on the set V . Recalling that all
the solutions of problem (P̃ ) satisfy the a priori bounds (2.22) and (2.23), by the
excision property we have

−1 = dL(L − Ñ ,BR) = dL(L − Ñ ,V) = dL(L −N ,V) ,
and the proof is completed.

Remark 2.3.8. The set V introduced in (2.26) depends on the well-ordered couple (α, β)
of lower/upper solutions of problem (P ) and the functions γ± given in the assumptions
of Theorem 2.3.1. In the following section, we will denote this set by V(α, β, γ±) when
we need to underline such a dependence.
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2.4 Non-well-ordered lower and upper solutions

We still consider the periodic problem

(P )

{
x′ = f(t, x, y) , y′ = g(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) ,

where f : R3 → R and g : R3 → R are continuous functions, T -periodic in their
first variable.

We will say that (α, β) is a non-well-ordered couple of lower/upper solu-
tions of problem (P ) if α and β are respectively a lower and an upper solution
of problem (P ), such that there exists t̂0 ∈ [0, T ] satisfying

α(t̂0) > β(t̂0) . (2.27)

Let us set

a(t) := min{α(t), β(t)} , b(t) := max{α(t), β(t)} ,

A := min a , B := max b .

Notice that A < B, by (2.27).

Let us introduce our assumptions.

(H1) There is a continuous function χ : R → [0,+∞[ and a constantM > 0 such
that

|f(t, x, y)| ≤ χ(y)(1 + |x|) , for every (t, x, y) ∈ R3 , (2.28)
|g(t, x, y)| ≤M(1 + |y|) , for every (t, x, y) ∈ R3 . (2.29)

(H2) There exist two continuous functions γ± : [A,B] × [1,+∞[→ R, continu-
ously differentiable with respect to the first variable, such that

lim
λ→+∞

γ±(x;λ) = ±∞ , uniformly with respect to x ∈ [A,B] ,

and

g
(
t, x, γ−(x;λ)

)
< f

(
t, x, γ−(x;λ)

)
γ′−(x;λ) , (2.30)

g
(
t, x, γ+(x;λ)

)
> f

(
t, x, γ+(x;λ)

)
γ′+(x;λ) , (2.31)

for every t ∈ R, x ∈ [a(t), b(t)] and λ ∈ [1,+∞[ . (Here we denote by γ′± the
derivative with respect to the first variable.)
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Theorem 2.4.1. Assume the existence of a non-well-ordered couple (α, β) of lower/up
per solutions of problem (P ) with the additional property that there exists a constant
ĉ > 0 such that, for every k ∈ {1, . . . , n},{

y ≤ −ĉ ⇒ f(τk, α(τ
−
k ), y) < α′(τ−k ) ,

y ≥ ĉ ⇒ f(τk, α(τ
+
k ), y) > α′(τ+k ) ,

(2.32)

{
y ≤ −ĉ ⇒ f(τk, β(τ

+
k ), y) < β′(τ+k ) ,

y ≥ ĉ ⇒ f(τk, β(τ
−
k ), y) > β′(τ−k ) .

(2.33)

If (H1) and (H2) hold, there exists at least one solution of problem (P ) such that, for
some t1, t2 ∈ [0, T ], one has x(t1) ≤ α(t1) and x(t2) ≥ β(t2).

This theorem extends some classical results for scalar second order differen-
tial equations of the type (2.7). We will show below two examples of applica-
tions. Conditions (H1) and (H2) will be necessary in order to avoid resonance
phenomena, and to obtain a priori bounds. Notice that (2.2) and (2.5) imply a
weaker form of (2.32) and (2.33), i.e., with only weak inequalities. It remains an
open problem if these additional assumptions can be omitted.

We will discuss in Section 2.5 on the possibility of reversing the inequalities
in (2.30) and (2.31). Concerning the existence of the functions γ±, let us prove
the following lemma.

Lemma 2.4.2. Let the following assumptions hold:

(G1) there are a constant d > 0 and two continuous functions f+ : [d,+∞[→ R and
f− : ]−∞,−d] → R such that{

y ≥ d ⇒ f(t, x, y) ≥ f+(y) > 0 ,

y ≤ −d ⇒ f(t, x, y) ≤ f−(y) < 0 ,

for every (t, x) ∈ [0, T ]× [A,B] ;

(G2) there is a positive continuous function φ : [0,+∞[→ R such that

|g(t, x, y)| ≤ φ(|y|) , for every (t, x, y) ∈ [0, T ]× [A,B]× R ;

(G3) the above functions are such that∫ +∞

d

f+(s)

φ(s)
ds = +∞ ,

∫ −d

−∞

f−(s)

φ(|s|) ds = −∞ . (2.34)
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Then, there exist four continuous functions γ±,1 , γ±,2 : [A,B]× [1,+∞[→ R, contin-
uously differentiable with respect to the first variable, such that

lim
λ→+∞

γ±,1(x;λ) = ±∞ and lim
λ→+∞

γ±,2(x;λ) = ±∞ ,

uniformly with respect to x ∈ [A,B] , (2.35)

and

g
(
t, x, γ+,1(x;λ)

)
> f

(
t, x, γ+,1(x;λ)

)
γ′+,1(x;λ) , (2.36)

g
(
t, x, γ+,2(x;λ)

)
< f

(
t, x, γ+,2(x;λ)

)
γ′+,2(x;λ) , (2.37)

g
(
t, x, γ−,1(x;λ)

)
< f

(
t, x, γ−,1(x;λ)

)
γ′−,1(x;λ) , (2.38)

g
(
t, x, γ−,2(x;λ)

)
> f

(
t, x, γ−,2(x;λ)

)
γ′−,2(x;λ) , (2.39)

for every t ∈ [0, T ], x ∈ [A,B] and λ ∈ [1,+∞[ .

Proof. For every y0 ≥ d, we introduce the continuous strictly increasing function
Fy0 : [d,+∞[→ R defined as

Fy0(ξ) =

∫ ξ

y0

f+(s)

φ(s)
ds .

We can easily verify that Fy0(y0) = 0 and, from (2.34),

lim
ξ→+∞

Fy0(ξ) = +∞ .

Construction of γ+,1. For every y0 ≥ d and for every x ∈ [A,B] there exists a
unique ξ ≥ y0 such that Fy0(ξ) = 2(B − x). Hence, we can define γ+,1(x;λ), for
λ ≥ 1, as the unique solution of equation

Fλ−1+d

(
γ+,1(x;λ)

)
= 2(B − x) . (2.40)

In particular, since Fλ−1+d

(
γ+,1(B;λ)

)
= 0, we get

γ+,1(x;λ) ≥ γ+,1(B;λ) = λ− 1 + d ,

which provides the validity of (2.35) for the function γ+,1. Differentiating in (2.40)
we see that γ′+,1(x;λ) < 0 for every x ∈ [A,B], and

f(t, x, γ+,1(x;λ))γ
′
+,1(x;λ) ≤ f+(γ+,1(x;λ))γ

′
+,1(x;λ)

= −2φ(γ+,1(x;λ)) < −φ(γ+,1(x;λ))
< g(t, x, γ+,1(x;λ)) ,

thus proving (2.36).
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Construction of γ+,2. Arguing similarly as above, for every y0 ≥ d and for
every x ∈ [A,B] there exists a unique ξ ≥ y0 such that Fy0(ξ) = 2(x−A). Hence
we can define γ+,2(x;λ) by

Fλ−1+d

(
γ+,2(x;λ)

)
= 2(x− A) . (2.41)

In particular, since Fλ−1+d

(
γ+,2(A;λ)

)
= 0, we get

γ+,2(x;λ) ≥ γ+,2(A;λ) = λ− 1 + d ,

so that (2.35) holds for the function γ+,2. Differentiating in (2.41),

f(t, x, γ+,2(x;λ))γ
′
+,2(x;λ) ≥ f+(γ+,2(x;λ))γ

′
+,2(x;λ)

= 2φ(γ+,2(x;λ)) > φ(γ+,2(x;λ))

> g(t, x, γ+,2(x;λ)) ,

thus proving (2.37).

The construction of the functions γ−,1 and γ−,2 satisfying (2.38) and (2.39) is
similar.

Let us illustrate how our result applies to two classical scalar second order
differential equations of the type (2.7), involving a scalar p-Laplacian and a mean
curvature operator, with ϕ(s) = |s|p−2s and ϕ(s) = s/

√
1 + s2, respectively.

Consider first the problem{
(|x′|p−2x′)′ = h(t, x, x′) ,

x(0) = x(T ) , x′(0) = x′(T ) ,
(2.42)

with p > 1, which is equivalent to problem (P ), taking f(t, x, y) = f(y) =
|y|q−2y, with (1/p) + (1/q) = 1, and g(t, x, y) = h(t, x, |y|q−2y).

Corollary 2.4.3. Assume the existence of a non-well-ordered couple (α, β) of lower/up-
per solutions of problem (2.42), and of a constant M > 0 for which

|h(t, x, z)| ≤M(1 + |z|p−1) , for every (t, x, z) ∈ R3. (2.43)

Then, there exists at least one solution of problem (2.42) such that, for some t1, t2 ∈
[0, T ], one has x(t1) ≤ α(t1) and x(t2) ≥ β(t2).

Proof. Notice that (2.43) implies (2.29). We can use Lemma 2.4.2 with φ(s) =
M(1 + |y|) to construct the curves γ±. Then, Theorem 2.4.1 applies.
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Consider now the problem
(

x′√
1 + (x′)2

)′

= h(t, x, x′) ,

x(0) = x(T ) , x′(0) = x′(T ) ,

(2.44)

which is equivalent to problem (P ), taking f(t, x, y) = ϕ−1(y) = y/
√
1− y2 and

g(t, x, y) = h
(
t, x, y/

√
1− y2

)
. Notice that these functions are now only defined

on R× R× ]− 1, 1[ .

Corollary 2.4.4. Assume the existence of a non-well-ordered couple (α, β) of lower/up-
per solutions of problem (2.44), and of a positive continuous function ζ : [0,+∞[→ R
such that

|h(t, x, z)| ≤ ζ(|z|) , for every (t, x, z) ∈ R3, (2.45)

and ∫ +∞

0

ds

(1 + s2)3/2 ζ(s)
>
T

2
. (2.46)

Then, there exists at least one solution of problem (2.44) such that, for some t1, t2 ∈
[0, T ], one has x(t1) ≤ α(t1) and x(t2) ≥ β(t2).

Proof. Recalling that ϕ(s) = s/
√
1 + s2, by (2.46) there is a c ∈ ]0, 1[ such that∫ ϕ−1(c)

0

ϕ′(s)

ζ(s)
ds >

T

2
. (2.47)

We define the functions fc : R → R and gc : R3 → R as

fc(y) =


ϕ−1(−c) + y + c , if y < −c ,
ϕ−1(y) , if |y| ≤ c ,

ϕ−1(c) + y − c , if y > c ,

and

gc(t, x, y) =


g(t, x,−c) , if y < −c ,
g(t, x, y) , if |y| ≤ c ,

g(t, x, c) , if y > c ,

and we consider the system

x′ = fc(y) , y′ = gc(t, x, y) . (2.48)

Using Lemma 2.4.2, we see that all the assumptions of Theorem 2.4.1 hold, so
that problem (2.48) has a T -periodic solution (x, y).
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We now show that |y(t)| ≤ c for every t, implying that (x, y) is indeed a
solution of problem (2.44). By contradiction, assume that max y > c, or min y <
−c. Let us treat the first case, the other one being similar. By the periodicity,
there exists a ξ ∈ [0, T ] such that x′(ξ) = 0 and, correspondingly, y(ξ) = 0. Let ξ1
and ξ2 be such that |ξ2 − ξ1| ≤ T

2
, y(ξ1) = 0, y(ξ2) = c, and y(t) ∈ ]0, c[ for every

t ∈ ]ξ1, ξ2[ . (When ξ1 > ξ2, we write ]ξ1, ξ2[ = ]ξ2, ξ1[ and [ξ1, ξ2] = [ξ2, ξ1].) For
every t ∈ [ξ1, ξ2], by (2.45) we have

|y′(t)| ≤ ζ(ϕ−1(y(t))) ,

so that, by (2.47),

|ξ2 − ξ1| ≥
∣∣∣∣∫ ξ2

ξ1

y′(t)

ζ(ϕ−1(y(t)))
dt

∣∣∣∣ = ∫ ϕ−1(c)

0

ϕ′(s)

ζ(s)
ds >

T

2
,

a contradiction.

The above corollary generalizes [81, Proposition 3.7], where ζ(s) is a constant
function with positive value K < 2

T
.

2.4.1 Proof of Theorem 2.4.1

2.4.1.1 An auxiliary problem

Let us set
dy := max{∥yα∥∞ , ∥yβ∥∞ , ∥α′∥∞ , ∥β′∥∞ , ĉ} , (2.49)

where, for all these functions, the norm ∥ · ∥∞ can be defined as in (2.12).

We recall here a classical result, which is a straightforward consequence of
the Gronwall Lemma, often mentioned as elastic property.

Lemma 2.4.5. For every constant K > 0 we can define a function EK : [0,+∞[→
[0,+∞[ with the following property: given a differentiable function z : R → R satisfy-
ing

|z′(t)| ≤ K(1 + |z(t)|) , for every t ∈ R ,

if |z(t̄)| ≤ Z for a certain t̄ ∈ R, then |z(t)| ≤ EK(Z) for every t ∈ [t̄− T, t̄+ T ].

For example, we can take EK(Z) = (Z +KT )eKT .

Using the notation introduced in the previous lemma, let us now set

D := EM(dy) ,

where M and dy have been introduced respectively in (2.29) and (2.49).
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Figure 2.3: A sketch of the section at a fixed time t of the regionsNΛ, CΛ, and SΛ.
Notice that the vertical lines x = α and x = β move in time, while the curves
γ±(·,Λ) are fixed.

By assumption (H2), we can find a sufficiently large constant Λ > 1 such that

|γ±(x;λ)| > D , for every x ∈ [A,B] and λ ≥ Λ . (2.50)

Let us introduce the sets

NΛ := {(t, x, y) ∈ R3 : a(t) ≤ x ≤ b(t) , y > γ+(x; Λ)} ,
CΛ := {(t, x, y) ∈ R3 : a(t) ≤ x ≤ b(t) , γ−(x; Λ) ≤ y ≤ γ+(x; Λ)} ,
SΛ := {(t, x, y) ∈ R3 : a(t) ≤ x ≤ b(t) , y < γ−(x; Λ)} ,

(see Figure 2.3).

Lemma 2.4.6. There are two constants ℓx and ℓy with the following property: if u =
(x, y) is a solution of

x′ = f(t, x, y) , y′ = g(t, x, y) (2.51)
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such that (t0, u(t0)) ∈ CΛ for a certain t0 ∈ [0, T ], then

|x(t)| ≤ ℓx and |y(t)| ≤ ℓy , for every t ∈ [0, T ] .

Proof. Since the set CΛ is bounded, we can fix two constants X > 0 and Y > 0
such that

CΛ ⊆ [−X,X]× [−Y, Y ] .

Hence, applying Lemma 2.4.5 in the setting (z,K, Z, t̄) = (y,M, Y, t0), we see
that every solution u = (x, y) of (2.51) such that (t0, u(t0)) ∈ CΛ, for a certain
t0 ∈ [0, T ], satisfies

|y(t)| ≤ ℓy := EM(Y ) , for every t ∈ [0, T ] .

Now, recalling (2.28) and setting Mχ = max[−ℓy ,ℓy ] χ, applying Lemma 2.4.5
in the setting (z,K, Z, t̄) = (x,Mχ, X, t0), we see that any such solution also
satisfies

|x(t)| ≤ ℓx := EMχ(X) , for every t ∈ [0, T ] .

The lemma is thus proved.

We will now modify the functions f, g by a procedure which resembles the
one in Section 2.3.1.1. From assumption (H2) we can find Λ1 > Λ such that

|γ±(x;λ)| > ℓy + 1 , for every x ∈ [A,B] and λ ≥ Λ1 . (2.52)

We introduce the constants

cγ := max{|γ′±(x;λ)| : x ∈ [A,B] , λ ∈ [1,Λ1] } , (2.53)
MX := max{|f(t, x, y)| : t ∈ [0, T ] , |x| ≤ ℓx , |y| ≤ ℓy + 1} , (2.54)

and choose
MY > cγ MX . (2.55)

Setting Φ(t, x, y) =
(
f(t, x, y), g(t, x, y)

)
, we define Φ̂ : R× [−ℓx, ℓx]×R → R2

as

Φ̂(t, x, y) =



(MX ,MY ) , if y ≥ ℓy + 1 ,

Φ(t, x, y) + (y − ℓy)
(
(MX ,MY )− Φ(t, x, y)

)
,

if ℓy ≤ y ≤ ℓy + 1 ,

Φ(t, x, y) , if − ℓy ≤ y ≤ ℓy ,

Φ(t, x, y)− (y + ℓy)
(
(−MX ,−MY )− Φ(t, x, y)

)
,

if − ℓy − 1 ≤ y ≤ −ℓy ,
(−MX ,−MY ) , if y ≤ −ℓy − 1 .
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We will write Φ̂(t, x, y) =
(
f̂(t, x, y), ĝ(t, x, y)

)
. Finally, we define Φ̃ : R3 → R2 as

Φ̃(t, x, y) =



(y, 1) , if x ≥ ℓx + 1 ,

Φ̂(t, ℓx, y) + (x− ℓx)
(
(y, 1)− Φ̂(t, ℓx, y)

)
,

if ℓx ≤ x ≤ ℓx + 1 ,

Φ̂(t, x, y) , if − ℓx ≤ x ≤ ℓx ,

Φ̂(t,−ℓx, y)− (x+ ℓx)
(
(y,−1)− Φ̂(t,−ℓx, y)

)
,

if − ℓx − 1 ≤ y ≤ −ℓx ,
(y,−1) , if x ≤ −ℓx − 1 .

We will write Φ̃(t, x, y) =
(
f̃(t, x, y), g̃(t, x, y)

)
.

Remark 2.4.7. The functions f̃ , g̃ coincide with f, g on the rectangle [−ℓx, ℓx] ×
[−ℓy, ℓy], and f̃(t, x, y) = y when |x| ≥ ℓx + 1. Moreover, the function g̃ is bounded,
so we can find a constant M̃ > 0 such that

|g̃(t, x, y)| ≤ M̃ , for every (t, x, y) ∈ R3 .

We will consider the modified problem

(P̃ )

{
x′ = f̃(t, x, y) , y′ = g̃(t, x, y) ,

x(0) = x(T ) , y(0) = y(T ) .

We have the following a priori bound.

Lemma 2.4.8. If u = (x, y) is a solution of (P̃ ) such that (t0, u(t0)) ∈ CΛ for a certain
t0 ∈ [0, T ], then

|x(t)| ≤ ℓx and |y(t)| ≤ ℓy , for every t ∈ R .

Hence, u is also a solution of (P ).

Proof. As long as the solution u of (P̃ ) is such that u(t) ∈ [−ℓx, ℓx] × [−ℓy, ℓy],
it is a solution of (2.51). Hence Lemma 2.4.6 applies, guaranteeing that indeed
u(t) ∈ [−ℓx, ℓx]× [−ℓy, ℓy] for every t ∈ [0, T ].

Remark 2.4.9. Since we have assumed the validity of (2.2), (2.5), (2.32) and (2.33),
thanks to the choice (2.54) we have the following assertions.

If a solution (x, y) of (P̃ ) is such that y(t0) > dy and x(t0) = a(t0) [resp. x(t0) =
b(t0)], then we have x > a [resp. x > b], in a right neighborhood of t0.

If a solution (x, y) of (P̃ ) is such that y(t0) < −dy and x(t0) = a(t0) [resp. x(t0) =
b(t0)], then we have x < a [resp. x < b], in a right neighborhood of t0.
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2.4.1.2 An a priori bound for the desired solutions

Our aim is to show the existence of a solution of (P̃ ) belonging to the set

S =
{
u = (x, y) ∈ C0

T : there exist t1, t2 ∈ [0, T ] such that

x(t1) ≤ α(t1) and x(t2) ≥ β(t2)
}
. (2.56)

In the following lemma we will prove that a solution belonging to S satisfies
the hypotheses of Lemma 2.4.8, permitting us to conclude that it is a solution of
the original problem (P ).

Lemma 2.4.10. If u = (x, y) ∈ S is a solution of (P̃ ), then there exists a t0 ∈ [0, T ]
such that (t0, u(t0)) ∈ CΛ, where Λ is given in (2.50).

Proof. Let us first prove the following preliminary assertion.

Claim. For any solution u of (P̃ ), it cannot be that (t, u(t)) ∈ NΛ for every
t ∈ [0, T ].

By contradiction, assume this is true. We distinguish two cases.

If y(t) ≥ ℓy + 1 for every t ∈ [0, T ], then, since NΛ ⊆ [−ℓx, ℓx]× R, we get

y′(t) = g̃(t, x(t), y(t)) = ĝ(t, x(t), y(t)) = MY > 0 ,

which is in contradiction with the periodicity of the function y.

If y(t̄0) < ℓy + 1 for some t̄0 ∈ [0, T ], recalling (2.52) and the continuity of
the function γ+ with respect to λ, we can find λ0 ∈ [1,Λ1[ such that y(t̄0) =
γ+(x(t̄0);λ0). By (2.53) and (2.55), we have〈(

MX ,MY

)
,
(
− γ′+(x;λ), 1

)〉
≥ −cγMX +MY > 0 , (2.57)

for every x ∈ [A,B] and λ ∈ [1,Λ1]. Moreover, we can rewrite (2.31) as〈
Φ
(
t, x, γ+(x;λ)

)
,
(
− γ′+(x;λ), 1

)〉
> 0 . (2.58)

The function F+(t;λ0) = y(t)− γ+(x(t);λ0) is T -periodic in t, and F+(t̄0;λ0) = 0.
From the above estimates (2.57) and (2.58), since a(t̄0) ≤ x(t̄0) ≤ b(t̄0),

F ′
+(t̄0;λ0) = g̃

(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
− f̃

(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
γ′+
(
x(t̄0);λ0

)
=
〈
Φ̃
(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
,
(
− γ′+(x(t̄0);λ0), 1

)〉
=
〈
Φ̂
(
t̄0, x(t̄0), γ+(x(t̄0);λ0)

)
,
(
− γ′+(x(t̄0);λ0), 1

)〉
> 0 . (2.59)
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So, there exists ε ∈ ]0, T/2[ such that

F+(t̄0 + ε;λ0) > 0 > F+(t̄0 + T − ε;λ0) ,

providing the existence of a certain t̄1 ∈ [t̄0+ε , t̄0+T−ε] such that F+(t̄1;λ0) = 0
and F ′

+(t̄1;λ0) ≤ 0. However, similarly as in (2.59), we get the contradiction
F ′
+(t̄1;λ0) > 0.

The proof of the Claim is thus completed. Similarly one proves that it cannot
be that (t, u(t)) ∈ SΛ for every t ∈ [0, T ].

Now, let u = (x, y) be a solution of (P̃ ) belonging to S. Then, there exists a
t0 ∈ [0, T ] such that

A ≤ a(t0) ≤ x(t0) ≤ b(t0) ≤ B .

We will prove that (t0, u(t0)) ∈ CΛ.

Assume by contradiction that (t0, u(t0)) ∈ NΛ. Recalling the Claim, let

t1 := inf{t ∈ [t0, t0 + T [ : (t, u(t)) /∈ NΛ} . (2.60)

Since (t1, u(t1)) ∈ ∂NΛ, we need to treat the following three cases (see Fig-
ure 2.3).

Case 1: y(t1) ≥ γ+(x(t1); Λ) and x(t1) = b(t1). Let

t2 := sup{t ∈ [t1, t0 + T ] ; x(s) ≥ b(s)∀s ∈ [t1, t]} . (2.61)

Since y(t1) > D > dy, from Remark 2.4.9 we have that t2 > t1. By Lemma 2.4.5,
since y(t1) > D = EM(dy), we get y(t2) > dy. Again from Remark 2.4.9 we
have x− b > 0 in a right neighborhood of t2, in contradiction with its definition
in (2.61).

Case 2: y(t1) = γ+(x(t1); Λ) and a(t1) ≤ x(t1) < b(t1). The function F+(·; Λ)
is well defined and non-negative in the nontrivial interval [t0, t1]. Reasoning
as in (2.59), we can show that F ′

+(t1; Λ) > 0, contradicting the definition of t1
in (2.60).

Case 3: y(t1) > γ+(x(t1); Λ) and x(t1) = a(t1) < b(t1). This situation is forbidden,
by Remark 2.4.9.

Hence, we can conclude that (t0, u(t0)) /∈ NΛ. Similarly one proves that
(t0, u(t0)) /∈ SΛ, and the proof is thus completed.



2.4 Non-well-ordered lower and upper solutions 67

2.4.1.3 Creating well-ordered couples of lower/upper solutions of (P̃ )

Lemma 2.4.11. Both the constant α̂ ≡ −ℓx − 2 and α are lower solutions of prob-
lem (P̃ ). At the same time, both the constant β̂ ≡ ℓx + 2 and β are upper solutions of
problem (P̃ ).

Proof. We first verify that the constant functions α̂ ≡ −ℓx − 2 and β̂ ≡ ℓx + 2 are
respectively a lower solution and an upper solution of (P̃ ). Indeed, setting yα̂ ≡
0 and yβ̂ ≡ 0, since f̃(t,−ℓx− 2, y) = f̃(t, ℓx+2, y) = y, then (2.2) and (2.5) easily
follow. Moreover, (2.3) and (2.6) are an immediate consequence of g̃(t,−ℓx −
2, 0) = −1 < 0 and g̃(t, ℓx + 2, 0) = 1 > 0.

In order to check that the functions α and β are respectively a lower solu-
tion and an upper solution also for problem (P̃ ), we need to verify the validity
of (2.2), (2.5), (2.32) and (2.33), where we replace the functions f with f̃ . This
fact is guaranteed by the choice (2.54). The validity of both (2.3) and (2.6) with
g replaced by g̃ is trivial since g = g̃ at the points we have to deal with.

Remark 2.4.12. The couples (α̂, β̂), (α̂, β), and (α, β̂) are well-ordered couples of
lower/upper solutions of problem (P̃ ).

Lemma 2.4.13. There exist two continuously differentiable functions Γ± : [α̂, β̂] → R,
such that

g̃
(
t, x,Γ−(x)

)
< f̃

(
t, x,Γ−(x)

)
Γ′
−(x) ,

g̃
(
t, x,Γ+(x)

)
> f̃

(
t, x,Γ+(x)

)
Γ′
+(x) ,

for every t ∈ R and x ∈ [α̂, β̂].

Proof. From Remark 2.4.7 we deduce the validity of the hypotheses of Lemma
2.4.2 adopting the following choices

[A,B] = [α̂, β̂] , f+(y) = −f−(y) ≡ d = max{MX , ℓy + 1} , φ ≡ M̃ .

We take Γ− = γ−,1(·;λ) and Γ+ = γ+,1(·;λ), for λ > 0 sufficiently large.

2.4.1.4 Degree theory and conclusion of the proof of Theorem 2.4.1

We define the sets

U1 =
{
(t, x, y) ∈ R3 : α̂ < x < β̂ , Γ−(x) < y < Γ+(x)} ,

U2 =
{
(t, x, y) ∈ R3 : α̂ < x < β(t) , Γ−(x) < y < Γ+(x)} ,

U3 =
{
(t, x, y) ∈ R3 : α(t) < x < β̂ , Γ−(x) < y < Γ+(x)} .
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Figure 2.4: The view of the phase plane at a fixed time t in the large. Notice that
the horizontal lines y = yα, y = yβ move in time, while the curves Γ± are fixed.

Notice that U2 ∪ U3 ⊆ U1. Correspondingly, define the sets

U1 =
{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U1 for every t ∈ [0, T ]} ,
U2 =

{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U2 for every t ∈ [0, T ]} ,
U3 =

{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U3 for every t ∈ [0, T ]} ,
U4 = U1 \ (U2 ∪ U3) .

The last set can also be written as

U4 =
{
u = (x, y) ∈ C0

T : (t, u(t)) ∈ U1 for every t ∈ [0, T ] and

there exist t1, t2 ∈ [0, T ] such that x(t1) < α(t1) and x(t2) > β(t2)
}
.

So, U4 ⊆ S, the set S being defined in (2.56).

With the notation introduced in Remark 2.3.8, the sets Ui, with i ∈ {1, 2, 3},
can be written as

U1 = V(α̂, β̂,Γ±) , U2 = V(α̂, β,Γ±) , U3 = V(α, β̂,Γ±) .
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Remark 2.4.14. The validity of Lemma 2.4.13 forbids the possibility of finding a solu-
tion u = (x, y) of (P̃ ) belonging to U j , with j ∈ {1, 2, 3}, satisfying y(t0) = Γ±(x(t0))
at a certain time t0 ∈ [0, T ]. Indeed, we would have (t, u(t)) /∈ Uj in a right neighbor-
hood of t0, since ± d

dt
(y − Γ±(x))(t0) > 0.

We now prove that there are no solutions of (P̃ ) in ∂U1, i.e., if u ∈ U1

solves (P̃ ) then u ∈ U1. Assume that x(t) ≥ α̂ for every t ∈ [0, T ] and there
exists t0 such that x(t0) = α̂. Then α̂ ≤ x(t) < −ℓx − 1 in a neighborhood of t0,
where x′(t) = f̃(t, x(t), y(t)) = y(t), so that

x′′(t0) = y′(t0) = g̃(t0, α̂, y(t0)) = −1 < 0 ,

providing a contradiction. Similarly, the situation when x(t) ≤ β̂ for every
t ∈ [0, T ] and there exists t0 such that x(t0) = β̂ cannot arise. Remark 2.4.14
completes the argument.

Since there are no solutions of (P̃ ) in ∂U1, we can apply Corollary 2.3.7 and
get

dL(L − Ñ ,U1) = −1 , (2.62)

where Ñ is the Nemytskii operator associated to problem (P̃ ), defined as in (2.24).

Assume the existence of a solution belonging to ∂U2. Then, recalling the
above argument and Remark 2.4.14, we have

α̂ < x(t) ≤ β(t) , Γ−(x) < y(t) < Γ+(x) , for every t ∈ [0, T ] ,

and there exists a t0 ∈ [0, T ] such that x(t0) = β(t0). So, such a solution belongs
to S, with t2 = t0 and t1 = t̂0, where t̂0 was defined in (2.27).

Similarly, if we assume the existence of a solution belonging to ∂U3, then we
have necessarily

α(t) ≤ x(t) < β̂ , Γ−(x) < y(t) < Γ+(x) , for every t ∈ [0, T ] ,

and there exists a t0 ∈ [0, T ] such that x(t0) = α(t0). So, such a solution belongs
to S, with t1 = t0 and t2 = t̂0.

If at least one of the previous two situations arises, then we have found the
solution we are looking for, and the proof of Theorem 2.4.1 is concluded. Oth-
erwise, we are in the hypotheses of Corollary 2.3.7, which provides

dL(L − Ñ ,U2) = −1 and dL(L − Ñ ,U3) = −1 . (2.63)

Then, from (2.62) and (2.63), by the excision property,

dL(L − Ñ ,U4) = dL(L − Ñ ,U1)−
(
dL(L − Ñ ,U2) + dL(L − Ñ ,U3)

)
= 1 ,
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Figure 2.5: A sketch of the calculus of the degree in the proof of Theorem 2.4.1.

and we thus find a solution of (P̃ ) belonging to U4 ⊆ S. The proof of Theo-
rem 2.4.1 is thus completed, recalling Lemmas 2.4.10 and 2.4.8, in this order.

2.5 Further generalizations and applications

The inequalities in (2.10) and (2.11) can be reversed, and we can restate Theo-
rem 2.3.1 as follows.

Theorem 2.5.1. Assume the existence of a well-ordered couple (α, β) of lower/upper
solutions of problem (P ). Set A = minα ,B = max β, with A < B. Let there exist
two continuously differentiable functions γ± : [A,B] → R such that

γ−(x) < inf
[0,T ]

{yα(t−), yβ(t+)} ≤ sup
[0,T ]

{yα(t+), yβ(t−)} < γ+(x) ,

with the following property:

either g(t, x, γ−(x)) < f(t, x, γ−(x))γ
′
−(x) , ∀t ∈ R , ∀x ∈ [α(t), β(t)] , (2.64)

or g(t, x, γ−(x)) > f(t, x, γ−(x))γ
′
−(x) , ∀t ∈ R , ∀x ∈ [α(t), β(t)] ; (2.65)
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and

either g(t, x, γ+(x)) > f(t, x, γ+(x))γ
′
+(x) , ∀t ∈ R , ∀x ∈ [α(t), β(t)] , (2.66)

or g(t, x, γ+(x)) < f(t, x, γ+(x))γ
′
+(x) , ∀t ∈ R , ∀x ∈ [α(t), β(t)] . (2.67)

Then there exists at least one solution of problem (P ) such that

α(t) ≤ x(t) ≤ β(t) and γ−(x(t)) < y(t) < γ+(x(t)) ,

for every t ∈ R.

In this statement we allow the additional situations (2.65) and (2.67). Simi-
lar conditions were given, e.g., in [8]. The proof of Theorem 2.5.1 needs minor
changes with respect to the one of Theorem 2.3.1. For example, if we assume
the validity of (2.65) and (2.67) instead of (2.64) and (2.66), in the proof of Theo-
rem 2.3.1 we simply need to modify the function Φ̂ as follows:

Φ̂(t, x, y) =



(MX ,−MY ) , if y ≥ D ,

Φ(t, x, γ+(x)) +
y − γ+(x)

D − γ+(x)

(
(MX ,−MY )− Φ(t, x, γ+(x))

)
,

if γ+(x) ≤ y ≤ D ,

Φ(t, x, y) , if γ−(x) ≤ y ≤ γ+(x) ,

Φ(t, x, γ−(x))−
y − γ−(x)

D + γ−(x)

(
(−MX ,MY )− Φ(t, x, γ−(x))

)
,

if −D ≤ y ≤ γ−(x) ,

(−MX ,MY ) , if y ≤ −D .

In general, the definition of Φ̂ for y ≥ D is related to the choice (2.64)
vs. (2.65), while its definition for y ≤ −D is related to the choice (2.66) vs. (2.67).
The proof of Lemma 2.3.6 can be adapted to all the possible settings of Theo-
rem 2.5.1.

Concerning Theorem 2.4.1, hypothesis (H2) can be similarly modified as fol-
lows.

(H2′) There exist two continuous functions γ± : [A,B] × [1,+∞[→ R, continu-
ously differentiable with respect to the first variable, such that

lim
λ→+∞

γ±(x;λ) = ±∞ ,uniformly with respect to x ∈ [A,B] ,
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with the following property

either g
(
t, x, γ−(x;λ)

)
<f
(
t, x, γ−(x;λ)

)
γ′−(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ ,

or g
(
t, x, γ−(x;λ)

)
>f
(
t, x, γ−(x;λ)

)
γ′−(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ ,

and

either g
(
t, x, γ+(x;λ)

)
>f
(
t, x, γ+(x;λ)

)
γ′+(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ ,

or g
(
t, x, γ+(x;λ)

)
>f
(
t, x, γ+(x;λ)

)
γ′+(x;λ) ,

∀t ∈ R , ∀x ∈ [A,B] , ∀λ ∈ [1,+∞[ .

Assuming (H2′) instead of (H2) in Theorem 2.4.1 we get the same conclusion.
However, some steps of the proof need some wise adjustments. In particular,
the small changes due in the definition of the function Φ̂, some lines above, in
the setting of Theorem 2.5.1, can be proposed again similarly for the function Φ̂
introduced in the proof of Theorem 2.4.1. Indeed, in the proof of Lemma 2.4.10,
the estimates in (2.59) must provide a different sign. Then, in the second part
of the same proof we need to go back in time: instead of (2.60), the following
definition is in order

t1 := sup{t ∈ ]t0 − T, t0[ : (t, u(t)) /∈ NΛ} .

A similar reasoning in the interval [t0−T, t0] can be performed. We omit to enter
in major details for briefness.

A further extension of our results could lead to systems in R2N of the type (P ),
with f, g : R × RN × RN → R. The case f(t, x, y) = y and g(t, x, y) = g(t, x)
has been treated in [46], where also an infinite-dimensional system of the type
x′′ = g(t, x) has been proposed. However, in the non-well-ordered case, the ex-
istence of strict lower and upper solutions was needed there. We believe that a
similar procedure could be undertaken also in the more general framework of
system (P ). The notion of strict lower and upper solutions would probably be
the one introduced in [52]; going back to the Introduction, one would need the
strict inequality in (ii) and condition (iii) would also be necessary.



Chapter 3

Second order differential equations
in Hilbert spaces

3.1 Introduction

In this chapter we consider the periodic problem

(P )

{
ẍ = f(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) .

In the scalar case when f : [0, T ] × R → R is continuous, the C2-functions α, β :
[0, T ] → R are said to be lower/upper solutions of problem (P ), respectively, if

α̈(t) ≥ f(t, α(t)) , β̈(t) ≤ f(t, β(t)) .

for every t ∈ [0, T ], and

α(0) = α(T ) , β(0) = β(T ) , α̇(0) ≥ α̇(T ) , β̇(0) ≤ β̇(T ) .

We say that (α, β) is a well-ordered pair of lower/upper solutions if α ≤ β. It
is well known that, when such a pair exists, problem (P ) has a solution x such
that α ≤ x ≤ β. If we rewrite the problem (P ) as a planar problem in the form

(P )


ẋ = y

ẏ = f(t, x)

x(0) = x(T ) , y(0) = y(T ) .

the above definition of lower and upper solutions is a particular case of that
given at the beginning of Chapter 2 since it suffices to choose yα(t) = α′(t) and
yβ(t) = β′(t).

73
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Starting with the paper by Amann, Ambrosetti and Mancini [4] in 1978,
there have been several improvements in the existence and localization of the
solutions by Omari [83] in 1988, Gossez and Omari [56] in 1994, Habets and
Omari [59] in 1996 and De Coster and Henrard [30] in 1998 (see also [50] for an
abstract setting of the results).

Here we want to extend those classical existence results for scalar equa-
tions to systems, both in a finite-dimensional and in an infinite-dimensional
setting. The first step in this direction is represented by the work of Bebernes
and Schmitt [10] that generalized the scalar well-ordered case to a system of
type (P ), with f : [0, T ] × RN → RN . We report here, in a slightly more gen-
eral version, their result. We provide an existence result for a system in RN

when the components of the lower/upper solutions can be both well-ordered
and non-well-ordered to generalize it in an infinite-dimensional setting by an
approximating process passing to the limit in the dimension by the use of the
Ascoli-Arzelà theorem.

3.2 Well-ordered lower and upper solutions for sys-
tems

In this section and the next one we consider the problem

(P )

{
ẍ = f(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

where f : [0, T ] × RN → RN is a continuous function. We are thus in a finite-
dimensional setting. Let us recall a standard procedure to reduce the search of
solutions of (P ) to a fixed point problem in Banach space. We define the set

C2
T = {x ∈ C2([0, T ],RN) : x(0) = x(T ), ẋ(0) = ẋ(T )} ,

and the linear operator

L : C2
T → C([0, T ],RN) , Lx = −ẍ+ x .

which is invertible and has a bounded inverse. We consider as well the Nemyt-
skii operator

N : C([0, T ],RN) → C([0, T ],RN) , (Nx)(t) = x(t)− f(t, x(t)) .

Problem (P ) is thus equivalent to the fixed point problem in C([0, T ],RN)

x = L−1Nx .

Notice that L−1N : C([0, T ],RN) → C([0, T ],RN) is completely continuous.
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Here, we recall and slightly generalize [10, Theorem 4.1].

Definition 3.2.1. Given two C2-functions α, β : [0, T ] → RN , we say that (α, β)
is a well-ordered pair of lower/upper solutions of problem (P ) if, for every j ∈
{1, . . . , N} and t ∈ [0, T ],

αj(t) ≤ βj(t) ,

αj(0) = αj(T ) , βj(0) = βj(T ) , α̇j(0) ≥ α̇j(T ) , β̇j(0) ≤ β̇j(T ) ,

and, for every x ∈∏N
m=1[αm(t), βm(t)],

α̈j(t) ≥ fj(t, x1, . . . , xj−1, αj(t), xj+1, . . . , xN) ,

β̈j(t) ≤ fj(t, x1, . . . , xj−1, βj(t), xj+1, . . . , xN) .

Theorem 3.2.2 (Bebernes–Schmitt). If there exists a well-ordered pair of lower/upper
solutions (α, β), then problem (P ) has a solution x(t) such that

αj(t) ≤ xj(t) ≤ βj(t) , for every j ∈ {1, . . . , N} and t ∈ [0, T ] . (3.1)

Proof. Step 1. Define the functions γj : [0, T ]× R → R as

γj(t, s) =


αj(t) if s < αj(t) ,
s if αj(t) ≤ s ≤ βj(t) ,
βj(t) if s > βj(t) ,

and the functions Γ, f̄ : [0, T ]× RN → RN as

Γ(t, x) = (γ1(t, x1), . . . , γN(t, xN)) , f̄(t, x) = f(t,Γ(t, x)) .

Consider the auxiliary problem

(P ′)

{
ẍ = f̄(t, x) + x− Γ(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

and the corresponding Nemytskii operator

Ñ : C([0, T ],RN) → C([0, T ],RN) , (Ñx)(t) = Γ(t, x(t))− f̄(t, x(t)) .

Problem (P ′) is then equivalent to a fixed point problem in C([0, T ],RN), namely

x = L−1Ñx .

By Schauder Theorem, since L−1Ñ : C([0, T ],RN) → C([0, T ],RN) is completely
continuous and has a bounded image, it has a fixed point, so that (P ′) has a
solution x(t).
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Step 2. Let us show that (3.1) holds for every solution of (P ′), thus proving
the theorem. By contradiction, assume that there is a j ∈ {1, . . . , N} and a
tj ∈ [0, T ] for which xj(tj) /∈ [αj(tj), βj(tj)]. For instance, let xj(tj) < αj(tj) (the
case xj(tj) > βj(tj) being similar). Set vj(t) = αj(t)− xj(t), and let t̂j ∈ [0, T ] be
such that vj(t̂j) = max{vj(t) : t ∈ [0, T ]}. We distinguish two cases.

Case 1: t̂j ∈ ]0, T [ . In this case, surely v̈j(t̂j) ≤ 0. On the other hand,

v̈j(t̂j) = α̈j(t̂j)− ẍj(t̂j)

= α̈j(t̂j)− f̄j(t̂j, x(t̂j))− xj(t̂j) + γj(t̂j, xj(t̂j))

> α̈j(t̂j)− fj(t̂j, γ1(t̂j, x1(t̂j)), . . . , αj(t̂j), . . . , γN(t̂j, xN(t̂j))) ≥ 0 ,

leading to a contradiction.

Case 2: t̂j = 0 or t̂j = T . Assume for instance that t̂j = 0 (the other situation
being similar). Then,

0 ≥ v̇j(0) = α̇j(0)− ẋj(0) ≥ α̇j(T )− ẋj(T ) = v̇j(T ) ,

so that, being vj(T ) = vj(0) the maximum value of vj(t) over [0, T ], it has to
be that v̇j(T ) = 0, hence also v̇j(0) = 0. Now, since vj(0) > 0, there is a small
δ > 0 such that vj(s) > 0, for every s ∈ [0, δ]. Then, if t ∈ [0, δ], we have that
xj(s) < αj(s), for every s ∈ [0, t], hence

v̇j(t) = v̇j(0) +

∫ t

0

v̈j(s) ds

=

∫ t

0

(
α̈j(s)− ẍj(s)

)
ds

=

∫ t

0

(
α̈j(s)− f̄j(s, x(s))− xj(s) + γj(s, xj(s))

)
ds

>

∫ t

0

(
α̈j(s)− fj(s, γ1(s, x1(x)), . . . , αj(s), . . . , γN(s, xN(x)))

)
ds ≥ 0 ,

a contradiction, since 0 is a maximum point for vj(t). The proof is thus com-
pleted.

We now provide some illustrative examples.

Example 3.2.3. Let, for every j ∈ {1, . . . , N},

fj(t, x) = ajx
3
j + hj(t, x) ,

for some constants aj > 0, and assume that there is a c > 0 such that

|h(t, x)| ≤ c , for every (t, x) ∈ [0, T ]× RN . (3.2)
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Then, taking the constant functions αj = − 3
√
c/aj , βj = 3

√
c/aj , we see that Theo-

rem 3.2.2 applies, hence (P ) has a solution.

Example 3.2.4. Let us consider, for every j ∈ {1, . . . , N},

fj(t, x) = x2j sinxj + hj(t, x) ,

and assume that there is a c > 0 such that (3.2) holds. Then, for every ℓ ∈ Z with |ℓ|
sufficiently large, taking the constant functions αj = −π/2 + 2ℓπ , βj = π/2 + 2ℓπ ,
we see that Theorem 3.2.2 applies, and we conclude that (P ) admits an infinite number
of solutions.

In order to work with Leray-Schauder degree, we need to introduce the no-
tions of strict lower/upper solutions.

Definition 3.2.5. The well-ordered pair of lower/upper solutions (α, β) of problem (P )
is said to be strict if αj(t) < βj(t) for every j ∈ {1, . . . , N} and t ∈ [0, T ], and the
following property holds: if x(t) is a solution of (P ) satisfying (3.1), then

αj(t) < xj(t) < βj(t) , for every j ∈ {1, . . . , N} and t ∈ [0, T ] .

When we have a well-ordered pair of strict lower/upper solutions, the pre-
vious theorem provides some additional information.

Theorem 3.2.6. If (α, β) is a strict well-ordered pair of lower/upper solutions of prob-
lem (P ), then

d(I − L−1N ,Ω) = 1 ,

where
Ω :=

{
x ∈ C([0, T ],RN) : αj(t) < xj(t) < βj(t) ,

for every j ∈ {1, . . . , N} and t ∈ [0, T ]
}
.

Proof. Arguing as in Step 1 of the proof of Theorem 3.2.2, we can introduce the
modified problem (P ′) and we know, by Schauder Theorem, that

d(I − L−1Ñ , BR) = 1 ,

whereBR is an open ball in C([0, T ],RN) centered at the origin with a sufficiently
large radiusR > 0. In particular, we may assume that Ω ⊆ BR. By the argument
in Step 2 of the same proof and the fact that the pair of lower/upper solutions
is strict, we have that all the solutions of (P ′) belong to Ω. In other words, there
are no zeroes of I − L−1Ñ in the set BR \ Ω. Then, by the excision property of
the degree,

d(I − L−1Ñ ,Ω) = 1 .

Finally, since N and Ñ coincide on the set Ω, the conclusion follows.
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3.3 Non-well-ordered lower and upper solutions for
systems

In this section we still consider problem (P ) in the finite-dimensional space RN .
We will treat the case in which we can find lower and upper solutions which are
not well-ordered. To this aim, we need to distinguish the components which are
well-ordered from the others.

We will say that the couple (J ,K) is a partition of the set of indices {1, . . . , N}
if and only if J ∩ K = ∅ and J ∪ K = {1, . . . , N}. Correspondingly we can de-
compose a vector

x = (x1, . . . , xN) = (xn)n∈{1,...,N} ∈ RN

as x = (xJ , xK) where xJ = (xj)j∈J ∈ R#J and xK = (xk)k∈K ∈ R#K. Here #J
and #K denote respectively the cardinality of the sets J and K.

Similarly, every function F : A → RN can be written as F(x) =
(
FJ (x),FK(x)

)
where FJ : A → R#J and FK : A → R#K.

Definition 3.3.1. Given two C2-functions α, β : [0, T ] → RN we will say that (α, β) is
a pair of lower/upper solutions of (P ) related to the partition (J ,K) of {1, . . . , N}
if the following four conditions hold:

1. for any j ∈ J , αj(t) ≤ βj(t) for every t ∈ [0, T ];

2. for any k ∈ K, there exists t0k ∈ [0, T ] such that αk(t0k) > βk(t
0
k);

3. for any n ∈ {1, . . . , N} we have

α̈n(t) ≥ fn(t, x1, . . . , xn−1, αn(t), xn+1, . . . , xN) , (3.3)

β̈n(t) ≤ fn(t, x1, . . . , xn−1, βn(t), xn+1, . . . , xN) , (3.4)

for every (t, x) ∈ E , where

E :=
{
(t, x) ∈ [0, T ]× RN : x = (xJ , xK) , xJ ∈

∏
j∈J

[αj(t), βj(t)]
}
.

4. for any n ∈ {1, . . . , N},

αn(0) = αn(T ) , βn(0) = βn(T ) ,

α̇n(0) ≥ α̇n(T ) , β̇n(0) ≤ β̇n(T ) .
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Definition 3.3.2. The pair (α, β) of lower/upper solutions of (P ) is said to be strict
with respect to the j-th component, with j ∈ J , if αj(t) < βj(t) for every t ∈ [0, T ],
and for every solution x of (P ) we have(

∀t ∈ [0, T ] , αj(t) ≤ xj(t) ≤ βj(t)
)
⇒
(
∀t ∈ [0, T ] , αj(t) < xj(t) < βj(t)

)
; (3.5)

it is said to be strict with respect to the k-th component, with k ∈ K, if for every
solution x of (P ) we have(

∀t ∈ [0, T ] , xk(t) ≥ αk(t)
)
⇒
(
∀t ∈ [0, T ] , xk(t) > αk(t)

)
, (3.6)(

∀t ∈ [0, T ] , xk(t) ≤ βk(t)
)
⇒
(
∀t ∈ [0, T ] , xk(t) < βk(t)

)
. (3.7)

The following proposition provides a sufficient condition in order to guaran-
tee the strictness property of a pair of lower/upper solutions of (P ) with respect
to a certain component.

Proposition 3.3.3. Given a pair (α, β) of lower/upper solutions of (P),

1. if, for any n ∈ J , both (3.3) and (3.4) hold with strict inequalities, then (3.5)
holds for n = j;

2. if, for any n ∈ K, (3.3) holds with strict inequality, then (3.6) holds for n = k;

3. if, for any n ∈ K, (3.4) holds with strict inequality, then (3.7) holds for n = k.

The proof can be easily adapted from the corresponding scalar result in [29,
Proposition III-1.1] and is omitted.

We are able to prove the existence of a solution of (P ) in presence of a pair of
lower/upper solutions (α, β) provided that we ask the strictness property when
the components αk, βk are non-well-ordered.

Theorem 3.3.4. Let (α, β) be a pair of lower/upper solutions of (P ) related to the
partition (J ,K) of {1, . . . , N}, and assume that it is strict with respect to the k-th
component, for every k ∈ K. Assume moreover the existence of a constant C > 0 such
that

|fK(t, x)| ≤ C , for every (t, x) ∈ E .
Then, (P ) has a solution x with the following property: for any (j, k) ∈ J ×K,

(Wj) αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, T ] ;

(NWk) there exist t1k, t2k ∈ [0, T ] such that xk(t1k) < αk(t
1
k) and xk(t2k) > βk(t

2
k) .

In Section 3.3.2 we will provide a generalization of the above result, remov-
ing the strictness assumption on one of the components κ ∈ K. Let us now
present two illustrative examples.
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Example 3.3.5. Assume J = ∅ and let, for every k ∈ K,

fk(t, x) = − akxk
1 + |xk|

+ hk(t, x) ,

for some ak > 0, with

∥hk∥∞ := sup
{
|hk(t, x)| : (t, x) ∈ [0, T ]× RN

}
< ak . (3.8)

Then, taking the constant functions

αk =
∥hk∥∞

ak − ∥hk∥∞
+ 1 , βk = − ∥hk∥∞

ak − ∥hk∥∞
− 1 ,

we see that Theorem 3.3.4 applies. The same would be true if J ̸= ∅, assuming for
j ∈ J , e.g., a situation like in Examples 3.2.3 and 3.2.4.

Example 3.3.6. Let
fn(t, x) = −an sinxn + hn(t, x) ,

with an > 0 and hn satisfying (3.8) with k = n. For every n ∈ {1, . . . , N} we have
constant lower and upper solutions

αn ∈
{π
2
+ 2mπ : m ∈ Z

}
, βn ∈

{
− π

2
+ 2mπ : m ∈ Z

}
.

Then, for each equation ẍ = fn(t, x) we have both well-ordered and non-well-ordered
pairs of lower/upper solutions. Let us fix, e.g.,

αn =
π

2
, βιn =

π

2
+ ιπ , with ι ∈ {−1, 1} .

Choosing ι⃗ = (ι1, . . . , ιN) ∈ {−1, 1}N , and defining (α, β) with βn = βιnn , by Theo-
rem 3.3.4 we get the existence of at least 2N solutions xι⃗ of problem (P ), whose compo-
nents are such that

ιn = 1 ⇒ ∀t ∈ [0, T ], xι⃗n(t) ∈
[π
2
,
3π

2

]
,

ιn = −1 ⇒ ∃t̄n ∈ [0, T ], xι⃗n(t̄n) ∈
[
− π

2
,
π

2

]
.

We notice that, even if the function h(t, x1, . . . , xn) is 2π-periodic in each variable xn,
the solutions we find are indeed geometrically distinct. We thus get a generalization of
a result obtained for the scalar equation in [71].
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3.3.1 Proof of Theorem 3.3.4

Notice that the case K = ∅ reduces to Theorem 3.2.2. We thus assume K ̸=
∅ and, without loss of generality, we take either J = ∅, or J = {1, . . . ,M}
and K = {M + 1, . . . , N} for a certain M ∈ {1, . . . , N}. Indeed, mixing the
coordinates of x = (x1, . . . , xN), we can always reduce to such a situation. We
continue the proof in the case J ̸= ∅. (The case J = ∅ can be treated essentially
in the same way.)

We need to suitably modify problem (P ). For every r > 0, we consider the
problem

(Pr)

{
ẍ = gr(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

where gr : [0, T ]× RN → RN , with

gr(t, x) =
(
gr,1(t, x), . . . , gr,M(t, x), gr,M+1(t, x), . . . , gr,N(t, x)

)
,

is defined as follows.

We first introduce the functions f̄ : [0, T ]× RN → RN and Γ : [0, T ]× RN →
RN as

f̄(t, x) = f(t,Γ(t, x)) ,

Γ(t, x) =
(
γ1(t, x1), . . . , γM(t, xM), xM+1, . . . , xN

)
.

where, for j ∈ J ,

γj(t, s) =


αj(t) , if s < αj(t) ,

s , if αj(t) ≤ s ≤ βj(t) ,

βj(t) , if s > βj(t) .

Now we define, for every index j ∈ J ,

gr,j(t, x) = f̄j(t, x) + xj − γj(t, xj) ,

and for every index k ∈ K,

gr,k(t, x) =


f̄k(t, x) if |xk| ≤ r ,

(|xk| − r)C
xk
|xk|

+ (1 + r − |xk|)f̄k(t, x) if r < |xk| < r + 1 ,

C
xk
|xk|

if |xk| ≥ r + 1 .

Notice that, for the indices j ∈ J , the value r > 0 does not affect the definition
of the components gr,j .
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Proposition 3.3.7. If x is a solution of (Pr), then αj(t) ≤ xj(t) ≤ βj(t) for every
j ∈ J and t ∈ [0, T ].

The proof follows from a classical reasoning and can be easily adapted from
Step 2 of the proof of Theorem 3.2.2.

Proposition 3.3.8. There is a constant K > 0 such that, if x is a solution of (Pr), for
any r > 0, which satisfies (NWk) for a certain index k ∈ K, then ∥xk∥C2 ≤ K.

Proof. Notice that

|gr,k(t, x)| ≤ C , for every (t, x) ∈ [0, T ]× RN , k ∈ K and r > 0 . (3.9)

Fix any k ∈ K. If x(t) is a solution of (Pr), multiplying the k-th equation by x̃k
and integrating, we have that

∥x̃k∥22 ≤
(
T

2π

)2

∥ẋk∥22 ≤
(
T

2π

)2

C
√
T∥x̃k∥2 .

Therefore, by a classical reasoning, there exist a constant C1 > 0 such that
∥x̃k∥H1 ≤ C1, and there is a constant C0 > 0 such that ∥x̃k∥∞ ≤ C0, for every
solution x of (Pr). Define

uk(t) = min{αk(t), βk(t)} , Uk(t) = max{αk(t), βk(t)} . (3.10)

Since (NWk) holds, there is a τ0 ∈ [0, T ] such that

uk(τ0) ≤ xk(τ0) ≤ Uk(τ0) . (3.11)

Then, if x is a solution of (Pr),

|xk(t)| =
∣∣∣xk(τ0) + ∫ t

τ0

ẋk(s) ds
∣∣∣ ≤ |xk(τ0)|+

∫ T

0

|ẋk(s)| ds ≤ |xk(τ0)|+
√
T∥ẋk∥2

≤ max{∥α∥∞ , ∥β∥∞}+
√
TC1 =: K0 ,

hence ∥xk∥∞ ≤ K0. Moreover, by periodicity, there is a τ1 ∈ [0, T ] such that
ẋk(τ1) = 0, hence by (3.9)

|ẋk(t)| =
∣∣∣ẋk(τ1) + ∫ t

τ1

ẍk(s) ds
∣∣∣ = ∣∣∣ ∫ t

τ1

gr,k(s, x(s)) ds
∣∣∣

≤
∫ T

0

|gr,k(s, x(s))| ds ≤ CT ,

so that ∥ẋk∥∞ ≤ CT . Then,

∥xk∥C2 = ∥xk∥∞ + ∥ẋk∥∞ + ∥ẍk∥∞ ≤ K0 + CT + C =: K ,

thus proving the proposition.
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From now on, we will fix r > max{K, ∥α∥∞ , ∥β∥∞}, where K is given by
Lemma 3.3.8. Problem (Pr) is equivalent to the fixed point problem

x = L−1Nrx , x ∈ C([0, T ],RN) ,

where we have introduced the Nemytskii operator

Nr : C([0, T ],RN) → C([0, T ],RN) , (Nrx)(t) = x(t)− gr(t, x(t)) .

Since we are looking for zeros of

Trx := (I − L−1Nr)(x) ,

we are going to compute the Leray-Schauder degree on a family of open sets.
Let us define the constant functions

α̂ = −r − 1 , β̂ = r + 1 ,

as well as the functions

α̌j(t) = αj(t)− 1 , and β̌j(t) = βj(t) + 1 ,

for every j ∈ J .

We define, for every multi-index µ = (µM+1, . . . , µN) ∈ {1, 2, 3, 4}N−M , the
open set

Ωµ := {x ∈ C([0, T ],RN) : (O0
j ) and (Oµk

k ) hold for every j ∈ J and k ∈ K
}
,

(3.12)
where the conditions (O0

j ) and (Oµk
k ) read as

(O0
j ) α̌j(t) < xj(t) < β̌j(t), for every t ∈ [0, T ],

(O1
k) α̂ < xk(t) < β̂, for every t ∈ [0, T ],

(O2
k) α̂ < xk(t) < βk(t), for every t ∈ [0, T ],

(O3
k) αk(t) < xk(t) < β̂, for every t ∈ [0, T ],

(O4
k) α̂ < xk(t) < β̂, for every t ∈ [0, T ], and there are t1k, t

2
k ∈ [0, T ] such that

x(t1k) < αk(t
1
k) and x(t2k) > βk(t

2
k).

Proposition 3.3.9. The Leray-Schauder degree d(Tr,Ωµ) is well-defined for every µ ∈
{1, 2, 3, 4}N−M .

Proof. Assume by contradiction that there is x ∈ ∂Ωµ such that Trx = 0, i.e., x is
a solution of (Pr). All the several different situations which may arise lead back
to the following four cases.
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Case A. For some index j ∈ J , α̌j(t) ≤ xj(t) ≤ β̌j(t), for every t ∈ [0, T ], and
α̌j(τ) = xj(τ) for a certain τ ∈ [0, T ] (the case when xj(τ) = β̌j(τ) is similar). We
can prove that

¨̌αj(t) > gr,j(t, x1(t), . . . , xj−1(t), α̌j(t), xj+1(t), . . . , xN(t)) , for every t ∈ [0, T ] ,

so that arguing as in Step 2 of the proof of Theorem 3.2.2 we obtain a contradic-
tion.

Case B. For some index k ∈ K, α̂ ≤ xk(t) ≤ β̂, for every t ∈ [0, T ], and
α̂ = xk(τ) for a certain τ ∈ [0, T ] (the case when xk(τ) = β̂ is similar). Since

gr,k(t, x1(t), . . . , xk−1(t), α̂, xk+1(t), . . . , xN(t)) = −C < 0 , for every t ∈ [0, T ] ,

we easily get a contradiction as before.

Case C. For some index k ∈ K, α̂ < xk(t) ≤ βk(t), for every t ∈ [0, T ], and
xk(τ) = βk(τ) for a certain τ ∈ [0, T ]. Such a situation cannot arise since (3.7)
holds by assumption.

Case D. For some index k ∈ K, αk(t) ≤ xk(t) < β̂, for every t ∈ [0, T ], and
xk(τ) = αk(τ) for a certain τ ∈ [0, T ]. Such a situation cannot arise since (3.6)
holds by assumption.

Proposition 3.3.10. For every multi-index µ ∈ {1, 2, 3}N−M we have d(Tr,Ωµ) = 1.

Proof. In this case, it can be verified by the arguments of the previous proof, that
the definition of the set Ωµ provides us a well-ordered pair of strict lower/upper
solutions of problem (Pr). The conclusion is then an immediate consequence of
Theorem 3.2.6.

For any multi-index µ̂ ∈ {1, 2, 3}N−M−1 we can consider, for every ℓ ∈ {1, 2, 3, 4},
the multi-index

(ℓ, µ̂) = (ℓ, µM+2, . . . , µN) ∈ {1, 2, 3, 4}N−M .

We can verify that Ω(2,µ̂),Ω(3,µ̂),Ω(4,µ̂) are pairwise disjoint and all contained in
Ω(1,µ̂) so that

Ω(4,µ̂) = Ω(1,µ̂) \ Ω(2,µ̂) ∪ Ω(3,µ̂) . (3.13)

Proposition 3.3.11. For every multi-index µ̂ ∈ {1, 2, 3}N−M−1 we have d(Tr,Ω(4,µ̂)) =
−1 .
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Proof. By Proposition 3.3.10 and equation (3.13),

1 = d(Tr,Ω(1,µ̂))

= d(Tr,Ω(2,µ̂)) + d(Tr,Ω(3,µ̂)) + d(Tr,Ω(4,µ̂))

= 2 + d(Tr,Ω(4,µ̂))

and the conclusion follows.

Arguing similarly we can prove by induction the following result.

Proposition 3.3.12. For every K ∈ {1, . . . , N − M} and every multi-index µ ∈
{4}K × {1, 2, 3}N−M−K , we have

d(Tr,Ωµ) = (−1)K .

Proof. We proceed by induction. The validity of the statement forK = 1 follows
by Proposition 3.3.11. So, we fix K ≥ 2 and assume that

d(Tr,Ωµ) = (−1)K−1, for every µ ∈ {4}K−1 × {1, 2, 3}N−M−K+1 .

Consider the multi-index µ = (4, . . . , 4, µM+K , µM+K+1, . . . , µN) ∈ {4}K−1 ×
{1, 2, 3}N−M−K+1 and define for every ℓ ∈ {1, 2, 3, 4}, the multi-index

µ̄ℓ = (4, . . . , 4, ℓ, µM+K+1, . . . , µN) .

We then see that

(−1)K−1 = d(Tr,Ωµ̄1)

= d(Tr,Ωµ̄2) + d(Tr,Ωµ̄3) + d(Tr,Ωµ̄4)

= 2 · (−1)K−1 + d(Tr,Ωµ̄4) ,

yielding d(Tr,Ωµ̄4) = (−1)K . The proof is complete.

By the previous proposition we conclude that

d(Tr,Ω(4,...,4)) = (−1)N−M . (3.14)

As a consequence, there is a solution x of problem (Pr) in the set Ω(4,...,4).
Recalling the a priori bounds in Propositions 3.3.7 and 3.3.8, we see that the
solution x is indeed a solution of problem (P ) and satisfies (Wj) and (NWk), for
every j ∈ J and k ∈ K. The proof is thus completed.
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3.3.2 An extension of Theorem 3.3.4

The existence of a solution of (P ) can be obtained also removing from the as-
sumptions of Theorem 3.3.4 the strictness assumption on one of the components.

Theorem 3.3.13. Let (α, β) be a pair of lower/upper solutions of (P ) related to the
partition (J ,K) of {1, . . . , N}. Fix κ ∈ K and assume that (α, β) is strict with respect
to the k-th component, for every k ∈ K \ {κ}. Assume moreover the existence of a
constant C > 0 such that

|fK(t, x)| ≤ C , for every (t, x) ∈ E .
Then, (P ) has a solution x such that (Wj) and (NWk) hold for every (j, k) ∈ J × (K \
{κ}), and

(ÑW κ) there exist t1κ, t2κ ∈ [0, T ] such that xκ(t1κ) ≤ ακ(t
1
κ) and xκ(t2κ) ≥ βκ(t

2
κ).

Proof. Without loss of generality we can choose J = {1, . . . ,M}, K = {M +
1, . . . , N} and κ = N . We can follow the proof of Theorem 3.3.4 step by step in
the first part, noticing that Proposition 3.3.8 holds with the same constant when
we assume (ÑWN). Moreover, since we do not ask the strictness assumption
with respect to the N -th component, when we introduce the sets Ωµ as in (3.12),
we can consider only multi-indices with the last component frozen to 1, i.e.
µ = (µM+1, . . . , µN−1, 1) ∈ {1, 2, 3, 4}N−M−1 × {1}. Indeed, with this new choice
of the multi-indices we can still guarantee that the Leray-Schauder degree is
well-defined.

Then, arguing as in Propositions 3.3.10, 3.3.11 and 3.3.12 we have

• d(Tr,Ωµ) = 1 for every µ ∈ {1, 2, 3}N−M−1 × {1},

• d(Tr,Ωµ) = −1 for every µ ∈ {4} × {1, 2, 3}N−M−2 × {1},

• for every K ∈ {1, . . . , N−M−1}, d(Tr,Ωµ) = (−1)K for every multi-index
µ ∈ {4}K × {1, 2, 3}N−M−K−1 × {1}.

However, we cannot conclude the proof saying that the Leray-Schauder degree
is different from zero in Ω(4,...,4) as in (3.14), since we cannot ensure that it is well
defined in the sets Ω(4,...,4,ℓ) with ℓ = 2, 3, 4.

Anyhow, at this step of the proof, we can follow the classical reasoning
adopted in the scalar case in presence of non-well-ordered lower/upper solu-
tions, cf. [29, Theorem III-3.1]. If there exists x ∈ ∂Ω(4,...,4,2) such that Trx = 0,
then we can easily see that x must be a solution of (Pr) such that xN(t) ≤ βN(t)
for every t ∈ [0, T ] and xN(τ) = βN(τ) for a certain τ ∈ [0, T ]. Since the com-
ponents αN , βN are non-well-ordered, we have αN(t0N) > βN(t

0
N) ≥ xN(t

0
N) for

some tN0 ∈ [0, T ]. So (ÑWN) holds, thus giving us that x is a solution of (Pr)
satisfying all the required assumptions.
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We can argue similarly if there exists x ∈ ∂Ω(4,...,4,3) such that Trx = 0.

If the previous situations do not occur, we can compute the degree both in
Ω(4,...,4,2) and Ω(4,...,4,3). As in (3.13), we have

Ω(4,...,4,4) = Ω(4,...,4,1) \ Ω(4,...,4,2) ∪ Ω(4,...,4,3) .

so that the degree is well defined also for Ω(4,...,4,4). Performing exactly the same
computation adopted in Propositions 3.3.11 and 3.3.12 we can conclude that
d(Tr,Ω(4,...,4)) = (−1)N−M , thus finding also in this case a solution x with the
desired properties. The proof is thus completed.

3.4 Infinite-dimensional systems

We now focus our attention on a system defined in a separable Hilbert space H
with scalar product ⟨·, ·⟩ and corresponding norm | · |. We study the problem

(P )

{
ẍ = f(t, x) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) ,

where f : [0, T ]×H → H is a continuous function. In what follows, we extend
the results of Section 3.3 to an infinite-dimensional setting, trying to maintain
similar notations.

Let N+ = {1, 2, 3, . . . }. Choosing a Hilbert basis (en)n∈N+ , every vector x ∈ H
can be written as x =

∑
n∈N+

xnen, or x = (xn)n∈N+ = (x1, x2, . . . ). Similarly, for
the function f , we will write

f(t, x) = (f1(t, x), f2(t, x), . . . ) .

We will sometimes identify H with ℓ2.

As in the finite-dimensional case, we will say that the couple (J ,K) is a
partition of N+ if and only if J ∩K = ∅ and J ∪K = N+. Correspondingly, we
can decompose the Hilbert space as H = HJ × HK, where every x ∈ H can be
written as x = (xJ , xK) with xJ = (xj)j∈J ∈ HJ and xK = (xk)k∈K ∈ HK.

Similarly, every function F : A → H can be written as F(x) =
(
FJ (x),FK(x)

)
where FJ : A → HJ and FK : A → HK.

We rewrite Definition 3.3.1 in this context.

Definition 3.4.1. Given two C2-functions α, β : [0, T ] → H we will say that (α, β) is
a pair of lower/upper solutions of (P ) related to the partition (J ,K) of N+ if the
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four conditions of Definition 3.3.1 hold replacing {1, . . . , N} by N+ and the inequali-
ties (3.3), (3.4) by

α̈n(t) ≥ fn(t, x1, . . . , xn−1, αn(t), xn+1, . . . ) ,

β̈n(t) ≤ fn(t, x1, . . . , xn−1, βn(t), xn+1, . . . ) .

Moreover, it is said to be strict with respect to the n-th component, with n ∈ N+, if
the conditions of Definition 3.3.2 hold.

We recall the definition of the set

E :=
{
(t, x) ∈ [0, T ]× RN : x = (xJ , xK) , xJ ∈

∏
j∈J

[αj(t), βj(t)]
}
.

Here is our result in this infinite-dimensional setting.

Theorem 3.4.2. Let (α, β) be a pair of lower/upper solutions of (P ) related to the
partition (J ,K) of N+, and assume the following conditions:

• there exists a sequence (dn)n∈N+ ∈ ℓ2 such that

−dn ≤ αn(t) ≤ dn and −dn ≤ βn(t) ≤ dn , for every n ∈ N+ and t ∈ [0, T ];

• (α, β) is strict with respect to the k-th component, for every k ∈ K;

• there exists a constant C > 0 such that

|fK(t, x)| ≤ C , for every (t, x) ∈ E ;

• for every bounded set B ⊂ E , the set fK(B) is precompact.

Then, (P ) has a solution x with the following property: for any (j, k) ∈ J ×K,

(Wj) αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, T ] ;

(ÑW k) there exist t1k, t2k ∈ [0, T ] such that xk(t1k) ≤ αk(t
1
k) and xk(t2k) ≥ βk(t

2
k) .

The proof of the theorem is carried out in Section 3.4.2.

Remark 3.4.3. As in Theorem 3.3.13, we can drop the strictness assumption for a
certain index κ ∈ K.

As an immediate consequence of Theorem 3.4.2, taking α and β constant
functions, we have the following.
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Corollary 3.4.4. Let there exist two sequences (pn)n∈N+ and (qn)n∈N+ in ℓ2, with pn <
qn for every n ∈ N+, and a partition (J ,K) of N+, such that, for every (t, x) ∈ [0, T ]×∏

j∈J [pj, qj]×HK ,

j ∈ J ⇒ fj(t, x1, . . . , xj−1, pj, xj+1, . . . ) ≤ 0

≤ fj(t, x1, . . . , xj−1, qj, xj+1, . . . ) ;
(3.15)

k ∈ K ⇒ fk(t, x1, . . . , xk−1, pk, xk+1, . . . ) > 0

> fk(t, x1, . . . , xk−1, qk, xk+1, . . . ) .
(3.16)

Furthermore, let there exists a sequence (Ck)k∈K ∈ ℓ2 such that, for every k ∈ K,

|fk(t, x)| ≤ Ck , for every (t, x) ∈ [0, T ]×
∏
j∈J

[pj, qj]×HK .

Then, (P ) has a solution x(t) such that, for every j ∈ J , k ∈ K,

{xj(t) : t ∈ [0, T ]} ⊆ [pj, qj] ; (3.17)
{xk(t) : t ∈ [0, T ]} ∩ [pk, qk] ̸= ∅ .

We now give some examples of applications, with H = ℓ2, where we implic-
itly assume all functions to be continuous.

Example 3.4.5. Let, for every j ∈ N+,

fj(t, x) = x3j + hj(t, x) ,

and assume that there is a c > 0 such that

|hj(t, x)| ≤
c

j3
, for every (t, x) ∈ [0, T ]× ℓ2 . (3.18)

Then, f : [0, T ] × ℓ2 → ℓ2 is well-defined and taking qj = −pj = 3
√
c/j , we see that

both (pj)j, (qj)j belong to ℓ2, and (3.15) is satisfied, so that Corollary 3.4.4 applies with
K = ∅.

Example 3.4.6. Let us consider, for every j ∈ N+,

fj(t, x) = x2j sinxj + hj(t, x) ,

and assume that there is a c > 0 such that (3.18) holds. Then, f : [0, T ] × ℓ2 → ℓ2 is
well-defined. Since x2 sinx ≥ 1

2
x3 in the interval [0, π/2], taking qj = −pj = 3

√
2c/j ,

we see that both (pj)j, (qj)j belong to ℓ2, and (3.15) is satisfied, so that Corollary 3.4.4
applies with K = ∅.
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Furthermore, for every ℓ ∈ Z with |ℓ| sufficiently large, we can see that the constants
pℓ = −π/2+2ℓπ, qℓ = π/2+2ℓπ satisfy (3.15), for every j ∈ N+. Thus, we can replace
a finite number of couples (pj, qj) with some couples (pℓ, qℓ). Such a replacement must
be performed only for a finite number of indices j ∈ N+ since we need to guarantee that
the new sequences (pj)j and (qj)j remain in ℓ2. Recalling that the so found solution of
problem (P ) must satisfy (3.17) then we conclude that (P ) admits an infinite number
of solutions.

Example 3.4.7. Let, for every k ∈ N+,

fk(t, x) = − xk
1 + k|xk|

+ hk(t, x) ,

and assume that there is a c ∈ ]0, 1[ such that

|hk(t, x)| ≤
c

k
, for every (t, x) ∈ [0, T ]× ℓ2 .

Then, f : [0, T ] × ℓ2 → ℓ2 is well-defined and taking qk = −pk = c
(1−c)k , we see that

both (pk)k, (qk)k belong to ℓ2, and (3.16) is verified, so that Corollary 3.4.4 applies with
J = ∅.

Example 3.4.8. Let (an)n and (σn)n be sequences of positive numbers in ℓ2 and let, for
every n ∈ N+,

fn(t, x) = −an sin
(2πxn
σn

)
+ hn(t, x) .

If hn satisfies
sup

{
|hn(t, x)| : (t, x) ∈ [0, T ]× ℓ2

}
< an ,

we see that, for every n ∈ {1, . . . , N}, it is possible to find pairs of constant lower and
upper solutions

αn ∈
{σn

4
+mσn : m ∈ Z

}
, βn ∈

{
− σn

4
+mσn : m ∈ Z

}
.

Then, for each equation ẍ = fn(t, x) we have both well-ordered and non-well-ordered
pairs of lower/upper solutions. Applying Corollary 3.4.4 we thus get the existence of
infinitely many solutions of problem (P ). By the same argument in Example 3.3.6 we
notice that, even if the function h(t, x1, x2, . . . ) is σn-periodic in each variable xn, the
solutions we find are indeed geometrically distinct.

Remark 3.4.9. This result should be compared with the ones in [18, 49], where one or
two geometrically distinct solutions were found assuming a Hamiltonian structure of
the problem, i.e.,

hn(t, x) =
∂V
∂xn

(t, x) ,



3.4 Infinite-dimensional systems 91

for some function V(t, x1, x2, . . . ) which is σn-periodic in each variable xn. It was said
in the final section of [49] that it remained an open problem to know if the existence of
more than two T -periodic solutions could be proved, and in [18] that “it would be natu-
ral to conjecture the existence of infinitely many T -periodic solutions”. It is interesting
to notice that even in [18, 49], in order to recover some compactness, it was assumed
that the sequence of the periods (σn)n belongs to ℓ2.

Remark 3.4.10. For any choice of a partition (J ,K) of N+, we can consider functions
f satisfying the requirements of Examples 3.4.5, 3.4.6 or 3.4.8 for every j ∈ J and of
Examples 3.4.7 or 3.4.8 for every k ∈ K. Corollary 3.4.4 applies also in this case.

In the next section we provide some preliminary lemmas, which will be used
in order to prove Theorem 3.4.2.

3.4.1 Some compactness lemmas

For every sequence τ = (τn)n∈N+ contained in [0, T ] and every function u ∈
C([0, T ], H), define the function Pτu : [0, T ] → H as

(Pτu)n(t) =

∫ t

τn

un(s) ds , n ∈ N+ .

We will need the following extension of [49, Lemma 3.2].

Lemma 3.4.11. Let E ⊆ C([0, T ], H) be such that the set

A = {u(t) : u ∈ E, t ∈ [0, T ]}
is precompact in H . Then the set

Σ =
{
Pτu : τ ∈ [0, T ]N+ , u ∈ E

}
is precompact in C([0, T ], H). As a consequence, the set

Ξ =
{
Pτu(t) : τ ∈ [0, T ]N+ , u ∈ E, t ∈ [0, T ]

}
is precompact in H .

Proof. Fix ε > 0. Since A is precompact, there exist v1, . . . , vm in H such that

A ⊆
m⋃
ι=1

B(vι, ε) . (3.19)

Let V = Span(v1, . . . , vm), and denote by Q : H → V the corresponding orthog-
onal projection. We first prove that the set

R =
{
Pτ (Qu) : u ∈ E, τ ∈ [0, T ]N+

}
is precompact in C([0, T ], V ).
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The set Q(A) is precompact in V and hence bounded; there exists a real con-
stant D such that

|Qu(t)| < D , for all u ∈ E and t ∈ [0, T ] . (3.20)

Moreover, for every u ∈ E, τ ∈ [0, T ]N+ and t ∈ [0, T ],

|(Pτ (Qu))n(t)| =
∣∣∣∣∫ t

τn

(Qu)n(s) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

τn

|(Qu)n(s)| ds
∣∣∣∣ , n ∈ N+

and consequently

|Pτ (Qu)(t)|2 =
∞∑
n=1

|(Pτ (Qu))n(t)|2

≤
∞∑
n=1

∣∣∣∣∫ t

τn

|(Qu)n(s)| ds
∣∣∣∣2 ≤

∞∑
n=1

(∫ T

0

|(Qu)n(s)| ds
)2
;

by the Hölder Inequality and the use of the Monotone Convergence Theorem,
recalling (3.20),

∞∑
n=1

(∫ T

0

|(Qu)n(s)| ds
)2

≤ T
∞∑
n=1

∫ T

0

|(Qu)n(s)|2 ds

= T

∫ T

0

∞∑
n=1

|(Qu)n(s)|2 ds

= T

∫ T

0

|Qu(s)|2 ds < T 2D2,

and then
|Pτ (Qu)(t)| ≤ TD .

Since V is finite-dimensional, the set S = {w(t) : w ∈ R} ⊆ V is precompact.
On the other hand, for every u ∈ E, τ ∈ [0, T ]N+ and every t1, t2 ∈ [0, T ] with
t1 < t2 , we have

|Pτ (Qu)(t1)− Pτ (Qu)(t2)| =
∣∣∣∣∫ t2

t1

(Qu)(s) ds

∣∣∣∣ ≤ ∫ t2

t1

|(Qu)(s)| ds ≤ D(t1 − t2) ,

so that R is equi-uniformly continuous as a subset of C([0, T ], V ). By the Ascoli–
Arzelà Theorem, the set R is precompact in C([0, T ], V ).
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Consequently, there exist f1, . . . , fℓ in C([0, T ], V ) such that

R ⊆
ℓ⋃
ι=1

B(fι, ε) . (3.21)

Now, for every u ∈ E, τ ∈ [0, T ]N+ and t ∈ [0, T ], by (3.19),

|Pτu(t)− Pτ (Qu)(t)|2 =
∞∑
n=1

|(Pτu)n(t)− (Pτ (Qu))n(t)|2

≤
∞∑
n=1

∣∣∣∣∫ t

τn

|un(s)− (Qu)n(s)| ds
∣∣∣∣2

≤
∞∑
n=1

T

∫ T

0

|un(s)− (Qu)n(s)|2 ds

= T

∫ T

0

∞∑
n=1

|un(s)− (Qu)n(s)|2 ds

= T

∫ T

0

|u(s)− (Qu)(s)|2 ds ≤ T 2ε2,

and so
|Pτu(t)− Pτ (Qu)(t)| ≤ Tε.

On the other hand, since Pτ (Qu) ∈ R, by (3.21) there exists ῑ such that

∥Pτ (Qu)− fῑ∥∞ < ε ,

hence

|Pτu(t)− fῑ(t)| ≤ |Pτu(t)− Pτ (Qu)(t)|+ |Pτ (Qu)(t)− fῑ(t)| ≤ εT + ε = ε(T + 1).

We have thus shown that, given ε > 0, there are f1, . . . , fℓ in C([0, T ], H) such
that

Σ ⊆
ℓ⋃
ι=1

B(fι, (T + 1)ε) ,

hence proving that Σ is precompact.

The fact that Ξ is precompact inH now follows again from the Ascoli–Arzelà
Theorem, recalling that this theorem gives a necessary and sufficient condition
for precompactness.

Let us denote by ΠN : H → H the projection

ΠN(x) = (x1, . . . , xN , 0, 0, . . . ) . (3.22)
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Lemma 3.4.12. Let A be a compact subset of H . Then, for every ε > 0, there is a
M ≥ 1 such that, for every a = (an)n∈N+ in A,

∞∑
n=M

|an|2 ≤ ε2.

In particular limN→∞(ΠN − Id)x = 0 uniformly for x ∈ A.

Proof. By contradiction, let there exist an ε > 0 such that, for every M ≥ 1,
there is aM = (aMn )n∈N+ ∈ A such that

∑∞
n=M |aMn |2 > ε2. By compactness, the

sequence (aM)M∈N+ has a subsequence, for which we keep the same notation,
such that aM → a∗, for some a∗ ∈ A. Let M∗ be any positive integer. Then,
taking M ≥M∗ sufficiently large,( ∞∑

n=M∗

|a∗n|2
)1/2

≥
( ∞∑
n=M

|a∗n|2
)1/2

≥
( ∞∑
n=M

|aMn |2
)1/2

−
( ∞∑
n=M

|aMn − a∗n|2
)1/2

≥ ε− ∥aM − a∗∥ℓ2 ≥
ε

2
.

We thus get a contradiction with the fact that a∗ ∈ H .

As an immediate consequence we find the following compactness property.

Lemma 3.4.13. Let A be a compact subset of H . Then, the set

AP :=
⋃

N∈N+

ΠNA

is precompact in H .

Proof. Let us consider a sequence (xn)n∈N+ contained in AP .
If there exists N0 ∈ N+ and a subsequence (xnℓ

)ℓ such that xnℓ
∈ ΠN0A for

every ℓ, then the conclusion is reached since ΠN0A is compact.
If the previous situation does not arise, then we can find a diverging se-

quence (Nℓ)ℓ ⊂ N+ and a subsequence (xnℓ
)ℓ such that xnℓ

∈ ΠNℓ
A for every ℓ.

So, there is a sequence (ynℓ
)ℓ ⊆ A such that xnℓ

= ΠNℓ
ynℓ

. Since A is compact,
then, up to a subsequence, we have ynℓ

→ ȳ ∈ A. Hence,

|xnℓ
− ȳ| ≤ |xnℓ

− ynℓ
|+ |ynℓ

− ȳ| ≤ |(ΠNℓ
− Id)ynℓ

|+ |ynℓ
− ȳ| → 0 ,

where Lemma 3.4.12 has been applied.

Remark 3.4.14. The above statements have been formulated for a Hilbert space H . We
will apply them also treating the previously introduced Hilbert spaces HK and HJ .
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3.4.2 Proof of Theorem 3.4.2

We consider, for every N ∈ N+, the auxiliary system

ẍ1 = f1(t, x1, . . . , xN , αN+1(t), αN+2(t), . . . )

...
ẍN = fN(t, x1, . . . , xN , αN+1(t), αN+2(t), . . . )

ẍN+1 = 0

ẍN+2 = 0

...

We recall the projections ΠN , introduced in (3.22), and define the function

Π̂N : C([0, T ], H) → C([0, T ], H)

Π̂Nx(t) = (x1(t), . . . , xN(t), αN+1(t), αN+2(t), . . . ) .

The auxiliary problem can then be written as

(P̂N)

{
ẍ = ΠNf(t, Π̂Nx(t)) ,

x(0) = x(T ) , ẋ(0) = ẋ(T ) .

Notice that

(t, Π̂Nx
N(t)) ∈ E , for every N ∈ N+ and t ∈ [0, T ] . (3.23)

By Theorem 3.3.4, for every N ∈ N+, there is a solution xN(t) of (P̂N) such that
(Wj) and (NWk) hold for every j ∈ J ∩ [1, N ] and k ∈ K ∩ [1, N ]. We impose

xNn (t) = 0 , for every n > N and t ∈ [0, T ] .

Arguing as in the proof of Proposition 3.3.8, cf. (3.10) and (3.11), we conclude
that xN satisfies

{xNj (t) : t ∈ [0, T ]} ⊆ [−dj, dj] , (3.24)

{xNk (t) : t ∈ [0, T ]} ∩ [−dk, dk] ̸= ∅ ,

for every k ∈ K and j ∈ J . Concerning the indices j ∈ J we thus have

xNJ (t) ∈ DJ :=
∏
j∈J

[−dj, dj] , (3.25)

for every N ∈ N+ and t ∈ [0, T ].
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Now, we repeat the arguments of Proposition 3.3.8 with a slight modifica-
tion. Given the solution xN of (P̂N), we can compute

∥x̃NK∥22 ≤
(
T

2π

)2

∥ẋNK∥22 ≤
(
T

2π

)2

C
√
T∥x̃NK∥2 ,

so that ∥x̃NK∥H1 ≤ C1 and ∥x̃NK∥∞ ≤ C0 for some constants C1 and C0.

Recalling the validity of (3.24), we can find a sequence τNK = (τNk )k∈K ⊂ [0, T ]
such that

|xNk (τNk )| ≤ dk , for every k ∈ K . (3.26)

Then, we can prove that the sequence (xNK )N∈N+ is uniformly bounded. Indeed,

|xNK (t)|2 =
∑
k∈K

|xNk (t)|2 =
∑
k∈K

∣∣∣∣∣xNk (τNk ) +

∫ t

τNk

ẋNk (s) ds

∣∣∣∣∣
2

≤ 2
∑
k∈K

|xNk (τNk )|2 +
∣∣∣∣∣
∫ t

τNk

ẋNk (s) ds

∣∣∣∣∣
2


≤ 2
∑
k∈K

d2k + 2T∥ẋNK∥22 ≤ 2
∑
k∈K

d2k + 2TC2
1 =: ϱ2 ,

Then, choosing B = {(t, x) ∈ E : |xK| ≤ ϱ} and recalling (3.23) and that fK is
completely continuous in E , we notice that the set A = {fK(t, Π̂Nx

N(t)) : N ∈
N+ , t ∈ [0, T ]} ⊆ fK(B) is precompact. Then, using Lemma 3.4.13, we deduce
that the set {ẍNK (t) : N ∈ N+ , t ∈ [0, T ]} is precompact. By periodicity, there
exists a sequence tNK = (tNk )k∈K such that ẋNk (t

N
k ) = 0 for every k ∈ K. Writing

ẋNk (t) = ẋNk (t
N
k ) +

∫ t

tNk

ẍNk (s) ds =

∫ t

tNk

ẍNk (s) ds =
(
PtNK ẍ

N
K

)
(t) ,

we deduce from Lemma 3.4.11 that the set {ẋNK (t) : N ∈ N+ , t ∈ [0, T ]} is pre-
compact.

Finally we prove that also the set {xNK (t) : N ∈ N+ , t ∈ [0, T ]} is precompact.
Recalling the sequence τNK = (τNk )k∈K in (3.26), we can write using the notation
of Section 3.4.1,

xNK (t) = ξNK +
(
PτNK ẋ

N
K

)
(t) , where ξNK := (xNk (τ

N
k ))k∈K .

By construction ξNK ∈ DK :=
∏

k∈K[−dk, dk], so that, by Lemma 3.4.11, we con-
clude that both the addenda are in a compact set. Hence there is a compact set
D̂K such that

xNK (t) ∈ D̂K , for every N ∈ N+ and t ∈ [0, T ] . (3.27)



3.4 Infinite-dimensional systems 97

We can now prove similar properties for the components of xN(t), and their
derivatives, with indices j ∈ J . At this step, the continuity of fJ is suffi-
cient. Indeed, from (3.25) and (3.27), the compactness of {fJ (t, Π̂Nx

N(t)) :
N ∈ N+ , t ∈ [0, T ]} follows. Then, arguing as above, we can prove that both
{ẍNJ (t) : N ∈ N+ , t ∈ [0, T ]} and {ẋNJ (t) : N ∈ N+ , t ∈ [0, T ]} are precompact.

Consider now the sequence (uN)N∈N+ of functions uN : [0, T ] → H × H
defined by

uN(t) = (xN(t), ẋN(t)) .

By the above arguments, the sequence (uN)N∈N+ takes its values in a compact
set, and it is equi-uniformly continuous. By the Ascoli–Arzelà Theorem there
exists a subsequence, for which we keep the same notation, which uniformly
converges to some u∗ : [0, T ] → H × H . Writing u∗(t) = (x∗(t), y∗(t)), we
have that (xN , ẋN) uniformly converges to (x∗, y∗). In particular x∗(0) = x∗(T ),
y∗(0) = y∗(T ). Rewriting the differential equation in (P̂N) as a planar system,
we have

(Q̂N)

{
ẋ = y,

ẏ = ΠNf(t, Π̂Nx(t)) ,

or equivalently
u̇ = FN(t, u) ,

where FN(t, x, y) = (y,ΠNf(t, Π̂Nx(t))). The corresponding integral formula-
tion is then

u(t) = u(0) +

∫ t

0

FN(s, u(s)) ds . (3.28)

System (Q̂N) has a solution uN = (xN , ẋN) such that uN(0) = uN(T ) for every
N ∈ N+. We want to show that

FN(t, uN(t)) → F (t, u∗(t)) , uniformly in t ∈ [0, T ] , (3.29)

where F (t, x, y) = (y, f(t, x)). Fix ε > 0; for N sufficiently large, we have

|FN(t, uN(t))− F (t, u∗(t))|
≤ |yN(t)− y∗(t)|+ |ΠNf(t, Π̂Nx

N(t))− f(t, x∗(t))|
≤ ε+ |ΠNf(t, Π̂Nx

N(t))− f(t, Π̂Nx
N(t))|+

+ |f(t, Π̂Nx
N(t))− f(t, x∗(t))| .

Since {Π̂Nx
N(t) : N ∈ N+ , t ∈ [0, T ]} is precompact, cf. (3.25) and (3.27), then

by continuity {f(t, Π̂Nx
N(t)) : N ∈ N+ , t ∈ [0, T ]} is precompact, too. So, by

Lemma 3.4.12, for N sufficiently large,

|ΠNf(t, Π̂Nx
N(t))− f(t, Π̂Nx

N(t))| = |(ΠN − Id)f(t, Π̂Nx
N(t))| ≤ ε .
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Moreover,

|Π̂Nx
N(t)− ΠNx

N(t)| = |(0, . . . , 0, αN+1(t), αN+2(t), . . . )|

≤
∞∑
n=N

d2n → 0 , as N → ∞ .

Then, applying Lemma 3.4.12,

|Π̂Nx
N(t)−x∗| ≤ |Π̂Nx

N(t)−ΠNx
N(t)|+ |ΠNx

N(t)−xN(t)|+ |xN(t)−x∗(t)| → 0 ,

as N → ∞, so that by continuity, for N large enough,

|f(t, Π̂Nx
N(t))− f(t, x∗(t))| ≤ ε .

Summing up, if N is large, then

|FN(t, uN(t))− F (t, u∗(t))| ≤ 3ε , for every t ∈ [0, T ] ,

thus proving (3.29). Passing to the limit in (3.28), we get

u∗(t) = u∗(0) +

∫ t

0

F (s, u∗(s)) ds ,

and so x∗(t) is a solution of (P ). The conditions (Wj) and (ÑW k) are easily seen
to be preserved in the limit process. The proof is thus completed.

3.5 Final remarks

In this final section, we briefly outline some possible extensions of the previous
results.

1. The boundedness assumption on the function fK(t, x) could be replaced by
a nonresonance condition with respect to the higher part of the spectrum of the
differential operator −ẍ with T -periodic conditions. For instance, denoting by
λ2 the first positive eigenvalue (2π/T )2, one could assume that

−fK(t, x) = γK(t, x)x+ rK(t, x) ,

where γK(t, x) ≤ c < λ2 and rK(t, x) is bounded. Or, more generally, one could
assume an asymmetric behaviour of the type

−fK(t, x) = µK(t, x)x
+ − νK(t, x)x

− + rK(t, x) ,

where (µK(t, x), νK(t, x)) lie below the first curve of the Fučík spectrum (here, as
usual, x+ = max{x, 0} and x− = max{−x, 0}).
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2. One could deal with nonlinearities of the type f(t, x, ẋ), depending also on
the derivative of x, assuming some type of Nagumo growth condition (see [29]).
Such a situation has already been studied in the infinite-dimensional setting,
e.g., in [95], in the well-ordered case.

3. In this Chapter we defined the lower and upper solutions as C2-functions.
However, this regularity could be weakened, and different definitions could be
adopted. We do not enter into the details, for briefness, and we refer to the
book [29] for further possible developments.

4. The results of this Chapter hold the same for the Neumann problem{
ẍ = f(t, x) ,

ẋ(0) = 0 = ẋ(T ) ,

with almost identical proofs. Concerning the Dirichlet problem{
ẍ = f(t, x) ,

x(0) = 0 = x(T ) ,

some modifications are needed in the non-well-ordered case.
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Chapter 4

Lower and upper solutions for PDE

The method of upper and lower solutions and the construction of monotone se-
quences with the goal to prove the existence of maximal and minimal solutions
of elliptic boundary-value problems were developed as early as the 1930s by
Nagumo in [77, 78, 79] for both ordinary and partial differential equations. In
the early 1970s, Amann [3] and Sattinger [94] formalized the properties of upper
and lower solutions and obtained a more systematic approach for the construc-
tion of monotone sequences. Amann considered a general elliptic boundary
value problems with nonlinear boundary conditions, while Sattinger extended
the definition of upper and lower solutions to parabolic boundary value prob-
lems. The same idea has been extended by Pao [85] to parabolic problems
with nonlinear boundary conditions. At the beginning of this chapter we in-
troduce the abstract setting, and we provide an existence result in the case of
well-ordered lower and upper solutions. This is the analogue, in the setting of
PDEs, of a result obtained in [10] for periodic systems of ODEs. For similar re-
sults concerning elliptic or parabolic problems see, e.g., [11, 32, 33, 60, 84] and
the references therein.

We then consider non-well-ordered lower and upper solutions and we state
our main theorem, whose proof is provided in Section 4.4. We emphasize that
we do not need any monotonicity assumptions on our nonlinearities. This part
is then concluded by some illustrative examples of applications, and comment
on some possible extensions of our result in different directions; in particular
we show how to adapt our main theorem to systems involving differential op-
erators of parabolic type.

101
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4.1 Well-ordered lower and upper solutions

4.1.1 The abstract setting

Let Ω be a bounded domain in RN , and denote by W (Ω) a Banach space of
real-valued functions which is continuously and compactly imbedded in C1(Ω).
Assume that L : W (Ω) → Lr(Ω) is a linear operator, with r > 1, and B : C1(Ω) →
C(∂Ω) is a linear and continuous operator. We are concerned with the boundary
value problem

(P )

{Lun = Fn(x, u1, . . . , uM) in Ω ,

Bun = 0 on ∂Ω ,
n = 1, . . . ,M .

The function F : Ω× RM → RM is Lr- Carathéodory, i.e.,

(i) F (·, u) is measurable in Ω, for every u ∈ RM ;

(ii) F (x, ·) is continuous in RM , for almost every x ∈ Ω ;

(iii) for every ρ > 0 there is a hρ ∈ Lr(Ω) such that, if |u| ≤ ρ, then

|F (x, u)| ≤ hρ(x) for a.e. x ∈ Ω .

We now introduce our abstract hypotheses (see [50, Assumptions A1 and
A2]).

Assumption 1. If w ∈ W (Ω) is such that

min
Ω
w < 0 , and Bw ≥ 0 ,

then there exists a point x0 ∈ Ω satisfying the following properties:
a) w(x0) < 0 ,
b) there is no neighborhood U of x0 such that (Lw)(x) > 0 for a.e. x ∈ U ∩ Ω.

Remark 4.1.1. Concerning the elliptic operator, taking W (Ω) = W 2,r(Ω) with r > N ,
Assumption 1 is a consequence of the Strong Maximum Principle (see, e.g., [50, 55,
102]).

We define

C1
B(Ω) = {w ∈ C1(Ω) : Bw = 0} , WB(Ω) = {w ∈ W (Ω) : Bw = 0} .

These are subspaces of C1(Ω) and W (Ω), with the respective norms. Both C1
B(Ω)

andWB(Ω) are Banach spaces, since the operator B is linear and continuous. Let
us denote by LB : WB(Ω) → Lr(Ω) the restriction of L to WB(Ω), and by I the
identity operator.
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Assumption 2. There is a constant σ < 0 such that LB − σI : WB(Ω) → Lr(Ω) is
invertible, and (LB − σI)−1 : Lr(Ω) → WB(Ω) is continuous.

Remark 4.1.2. For the elliptic operator, any sufficiently negative constant σ can be
taken.

We will write any u ∈ [WB(Ω)]
M as u = (u1, . . . , uM). Let L : [WB(Ω)]

M →
[Lr(Ω)]M be defined as

(Lu)(x) =
(
(LBu1)(x), . . . , (LBuM)(x)

)
,

and let us introduce the nonlinear operator N : [C1
B(Ω)]

M → [Lr(Ω)]M , defined
as

(Nu)(x) = F (x, u(x)) .

It is readily seen that N is continuous and maps bounded sets into bounded
sets. Our problem (P ) can then be rewritten as

Lu = Nu .

A solution of problem (P ) will be a function u ∈ [WB(Ω)]
M which satisfies this

equality in [Lr(Ω)]M , hence almost everywhere.

If σ is the constant introduced in Assumption 2, (P ) is equivalent to the fixed
point problem

u = Su ,
where S : [C1

B(Ω)]
M → [C1

B(Ω)]
M is defined by Su = (L− σI)−1(Nu− σu). Since

(L − σI)−1 : [Lr(Ω)]M → [W (Ω)]M is continuous and [W (Ω)]M is compactly
imbedded in [C1(Ω)]M , the operator S is completely continuous, and this will
allow us to use Leray–Schauder degree theory.

4.1.2 An existence result

Let us introduce the concept of lower and upper solutions.

Definition 4.1.3. Given two functions α, β ∈ [W (Ω)]M , we say that (α, β) is a well-
ordered pair of lower/upper solutions of (P ) if α ≤ β and there exists a negligible
set N ⊆ Ω such that

Lαj(x) ≤ Fj(x, u1, . . . , uj−1, αj(x), uj+1, . . . , uM) ,
Lβj(x) ≥ Fj(x, u1, . . . , uj−1, βj(x), uj+1, . . . , uM) ,
Bαj ≤ 0 ≤ Bβj ,
for every j ∈ {1, . . . ,M} and (x, u) ∈ (Ω \ N )×∏M

m=1[αm(x), βm(x)] .
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Here is our result, in the well-ordered case; it generalizes [10, Theorem 4.1].

Theorem 4.1.4. Let Assumptions 1 and 2 hold true. If there exists a well-ordered pair
of lower/upper solutions (α, β), then problem (P ) has a solution u such that α ≤ u ≤ β.

Proof Let us define the functions

γj(x, s) =


αj(x) if s ≤ αj(x) ,
s if αj(x) < s < βj(x) ,
βj(x) if u ≥ βj(x) ,

and the function
Γ(x, u) =

(
γ1(x, u1), . . . , γM(x, uM)

)
.

Consider the auxiliary problem

(P̄ )

{Luj − σuj = Fj(x,Γ(x, u))− σγj(x, uj) in Ω ,

Buj = 0 on ∂Ω ,
j = 1, . . . ,M .

The remaining part of the proof is divided in two steps.

Step 1: Problem (P̄ ) admits a solution.

Let us introduce the operator N̄ : [C1
B(Ω)]

M → [Lr(Ω)]M defined by

(N̄u)(x) = F (x,Γ(x, u(x)))− σΓ(x, u(x)) .

One can see that N̄ is continuous and has a bounded image. Problem (P̄ ) is
equivalent to the fixed point problem

u = Su ,

where the operator S : [C1
B(Ω)]

M → [C1
B(Ω)]

M is defined by

Su = (L− σI)−1N̄u .

We have that S is completely continuous, and its image is bounded. By Schauder
Theorem, it has a fixed point, hence problem (P̄ ) has a solution.

Step 2: Every solution u of (P̄ ) is such that α ≤ u ≤ β.

Let us prove that α ≤ u. Set v = u − α, and assume by contradiction that
min vj < 0, for some j ∈ {1, . . . ,M}. Since Bvj = Buj − Bαj = −Bαj ≥ 0,
by Assumption 1 there is a point x0 ∈ Ω such that vj(x0) < 0, and there is no
neighborhood U of x0 such that Lvj > 0, almost everywhere on U ∩ Ω. On the
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other hand, as vj(x0) < 0, there is a neighborhood V of x0 such that vj < 0 on
V ∩ Ω, i.e., uj < αj on V ∩ Ω. Hence,

Lvj = Luj − Lαj
= Fj(x,Γ(x, u))− σ(γj(x, uj)− uj)− Lαj
= Fj(x,

(
γ1(x, u1), . . . , αj(x), . . . , γM(x, uM)

)
− σ(αj − uj)− Lαj

≥ σvj > 0 ,

almost everywhere on V ∩ Ω, a contradiction. In a similar way it can be shown
that u ≤ β.

Hence, every solution u of (P̄ ) solves (P ), and the proof is completed.

4.1.3 Computation of the degree

In the following, for any two continuous real-valued functions v, w, we write

v < w ⇔ v(x) < w(x) , for every x ∈ Ω .

We define

C1
B−(Ω) = {w ∈ C1(Ω) : Bw ≤ 0} , C1

B+(Ω) = {w ∈ C1(Ω) : Bw ≥ 0} ,

both endowed with the norm of C1(Ω).

We now introduce a further hypothesis (see [50, Assumption A4]).

Assumption 3. An order relation v ≪ w can be defined in C1(Ω), with the following
properties:

v < w ⇒ v ≪ w ⇒ v ≤ w ,
[ v ≤ w and w ≪ z ] ⇒ v ≪ z ,
[ v ≪ w and w ≤ z ] ⇒ v ≪ z ,
v ≪ w ⇒ v + z ≪ w + z ,
[ c > 0 and v ≪ w ] ⇒ cv ≪ cw ,

for every v, w, z ∈ C1(Ω) and every real constant c. Moreover, we assume that the set

{w ∈ C1
B−(Ω) : w ≪ 0}

is open in C1
B−(Ω).

As usual, we can write w ≫ v instead of v ≪ w. Consequently, the set
{w ∈ C1

B+(Ω) : w ≫ 0} is open in C1
B+(Ω), and the sets

{w ∈ C1
B(Ω) : w ≪ 0} and {w ∈ C1

B(Ω) : w ≫ 0}
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are open in C1
B(Ω). Notice also that the closures of these sets are contained in

{w ∈ C1
B(Ω) : w ≤ 0} and {w ∈ C1

B(Ω) : w ≥ 0} ,
respectively.

Remark 4.1.5. For the system with the elliptic operator, we will write v ≪ w if the
following two conditions hold:

a) for every x ∈ Ω, v(x) < w(x) ,
b) for every x ∈ ∂Ω, either v(x) < w(x), or

v(x) = w(x) and ∂νv(x) > ∂νw(x) .

Here, ν denotes the outer unit normal to ∂Ω at the point x.

If the two functions v, w have values in Rd, for any dimension d, then we
write {

v ≤ w ⇔ vm ≤ wm ,
v ≪ w ⇔ vm ≪ wm , for every m ∈ {1, . . . , d} .

Definition 4.1.6. A well-ordered pair of lower/upper solutions (α, β) is said to be strict
if α ≪ β, and any solution u of (P ) satisfying α ≤ u ≤ β is such that

α ≪ u≪ β .

If (α, β) is strict, then the set

U(α,β) = {u ∈ [C1
B(Ω)]

M : α ≪ u≪ β}
is open in [C1

B(Ω)]
M , by Assumption 3. Moreover, if u is a fixed point of S in

U (α,β), then α ≤ u ≤ β and, by the strictness hypothesis, u ∈ U(α,β). So, there
are no fixed points of S on the boundary of U(α,β), and we can define the Leray–
Schauder degree

deg
(
I − S , U(α,β)

)
.

Theorem 4.1.7. Let Assumptions 1, 2 and 3 hold true. If there exists a strict well-
ordered pair of lower/upper solutions (α, β), then

deg
(
I − S , U(α,β)

)
= 1 .

Proof Going back to the proof of Theorem 4, any fixed point u of S is such that
α ≤ u ≤ β, and it is a fixed point of S. Hence, all fixed points of S belong to
U(α,β), and since S and S coincide on U(α,β), we have

deg
(
I − S , U(α,β)

)
= deg

(
I − S , U(α,β)

)
.

By Schauder Theorem and the excision property of the degree, taking R > 0
large enough, we have

deg
(
I − S , U(α,β)

)
= deg

(
I − S , B(0, R)

)
= 1 ,

thus ending the proof.
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4.2 Non-well-ordered lower and upper solutions

Here again, in perfect analogy with what we have done in Section 3.3 we will
decompose each element of the space separating the well-ordered components
from the non-well-ordered ones. For the convenience of the reader we recall
the following notation. We will say that the couple (J ,K) is a partition of the
set of indices {1, . . . ,M} if and only if J ∩ K = ∅ and J ∪ K = {1, . . . ,M}.
Correspondingly we can decompose a vector u = (u1, . . . , uM) ∈ RM as u =
(uJ , uK) where uJ = (uj)j∈J ∈ R#J and uK = (uk)k∈K ∈ R#K. Here #J and
#K denote respectively the cardinality of the sets J and K. Also every function
F : A → RM can be written as F(x) =

(
FJ (x),FK(x)

)
where FJ : A → R#J

and FK : A → R#K.

Definition 4.2.1. Given two functions α, β ∈ [W (Ω)]M , we say that (α, β) is a pair
of lower/upper solutions of (P ) related to the partition (J ,K) of {1, . . . ,M} if
the following four conditions hold:

1. αJ ≤ βJ ;

2. αk ̸≤ βk , for every k ∈ K;

3. there is a negligible set N ⊆ Ω such that{
Lαn(x) ≤ Fn(x, u1, . . . , un−1, αn(x), un+1, . . . , uM) ,
Lβn(x) ≥ Fn(x, u1, . . . , un−1, βn(x), un+1, . . . , uM) ,

for any n ∈ {1, . . . ,M} and every (x, u) ∈ E , where

E :=
{
(x, u) ∈ (Ω \ N )× RM : u = (uJ , uK) , uJ ∈

∏
j∈J

[αj(x), βj(x)]
}
.

4. Bαn ≤ 0 ≤ Bβn, for every n ∈ {1, . . . ,M}.

Definition 4.2.2. The pair (α, β) of lower/upper solutions of (P ) is said to be strict
with respect to the J -th component if αJ ≪ βJ and, for every solution u of (P ) we
have

αJ ≤ uJ ≤ βJ ⇒ αJ ≪ uJ ≪ βJ ;

it is said to be strict with respect to the k-th component, with k ∈ K, if for every
solution u of (P ) we have

uk ≥ αk ⇒ uk ≫ αk ,

uk ≤ βk ⇒ uk ≪ βk .
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We need to introduce some further assumptions.

Assumption 4. There is a number λ1 ≥ 0 and a function φ1 ∈ WB(Ω), with φ1 ≫ 0,
such that

ker(LB − λ1I) = {cφ1 : c ∈ R} .
We will assume that max

Ω
φ1 = 1.

Remark 4.2.3. The existence of a “first” eigenvalue λ1 with the required properties is
standard in the elliptic case, where the spectrum is made of isolated eigenvalues λ1 <
λ2 ≤ λ3 ≤ . . . , all contained in [0 +∞[ , cf. [55, 102].

Lemma 4.2.4. Let Assumptions 3 and 4 hold. Given a bounded set A in W (Ω), there
is a constant CA ≥ 0 such that, if w ∈ A satisfies Bw ≤ 0, then w ≤ CAφ1, and if
w ∈ A satisfies Bw ≥ 0, then w ≥ −CAφ1.

Proof See [50, Lemma 4.1].

Definition 4.2.5. A pair of functions (ψ,Ψ) ∈ Lr(Ω)×Lr(Ω) is said to be admissible
if it satisfies ψ ≤ λ1 ≤ Ψ almost everywhere in Ω and, for every q ∈ Lr(Ω), with
ψ ≤ q ≤ Ψ almost everywhere in Ω, if w is a solution of

(P lin)

{Lw = q(z)w in Ω ,

Bw = 0 on ∂Ω ,

then, either w = 0, or w ≪ 0, or w ≫ 0.

Remark 4.2.6. For a self-adjoint elliptic problem, the above property of the couple ψ,Ψ
is satisfied, e.g., if Ψ ≤ λ2 (the second eigenvalue), with strict inequality on a subset of
positive measure (cf. [59]).

Lemma 4.2.7. Let Assumptions 2, 3 and 4 hold. Given an admissible pair of functions
(ψ,Ψ), there are two positive constants cψ,Ψ and Cψ,Ψ such that, for every q ∈ Lr(Ω),
with ψ ≤ q ≤ Ψ almost everywhere in Ω, if u is a solution of (P lin), then

cψ,Ψ∥u∥L∞φ1 ≤ |u| ≤ Cψ,Ψ∥u∥L∞φ1 .

Proof See [50, Lemma 4.3].

Assumption 5. There is a function φ0 ∈ W (Ω) such that

µ := min
Ω
φ0 > 0 , Lφ0 ≥ 0 and Bφ0 ≥ 0 .

We will assume that max
Ω

φ0 = 1.
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Remark 4.2.8. In the applications to the elliptic case the function φ0 can be taken
constantly equal to 1.

Here is the main result of this Chapter.

Theorem 4.2.9. Let Assumptions 1–5 hold true. Let (α, β) be a pair of lower/up-
per solutions of (P ) related to the partition (J ,K) of {1, . . . ,M} which is strict with
respect to the k-th component, for every k ∈ K, except at most one. Assume that there
exist two Lr-Carathéodory functions f, g : Ω×RM → RM with the following property:
for every k ∈ K,

Fk(x, u) = gk(x, u)uk + fk(x, u) ,

and there is an admissible pair (ψk,Ψk), and a function hk ∈ Lr(Ω) such that

ψk(x) ≤ gk(x, u) ≤ Ψk(x) and |fk(x, u)| ≤ hk(x) ,

for almost every x ∈ Ω and every u ∈ RM . Then, problem (P ) has a solution u such
that

(Wj) αJ ≤ uJ ≤ βJ ;

(NWk) αk ̸≪ uk and uk ̸≪ βk , for every k ∈ K .

4.3 Examples and remarks

As an illustrative example, consider the Neumann problem
−∆u1 = |u1|γ sinu1 + w1(x, u1, u2) in Ω ,
−∆u2 = ± arctanu2 + w2(x, u1, u2) in Ω ,
∂νu1 = ∂νu2 = 0 on ∂Ω .

Here γ is any positive exponent, and w1, w2 : Ω × R2 → R are continuous and
bounded functions, with

∥w2∥∞ := sup
{
|w2(x, u1, u2)| : x ∈ Ω, u1, u2 ∈ R

}
<
π

2
.

Applying Theorem 4.2.9, we obtain the existence of infinitely many solutions
u = (u1, u2). Indeed, it is sufficient to choose the constant pairs of lower/upper
solutions (α, β), with

α =
(π
2
+ 2mπ,±n

)
, β =

(3π
2

+ 2mπ,∓n
)
,

for sufficiently large positive integers m,n. Notice that these will be well-or-
dered if the minus sign appears in the second differential equation, otherwise
non-well-ordered in the second component.
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As a second example, we consider the mixed Dirichlet–Neumann problem
−∆u1 = −u31 + f1(u2) + w1(x, u1, u2, u3) in Ω ,
−∆u2 = ± arctanu2 + w2(x, u1, u2, u3) in Ω ,
−∆u3 = ± arctanu3 + w3(x, u1, u2, u3) in Ω ,
u1 = 0 , ∂νu2 = ∂νu3 = 0 on ∂Ω .

Here f1 : R → R is any continuous function, and w1, w2, w3 : Ω × R3 → R are
continuous and bounded, with

∥w2∥∞ <
π

2
, ∥w3∥∞ <

π

2
.

Applying Theorem 4.2.9, we obtain the existence of at least one solution, taking
the constant pairs of lower/upper solutions (α, β), with

α =
(
−m,±n,±n

)
, β =

(
m,∓n,∓n

)
,

for a sufficiently large positive integer n and m = m(n). Indeed, it is sufficient
to fix n > tan(max{∥w2∥∞, ∥w3∥∞}) and

m >
(
max

{
|f1(s)| : s ∈ [−n, n]

}
+ ∥w1∥∞

)1/3
.

Remark 4.3.1. All the results of this Chapter hold if the nonlinearities depend also on
the gradient ∇u, provided that a Nagumo-type condition is assumed. See [50] for the
details.

Remark 4.3.2. Asymmetric nonlinearities can also be considered, as in [59, 30, 50].
We do not enter into details, for briefness.

Remark 4.3.3. Concerning a system with a p-Laplacian differential operator, some dif-
ficulties may arise. If we consider, e.g., the associated Dirichlet problem, then the inverse
function (L−σI)−1 transforms any h ∈ L∞(Ω) into (L−σI)−1h ∈ W 1,p

0 (Ω)∩C1,ν(Ω),
for some ν > 0, and this function might not have regular second order derivatives.
In [30], this problem is overcome by defining lower and upper solutions in a weak form,
and carrying out the same construction as for the linear case. A similar procedure can
also be practiced in our situation, leading to an existence result analogous to Theo-
rem 4.2.9.

Remark 4.3.4. The periodic problem for a system of ordinary differential equations has
been treated in [44]. Infinite-dimensional systems were also considered there. It is an
open problem whether it could be possible to extend the results of the present Chapter to
an infinite-dimensional setting.
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4.4 Proof of Theorem 4.2.9

Notice that the case K = ∅ reduces to Theorem 4.1.4. We thus assume K ≠ ∅
and, without loss of generality, we take either J = ∅, or J = {1, . . . , J} and
K = {J + 1, . . . ,M} for a certain J ∈ {1, . . . , N}. We moreover suppose that the
component on which the lower/upper solution is possibly not strict is the last
one, i.e., k = M . Indeed, mixing the coordinates we can always reduce to such
a situation. We continue the proof in the case J ≠ ∅. (The case J = ∅ can be
treated essentially in the same way.)

We need to suitably modify problem (P ). For j = 1, . . . , J we define

Gj(x, u) = Fj(x, γ1(x, u1), . . . , γJ(x, uJ), uJ+1, . . . , uM) + uj − σγj(x, uj) ,

where the functions γj are the ones introduced in the proof of Theorem 4.1.4.

Using Lemma 4.2.4 and the fact that αk and βk are bounded, we can find a
constant c > 0 such that, for k ∈ K,

−cφ1 − c ≤ αk ≤ cφ1 , −cφ1 ≤ βk ≤ cφ1 + c .

For any k ∈ K and Λ > 0 large enough, to be fixed, we define

g̃k(x, u) =


λ1 if uk ≤ −(Λφ1(x) +

2c
µ
φ0(x)) ,

· · ·
gk(x, u) if |uk| ≤ Λφ1(x) +

c
µ
φ0(x) ,

· · ·
λ1 if uk ≥ Λφ1(x) +

2c
µ
φ0(x) ,

f̃k(x, u) =



3cλ1+1
µ

if uk ≤ −(Λφ1(x) +
2c
µ
φ0(x)) ,

· · ·
fk(x, u) if |uk| ≤ Λφ1(x) +

c
µ
φ0(x) ,

· · ·
−3cλ1+1

µ
if uk ≥ Λφ1(x) +

2c
µ
φ0(x) ,

(here, the dots mean “linear interpolation”), and

Gk(x, u) = g̃k(x, u)uk + f̃k(x, u) .

We consider the problem

(P̃Λ)

{Lun = Gn(x, u1, . . . , uM) in Ω ,

Bun = 0 on ∂Ω ,
n = 1, . . . ,M .
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Proposition 4.4.1. If u is a solution of (P̃Λ), for any constant Λ > 0, then αJ ≤ uJ ≤
βJ .

Proof It is easily adapted from Step 2 of the proof of Theorem 4.1.4.

We define α̃K and β̃K by setting α̃k = −(Λφ1+
3c
µ
φ0) and β̃k = Λφ1+

3c
µ
φ0, for

every k ∈ K. Notice that, taking Λ > c,

α̃K ≪ αK ≪ β̃K , α̃K ≪ βK ≪ β̃K .

Finally, we choose α̃ = (αJ , α̃K) and β̃ = (βJ , β̃K).

Let us prove that (α̃, β̃) is pair of lower/upper solutions of (P̃Λ). We have not
modified the components of α̃J and β̃J , so we just need to check what happens
for α̃K and β̃K. For every k ∈ K we have

Lα̃k(x) ≤ −Λλ1φ1(x) = λ1α̃k(x) +
3cλ1
µ

φ0(x) < g̃k(x, α̃(x))α̃k(x) + f̃k(x, α̃(x)) ,

and Bα̃k = −3c
µ
Bφ0 ≤ 0. Similar computations can be done for β̃k. So, (α̃, β̃) is

pair of lower/upper solutions for (P̃Λ).

Let us prove that (α̃, β̃) is strict with respect to the k-th component, for every
k ∈ K. Let u be a solution such that uk ≥ α̃k. We want to show that uk > α̃k. By
contradiction, let vk = uk− α̃k be such that min vk = 0. Let zk = vk− c

µ
φ0, so that

min zk < 0 and

Bzk = Buk − Bα̃k −
c

µ
Bφ0 =

2c

µ
Bφ0 ≥ 0 .

By Assumption 1 there is a x0 ∈ Ω such that zk(x0) < 0 and there is no neigh-
borhood U of x0 on which (Lzk)(x) > 0, for almost every x ∈ U ∩ Ω. By conti-
nuity, there is a neighborhood V of x0 on which zk < 0. So, on V , we have that
uk < α̃k +

c
µ
φ0, and so

Lzk = Luk − Lα̃k −
c

µ
Lφ0

=
(
λ1uk +

3cλ1 + 1

µ

)
+ Λλ1φ1 +

2c

µ
Lφ0

≥
(
λ1α̃k +

3cλ1 + 1

µ

)
+ Λλ1φ1

= −3cλ1
µ

φ0 +
3cλ1 + 1

µ
> 0 ,

a contradiction. Similar estimates can be written for β̃k, so we conclude that the
pair of lower/upper solutions is strict with respect to the k-th component.
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Let X be the subset of [W (Ω)]M made of those solutions u of (P̃Λ), for any
Λ > c, satisfying αK ̸≪ uK and uK ̸≪ βK.

Claim. There exists a constant C1 > 0 (independent of Λ) such that, for any
u ∈ X , one has |uk| ≤ C1φ1, for every k ∈ K.

Proof of the Claim. We first prove that there is a constant K > 0 (independent
of Λ) such that, for any u ∈ X , one has ∥uk∥∞ ≤ K, for every k ∈ K. By
contradiction, let (un)n be a sequence in X , such that ∥unk∥∞ → ∞, for some
k ∈ K. Let us now fix such k ∈ K.

We know that un is a solution of (P̃Λn), for some Λn > c. Let us denote by g̃nk
and f̃nk the corresponding modified functions. Then wnk = unk/∥unk∥∞ satisfies

Lwnk (x) = g̃nk (x, u
n(x))wnk (x) +

1

∥unk∥∞
f̃nk (x, u

n(x)) , Bwnk = 0 .

Let us consider the set of functions

Dk = {p ∈ Lr(Ω) : ψk(x) ≤ p(x) ≤ Ψk(x) , for a.e. x ∈ Ω} ,

which is bounded, closed and convex, hence weakly compact. Since the se-
quence (g̃nk (·, un(·)))n belongs to Dk, up to a subsequence it weakly converges in
Lr(Ω) to some q(·) ∈ Dk, while

1

∥unk∥∞
f̃nk (x, u

n(x)) → 0 in Lr(Ω) .

Let Ñn
k : C1

B(Ω) → Lr(Ω) be defined as

(Ñn
kw)(x) = g̃nk (x, u

n(x))w(x) +
1

∥unk∥∞
f̃nk (x, u

n(x)) .

Let σ ∈ R be the number given by Assumption 2, and let S̃nk : C1
B(Ω) → C1

B(Ω)
be defined as

S̃nk v = (L− σI)−1(Ñn
k v − σv) .

Notice that
wnk = S̃nkwnk .

Since (Ñn
kw

n
k − σwnk )n is bounded in Lr(Ω) and (L − σI)−1 : Lr(Ω) → C1

B(Ω) is
compact, there is a w ∈ C1

B(Ω) such that, up to a subsequence,

S̃nkwnk = (L− σI)−1(Ñn
kw

n
k − σwnk ) → w in C1

B(Ω) .

Hence, wnk → w in C1
B(Ω). Since Ñn

kw
n
k − σwnk weakly converges to q(·)w − σw,

we conclude that
w = (L− σI)−1(q(·)w − σw) ,
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so that w ∈ WB(Ω) and
Lw = q(·)w ,

i.e., w satisfies (P lin). Then, either w = 0, or w ≪ 0, or w ≫ 0. Since ∥wnk∥∞ = 1,
for every n, we know that w ̸= 0. Assume for instance w ≫ 0 (the case w ≪ 0
is similar). By Lemma 4.2.4, there is a constant ĉk > 0 such that αk ≤ ĉkφ1. By
Lemma 4.2.7, w ≥ cψk,Ψk

φ1 ≫ (cψk,Ψk
/2)φ1, since φ1 ≫ 0, by Assumption 2. So,

w ≫ cψk,Ψk

2
φ1 ≥

cψk,Ψk

2ĉk
αk := bkαk .

By Assumption 3, for n large enough, wnk ≫ bkαk, and increasing n still more,
unk = ∥unk∥∞wnk ≫ ∥unk∥∞bkαk ≥ αk, a contradiction.

We have thus seen that XK, the projection of the set X on the K-th compo-
nent, is uniformly bounded. Now recall that problem (P̃Λ) is equivalent to a
fixed point problem

u = (L− σI)−1(Ñu− σu) .

By Assumption 2, we deduce that XK is indeed bounded in [W (Ω)]♯K. Then, by
Lemma 4.2.4, we find a constant C1 > 0 such that |uk| ≤ C1φ1, for every k ∈ K.
The proof of the Claim is thus completed.

From now on, we fix Λ ≥ C1. We are going to compute the Leray–Schauder
degree of I −F on a family of open sets, where

F : [C1
B(Ω)]

M → [C1
B(Ω)]

M , F(u) = (L− σI)−1(Ñu− σu) .

Let us define the functions

α̌j = αj − φ0 , and β̌j = βj + φ0 ,

for every j ∈ J .

We need to introduce a multi-index η⃗ = (ηJ+1, . . . , ηM) ∈ {1, 2, 3}M−J , in
order to define the open sets

Ωη⃗ := {u ∈ [C1
B(Ω)]

M : α̌J ≪ uJ ≪ β̌J and (Oηk
k ) holds for every k ∈ K

}
,

where

(O1
k) α̃k ≪ uk ≪ β̃k ,

(O2
k) α̃k ≪ uk ≪ βk ,

(O3
k) αk ≪ uk ≪ β̃k .
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We now end the proof of Thoerem 4.2.9 assuming first that the lower/upper
solutions are strict with respect to all the components k ∈ K.

Proposition 4.4.2. For every multi-index η⃗, the degree d(I − F ,Ωη⃗) is well-defined,
and

d(I −F ,Ωη⃗) = 1 .

Proof Assume by contradiction that there is u ∈ ∂Ωη⃗ such that (I − F)u = 0,
i.e., u is a solution of (P̃Λ). All the several different situations which may arise
lead back to the following four cases.

Case A. For some index j ∈ J , α̌j ≤ uj ≤ β̌j , and either α̌j ̸≪ uj , or uj ̸≪ β̌j .
We have seen in the proof of Theorem 4.1.4 that αj ≤ uj ≤ βj . Since φ0 > 0, by
Assumption 5, we then have α̌j < uj < β̌j , hence α̌j ≪ uj ≪ β̌j , a contradiction.

Case B. For some index k ∈ K, α̃k ≤ uk ≤ β̃k, and either α̃k ̸≪ uk, or uk ̸≪ β̃k.
This is impossible, since (α̃, β̃) is strict with respect to the k-th component, for
every k ∈ K.

Case C. For some index k ∈ K, α̃k ≪ uk ≤ βk, and uk ̸≪ βk. Such a situation
cannot arise, by assumption.

Case D. For some index k ∈ K, αk ≤ uk ≪ β̃k, and αk ̸≪ uk. Such a situation
cannot arise, by assumption.

Since the sets Ωη⃗ provide us a well-ordered pair of strict lower/upper solutions
of problem (P̃Λ), the conclusion is a consequence of Theorem 4.1.7.

We now start an iterative process, defining a series of open sets and com-
puting the corresponding degrees. This process will eventually lead us to the
conclusion.

For every ℓ ∈ {1, 2, 3} and any η⃗ = (ηJ+2, . . . , ηM) ∈ {1, 2, 3}M−(J+1), we now
define the open sets

Ω0
(ℓ,η⃗) = Ω(ℓ,ηJ+2,...,ηM ) .

Notice that Ω0
(2,η⃗) and Ω0

(3,η⃗) are disjoint subsets of Ω0
(1,η⃗). We also define the open

set
Ω0

(4,η⃗) = Ω0
(1,η⃗) \ Ω0

(2,η⃗) ∪ Ω0
(3,η⃗) .

Proposition 4.4.3. For every multi-index η⃗, the degree d(I−F ,Ω0
(4,η⃗)) is well-defined,

and
d(I −F ,Ω0

(4,η⃗)) = −1 .
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Proof Using the fact that the sets Ω0
(ℓ,η⃗) are open, for ℓ = 1, 2, 3, we can see that

∂Ω0
(4,η⃗) ⊆ ∂Ω0

(1,η⃗) ∪ ∂Ω0
(2,η⃗) ∪ ∂Ω0

(3,η⃗) .

Since we already know that there are no solutions of (P̃Λ) on ∂Ω0
(ℓ,η⃗), for ℓ =

1, 2, 3,we consequently have that there are no solutions of (P̃Λ) on ∂Ω0
(4,η⃗), hence

the degree is well-defined. By the additivity property of the degree and Propo-
sition 4.4.2,

d(I −F ,Ω0
(4,η⃗)) = d(I −F ,Ω0

(1,η⃗))− d(I −F ,Ω0
(2,η⃗))− d(I −F ,Ω0

(3,η⃗)) = −1 ,

so that the proof is completed.

Now, for every ℓ ∈ {1, 2, 3} and any η⃗ = (ηJ+3, . . . , ηM) ∈ {1, 2, 3}M−(J+2), we
define the open sets

Ω1
(ℓ,η⃗) = Ω(4,ℓ,ηJ+3,...,ηM ) .

Notice that Ω1
(2,η⃗) and Ω1

(3,η⃗) are disjoint subsets of Ω1
(1,η⃗). We also define the open

set
Ω1

(4,η⃗) = Ω1
(1,η⃗) \ Ω1

(2,η⃗) ∪ Ω1
(3,η⃗) .

Proceeding by induction, for K ∈ {0, 1, . . . ,M − (J + 1)}, any ℓ ∈ {1, 2, 3} and
any η⃗ = (ηJ+K+2, . . . , ηM) ∈ {1, 2, 3}M−(J+K+1) we can define the open sets

ΩK
(ℓ,η⃗) = Ω(4, . . . , 4︸ ︷︷ ︸

K times

,ℓ,ηJ+K+2,...,ηM ) .

Notice that ΩK
(2,η⃗) and ΩK

(3,η⃗) are disjoint subsets of ΩK
(1,η⃗). We also define the open

set
ΩK

(4,η⃗) = ΩK
(1,η⃗) \ ΩK

(2,η⃗) ∪ ΩK
(3,η⃗) .

Proposition 4.4.4. For every K ∈ {0, 1, . . . ,M − (J + 2)} and every multi-index η⃗,
the degree d(I −F ,ΩK

(4,η⃗)) is well-defined, and

d(I −F ,ΩK
(4,η⃗)) = (−1)K+1 .

Proof We proceed by induction. The validity of the statement forK = 0 follows
by Proposition 4.4.3. Assume that it holds for some K ∈ {0, 1, . . . ,M − (J +3)}.
The same argument in the proof of Proposition 4.4.3 shows us that the degree is
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well-defined. Then, for every η⃗ = (ηJ+K+3, . . . , ηM) ∈ {1, 2, 3}M−(J+K+2),

d(I −F ,ΩK+1
(4,η⃗)) = d(I −F ,ΩK+1

(1,η⃗))− d(I −F ,ΩK+1
(2,η⃗))− d(I −F ,ΩK+1

(3,η⃗))

= d(I −F ,Ω(4 , . . . , 4︸ ︷︷ ︸
K+1 times

,1, ηJ+K+3,...,ηM ))−

− d(I −F ,Ω(4 , . . . , 4︸ ︷︷ ︸
K+1 times

,2, ηJ+K+3,...,ηM ))− d(I −F ,Ω(4 , . . . , 4︸ ︷︷ ︸
K+1 times

,3, ηJ+K+3,...,ηM ))

= d(I −F ,Ω(4, . . . , 4︸ ︷︷ ︸
K times

,4,1,ηJ+K+3,...,ηM ))−

− d(I −F ,Ω(4, . . . , 4︸ ︷︷ ︸
K times

,4,2,ηJ+K+3,...,ηM ))− d(I −F ,Ω(4, . . . , 4︸ ︷︷ ︸
K times

,4,3,ηJ+K+3,...,ηM ))

= d(I −F ,ΩK
(4,1,η⃗))− d(I −F ,ΩK

(4,2,η⃗))− d(I −F ,ΩK
(4,3,η⃗))

= (−1)K+1 − (−1)K+1 − (−1)K+1 = (−1)K+2 ,

yielding the conclusion.

By the previous proposition, in the special case K = M − (J + 2) we have
that for every ℓ ∈ {1, 2, 3},

dℓ := d(I −F ,Ω(4 , . . . . . . , 4︸ ︷︷ ︸
M−J−2 times

, 4, ℓ)) = (−1)M−(J+1) .

We now consider the set

Ω(4,...,4,4) = Ω(4,...,4,1) \ Ω(4,...,4,2) ∪ Ω(4,...,4,3) .

By the same argument as above,

d(I −F ,Ω(4,...,4)) = d1 − d2 − d3 = (−1)M−J .

As a consequence, there exists a solution u of problem (P̃Λ) in the set Ω(4,...,4).
Recalling the above a priori bounds, we see that the solution u is indeed a solu-
tion of problem (P ) and satisfies (Wj) and (NWk). The proof is thus completed,
in the case when the lower/upper solutions are strict with respect to all the
components k ∈ K.

If the lower/upper solutions are not strict with respect to the M -th compo-
nent, the previous propositions all continue to hold provided that ηM = 1, but
we cannot ensure that the degree is well-defined if ηM = 2 or ηM = 3. We thus
have that

d(I −F ,Ω(4,...,4,1)) = (−1)M−(J+1) ,

and there are two possibilities: either, there is a solution of problem (P̃Λ) on
∂Ω(4,...,4,2) ∪ ∂Ω(4,...,4,3), or the degrees d(I − F ,Ω(4,...,4,2)) and d(I − F ,Ω(4,...,4,3))
are well-defined, and we conclude as above.
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4.5 The parabolic case

In this section we briefly describe how our results can be adapted to the study
of systems of parabolic type. For the details, we refer to [50, Section 7].

Let Ω be a regular bounded domain in RN and, given T > 0, set Q =
Ω× ]0, T [ . Choosing r > N + 2, we define L : W 2,1

r (Q) → Lr(Q) by

Lw = ∂tw −
N∑

l,m=1

alm(x, t)∂
2
xlxm

w +
N∑
i=1

ai(x, t)∂xiw + a0(x, t)w .

Here alm ∈ C(Q), alm = aml , alm(x, 0) = alm(x, T ) in Ω, for l,m = 1, . . . , N , there
exists ā > 0 such that

N∑
l,m=1

alm(x, t)ξiξj ≥ ā∥ξ∥2 , for every (x, t, ξ) ∈ Q× RN ,

and ai ∈ L∞(Q), for i = 0, . . . , N .

Assume that ∂Ω is the disjoint union of two closed sets Γ1 and Γ2 (the cases
Γ1 = ∅ or Γ2 = ∅ are admitted). Let τs be the operator defined by

(τsw)(x, t) = w(x, t+ s) ,

and define B : C1,0(Q) → C(∂Q) by

Bw =



w on Γ1 × [0, T ] ,
N∑
i=1

bi(x, t)∂xiw + b0(x, t)w on Γ2 × [0, T ] ,

w − τTw in Ω× {0} ,
τ(−T )w − w in Ω× {T} .

Here bi ∈ C1(∂Ω × [0, T ]), bi(x, 0) = bi(x, T ) in ∂Ω, for i = 0, . . . , N , and there
exists b̄ > 0 such that

b0(x, t) ≥ 0 and
N∑
i=1

bi(x, t)νi(x) ≥ b̄ , for every (x, t) ∈ ∂Ω× ]0, T [ .

We thus have Dirichlet-periodic conditions on Γ1, and Robin-periodic on Γ2.
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We can deal with the problem{Lun = Fn(x, t, u1, . . . , uM) in Q ,

Bun = 0 on ∂Q ,
n = 1, . . . ,M .

Also in this setting our choice of taking the same differential operator and bound-
ary conditions for all components has only the aim of simplifying the exposi-
tion. A solution of problem (P ) is a function u ∈ W 2,1

r (Q) which satisfies the dif-
ferential equation almost everywhere in Q and the boundary conditions point-
wise. A function with these properties is usually called “strong solution” in
the literature. All the existence results of this Chapter can be adapted to this
situation. See [50] for the verification of the corresponding Assumptions 1–5.

As a final example, we consider the system of the mixed Dirichlet-periodic
and Neumann-periodic problem

∂tu1 −∆u1 = −u31 + w1(x, t, u1, u2) in Q ,
∂tu2 −∆u2 = ± arctanu2 + w2(x, t, u1, u2) in Q ,
u1 = 0 , ∂νu2 = 0 on ∂Ω× [0, T ] ,
u1(x, 0) = u1(x, T ) , u2(x, 0) = u2(x, T ) on Ω .

If w1, w2 : Q × R2 → R are continuous and bounded, with ∥w2∥∞ < π/2,
we obtain the existence of at least one solution, taking the constant pairs of
lower/upper solutions (α, β), with α = (−m,±n) and β = (m,∓n), for suffi-
ciently large positive integers m and n.
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Chapter 5

Periodic solutions of nearly
integrable Hamiltonian systems

The search of periodic solutions of Hamiltonian systems and more specifically
of perturbations of completely integrable Hamiltonian systems naturally arises
in the study of mechanical systems. Historically the main inspiration has come
from celestial mechanics (see e.g. [88, 89, 90]) since in this framework in the
hypotheses when one body is significantly more massive than all the other the
system can be studied as a system of two body problems plus a perturbative
term. The main goal in this field is to identify under what assumptions the per-
turbed system maintains one or more solutions having the same period of the
perturbation itself. This branch of research goes under the name of KAM theory
from the initials of Kolmogorov, Arnold and Moser which gave a fundamen-
tal contribution in this subject (for an exhaustive introduction to Hamiltonian
perturbation see [6, 12], while for an outline of KAM theory see e.g. [37]). For
non-planar Hamiltonian systems, a local approach can be found in the work of
Bernstein and Katok in [14] then generalized by Chen in [24]. When we look for
the existence and multiplicity of periodic solutions and only the global behavior
of the nonlinearity is assumed to be known, the approach combines topologi-
cal and variational methods. In this chapter we want to prove the existence of
periodic solutions bifurcating from an infinite-dimensional invariant torus for
a nearly integrable Hamiltonian system. More precisely we want to extend the
existence result given in [41] for a system of the type

φ̇ = ∇K(I) + ε∇IP (t, φ, I, z)

−İ = ε∇φP (t, φ, I, z)

Jż = Az + ε∇zP (t, φ, I, z) ,

to its infinite-dimensional analogue.

121
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5.1 The main result

Let X and E be two separable Hilbert spaces, and set X = X2 × E2. We will
use the notation ω = (φ, I, z) for the elements of X , with φ, I ∈ X and z =
(x, y) ∈ E2. For simplicity, we will write Z = E2, and we define J : Z → Z as
J(x, y) = (−y, x). (The same notation J will also be used with the same meaning
in similar settings.) Let us introduce all the assumptions we need.

The continuous functions K : X → R and P : R× X → R are assumed to be
continuously differentiable with respect to I and ω, respectively. The function
t 7→ P (t, ω) is T -periodic, for some T > 0. Moreover, we assume the following
Lipschitz condition on bounded sets.

(L) For every R > 0 there exist two positive constants LR,LR such that

∥∇K(I ′)−∇K(I ′′)∥ ≤ LR∥I ′ − I ′′∥ ,

for every I ′, I ′′ ∈ X with ∥I ′∥ < R, ∥I ′′∥ < R, and

∥∇ωP (t, ω
′)−∇ωP (t, ω

′′)∥ ≤ LR∥ω′ − ω′′∥ ,

for every t ∈ [0, T ] and ω′, ω′′ ∈ X with ∥ω′∥ < R and ∥ω′′∥ < R.

Introducing some Hilbert bases of X and E, we can identify these spaces
either with some Rn, if they are finite-dimensional, or with ℓ2, the space of real
sequences (αk)k which satisfy

∑∞
k=1 α

2
k <∞. Each of the vectors φ, I in X and z

in Z will then be written in their coordinates, e.g., φ = (φ1, φ2, . . . ), or φ = (φk)k,
with φk ∈ R, while I = (Ik)k and z = (zl)l, with zl = (xl, yl) ∈ R2. Notice that
these sequences may be finite.

We also ask P to be periodic in the φ-variables, as follows.

(Pτ ) The function P (t, φ, I, z) is τk-periodic in each φk, i.e., for k = 1, 2, . . . ,

P (t, . . . , φk + τk, . . . , I, z) = P (t, . . . , φk, . . . , I, z) ,

for every (t, φ, I, z) ∈ [0, T ] × X ; moreover, if dimX = ∞, then the se-
quence (τk)k belongs to ℓ2.

Concerning ∇ωP , we assume it to be bounded and precompact, in the fol-
lowing sense.
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(Pbd) There exist (α⋆k)k and (α♯l)l such that, for every k, l = 1, 2, . . . ,∣∣∣∣ ∂P∂φk (t, ω)
∣∣∣∣+ ∣∣∣∣∂P∂Ik (t, ω)

∣∣∣∣ ≤ α⋆k ,

∣∣∣∣∂P∂xl (t, ω)
∣∣∣∣+ ∣∣∣∣∂P∂yl (t, ω)

∣∣∣∣ ≤ α♯l ,

for every (t, ω) ∈ [0, T ] × X . If dimX = ∞ or dimZ = ∞, then (α⋆k)k or
(α♯l)l belong to ℓ2, respectively.

Notice that the sets
∏∞

k=1[−α⋆k, α⋆k] and
∏∞

l=1[−α♯l , α♯l ] are Hilbert cubes, hence
compact sets in ℓ2.

Let A : Z → Z be a linear bounded selfadjoint operator. We need the following
non-resonance assumption.

(NR) Denoting by

L : D(L) ⊂ L2([0, T ], Z) → L2([0, T ], Z) , Lz = Jż ,

the unbounded selfadjoint operator with domain

D(L) = {z ∈ H1([0, T ], Z) : z(0) = z(T )} ,

we assume that 0 /∈ σ(L −A).

In the case when Z is infinite-dimensional, we need to assume a particular
structure for the function A.

(Dec1) If dimZ = ∞, there exists a sequence of positive integers (N ♯
m)m≥1 and

functions Am : R2N♯
m → R2N♯

m such that, writing any vector z ∈ Z as
z = (z⃗1, . . . , z⃗m, . . . ), with z⃗m = (x⃗m, y⃗m) ∈ R2N♯

m , we have that

Az = (A1z⃗1, . . . ,Amz⃗m, . . . ) .

Concerning the function K, its gradient will be “guided” by some linear
bounded selfadjoint invertible operator B : X → X , with bounded inverse, as
we now specify. First of all, similarly as before, in the case when X is infinite-
dimensional, we need to assume a particular structure for the functions B and
K.

(Dec2) If dimX = ∞, there exists a sequence of positive integers (N⋆
j )j≥1 and

functions Bj : RN⋆
j → RN⋆

j , Kj : RN⋆
j → R such that, writing any vector

I ∈ X as I = (I⃗1, . . . , I⃗j, . . . ), with I⃗j ∈ RN⋆
j , we have that

B I = (B1I⃗1, . . . ,Bj I⃗j, . . . ) , K(I) =
∞∑
j=1

Kj(I⃗j) .
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We now fix I0 ∈ X , and introduce our twist condition.

(Tw) There exist two positive constants c̄, ρ̄ such that, for every j = 1, 2, . . . ,

∥I⃗j − I⃗ 0
j ∥ ≤ ρ̄ ⇒

〈
∇Kj(I⃗j)−∇Kj(I⃗

0
j ) , Bj(I⃗j − I⃗ 0

j )
〉
≥ c̄ ∥I⃗j − I⃗ 0

j ∥2 .

Finally, we assume a compatibility condition between T and the periods in-
troduced in (Pτ ).

(Cτ ) There exist some integers m1,m2, . . . for which

T∇K(I0) = (m1τ1,m2τ2, . . . ) .

We are now ready to state our main result.

Theorem 5.1.1. Let the above assumptions hold. Then, for every σ > 0 there exists
ε̄ > 0 such that, if |ε| ≤ ε̄, there is a solution of system

φ̇ = ∇K(I) + ε∇IP (t, φ, I, z)

−İ = ε∇φP (t, φ, I, z)

Jż = Az + ε∇zP (t, φ, I, z) ,

(5.1)

satisfying

φ(t+ T ) = φ(t) + T∇K(I0) , I(t+ T ) = I(t) , z(t+ T ) = z(t) , (5.2)

and such that

∥φ(t)− φ(0)− t∇K(I0)∥+ ∥I(t)− I0∥+ ∥z(t)∥ < σ , for every t ∈ R . (5.3)

Remark 5.1.2. When X is finite-dimensional, we will see that condition (Tw)
can be generalized to

(Tw’) There exists a positive constant ρ̄ such that

∥I − I 0∥ ≤ ρ̄ ⇒
〈
∇K(I)−∇K(I 0) , B(I − I 0)

〉
> 0 ;

a still more general condition, adopted in [40], is the following:

0 ∈ cl
{
ρ ∈ ]0,+∞[ : min

∥I−I0∥=ρ

〈
∇K(I)−∇K(I0) , B(I − I0)

〉
> 0
}
,

where clS denotes the closure of a set S.
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5.2 Preliminaries for the proof

We will carry out the proof of Theorem 5.1.1 in the case dimX = ∞ and dimZ =
∞, with some specific remarks on the finite-dimensional cases. By the change
of variables

(ξ(t), I(t), z(t)) = (φ(t)− t∇K(I0), I(t), z(t)) , (5.4)

system (5.1) becomes
ξ̇ = ∇K(I)−∇K(I0) + ε∇IP̂ (t, ξ, I, z)

−İ = ε∇ξP̂ (t, ξ, I, z)

Jż = Az + ε∇zP̂ (t, ξ, I, z) ,

(5.5)

where
P̂ (t, ξ, I, z) = P (t, ξ + t∇K(I0), I, z) .

We use the notation ζ = (ξ, I, z); the Hamiltonian function is thus

Ĥ(t, ζ) = K(I)−
〈
∇K(I0), I

〉
+ 1

2
⟨Az, z⟩+ εP̂ (t, ζ) .

Combining (Pτ ) with (Cτ ), we see that the function P̂ (·, ξ, I, z) is T -periodic, and
P̂ (t, ·, I, z) is τk-periodic in ξk, for every k = 1, 2, . . .

Some additional notations are now necessary. By assumption (Dec2), the
vectors ξ, I ∈ X decompose in vectors ξ⃗j, I⃗j ∈ RN⋆

j . Setting

S⋆0 = 0 , S⋆j =

j∑
i=1

N⋆
i for j ≥ 1 ,

we can explicitly write the components of ξ⃗j, I⃗j as

ξ⃗j = (ξS⋆
j−1+1, ξS⋆

j−1+2, . . . , ξS⋆
j
) , I⃗j = (IS⋆

j−1+1, IS⋆
j−1+2, . . . , IS⋆

j
) .

Similarly, by assumption (Dec1), the vector z ∈ Z decomposes in vectors z⃗m ∈
R2N♯

m . Setting

S♯0 = 0 , S♯m =
m∑
i=1

N ♯
i for m ≥ 1 ,

we can explicitly write the components of z⃗m as

z⃗m = (zS♯
m−1+1, zS♯

m−1+2, . . . , zS♯
m
) .
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We define the sequences (a⋆j)j , (a♯m)m in ℓ2 by

a⋆j =
( N⋆

j∑
i=1

(α⋆S⋆
j−1+i

)2
)1/2

, a♯m =
( N♯

m∑
i=1

(α♯
S♯
m−1+i

)2
)1/2

.

Notice that ∥a⋆∥ℓ2 = ∥α⋆∥ℓ2 and ∥a♯∥ℓ2 = ∥α♯∥ℓ2 .

Remark 5.2.1. When X has a finite dimension dX , we can define the sequence
(N⋆

j )j taking N⋆
1 = dX and N⋆

j = 0 for j ≥ 2. Similarly when Z is finite-
dimensional.

Without loss of generality, from now on we will assume that I0 = 0, a situ-
ation which can be recovered by a simple translation. The strategy of the proof
of Theorem 5.1.1 will be to construct a finite-dimensional approximation of sys-
tem (5.5), and then pass to the limit on the dimension. Precisely, we define the
projections ΠS⋆

J
: X → X and ΠS♯

J
: Z → Z as

ΠS⋆
J
υ = (υ⃗1, . . . , υ⃗J , 0, 0, . . . ) , ΠS♯

J
z = (z⃗1, . . . , z⃗J , 0, 0, . . . ) ,

and consider the truncated system
ξ̇ = ΠS⋆

J
[∇K(I)−∇K(0) + ε∇IP̂ (t, ξ, I, z)]

−İ = ΠS⋆
J
[ε∇ξP̂ (t, ξ, I, z)]

Jż = ΠS♯
J
[Az + ε∇zP̂ (t, ξ, I, z)] .

(5.6)

We thus have the Hamiltonian function

ĤJ (t, ζ) = K(ΠS⋆
J
I)−

〈
∇K(0) , ΠS⋆

J
I
〉
+ 1

2

〈
AΠS♯

J
z , ΠS♯

J
z
〉

+ εP̂ (t,ΠS⋆
J
ξ,ΠS⋆

J
I,ΠS♯

J
z) .

Notice that the function

P̂J (t, ξ, I, z) = P̂ (t,ΠS⋆
J
ξ,ΠS⋆

J
I,ΠS♯

J
z)

satisfies both (L) and (Pτ ) with the same constants, for every index J ≥ 1, and
observe that system (5.6) is equivalent to

˙⃗
ξj = ∇Kj(I⃗j)−∇Kj(0) + ε∇I⃗j

P̂J (t, ξ, I, z)

− ˙⃗
Ij = ε∇ξ⃗j

P̂J (t, ξ, I, z) j ≤ J ,

J ˙⃗zj = Aj z⃗j + ε∇z⃗j P̂J (t, ξ, I, z)

˙⃗
ξi = 0

− ˙⃗
Ii = 0 i > J .

J ˙⃗zi = 0

(5.7)



5.3 Proof of Theorem 5.1.1 127

It can be viewed as two uncoupled systems, the first one in a finite-dimensional
space (the “approximating system”), and the second one, infinite-dimensional,
having only constant solutions. From now on, we will take ξ⃗i(t), I⃗i(t), z⃗i(t) iden-
tically equal to zero when i ≥ J .

Concerning the “approximating system”, we will need the following slight
modification of [41, Corollary 2.3]. Let us consider the finite-dimensional Hamil-
tonian system

Jζ̇ = ∇ζH(t, ζ) , (5.8)

with ζ = (ξ, I, z) ∈ RN+N+2M , where the Hamiltonian function is T -periodic in
t. Here we use the notation ξ = (ξ⃗1, . . . , ξ⃗J ), I = (I⃗1, . . . , I⃗J ).

Theorem 5.2.2. Assume that H(t, ζ) = 1
2
⟨Az, z⟩ + G(t, ζ), where A is a symmetric

2M × 2M matrix such that z ≡ 0 is the unique T -periodic solution of equation Jż =
Az, and there exists a constant c1 such that

|∇ζG(t, ζ)| ≤ c1 , for every (t, ζ) ∈ R× R2(M+N) .

Let G(t, ξ, I, z) be periodic in the variables ξ1, . . . , ξN . Assume moreover the existence
of some positive constants r′j < r′′j and symmetric invertible matrices Bj , with j =
1, . . . ,J , such that, for any solution ζ(t) = (ξ(t), I(t), z(t)) of (5.8), if

r′j ≤ ∥I⃗j(0)− I⃗ 0
j ∥ ≤ r′′j and ∥I⃗i(0)− I⃗ 0

i ∥ ≤ r′′i for every i ̸= j ,

then 〈
ξ⃗j(T )− ξ⃗j(0) , Bj(I⃗j(0)− I⃗ 0

j )
〉
> 0 .

Then, there exist at least N + 1 geometrically distinct T -periodic solutions ζ(t) =
(ξ(t), I(t), z(t)) of (5.8), such that

∥I⃗j(0)− I⃗ 0
j ∥ < r′j , for every j = 1, . . . ,J .

5.3 Proof of Theorem 5.1.1

In what follows, we always assume that |ε| ≤ 1, and we denote by ρ̄ the con-
stant introduced in assumption (Tw). Moreover, as in the previous section, we
assume I0 = 0.

Lemma 5.3.1. There is a constant C > 0 with the following property: if ζ(t) =

(ξ(t), I(t), z(t)) is a solution of (5.5) with ∥I⃗j(0)∥ ≤ ρ̄, for some j ≥ 1, then

∥ξ⃗j(t)− ξ⃗j(0)− t[∇Kj(I⃗j(0))−∇Kj(0)]∥+ ∥I⃗j(t)− I⃗j(0)∥ ≤ C|ε|a⋆j
for every t ∈ [0, T ] . The same property holds for the solutions of (5.7), when j =
1, . . . ,J .
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Proof. Let us start computing the following estimate, for every t ∈ [0, T ] and
every k ∈ {S⋆j−1 + 1, . . . , S⋆j−1 +N⋆

j = S⋆j },

|Ik(t)− Ik(0)| ≤
∫ t

0

|İk(s)| ds ≤ |ε|
∫ T

0

∣∣∣ ∂P̂
∂ξk

(s, ζ(s))
∣∣∣ ds ≤ |ε|Tα⋆k .

Then we easily get

∥I⃗j(t)− I⃗j(0)∥ ≤ |ε|T
( N⋆

j∑
i=1

(α⋆S⋆
j−1+i

)2
)1/2

= |ε|Ta⋆j .

Moreover,

∥ξ⃗j(t)− ξ⃗j(0)− t[∇Kj(I⃗j(0))−∇Kj(0)]∥

≤
∫ t

0

∥ ˙⃗ξj(s)− [∇Kj(I⃗j(0))−∇Kj(0)]∥ ds

≤
∫ T

0

∥∇Kj(I⃗j(s))−∇Kj(I⃗j(0))∥ ds+ |ε|
∫ T

0

∥∇I⃗j
P̂ (s, ζ(s))∥ ds

≤
∫ T

0

L∥I⃗j(s)− I⃗j(0)∥ ds+ |ε|Ta⋆j
≤ |ε|T (1 + LT )a⋆j ,

where L is a suitable Lipschitz constant provided by (L). The proof is thus com-
pleted.

Lemma 5.3.2. There exist ε̄ > 0 and a sequence (δj)j in ℓ2, with δj ∈ ]0, ρ̄], satisfying
the following property: if ζ(t) = (ξ(t), I(t), z(t)) is a solution of (5.5), with |ε| < ε̄

and δj ≤ ∥I⃗j(0)∥ ≤ ρ̄, for some j ≥ 1, then〈
ξ⃗j(T )− ξ⃗j(0) , Bj I⃗j(0)

〉
> 0 .

The same property holds for the solutions of (5.7), when j = 1, . . . ,J .

Proof. If ∥I⃗j(0)∥ ≤ ρ̄ for some j ≥ 1, then, by Lemma 5.3.1 and (Tw),〈
ξ⃗j(T )− ξ⃗j(0) , Bj I⃗j(0)

〉
=
〈
ξ⃗j(T )− ξ⃗j(0)− T [∇Kj(I⃗j(0))−∇Kj(0)] , Bj I⃗j(0)

〉
+

+T
〈
∇Kj(I⃗j(0))−∇Kj(0) , Bj I⃗j(0)

〉
≥ −C|ε|a⋆j ∥Bj∥ ∥I⃗j(0)∥+ T c̄∥I⃗j(0)∥2

=
(
−C|ε|a⋆j ∥Bj∥+ T c̄∥I⃗j(0)∥

)
∥I⃗j(0)∥ .
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Setting

δj := min

{
ρ̄ ,

2C

c̄T
a⋆j ∥Bj∥

}
,

we easily verify that (δj)j ∈ ℓ2, since (∥Bj∥)j is bounded by ∥B∥ and (a⋆j)j ∈ ℓ2;
in particular, there exists an integer j0 such that

δj =
2C

c̄T
a⋆j ∥Bj∥ , for every j ≥ j0 .

So, we see that, since |ε| ≤ 1 and ∥I⃗j(0)∥ ≥ δj ,

−C|ε|a⋆j ∥Bj∥+ T c̄∥I⃗j(0)∥ > 0 ,

for every j ≥ j0. For the remaining finite number of integers j ∈ {1, . . . , j0 − 1}
we simply need to choose |ε| sufficiently small, thus finishing the proof.

Remark 5.3.3. When X is finite-dimensional, the above estimate simplifies, in
view of the compactness of the closed balls centered at the origin, so the first
condition in (Tw’) is sufficient in this case. Concerning the second condition in
(Tw’), we see that it guarantees the existence of a sequence of balls, with smaller
and smaller radii, over which the twist condition still holds.

Notice that the set

ΞI =
∞∏
j=1

BN⋆
j [0, δj + Ca⋆j ] ,

where Bn[0, R] denotes the closed ball {υ ∈ Rn : ∥υ∥ ≤ R}, is compact, being
homeomorphic to a Hilbert cube. We now modify the function K outside ΞI ,
in order that the gradient of the modified function be bounded. Let RI > 0 be
such that ΞI ⊆ {υ ∈ X : ∥υ∥ ≤ RI}, and ψ : R → R be a smooth decreasing
function such that

ψ(s) = 1 if s ≤ RI , ψ(s) = 0 if s ≥ 2RI .

Define K̃ : X → R as K̃(I) = ψ(∥I∥)K(I). Then, when I ̸= 0,

∥∇K̃(I)∥ =

∥∥∥∥ψ′(∥I∥)K(I)
I

∥I∥ + ψ(∥I∥)∇K(I)

∥∥∥∥ ≤ c1|K(I)|+ ∥∇K(I)∥ ,

for some c1 > 0. By assumption (L), we can find a Lipschitz constant L such
that, for every s ∈ [0, 1], if ∥I∥ ≤ 2RI ,

∥∇K(sI)∥ ≤ ∥∇K(sI)−∇K(0)∥+ ∥∇K(0)∥ ≤ L∥I∥+ ∥∇K(0)∥ .
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Moreover,

|K(I)| =
∣∣∣∣K(0) +

∫ 1

0

⟨∇K(sI) , I⟩ ds
∣∣∣∣ ≤ |K(0)|+ sup

s∈[0,1]
∥∇K(sI)∥ ∥I∥

≤ |K(0)|+
(
L∥I∥+ ∥∇K(0)∥

)
∥I∥ .

Hence,

∥∇K̃(I)∥ ≤ c1|K(0)|+ (2RIc1 + 1)(2RIL+ ∥∇K(0)∥) , for every I ∈ X.

We define A = diag(A1, . . . ,AJ ) as a block-diagonal matrix having a diago-
nal formed by the matrices A1, . . . ,AJ introduced in (Dec1), i.e. such that

A(z⃗1, . . . , z⃗J ) = (A1z⃗1, . . . ,AJ z⃗J ) .

It is easy to verify, using (NR), that z ≡ 0 is the unique T -periodic solution of
equation Jż = Az. Then, by Theorem 5.2.2, for every J there is a T -periodic
solution

ζJ (t) = (ξJ (t), IJ (t), zJ (t))

of (5.7), with
∥I⃗Jj

(0)∥ < δj , for every j ≥ 1 . (5.9)

(Recall that we have chosen the last constant components of the solutions of (5.7)
to be equal to zero.) By Lemma 5.3.1, these solutions satisfy

∥I⃗Jj
(t)∥ ≤ δj + Ca⋆j , for every t ∈ [0, T ] ,

i.e.,
IJ (t) ∈ ΞI , for every t ∈ [0, T ] . (5.10)

Let us now consider the component ξJ (t) of the solution. By the periodicity
assumption (Pτ ), we can assume without loss of generality that ξk(0) ∈ [0, τk],
for every k ≥ 1. From Lemma 5.3.1, property (L) and (5.9), we have

|ξk(t)− ξk(0)| ≤ ∥ξ⃗j(t)− ξ⃗j(0)∥ ≤ Ca⋆j + TLδj , for every t ∈ [0, T ] ,

for a suitable Lipschitz constant L. Setting bk := Ca⋆j + TLδj , where j is the
index such that S⋆j−1 < k ≤ S⋆j , and defining

Ξξ =
∞∏
k=1

[−bk, τk + bk] ,

we have that
ξJ (t) ∈ Ξξ , for every t ∈ [0, T ] . (5.11)

We now need an a priori estimate on zJ (t).
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Lemma 5.3.4. There exists a sequence (Rj)j ∈ ℓ2 of positive constants such that, for
every T -periodic solution ζ(t) = (ξ(t), I(t), z(t)) of (5.5), we have

∥z⃗j∥
C([0,T ],R2N

♯
j )
≤ |ε|Rj ,

for every j ≥ 1. The same property holds for every T -periodic solution of (5.7), when
j = 1, . . . ,J .

Proof. Fix j ≥ 1 and consider the j-th block of the third equation in (5.5), i.e.

Lj z⃗j = Aj z⃗j + ε∇z⃗j P̂ (t, ζ) , (5.12)

where Lj denotes the j-th block of the linear operator L introduced in (NR), i.e.

Lj z⃗j = Lj(zS♯
j−1+1, . . . , zS♯

j
) = (JżS♯

j−1+1, . . . , JżS♯
j
) . (5.13)

From hypothesis (Dec1), we have σ(Lj − Aj) ⊆ σ(L − A). Hence, using (NR),
0 /∈ σ(Lj −Aj) and (5.12) is equivalent to

z⃗j = ε(Lj −Aj)
−1∇z⃗j P̂ (t, ζ) .

Moreover,

∥(Lj −Aj)
−1∥ =

1

dist(0, σ(Lj −Aj))
≤ 1

dist(0, σ(L −A))
= ∥(L −A)−1∥ ,

and consequently, setting rj :=
√
Ta♯j∥(L −A)−1∥, we have that

∥z⃗j∥
L2([0,T ],R2N

♯
j )
≤ |ε| ∥(Lj −Aj)

−1∥ · ∥∇z⃗j P̂∥
L2([0,T ],R2N

♯
j )
≤ |ε|rj .

Since z⃗j solves (5.12), we have that ˙⃗zj ∈ L2([0, T ],R2N♯
j ), and

∥ ˙⃗zj∥
L2([0,T ],R2N

♯
j )
≤ ∥Aj∥∥z⃗j∥

L2([0,T ],R2N
♯
j )
+ |ε|

√
Ta♯j ≤ |ε|

(
∥Aj∥rj +

√
Ta♯j

)
.

So, setting Cj = (1 + ∥Aj∥)rj +
√
Ta♯j ,

∥z⃗j∥
H1([0,T ],R2N

♯
j )
≤ |ε|Cj . (5.14)

By the continuous immersion of H1([0, T ], Z) in C([0, T ], Z), cf. [108, §23.6],
we can find a constant χ > 0 such that

∥z∥C([0,T ],Z) ≤ χ∥z∥H1([0,T ],Z) ,
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for every z ∈ H1([0, T ], Z). Since C([0, T ],R2N♯
j ) and H1([0, T ],R2N♯

j ) can be seen
as a subsets of C([0, T ], Z) and H1([0, T ], Z), respectively, simply adding an infi-
nite number of null components, we obtain

∥z⃗j∥
C([0,T ],R2N

♯
j )
≤ χ∥z⃗j∥

H1([0,T ],R2N
♯
j )
≤ |ε|χCj .

The proof is thus completed, taking Rj = χCj .

Defining

Ξz =
∞∏
j=1

B2N♯
j [0, Rj] ,

we have thus proved that

zJ (t) ∈ Ξz , for every t ∈ [0, T ] . (5.15)

Summing up, by (5.10), (5.11), (5.15), we have that, setting Ξ = Ξξ ×ΞI ×Ξz,
the T -periodic solutions we found satisfy

ζJ (t) = (ξJ (t), IJ (t), zJ (t)) ∈ Ξ , for every t ∈ [0, T ] .

Notice that Ξ is compact, being the product of three compact sets. We will now
prove that there is a subsequence of (ζJ )J which uniformly converges to a so-
lution of (5.5).

From (5.14), recalling that |ε| ≤ 1, we have

∥zJ (t1)− zJ (t2)∥ ≤ |t1 − t2|1/2
(∫ T

0

∥żJ (s)∥2 ds
)1/2

≤ |t1 − t2|1/2
(

∞∑
j=1

C2
j

)1/2

.

Looking at the variables IJ (t), by (Pbd) we have that

∥IJ (t1)− IJ (t2)∥ ≤ |t2 − t1|1/2
(∫ T

0

∥İJ (s)∥2 ds
)1/2

≤ |t2 − t1|1/2
√
T ∥a⋆∥ℓ2 .

Concerning the variables ξJ (t), we first observe that

∥ξ̇J (s)∥ ≤ ∥∇K(IJ (s))−∇K(0)∥+ ∥a⋆∥ℓ2

≤ L∥IJ (s)∥+ ∥a⋆∥ℓ2 ≤ L
( ∞∑
j=1

(δj + Ca⋆j)
2
)1/2

+ ∥a⋆∥ℓ2 := Ĉ ,

where L is a suitable Lipschitz constant provided by (L). Then,

∥ξJ (t1)− ξJ (t2)∥ ≤ |t2 − t1|1/2
(∫ T

0

∥ξ̇J (s)∥2 ds
)1/2

≤ |t2 − t1|1/2
√
T Ĉ .
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Hence, the sequence (ζJ )J is equi-uniformly continuous on [0, T ] and takes its
values in a compact subset of X . By the Ascoli–Arzelà Theorem, we find a
subsequence, still denoted by (ζJ )J , which uniformly converges to a certain
continuous function ζ♮ : [0, T ] → X , such that ζ♮(t) ∈ Ξ for every t ∈ [0, T ], and
ζ♮(0) = ζ♮(T ). We are going to prove that ζ♮ solves (5.5), following the lines of
the proof of [18, Theorem 3].

Let us consider the solution ζ∞ of system (5.5) such that ζ∞(0) = ζ♮(0) which,
by the boundedness of ∇K and ∇ζP̂ , is certainly defined on [0, T ]. We will prove
that the sequence (ζJ )J converges uniformly to ζ∞, thus obtaining that ζ∞ = ζ♮.
To this aim, we write the integral formulation of systems (5.5) and (5.6), for
J ≥ 1:

ζ∞(t) = ζ∞(0)−
∫ t

0

J∇ζĤ(s, ζ∞(s)) ds , (5.16)

ζJ (t) = ζJ (0)−
∫ t

0

J∇ζĤJ (s, ζJ (s)) ds . (5.17)

In order to simplify the notations, we introduce the projection

PJ (ζ) = PJ (ξ, I, z) = (ΠS⋆
J
ξ,ΠS⋆

J
I,ΠS♯

J
z) .

Let us write

∥ζJ (t)− ζ∞(t)∥ ≤ ∥ζJ (t)− PJ ζ∞(t)∥+ ∥PJ ζ∞(t)− ζ∞(t)∥ .

By an elementary argument,

∥PJ ζ∞(t)− ζ∞(t)∥ → 0 , as J → ∞ , (5.18)

uniformly with respect to t ∈ [0, T ]. From (5.16) and (5.17), since PJ J = JPJ ,
we have

∥ζJ (t)− PJ ζ∞(t)∥ ≤ ∥ζJ (0)− PJ ζ∞(0)∥+

+

∫ t

0

∥J∇ζĤJ (s, ζJ (s))− JPJ∇ζĤ(s, ζ∞(s))∥ ds . (5.19)

Notice that

∥ζJ (0)− PJ ζ∞(0)∥ ≤ ∥ζJ (0)− ζ∞(0)∥ = ∥ζJ (0)− ζ♮(0)∥ → 0 , as J → ∞ .
(5.20)

Since ∇ζĤJ (s, ζJ (s)) = PJ∇ζĤ(s, ζJ (s)), the integral term in (5.19) satisfies∫ t

0

∥∥∥JPJ

(
∇ζĤ(s, ζJ (s))−∇ζĤ(s, ζ∞(s))

)∥∥∥ ds ≤ L

∫ t

0

∥ζJ (s)− ζ∞(s)∥ ds ,
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where L is a suitable Lipschitz constant. Summing up, we have

∥ζJ (t)− ζ∞(t)∥ ≤ cJ + L

∫ t

0

∥ζJ (s)− ζ∞(s)∥ ds ,

where (cJ )J is a sequence, provided by the limits in (5.18) and (5.20), such that
limJ cJ = 0. Hence, by Gronwall’s Lemma,

∥ζJ (t)− ζ∞(t)∥ ≤ cJ e
Lt , for every t ∈ [0, T ] ,

implying that ζJ → ζ∞ uniformly on [0, T ]. We conclude that ζ∞ = ζ♮ on [0, T ],
thus showing that ζ∞(0) = ζ∞(T ), so that ζ∞ is a T -periodic solution of (5.5).

By the inverse change of variables

(φ(t), I(t), z(t)) = (ξ(t) + t∇K(I0), I(t), z(t)) ,

cf. (5.4), we have a solution of (5.1), satisfying (5.2). Moreover, condition (5.3)
holds true, by Lemmas 5.3.1 and 5.3.4, suitably reducing, if necessary, the value
of ε̄. The proof of Theorem 5.1.1 is thus completed.

5.4 Applications

5.4.1 Coupling second order with linear systems

We first state a simple lemma, which may be useful for the verification of the
twist condition.

Lemma 5.4.1. If there exists I0 ∈ X such that K : X → R is twice continuously
differentiable at I0 and K′′(I0) : X → X is invertible, with bounded inverse, then there
exist two positive constants c̄, ρ̄ such that

∥I − I0∥ ≤ ρ̄ ⇒
〈
∇K(y)−∇K(I0) , K′′(I0)(y − I0)

〉
≥ c̄ ∥y − I0∥2.

Moreover, if dimX = ∞ and, with the usual notation, K(I) =
∑∞

j=1Kj(I⃗j), then
condition (Tw) holds.

Proof. Since B := K′′(I0) : X → X is invertible with bounded inverse, there
exists γ > 0 such that ∥B I∥ ≥ γ∥I∥ for every I ∈ X . Then,〈

∇K(I)−∇K(I0) , B(I − I0)
〉
=

=

∫ 1

0

〈
K′′(I0 + s(I − I0)

)
(I − I0) , B(I − I0)

〉
ds

= ∥B(I − I0)∥2 +
∫ 1

0

〈 [
K′′(I0 + s(I − I0)

)
− B

]
(I − I0) , B(I − I0)

〉
ds

≥
(
γ2 − ∥B∥ · ∥K′′(I0 + s(I − I0)

)
− B∥

)
∥I − I0∥2 .
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Since K′′ is continuous at I0, there exists ρ̄ > 0 such that, if I ∈ X satisfies
∥I − I0∥ ≤ ρ̄, then

∥K′′(I)− B∥ = ∥K′′(I)−K′′(I0)∥ ≤ γ2

2∥B∥ ,

so 〈
∇K(I)−∇K(I0) , B(I − I0)

〉
≥ γ2

2
∥I − I0∥2, (5.21)

and the first part of the lemma is thus proved.

Assume now that K(I) =
∑∞

j=1Kj(I⃗j). We have that

B I = (B1I⃗1, . . . ,Bj I⃗j, . . . ) ,

where Bj = K′′
j (I⃗

0
j ). Then, (Tw) is verified directly from (5.21) defining, for

every j ∈ {1, 2, . . . }, the vector I as I⃗i = I⃗ 0
i if i ̸= j, once I⃗j has been chosen.

We thus have the following.

Corollary 5.4.2. Assume (L), (Pτ ), (Pbd), (NR), (Dec1), (Dec2) and (Cτ ) hold. If K :
X → R is twice continuously differentiable at I0 and K′′(I0) : X → X is invertible,
with bounded inverse, then there exists ε̄ > 0 such that, if |ε| ≤ ε̄, system (5.1) has a
T -periodic solution.

Let us now consider an equation in an infinite-dimensional space of the type
d

dt
(∇Φ ◦ ẋ) = ε∇xF (t, x, z)

Jż = Az + ε∇zF (t, x, z) .

(5.22)

Let, for definiteness, dimX = ∞ and dimZ = ∞. Concerning the bounded
selfadjoint operator A, we require the nonresonance assumption (NR) and that
it decomposes as in (Dec1). For the differential operator in the first equation,
we suppose that there exists a sequence of positive integers (Nj)j≥1 such that,
writing any vector y ∈ X as y = (y⃗1, . . . , y⃗j, . . . ), with y⃗j ∈ RNj ,

Φ(y) =
∞∑
j=1

Φj(y⃗j) ,

where each Φj is a continuous real valued strictly convex function defined on a
closed ball B(0, aj) in RNj , continuously differentiable in the open ball B(0, aj),
with ∇Φj : B(0, aj) → X being a homeomorphism, and ∇Φj(0) = 0.
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Denoting by Φ∗
j the Legendre–Fenchel transform of Φj , we have that Φ∗

j :
X → R is strictly convex and coercive, with ∇Φ∗ = (∇Φ)−1 : X → B(0, a),
cf. [72, Chapter 2]. We can define

Φ∗(y) =
∞∑
j=1

Φ∗
j(y⃗j) ,

so that system (5.22) can be written as a Hamiltonian system
ẋ = ∇Φ∗(y)

ẏ = ε∇xF (t, x, z)

Jż = Az + ε∇zF (t, x, z) .

So, we are in the situation of system (5.1), taking K(I) = Φ∗(I) and P (t, φ, I, z) =
F (t, φ, z).

An example is provided by the choice

Φ(y) =
∞∑
j=1

(
1−

√
1− ∥y⃗j∥2

)
,

for which, writing x = (x⃗1, . . . , x⃗j, . . . ), system (5.22) becomes
d

dt

˙⃗xj√
1− ∥ ˙⃗xj∥2

= ε∇x⃗jF (t, x, z) , j = 1, 2, . . .

Jż = Az + ε∇zF (t, x, z) ,

(5.23)

so that, in the first equation, we can see a kind of relativistic operator. We then
have the following.

Corollary 5.4.3. In the above setting, assume moreover the following conditions:

(L) for every R > 0 there exists a positive constant LR such that

∥∇uF (t, u
′)−∇uF (t, u

′′)∥ ≤ LR∥u′ − u′′∥ ,

for every t ∈ [0, T ] and u′ = (x′, z′), u′′ = (x′′, z′′) ∈ X × Z with ∥u′∥ < R and
∥u′′∥ < R;

(Fτ ) the function F (t, x, z) is τk-periodic in each xk, and the sequence (τk)k belongs
to ℓ2;
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(Fbd) there exist (α⋆k)k and (α♯l)l in ℓ2 such that, for every k, l = 1, 2, . . . ,∣∣∣∣ ∂F∂xk (t, x, z)
∣∣∣∣ ≤ α⋆k , ∥∇zlF (t, x, z)∥ ≤ α♯l ,

for every (t, x, z) ∈ [0, T ]×X × Z.

Then, there exists ε̄ > 0 such that, if |ε| ≤ ε̄, system (5.23) has a T -periodic solution.

Proof. Taking I0 = 0, we have that ∇Φ∗(0) = 0 and (Φ∗)′′(0) = Id. So, assump-
tion (Cτ ) is fulfilled taking m1 = m2 = · · · = 0 and, in view of Lemma 5.4.1, we
can apply Theorem 5.1.1 to conclude.

We have thus obtained an extension to infinite-dimensional systems of a re-
sult in [67].

Another possible situation where Theorem 5.1.1 applies is provided by the
choice

Φ(y) =
∞∑
j=1

(√
1 + ∥y⃗j∥2 − 1

)
.

In this case, we find

Φ∗(y) =
∞∑
j=1

Φ∗
j(y⃗j) =

∞∑
j=1

(
1−

√
1− ∥y⃗j∥2

)
,

and the first equation in system (5.22) becomes

d

dt

˙⃗xj√
1 + ∥ ˙⃗xj∥2

= ε∇x⃗jF (t, x, z) , j = 1, 2, . . .

involving a kind of mean curvature operator.

Since each ∇Φ∗
j is defined only on the open ball B(0, 1), we must first mod-

ify and extend the Hamiltonian function outside a ball B(0, r), with r ∈ ]0, 1[ ,
and then be careful that the y⃗j component of the T -periodic solution we find
remains in B(0, r). We omit the details, for briefness. Stating the analogue of
Corollary 5.4.3, we thus obtain an infinite-dimensional version of some results
obtained in [51, 53] (see also [80], where bounded variation solutions are con-
sidered).
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5.4.2 Perturbations of “superintegrable” systems

In this section we study a slightly different situation with respect to system (5.1).
We are going to consider the Hamiltonian system

φ̇ = ∇K(I) + η2∇IP (t, φ, I, z)

−İ = η2∇φP (t, φ, I, z)

Jż = ηAz + η2∇zP (t, φ, I, z) ,

(5.24)

with Hamiltonian function

H(t, φ, I, z) = K(I) +
η

2
⟨Az , z⟩+ η2P (t, φ, I, z) .

The following result extends to an infinite-dimensional setting [41, Theorem
4.1], which was motivated by the study of perturbations of superintegrable sys-
tems, cf. [75].

Theorem 5.4.4. Assume (L), (Pτ ), (Pbd), (Dec1), (Dec2), (Tw) and (Cτ ). Moreover let
the operator A be invertible with a bounded inverse. Then, for every σ > 0 there exists
η̄ > 0 such that, if |η| ≤ η̄, system (5.24) has a solution satisfying (5.2) and (3.19).

Notice that the nonresonance assumption (NR) is not required here.

Proof. Arguing as above we can perform the change of variable (5.4) and set
without loss of generality I0 = 0, so to obtain

ξ̇ = ∇K(I)−∇K(0) + η2∇IP̂ (t, ξ, I, z)

−İ = η2∇ξP̂ (t, ξ, I, z)

Jż = ηAz + η2∇zP̂ (t, ξ, I, z) ,

(5.25)

and, for every index J ≥ 1, its approximation
ξ̇ = ΠS⋆

J
[∇K(I)−∇K(0) + η2∇IP̂ (t, ξ, I, z)]

−İ = ΠS⋆
J
[η2∇ξP̂ (t, ξ, I, z)]

Jż = ΠS♯
J
[ηAz + η2∇zP̂ (t, ξ, I, z)] .

(5.26)

Lemmas 5.3.1 and 5.3.2 holds again, simply replacing |ε| with η2 and ε̄ with
η̄2. The statement and the proof of Lemma 5.3.4, however, must be modified as
follows.

Lemma 5.4.5. There exists a sequence (rj)j ∈ ℓ2 of positive constants such that, for
every T -periodic solution ζ(t) = (ξ(t), I(t), z(t)) of (5.25) we have

∥z⃗j∥
L2([0,T ],R2N

♯
j )
≤ |η|rj ,
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for every j ≥ 1. The same conclusion holds for every solution of (5.26), when j =
1, . . . ,J .

Proof. Fix j ≥ 1 and consider the j-th block of the third equation in (5.26), i.e.

Lj z⃗j = ηAj z⃗j + η2∇z⃗j P̂ (t, ζ) , (5.27)

where Lj denotes the j-th block of the linear operator L, cf. (5.13). From hypoth-
esis (Dec1), we have that σ(Lj − ηAj) ⊆ σ(L − ηA). We set η0 = min{1, π

T∥A∥}
and, recalling that 0 /∈ σ(A), we choose δ ∈ (0, π

T
) such that σ(A) ∩ [−δ, δ] = ∅.

Claim. When |η| < η0, every λ ∈ σ(L − ηA) satisfies |λ| > δ|η|.
In order to prove this Claim, notice that, if λ ∈ σ(L − ηA), there exists a

non-trivial T -periodic solution z of Jz′ = (ηA− λI)z, so

σ
(
J(ηA− λI)

)
∩ 2π

T
iZ ̸= ∅ . (5.28)

If |λ| ≥ π/T , then |λ| > δ > δ|η|. So, we can assume |λ| < π/T . In this case, we
have

∥J(ηA− λI)∥ ≤ |η| ∥A∥+ |λ| < 2π

T
,

so,

µ ∈ σ
(
J(ηA− λI)

)
⇒ |µ| ≤ ∥J(ηA− λI)∥ < 2π

T
.

By (5.28), we have that 0 ∈ σ(J(ηA− λI)) and, since J is invertible, 0 ∈ σ(ηA−
λI). Hence, λ

η
∈ σ(A) and so |λ

η
| > δ, thus proving the Claim.

From now on we assume |η| < η0. By the Claim, in particular, 0 /∈ σ(L −
ηA) and so L − ηA is invertible, as well as Lj − ηAj , with bounded inverses.
Hence, (5.27) is equivalent to

z⃗j = η2(Lj − ηAj)
−1∇z⃗j P̂ (t, ζ) .

Moreover,

∥(Lj − ηAj)
−1∥ =

1

dist(0, σ(Lj − ηAj))
≤ 1

dist(0, σ(L − ηA))
≤ 1

δ|η| ,

and consequently

∥z⃗j∥
L2([0,T ],R2N

♯
j )
≤ η2 ∥(Lj − ηAj)

−1∥ · ∥∇z⃗j P̂∥
L2([0,T ],R2N

♯
j )
≤
η2
√
Ta♯j

δ|η| = |η|
√
Ta♯j
δ

,

thus concluding the proof of the lemma.

The proof of Theorem 5.4.4 can now be completed following again the lines
of the proof of Theorem 5.1.1.
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Appendix A

Recovering a function from
its p−norms

In this appendix we will investigate the problem of finding necessary and suffi-
cient conditions for a couple of real valued functions f and g to have coincident
p-norms on the same set of p values. The result, besides the intrinsic interest,
has a deeply correlation with Probability and in particular with the so called
Stieltjes moment problem. Let us briefly recall its description.

Suppose µ be a positive Radon measure. If the number

σn =

∫ +∞

0

xn dµ(x)

exists and is finite, it is called the n-th moment of the measure µ. If for all
n ≥ 0 the moments exist and are finite, the sequence (σn)n is called the moment
sequence of µ. The moment problem consists in answering to the following two
questions.

1. Given a sequence (σn)n of real numbers, find, if possible, a measure µ
having it as its moment sequence.

2. Is µ uniquely determined by this sequence?

We will focus our attention on the second question. Stieltjes, in [98], shows
that in general the answer to this question is no. (Other examples can be found
in [99] while a complete discussion of the problem can be found in [97, 105].)

Our result is then extended to functions defined over N. The problem will
be tackled by means of complex analysis techniques and a central role here is
played by the Mellin Transform named after the Finnish mathematician Hjal-
mar Mellin who introduce this transformation to study some properties of the

141
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gamma functions and of hypergeometric functions (see e.g. [73]). Nowadays
Mellin transforms find application in number theory [101], mathematical physics,
statistics, the theory of asymptotic expansions, special functions and integral
transformations. (For a very detailed exposition of the argument see e.g. [100,
21]).

Before stating our main results, let us recall the standard notation for the norms
in Lp(E):

∥f∥p =
(∫

E

|f |p dµ
) 1

p

if 1 ≤ p < +∞ , ∥f∥∞ = ess sup
E

|f | .

Moreover, for a measurable function f : E → R, we write

{f > α} = {x ∈ E : f(x) > α} , µ(f > α) = µ({f > α}) .

Here is our main result.

Theorem A.0.1. Suppose f, g ∈ Lp(E) for all p ≥ 1, and P = (pj)
∞
j=1 is a sequence

of distinct real numbers pj ≥ 1. Suppose also that at least one of the following two
conditions holds:

a) P has an accumulation point in (1,+∞) ;

b) f, g ∈ L∞(E) and
∞∑
j=1

pj − 1

(pj − 1)2 + 1
= +∞ . (A.1)

Then the following two statements are equivalent:

i) ∥f∥p = ∥g∥p for all p ∈ P ;

ii) µ(|f | > α) = µ(|g| > α) for all α ≥ 0 .

Observe that, if limj pj = +∞, then (A.1) is equivalent to

∞∑
j=1

1

pj
= +∞ .

Notice moreover that, in this case, if we drop the boundedness hypothesis on
f and g, the result is no longer true, as we will show with a counterexample in
Section A.3. Theorem A.0.1 applies for example if

P = {j ∈ N, j ≥ 10} , P =

{
1 +

1√
j + 1

: j ∈ N
}
, or P =

{
2 +

1

j + 1
: j ∈ N

}
.
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On the contrary, the set P = {j2 : j ∈ N \ {0}} is not admissible, since in this
case the series in (A.1) converges.

It can be seen, as a consequence of the Chebyshev inequality, that ii) implies
the identity ∥f∥p = ∥g∥p , for all p ∈ [1,+∞) , and for any functions f, g ∈ Lp(E).
Hence, we will focus on proving that i) implies ii).

After having recalled some results in measure theory and complex analysis
we will give a proof of Theorem A.0.1 by the use of the “Full Müntz Theorem
in C[0, 1]”, elementary complex analysis and the Mellin transform. Next we
construct the counterexample to the conclusion of Theorem A.0.1 if the bound-
edness hypothesis on f and g is dropped in b). At last we will provide a gener-
alization of the theorem for sequences and final remarks.

A.1 Some preliminaries for the proof

We will need the following preliminary results.

Lemma A.1.1. Suppose P = (pj)
∞
j=1 is a sequence of distinct real numbers pj ≥ 1

satisfying (A.1) and having at most 1 as a finite accumulation point. If φ ∈ L1[0, 1]
satisfies ∫ 1

0

φ(x)xp−1 dx = 0 for all p ∈ P, (A.2)

then φ(x) = 0 for almost every x ∈ [0, 1].

Proof. By the assumptions given on P , one of the following two cases occurs:

(b1) P has a strictly increasing subsequence (pjk)k such that pjk → +∞ and∑∞
k=1

1
pjk

= +∞ ;

(b2) P has a strictly decreasing subsequence (pjk)k such that pjk → 1 and∑∞
k=1(pjk − 1) = +∞ .

With no loss of generality, we may replace P by the subsequence pjk , in either
case.

Suppose that (b1) holds; then by (A.2) we have∫ 1

0

φ(x)xp1−1xp−p1 dx = 0 .

By the “Full Müntz Theorem in C[0, 1]” given in [17, Theorem 2.1] the linear
span of {xp−p1 , p ∈ P} is a dense subset in C0[0, 1] because in this case∑

p∈P

p− p1
(p− p1)2 + 1

= +∞ ,
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by (A.1). Hence, for any h ∈ C0[0, 1] we have:∫ 1

0

φ(x)xp1−1h(x) dx = 0 .

Extend φ ≡ 0 outside [0, 1]. Let χε be a family of mollifying kernels on R (as
shown for example in the article [54] or [104, Chapter 9.2]). Then picking h(x) =
χε(x− y) and setting k(x) = φ(x)xp1−1 we obtain:∫ 1

0

k(x)h(x) dx =

∫
R
k(x)χε(x− y) dx = (k ∗ χε)(y) = 0 for every y ∈ R.

Now, by [104, Chapter 9, Theorem 9.6],

k ∗ χε → k in L1[0, 1].

Consequently, (A.2) holds if and only if φ = 0 almost everywhere.

If case (b2) holds then we can define a sequence of functions (fj)j by

fj(x) = φ(x)xpj−1 .

The sequence (fj)j converges to φ pointwise. Moreover, choosing σ(x) = |φ(x)|,
we obtain that σ ∈ L1 and

|fj(x)| ≤ σ(x) for all x ∈ [0, 1] and all j ∈ N , j ≥ 1.

By the Dominated Convergence Theorem we obtain that∫ 1

0

φ(x) dx = lim
j→∞

∫ 1

0

φ(x)xpj−1 dx = 0 .

Consequently we can suppose, without losing in generality, that 1 belongs to P
and the proof proceeds as before applying the “Full Müntz Theorem in C[0, 1]”
[17, Theorem 2.1].

Remark A.1.2. If f ∈ Lp(E) for all p ≥ 1, let µf : (0,+∞) → R be defined by

µf (t) = µ (|f | > t) .

It is well known that µf is a monotone nonincreasing function, continuous from the
right, and that ∫

E

|f |pdµ = p

∫ +∞

0

µf (t)t
p−1dt ,

for every p ∈ [1,+∞), cf. [104, Theorem 5.51]. Note in particular that µf ∈ L1(0,+∞).
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To deal with the first part of Theorem A.0.1, namely when case a) holds,
we have to recall some tools in complex analysis. The Mellin transform of a
function υ(t) is defined as

{Mυ}(z) = F (z) =

∫ ∞

0

υ(t)tz−1dt , z ∈ C ,

whenever the integral exists for at least one value z0 of z (cf. [100, 105, 107]).

Lemma A.1.3. Let υ : [0,+∞) → R be a function such that

υ(t) tz−1 ∈ L1([0,+∞)) for all z ≥ 1.

Then Mυ is analytic in S = {w ∈ C : ℜ(w) > 1}.

Proof. Let γ : [0, 1] → C be a triangle in S and let Φ(s, z) = υ(s)sz−1. Then,∫
γ

F =

∫
γ

(∫ +∞

0

Φ(s, z) ds

)
dz =

∫ 1

0

(∫ +∞

0

Φ(s, γ(t))γ′(t) ds

)
dt ,

with γ′(t) defined for all but three points t ∈ [0, 1]. Observe that∫
γ

|F | =
∫ 1

0

(∫ +∞

0

|Φ(s, γ(t))γ′(t)| ds
)
dt

≤
∫ 1

0

(∫ +∞

0

|υ(s)||sγ(t)−1| |γ′(t)| ds
)
dt .

Being γ a triangle, |γ′(t)| is constant on every side and then there exists C1 such
that |γ′(t)| < C1 for all t ∈ [0, 1] where the tangent vector is defined. Let R > 0
be such that Supp(γ) ⊆ B(0, R). Then,

|sγ(t)−1| = sℜ[γ(t)−1] ≤ sR+1,

and so∫ 1

0

(∫ +∞

0

|υ(s)||sγ(t)−1| |γ′(t)| ds
)
dt ≤ C1

∫ 1

0

(∫ +∞

0

|υ(s)sR+1| ds
)
dt .

By hypothesis, υ(s)sp is Lebesgue integrable for all p ≥ 0, so

C1

∫ 1

0

(∫ +∞

0

|υ(s)sR+1| ds
)
dt ≤ C1CR < +∞ .
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Then, by Fubini-Tonelli Theorem,∫
γ

F =

∫
γ

(∫ +∞

0

Φ(s, z) ds

)
dz

=

∫ +∞

0

(∫
γ

Φ(s, z) dz

)
ds =

∫ +∞

0

(∫
γ

υ(s)sz−1 dz

)
ds .

But now υ(s)sz−1 is a holomorphic function of z, and then by the Cauchy inte-
gral theorem ∫

γ

υ(s)sz−1 dz = 0 ,

and then ∫
γ

F = 0 ,

for every triangular path. Consequently, by Morera’s theorem for triangles (see
for example [26]), F (s) is holomorphic on {w ∈ C : ℜ(w) > 1}.

A.2 Proof of Theorem A.0.1

Being f and g in Lp(E) for every p ∈ [1,+∞), the functions

t→ µ
(
|f | > t

1
p

)
and t→ µ

(
|g| > t

1
p

)
are finite almost everywhere, the function

I(p) =
∫
E

[ |f |p − |g|p ] dµ

is well defined and finite for every p ∈ [1,+∞), and

I(p) =
∫
E

(
|f |p − |g|p

)
dµ =

=

∫ +∞

0

[
µ(|f |p > t)− µ(|g|p > t)

]
dt

=

∫ +∞

0

[
µ
(
|f | > t

1
p

)
− µ

(
|g| > t

1
p

)]
dt .

Substituting z = t
1
p , the integral becomes

I(p) = p

∫ +∞

0

[
µ(|f | > z)− µ(|g| > z)

]
zp−1 dz = p

∫ +∞

0

φ(z)zp−1 dz , (A.3)
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where
φ(z) = µ(|f | > z)− µ(|g| > z) .

Notice that φ : [0,+∞) → R is continuous from the right and that

∥f∥p = ∥g∥p ⇔ I(p) = 0 .

Suppose a) holds. Being φ : [0,+∞) → R the difference of two monotone
functions, it is differentiable almost everywhere, and hence continuous almost
everywhere. Moreover, it is of bounded variation on [a,+∞) for all a > 0 and
then of bounded variation in a neighborhood of each y ∈ (0,+∞). Notice that
the integral in the right-hand side of (A.3) is the Mellin transform of φ , hence

I(p) = 0 ⇔ {Mφ}(p) = 0 .

By [105, Chapter 6.9, Theorem 28], for every c ∈ (1,+∞),

1

2
[φ(x+ 0) + φ(x− 0)] =

1

2πi
lim

T→+∞

∫ c+iT

c−iT
{Mφ}(p)x−p dp , (A.4)

where
φ(x+ 0) = lim

t→x+
φ(t) and φ(x− 0) = lim

t→x−
φ(t) .

By Lemma A.1.3, Mφ is holomorphic on {w ∈ C : ℜ(w) > 1}. But

{Mφ}(p) = 0 for all p ∈ P ,

and, by a), P has an accumulation point in {w ∈ C : ℜ(w) > 1}. Then, by the
identity theorem of complex analytic functions,

Mφ ≡ 0 on {w ∈ C : ℜ(w) > 1}.
The inversion formula (A.4) then becomes

1

2
[φ(x+ 0) + φ(x− 0)] =

1

2πi
lim

T→+∞

∫ c+iT

c−iT
0 · x−p dp = 0 .

Being φ(x) continuous almost everywhere, we have that φ(x) = 0 for almost
every x. The conclusion easily follows.

Assume now that b) holds and that P has no accumulation points in (1,+∞).
If ∥f∥∞ = 0 or ∥g∥∞ = 0 , then either i) or ii) imply that f = g = 0 almost every-
where, and the result is achieved. Without loss of generality, we can suppose
∥f∥∞ ≤ ∥g∥∞ = 1. Indeed,

∥f∥p = ∥g∥p ⇔ ∥f∥pp = ∥g∥pp
⇔
∫
E

∥g∥p∞
( |f |
∥g∥∞

)p
dµ =

∫
E

∥g∥p∞
( |g|
∥g∥∞

)p
dµ

⇔
∫
E

( |f |
∥g∥∞

)p
dµ =

∫
E

( |g|
∥g∥∞

)p
dµ .
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In this case,

I(p) =

∫ 1

0

φ(z)zp−1 dz ,

and φ ∈ L1[0, 1]. By Lemma A.1.1 we have that I(p) = 0 for all p ∈ P if and
only if φ(z) = 0 for almost every z ∈ [0, 1]. By the the right-continuity, we
conclude.

A.3 Construction of the counterexample

In this section we want to show that, in general, the boundedness hypothesis on
f and g in Theorem A.0.1, when b) holds, cannot be removed. In the first part
we give some definitions to set the problem in a more general frame, then we
develop the counterexample. Precisely, we will firstly build a continuous func-
tion φ defined on the positive real semiaxis and orthogonal to every monomial
(and for linearity to every polynomial). Then, we will prove that this function is
continuous and it is of bounded variation on [0,+∞). So, it can be written as the
difference of two strictly decreasing functions; their inverses are the functions
we are looking for. To conclude we show, as corollaries of independent interest,
that modifying a bit this function φ firstly we can make it smooth, and secondly
it could be orthogonal to every rational power of x, with fixed denominator. For
an in-depth analysis of this argument see e.g. [97, 99].

Lemma A.3.1. The function φ : [0,+∞) → R defined as

φ(x) = e−
4√x sin

(
4
√
x
)

is such that ∫ +∞

0

xnφ(x) dx = 0 for all n ∈ N .

Proof. This result was already known by Stieltjes that gave it in his work on
continuous fractions [98, page 105]. For the convenience of the reader we sketch
a self-contained proof relying only on elementary complex analysis.
Set

In =

∫ +∞

0

xne−(1−i)xdx .

Being |xne−(1−i)x| = xne−x, we have that the integral In is well defined for all
n. Moreover, letting z = 1 − i, performing the change of variables zx = y we
obtain:

In =

∫ +∞

0

xne−(1−i)x dx =

∫ +∞

0

xne−zx dx = z−n−1

∫
γ

yne−y dy ,
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where γ is the half-line starting at the origin, containing the point 1−i. Consider
the triangular path TN in the complex plane joining the points 0, N , N − iN .
Being yne−y analytic over the interior of TN the integral along TN is 0. Moreover:∣∣∣∣∣

∫ N−iN

N

yne−y dy

∣∣∣∣∣ =
∣∣∣∣∣
∫ N

0

(N − it)ne−N+it dt

∣∣∣∣∣ ≤
∫ N

0

|N2 + t2|n2 e−N dt→ 0 ,

and so ∫ N

0

yne−y dy +

∫ N−iN

N

yne−y dy +

∫ 0

N−iN
yne−y dy = 0.

Then, passing to the limit for N tending to +∞, the first term tends to Γ(n+ 1),
the second term tends to 0, and the third tends to −zn+1In hence:

In = z−n−1Γ(n+ 1) = z−n−1n! .

Then,
In = n! · (1− i)−n−1 = n! · (1 + i)n+1 · 2−n−1 =

= n! ·
[
(1 + i)√

2

]n+1

· 2−n−1 · 2n+1
2 = n! · e (n+1)iπ

4 · 2−n+1
2 .

So,
I4p+3 ∈ R for all p ∈ N ,

and then
ℑ (I4p+3) = 0 for all p ∈ N ,

so that

0 = ℑ(I4p+3) =

∫ +∞

0

x4p+3e−xℑ(eix) dx =

∫ +∞

0

x4p+3e−x sin(x) dx for all p ∈ N .

Letting x = u
1
4 , we arrive to∫ +∞

0

upe−
4√u sin( 4

√
u) du = 0 for all p ∈ N .

The function
φ(x) = e−

4√x sin( 4
√
x)

has the requested properties.

Lemma A.3.2. The function φ defined in Lemma A.3.1 belongs to BV ([0,+∞)).
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Proof. Observe preliminarily that φ(0) = 0 and φ tends to 0 at infinity; moreover,

φ′(x) =
e−

4√x cos ( 4
√
x)

4x3/4
− e−

4√x sin ( 4
√
x)

4x3/4
=

√
2e−

4√x

4x3/4
sin
(π
4
− 4

√
x
)
,

and so

φ′(x) = 0 ⇔
√
2e−

4√x

4x3/4
sin
(π
4
− 4

√
x
)
= 0 ⇔ 4

√
x =

π

4
+ kπ for k ∈ N .

The second derivative of φ is given by

φ′′(x) =
e−

4√x (3 sin ( 4
√
x)− (2 4

√
x+ 3) cos ( 4

√
x))

16x7/4
.

Letting

xn =
(π
4
+ nπ

)4
,

we see that (φ′′(xn))n has alternating signs, since

φ′′(xn) = (−1)n+1256
√
2eπ(−(n+

1
4))

(4πn+ π)6
.

So, the total variation of φ is the series of variations between each stationary
point plus the variation between 0 and the first stationary point. Writing R+ =
{x ∈ R : x ≥ 0}, we have

VR+(φ) =
e−

π
4√
2
+
∑
n≥0

|φ(xn+1)− φ(xn)|

=
e−

π
4√
2
+
∑
n∈2N

|φ(xn+1)− φ(xn)|+
∑

n∈2N+1

|φ(xn+1)− φ(xn)|

=
e−

π
4√
2
+
∑
n∈N

|φ(x2n+1)− φ(x2n)|+
∑
n∈N

|φ(x2n+2)− φ(x2n+1)|

=
e−

π
4√
2
+
∑
n∈N

∣∣∣∣∣− e−
1
4
π(8n+5)

√
2

− e−
1
4
π(8n+1)

√
2

∣∣∣∣∣+∑
n∈N

∣∣∣∣∣e−
1
4
π(8n+9)

√
2

+
e−

1
4
π(8n+5)

√
2

∣∣∣∣∣
=
e−

π
4√
2

[
∞∑
n=0

(
e−2πn +

2e−2πn

eπ
+
e−2πn

e2π

)
+ 1

]

=
e−

π
4√
2

[(
1 +

2

eπ
+

1

e2π

) ∞∑
n=0

(
e−2πn

)
+ 1

]

=
e−

π
4√
2
·
[
(1 + eπ)2

e2π
· 1

1− e−2π
+ 1

]
=

√
2 · e

3
4
π

eπ − 1
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We are now ready to construct the counterexample. Define

ϕ(t) = P (t,+∞) +
1

(t+ 1)2
, ψ(t) = N(t,+∞) +

1

(t+ 1)2
,

where P (t,+∞) and N(t,+∞) are, respectively, the positive and the negative
variation of φ on (t,+∞). The functions ϕ and ψ are positive, strictly decreasing,
bounded, and achieve their maximum in 0. Moreover,

lim
t→+∞

ϕ(t) = lim
t→+∞

ψ(t) = 0 ,

and
ϕ(t)− ψ(t) = φ(t) .

Restricting the codomain of ϕ to (0, ϕ(0)] and that of ψ to (0, ψ(0)] , we obtain
two invertible functions

ϕ̂ : [0,+∞) → (0, ϕ(0)] , ψ̂ : [0,+∞) → (0, ψ(0)] .

Moreover, their inverses are also non negative decreasing functions. Define

f = ϕ̂−1 : (0, ϕ(0)] → [0,+∞) , g = ψ̂−1 : (0, ψ(0)] → [0,+∞) ,

and notice that
lim
x→0+

f(x) = lim
x→0+

g(x) = +∞ .

Extend f and g to all R by setting them equal to 0 outside their domain, and
call them f̃ and g̃. These are the functions we are looking for. Indeed, we will
now prove that µ(|f̃ | > α) does not coincide with µ(|g̃| > α) for a.e. α ≥ 0. By
contradiction suppose that

µ(|f̃ | > α) = µ(|g̃| > α) for a.e. α ≥ 0 .

Being f̃ and g̃ non-negative and being their level sets coincident with those of f
and g, we have

µ(f > α) = µ(g > α) for a.e. α ≥ 0 .

But f and g are monotonically strictly decreasing, so {f > α} = [0, f−1(α)) and
{g > α} = [0, g−1(α)), hence

f−1(α) = g−1(α) for a.e. α ≥ 0 .

Being f−1 = ϕ and g−1 = ψ,

ϕ(α) = ψ(α) for a.e. α ≥ 0 .
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Recall then the definition of ϕ and ψ to obtain

P (α,+∞) +
1

(α + 1)2
= N(α,+∞) +

1

(α + 1)2
for a.e. α ≥ 0 ,

so
P (α,+∞) = N(α,+∞) for a.e. α ≥ 0 ,

and then

φ(α) = P (α,+∞)−N(α,+∞) = 0 for a.e. α ≥ 0 ,

finding a contradiction. The proof is then completed.

In the following corollary, we want to extend Lemma A.3.1 to find a continu-
ous function orthogonal to every fractional power of x with fixed denominator.

Corollary A.3.3. Fix q ∈ N\{0}. There exists a continuous function φq : (0,+∞) →
R, not identically equal to 0 , such that∫ +∞

0

x
n
q φq(x) dx = 0 for all n ∈ N .

Proof. Define In as before. We have∫ +∞

0

x4p+3e−x sin(x) dx = 0 for all p ∈ N .

Letting x = u
1
4q we arrive to∫ +∞

0

u
p
q e−

4q√u sin( 4q
√
u)u

1−q
q du = 0 for all p ∈ N .

The function
φ(x) = e−

4q√x sin( 4q
√
x)x

1−q
q

is the one we were looking for.

The aim of the subsequent lemma is to show that, if we multiply the func-
tions φ(x) and φq(x), found respectively in Lemma A.3.1 and Corollary A.3.3,
by a suitable power of x, we obtain two new functions that maintain the same
property of orthogonality but are arbitrarily regular. We achieve this result ap-
plying Faà di Bruno’s formula.

Lemma A.3.4. Let w ∈ C∞(R) and 0 < α < 1. Then the function gn : [0,+∞) → R,

gn(x) = xnw(xα) ,

is of class Cn on [0,+∞), with g(j)n (0) = 0 for all j = 0, 1, 2, . . . , n.
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Proof. A central tool of this proof will be Faà di Bruno’s formula that we will
recall briefly. Let w and u be Cm real valued functions such that the composition
w ◦ u is defined; then (w ◦ u)(x) is of class Cm and for x > 0 we have

(w ◦ u)(j)(x) = j!

j∑
k=1

[
w(k)(u(x))

k!

∑
h1+···+hk=j

u(h1)(x)

h1!
· · · u

(hk)(x)

hk!

]
,

or, setting (k1, . . . , kj) = K e (1, . . . , j) = J ,

(w ◦ u)(j)(x) =
∑
K·J=j

j!

k1! · · · kj!
w(k1+···+kj)(u(x)) ·

j∏
n=1

(
u(n)(x)

n!

)kn
For a proof of this formula look at [92]. We have that

g(j)n (x) =

j∑
h=0

(
j

h

)
n(n− 1) · · · (n− h+ 1)xn−h [w(xα)](n−h) ,

and each term of this sum is of the form

C xn−h[w(xα)](n−h) , (A.5)

where C is a real number depending on j, h and n. Now we use the Faà di
Bruno’s formula to express the derivatives of w. In our case u(x) = xα and so

u(h)(x) = (α)h x
α−h where (α)h = α(α− 1) · · · (α− h+ 1) .

Consequently

u(h1)(x) · · ·u(hk)(x) = (α)h1(α)h2 · · · (α)hkxα−h1xα−h2 · · ·xα−hk ,

and if h1 + · · ·+ hk = j,

u(h1)(x) · · ·u(hk)(x) = C(h1, . . . hk)x
kα−j .

So, applying Faà di Bruno’s formula to (A.5), each term has the form

xn−h
n−h∑
k=1

Ckw
(k)(xα) · xkα−(n−h) =

n−h∑
k=1

Ckw
(k)(xα) · xkα.

To conclude observe that

g(j)n (x) =

j∑
k=1

C ′
kw

(k)(xα)xkα,

and apply the theorem on the limit of the derivative.



154 A. Recovering a function from its p−norms

As a consequence of Lemma A.3.4, we have that the function φ : [0,+∞) →
R in the statement of Lemma A.3.1 can be chosen to be arbitrarily regular (but
not C∞). For example, taking

φ(x) = e−
4√x sin( 4

√
x)xn, n ∈ N ,

by Lemma A.3.4 choosing w(x) = e−x sin(x) and α = 1
4
, we see that φ(x) is

of class Cn. The same reasoning choosing the same w and α = 1
4q

allows to
conclude that also the function φq is of class Cn if multiplied by xn+1.

A.4 Final remarks

As a direct consequence of Theorem A.0.1, we have the following.

Corollary A.4.1. Suppose µ(E) < +∞, f ∈ Lp(E) for all p ≥ 1 and P = (pj)
∞
j=1

is a sequence of distinct real numbers pj ≥ 1. Let C be a non negative constant, and
suppose that either a) or b) holds. Then, the following two conditions are equivalent:

i)

(
1

µ(E)

) 1
p

∥f∥p = C for all p ∈ P ;

ii) |f(x)| = C for a.e. x ∈ E .

Indeed, Theorem A.0.1 applies taking as g a constant function.

Theorem A.0.1 remains valid assuming the existence of an accumulation
point of P in (0, 1] and supposing f, g ∈ Lp(E) for all p > 0. In this case, ∥f∥p is
formally defined as before, although this is not a norm anymore. To prove this,
first notice that, without loss of generality, we can always assume that f, g ≥ 0 .
Let δ ∈ (0, 1] be an accumulation point of P . For all p ∈ P ∩

(
δ
2
, 2
)
,

∫
E

|f |pdµ =

∫
E

|g|pdµ ⇔
(∫

E

|f δ
2 |

2p
δ
dµ

) δ
2p

=

(∫
E

|g δ
2 |

2p
δ
dµ

) δ
2p

⇔ ∥f δ
2∥ 2p

δ
= ∥g δ

2∥ 2p
δ
.

The set P̃ = {2p
δ
: p ∈ P ∩

(
δ
2
, 2
)
} is contained in (1,+∞) and has an accumu-

lation point there. We can now apply the second part of Theorem A.0.1 to find
that

µ(|f δ
2 | > α) = µ(|g δ

2 | > α) for all α ≥ 0 ,

and so µ(|f | > α) = µ(|g| > α) for all α ≥ 0 .
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In the last part of this section we consider the special case of ℓp spaces and
show that Theorem A.0.1 can be generalized in this setting. We recall that, for a
sequence A = (an)n, the ℓp norms are defined as follows:

∥A∥p =
(

∞∑
n=0

|an|p
) 1

p

, ∥A∥∞ = sup
n

|an| .

Here is our result.

Theorem A.4.2. Let A = (an)n and B = (bn)n be two sequences of real numbers in ℓ1.
If P = (pj)

∞
j=1 is a sequence of distinct real numbers pj ≥ 1 having an accumulation

point in (1,+∞] and
∥A∥p = ∥B∥p for all p ∈ P ,

then the sequences

|A| = (|an|)n and |B| = (|bn|)n
can be obtained one from the other by permutation, appending or removing some zeroes.

Proof. Suppose that the accumulation point is finite. Choose X = N, A = P(N)
and µ the counting measure. By Theorem A.0.1, we have that

#(|A| > α) = # (|B| > α) for all α ≥ 0 .

Without loss of generality we can suppose that an, bn > 0 for all n ∈ N. Being
(an)n and (bn)n absolutely convergent, we can rearrange them in such a way
thatA andB are non increasing without modifying the ℓp norms, thus obtaining
Â = (ân)n and B̂ = (b̂n)n, respectively. Clearly

#(A > α) = #
(
Â > α

)
and #(B > α) = #

(
B̂ > α

)
.

If ân = b̂n for all n, then the theorem is proved. Assume by contradiction that
Â ̸= B̂ and let n̄ be the smallest index such that ân̄ ̸= b̂n̄. Suppose for instance
that ân̄ > b̂n̄ and choose

α =
ân̄ + b̂n̄

2
.

With this choice we have

#
(
Â > α

)
≥ n̄ > #

(
B̂ > α

)
,

a contradiction. Suppose now that +∞ is the only accumulation point of P . We
have that

lim
j

∥Â∥pj = ∥Â∥∞ = â0 ,
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and similarly for B̂, obtaining that â0 = b̂0. Define Â1 = (ân)n≥1 and B̂1 =

(b̂n)n≥1 and notice that:

∥Â1∥pjpj =
∞∑
n=0

âpjn − â
pj
0 = ∥Â∥pjpj − â

pj
0 = ∥B̂∥pjpj − b̂

pj
0 = ∥B̂1∥pjpj ,

and consequently ∥Â1∥pj = ∥B̂1∥pj for all j. By the same reasoning we will
obtain that

lim
j

∥Â1∥pj = ∥Â1∥∞ = â1 ,

and the same for B̂1 , to obtain â1 = b̂1. Proceeding by induction, we conclude
that Â = B̂.

Notice that, choosing for example pj = j! for all j ≥ 1, the condition ∥Â∥pj =
∥B̂∥pj for all j implies that Â = B̂, but in this case the series in (A.1) converges.
Notice moreover that Theorem A.4.2 remains valid if 1 is the only accumulation
point of P , supposing that (A.1) holds.

The problem of the necessity of condition (A.1) has been solved in 2020 by
Erdély (see [38]) in the following sense:

Theorem A.4.3. There is a finite Borel measure µ onE := [0, 1] with 0 < µ(E) < +∞
and there are two functions f, g ∈ L(E) such that ∥f∥p = ∥g∥p for all p ∈ P but

µ({x ∈ E : |f(x)| < α}) ̸= µ({x ∈ E : |g(x)| < α})

for at least one value of α ≥ 0 .

We want to conclude this chapter showing we can find two real functions
having coincident norms for an arbitrary finite set of p values in [1,+∞). Let us
start by proving the following theorem.

Theorem A.4.4. For all n > 0, given n distinct, positive real numbers p1, . . . , pn
greater or equal to 1 there exist a polynomial η(x) such that∫ 1

0

η(x)xpi dx = 0 for all i = 1 . . . n.

Proof. Define, for every c ∈ (−1, 0) and x ∈ [0, 1],

η(x) =
1

2πi

∫ c+i∞

c−i∞

(s− p1)(s− p2) · · · (s− pn)

(s+ 1)(s+ 2) · · · (s+ n+ 1)(s+ n+ 2)
x−s ds .
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η is the inverse Mellin transform of the function

R(s) =
(s− p1)(s− p2) · · · (s− pn)

(s+ 1)(s+ 2) · · · (s+ n+ 1)(s+ n+ 2)
=
P (s)

Q(s)

having as zeroes exactly p1, . . . , pn. We want now to prove η(x) is a polynomial.
Let us consider the semicircular path γj having as a diameter the line segment
from c− ji to c+ ji and closed to the left. By the residue theorem

lim
j→+∞

∫
γj

P (s)

Q(s)
x−s ds =

∫ c+i∞

c−i∞

P (s)

Q(s)
x−s ds .

since the integral on the circular arc tends to 0 as the radius tends to 0 for |s| →
+∞. On the other hand

lim
j→∞

∫
γj

P (s)

Q(s)
x−s ds =

n+2∑
k=1

Res

(
P (s)x−s

Q(s)
, s = −k

)

=
n+2∑
k=1

P (−k)
Q′(−k)x

k =
n+2∑
k=1

(−1)k−1 P (−k)
(k − 1)!(n+ 2− k)!

xk,

that is a polynomial in x. Now, by repeating the same construction made in
Section A.3 that leads to f̃ and g̃ starting from φ for the function η to obtain two
functions having equals p-norms for p = p1, . . . , pn .
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Appendix B

Dini derivatives of continuous
functions

In this second appendix we want to inquire the behavior of Dini derivatives
of continuous functions. Beside the intrinsic interest the inspiration for this
study arose firstly from the study of lower and upper solutions (see e.g. the
conditions [29, Definition 3.1, Chapter 1, Section 3] but also Proposition 2.2.5
in Chapter 2 of this thesis) and secondly by the possibility to further extend the
results presented in Chapter 1 for the Poincaré-Bohl Theorem for bounded open
sets with even more irregular boundary.

Dini derivatives take their names after Ulisse Dini, who introduced them in
1878, cf. [35]; let us recall their standard notations

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)

h
, D+f(x) = lim sup

h→0+

f(x+ h)− f(x)

h
,

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)

h
, D−f(x) = lim sup

h→0−

f(x+ h)− f(x)

h
.

Here, and in the rest of the chapter, we assume that f : I → R is defined on
some open interval I ⊆ R. A fundamental step in the study of Dini derivatives
was achieved in the first quarter of the twentieth century by Denjoy [34] for
continuous functions, Young [106] for measurable functions, and Saks [93] for
arbitrary ones. The Denjoy–Young–Saks theorem states that at each point x,
except for a set of measure zero, one of the following four alternatives holds:

1. f has a finite derivative at x ;

2. D−f(x) = D+f(x) ∈ R , D−f(x) = +∞ , D+f(x) = −∞ ;

3. D−f(x) = D+f(x) ∈ R, D+f(x) = +∞ , D−f(x) = −∞ ;
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4. D−f(x) = D+f(x) = +∞ , D−f(x) = D+f(x) = −∞ .

Denjoy also explicitly constructed a continuous function realizing each of the
previous four conditions on a perfect set of positive Lebesgue measure; a highly
remarkable result, in consideration of the fact that continuous functions can
exhibit very pathological behaviors (see, e.g., [62]). We refer to the book by
Bruckner [20] for an extensive study of Dini derivatives and a more complete
historical account.

In this chapter, for any function f : I → R, we are interested in studying the
set

Vf := {x ∈ I : D−f(x) < D+f(x)} .
It should be noticed that, in the above mentioned example by Denjoy, the set Vf
is totally disconnected, i.e., it does not contain any nontrivial interval. The main
question is: how large can this set be?

It is well known that there exist non-continuous functions f : R → R for
which Vf = R (see for instance [58], where the function f : R → R has a dense
graph in R2). On the contrary, we will prove that there are no continuous func-
tions with such a property. To be more precise, let us introduce the following
class of functions.

Definition B.0.1. We say that a function f : I → R is upper well behaved if for
every compact interval J contained in I there is a xJ ∈ J such that f(xJ) = max f(J).

Clearly, every continuous function is upper well behaved. On the other
hand, one can easily find examples of upper well behaved functions which are
nowhere continuous (e.g., the well known Dirichlet function).

Here is our first result.

Theorem B.0.2. If f : I → R is upper well behaved, then the set Vf is totally discon-
nected.

Our theorem complements Denjoy’s example of a continuous function, for
which µ(Vf ) > 0; it suggests that, if f is continuous, the set Vf should be “small”,
in some sense. Some questions then arise:

Q1. If f : I → R is continuous, or even upper well behaved, is the set Vf of first Baire
category?

Q2. If I = (a, b) and f : I → R is continuous, can µ(Vf ) be equal to b− a?

We will also show that the set Vf can be preassigned, at least in the class
of totally disconnected closed sets; taking, e.g., I = R, for any given totally
disconnected closed set V ⊆ R, there exists a continuous function f : R → R
such that Vf = V . This will be a consequence of Lemma B.1.2 below.
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Let us now investigate on the possibility for a function f : R → R to be
such that Vf = R and, at the same time, to be continuous at some points of its
domain. We will prove the following.

Theorem B.0.3. For any totally disconnected closed set A ⊆ R, there exists a function
f : R → R, whose set of continuity points coincides with A, such that Vf = R, and
more precisely

D−f(x) = −∞ and D+f(x) = +∞ , for every x ∈ R .

Recall that a Smith–Volterra–Cantor set is a totally disconnected closed set
C, contained in [0, 1], having any assigned Lebesgue measure µ(C) ∈ ]0, 1[ . It-
erating its construction on any interval [n, n + 1], with n ∈ Z, we could have a
totally disconnected closed set A with “almost full” measure.

A further question now arises:

Q3. If Vf = R, can the function f : R → R be continuous on a dense set of points?

The proof of Theorem B.0.2 and Theorem B.0.3 are provided in the next sec-
tion. They are based on the knowledge that every monotone function is differ-
entiable almost everywhere, and on some simple properties of continued frac-
tions.

B.1 Proofs

We denote by µ be the Lebesgue measure on R.

Proof of Theorem B.0.2. By contradiction, let [a, b] ⊆ Vf , with a < b. Let (xn)n
be a sequence in [a, b] such that f(xn) → inf f([a, b]). Passing if necessary to a
subsequence, we can assume that xn → x̌, for some x̌ ∈ [a, b]. We have two
cases.

Case 1: x̌ ∈ [a, b). We will prove that f is increasing in (x̌, b], hence almost
everywhere differentiable there, a contradiction.

By contradiction, let α, β in (x̌, b] be such that α < β and f(α) > f(β). Being
x̌ < α and f(α) > inf f([a, b]), there exists n such that xn < α and f(xn) <
f(α). Since f is upper well behaved, there is a x̂ ∈ [xn, β] such that f(x̂) =
max f([xn, β]). Being f(x̂) ≥ f(α) > max{f(xn), f(β)}, it has to be x̂ ∈ (xn, β),
whence D−f(x̂) ≥ 0 ≥ D+f(x̂), a contradiction, since x̂ ∈ Vf .

Case 2: x̌ = b. One proves in an analogous way that f is decreasing in [a, b),
hence almost everywhere differentiable there, a contradiction.
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The proof is thus completed.

Remark B.1.1. If we define a function f : I → R to be lower well behaved when
(−f) is upper well behaved, then it can be proved that the set

Λf := {x ∈ I : D−f(x) > D+f(x)}

is totally disconnected.

Let us now go for the proof of Theorem B.0.3. In the following, we allow an
interval to be reduced to a single point. It will be useful to consider the function
F♯ : R → [0, 1] defined as

F♯(x) =

{
2
√
x(1− x) , if x ∈ [0, 1] ,

0 , otherwise .

We first need to prove the following two lemmas.

Lemma B.1.2. Let A be a totally disconnected closed set. Then, there exists a nonneg-
ative continuous function σA : R → R such that:

• σA is differentiable on R \ A ;

• for all x ∈ A one has D−σA(x) = −∞ and D+σA(x) = +∞ ;

• σA(x) = 0 if and only if x ∈ A.

Proof. We first prove the result in the case when A is bounded. Without loss
of generality we can assume that A ⊆ (0, 1). Since A is closed, its complement
in (0, 1) can be written as an at most countable union of pairwise disjoint open
intervals Un = (an, bn), with n ≥ 1. We will treat in detail only the case when
there are infinitely many of them (in the other case A has only finitely many
points, and the proof is much easier). We can then write

A = (0, 1) \
⋃
n≥1

Un .

We define R1 = [0, 1] and, for every n ≥ 2,

Rn = [0, 1] \
n−1⋃
j=1

Uj .

The following properties hold true:

• Un ⊆ Rn , for every n ≥ 1 ;
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• R1 ⊇ R2 ⊇ · · · ⊇ Rn ⊇ · · · ;

•
⋂
n≥1

Rn = A ∪ {0, 1} .

Moreover, for n ≥ 2 the setRn is the union of n pairwise disjoint closed intervals

Rn = Sn,1 ∪ Sn,2 ∪ · · · ∪ Sn,n .

We set S1,1 = R1 = [0, 1]. For every n ≥ 1 there exists an integer H(n) ∈
{1, . . . , n} such that Un ⊆ Sn,H(n). For simplicity, let us introduce the notation

ρn = µ
(
Sn,H(n)

)
.

Note that, since A is totally disconnected, we have

lim
n
ρn = 0 . (B.1)

We define the function σ̃A : R → R as

σ̃A(x) =
∞∑
n=1

√
ρn F♯

(
x− an
bn − an

)
.

Notice that, for each x ∈ R, the above sum has at most one non-zero addend. It
is clear that σ̃A(x) ≥ 0 for all x ∈ R, and that

A = {x ∈ (0, 1) : σ̃A(x) = 0} .

If x ∈ (0, 1) \ A, then x ∈ Un for some n, hence σ̃A is differentiable there. How-
ever, σ̃A(x) = 0 for every x ∈ R \ (0, 1). We thus need to modify σ̃A outside
some interval [δ, 1 − δ], with δ ∈ (0, 1), containing A in its interior. It is indeed
possible to find a function σA : R → R, which coincides with σ̃A on [δ, 1−δ], and
is continuously differentiable on (−∞, δ] ∪ [1 − δ,+∞), being strictly positive
there, and

σA(x) = 1 for every x ∈ (−∞, 0] ∪ [1,+∞) .

This function σA : R → R is differentiable on R \ A and it is such that

A = {x ∈ R : σA(x) = 0} .

We would like to prove that, for any x ∈ A, the function σA is continuous at x,
with D−σA(x) = −∞ and D+σA(x) = +∞.

Suppose then x ∈ A, and so σA(x) = 0 . For every n ≥ 1 we can find an index
N(x, n) ∈ {1, . . . , n} such that x ∈ Sn,N(x,n). Let us first focus our attention on a
right neighborhood of x. We consider two cases.
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Case 1. Assume inf{y ∈ A : y > x} > x. Then x = an, for a certain index
n. In particular, Un ∪ {x} = [an, bn) is a right neighborhood of x, and it is easily
seen that limy→x+ σA(y) = 0 and D+σA(x) = +∞.

Case 2. Assume inf{y ∈ A : y > x} = x. In this case, Sn,N(x,n) contains a right
neighborhood of x, for every n ≥ 1, and

Sn,N(x,n) ∩ {y ∈ (x, 1) : y /∈ A} =
⋃
j∈Jn

Uj ,

where Jn is an infinite set of integers, such that

lim
n

(min Jn) = +∞ . (B.2)

We first prove that σA is continuous from the right at x. Fix ε > 0. By (B.1)
and (B.2), there exists n̄ ≥ 1 such that

n ≥ n̄ ⇒ ρj < ε2 for every j ∈ Jn . (B.3)

For any y ∈ Sn̄,N(x,n̄) ∩ (x, 1) we have that, either y ∈ A, hence σA(y) = 0, or
y ∈ Uj for a certain j ∈ Jn̄ ; in this case, by (B.3),

σA(y) =
√
ρj F♯

(
y − aj
bj − aj

)
≤ √

ρj < ε .

We have thus proved that 0 ≤ σA(y) < ε for every y in a right neighborhood of
x, and so limy→x+ σA(y) = 0.

We now prove that D+σA(x) = +∞. We claim that there exists a strictly
increasing sequence (nk)k of positive integers such that

Snk,H(nk) = Snk,N(x,nk) . (B.4)

Indeed, set n1 = 1. Then, for some m ≥ 2 we know that it will be

S2,N(x,2) = S3,N(x,3) = · · · = Sm,N(x,m) ̸= Sm+1,N(x,m+1)

if and only if the sets U1 , U2 , . . . , Um−1 have an empty intersection with S2,N(x,2),
while Um ⊆ S2,N(x,2). We see that in this case Sm,H(m) = Sm,N(x,m); such an m
is denoted by n2. Then, one proceeds inductively: assume that nk has been
defined, for a certain k ≥ 2; for some m ≥ nk + 1 it will be

Snk+1,N(x,nk+1) = Snk+2,N(x,nk+2) = · · · = Sm,N(x,m) ̸= Sm+1,N(x,m+1)

if and only if the sets Unk
, Unk+1 , . . . , Um−1 have an empty intersection with

Snk+1,N(x,nk+1), while Um ⊆ Snk+1,N(x,nk+1). We see that Sm,H(m) = Sm,N(x,m); such
an m is denoted by nk+1.
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We have thus defined the sequence (nk)k for which (B.4) holds. Denote by
x̂nk

the midpoints of the intervals Unk
. Since, by (B.4),

x ∈ Snk,N(x,nk) = Snk,H(nk) and x̂nk
∈ Unk

⊆ Snk,H(nk) ,

it has to be [x, x̂nk
] ⊆ Snk,H(nk), hence x̂nk

− x ≤ ρnk
. Then, by (B.1),

D+σA(x) ≥ lim
k

σA(x̂nk
)− σA(x)

x̂nk
− x

≥ lim
k

√
ρnk

ρnk

= lim
k

1
√
ρnk

= +∞ .

A similar argument shows that limy→x− σA(y) = 0 and D−σA(x) = −∞, so
that the proof is completed, in the case when A is bounded.

Let us now consider the case when A is unbounded both from below and
from above. We can define a bilateral sequence (xn)n∈Z of points, not belonging
to A, such that xn+1 − xn ≥ 1 for every n ∈ Z. Define An = A∩ [xn, xn+1], for ev-
ery n ∈ Z. Notice that An is closed, totally disconnected and bounded, for every
n ∈ Z. Applying the above procedure with An instead of A, we obtain the cor-
responding functions σAn , which we denote by σn. Notice that, by construction,
for every n we have that

σn(xn) = 1 , σn(xn+1) = 1 , and σ′
n(xn) = σ′

n(xn+1) = 0 .

We define the function σA : R → R as

σA(x) = σn(x) , for every n ∈ Z and x ∈ [xn, xn+1] ,

It is readily verified that σA well-defined, continuous on all R, and differentiable
on R \ A.

The cases when A is unbounded only from below or only from above can be
obtained adapting the procedure adopted in the previous two cases.

Lemma B.1.3. Let ψ : R → R be a non-negative continuous function, and define
f(x) = ψ(x) · R(x), where

R(x) =

 1 , if x = 0 or x ∈ R \Q ,

2− 1

p
, if x ∈ Q \ {0} and |x| = p

q
with gcd (p, q) = 1 .

Then, the set of continuity points of f coincides with the set of zeros of ψ; moreover,

• if ψ(x) ̸= 0, then D−f(x) = −∞ and D+f(x) = +∞ ;

• if ψ(x) = 0, then D−f(x) = 2D−ψ(x) and D+f(x) = 2D+ψ(x).

Proof. The result is proved by means of the theory of continued fractions, for
which we refer to [82]. We fix x ∈ R and consider two cases.
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Case 1: ψ(x) ̸= 0. It is easy to prove that f is not continuous at these points.

If x ∈ (0,+∞) \Q , let (cn(x))n∈N be the sequence of convergents of the con-
tinued fraction representing x. Define

x+n =
a2n
b2n

= c2n(x) , x−n =
a2n+1

b2n+1

= c2n+1(x) .

The sequence (x+n )n converges to the right while (x−n )n converges to the left to x.
Since the fractions cn(x) are in lowest terms, we have

f(x+n )− f(x)

x+n − x
=

(
2− 1

a2n

)
ψ(c2n(x))− ψ(x)

c2n(x)− x
→ +∞ ,

because the numerator tends to ψ(x) > 0 as n→ +∞. Analogously,

f(x−n )− f(x)

x−n − x
=

(
2− 1

a2n+1

)
ψ(c2n+1(x))− ψ(x)

c2n+1(x)− x
→ −∞ ,

Hence, D+f(x) = +∞ and D−f(x) = −∞.

If x ∈ (0,+∞)∩ Q , let x = p
q

with gcd(p, q) = 1 , and define, for every n ∈ N,

y+n =
p

q
+

1

(2q)n
=

2npqn−1 + 1

2nqn
, y−n =

p

q
− 1

(2q)n
=

2npqn−1 − 1

2nqn
.

For every n ≥ 2, the fractions are reduced to lowest terms, while their numera-
tors tend to infinity as n→ +∞. So,

f(y+n )− f(x)

y+n − x
=

(
2− 1

2npqn−1 + 1

)
ψ (y+n )−

(
2− 1

p

)
ψ (x)

(2q)−n
→ +∞ ,

because the numerator tends to 1
p
ψ(x) > 0 as n→ +∞. Analogously,

f(y−n )− f(x)

y−n − x
= −

(
2− 1

2npqn−1 − 1

)
ψ (y−n )−

(
2− 1

p

)
ψ (x)

(2q)−n
→ −∞ .

Hence,D+f(x) = +∞ andD−f(x) = −∞. We have thus proved the conclusion,
in this case, for every x > 0.



B.1 Proofs 167

A similar argument leads to the conclusion when x < 0. Finally, if x = 0, we
define, for every n ≥ 1,

z+n =
n+ 1

n2
, z−n = −n+ 1

n2
,

so that

f(z±n )− f(0)

z±n − 0
=

(
2− 1

n+ 1

)
ψ (z±n )− ψ (0)

z±n
→ ±∞ ,

since ψ(0) > 0, hence proving again that D+f(0) = +∞ and D−f(0) = −∞.

Case 2: ψ(x) = 0. The continuity of f at x is trivial, since

ψ(y) ≤ f(y) ≤ 2ψ(y) , for every y ∈ R . (B.5)

The function
rx(y) =

ψ(y)− ψ(x)

y − x
=

ψ(y)

y − x

is continuous in its domain R \ {x}, and

rx(y)(y − x) ≥ 0 , for every y ∈ R \ {x} . (B.6)

Moreover,

D+ψ(x) = lim sup
y→x+

rx(y) , D−ψ(x) = lim inf
y→x−

rx(y) .

Correspondingly, we can find two sequences of irrational numbers (ξ−n )n in
(−∞, x) and (ξ+n )n in (x,+∞) such that limn ξ

±
n = x and

lim
n
rx(ξ

+
n ) = D+ψ(x) , lim

n
rx(ξ

−
n ) = D−ψ(x) .

We now assume x > 0. Recalling the notation (cn(ζ))n for the sequence of
the convergents of the continued fraction representing ζ /∈ Q, we can find two
sequences of positive rational numbers (ζ±n )n such that

ζ−n = c2κ(n)+1(ξ
−
n ) =

γ−n
δ−n

and ζ+n = c2κ(n)(ξ
+
n ) =

γ+n
δ+n

,

where the choice κ(n) > n is such that |ξ±n − ζ±n | < n−1, |rx(ξ±n )− rx(ζ
±
n )| < n−1,

and γ±n > n. In particular, we can ensure that limn ζ
±
n = x and

lim
n
rx(ζ

+
n ) = D+ψ(x) , lim

n
rx(ζ

−
n ) = D−ψ(x) .
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Finally,

f(ζ+n )− f(x)

ζ+n − x
=

f(ζ+n )

ζ+n − x
=

(
2− 1

γ+n

)
ψ(ζ+n )

ζ+n − x
→ 2D+ψ(x) ,

f(ζ−n )− f(x)

ζ−n − x
=

f(ζ−n )

ζ−n − x
=

(
2− 1

γ−n

)
ψ(ζ−n )

ζ−n − x
→ 2D−ψ(x) .

Hence, D+f(x) = 2D+ψ(x) and D−f(x) = 2D−ψ(x), taking into account (B.5)
and (B.6).

The cases when x < 0 or x = 0 can be carried out similarly. The proof is thus
completed.

The proof of Theorem B.0.3 is now an immediate consequence of Lemma B.1.3,
taking as ψ the function σA provided by Lemma B.1.2.
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