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Introduction

Ecology is the study of the interrelationships of living organisms with their physical en-
vironment and each other. It considers organisms at individual, community, ecosystems
and biosphere levels. It studies different topics:

- The development, both of ecosystems and of adapting individuals

- The movement of materials and energy through communities

- Interactions among species as cooperation and competition

- The abundance and distribution of species among different environments.

A very fertile subject is the one of bacterial communities, providing huge amounts of
data that allow for the application of quantitative methods, statistical analysis and
mathematical modeling.

Trying to make an estimate of the amount of life that belongs to each kingdom
(animals, plants, bacteria, etc) bacteria turn out to be way more important than we
would predict by everyday experience. They make up for 35 times the total weight of
animals on the planet (for a very nice and surprising representation of life on earth look
[60]) and outnumber human cells inside our own bodies by a factor ten [54].

Bacteria appear simpler then other organisms. While many animals and plants are
composed by up to 1014 cells, bacteria are unicellular. Moreover, they have no nucleus
to contain their DNA and organelles, usually keeping their entire genetic information in
a single loop of DNA.

Nevertheless, if we look at their evolutionary success we realize that simple does not
imply uneffective.

On the contrary, bacteria are among the most adaptable kingdoms, as they are found
in every habitat on Earth: from soils, rocks and oceans to very extreme ones as arctic
ices an underwater volcanoes. Some live in or on other organisms, plants and animals,
including humans.

While some bacteria can cause diseases in animals or plants, most are harmless
and are beneficial ecological agents whose metabolic activities sustain higher life-forms.
Other bacteria are symbionts of plants and animals, where they carry out important
functions for the host, such as nitrogen fixation and cellulose degradation. Without
them, soil would not be fertile, and dead organic material would decay much more
slowly [8, 1].
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We wrote about bacteria as if they were always identifiable as single objects and,
spatially, they surely are, being well defined by a membrane that discriminates between
what is inside and what outside. But, considering them from an ecological perspective,
the image often becomes more complex. In nature, bacteria are found in many different
conditions but, usually, they are not found alone. Individuals are often just a component
of much more important and diversified system: communities.

Environmental samples reveal ensembles of hundreds or thousands of different bac-
terial species, living together and mutually interacting. They communicate, harm one
another and exchange resources, drastically modifying the environment. Interactions
can act at small cellular distances or between individuals kilometers away. Along our
intestinal tract there are species interacting at distances of several meters while two
low mobility bacteria on two sides of a grain of sand could spend their whole existence
without noticing one another. Moreover, small microscopic interactions can have huge
macroscopic impacts. For example, the action of photosynthetic cyanobacteria led to
the oxygenation of our atmosphere and enabled the evolution of macroscopic organisms,
including animals [45, 55].

To better understand how little we know about microbial interaction we can look
at one of the main experimental procedures to investigate bacteria: physical isolation
and culture. Since its invention in 1860 by Pasteur this has been the golden standard
to study bacteria, and still is in many cases. It aims at isolating one bacterial species
from the whole community by diluting it on a resource rich surface. If diluted enough
there can remain up to just 1 individual that, growing, generates a colony of bacteria
all belonging to the same species. Experimentalists can then see a unique and defined
morphology of the colony and study its biology and, lately, read its DNA by sequencing
the genome. But, looking at the amount of bacteria that have been isolated up to now
we get an astonishing result. Just between 2% and 50%, depending on the origin of the
sample, of species are considered culturable in a laboratory [61], and these percentages,
already small, are decreasing, as we discover new species faster than we isolate them.

On the other hand, bacterial physiology changes upon external conditions. What we
measure in the lab, placing them alone on a resource rich surface, can be dramatically
different from what is happening in nature, where they are interacting with hundreds of
neighbours.

It becomes then clear the importance of being able to study the community as a
whole, keeping the setting as it is in nature and focusing on the interplay between ex-
ternal conditions and internal interactions. From this perspective - many interacting
objects with properties emerging from collective behaviours - it appears clear the grow-
ing interest of physics community towards ecology.

Along the thesis I will focus on two different aspects of community dynamics: the
characterisation of the communities stationary state and the effects of interactions on
their growth.

To introduce the first it is necessary to define two possible descriptions of a bacterial
community: species and functions. The first one is intuitive: determining how many
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individuals of each species are present in a community. The second is trickier. Bacteria,
but life in general, mainly uses proteins to accomplish tasks. Proteins are used for
structural and mechanics purposes, to transport molecules and as enzymes to catalyse
chemical reactions. They are produced by the cells following the instructions contained
in the DNA. Each DNA section encoding the information to produce one protein is a
gene.

We can interpret the genome (a filament of DNA in the case of bacteria, the set of
chromosomes for humans) as a set of instructions to build tools and associate each set
of tools to a function performed by the organism. By abstracting, an organism can be
identified by the collection of functions it is able to perform. Similarly, communities
can be characterised by the set of functions performed by their individuals. For ex-
ample, analysing a savanna we could both determine how many antelopes, giraffes and
lions there are or how much grass can be eaten per year by all the animals together,
independently from the single species contribution to the “eating grass function”.
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Figure 2 | Carriage of microbial taxa varies while metabolic pathways
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and 16S data; bars indicate relative abundances colored by microbial phyla
from binned OTUs (a) and metabolic modules (b). Legend indicates most
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retroauricular crease. A plurality of most communities’ memberships consists
of a single dominant phylum (and often genus; see Supplementary Fig. 2), but
this is universal neither to all body habitats nor to all individuals. Conversely,
most metabolic pathways are evenly distributed and prevalent across both
individuals and body habitats.
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metagenomic enzyme class abundances to nearest neighbour, inter-quartile
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Figure 1: Figure taken from [15] Microbial phyla composition (phyla are one taxonomic
category, broader that species) varies while metabolic pathways (functions) remain stable
within healthy hosts. Vertical bars represent microbiome samples by body habitat in
the seven locations. Bars indicate relative abundances colored by microbial phyla (a)
and metabolic modules (b). A plurality of most communities’ memberships consists of
a single dominant phylum, but this is universal neither to all body habitats nor to all
individuals. Conversely, most metabolic pathways are evenly distributed and prevalent
across both individuals and body habitats.

As shown in Fig.1, from the analysis of bacterial communities [15] arise a remarkable
behaviour: communities living in similar environments show a stable functional compo-
sition opposed to an high variability of species composition. Species vary a lot across
samples but overall the functions performed by the community remain constant.

In Chapter 1 and 2, we show how such an experimental observation can be explained
by mathematical models and develop a stationary state description of the community us-
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ing macroscopic observables. We show that in consumer resources models, a widespread
representation of bacterial communities, external resources and interactions among bac-
teria uniquely determine the functional composition of the community while leaving the
species composition free to fluctuate. Eventually we show how the quantities charac-
terising the stationary state are combined in a closed set of equations, determining a
thermodynamic-like description of communities at equilibrium.

In Chapter 3 we try to deepen our knowledge on functional stability from a data
oriented perspective by moving the first steps toward a null model for community com-
position. The low variability shown in Fig. 1 is, up to now, mainly qualitative. To be
able to asses whether what we see is really more stable than expected it is necessary to
estimate the functional variability of randomly assembled communities. What are the
relevant parameters to consider when assembling a community and which determine a
functional variation? We describe the importance of bacteria genome size in a commu-
nity and develop a new method to obtain an estimate of the genome size distribution
from the functional composition data.

The last Chapter (4) deals with a problem quite different from the previous ones,
looking at stochastic exponential processes and cooperation.

Stochastic exponential processes are good mathematical descriptions of quantities
growing by a multiplicative factor. They represent, among others, ecological processes,
as population dynamics, and economical ones, like stock market dynamics. Therefore,
while the previous chapters investigate stationary states, we here look for describing the
first, exponentially growing, phases of expansion of ecological communities. Particularly,
we consider how cooperation can evolve and be stable in such systems.

Cooperation is a long debated subject since the publication of Origin of Species by
Darwin, where an explanation of the motor of evolution is found

I use this term in a large and metaphorical sense including dependence of one
being on another, and including (which is more important) not only the life
of the individual, but success in leaving progeny. Two canine animals, in a
time of dearth, may be truly said to struggle with each other which shall get
food and live. But a plant on the edge of a desert is said to struggle for life
against the drought.... As the mistletoe is disseminated by birds, its existence
depends on birds; and it may metaphorically be said to struggle with other
fruit-bearing plants, in order to tempt birds to devour and thus disseminate
its seeds rather than those of other plants. In these several senses, which
pass into each other, I use for convenience sake the general term of struggle
for existence.

The debate around the nature of the “struggle for existence” has been intense. The
competitive interpretation, spread by the Darwin’s first disciple, Huxley, and resumed
in the “Nature, red in tooth and claw” line from Tennyson, faced the cooperative one,
strong in the Russian literature and spread in western countries by the Kropotkin’s book
Mutual Aid.
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Making a long story short and overcoming the philosophical implications, one of the
keys of the discussion lies in the concept of evolutionary stability (if you want the whole
story read the very nice article [26]).

Game theory come in helpful to formalise the concept. We can associate each char-
acter (of function) expressed by organisms with an expected increase/decrease of repro-
ducing. For example, usually being faster helps to survive.

Imagine life as a game interpreting every possible character as a strategy that organ-
isms can play. In the game, each strategy returns a payoff, depending on its success and
individuals reproduce proportionally to the payoff obtained.

Lets consider a simple game , where individuals can adopt one of two mutually
exclusive strategies, for example having small or big claws. A a strategy is evolutionary
stable if, when present in the population, it cannot be ousted by the competing one.

We can represent the “game” via a payoff matrix. each entry of the matrix gives the
payoffs of the two individuals for a given choice of strategy
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Small
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2,2 2,1

1,2 1,1
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B

Figure 2: Two payoff matrices examples. Rows indicate individual 1 strategies while
columns individual 2. The entries are the payoff obtained by individual 1, individual 2.
A the payoff matrix of a simple competitive game with trivial solution with evolutionary
stability in “Big claws”. B The prisoner dilemma payoff matrix. Even though full
cooperation is a better setting than full defection for both individuals, the advantage of
cheating brings the system towards full defection, a non optimal stable strategy.

In the simple example of Fig.2A, having big claws gives an advantage, returning an
higher payoff than having small ones. We can see that such an example rapidly brings
to the stability of big claws in the population as, if all individuals have small claws, a
mutation providing big ones would make an individual reproducing twice as much and
transmitting the big claws to the offsprings. On the contrary, in a big claws population,
any individual with small claws would give rise to a slow growing genealogy, disappearing
in time.

This example shows how a competitive strategy immediately reveals the evolutionary
stability. The same procedure is a little less obvious for cooperation.

Cooperating means helping other individuals, spending energies by doing it, with no
guaranteed return. The setting, shown in Fig.2B, usually states that if two individuals
cooperate get an higher payoff that defecting (not cooperating). But, at the same time,
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the highest payoff is obtained by cheating, defecting while the partner is cooperating.
For example if two can choose to share the hunting revenues, by cooperating they have
an higher probability to eat meat everyday, while defecting they could get a lot of food
one day but starve the next one. Cheating one obtains all the meat he is able to hunt
plus half of the partner’s.

Such a system, even if for the group cooperation is better than defection, providing
to everyone an higher payoff, has a unique evolutionary stable state in defection. In
fact in a population of cooperators any defector will have an advantage, growing faster
and soon becoming the dominant strategy, while a population of defectors will never be
invaded by cooperators that get a lower payoff. In game theory, this type of type of
payoff matrix is called Prisoner Dilemma where individuals, aware of the payoffs, both
end up defecting for the fear of a cheating partner.

Nevertheless, cooperation is observed in nature, alimenting a discussion on the mech-
anisms that determine its stability, overcoming the above dilemma. Up to now, five differ-
ent mechanisms have been described [43]. The ingredients required to make cooperation
stable span between spatial localization of cooperators to reciprocity, i.e. cooperating
just if the partner is doing the same.

In Chapter 4 we show how in stochastic multiplicative environments, where the
payoff of one game is a multiple of the payoff of the previous one, cooperation become
stable when looking at long term returns. This suggests a 6th, new way, for evolutionary
stability of cooperation, opening new interesting possibilities for describing processes
and finding new optimal solutions in both ecology and economics.



Chapter 1

Functional Stability and
Consumer-Resource Models

This chapter is part of a paper uploaded on the Arxiv [31]
Microbial communities are functionally stable and taxonomically variable: species

abundances fluctuate over time and space, while the functional composition is robust
and reproducible. These observations imply functional redundancy: the same function is
performed by many species, so that one may assemble communities with different species
but the same functional composition. The clarity of this observation does not parallel
with a theoretical understanding of its origin. Here we study the eco-evolutionary dy-
namics of communities interacting through competition and cross-feeding. We show that
the eco-evolutionary trajectories rapidly converge to a “functional attractor”, character-
ized by a functional composition uniquely determined by environmental conditions. The
taxonomic composition instead follows non-reproducible dynamics, constrained by the
conservation of the functional composition. Our framework provides a deep theoretical
foundation to the empirical observations of functional robustness and redundancy.

1.1 Introduction

The staggering taxonomic diversity of microbial communities parallels with their re-
markable functional robustness [10, 35]. At the species and strain level, their taxonomic
composition is highly variable across communities with similar environmental conditions
and over time. This variability is also observed in microcosmos experiments, under very
controlled conditions [24]. On the other hand, the functional composition of commu-
nities, estimated for instance using metagenomic data [34, 35], appears to be highly
reproducible and stable over time. This — only apparent — contradiction strongly
suggests that microbial taxa are highly functionally redundant: since many species can
perform the same functions, there exist multiple species combinations corresponding to
the same functional profile.

While the replicability of the functional community composition is robust and ob-
served across ecosystems, including laboratory experiments with controlled conditions

11
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[24], its origin is unknown. This lack of understanding is, in part, because our theo-
retical understanding of ecological models focuses on species composition. Population
abundances are the standard degrees of freedom of mathematical models of community
dynamics.

Consumer-resource models are the main modeling framework for microbial commu-
nities. Their origin goes back to the classic work of MacArthur and Levins [36], which
has been extensively studied and discussed in the following decades [59, 14], mostly to
describe the coexistence of a handful of species. Recently, these models have been further
extended to consider facilitation through cross-feeding [24, 38, 11], where species change
resource availability not only by consumption, but also because they release in the en-
vironment the waste products of their metabolism. These models qualitatively describe
experimental results [24, 17] and have the flexibility to reproduce patterns observed in
empirical microbial communities [37].

Once the parameters of the model are set and an initial pool of species is chosen,
populations converge for large times to an equilibrium point. Under some mild condi-
tions, identified over decades of theoretical work [13, 29], consumer-resource models are
characterized by a globally stable equilibrium: the steady state is independent of the
initial population abundances and resource concentrations. The competitive exclusion
principle — one of the most fundamental results of theoretical ecology — limits the
number of species that can coexist in a stable equilibrium: diversity cannot exceed the
number of resources. While this bound is hard, it is often not realized, as only fewer
species can coexist [53, 16].

The number and identity of the species coexisting at equilibrium is in fact deter-
mined not only by the ecological dynamics, but also by the initial pool of species. This
initial pool of species is often interpreted as the metacommunity diversity: the ecological
dynamics unfolds in a local community which is coupled to the metacommunity by rare
migrations. Most of the recent progresses in understanding the assembly of large ecolog-
ical communities have been driven by the assumption of “random” species pools [9, 4,
16]. This choice assumes that the parameters characterizing species’ physiological and
ecological parameters are independently drawn from some distribution. This assumption
implicitly underlies a separation of spatial and temporal scales: the ecological dynamics
determining the community composition in the local community occurs independently
of the evolutionary processes determining the pool of diversity of the metacommunity.

Instead of assuming a fixed species pool, one can let evolve dynamically individual
traits, including the ones specifying their interactions with other individuals and the
environment. Classic work in adaptive dynamics [22] has shown how, starting from
a clonal population, diversification can evolve under general conditions on frequency-
dependent selection. Several works have then studied eco-evolutionary dynamics of
interacting populations [3, 18], by allowing individuals’ traits to be subject to mutations
and be inherited by the following generation. “Intrinsic” fitness, how fast populations
grow in an optimal environment, and niche differences, how the growth of different
populations is coupled, both influence community evolution and is their interplay to
determine the observed diversity of an evolved community [25].
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A key difficulty in interpreting the outcomes of eco-evolutionary dynamics is the
fact that there are no natural degrees of freedom to characterize the evolution of the
community. The identity of populations, and not only their abundance, is under constant
change.

Here we show that the functional composition emerges as the natural variable that
characterizes the composition of the community. We consider the broad framework
of consumer-resource-crossfeeding models under an explicit eco-evolutionary dynamics,
where strains differ in their resources preference and their intrinsic fitness. Higher re-
source intakes are balanced by a lower efficiency (or equivalently, higher mortality) im-
plemented by a metabolic trade-off [58, 48]. We show that the evolutionary dynamics
converge rapidly to a stationary and reproducible functional composition — here defined
as the fraction of individuals able to grow on a given resource — which we analytically
predict. Interestingly, we show that, once the functional attractor is reached, the strain
dynamics is then dominated by fitness differences, implying that functional composition
is robust (independent of small fitness differences) and redundant (is obtained under
multiple strain compositions).

1.2 Results

The ecological dynamics is defined by standard consumer-resource-crossfeeding equa-
tions [38]. In our framework, individuals are characterized by a resource preference
vector that determines the intake rate of each of the R resources available in the envi-
ronment (relative to a maximum). An individual with preference ai = 0 will not consume
resource i, while an individual with preference ai = 1 will consume it with a maximum
intake rate νi [58]. Consumed resources are converted into biomass with finite efficiency
(equivalent to an inverse yield). We assume that the yield (or equivalently the death
rate, see Materials and Methods) depends linearly on the number of resources consumed:
the more resources an individual can grow on, the less efficiently it grows.

Two populations with identical resource preferences can differ in the values of other
physiological parameters (e.g., efficiency or mortality). Such differences, which we refer
to as intrinsic fitness, determine which population of the two survives when competing.
We will use the word ‘strain’ to identify a group of individuals with equal resource
preferences and intrinsic fitness.

Resource dynamics are described explicitly. Resources are introduced in the system
with a resource-specific rate hi and consumed by the individuals present in the com-
munity. Their concentrations decrease because of consumption but also vary due to
cross-feeding. A fraction 1 − ` of resources consumed by each individual is used for
growth, while a fraction ` is transformed into different resources and released again in
the environment [38]. The cross-feeding matrix, with elements Dij , specifies the relative
rates of resource transformation (see Materials and Methods for its parameterization).
The per-capita growth rate of a strain µ is a function gµ(c) of the resource concentra-
tion c, which, in turn, depends dynamically on the population abundance because of
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consumption and cross-feeding. We consider the following choice

gµ(c) = ηµ

(
(1− `)

R∑
i=1

aµiri(ci)−
1

τ

(
1 + χ

R∑
i=1

aµi

)
(1− εµ)

)
. (1.1)

The values of ηµ and τ are arbitrary and their choice does not affect the results. The func-
tional form ri(ci) encodes the functional response. Both linear and saturating (Monod-
like) functional responses produce the same results (see Fig.A.4). The parameter χ
quantifies the fitness cost of consuming one resource and implements the metabolic
trade-off. The form of the trade-off generalizes the case considered in [58, 48], which
assumes a constant total energy budget devoted to metabolism (i.e. a constant value of∑

j aσj). In our case, the total metabolic energy budget is not fixed to a constant but
allowed to vary. In the Materials and Methods, we show that the fixed energy budget
scenario [58, 48] corresponds to the limit of large values of χ. Including a constant term
in the metabolic cost (set equal to 1 in our framework without loss of generality) is
related to a basal cost, related to housekeeping functions. The quantity εµ determines
the intrinsic fitness value.

In our framework, both resource preferences and intrinsic fitness values are subject
to mutations and evolution. We consider different implementations of the mutational
steps (e.g., including different scenarios for the relative rate of Horizontal Gene Tranfer,
see Materials and Methods) which, however, do not affect the results. The timescales
between two successive successful mutations is comparable with the ecological timescale,
set by the ecological dynamics. We assume that a mutation of the resource preference
always corresponds to a mutation of the intrinsic fitness, which is drawn at random from
a fixed distribution with width ε. The parameter ε sets the typical difference of intrinsic
fitness values between two individuals. We focus on the case of small fitness differences,
and we extensively explore the effect on the eco-evolutionary trajectories of increasing
the value of ε.

Fig 1.1 shows a sample of eco-evolutionary trajectories resulting from our framework.
Starting from a clonal population, a diverse community is rapidly assembled. Strain
abundances change abruptly following successful invasion events and keep changing over
the whole duration of the simulations.

The final community structure is remarkably simple if, instead of analyzing strain
abundances, we focus on its functional composition. We define functional occurrence Fi
as the fraction of individuals able to grow on i (i.e., with ai = 1). After a short transient,
the functional occurrences and the total biomass N relax to the respective stationary
values F ∗i and N∗, which are very reproducible across different realizations.

Two phases characterize therefore the eco-evolutionary dynamics. The first one is an
initial-condition-dependent transient, where the community structure is mainly shaped
by rapid invasions. In the second phase, conversely, the community has converged to
a stable functional composition, which we will refer to as “functional attractor” in the
following, and slowly evolves reaching the final strain-level equilibrium.

The total biomass converges to a constant value during the second phase of the eco-
evolutionary dynamics, which affects therefore only the relative abundance of strains.
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Figure 1.1: Stability of functional occurrences Fi for communities evolving under a
consumer-resource model. The system is initialized with a small number of initial random
strains, chosen so that each gene is present at least once. The system evolves in a
chemostat with fixed resources input. When equilibrium is reached, one mutant is added
to the batch. The chemostat then equilibrates to a new fixed point and the procedure
is repeated until function and biomass reach stability. A: Time evolution of the strains
relative abundances for one realization of the system. B: Time evolution of functional
occurrences for three different realizations of the system. 15 resources are given. C:
Time evolution of the total biomass of the system. 20 realizations of the system are
shown for each value of average resources income.

The sequence of invasions and extinctions of strains is determined by the interplay of
fitness differences εµ and niche differences, related to the dissimilarity of the resource
preferences. Importantly, the trajectories of strain abundances are effectively restrained
to occur on the low(er)-dimensional space determined by the constraint enforced through
the functional occurrences F ∗i . In this second phase the community has thus reached
a “functional maturity” and the subsequent evolution only affects strain composition
while leaving unaltered the functional one.

The stability and reproducibility of the functional attractor suggest that it is possible
to predict analytically its properties. We considered a toy model of the eco-evolutionary
dynamics which aims at mimicking the effective exploration of the phenotypic space per-
formed by mutations. In particular, we consider only the ecological dynamics, initialized
with an infinitely large species pool, which encompasses all the possible strains (i.e., the
2R possible resource preferences). A similar approach has been considered to study a
simpler version of the model [58] (corresponding to the limit χ� 1 and no cross-feeding).
The toy model further postulates a timescale separation between resource and population
dynamics [58, 48], which is not assumed in the full eco-evolutionary dynamics.

The consumer-resource-crossfeeding model with infinite pool of diversity and no in-
trinsic fitness differences can be analytically solved. In Appendix A.2 we show that the
stationary functional occurrences F ∗i and the total biomass N∗ are given by

F ∗i = min{
heffi

χ

1

N∗
, 1} (1.2)
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and

N∗ =

∑
i h

eff
i

R(1 + χ
∑

i F
∗
i )

. (1.3)

The parameter heffi is the effective resource inflow in the system, which is given by
the combination of resources that are externally supplied and the ones produced via
cross-feeding. This quantity is in simple linear relation to the inflow rate of externally
provided resource hi through the cross-feeding matrix D (see Materials and Methods).

The analytical calculations are based on many simplifying assumptions (infinitely
large pool of diversity, not explicit resource dynamics, absence of fitness differences)
which do not strictly hold for the more complex setting of the eco-evolutionary model.
Nevertheless, Figure 1.2 shows that the predictions of eq. 1.2 and eq. 1.3 accurately
describe the outcomes of the eco-evolutionary dynamics.
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Figure 1.2: The theoretical predictions given by eq. A.10, A.11 (solid lines) are re-
produced by numerical integration of eq. A.1, A.2 (markers). A: Occurrence of the
phenotypes Fi as a function of resource income rates hi. According to equation A.10 the
most abundant resources (core) are consumed by all strains (Fi=1) while the remaining
ones only by a fraction Fi = hi

N∗χ . Notice that increasing χ reflects in a decrease of
the number of core resources. B: Dependence of the total equilibrium population N∗

(biomass) on the value of χ. Here we find a dependence on the average value of the
resources incomes h, which is absent for quantities in panel A. In each figure are repre-
sented 20 different noise realizations solutions of the system for each χ (A and each h
(B)

Resources can be partitioned in two groups based on their effective influx rate heffi .

If the influx rate is larger than a critical value heffc , then the ability to metabolize
that resource is a “core” function, shared by all the individuals in the community (i.e.,

F ∗i = 1). The value of heffc depends on both the spread of the effective influx rate (the
variability among the hi) and the metabolic cost χ. The higher the metabolic cost and

the variability, the higher the critical influx rate threshold heffc and, consequently, the
fewer the core resources.

At equilibrium, the resources with an influx rate below the critical threshold (i.e., the
non-’core’ resources) are consumed only by a fraction of the individuals. A linear relation

links the functional occurrence F ∗i with the effective resource influx rate heffi . The slope
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of this relation is simply linked to the metabolic cost and the total biomass, being equal
to (χN∗)−1 (see Materials and Methods). Combining equation 1.2 and 1.3, one can
obtain an explicit expression for N∗. Figure 1.1B shows that the analytical expression
for N∗ (as a function of the metabolic cost χ) correctly matches the observations of the
eco-evolutionary dynamics.

An emerging feature of the present framework is that the functional composition of
communities is extremely robust to fitness differences. We further explore this aspect by
considering community response to variation in intrinsic finesses. This variation mimics
the temporal or spatial heterogeneity of environmental factors that influence growth,
such as abiotic factors (temperature, pH, salinity, etc.) or phages with different host
ranges.

We consider two complementary scenarios, which aim at exploring cross-sectional
(across communities) and longitudinal (over time) variation. In the former case, we com-
pare the eco-evolutionary outcomes of several communities that share the same resource
input but have independent intrinsic finesses. Two individuals with the same resource
preference will have uncorrelated intrinsic fitnesses in two different communities. The
latter case assumes instead that intrinsic fitness fluctuates over time with a typical au-
tocorrelation timescale (see Materials and Methods). Over time ranges shorter than the
autocorrelation timescale, intrinsic fitness is approximately constant. Over times larger
than the autocorrelation timescales, the intrinsic fitness decorrelates and becomes an
independent variable.

Figure 1.3 shows the strain and functional composition of communities in the two
scenarios described above. The strain composition strongly differs across communities
or overtime, being highly sensitive to small intrinsic fitness differences. On the other
hand, the functional profile is left largely unaffected by fitness variation. These observa-
tions clearly show that functional redundancy naturally emerges in complex consumer-
resource-crossfeeding models, closely reproducing the phenomenology observed in micro-
bial communities [35].

1.3 Discussion

Our results shed light on the composition of large ecological communities. When the
pool of diversity is not a-priori constrained but is instead allowed to evolve, the complex
ecological dynamics can be decomposed in a fast, predictable, phase and a slow one,
contingent on the (small, yet relevant) fitness differences. The community composition
rapidly converges to a set of solutions, determined by resource availability. The following
dynamics are constrained on that subspace of solutions and is governed by the difference
in relative fitness. Remarkably, this separation of fast and slow components directly
map into functional and taxonomic composition: the former is robust and governed only
by effective resource influx rates, the latter is constrained by function, but free to move
along functionally equivalent directions.

The functional robustness and functional redundancy are the direct consequences of
the existence of the two dynamics phases that directly map onto taxonomic and func-
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Figure 1.3: Fitness differences allow to demonstrate how functional stability is encoded
within the model. While the populations/taxonomies becomes highly variable and het-
erogeneous, the functional composition is preserved and unaffected by stochasticity. A,B
show a collection of equilibrium configurations of systems with different realisations of a
static noise. C,D show the evolution of the composition of a system with a dynamically
varying noise .

tional variation. Functional robustness, the observation that functional composition is
stable over time and across communities, originates from the existence of a functional
attractor of the eco-evolutionary dynamics. While intrinsic fitness differences are small,
they are not negligible as they determine the taxonomic composition within the func-
tional attractor. Variation of the intrinsic fitness leads to functional redundancy, high
taxonomic variability with conserved functional profile.

The assumption of small intrinsic fitness differences is critical for the observations of
functional robustness and redundancy. Increasing the magnitude of fitness differences
affects also the functional profile. Typical intrinsic fitness differences of 1% do not alter
substantially the functional composition (see Figure A.1). Larger differences (of the order
of 10%) disrupt the structure of the functional attractor: the functional composition
is determined by the resource preferences of the individuals with the largest intrinsic
fitness and the functional profile becomes largely decoupled from the resource input.
Differences of 0.1% and smaller are indistinguishable from the analytical prediction and
the functional profile closely matches the one predicted by the resource influx rates.

The existence of these different regimes, where the functional composition is or is
not affected by intrinsic fitness differences, strictly relates to the identification of the
limiting factors shaping the communities. As mentioned before, in fact, the intrinsic
differences could be due to abiotic factors, but also to limiting factors (such as phages)
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other than resource availability. If resources are limiting, we can expect that other
factors have a minimal effect on strains’ success. On the contrary, if resources are not
the limiting factors and other mechanisms that determine strains’ growth and decline,
the distribution of the functional preferences in the population will not be robust, as it
will be subject to the fluctuations of the other limiting factors. Our framework could
be extended to explicitly include the factors responsible for intrinsic fitness differences
(e.g. phages).

The metabolic trade-off is an essential ingredient of our framework. We implemented
it as a fitness cost that is linear in the total rate of resource consumption. This choice
generalizes models with fixed total rate [58, 48] by including a basal maintenance cost.
This basal cost becomes negligible if the cost per gene, relative to the basal cost, becomes
very large. The presence of a non-zero basal cost determines the existence of core
resources, whose consumption is shared by all the individuals in the community. The
form of the functional attractor is a mathematical consequence of the linearity of the
metabolic trade-off. For linear trade-offs, the functional attractor is fully specified by the
functional composition and is, in the limit of negligible fitness differences, independent
of how functions are distributed across species. Non-linear trade-offs [12] could, in
principle, affect the properties of the eco-evolutionary attractor. In the Materials and
Methods, we explicitly consider both super-linear and sub-linear trade-offs and show that
our results are left qualitatively unvaried. The taxonomic composition is largely affected
by fitness differences, while the functional composition is robust. The stable functional
composition display core and non-core resources, which are (at least approximately),
linearly related to the effective resource influx rates.

A remarkable aspect of our framework is that functional composition — as opposed
to taxonomic composition — naturally emerges as the relevant, reproducible degree of
freedom suited to characterize ecological communities. Our results demonstrate in fact
that the emergence of a stable and reproducible functional composition is a universal
feature of consumer-resource-crossfeeding models [24]. This property is likely to hold
more generally and not to be restricted to consumer-resource systems or microbial com-
munities. We expect that a similar approach could be developed to study mutualistic
communities or pathogen dynamics.
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Chapter 2

An Equation of State for
Ecological Communities

We can even take a step further and try to create a thermodynamic-like description of
the community. The stable state can in fact be described by few quantities, univocally
determined by the external condition and put in reciprocal relation by closed equations.
These resemble the thermodynamic equations of state, creating a simple relations be-
tween the number of species S, the total population N and the functional abundances
Fi.

2.1 Introduction

We consider the broad framework of consumer-resource-crossfeeding models, which de-
scribe the joint dynamics of metabolites and populations. Individuals extract energy
from the environment by consuming externally provided resources. Their metabolisms
modify resource concentrations also by secretion and leaking of metabolites. As we have
shown in Chapter 1, under some mild conditions, these models are characterized by a
globally stable equilibrium. Once the parameters characterizing the community are set,
the system converge for large times to the same equilibrium point. If we start with a set
of species S and a set of resources R, some species will go extinct and we will end up
with a subset of S ≤ R coexisting species characterized by some population abundances,
independently of the initial population densities and resource concentrations.

What is extremely challenging in the analysis of these models, which fundamentally
hinders our ability to connect theory to empirical data, is to characterize in generality
the properties of the equilibrium point. To fully characterize a community with S species
and R resources one would need more than R(S + R)parameters, which are impossible
to measure reliably in realistic settings. It is therefore natural, and of paramount impor-
tance, to focus on the properties of these equilibria that are typical, being robust across
parametrizations.

The quest for general properties of equilibria has paralleled with the idea that such
general properties should become more and more apparent as the number of species (and

21
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resources) becomes larger and larger. This idea has been pioneered by May [39], who
showed that large, randomly interacting, communities respond to perturbations all in
the same way: of the S2 parameters characterizing the interaction between S species,
only an handful of statistical properties of those interaction do actually matter. These
results also apply to more realistic scenarios, which include different interaction types [6,
56], complex network structures [7, 28], and the effect of population abundances [23].

In the context of consumer-resources, powerful methods borrowed from disordered
systems have allowed to characterize the equilibrium point in the regime where the
number of resources R and the initial pool of species S is large [16].

The diversity of microbial communities strongly backs the idea that ecology should
“go big” [5] and theoretical efforts should be directed in understanding models with large
number of species. While undoubtely ecology should go big, there are multiple ways to
do so. The vast majority of efforts have been focused in the regime where the size of the
initial pool of species is comparable to the number of resources (|S| ∼ R � 1). While
competitive exclusion principle [21] inevitably bounds — in absence of fine-tuning — the
final number of species S, which is constrained not to exceed the number of resources
R, there is not an a-priori constraint on the effective size of the pool of species which
could potentially be part of a community. Here we challenge this assumption |S| ∼ R,
and consider the regime in which the pool of species is much larger than the number of
resources and the final number of species (|S| � R ≥ S).

Biochemistry operates in an high-dimensional space. While no estimate exists for
bacteria, it is estimated that in humans there are of the order of 105 metabolites [62].
This motivates R � 1. On the other hand, microbial evolution could allow — a-priori
— individuals to perform any combination of functions and grow on any combination
of substrates. The exploration process driven by evolution allows biology to operate
combinatorially in the biochemical space, suggesting |S| � R. The observed diversity in
a given community reflect that process of selection operated by the environment, which
effectively select a small number S of these potential variants.

In the simplest setting we consider, individuals of a species either consume or not con-
sume a given resource. The increase in growth rate caused by consuming more resources
is paralleled with an higher metabolic cost in being able to do so. For each resource
consumed, an individual pays a fitness cost χ necessary to maintain that function. Re-
sources are externally provided and depleted by consumers. The total energy content
of available resources H is not equally partitioned between resources. Each resource i
is characterised by its own quality qi, which represents the amount of energy than an
individual could extract from resources of i in a lifetime, in absence of competitors and
metabolic cost (see Materials and Methods). The community composition depends on
the initial pool of species S. Following the assumption |S| � R, we consider every
single 2R species obtained by considering every possible combination of consumed and
not consumed resources. We have therefore 2R +R equations describing the interacting
dynamics of population abundances and resources.



2.2. RESULTS 23

2.2 Results

2.2.1 Ecological Linkage Decoupling

In this section we rewrite our model in a form that allows to solve for its stationary
state.

With the choices and assumption explained in section A.1, and with individual fitness
εσ = 0, the model can be written as

dnσ
dt

= ησnσ

∑
i∈R

(1− `i)wiνiaσiri(ci)−
1

τ

1 +
∑
j∈R

χjaσj

 . (2.1)

dci
dt

= hi(ci)−
1

wi

∑
j

(δij − `jDij)wjνjr(cj)
∑
σ

nσaσj , (2.2)

The values of ησ contribute only to determine the time-scales of the process but do
not affect the fixed point or its stability. Therefore, we limit the calculation to the case
η = 1.

Let us introduce the relative species frequency xσ = nσ
N , where N =

∑
σ nσ is the

total biomass. We also introduce the functional occupancies

Fi =
∑
σ∈S

xσaσi, (2.3)

that is, the fractions of individuals able to consume each metabolite i. The Fi for
i = 1, . . . , R represent the functional profile of the community.

We can now replace the equation for the species biomasses nσ with the equations for
the relative abundances xσ and for the total biomass N :

dN

dt
=
∑
σ

dnσ
dt

= N

∑
j

(1− `j)wjνjFjrj(cj)−
1

τ
(1 +

∑
j

χjFj)

 , (2.4)

dxσ
dt

=
1

N

dnσ
dt
− nσ
N2

dN

dt
= xσ

(∑
i

[
(1− `i)wiνiri(ci)−

χi
τ

]
(aσi − Fi)

)
. (2.5)

The equation for the resource densities becomes

dci
dt

= hi(ci)−
N

wi

∑
j

Bijwjνjr(cj)Fj , (2.6)

where we named Bij := δij − `jDij .

Noticing that eqs. (2.4) and (2.6) depend only on the Fi, and not on the relative
abundances xσ, one would be tempted to write an equation for the Fi. However, if we
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do that, we discover that such equation is not closed, as it depends on Fij , the fraction
of individuals that consume both resource i and j (see Appendix B.1).

A set of closed equations can instead be obtained if we introduce the “community
structure function”

G({k}, t) = log

(∑
σ

xσ(t)e
∑
i kiaσi

)
. (2.7)

G is the generating function of the functional occupancies Fi, in fact by deriving over
the parameters ki it is possible to obtain their moments. For instance,

∂

∂ki
G({k}, t)

∣∣
ki=0

=

∑
σ xσaσi∑
σ xσ

=
∑
σ

xσaσi = Fi. (2.8)

The dynamics of the community structure function is described by

∂G({k}, t)
∂t

=

∑
σ ẋσ exp(

∑
i kiaσi)∑

σ xσ exp(
∑

i kiaσi)
=
∑
i

(
∂G({k}, t)

∂ki
− Fi

)(
(1− `i)wiνiri(ci)−

χi
τ

)
,

(2.9)
where we substituted Eq. (2.5) and noticed that

∂G

∂ki
=

∑
σ xσaσi exp(

∑
j kjaσj)∑

σ xσ exp(
∑

j kjaσj)
. (2.10)

The set of equations for the dynamics of G, N and ci fully describes the dynamics of
the system, and in the next section we show that they can be used to find the stationary
state, which will only depend on the functional profile of the community and not on the
species abundances xσ.

2.2.2 Attractor with no fitness differences

Let us give a description of the stationary state of the system by imposing that eqs (2.4),
(2.6) and (2.9) are equal to 0. From eq. (2.9), we have

0 =
∑
i

(
∂G({k}, t)

∂ki
− F ∗i

)(
(1− `i)wiνiri(c∗i )−

χi
τ

)
∀{k}. (2.11)

This equality must be true for all values of {k}. However, the term ∂G({k},t)
∂ki

−F ∗i depends,
in general, on {k}. As a consequence, for resources i for which that term depends on
k, the other term (1− `i)wiνiri(c∗i )−

χi
τ must be equal to zero. For these resources, at

stationarity,

ri(c
∗
i ) =

χi
(1− `i)wiνiτ

. (2.12)

Then, there can be resources for which ∂G({k},t)
∂ki

is independent of {k}. Given the ex-
pression in eq. (2.10), this is possible if and only if all the species have the same value
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of aσi, that is, aσi = ai ∀σ. This happens if a resource is consumed by all species or by
none of them. For these resources, then,

∂G

∂ki
= ai = F ∗i ∈ {0, 1}. (2.13)

In summary, if we neglect the resources that no species consume, we can distinguish two
types of resources:

• Core resources Rc, consumed by all species, with F ∗i = 1

• Non-core resources Rnc, for which the stationary concentration is given by eq. 2.12.

Setting eq. 2.6 to zero, we find

F ∗i ri(c
∗
i ) =

∑
j B
−1
ij wjhj(c

∗
j )

N∗νiwi
=:

qiχi
N∗νiwi(1− `i)τ

, (2.14)

where we defined the resource quality qi as

qi =
τ(1− `i)

∑
j B
−1
ij wjhj(c

∗
j )

χi
. (2.15)

By imposing stationarity in equation 2.4 we obtain in turn

0 = τ
∑
i

(1− `i)νiwiF ∗i ri(c∗i )− 1−
∑
j

χjF
∗
j =

∑
i χiqi
N∗

− 1−
∑
j

χjF
∗
j , (2.16)

from which we obtain

N∗ =

∑
i χiqi

1 +
∑

j χjF
∗
j

(2.17)

For non-core resources we can use equation 2.12 together with equation 2.14 to obtain

F ∗i =
qi
N∗

if i ∈ Rnc, (2.18)

Motivated by the fact that the functional abundances are bounded from above to 1, we
finally obtain

F ∗i = min{1, qi
N∗
} , (2.19)

Equations (2.14), (2.17) and (2.19) describe the stationary state of the community
dynamics when εσ = 0. As anticipated, this stationary state is characterized by its
functional profile.

The results of the numerical simulations of the model with ε→ 0 (see Appendix B.2
and B.3) confirm the theoretical predictions for the stationary values of Fi, N and S
(Fig. 2.1).

The value of qi is determined by solving eq 2.14 for both core and non-core resources.
An efficient algorithm to solve these coupled equations computationally is presented in
Appendix B.3.
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Considering ε ∼ 0 is a fair approximation in the limit of a large number of resources
R as the distance from the functional manifold caused by ε vanishes in the limit R→∞.

Note that if resources are externally supplied without dilution (or if dilution of re-
sources is negligible compared to their consumption), i.e., if hi(c

∗
i ) = hi equation 2.15

becomes a definition and there is no need to find the stationary concentration of resources
to determine the resource quality qi.

2.2.3 Thermodynamic description

In this section we investigate the relationship between the total community biomass
N∗ and its diversity S∗ when some key model parameters vary. In particular, we con-
sider the parameters related to the resources: their number, quality, metabolic cost and
heterogeneity. We introduce the normalized qualities and costs

ηi =
qi
q̄
, γi =

χi
χ̄
, (2.20)

and let p(η, γ) be their joint probability distribution. It is also useful to introduce

K = Rq̄, X = Rχ̄. (2.21)

K is the total energetic content of the resources, while X measures the fitness difference
between a generalist and a specialist.

To be able to write analytically the dependence of S∗ and N∗ on these parame-
ters, we consider the limit of a very large number of resources, R � 1. In this limit,
the resources qualities qi and metabolic costs χi as they can be considered continuous
quantities characterized by their probability distributions.

In the continuous limit, the quality of the first core resource can be written as

ηc =
X
∫∞
ηc
dηp(η)η〈γ〉η

1 +X
∫∞
ηc
dηp(η)〈γ〉η

, (2.22)

where p(η) =
∫∞
0 dγ p(η, γ) is the marginal distribution of normalized resource qualities

and 〈γ〉η =
∫∞
0 dγ γp(γ|η) is the average normalized cost of resources conditioned to

their normalized quality. Additionally, the total system biomass can be expressed as

N∗ = q̄ηc. (2.23)

The derivation of eqs (2.22) and (2.23) can be found in the Material and Methods section.
Additionally, since the number of surviving species is equal to the number of non-core
resources plus one, we have

S∗ = 1 +R

∫ ηc

0
dηp(η). (2.24)

Equations (2.22–2.24) express the dependence of N∗ and S∗ on the properties of
the resources, and are valid for any joint probability distributions of qualities and costs.
However, in this general case, it is not possible to write an explicit expression of ηc from
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eq. (2.22). Therefore, we make two assumptions that allow us to write ηc explicitly. The
first assumption is that the normalized resource qualities η are distributed uniformly in
[1 − σ/2, 1 + σ/2]. The parameter σ quantifies the heterogeneity of resources qualities,
and we have σ ∈ [0, 2] as η must be positive. The second assumption is that there is a
linear relationship between resources costs and qualities, that is,

〈γ〉η = 1 + λσγ

(
η − 1

σ

)
, (2.25)

where λ ∈ [−1, 1] measures the strength of this relationship and σγ quantifies the hetero-
geneity of the resource costs. A positive λ describes a positive correlation between costs
and qualities, i.e. a high quality resource has also a high metabolic cost, while a negative
λ describes a negative correlation. Given that 〈γ〉η > 0, we must have |λ| < 1/σγ . Using
these two assumption in eq. (2.22), we find that it has a solution under the condition
X > 12−6σ

6σ+λσγσ
. We denote this solution as ηc(λσγ , σ,X), see Methods for more details.

Then, we finally have

N∗ = q̄ ηc(λσγ , σ,X) =
K

R
ηc(λσγ , σ,X),

S∗ = 1 +
R

σ

(
ηc(λσγ , σ,X)− 1 +

σ

2

)
.

(2.26)

Now, we can consider different transformation of the parameters characterizing the
resource distributions, and examine the changes of N∗ and S∗. The parameters whose
change affects N∗ and S∗ are σ, K, X, R and λσγ . Let us explore some interesting
transformations.

Varying the heterogeneity of resources quality

We first consider the transformation where the heterogeneity of the resources quality σ
varies, while the number of resources R and their average qualities q̄ remain constant.
In this case, N∗ and S∗ both increase with increasing σ (see Figure 2.1A). The behavior
is the same for positive, null or negative correlation λ (respectively, squares, triangles
and circles in the Figure).

Varying the average resource quality

If we vary the average resource quality q̄, keeping all the other parameters constant,
we obtain that the total energy content of resources K varies. This makes N∗ vary
proportionally to K, while S∗ does not change, as it does not depend on K.

Varying the average metabolic cost

If we vary the average metabolic cost χ̄, keeping all the other parameters constant, we
obtain that the fitness difference between generalists and specialists varies. Increasing
X makes ηc increase, that is, there are less core-resources. As a result, both S∗ and
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N∗ increases at the same pace (see Figure 2.1B). While it might sound counter-intuitive
that the total biomass increases when the average metabolic cost of resources increases,
what happens is that each species metabolises a smaller number of resources, therefore
the total metabolic cost it pays is smaller, although the cost per resource is higher.

Varying number of resources

There are several possibilities to vary the number of resources.
First, we can have a transformation where only R varies, while q̄ and χ̄ are constant.

Consequently, the total energetic input K and the fitness difference between generalist
and specialist X would vary proportionally to R. In this situation, the increase of R
makes both S∗ and N∗ increase (Fig. 2.1C). The behavior is qualitatively the same for
all λ.

Secondly, we can consider a transformation that mimics the protocols of experiments
such as [17], where the number of resources R is varied but the total energetic input K
remains constant. This would be obtained varying the average quality q̄. This situa-
tion creates an interesting trade-off between biomass and diversity (Fig. 2.1D), where
increasing R makes S∗ increase but N∗ decrease. The behavior is qualitatively the same
for all λ.

If instead we change R keeping X constant, only the number of species is affected,
and changes proportionally to R, while the biomass remains constant. This means that
if we have more, simpler resources we would have more species that if we had less, more
complex ones.

Varying the correlation between cost and quality or the cost heterogeneity

If we increase the value of λσγ , all other parameters being constant, both N∗ and S∗

increase, as can be seen in all panels of Fig. 2.1. This means that a strong positive
correlation between cost and quality of resources allows more species to coexist.

For all transformations, the behavior predicted analytically is confirmed by numerical
simulations performed with ε→ 0 (colored markers in Fig. 2.1).

As we can notice in the figure, we observe a small shift of the total biomass values
towards the right. Any value of ε 6= 0 determines the existence of a set of species with
individual fitness ∼ −ε. In the limit S → ∞ also the number of species in the set tend
to infinity. The final community, as the fittest survives, is then composed by all species
with individual fitness ∼ −ε. The community pays an overall cost lower than the one
predicted by χ, allowing for the survival of more individuals and thus returning an higher
biomass.
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Figure 2.1: Variation of the total biomass N∗ and of the number of species S∗ under
different transformations changing resource-related parameters. Black curves and mark-
ers represent analytical prediction, while colored markers are the results of numerical
simulations with ε→ 0. For each transformation, three possible values of λσγ are shown:
−0.8 (circles), 0 (triangles) and 0.8 (squares). A) Transformation varying the hetero-
geneity of resources qualities σ from 0.2 to 2. The other parameters are fixed at values:
R = 50, χ̄ = 1, q̄ = 1; B) Transformation varying the average metabolic cost χ̄ from 0.1
to 2. The other parameters are fixed at values: R = 50, σ = 1, q̄ = 1; C) Transformation
varying the number of resources R between 5 and 50. The other parameters are fixed
at values: σ = 1, q̄ = 1, χ̄ = 1; D) Transformation varying the number of resources R
from 1 to 10 while keeping the total energy input K constant at a value of 50. The other
parameters are fixed at values: σ = 1, χ̄ = 1. All combinations of parameters are chosen
to satisfy the constraints. The marker color, from blue to yellow, indicates the increase
of the parameter that is varied.

2.3 Discussion

We showed that consumer resource models predict stationary states well described by
few macroscopic parameters, the total biomass N∗, the number of surviving species S∗

and the functional abundances F ∗i . Such parameters depend on the externally provided
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resources and are mutually dependent through a closed set of equations.
By considering the limit of a very large number of resources R >> 1, it is pos-

sible to depict a thermodynamic like description of communities, identifying a set of
transformations that smoothly change the system parameters.

We characterized such transformations and showed how analytical calculations are
confirmed by numerical simulations.



Chapter 3

Estimating the Genome Length
Distribution from Community
Functional Composition

We saw how function abundances are regulated by the environment. Consumer-resource
models well represent that equilibrium states are functionally characterized at the com-
munity level while species are free to fluctuate. This parallels with experimental result
[15] shown in Fig.1. Species composition drastically differ among samples while function
composition appears stable. Nevertheless, Such a stability has been analysed just qual-
itatively, by comparing the variability of species and functions. To reach a quantitative
conclusion we should compare the observed variability with the typical one.

By determining the key parameters that drive the composition, we can develop a
null model to predict the composition of a randomly assembled community. Only by
comparing the observed variability with the one predicted by the null model we can reach
a quantitative statement, understanding if what we see is more stable than expected.

One of the main factors to take into account is the limitedness of the existing pool
of species. Living beings are not randomly assembled as their genomes composition
evolved following robust rules (Sec.3.2.1). If we simplify bacteria to be collections of
functions, these rules imply that evolution generates species belonging to a small subset
of all possible functional combinations. Consequently, there are constraints on the ex-
plorable community functional compositions, as the community is contains only genomes
belonging to this subset. (For a mathematical description see App. ??)

For example there exist functions appearing in almost all the existing strains, making
it hard to find an abundance variation in the community, independently from the species
composition. It is thus important to understand whether the observed variability is
actually lower than the one expected by chance, randomly assembling a community.

In the following chapter, going towards the design of a null model for communities,
we will focus on one particular property of bacterial genomes, the correlation between
genome length and composition. In Sec.3.2.1 we present such a dependence and show how
it affects the community composition. The genome length distribution of a community

31
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is an important parameter to be understood and evaluated. We want here to exploit this
relation to infer information on the species composition from the community functional
composition.

3.1 Introduction

Bacterial communities are extremely complex objects, made by thousands of different
interacting species. The effective environment surrounding those species is determined
by both external conditions and the neighbouring species, making it hard to understand
the effective living condition in which they are growing.

The main experimental technique to characterise the species community composition
has been for a long time the physical isolation of the strains. It proceeds by diluting
the communities, streaking them on an agar plate, until a clear and unique morphology
appears. The main requirement for the effectiveness of the method is that the species are
able to grow alone on an agar plate but, given our scarce knowledge on the interactions
among species, such a requirement is found to be extremely hard to meet.

Amplicon sequencing techniques have been game changing tools in this regards. They
do not rely on the physical isolation of strains, allowing for analysing environmental
samples, directly identifying the species via the recognition of specific highly conserved
marker genes. Specifically 16S gene is a section of bacterial genome present across all
species and highly conserved, allowing to identify the species and tracing a taxonomic
tree. Once the species are identified one can reconstruct the community by the use of
databases containing the characterisation of the detected species.

Nevertheless the latter procedure is far from being perfect. Relying on previously
measured genomes, the marker genes can belong to a strain never analysed before. This
can lead to unusable data or to identify individuals at an high taxonomic level (species,
family, ..). Moreover, it relies on the assumption that marker genes are always able to
identify different strains. The former assumption is not always true as bacteria evolve
so rapidly that the same 16S gene could be associated to different strains. It is thus
important to find alternative solutions to characterise the individuals with the available
data. Particularly, we want to develop a method that does not rely on databases.

Metagenomics is an experimental technique that takes a completely different ap-
proach to the problem, not trying to identify single species but considering the commu-
nity as a whole. The genomes present in a sample are analysed together, identifying
the genes but not the species they belong to. The outcome is a list of genes and their
abundances describing the whole community. The latter list can be connected to the
functional composition of the community as genes are one way that life found to encode
the information to perform functions.

On the other hand we have information on the genomes composition. Genomes are
ensembles of genes that, as shown in Sec.3.2.1, are built following specific and robust
rules. Genome composition has a strong dependence on the total number of genes it
contains, i.e. its length. The existence of these rules put some constraints on the possible
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functional compositions of the communities and leave marks of the length distribution
of the genomes on the community functional composition, giving us a way to extract
useful information from the latter data.

There exist various tools trying to extract the average length of the genomes in a
community from the functional composition data [51]. They mainly rely on the existence
of genes that appear in a fixed number of copies in all the strains. They proved to be
reliable in this regards, returning accurate estimates of the average genome length but
cannot provide any further information on the distribution. Moreover they are under
exploiting the dataset by using only a very small fraction of the available genes.

We here develop a new method, relying on the regularity of all the genes, looking for
extracting higher moments of the length distribution.

First of all, using a database, we derive the laws determining such regularities. The
former databases cluster genes into families that encode similar information and collect
thousands of genomes expressing the number of copies of all gene family present in each
genome. Among the existing databases we use the PFAM [41]. Using these databases
we determine two relevant relations between the family composition and the genome
length.

3.2 Main

3.2.1 Genome Length and Composition

Looking at the genomes composition in terms of gene families, one very robust observa-
tion is the relation between the number of copies of a gene family and the genome’s length
[42]. Longer genomes not only add new families to their repertoire but also increase the
number of copies of the one owned by shorter genomes. As shown in Fig. 3.1A, the
copy number follows a power law as a function of the genome length, with exponents
raging from 0 to more than 2. This means that some genes have an average copy number
independent from the length of the genome while others scale super-linearly. Therefore,
relative abundances, the number of copies over the total number of gene families in the
genome, also depend on the genome length. Long genomes likely have an higher ratio
between high and low exponent genes than short genomes, thus appearing functionally
different.

While the dependence of family copy number on the genome length is a very robust
result, proved on thousands different strains and genes, it is derived under the bias of
the presence of the gene. The power laws dependence is obtained considering just those
species that have at least one copy of the gene. Anyway, genes are not always present
and could be characterized also by their occurrence over the existing strains. There
exist genes with occurrences ranging from 0 (never occurring) to 1 (present in all the
examined strains).

It is important to notice that occurrences are not evenly distributed along genome
lengths. That means that a gene with a given occurrence oi over the existing strains,
won’t be missing evenly across genome lengths but will more probably be missing among
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short/long genomes.

We did a preliminary study of the distribution of occurrences and found a clear
dependence of their distribution on the average occurrence oi . As shown in Fig. 3.1B,
genes with high occurrence (blue), present in almost all the strain considered, are more
often missing in shorter genomes while lowering the occurrence the vacancies become
more evenly distributed across lengths.
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Figure 3.1: Two laws determining the family composition of genomes. A: Family abun-
dance has a non-linear dependence on genome length (PFAM domains). The panel shows
example PFAM family data. The dependence can be expressed as a power law. Linear,
sub-linear and super-linear cases are found in data [42]. This implies that the abundance
ratio between two families changes with the length of the genome. B: The occurrence
of genes among genomes of comparable size depend on the size itself and on the overall
occurrence of the gene. We plot the frequency of the vacancies, how many genomes miss
the gene. Genes that are rarely present (red) are missing equally across lengths while
genes that are almost always present (blue) are mainly missing among short genomes.

These two properties put some constraints on the community functional composition
and determine its dependence on the genome length distribution of the strains. As
pictorially shown in Fig. 3.2, combining strains with shorter genomes brings to different
functional composition than the one obtained with long genomes.

Knowing the genome length distribution of a community becomes thus important
when considering its functional composition stability. The former distribution deter-
mines what to expect from an average community of that size, allowing the recognition
of peculiar fluctuations. On the other hand, not knowing the distribution we could mis-
interpret the data. Functions that seem stable (fluctuating) across samples could simply
be the result of a constant (varying) average length.

While knowing the strains or even simply their genome length easily allow us to design
a null expectation for the functional composition of the community, the inverse is not as
straightforward. We present an algorithm that, relying on the two laws above presented,
is able to infer the genome length distribution of the bacteria in the community from
the community functional composition data.
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Increasing Genome Length

Increasing Distribution Average Length

Figure 3.2: The dependence of gene families abundances on genome length has conse-
quences on the community functional composition. A illustrates how family scaling at
the genome level impacts on family abundance at the community level. Ensembles of
short genome strains are functionally diverse from those containing long genomes strains.
For example blue squares represent a family with constant copy number across genomes,
implying relative abundance decreases with genome length. B: Given the genomes com-
positions, from the genome length distribution we can create a null expectation for the
functional abundances of the community. The scope of this work is to derive a method
for the inverse problem, extrapolating the genome length distribution from the family
composition of a community.

3.2.2 Algorithm

We look for a description of the average composition of genomes in function of their
length. We could be tempted to directly use the power laws’ parameters as predictors of
the average copy number at a given length, obtaining an analytical expression. Unluckily,
the non trivial behaviour of occurrences strongly modifies the average composition of
genomes at a given length predicted by the power laws.

As shown in Fig.3.3 to overcome this problem, we decided to bin genome lengths and
calculate the average composition of genomes inside each bin. In this way, obtaining
a discrete description of genome composition, we are sure to take into account both
the laws we presented and any other existing property connecting genome length and
composition.

Practically, we take the PFAM database Dsf , saying the number of copies of family f
are present in the strain s. For each strain we calculate its genome length `s =

∑
f Dsf ,

the total number of families it contains. We then divide genome lengths in n bins bl,
each centred around `l, and calculate the average composition of genomes inside each
bin



36 CHAPTER 3. ESTIMATING THE GENOME LENGTH DISTRIBUTION

Mlf =

∑
s|`s∈bl Dsf∑
s|`s∈bl 1

(3.1)

Mlf is thus the average number of copies of family f present in a genome of length
`l.

It is important to notice that, even though we used a database to derive Mlf , the
final result represents a general property of genomes composition, independently from
the single strains contained in Dsf .

Having a way to connect genome lengths and family abundance without relying on
databases we now look for determining the genome length distribution of a community.
The procedure aims at designing a sample community, created by the use of Mlf , func-
tionally as close as possible to the data. We will proceed by successive approximations,
beginning from an initial guess, calculating its functional composition and comparing it
to the one of the data. The comparison is done via the Kullback-Liebler divergence, a
way to quantify the information loss that results from representing the data with the
sample.

Consider a bacterial community with an unknown genome length distribution P (`).
It can be analysed via metagenomics techniques, obtaining a set of family abundances
Rf , i.e. how many copies of each gene family f are detected.

To find P (`), we create a sample community with its own length distribution P̃ (`).
We discretise P̃ (`) into a vector dl, encoding how many bacteria are present for every
genome length `l. We then calculate the average functional composition of the sample
community by using Mlf : family abundances are obtained as Ff (dl) =

∑
lMlfdl. To

compare them to the family abundances Rf we define the relative abundances ff (dl) :=
Ff (dl)∑
f ′ Ff ′ (dl)

and rf :=
Rf∑
f ′ Rf ′

.

We can eventually look for the Kulback-Leibler divergence between the two relative
abundances C(dl|rf ), that is how much information are we loosing by representing the
data with our sample community

C(dl) := −
∑
f

rf log2

(
ff (dl)

rf

)
(3.2)

By modifying the vector dl we look for minimizing such a quantity. We do it by
successive approximations, as sketched in Fig.3.3

0: Consider an initially empty virtual community d0 = 0

1: Take the vector d1 := l̂, equal to 1 along l and zero elsewhere, that minimizes C(d1).
Genomes of length `l the ones functionally closest to the whole community

2: Take l̂′ such that d2 = d1 + l̂′ minimizes C(d2). That is, if l 6= l′, d2 equals 1 in l, l′

and 0 elsewhere, if l = l′, d2 is 2 in l and 0 elsewhere)

n: Take l̂n so that dn = dn−1 + l̂n minimizes C(dn)
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The value of C(d) decreases during the process finally reaching a plateau, oscillating
around a finite value. From dnl we can easily obtain the desired length distribution

P (`l) =
dnl∑
k d

n
k

.

G
e
n
e
s

Strains

Average
Abundances

in bin

B

Unknown
Distribution

Inferred
Distribution

D
is

ta
n
ce

 M
in

im
iz

a
ti

o
n

Measured Family
Abundances

Obtained Family
Abundances

A

Genome Length

Genome Length

G
e
n
e
s

103 104

100

101

102

Fa
m

ily
 A

b
u
n
d
a
n
ce

Genome Length

103 104

100

101

102

Fa
m

ily
 A

b
u
n
d
a
n
ce

Genome Length
Binned Genome Length

A
d

d
 b

e
st

 
fu

n
ct

io
n
a
lly

 fi
tt

in
g

 b
in

Figure 3.3: Illustration of the algorithm. The dataset is binned and averaged to obtain
the average functional composition at a given length. The obtained database is used
to reconstruct the genome size distribution of the community. A: The s× f data table
containing the family copy number of each strain is averaged over genome length bins.
The obtained l × f data table, l << s, encodes the average functional composition at
a given genome length. B: Given a measured functional composition of a sample, the
algorithm aims to infer the genome length distribution by successive approximations.
The first iteration selects a community c1 of length l1, the functionally closest to the
sample. The second iteration creates the community c2, half of length l1 and half l2, and
so on. The latter is chosen to minimise the functional distance with the sample. These
iterations are repeated up to the desired degree of convergence.

3.3 Results

3.3.1 Virtual Communities

The first test of the algorithm effectiveness was performed on virtual communities, cre-
ated by randomly selecting strains from the PFAM database. To make test more reliable
we decided to split in two the database, the first half was used to generate the virtual
communities while the second to infer the genome length distribution with our method.
In this way there is no strain in common between the two, avoiding possible biases aris-
ing by guessing a distribution knowing the exact strains it contain. This is surely a more
likely situation happening when analysing environmental data, given the fact that only
2% of existing strains have been isolated and characterised up to now.

We thus create, with the procedure explained in App.C.2, a community with genome
length distribution Pv(`) and gene family abundances Rf .

Given the family abundances Rf we run the algorithm and compare the results with
the exact distribution of the virtual community.
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As shown in Fig. 3.4, the mean, standard deviation and the shape of the distribution
are well inferred by the algorithm. The errors on the mean and the standard deviation
are of 2% and 15% and the shape properly identifies the relevant peaks. This outperforms
the previously existing methods that infer the mean of virtual communities with a 2%
error but do not give any estimate neither of the standard deviation nor of the shape of
the distribution.
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Figure 3.4: The algorithm detects precisely the mean genome size and its variability in
virtual communities. Each virtual community was created from a prescribed genome size
distribution with 500 random strains, none of which was present in the table of reference
genomes used by the algorithm. The genome lengths used for the virtual communities
shown in panels A and B are Log-normally distributed. A: The inferred means (violet
circles, each symbol corresponds to a different virtual community) precisely represent
the mean (solid line). Relative errors are of the order of 2%. B: The inferred standard
deviations (green circles) compare well to the reference ones (solid line). Relative errors
are of the order of 15%. C: The algorithm can detect details of the genome size distri-
bution, such as multimodality. Example of comparison of the inferred distribution (blue
histogram) to the sample distribution (dotted line) for a virtual community with many
peaks.

3.3.2 Mock Communities

The second test was performed on mock communities, laboratory assembled communi-
ties, created by mixing fixed amounts of well known strains. They provide a great tool to
test our method since we can compare our results to the ones obtained from the known
abundances of the strains in the sample.

We used two different mock community experiments: [30, 52]. They both are a
mixture of bacteria (∼ 20) and eukaryotes, viruses, archaea in smaller amounts. The
fact that also non bacterial genomes are in the samples tests the algorithm in a more
realistic configuration.

For samples [52] the results are obtained in two ways, by the algorithm previously
explained and by its generalisation to different domains. In the latter the database used
for inferring the distribution is one containing all 4 different domains present in the
samples. This allows the algorithm to identify also genomes behaving differently from
the bacterial ones, with genome lengths way smaller (viruses) or longer (eukaryotes).
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Figure 3.5: The algorithm infers the average and standard deviation of genome length
probability distributions in Mock communities. Two different reference mock commu-
nities are present. in A, B Circles represent the 9 samples of [52] while triangles the 2
samples of [30]. among circles darker color shows the results obtained whit an algorithm
using a bacteria only database. In this case also the reference average length and stan-
dard deviation are calculated on the samples’ bacteria alone. Lighter color represents the
result obtained by the algorithm using a database with 4 domains (Eukaryotes, Archaea,
Viruses and Bacteria) and the reference values are calculated using all the strains in the
samples. C shows the distribution obtained (blue histogram) for one of the samples in
[30] compared to the actual distribution of lengths in the sample (dashed line).

As shown in Fig. 3.5, also for the mock communities the trend of the average length
and distribution’s standard deviation were properly identified, together with the relevant
peaks of the distribution.

At the same time we can notice a way worse precision of the estimates, compared
to the ones obtained on virtual communities. We can explain such a difference by
one important feature of these samples. While natural communities (and the virtual
communities we created) are composed by hundreds or thousands of different strains,
mock communities are smaller, composed by tens of strains. This makes single strain
variability way more relevant. The strains specificities arise in the community functional
composition and it becomes more difficult to detect the average behaviours expressed in
Sec.3.2.1.

3.4 Discussion

The increasingly important world of metagenomics is proving to be an incredibly power-
ful tool to analyse complex bacterial communities. It can provide huge amounts of data
on the communities functional composition.

The existing procedures to characterise the species composition from the analysis
of 16S marker genes, even if powerful, depend on the databases and rely on the ratio
between the mutation rate of the target genes and the other parts of the genome. Being
able to derive information on the individuals directly from the functional abundances,
without the need of species specific information, could thus increase the effectiveness of
the analysis.
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The developed algorithm is conceived in this context, trying to obtain the genome
length distribution of the community directly from the functional composition. The
use of the databases, even though necessary, doesn’t look for information on the single
strains, as the algorithm only needs the average behaviour of genomes. This is a sub-
stantial element as long as most strains in the environment have not been isolated and
characterised yet.

The existing methods [51] that try to follow the same path rely on single copy
genes to derive the average genome length, calculating the number of individuals in
the community from their abundance. The former procedure proved to be reliable to
find the average length of virtual communities, obtaining a 2% error on the result, but
cannot further explore the distribution as no information on the higher moments can be
inferred.

We used the copy number regularity as a function of the genome length to link the
functional composition to the genome length distribution. This allows to infer higher
momenta of the distribution and to lower the sensibility to sampling errors by using
all the genes instead of just core, constant ones. The obtained precision is comparable
to [51] for the mean while also providing the standard deviation and the shape of the
distribution, as shown in Tab. 3.1.

MicrobeCensus Our Method

Average Yes: 2% Yes: 2%
St. Dev. No Yes: 15%

Distribution No Yes

Table 3.1: Comparison with the state of the art method. We show whether each method
is able to determine different properties of the genome size distribution and the respective
relative error on the estimate when analysing virtual communities.

We expect this algorithm to be useful to better understand functional stability across
samples, giving a way to determine a null model to predict the expected average com-
position of a community with given genome length distribution.



Chapter 4

Evolutionary Stability of
Cooperation in Stochastic
Multiplicative Environments

This chapter is part of a paper uploaded on the Arxiv [19]

By cooperating, an individual performs an action with an immediate negative pay-
off but positively affecting others. As [47] shows, in stochastic multiplicative processes
groups of agents should favour cooperation over selfishness. The effect of cheating in
this system was considered: is taking advantage of a cooperating partner without re-
turning anything back the winning strategy? We analyze the evolutionary stability of
cooperation in stochastic multiplicative processes at different time horizons and charac-
terize the equilibrium point. Surprisingly, cooperation is found to be evolutionary stable:
cheaters, after a first fast-growing transient, slow down their growth rate. The effective
payoff matrix shows a transition as the time horizon stretches, making cooperation a
Nash equilibrium. The cooperation dilemma thus disappears in the context of agents
maximizing their long term return. This evidence suggests possible explanations for
existing phenomena and new optimal cooperative strategies.

4.1 Introduction

The emergence and the stability of cooperation is a central problem in biology, sociology,
and economics [43]. Cooperation produces an advantage for the group, through the
creation and sharing of social goods, but is inherently unstable to cheating and to the
tragedy of the commons, where individual agents benefit from the social good without
contributing to its creation [49]. The dilemma of the evolution of cooperation can be
solved in presence of one or more specific mechanisms [43], which lead to the emergence
and long-term stability of the cooperative trait.

One key aspect in common between multiple systems is that the environment is
subject to fluctuation and stochasticity. A paradigmatic example, which has applications
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in both economics and population biology, is given by the geometric Brownian motion,
which describes the stochastic dynamics of a variable x(t) as ẋ = µx + σxξ(t), where
ξ(t) is a delta-correlated white noise. In biology, x could represent the abundance of a
population, in economics x is the value of an asset, while in game theory is the wealth
accumulated by a gambler. In general, this equation describes growth under a stochastic
multiplicative process. An essential feature of multiplicative growth is that it lacks
ergodicity [47, 44], as the time-average behavior differs from the ensemble average. The
latter grows exponentially in time with rate µ, while the former grows with rate µ−σ2/2.
This difference parallels the difference between arithmetic mean (which corresponds to
the ensemble average) and geometric mean (which converges to the time average), and
it is the deep reason why the latter is a natural quantity to optimize for agents aiming at
maximizing their future profits or growth. In the context of gambling, the Kelly criterion
defines the optimal size of a bet based on optimization of the geometric mean [57, 32].
In evolutionary biology, under varying environmental conditions, natural selection favors
traits on the basis of their geometric mean fitness [50, 27]. An important consequence
of the fact that the geometric fitness determines the optimal solution is that not only
the average environment but also the amplitude of its fluctuations, determine its values,
as the geometric average grows with rate µ−σ2/2. Reducing fluctuations, i.e., reducing
the value of σ, has, therefore, a positive effect and should be expected to produce better
strategies and be advantaged by natural selection [2].

In the context of growth under fluctuating conditions, we introduce the possibility
of cooperation between G agents, by generalizing the setting of [20, 47, 33]. The value
fi of agent i grows as

ḟi(t) = µfi(t) + σfi(t)ξi(t) +
1

G

∑
j 6=i

(αjfj(t)− αifi(t)) (4.1)

In the beginning, we will consider the case of white uncorrelated noises. We will gener-
alize this setting to colored noise with the arbitrary correlation between ξi(t) and ξj(t).
The terms proportional to αi represent the effect of sharing. At each time-step, each of
the individual share a fraction αi ∈ [0, 1] of its value fi as a public good. The public good
is then instantaneously divided equally among the agents. A value αi = 1 represents full
cooperation, where an individual shares all its value. While αi = 0 represent defection.

If all the agents follow the same strategies (i.e., if αi = α), one can obtain an exact
solution of the trajectories fi(t) [20, 47, 33]. In particular, one can obtain the growth
rate of the geometric average of the values gi = limt→∞〈log fi(t)〉/t equals µ − σ2(1 −
α(G− 1)/G)/2. It is easy to see that gi is a monotonically increasing function of both α
and G. The full defector scenario α = 0 corresponds to the original Geometric Brownian
motion solution gi = µ−σ2/2. The full cooperation case α = 1 leads instead to an higher
growth rate gi = µ− σ2/2G. The intuition behind these results is that, in this context,
cooperation produces an advantage as it reduces effectively environmental variability. By
sharing their values with others, agents effectively diversify their investments, making
their values less subject to fluctuations, therefore, leading to faster growth.

This result shed the light on the importance of cooperation in fluctuating environ-
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ments: cooperation screens individuals from the negative effect of variability. This result
does not explain however how cooperation emerged and why it could be stable to de-
fection. Also in the simple context of the prisoner dilemma, cooperation produces an
individual advantage over defection, when all agents cooperate (i.e., cooperation is Pareto
optimal). The dilemma is, as well known, that cooperation is not stable (given that all
the other agents are cooperating is advantageous for the individual to defect) while de-
fection is (if all the agents are defecting there is no advantage in starting cooperating).
In this chapter, we explore the stability and origin of cooperation in fluctuating envi-
ronments, using the setting of eq 4.1. We show that the maximization of the individual
long-time return leads to the emergence and stability of cooperation. We further explore
the robustness of these results to correlated fluctuations, colored environmental noise,
and finiteness of time-horizons, showing that for long auto-correlation times and short
time horizons a phase transition is observable, returning an intermediate or vanishing
value of stable cooperation. Finally, we develop an evolutionary algorithm that confirms
the crucial role of the time horizon. We find that depending on its value a population
of individuals evolves towards a fully cooperative or defecting configuration.

4.2 Main

In order to make analytical progress on eq. 4.1 it is convenient to introduce qi(t) :=
ln(fi(t)). The quantity that agents optimise is simply gi = limt→∞〈qi(t)〉/t. The dy-
namics of qi can be obtained from eq. 4.1 using Itô calculus. In the case of two agents
(G = 2) one obtains

〈q̇1〉 = µ− σ2

2
− α1

2
+
α2

2
〈exp (q2 − q1)〉(t) . (4.2)

In the case αi = 0 one recovers the original case with g = µ − σ2/2. In all the other
scenarios, the growth rate of the value geometric mean of agent i, in presence of another
agent with resource sharing ratio αj , gαi|αj will therefore depend on both αi and αj . In
the simple case of two agents, we can treat gαi|αj as the entries of a payoff matrix.

In Appendix D.1, we show that the dynamics of exp (q2 − q1) — the only non triv-
ial term in eq. 4.2 — is ergodic with a well defined stationary distribution, with first
moment 〈exp (q2 − q1)〉eq. The growth rate gαi|αj will therefore be equal to g0|0 +
(αj〈exp (q2 − q1)〉eq − αj) /2. In appendix D.1.1, we obtain an analytical result for
〈exp (q2 − q1)〉eq that well reproduces the numerical numerical simulations (see D.1).

We aim at finding the (pure-strategy) Nash equilibria and the evolutionary stable
strategies. In our context, the relevant question is: given a strategy of the second
player α2, what is the optimal value of α1? The first non-trivial original result of our
letter is that the value of resource sharing that maximize the growth rate α∗1(α2) :=
argmaxα1

gα1|α1
for a given strategy of the other agent α2 is always larger than the

latter: α∗1(α2) > α2 (see Fig. 4.1).
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A B

Figure 4.1: The growth rate of individual 1 is maximized for a value of α1 bigger than
the partner’sα2 for any value of the latter. Panel A shows the behaviour of the growth
rate of individual 1 as a function of α1. Every line corresponds to a different value of α2.
The red dashed line marks the diagonal, i.e. α1 = α2. The solid red line the projection
of the maxima of the above curves(red dots) on the plane. It is clear that it always lies
above the dashed line, impling αopt > α2. Panel B shows the bottom plane of panel A,
i.e. the optimal value of α1 as a function of α − 2. The, above-diagonal position of the
optimal curve implies that in a optimization, evolutionary or learning process both α
rapidly converge to 1, making full cooperation evolutionary stable

This mathematical result implies that, contrarily to the mechanism in the tragedy
of the commons, each agent has an individual advantage in sharing more than the other
agent. As a consequence, the evolutionary, adaptive, or learning dynamics maximizing
the growth g should lead to a larger and larger level of cooperation, up to the theoretical
maximum of full cooperation αi = 1.

The intuition behind this result is that, in fluctuating environments, sharing is akin
to investment diversification. As already mentioned, sharing screens the agent from
the detrimental effects of fluctuations. In the long-time horizon, the return from this
investment (the term α2〈exp (q2 − q1)〉eq/2) repays its cost (equal to α1/2).

4.2.1 Time and stability transitions

We studied the robustness of this result over four key assumptions: uncorrelated noises
(by introducing a non-zero noise correlation equal to ρ), white environmental fluctuation
(by introducing a non-zero noise auto-correlation time τ), groups of two agents (by con-
sidering arbitrary group sizes G) and infinite time-horizons (by computing the expected
growth rate over a finite time horizon T ).

By using the unified-colored noise approximation, we obtain in appendix D.1.2 an
analytical approximation for the case of infinite time-horizons and arbitrary values of τ
and ρ. Positive values of ρ reduce the advantage of increased values of cooperation, but,
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for any ρ < 1 is always more advantageous to share more than the partner, provided
that τ = 0. Similar to the effect of correlation, increasing group size G does not alter
our result. On the other hand, for τ > 0, full cooperation is not stable anymore and the
agents converge to a value 0 < αopt < 1.

The case of finite time horizons T is not amenable to analytical treatment and it
requires relying on numerical simulations to evaluate the average log-return 〈qi(T )〉/T .
Fig 4.2 shows that two regimes appear separated by a critical time horizon T ∗. For
T > T ∗, the system behaves qualitatively as in the infinite time-horizon case: the
individual optimizations of the log-average return lead agents to converge to a value
αopt > 0. For short time horizons (T < T ∗), defection is more advantageous than
cooperation and log-return optimizations lead agents to converge to αi = 0. This result
sheds light on the mechanism producing cooperation in our modeling setting: for long
time-horizons, the investment in the other agents that cooperation effectively determines
has time to returns that overcompensate the costs of cooperation.
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Figure 4.2: Numerical simulations show a phase transition in the optimal α as the time
horizon T stretches. For short time horizons α∗i < αj , bringing the system towards a
zero optimal α. Above a threshold T ∗ a finite value of αopt > 0 is stable. It grows by
increasing T . Values of αopt > 1 are an artifact of the procedure, simply consider them
αopt = 1.

The results presented above provide a clear mathematical mechanism for the emer-
gence and stability of cooperation in a fluctuating environment.
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4.2.2 Evolutionary Alogorithm

We now focus on explicit evolutionary dynamics in a finite population(see Fig. D.4 in
the Appendix for a pictorial representation). We consider a population of N agents
reproducing with non-overlapping generations at discrete time-steps. Each agent i is
characterized by a sharing probability αi, which is the trait undergoing mutations and
selection. Before reproduction, individuals are paired in groups of two and their fitnesses
fi are calculated by integrating eq. 4.1 over a finite time-interval T with initial condition
fi(0) = 1. The fitness of each individual is therefore a stochastic variable that depends
on the values of αi of both individuals in the pair. After this step, the pairs are broken
up and each individual reproduces proportionally to its fitness value fi.

As expected from previous results of population genetics in fluctuating environ-
ments [40], evolution drives the population to traits that maximize the expected log-
fitness. Fig. 4.3 shows the population average values of resource sharing probability α
over time. For a short time horizon, defection dominates and the distribution of α is
peaked close to 0, with some variance given by mutations and genetic drift. Conversely,
when the time horizon is large enough, the vast majority of individuals cooperate, and
α peaks close to one.

Long Time 
Horizon

Short Time 
Horizon

Evolution Steps

αi

Figure 4.3: The Wright-Fisher model numerical simulation shows the phase transition
as the time horizon stretches. Two similar populations, with an initial α distribution
with average 0.5, are let evolve with different time horizons (Tshort = 20, Tlong = 1000).
The population with short time horizon evolves towards a distribution peaked in α = 0
ehile the long time horizon one, in the opposite direction, towards a α = 1.

4.3 Discussion

The emergence and stability of cooperation is a widely discussed topic in ecology, eco-
nomics and sociology. While it is often observed in nature it is not immediate to the-
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oretically justify its stability. Cheating, in fact, often drives the system away from the
cooperative phase -the best for the group - towards a defecting one.

Five mechanisms are known that can overcome the drive towards defection [43]. They
mainly rely on the memory of individuals, that behave accordingly to the behaviour of
the partners, or on spatial localization and group selection.

We showed that a sixth mechanism exists when the system is representable from a
stochastic multiplicative process. Here, when looking at long term returns, the fully
cooperative behaviour proves to be the best for growth. As time goes on, in fact, the ad-
vantage provided by the of fluctuations become bigger than the one provided by cheating
on the partners. We tested this result by exploring different settings, characterizing the
stability over noise correlations among individuals, arbitrary group sizes, coloured noises
and finite time horizons. We discovered that, while the group size and noise correlations
do not change qualitatively the result, time plays an important role in the stability. As
time horizon shorten or the auto-correlation time increases we observe a phase transition
towards defection, in a prisoner-dilemma like situation.

The existence of this new mechanisms gives new perspectives on the emergence of
cooperation. It opens up new possible explanations to existing phenomena and gives the
possibility to find new optimal solutions both in ecology and economics.
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Appendix A

Supplementary Informations to
Chapter 1

A.1 Model

We consider a consumer-resource model in presence of cross-feeding, which describes the
dynamics of population biomasses nσ (for σ ∈ S) and resources concentration ci (for
i ∈ R). Changes in population abundance are defined by

dnσ
dt

= nσ

(
ησ
∑
i∈R
Egiσ − δσ

)
. (A.1)

where δσ is a death term and ησ is the efficiency of the conversion of energy into biomass.
Egiσ is the energy flux used for species σ to grow from metabolite i. The total energy
flux into a cell of type σ is given by E iniσ = Egiσ + Eoutiσ , where Eoutiσ are the energy fluxed
of secreted metabolites. The associated dynamics of resource concentration ci is defined
by

dci
dt

= hi(ci)−
1

wi

∑
σ∈S

nσE iniσ +
1

wi

∑
σ∈S

nσEoutiσ , (A.2)

were wi defines the conversion between energy and concentration of resource i. The
function hi(ci) specify the dynamics of resource concentration in absence of consumers.

We assume that the energy fluxes used for growth are a fraction 1 − `i of the total
ones: Egiσ = (1− `i)E iniσ . The energy fluxed from secreted metabolites is given by Eoutiσ =
`i
∑

j∈RDijE injσ. The crossfeeding matrix element Dij defines energy conversion between
resource j and resource i. Energy conservation implies

∑
iDij = 1.

The energy flux E iniσ is takes the form

E iniσ = wiνiaσiri(ci) , (A.3)

where ri(ci) is a non-decreasing function of the concentration of resource i, and νi is the
maximal intake rate of resource i. The elements aσi ∈ [0, 1] measures the intake rate of
metabolite i species σ relative to the maximum νi.
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We introduce a metabolic tradeoff by considering

δσ
ησ

=
1

τ

1 +
∑
j∈R

χjaσj

 (1 + εσ) . (A.4)

In the simple setting of aσj ∈ {0, 1}, the parameter χj measure the cost of being able
to metabolize metabolite j. The parameter εσ contributes to the fitness differences
between species. In the following we will consider it randomly drawn from a disribution
with mean zero and variance σ2ε .

A.2 Functional attractor

In the eco-evolutionary simulations, we always consider resources and populations chang-
ing over a similar timescale. To make analytical progress we approximate the full dy-
namics with the effective one obtained by assuming timescale separation — i.e. resource
concentrations equilibrate faster than the changes in population abundances. We un-
derline that we assume the separation of timescales only as an approximation, for the
purpose of predicting analytically the outcomes of the numerical simulations, which are
always obtained with explicit resource dynamics.

In this case, one can effectively describe the dynamics of populations as

dnσ
dt

= nσ

(
ησ
∑
i∈R

aσiνi
heffi∑

µ∈S nµaµiνi
− δσ

)
, (A.5)

where heffi = (1−`)
∑

j∈RBijhjwj and the matrix B = (I−`D)−1. It is useful to notice

that, in the limit χ → ∞ and heffi → ∞ (such that the ration heffi /χ is finite in the
limit) reduces to the model with constant total energy budget [58, 48]. It is known [58]
that

L({n}) =
∑
σ

δσ
ησ
nσ −

∑
i

heffi log

(∑
σ

νiaσinσ

)
, (A.6)

is a Lyapunov function. With our choice for the metabolic trade-off (??), such functional
can be conveniently rewritten as

L({n}) =
∑
σ

nα

1 + χ
∑
j∈R

aσj

 (1− εσ)−
∑
i

heffi log

(∑
σ

νiaσinσ

)
. (A.7)

We then introduce the total population size N =
∑

σ∈S nσ and define the functional
abundances Fi as

Fi =
∑
σ∈S

aσi
nσ
N

, (A.8)
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which correspond to the fraction of individuals that are able to metabolize resource i.
Interestingly, and surprisingly, when εσ = 0, the Lyapunov function can then be written
as function of N and {F} alone:

L(N, {F}) = N

1 + χ
∑
j∈R

Fj

−∑
j∈R

heffj log (NνjFj) . (A.9)

The fact that the Lyapunov function depends only on the total biomass and the func-
tional profile already suggest, even if it does not imply, that functional abundances are
the relevant variable for the study of community composition.

By minimizing the function over Fi in [0, 1] one obtains

F ∗i = min{1, 1

N∗
heffi

χ
} , (A.10)

where the total biomass is the solution of

N∗ =

∑
j∈R h

eff
j(

1 + χ
∑

j∈R F
∗
j

) . (A.11)

These equation can be solve iteratively, starting from Fi = 1 ∀i and N =
∑

j∈R h
eff
j /(1+

χR).
In the case with no intrinsic fitness differences (εσ = 0), the equilibrium solutions are

identified by equations A.10 and A.11. For a given system, a fraction of resources will
be core resources, i.e. shared by everyone F ∗i = 1. These core resources are the ones for

which heffi ≥ χN∗.

A.3 Eco-Evolutionary dynamics

The mutation probability of a preference of resource i in strain µ depends on whether µ
consumes or not i. The rate U−,i at which a mutant µ̃ stops consuming resource i (the
parent has ai = 1 and the mutant ai = 0) is constant, independent of i, and equal to U−.
The rate at which a mutant starts consuming a resource i (the parent has ai = 0 and
the mutant ai = 1) equals to U+,i = U+(PhFi+Pdn). The quantity Ph is the probability
that an addition happens because of horizontal gene transfer, while Pdn = 1 − Ph the
probability of “de novo” mutations. The rate of horizontal transfer is proportional to
the frequency Fi of that allele in the population, while the rate of a de-novo mutation is
independent of i.

The rate at which the resource preference i mutates in strain µ is then equal to

Wmut
µ,i = bµnµ (aµiU−,i + (1− aµi)U+,i) , (A.12)

where bµ is the per-capita birth rate on strain µ, which is equal to

bµ = ηµ
∑
j

aµjrj(cj) . (A.13)
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In theory one could expect a new mutant to have abundance 1. The initial phase of its
dynamics is then dominated by demographic stochasticity, with many mutants going to
extinction despite having a positive (average) growth rate. In our framework, we do not
consider this effect of demographic stochasticity explicitly, but we include it effectively.
Since the initial abundance of the mutant µ̃ is a small fraction of the total population,
its stochastic dynamics can be approximated by a stochastic exponential growth. In this
regime, the per-capita birth rate of the mutant is given by (1 − `)

∑
i aµ̃iri(c

∗
i ), where

c∗i is the concentration of resource i prior to the mutant arrival. The per-capita death
rate of the mutant reads (1 + χ

∑
i aµ̃i)(1 − εµ̃). Under the assumption of a stochastic

exponential growth the survival probability is given by

psurvµ̃ = 1−min

(
1,

(1 + χ
∑

i aµ̃i)(1− εµ̃)

(1− l)
∑

i aµ̃iri(ci)

)
. (A.14)

The strain intrinsic fitness values εσ are independently drawn from a Gaussian distribu-
tion with mean 0 and standard deviation ε.

By calculating all these quantities for all possible mutations of all existing strains,
one obtain the rate of invasion W inv

iµ of a mutant µ̃ which is obtained by changing the

resource preference of strain µ for resource i. The rate of invasion W inv
iµ reads

W inv
µ,i = Wmut

µ,i p
surv
µ̃ , (A.15)

where the mutant µ̃ differ from µ in the resource preference i.
We simulate the eco-evolutionary dynamics as a sequence of discrete small time steps

∆t. After a step of integration of equations A.1 and A.2 we update the values of W inv
iµ ,

as they depend on strain abundances, and checked whether a mutant appeared. Each
mutant, identified by the parent strain µ and a resource i, has probability W inv

iµ ∆t to
invade. If such an event occurs, the new mutant is introduced with an initial relative
density equal to 10−5.

If no mutations appear for a long enough time, the ecological dynamics (obtained
by integrating equations A.1 and A.2) reach an equilibrium point, identified numerically
when the absolute value of the population growth rate is lower than 10−4. If the strain
abundances are not changing, also the rates of invasions W inv

iµ are constant in time
(until the next successful invasion), and one can use a Gillespie algorithm. The time
of the next successful invasion is drawn from an exponential distribution with average
T = 1/

∑
iµW

inv
iµ . The probability that the new mutant will replace strain µ differing

in resource preference i is simply TWiµ.

A.4 Choice of parameters and sensitivity analysis

The results presented in this paper were achieved using generic parameters, whose details
can affect the distribution of taxa or relaxation time but not the macroscopic observables
that characterize the functional attractor. In order to quantify the convergence to the
functional attractor, we measure the discrepancy between the functional composition
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of the community during its eco-evolutionary trajectory and the functional composition
predicted by equations A.10 and A.11. As a measure of the discrepancy, we consider the
Kullback-Leibler divergence between the normalized functional profiles

D =
∑
i

F ∗i∑
j F
∗
j

log

(
F ∗i∑
j F
∗
j

∑
j Fj

Fi

)
. (A.16)

The divergence D is equal to zero if and only if the functional composition of the com-
munity (quantified by the Fi) matches the analytical expectation, i.e. if Fi = F ∗i for all
the i.

We considered ησ = νi = wi = 1 in eq. A.1 and A.2. These choices do not affect the
results, as they do not affect the ecological fixed point and its stability property (up to
a rescaling of the abundances and concentrations). The timescale τ was also set to 1,
without loss of generality.

In the main text we considered ri(ci) = ci. In the Supplementary Materialswe
explore the effect of non-linear intake functions ri(c) by considering a Monod-like form
ri(ci) = µmaxci/(ci + Ks) with different values of Ki. Figure A.4 shows that the value
of Ki has no effect on the functional composition of evolved communities.

The intrinsic fitness on any new mutant was drawn from a Gaussian distribution with
mean zero and variance ε2, independently of the fitness of the parent. In the main text
we considered ε = 0.001. Fig A.1 explores the sensitivity of the results to the magnitude
of the noise. Much larger values of noise (of the order 0.1) often disrupt the properties of
the manifold. For instance, strains not consuming core resources are still able to survive
because of high intrinsic fitness. For intrinsic fitness differences with a width of the
order of 10−2, the functional composition converges to the analytical prediction, which
becomes more and more accurate as fitness differences decrease.

The strength of cross-feeding ` has no effect on convergence to the functional attractor
(see Fig. A.2). The cross-feeding matrix D has been chosen following [37]. Entries were
extracted according to a Dirichlet distribution, where resources are in three classes.
We considered an effective sparsity of s = 0.1. The fraction of resources remaining
in the same class was fs = 0.7 while the ones going to the waste class is fw = 0.28.
The structure of the cross-feeding matrix D does not affect the stationary functional
composition of the community. Fig. A.2 compares a fully random D with the ones
proposed in ref. [37] and used in the text, observing no difference in the results.

Figure A.3 shows that the outcomes of the evolutionary trajectories are independent
of frequencies of the different mutation steps. We varied the (average) total mutation
rate Utot = (U+ + U−)/2, the ratio U−/U+ between mutation leading to deletions of
resource preferences (with rate U−) and the ones leading to additions (U+), and the
ratio Ph/Pdn between horizontal gene transfer and de-novo mutations. While the total
mutation rate, and partially the ratio U−/U+, affected the evolutionary trajectories and
speed of adaptation, none of these parameters affected the convergence of the functional
composition to the predicted attractor.

Both the eco-evolutionary simulations and the analytical approximation are based on
the assumption that the metabolic cost is linear in the consumed resources, as expressed
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in equation ??. In general, one could assume a non-linear tradeoff [12] that takes the
form

δσ
ησ

=
1

τ
g

χ∑
j∈R

aσj

 (1− εσ) , (A.17)

where g(z) is an arbitrary non-linear, monotonically increasing, function. We consid-
ered the outcomes of the evolutionary trajectories in the case of a super-linear cost
(g(z) = (1 + z)2, in Fig. A.5) and a sub-linear cost (g(z) = log(1 + z), in Fig.A.6). In
both scenarios, the functional composition converges to reproducible values, minimally
affected by fitness differences. On the other hand, the taxonomic composition is much
largely affected by fitness differences. Similarly to the linear metabolic cost functions,
some resources correspond to core-functions (F ∗i = 1) while the functional occurrences

F ∗i of non-core resources are linearly related to the effective influx rates heffi . These evo-
lutionary outcomes, obtained under non-linear metabolic costs, confirm the generality
of our results beyond the linear metabolic cost case.

BA

Figure A.1: Noise amplitude on fitness affects the convergence to the functional manifold.
20 realizations for three different amplitudes, ε = 10−3 (dark blue), ε = 10−2 (blue) and
ε = 10−1 (light blue). A final functional occurrences of the samples. In the case of ε = 0.1
the results falls very far from the noiseless theoretical predictions. B distance from the

manifold as a function of time. The distance is calculated as d = −
∑

i F̃
∗
i ln

(
F̃i
F̃ ∗i

)
, where

F̃i := Fi∑
i Fi

. In all simulations all the other parameters were set to the same values used

in the main text.
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Figure A.2: Cross feeding effect on the convergence to the functional manifold. The
shape and intensity of cross-feeding affect neither the final distance from the manifold
nor the path used to reach it. 20 realizations for every choice of the parameters are
shown. A shows the effects of the amplitude of cross-feeding `. Three values are here
considered, (` = 0.2) in light-green, ` = 0.45 in green and ` = 0.7 in blue. B Difference
of convergence behavior in presence of a random cross-feeding matrix and a Dirichlet
distributed matrix. The distance is calculated as in Fig. A.1 In all simulations all the
other parameters were set to the same values used in the main text.
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Figure A.3: The choice of evolutionary parameters does not affect the distance from the
functional manifold but can modify the path walked to reach it. 20 realizations for every
choice of the parameters are shown. A shows the effects of the mutation rate Utot. Two
values are here considered, a fast mutation rate (Utot = 10−2) in orange and a slow one
Utot = 10−4 in yellow. B: effects of the ratio between function loss and function gain
rates. Dark green for the case where losing a gene is more probable than gaining it.
Light green stands for the even case and yellow for the samples where losing a function
is less likely than gaining it. C: influence of the probability of gaining new genes via
horizontal gene transfer (Phgt) versus spontaneous mutation. The distance is calculated
as in Fig. A.1 In all simulations all the other parameters were set to the same values
used in the main text.
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A B

Figure A.4: The properties of the manifold are insensitive on the choice of the function
ri(ci) of Eq. (1.1), i.e. which species consume the resources does not affect the conver-
gence to the functional manifold. In particular both the linear response (ri(ci) = ci) and
the Monod response (ri(ci) = µmax

ci
Ks+ci

) bring to the manifold with the same behavior.
In A we show the time evolution of the distance from the theoretical manifold for 20
trajectories for every choice of Ks and in B the functional occurrence for one realisation
for each Ks. Such a parameter is not determinant in the behaviour of the convergence
to the manifold. The constant µmax = (2 + Ks)(2 + χ) is chosen to ensure that the
growth rate is higher than the death rate at least for some species at the beginning of
the dynamics. Such a choice also ensures that all the resources are properly consumed
and none of them is growing indefinitely. In all simulations all the other parameters
were set to the same values used in the main text.
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Figure A.5: Evolutionary outcomes under super-linear metabolic cost. All the panels
consider a quadratic cost (g(z) = (1+z)2 in eq. A.17). Panel A shows that the functional

occurrences F ∗i depend on the effective resource influx rates heffi in a similar fashion to
what is observed for the linear metabolic cost (see Fig. 1.2). Different points correspond
both to different resources and different realizations of the intrinsic fitness values. Similar
to the linear cost, increasing the value of the cost per resource χ decreases the number of
core resources. The other panels show the taxonomic (panel B) and functional (panel C)
composition of different communities evolved in independent environments, characterized
by the same effective resources influx rate heffi but different intrinsic fitness values εσ.
Panel B shows that the taxonomic composition varies widely across realizations, while
the functional composition is much more stable and minimally affected by intrinsic fitness
variation (Panel C). A color in panel B represents a strain, fully characterized by a given
functional preference aσ·. Colors in panel C represent different functions. The overall
qualitative picture that emerges confirms the results obtained in the main text for linear
metabolic costs. In all simulations, all the other parameters were set to the same values
used in the main text. Panel B and C were obtained with χ = 0.5.
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Figure A.6: Same as figure A.5 but with sub-linear metabolic cost. All the panel con-
siders the case of a logarithmic cost (g(z) = log(1 + z) in eq. A.17).
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Appendix B

Supplementary Informations to
Chapter 2

B.1 Community structure function

Under the choices explained in the main text, the dynamics of population abundances
is defined by

dnσ
dt

= ησnσ

∑
i∈R

(1− `i)wiνiaσiri(ci)−
1

τ

1 +
∑
j∈R

χjaσj

 (1 + εσ)

 . (B.1)

The values of ησ only contribute to determine the time-scales of the process but do not
affect the fixed point or its stability. We therefore limit the calculation to the case η = 1.

The dynamics, in the limit εσ = 0, can be described in terms of the relative frequences
xσ

dxσ
dt

= xσ

∑
i∈R

(1− `i)wiνi (aσi − Fi) ri(ci)−
1

τ

∑
j∈R

χj(aσj − Fj)

 , (B.2)

where Fj =
∑

σ xσaσj . The resources evolve accordingly to

dci
dt

= hi(ci)−
1

wi

∑
j

N (δij − `jDij)wjνjFjr(cj) , (B.3)

where the total biomass N is the solution of the equation

dN

dt
= N

∑
i∈R

(1− `i)wiνiFiri(ci)−
1

τ

1 +
∑
j∈R

χjFj

 . (B.4)
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Given that in both eq B.3 and B.4 the effect of population abundances only enter
thorugh Fi, one could be tempted to write an equation for Fi, which in turns reads

dFi
dt

=
∑
j∈R

∑
i∈R

(1− `i)wiνi (Fij − FiFj) ri(ci)−
1

τ

∑
j∈R

χj(Fij − FiFj)

 , (B.5)

that also depends on Fij :=
∑

σ xσaσiaσj , which quantifies the probability that two
pathways occur together in the same individual. The equations therefore do not close in
Fi, depending on the full distribution of pathways into individuals.

A similar argument can be more completely formulated by writing the dynamics for
the community structure function G. It can be obtained by deriving the dynamics for
eG =

∑
σ xσ exp(

∑
i kiaσi) from eq. B.2 and using ∂G/∂t = e−G∂eG/∂t, from which one

obtains

∂G({k}, t)
∂t

=
∑
i

(
∂G({k}, t)

∂ki
− Fi

)(
(1− `i)wiνiri(ci)−

χi
τ

)
. (B.6)

which corresponds to eq. 2.9.

The term ∂G({k}, t)/∂ki−Fi depends, in full generality, on k, implying that the other
terms (1− `i)wiνiri(ci)− χi

τ are equal to zero. This is always true, unless ∂G({k}, t)/∂ki
is independent of k. This is possible if and only if all the individuals have the same value
of aσi, which in turns imply ∂G({k}, t)∂ki = Fi ∈ {0, 1}, therefore determing the first
term is zero.

B.2 Stationary solutions

There are two types of resources therefore: the ones that all the individuals are able
or not able to metabolize (for which Fi ∈ {0, 1}) and those for which the stationary
concentration reads

ri(c
∗
i ) =

χi
(1− `i)wiνiτ

. (B.7)

We will neglect the resources with Fi = 0, and we will call core resources the ones with
Fi = 1 and non-core resources the others. If i ∈ Rc is a core resource, if i ∈ Rnc is a
non-core one.

Using equation B.3 it is easy to see that the stationary value F ∗i ri(c
∗
i ) reads

F ∗i ri(c
∗
i ) =

∑
j B
−1
ij wjhj(c

∗
j )

N∗νiwi
=:

qiχi
N∗νiwi(1− `i)τ

, (B.8)

where Bij = δij − `iDij and

qi =
τ(1− `i)

∑
j B
−1
ij wjhj(c

∗
j )

χi
. (B.9)
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By imposing stationarity in equation B.4 we obtain in turn

0 = τ
∑
i

(1− `i)νiwiF ∗i ri(c∗i )− 1−
∑
j

χjF
∗
j =

∑
i χiqi
N∗

− 1−
∑
j

χjF
∗
j , (B.10)

from which we obtain

N∗ =

∑
i χiqi

1 +
∑

j χjF
∗
j

(B.11)

For non-core resources we can use equation B.7 together with equation B.8 to obtain

F ∗i =
qi
N∗

if i ∈ Rnc, (B.12)

Motivated by the fact that the functional abundances are bounded from above to 1, we
finally obtain

F ∗i = min{1, qi
N∗
} , (B.13)

The value of qi is determined by solving eq B.8 for both core and non-core resources.
An efficient algorithm to solve these coupled equations computationally is presented in
section B.3.

Note that if resources are externally supplied without dilution (or if dilution of re-
sources is negligible compared to their consumption), i.e., if hi(c

∗
i ) = hi equation B.9

becomes a definition and there is no need to find the stationary concentration of resources
to determine the resource quality qi.

B.3 Iterative algorithm to determine the manifold

The algorithm is iterative. It starts by considering all the resources, but one, as non-
core. It further assumes that for the core resource ic the two terms in the min(·) are
equal, i.e. qic = N∗.

Starting from the 0-th step (evaluated in sequence)

c
(0)
i = r−1i

(
χi

(1− `i)wiνiτ

)
q
(0)
i =

τ(1− `i)
∑

j B
−1
ij wjhj(c

(0)
j )

χi

N (0) = max
i
q
(0)
i

F
(0)
i = min{1,

q
(0)
i

N (0)
}

(B.14)
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Starting from this condition we then evaluate

N (d+1) =

∑
i χiq

(d)
i

1 +
∑

j χjF
(d)
j

F
(d+1)
i = min{1,

q
(d)
i

N (d+1)
}

R(d+1)
c = {i : Fi = 1} , R(d+1)

nc := {i : Fi < 1}

c
(d+1)
i = r−1i

(
χiq

(0)
i

N (d+1)νiwi(1− `i)τ

)
if i ∈ Rc

c
(d+1)
i = r−1i

(
χi

(1− `i)wiνiτ

)
if i ∈ Rnc

q
(d+1)
i =

τ(1− `i)
∑

j B
−1
ij wjhj(c

(d+1)
j )

χi

(B.15)

B.4 Solution to the equation defining the functional man-
ifold

We have to solve
F ∗i = min{1, qi

N∗
} , (B.16)

together with

N∗ =

∑
i χiqi

1 +
∑

j∈R χjF
∗
j

. (B.17)

It is convenient
Without loss of generality, we can order the resources so that qi−1 ≤ qi ≤ qi+1. We

define ic as the indices corresponding to the last resource with F ∗ic < 1 (i.e. F ∗ic < 1 and
F ∗ic+1 = 1). We obtain therefore

F ∗i =
qi
N∗

if i ≤ ic and F ∗i = 1 otherwise , (B.18)

and

N∗ =

∑
i χiqi

1 + 1
N∗
∑

j≤ic qjχj +
∑

j>ic
χj

, (B.19)

grom which one obtains

N∗ =

∑
j>ic

χjqj

1 +
∑

j>ic
χj

, (B.20)

Introducing this expression in eq. B.18 we obtain that ic is defined by

qic∑
j>ic

qjχj

1 +
∑
j>ic

χj

 < 1 and
qic+1∑

j>ic+1 qjχj

1 +
∑

j>ic+1

χj

 < 1 . (B.21)
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By defining

Ξ(i) = qic

1 +
∑
j>ic

χj

−∑
j>ic

qjχj , (B.22)

the condition of equation B.21 can be rewritten as

Ξ(ic) < 0 and Ξ(ic + 1) ≥ 0 . (B.23)

B.5 Infinite resource pool R→∞
It is convenient to define ηi = qi/q̄ and γi = χi/χ̄, where q̄ =

∑
i qi/R and χ̄ =

∑
i χi/R

. In the limit of large R their joint distribution function is p(η, y). We can write the
continuous version of eq. B.22 by considering that, in the continuum limit ηi → η,
ηic → ηc

i→ R

∫ ηi

0
dz

∫ ∞
0

dy p(z, y) =: Rφ(ηi) , (B.24)

and∑
j>i

qjχj = q̄χ̄
∑
j>i

ηjγj → Rq̄χ̄

∫ ∞
ηi

dz

∫ ∞
0

dy p(z, y)zy = Rq̄χ̄

(∫ ∞
ηi

dz p(z)z〈γ〉z
)
,

(B.25)

where p(z) =
∫∞
0 dy p(z, y) and 〈γ〉z =

∫∞
0 dy p(z, y)y. Similarly,∑

j>i

χj = q̄χ̄
∑
j>i

γj → Rq̄χ̄

∫ ∞
ηi

dz

∫ ∞
0

dy p(z, y)y = Rχ̄

(∫ ∞
ηi

dz p(z)〈γ〉z
)
, (B.26)

Introducing this expressions in eq. B.22 one obtains

0 = ηc

∫ ∞
ηc

dz p(z)〈γ〉z − q̄
∫ ∞
ηc

dz p(z)z〈γ〉z . (B.27)

The equation for the total biomass N∗ reads

N∗ =
Rq̄χ̄

∫∞
ηc
dz p(z)z〈γ〉z

1 +Rχ̄
∫∞
ηi
dz p(z)〈γ〉z

=
ηcRχ̄

∫∞
ηc
dz p(z)〈γ〉z

1 +Rχ̄
∫∞
ηi
dz p(z)〈γ〉z

. (B.28)

The number of species will read

S∗ = R

(
1−

∫ ∞
ηc

dz p(z)

)
. (B.29)

B.5.1 Linear relation between q and χ

Let us consider 〈γ〉z = 1−λ+λz. The parameter λ characterizes the correlation between
the quality qi and the cost χi.
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B.5.2 Exact solution in the uniform case

Let’s cosider the case when h are uniformly distributed, i.e. p(η) if a uniform distribution
between 1− σh/2 and 1 + σh/2. Eq. B.27 reads therefore

0 = −1 + ηc
1 +X

X
+

∫ ηc

1−σh/2
dz

z

σh
, (B.30)

which is solved by

ηc =

√
5/4 + σh +

(
σh

1 +X

X

)2

− σh
1 +X

X
. (B.31)

By definition ηc has to be in the interval [1 − σh/2, 1 + σh/2], which occurs if σh >
2/(1 + X). In this regime, the total biomass can be simply obtained as N∗ = ηcH/X,
while the richness equals S = 1 + RX

σ
N∗

H = 1 + Rηc/σh. If σh < 2/(1 + X), then
N∗ = H/(1 +X) and S = 1.
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Supplementary Informations to
Chapter 3

C.1 A Mathematical description of Community Functional
Composition

We can describe each genome is a vector in the discrete space of functions gi = (f1, f2, f3..)
with fi ∈ N. Not all the vectors exist as evolution puts constraints on the shape of these
vectors. Since communities are composed by integer number of individuals, the func-
tional composition can assume just values in the lattice generated by the existing vectors
Cf =

∑
i xigif with xi ∈ N. The number of nodes of this lattice is way smaller than the

dimension of the abstract space of all possible functional compositions.

C.2 Generating a Virtual Community

To create the virtual community we begin from a genome length distribution Pv(`) and
attribute to every strain S in the database a probability to be selected proportional to
P (`s). We then use such probabilities to select K strains.

We add to the community sk copies of every selected strain, with sk = N
n P (`k)ξ,

where N is the average total number of bacteria in the virtual community and ξ is a
random number uniformly distributed in [0.5, 1.5]. Defining a vector s̃s equal to sk for
i ∈ {k} and 0 otherwise, the family abundances are obtained as R′f =

∑
iD
′
iss̃s. We

eventually apply a sampling error to the family abundances by extracting Rf from a

normal distribution with mean R′f and standard deviation
√
R′f

C.3 Uniqueness of the Solution

This is a speculation on the mathematical reasons supporting the convergence of the
algorithm.
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Consider the very simplified case of one strain and two genes. Each family scales
with the genome length ` with a different exponent. Without loss of generality consider
the abundance of two genes g and 1 − g with power laws a1`

e1 and a2`
e2 . Given a we

have
a1`

e1

a1`e1 + a2`e2
= g (C.1)

that univoquely determines the required length of the genome as

`∗ =

(
ga2

a1(1− g)

)e2−e1
Consider now two strains in the community, with lengths `1 and `2 and relative

abundances x and 1− x. We can write Eq. C.1 as

xa1`
e1
1 + (1− x)a1`

e1
2

xa1`
e1
1 + xa2`

e2
1 + (1− x)a1`

e1
2 + (1− x)a2`

e2
2

= g (C.2)

This can be written as

x =
g(a1`

e1
2 + a2`

e2
2 )− a1`e12

(1− g)(a1`
e1
1 − a1`

e1
2 )− g(a2`

e2
1 − a2`

e2
2 )

(C.3)

The right hand side is positive, leading to a possible solution, for many walues of
`1, `2. It has two nodes, one in 0 and one in `1 = `2 = `∗.

Considering now more than one couple genes we obtain many equations like C.3.
The values of the r.h.s. depend on the parameters of the genes, making it unprobable to
find a value of `1 and `2 that provides the same value to all the r.h.s. of the equations.
The only stable points are the nodes, granting the convergence of the method. The node
in 0 does create problems as we can see in Fig.3.5, where a peak at low length is detected
by the algorithm even though there are no bacteria of that length.
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Supplementary Informations to
Chapter 4

D.1 Mathematics

Beginning from two SDE with multiplicative noises

ẋ1 = µx1 + x1σε1 +
α2x2 − α1x1

2

ẋ2 = µx2 + x2σε2 +
α1x1 − α2x2

2

(D.1)

Where the noise can be correlated both among individuals and in time as described
by the following equation

< εi(t)εj(t
′) >= (ρ(1− δij) + δij)

e−
|t−t′|
τ

2τ
(D.2)

We consider the logarithm of the variables q := log(x) and the difference between
the tho logarithmic variables d := q2 − q1

q̇1 = µ− σ2

2
+ σε1 +

α2e
q2−q1 − α1

2

q̇2 = µ− σ2

2
+ σε2 +

α1e
q1−q2 − α2

2

(D.3)

The equation for d(t) is easily obtained as

ḋ = σ
√

2(1− ρ)ζ +
α1e
−d − α2e

d

2
+
α1 − α2

2

< ζ(t)ζ(t′) >=
e
|t−t′|
τ

2τ

(D.4)
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Where we used

σ(ε1 − ε2) =
√

2σ2(1 + ρ)ζ

σ(ε1 + ε2) =
√

2σ2(1− ρ)ζ =:
√

2σ̃ξ
(D.5)

D.1.1 The τ = 0 case

If no time correlation is present in the multiplicative noises we can exactly find the
stationary distribution of d. Defining f(x) := α1e−x−α2ex

2 + α1−α2
2 we have

P ∗(d) =
1

z
exp

(
1

σ2(1− ρ)

∫ d

0
dxf(x)

)
(D.6)

This, if y(t) := ed(t), becomes

P ∗(y) =
1

z
y

α1−α2
2σ2(1−ρ) exp

(
−
α1

1
y + α2y

2σ2(1− ρ)

)
(D.7)

We want to find 〈q̇〉 ∝ 〈ed〉 = 〈.〉y = 1
z

∫∞
0 dyP ∗(y). Recalling that dd = dy

y we have

that z =
∫∞
0

dy
y P
∗(y) and so

〈ed〉(α1, α2) = 〈.〉y =

∫∞
0 dyP ∗(y)∫∞
0

dy
y P
∗(y)

=

√
α1
α2
BesselK

(
−1 + α1−α2

2(ρ−1)σ2 ,−
√
α1α2

(ρ−1)σ2

)
BesselK

(
α1−α2

2(ρ−1)σ2 ,−
√
α1α2

(ρ−1)σ2

) (D.8)

By inserting this in Eq.D.3 we have an exact analytical expression for 〈qi〉(t).

D.1.2 The τ 6= 0 case

If the noise is time correlated we can use the Coloured Noise Approximation [46] to find
the stationary probability distribution of d(t) reading

P ∗(d) =
1

z
exp

(
1

σ2(1− ρ)

∫ d

0
dxf(x)− τ

2

f2(d)

σ2(1− ρ)

)
(1− τf ′(d)) (D.9)

with
∫ d
0 dxf(x) = −α1e−d+α2ed

2 + dα1−α2
2 + C and f ′(d) = −α1e−d+α2ed

2

if y(t) := ed(t) we have
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f(y) =
α1

1
y − α2y

2
+
α1 − α2

2∫ d

0
dxf(x) = −

α1
1
y + α2y

2
+ log(y)

α1 − α2

2
+ C

f ′(y) = −
α1

1
y + α2y

2

f2(y) =
1

4

[
α1

(
1 +

1

y

)
− α2(1 + y)

]2
(D.10)

and this allows us to rewrite the stationary probability distribution as

P ∗(y) =
1

z
y

α1−α2
2σ2(1−ρ) exp

−α1
1
y + α2y

2σ2(1− ρ)
− τ

8

[
α1

(
1 + 1

y

)
− α2(1 + y)

]2
σ2(1− ρ)

 ∗
∗ (1 + τ

α1
1
y + α2y

2
)

(D.11)

As we can see from Fig.D.1, such a result is in agreement with the numerical simu-
lations for all the different parameter combination examined.
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Figure D.1: The typical long term growth rate of individual 1 as a function of how much
he shares (α1). Simulation (markers) are in accordance with the analytical calculations
(solid lines). Each column of panels is calculated for a different value of the partner’s
share α2. A,B,C: show the behaviour at different values of τ , the decorrelation time
of the multiplicative noise (the lighter the higher τ). In red a marker representing the
maximum of each curve. We can see that, as τ increases the best choice of α1 passes from
being grater than α2 to the opposite. D,E,F: show the behaviour at different values of
ρ, the correlation between the multiplicative noise of the two individuals (the lighter the
higher). In red a marker representing the maximum of each curve. We can see that, as
ρ increases the best choice of α1 always remains greater than α2.
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Figure D.2: The behaviour of the optimal value α∗ depends on the noise and the co-
operation cost. A Shows that the auto-correlation time τ affects the stability of the
system. By increasing τ (lighter blue) we observe a transition towards a phase where
the equilibrium α lies in the interval (0, 1) and goes towards 0 as τ → ∞. In B the
behaviour with ρ the correlation among the noise of the two individuals. The qualitative
behaviour does not change with ρ as the optimal α is always higher than the partner’s
α. The fully cooperative phase is thus stable for any value of ρ. C shows, for the cost of
cooperation δ, a similar behaviour to the one observed with τ . As expected, increasing
the cost of cooperation (towards yellow) makes the fully cooperative phase unstable,
returning an α of equilibrium in (0, 1).
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Figure D.3: The equilibrium α of the system presents a phase transition as both τ and
δ increase. A shows the evolutionary dynamics of the αs at an intermediate value of τ .
The vector field converges to a finite value of α ∈ (0, 1). B The values of αeq as functions
of ρ (green), τ (blue) and δ (yellow)
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Figure D.4: A sketch representation of the Wright-Fisher model we used to simulate the
evolution of cooperation among individuals. A set of n individuals, each characterised
by a value of the cooperation parameter αi and by an initial fitness xi = 1. Individ-
uals are randomly coupled. Each couple is let develop independently in a stochastic
multiplicative environment for a time T, cooperating accordingly to αi,αj . Individuals
reproduce proportionally to the final value of the fitness xi(T ) and n individuals are
randomly selected among the offsprings. A mutation is applied to the alpha parameters
by extracting a new value of α from a gaussian distribution centered on the parent’s
α and with width 0.05. Individuals are shuffled and fittnesses are put back to 1. The
process is repeated for m times.
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