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Abstract

Experimental advances have made it possible to realize and control quantum many-

body systems, allowing the experimental study of non-equilibrium phenomena. Due to

the Hilbert space growing exponentially with the number of particles, advanced numer-

ical techniques are usually required to understand many-body effects at the theoretical

level.

In this thesis, we address the question of how to efficiently simulate the non-equilibrium

dynamics of many-body systems using matrix product states (MPS). In particular, we

consider quantum systems in interaction with macroscopic environments, as they ap-

pear in Anderson impurity problems, quantum thermodynamics, or open quantum

systems.

We develop a low-entanglement representation of the environment with only short-

range interactions, perfectly suitable for simulations with MPS. We further show that

an interleaved ordering of tight-binding chains can significantly reduce the creation of

entanglement, as opposed to an intuitive implementation of the Hamiltonian’s geome-

try. Our approach allows long-time simulations and an analysis of the environmental

dynamics, in which, after a sudden quench, we find clear signatures of many-body ef-

fects. We employ our techniques to compute spectral functions of impurity models, with

possible applications to dynamical mean-field theory impurity solvers, and to calculate

dissipation in the non-equilibrium Anderson model with explicit time-dependence, as

relevant for ongoing experiments with oscillating tip atomic force microscopes.
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1. Introduction

Quantum mechanics is the theory describing matter and light on the atomic scale,

which “appears peculiar and mysterious to everyone”, borrowing Feynman’s words.

Even a single quantum particle can show remarkable effects that contradict our classical

intuition, such as the emergence of interference fringes upon passing through a double

slit. When bringing together several quantum particles, novel effects emerge, due to the

interaction of individual objects. Experimental progress in the preparation, control and

measurement of quantum many-body systems has made it possible to observe purely

quantum phenomena, such as the superfluid to Mott phase transition in ultracold

atomic gases [5]. Starting from the investigation of equilibrium physics, it is nowadays

even possible to study not only equilibrium phenomena such as phase transitions,

but one can also explore the non-equilibrium dynamics [6], even with explicit time-

dependent driving [7]. However, dealing with many-body systems is generally a very

difficult task on the theoretical side, since most models of interest cannot be solved

analytically. Moreover, the exponential increase of the Hilbert space size puts strong

limitations on treatments based on the exact diagonalization of Hamiltonians. Hence,

more involved numerical techniques are required for the vast majority of problems, such

as Quantum Monte Carlo (QMC) [8], Numerical Renormalization Group (NRG) [9] for

impurity problems, Dynamical Mean Field Theory (DMFT) for strongly correlated

materials [10], or variational approaches inspired by machine learning [11], to name

just a few.

Particularly relevant to the present thesis is an algorithm introduced by Steven

White in 1992: the density-matrix renormalization group (DMRG) [12, 13]. DMRG is

currently one of the most powerful algorithms to simulate low dimensional quantum

systems. The essential idea of the method is an iterative procedure, where, for a given

subsystem, only the most relevant states are kept at each step. White’s key idea was

to select the states to be retained as the highest-weight eigenstates of the reduced

density matrix of the subsystem considered, rather than those of lowest energy: see

Ref. [14] for a more detailed discussion of these issues. Nowadays, the success of DMRG

is understood in the variational framework of matrix product states (MPS) — also

known as tensor trains in the mathematics community [15] —, which can efficiently

represent quantum states with sufficiently low entanglement [16, 17]. This has led

to generalizations of MPS, which go under the name of “tensor networks” [18, 19],

the most prominent tensor network structures being Projected Entangled Pair States

(PEPS) [20–23] for 2D systems, and hierarchical networks such as tree tensor networks
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1. Introduction

(TTN) [24–27] and the multi-scale entanglement renormalization ansatz (MERA) [28].

Initially designed to deal with pure quantum states at zero temperature, even fi-

nite temperature systems can now be treated within the MPS framework, either by

purification [29] or by the direct tensor network representation of the density ma-

trix [30, 31]. Tensor networks have found widespread applications in various fields of

physics, such as the study of quantum phases and transitions [32], non-equilibrium

dynamics [6, 33], as impurity solver for dynamical mean field theory [34–40], or to un-

derstand the role of quantum effects in biological systems [41]. Remarkably, they have

even spread out of pure physics and have found applications in quantum chemistry [42],

machine learning [43–45] and even medicine [46]. A concise review of different tensor

network structures, algorithms and applications can be found in Ref. [19]. Similar

to the experimental developments, the field of tensor network/ DMRG has expanded

into the study of real-time dynamics. Starting with the time evolving block decima-

tion algorithm (TEBD) [47–49], there are now many techniques available to study the

non-equilibrium dynamics of many-body systems [50].

1.1. Challenges in the simulation of many-body

dynamics

Consider a many-body system composed of two subsystems A and B, with Hilbert

space HA ⊗HB. The Schmidt decomposition [51][Chap.2] allows us to decompose a

pure many-body state |ψ〉 as

|ψ〉 =

χ∑
j=1

λj |φAj 〉 ⊗ |φBj 〉 ,

where {|φAj 〉} and {|φBj 〉} are orthonormal states belonging to HA and HB, while λj are

real positive numbers — the so-called Schmidt coefficients — with the normalization

condition of |ψ〉 implying that
∑

j λ
2
j = 1. Here the sum over j runs up to the a

value χ — the so-called Schmidt rank — which can be shown to be smaller than the

smallest of the Hilbert space dimensions of A and B, χ ≤ min(dimHA, dimHB). The

entanglement between the two subsystems is quantified by the von Neumann entropy

of the reduced density matrix ρ̂A = TrB |ψ〉〈ψ|, which can be shown to be directly

expressed in terms of the Schmidt coefficients as

S = −TrA ρ̂A log ρ̂A = −
χ∑
j=1

λ2
j log λ2

j . (1.1)

To get an estimate of S, suppose that only the first D < χ Schmidt coefficients λj
contribute significantly to S, while all λj>D are small enough to be neglected. Assuming

also that the Schmidt coefficients which contribute are all equal, hence λ2
j≤D ≈ D−1,

2



1.2. Macroscopic environments and tensor networks

one can estimate the entanglement entropy to be S = log(D). As we will see later on

in more detail, D is the number of states kept in a tensor network and determines the

complexity of the simulations. Consequently, the required numerical resources scale

with the entanglement entropy as D ∝ eS: It is this exponential scaling of D that

requires us to keep the entanglement as low as possible.

Ground states of low dimensional Hamiltonians with short-ranged interactions are of-

ten only slightly entangled, due to the “area-law” for the entanglement entropy [52]: the

bipartite entanglement grows only with the size of the boundary separating the two sub-

systems, hence a constant for one-dimensional systems1. However, in non-equilibrium

dynamics, there is no fundamental law that limits the entanglement growth versus t,

the simulation time, and indeed one often finds S to grow linearly with t, leading to

an exponential increase of the required numerical resources. Hence, non-equilibrium

simulations are often severely limited in the number of particles, the reachable time

in real-time dynamics, the physical parameters such as the strength of interactions or

temperature, or the explicit form of the time-dependence. For this reason, it is crucial

to understand the origin of the entanglement increase, to develop strategies leading to

more efficient simulations.

In general, different factors can affect the entanglement in a tensor network. For

example, one can apply unitary transformations to the model to change basis, which

might lead to improved connectivity or to geometries that are better suited for tensor

network treatments. Furthermore, one can engineer the network structure to capture

the geometry of the model or to take into account the dynamics of physical processes.

Indeed, it has been recently shown that the entanglement growth in quantum transport

between two baths can be significantly reduced through appropriate engineering of the

tensor network structure and ordering of the sites [53]. Devising similar strategies for

the systems of interest to us — impurity models in the presence of large macroscopic

baths — will be one a leitmoviv of the present thesis.

1.2. Macroscopic environments and tensor networks

In this thesis, we deal with a special class of many-body systems: quantum sys-

tems that are coupled to macroscopic environments. The Hamiltonian describing these

systems consists of three terms:

Ĥ = Ĥsys + Ĥint + Ĥbath , (1.2)

as visualised in Fig. 1.1. In general, the system can range from a single particle system,

such as a single fermionic mode or a two-level system, to a general many-body system

that can be treated through tensor network techniques. Ĥint models the interaction

1On the contrary, for general quantum states the entanglement is expected to scale with the volume

of the subsystem.
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1. Introduction

Figure 1.1.: Quantum system interacting with macroscopic environment: In this

thesis we consider quantum systems built from a small system with Hamiltonian Ĥsys, and a

macroscopic environment Ĥbath, modeled as a set of free particles. They are coupled through

some interaction Ĥint that is not required to be weak and which can exchange particles and/

or energy between system and environment.

between system and environment, and depending on the model, can lead to exchange

of particles or energy between the two. It is this interaction that is responsible for

the creation of (quantum) correlations between system and environment. The last

term, Ĥbath, describes the environmental bath, which is often assumed to consist of

noninteracting particles or modes:

Ĥbath =
∑
k

εkb̂
†
kb̂k , (1.3)

where b̂k can be either a bosonic or fermionic destruction operator. Correspondingly,

the interaction term is often modelled as

Ĥint =
∑
k

(
Âk ⊗ b̂k + H.c.

)
, (1.4)

where Âk is a suitable system operator coupling to the bath mode b̂k. Physical ex-

amples for environmental bosons are photons or phonons, while fermions appear when

describing the conduction electrons in metals. Due to the macroscopic number of bath

modes, however, numerical simulations can be very challenging. Our main interest in

this thesis concerns the question of how to simulate these systems efficiently when the

system-environment correlations cannot be neglected and weak-coupling assumptions

fail.

In general, there are different ways to represent the bath. As detailed later, one can

map the bath Hamiltonian from the so-called star geometry into a chain geometry,

where only a single bath mode interacts with the system [39, 54, 55]. The price to pay

is that the transformed bath modes are not independent anymore: the transformation

leads to nearest-neighbor couplings, as visualised in Fig. 1.2.
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1.2. Macroscopic environments and tensor networks

Figure 1.2.: Mapping from star to chain geometry: A set of free particles interacting

with a quantum system S can be unitarily transformed into a chain with nearest-neighbor

couplings, where only a single bath site interacts with the system.

1.2.1. Fermionic environments

Macroscopic fermionic environments play a major role in several areas of condensed

matter physics. For instance, the Kondo effect explains the resistance minimum of

metallic conductors [56, 57]. It emerges from the interaction of a localized impurity

embedded in a sea of electrons and is theoretically described by the Anderson impurity

model [58]

Ĥ =
∑
σ

εdn̂σ + U n̂↑n̂↓︸ ︷︷ ︸
Ĥsys

+
∑
k,σ

Vk

(
d̂†σ ĉkσ + ĉ†kσ d̂σ

)
︸ ︷︷ ︸

Ĥint

+
∑
k,σ

εk ĉ
†
kσ ĉkσ︸ ︷︷ ︸

Ĥbath

. (1.5)

Here, the first term represents a local impurity, with d̂†σ creating an electron of spin

σ =↑, ↓ in the impurity orbital, n̂σ = d̂†σd̂σ the number operator, and U the on-site

Hubbard repulsion. The second term describes the hybridization interaction, with

matrix element Vk, between the impurity orbital and a sea of conduction electrons —

ĉ†kσ creating an electron with energy εk in the conduction band —, allowing electrons to

hop from the impurity into the bath and vice-versa. The final term describes the bath

of free electrons, with kinetic energy εk being measured with respect to the chemical

potential µ = 0.

The Kondo physics has been observed experimentally in a variety of situations, for

instance in quantum dot systems [59, 60]. Dynamical properties and quantum transport

can be studied experimentally [61, 62] and theoretically [53, 63], by employing two

fermionic environments with a temperature gradient or an electric voltage between

them. Theoretically, quantum transport is often studied by setting up the environments

(leads) at a certain temperature and chemical potential, and connecting them to some

quantum system that acts as a bridge to transport energy and/or particles. The initial

state is usually set to be a separable state, and interactions between the system and the

leads are abruptly turned on at t = 0, in a setting that is known as quantum quench.

One of our goals in this thesis is to efficiently simulate the non-equilibrium dynamics

5



1. Introduction

after such a quantum quench. This is a two-step procedure: (i) One initializes some

state at time t < 0, e.g. a pure state |ψ0〉. Often, |ψ0〉 is taken to be the ground state

of the model Hamiltonian Ĥ({hini}) for a set of initial physical parameters {hini}. (ii)

These parameters are suddenly changed at t = 0 to some final values {hfin}. Since

the initial state will generally not be an eigenstate of Ĥfin ≡ Ĥ({hfin}), it evolves

non-trivially as

|ψ(t)〉 = e−iĤfint/~|ψ0〉 .

Sudden quench descriptions are a valid approximation whenever the system parameters

can be changed on time scales much shorter than the typical equilibration time with

which the quantum state would adjust to the change. The opposite of a sudden quench

is an adiabatic evolution [64], where physical parameters are changed slowly enough to

keep the quantum system in equilibrium at all times.

Preparing thermal states is a delicate task for tensor network methods. In this thesis,

we employ the so-called thermofield transformation, which allows for a very efficient and

easy to prepare representation of the environmental thermal state ρbath ∝ e−Ĥbath/kBT .

It is based on the idea of purification, which can be best understood from the following

example. Consider two spin-1/2 particles A and B in the entangled singlet state

|ψ〉 =
1√
2

(|↑A↓B〉 − |↓A↑B〉) .

If we trace out one of the spins, let’s say B, the quantum state of spin A will be mixed

with reduced density matrix ρ̂A,

ρ̂A = TrB |ψ〉〈ψ| =
1

2
1 ,

which is the infinite temperature state. As detailed later, the thermofield transforma-

tion follows a similar idea to represent thermal states of free particles at any temper-

ature [65, 66]. The transformation, however, leads to two independent environments

that need to be simulated. As discussed above, one possibility is to map them into a

chain geometry. In this thesis we show, among other things, that at finite temperatures

the entanglement creation can be significantly reduced through an interleaved ordering

of the chains, which allows reaching much longer simulation times.

Another key area where fermionic environments play a crucial role is the dynami-

cal mean-field theory (DMFT) approach to strongly correlated materials. In essence,

DMFT maps — by averaging out spatial fluctuations around a given site — a lattice

Hamiltonian, such as a Hubbard model, into an Anderson impurity problem, which has

to be solved through a self-consistency loop. The challenging part of the program is to

solve the impurity model, which requires finding the single-particle Green’s function.

Several methods to calculate the impurity spectral function ImG(ω) — the crucial

ingredient in the self-consistency DMFT loop [10] — have been developed, all of them

with their pros and cons. Exact diagonalization — requiring a severe truncation of
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the conduction electron degrees-of-freedom — is still one of the most popular impurity

solvers for DMFT [10, 67]. Continuous-time Monte Carlo [68–70] can deal with multi-

ple band models, but can suffer from sign problems and requires analytic continuation

to the real frequency axis. The Numerical Renormalization Group (NRG) [9, 71–74]

works directly on the real frequency axis and is particularly accurate at low frequen-

cies. Recently, three orbital models have been tackled using NRG [75–78]. Finally,

matrix product state (MPS) solvers based on DMRG [12] — a very accurate approach

for one-dimensional systems [14, 17, 18] — work at zero temperature, both on the

imaginary [34, 35] and on the real [36–40] frequency axis.

In order to get the impurity spectral function ImG(ω) at zero temperature, it is

necessary to calculate the so-called greater Green’s function

iG>
σ (t) = eiE0t/~ 〈ψ0|d̂σe−iĤt/~d̂†σ|ψ0〉 ,

where |ψ0〉 is the ground state, with energy E0. The evaluation of this expression

implies a strategy similar to that of a quantum quench. It involves two steps: (i) The

system needs to be prepared in its ground state |ψ0〉, followed by the application of d̂†σ:

This is analogous to the change of system parameters in a quench. (ii) The resulting

state d̂†σ|ψ0〉 needs to be evolved in time, and the overlap with 〈ψ0|d̂σ computed. Hence,

in practice we face very similar challenges in sudden quenches and in the calculation

of Green’s functions: Tensor-network-based impurity solvers on the real-frequency axis

are limited by the growth of entanglement. The best strategy known so far for the

multi-orbital case is to mimic the Hamiltonian structure with the tensor network, hence,

geometrically separating the baths corresponding to different orbitals [40]. To optimize

the tensor network geometry in presence of multiple orbitals, one needs to understand

the entanglement dynamics of the essential building block, the single impurity Anderson

model. In this thesis, we show that a separation of filled and empty electron modes,

followed by a chain mapping, can reduce the entanglement as compared to previous

attempts. This method immediately generalizes to the thermofield approach for finite

temperatures.

Turning to finite temperature, the calculation of the Green’s function requires now

iG>
σ (t) = Tr

(
eiĤt/~d̂σe−iĤt/~d̂†σ ρ̂

)
.

The crucial point to notice here is that we need to initialize the system in its thermal

state at some temperature T , ρ̂ ∝ e−Ĥ/kBT . As mentioned above, we will employ

a thermofield transformation to deal with T > 0. However, this approach has one

bottleneck for our application: It only allows to prepare the bath of free electrons in

the thermal state, but not the thermal state of the full model including the localized

system Ĥsys and the interaction Ĥint. We show that this problem can be solved by a

conceptually very simple idea: We can turn on the interaction between the localized

system and the thermal environment at time t = 0, and let them equilibrate for a

while. The state in the long-time limit can then be used as the thermal state: We

7
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show that this approach yields quantitatively correct spectral functions. Notice that

this approach should not be confused with the thermalization of closed quantum many-

body systems [79–83], where observables after a quench are found to behave as in

thermal equilibrium: In this case, there is no actual thermal bath, but the system

rather can be seen to act as its own environment in the thermodynamic limit, and

hence the resulting effective temperature depends on the initial state. In our scenario,

instead, a certain temperature is directly enforced through the thermal bath.

1.2.2. Bosonic environments

Bosonic environments appear in a variety of physical systems. The most widespread

application is to open quantum systems [84–86]: The dynamics of any real quantum

system is unavoidably affected by its environment, as perfect isolation is never possible.

Even though dissipation might turn out beneficial in certain scenarios [4, 87, 88], in

most cases the coupling to the environment is undesirable, and poses a great challenge

in experimental setups, slowing down progress in fields such as quantum information

processing and quantum simulation [89–91]. Hence, it is key to understand the under-

lying detrimental effects and physical processes, to develop strategies to reduce their

negative impact.

On the theoretical side, it is challenging to model and simulate thermal baths, which

are often modelled as a set of quantum harmonic oscillators [92], due to their macro-

scopic number of degrees of freedom. The minimal model in this context is the spin-

boson model [93]. The spin-boson model describes a single two-level system coupled to

a thermal bath. The total Hamiltonian has the form of Eq. (1.2), where the system

Hamiltonian is

Ĥsys =
h

2
σ̂z +

∆

2
σ̂x , (1.6)

with σ̂x,y,z the usual Pauli matrices. The eigenstates of σ̂z can be thought of as two

macroscopic states, with energy difference h, coupled by a tunnelling term ∆. The bath

Hamiltonian is as in Eq. (1.3), with b̂k the destruction operator of a set of harmonic

oscillators with energy εk = ~ωk. The interaction is modelled by Eq. (1.4), with

Âk = αkσ̂
z, αk being a coupling constant between the system operator σ̂z and the

harmonic oscillators [93, 94]. 2

Often, it proves convenient to approximate the dynamics by taking into account

the effects of the environment only approximately. For instance, the assumption of

weak system-bath coupling allows for theoretical simplifications, including Markov

and/or Born approximations, which require that system-bath correlations can be ne-

glected [84, 85]. As a result, the quantum system is described by a density matrix,

2Notice that the coupling along σ̂z is general enough: if we had another operator, we simply could

apply a unitary transformation to go back to Eq. (1.6) with a proper change of h and ∆.
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1.3. Overview of the thesis

whose non-unitary dynamics is governed by a so-called Master equation, containing

terms to mimic the environmental effects. The most prominent examples are the

Bloch-Redfield and Lindblad master equations [95, 96]. However, the weak coupling

assumption poses severe limitations on the physical systems that can be studied, as non-

Markovian effects play an important role in many areas of physics [97], such as quantum

thermodynamics [98, 99] or electronic transport in biological systems [41, 100, 101].

Recently, an experimental device based on a superconducting artificial atom has been

realized, which is strongly coupled to an electromagnetic continuum [102], thereby re-

alizing the famous spin-boson model [86, 93]. Any kind of weak coupling assumption

would fail in describing this system.

In these scenarios, more involved techniques are needed [103], such as hierarchical

equations of motion [104, 105] or the quasi-adiabatic propagator path integral [106,

107]. In this thesis, we explore the possibility to carry out non-equilibrium simulations

with explicit time dependence using MPS, which is relevant for already realized ex-

perimental systems [7]. In particular, we consider a two-level system described by the

Hamiltonian in Eq. (1.6) with explicitly time-dependent σ̂z coupling, h → h(t), as it

has been realized experimentally [7]. As a pedagogical example, we study the dynamics

of a dissipative Stückelberg interferometer [108], where h(t) is driven linearly back and

forth. This driving leads to avoided crossings in the eigen-energies when h(t) = 0, and

interference is observed as a consequence of different phase accumulation of ground

and excited state in between avoided crossings.

To carry out numerical simulations, we employ a technique recently developed by

Tamascelli et al. [109], which shares several aspects with the method we use in the

fermionic case. It allows us to simulate exactly the dynamics of system and bath, and

hence does not contain any fundamental limitations regarding coupling strength αk
in the system-bath interaction, the bath temperature, or the time-dependence h(t) of

the quantum system. This is particularly important when approaching new physical

regimes, where system-bath correlations play a major role. We further demonstrate

the capabilities of the method through simulations in the strong-coupling regime, with

periodic sinusoidal driving h(t) as employed in Ref. [7].

1.3. Overview of the thesis

We start this thesis with an introduction, in Chapter 2, to matrix product states

(MPS), since the MPS representation of quantum many-body states will be employed

throughout the entire thesis. In particular, we show how any many-body state can

be written as an MPS, and we explain why and when this representation is efficient.

The remainder of the chapter is devoted to two major MPS algorithms, the density

matrix renormalization group algorithm for the calculation of ground states, and the

time-dependent variational principle to carry our real-time evolution.
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In Chapter 3 we introduce the single impurity Anderson model (SIAM) and we dis-

cuss various simulation techniques suitable for treatment with MPS. More in detail, we

show how the star-like Hamiltonian can be mapped into a chain, which is a well-known

transformation regularly employed for numerical simulations. Additionally, we intro-

duce a novel low entanglement transformation, combining the advantages of star and

chain geometry. To expand this technique towards finite temperatures, we employ the

so-called thermofield transformation, to represent finite temperature density matrices

as pure states.

Chapter 4 analyzes the dynamics of the entanglement in the MPS after a quantum

quench in the finite temperature SIAM, employing the techniques of Chapter 3. We pay

special attention to the ordering of the MPS and show that an interleaved geometry —

combining the two chains emerging from the thermofield transformation — significantly

reduces the entanglement growth at finite temperature as compared to an intuitive

implementation, allowing for longer and more efficient simulations. We further study

the dynamics of the free fermion bath, which reveals clear signatures of the Kondo

effect in the quench dynamics.

As a second application, we show that the technique can be employed to efficiently

compute finite temperature spectral functions in Chapter 5. Importantly, we provide

evidence that our chain mapping leads to lower entanglement as compared to previously

applied techniques at zero temperature, which is particularly relevant for applications

as impurity solvers for dynamical mean-field theory.

Chapter 6 is devoted to the issue of dissipation in the driven SIAM. The periodic

time-dependent driving of the impurity leads to an absorption of energy — also called

dissipation — which is transported from the impurity into the macroscopic bath. Such

a process is relevant for ongoing experiments with atomic force microscopes, where the

contribution of the Kondo effect to dissipation is investigated. We discuss the general

mechanism of dissipation from a theoretical point of view and present preliminary

results for the case where the impurity energy level is affected by external driving.

In Chapter 7 we consider the case of a bosonic environment. This is particularly

relevant in the context of open quantum systems, to take into account effects caused

by the presence of an environment. We recapitulate the methods used to simulate the

bosonic bath, and apply them to the problem of a dissipative quantum interferometer,

exploring the method’s applicability to time-dependent problems. We show that inter-

ference effects decay rapidly as dissipation is turned on, but can be partially restored

upon tweaking the annealing velocity.

We conclude the thesis in Chapter 8 with a summary of the work, open questions,

and a discussion of ideas for future research.

10



2. Matrix product states techniques

Tensor networks (TN) are a class of variational Ansätze, designed to efficiently rep-

resent quantum many-body states with low entanglement. Out of this class, matrix

product states (MPS) are the simplest and most popular TN, with tensors ordered in

a chain geometry, which is particularly suitable to deal with one-dimensional systems.

The natural extension of MPS to two dimensions are projected entangled pair states

(PEPS) [20, 21] and iPEPS [22] — for systems which are finite or in the thermodynamic

limit, respectively —, with tensors arranged on a 2D (square) lattice and connections

(bond links) to nearest neighbors. This arrangement shows a favorable scaling for

the entanglement entropy, but the optimization of the tensors and the calculation of

observables turns out to be rather challenging [23]. Tree tensor networks (TTN) are

hierarchical networks without loops, and can therefore be evaluated and optimized

efficiently [24]. TTN have proven useful in dealing with 1D systems with periodic

boundary conditions [25] and 2D systems [26, 27]. Lastly, the multi-scale entanglement

renormalization ansatz (MERA) is essentially a TTN with additional unitary tensors

— known as disentanglers — to reduce short-range entanglement. MERA has proven

particularly useful in the study of many-body systems at quantum criticality [28].

In this thesis, we restrict ourselves to MPS, since the systems of interest are all

quasi-one-dimensional. In general, there are two major tasks where MPS are em-

ployed: (i) equilibrium calculations, where the goal is to determine the ground state

of a given quantum system; (ii) out-of-equilibrium calculations, where the task is to

follow the Schrödinger dynamics of a given model Hamiltonian. Regarding equilibrium

simulations — task (i) —, MPS for systems with open boundary conditions can be ef-

ficiently optimized through the DMRG algorithm [12, 13], a major advantage of MPS

as compared to more complex TN structures such as PEPS. On the other hand, many

algorithms have been developed over the last years to deal with the time evolution of

MPS — task (ii)–, all of them with their own pros and cons. An extensive review with

examples and comparisons can be found in Ref. [50]. Here, we only provide a short

overview of several important methods and their basic idea.

One of the most used time-evolution techniques is the time-evolving block decimation

(TEBD) [47–49], which is particularly useful for short-ranged Hamiltonians. It relies

on a Trotter splitting of the time-evolution operator [110, 111]. In each evolution step,

the application of two-site gates to the MPS is followed by a subsequent truncation

using a Singular Value Decomposition (SVD), in order to retain the MPS structure

and limit its dimension.
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Similar to the idea of TEBD, the WI,II-method approximates the time-evolution

operator Û [112]. It exploits the matrix product operator (MPO) format of the Hamil-

tonian to represent Û as an MPO as well. The time-evolution operator can then be

applied to the MPS, to evolve the quantum state. The major advantage of this method

as compared to TEBD is its applicability to long-ranged systems. As an alternative,

one can directly approximate the application of the time-evolution operator on the state

to find the time evolved MPS. In this approach, Û is not constructed explicitly. For

example, this can be done using Krylov subspace techniques [113, 114], with a method

known as global Krylov algorithm [50]. While it can be computationally expensive, it

also allows for long-range interactions. In this thesis we employ the time-dependent

variational principle (TDVP) [115–117] technique — to be discussed in more detail

below —, as it has proven to be highly efficient and accurate [50], and can deal with

long-range interaction.

The purpose of this chapter is to provide an introduction to MPS, with detailed

explanations on how and why MPS algorithms work. The chapter is structured as

follows. In the first section, we introduce the graphical notation for tensors and tensor

networks, totally equivalent to mathematical equations, but significantly easier to read

and understand. In Section 2.2 we show how any quantum many-body state can

be represented in MPS form. This procedure is very instructive to understand the

connection of a quantum state with its MPS representation and will provide a first

introduction to the tensor operations carried out in TN algorithms. The Schmidt

decomposition [51][Chap.2] of a quantum state, discussed in Section 2.3, is one of the

essential keys to understand the success of TN techniques. We show how any many-

body state can be decomposed using a singular value decomposition (SVD), and we

relate the result to the entanglement entropy of the corresponding bipartition and the

MPS representation. In Section 2.4 and Section 2.5 we provide details on the two

MPS algorithms most relevant for this thesis, namely DMRG for ground-state search

and TDVP for time evolution. In the final section, we discuss the Jordan-Wigner

transformation as a method to deal with fermionic particles.

2.1. Graphical notation for tensors

In the field of TN it is common to represent tensor objects and networks using

a graphical notation. The graphical representation has a one-to-one correspondence

to mathematical equations but is usually much simpler to read. Before discussing

any of the TN basics, let us introduce this notation. A tensor is represented by a

geometric object like a circle, rectangle, square, or triangle. In this thesis, we will use

squares/rectangles with round corners for general tensors, and triangles for tensors with

additional orthogonality properties, as discussed later on. Each tensor has a certain

number of indices r, which is called the rank of the tensor. For each of the indices,

we attach a line (or ”leg”) to the tensor symbol, as visualized in Fig. 2.1(a) for a
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2.2. Many-body states in matrix product form

Figure 2.1.: Graphical notation for tensors and tensor contractions. a) Graphical

representation of a rank-1 tensor A (vector) and a rank-3 tensor B, with elements Ai1 and

Bk1,k2,k3 , respectively. b) Contraction of two rank-1 tensors A and C (scalar product), and

contraction of a rank-3 tensor B and a rank-2 tensor D. In the contraction we sum over the

connected indices, while open legs represent indices of the new tensor after contraction.

rank-1 and a rank-3 tensor. One of the most important tensor operations is the so-

called contraction, which is basically a generalization of scalar products, matrix-vector

products, or matrix-matrix products. In the graphical convention, we sum over all

internal indices (legs) that are connected to two (contracted) tensors. For instance, the

left-hand side of Fig. 2.1(b) corresponds to a vector-vector product, where we sum over

the common index of the two vectors. Since there are no external (or “open”) legs, the

result is just a scalar. On the right-hand side of Fig. 2.1(b) we visualize the contraction

of a rank-3 with a rank-2 tensor: They have one internal leg which is summed over.

The result will be a rank-3 tensor, where the indices correspond to the open legs of the

two original tensors.

2.2. Many-body states in matrix product form

In this section, we discuss how to obtain the MPS representation for any arbitrary

quantum many-body state, following Ref. [17]. The procedure is purely theoretical and

never carried out in practice, as it is highly inefficient. It is, however, very instructive

and helps understanding basic ideas and operations used in TN-based algorithms.

Let us consider a many-body system with L sites, each with a Hilbert space of local

dimension d. Let {|i〉, i = 1 · · · d} be a local orthonormal basis of states. For example,

d = 2 for spin-1/2 particles, and the local basis states might be taken to be eigenstates

of σ̂z: {|↑〉, |↓〉}. Any quantum state can be written in the form

|ψ〉 =
d∑

i1,..,iL=1

Ci1,.., iL |i1, .., iL〉 , (2.1)

with coefficient tensor Ci1,.., iL — a rank-L tensor — and L-site many-body product

states |i1, .., iL〉 = |i1〉 ⊗ · · · ⊗ |iL〉. Notice that the number of elements of C scales

exponentially with L, limiting an exact treatment of many-body systems to small

system sizes. A matrix product state is a specific way to represent the coefficient tensor
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C, which can be very efficient if the state has sufficiently low bipartite entanglement.

Before discussing how an MPS is obtained from a general many-body state, let us

introduce the singular value decomposition (SVD) [51][Chap.2], which will play a major

role in the following.

Singular value decomposition. The SVD is a matrix decomposition that can

be carried out for any arbitrary complex m × n matrix. For A ∈ Cm,n it is given

by

A = UDV † , (2.2)

which is equivalent to the element-wise notation

Ai,j =
∑
k,l

Ui,kDk,lV
†
l,j , (2.3)

with U ∈ Cm,m and V † ∈ Cn,n unitary, and D ∈ Rm,n diagonal with positive ordered

elements, called singular values, σ1 ≥ σ2 ≥ ... ≥ σmin(m,n). In practice, the SVD

can be carried out using well-established numerical routines (LAPACK).

i

Starting from the coefficient tensor C, its MPS representation is obtained by carrying

out the following steps:

(i) We reshape C into a matrix, see Appendix A.1 for details, with indices i1 and joint

index (i2, .., iL), and carry out an SVD of the corresponding matrix Ci1,(i2,..,iL).

More details on the SVD of tensors, together with examples, are presented in

Appendix A.2. The tensor C is hence decomposed as

Ci1,.., iL =
∑
k1,j

A
(1)
i1,k1

D
(1)
k1,j

B̃
(1)
j,i2,..,iL

. (2.4)

Note that the matrices A(1) and B̃(1) as obtained from the SVD are unitary, while

D(1) is diagonal, with positive real elements. The decomposition is graphically

shown in Fig. 2.2(a,b). The big rectangle in Fig. 2.2(a) represents the coefficient

tensor C, while Fig. 2.2(b) visualises the right hand side of Eq. (2.4): The tensor

A(1) has two legs, representing the physical index i1 and the so-called bond-index

or bond-link k1. The diagonal tensor D(1) has two bond-indices k1 and j, and no

physical index. Last, B̃(1) has a single bond-index j and all remaining physical

indices i2, .., iL.

(ii) In the next step we carry out the sum over j explicitly and define the tensor

B
(1)
k1,i2,..,iL

=
∑

j D
(1)
k1,j

B̃
(1)
j,i2,..,iL

. We say that D(1) is contracted into B̃(1). Then

the coefficients C are given by the expression

Ci1,.., iL =
∑
k1

A
(1)
i1,k1

B
(1)
k1,i2,..,iL

, (2.5)
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Figure 2.2.: Representing many-body states in MPS form. a) The tensor C with

physical indices i1, .., iL encodes the many-body state of a quantum system with L particles

or sites (see Eq. (2.1)). (a→b) After reshaping the tensor C into a matrix with indices i1
and joint index (i2, .., iL) we decompose it via SVD, see Eq. (2.4). (b→c) We contract the

diagonal tensor D(1) into B̃(1) to obtain B(1). (c→d) Starting from B(1) the procedure is

repeated until we arrive at the MPS form of the state, where each tensor has just a single

physical index.

as visualised in Fig. 2.2(c).

(iii) From here on, the procedure is simply repeated, and in each step, a physical

index is taken out from the big tensor on the right. However, note that for the

next SVD we need to reshape B(1) into a matrix with joint indices (k1, i2) and

(i3, .., iL). In contrast to the previous step, where the column index was just i1,

it now contains a bond-index as well, in order to connect to the previous tensor.

The left matrix obtained from the SVD is then reshaped into a three-leg tensor

A(2) and is the second tensor in the MPS. After repeated applications of the SVD

and consecutive contraction of the singular values to the right, we end up with

the matrix product state

Ci1,.., iL =
∑

k1,..,kL−1

A
(1)
i1,k1

A
(2)
k1,i2,k2

A
(3)
k2,i3,k3

. . . A
(L)
kL−1,iL

, (2.6)

graphically illustrated in Fig. 2.2(d).

Gauge freedom. While any MPS uniquely represents a quantum state, individual

tensors A(1), .., A(L) are not unique. Consider for instance the tensor A(2) with physical

index i2 and bond indices k1 and k2, visualised in Fig. 2.3. We could reshape the tensor

into a matrix with indices k1 and joint index (i2, k2), and carry out an SVD, such that

A
(2)
k1,i2,k3

=
∑
l,m

Uk1,lDl,mV
†
m,i2,k3

.
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Figure 2.3.: Gauge freedom in MPS. a) Arbitrary MPS representing a quantum state.

(a→b) Perform SVD of A(2) = UDV † and insert the decomposition into the MPS. (b→c)

Contract U,D into A(1), to get the new tensor Ã(1). The quantum state is identical to the

initial one, but tensors A(1) → Ã(1) and A(2) → V † have been modified.

Now it is possible to replace A(2) in the MPS by this decomposition, Fig. 2.3(b), and

we can contract the tensors U and D into the neighboring tensor A(1), see Fig. 2.3(c).

The quantum state represented by the MPS is still the same, however, the tensors have

changed. This gauge freedom is very important for the DMRG and TDVP algorithms

presented later on. For this reason, we discuss here the most important choices for the

MPS gauge.

In the so-called left-canonical gauge all tensors A(m) with corresponding physical in-

dices im — except for the last one with physical index iL — satisfy the left-orthogonality

condition

Left-orthogonality condition:
∑

km−1,im

A
(m)
km−1,im,km

(
A

(m)
km−1,im,k′m

)?
= δkm,k′m . (2.7)

Notice that the first tensor A(1) only has two indices and no left bond index km−1. In

graphical notation, left-orthogonal tensors are drawn as a triangle pointing to the right,

as visualized in Fig. 2.4. Hence, an MPS in left-canonical gauge (see Fig. 2.5(a)) is

represented by a chain of tensors pointing towards the last one, which does not satisfy

any orthogonality condition.

Figure 2.4.: Orthogonality conditions. Graphical representation of the left and right

orthogonality conditions, Eq. (2.7) and Eq. (2.8). Left (right) orthogonal tensors are repre-

sented as triangles pointing to the right (left). When a tensor is contracted with its conjugate

over the ”incoming” legs, it results in an identity, represented by a line.
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Practical remark. The procedure described above to build an MPS from the

coefficient tensor C yields an MPS in the left-canonical gauge since all but the

last tensor are given by unitary matrices as obtained from the SVD. In practical

applications, it is often necessary to bring an MPS into (left-) canonical form.

This can be achieved in the following way: Starting from the leftmost tensor, one

carries out consecutive SVDs (or alternatively QR-decompositions for improved

efficiency), where after each decomposition the left SVD-tensor U replaces the

decomposed tensor, while singular values D and right tensor V † are contracted

into the next tensor. The kept tensor U comes from an SVD, hence it is unitary

and satisfies Eq. (2.7).

i

The so-called right-canonical gauge, on the other hand, is basically the opposite.

Here, all tensors but the first (physical index i1) satisfy the right-orthogonality condi-

tion, Fig. 2.4,

Right-orthogonality condition:
∑
im,km

A
(m)
km−1,im,km

(
A

(m)

k′m−1,im,km

)?
= δkm−1,k

′
m−1

. (2.8)

Graphically, right-orthogonal tensors are represented as triangles pointing to the

left, and hence an MPS in right-canonical gauge points towards the first tensor, see

Fig. 2.5(b). Similar to the left-orthogonal MPS, we can obtain a right orthogonal MPS

through consecutive applications of the SVD: Starting from the rightmost tensor, the

tensor containing the singular values is always contracted to the left.

Finally, the mixed-canonical gauge is a combination of left- and right-canonical

gauge, and has a well-defined center tensor A(m) with physical index im, also called

orthogonality center in the following. Here, all tensors on the left of the orthogonality

center (A(1), .., A(m−1)) are left-orthogonal, while tensors on the right (A(m+1), .., A(L))

are right orthogonal. An MPS in mixed canonical form is written as

|ψ〉 =
∑
i1,..,iL

k1,..,kL−1

A
(1)
i1,k1

A
(2)
k1,i2,k2

. . . A
(L)
kL−1,iL

|i1, i2, . . . , iL〉

=
∑

km−1,im,km

A
(m)
km−1,im,km

|φ(A)
km−1
〉|im〉|φ(B)

km
〉 ,

(2.9)

where |φ(A)
km−1
〉 and |φ(B)

km
〉 are sets of orthonormal states for the corresponding region of

the MPS, and are defined as

|φ(A)
km−1
〉 =

∑
i1,..,im−1
k1,..,km−2

A
(1)
i1,k1

. . . A
(m−1)
km−2,im−1,km−1

|i1, . . . , im−1〉 (2.10)

|φ(B)
km
〉 =

∑
im+1,..,iL

km+1,..,kL−1

A
(m+1)
km,im+1,km+1

. . . A
(L)
iL,kL−1

|im+1, . . . , iL〉 . (2.11)
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Figure 2.5.: Canonical MPS gauges. a) In the left-canonical gauge all tensors but

the rightmost (physical index iL) satisfy the left-orthogonality condition Eq. (2.7). b) In

the right-canonical gauge all tensors but the leftmost (physical index i1) satisfy the right-

orthogonality condition Eq. (2.8). c) MPS in mixed-canonical gauge with respect to the

tensor with physical index im. Tensors on the left are left-orthogonal, while tensors on the

right are right-orthogonal.

Notice that |φ(A)
km−1
〉 and |φ(B)

km
〉 are orthonormal sets of states: this follows easily from

the fact that they are constructed from left- and right-orthogonal tensors, respectively.

In the graphical notation, all tensors of a mixed canonical MPS point towards the

orthogonality center, see Fig. 2.5(c). The mixed-canonical gauge is obtained from any

MPS through consecutive applications of SVDs, starting from the first and last tensor

independently until reaching the required tensor A(m).

As mentioned before, the canonical gauges can represent the same quantum state

with different tensors in the MPS, with specific features that make them more suited

for certain operations.

2.3. Schmidt decomposition and entanglement entropy

We have seen previously that any quantum many-body state can be written as an

MPS. However, MPS provide an efficient representation for a certain class of states

only, as we discuss in this section. The Schmidt-decomposition separates a many-body

system into two subsystems, which we label with A and B. Let the full Hilbert space

be H = HA ⊗HB. For a pure quantum state |ψ〉 ∈ H it reads

|ψ〉 =
∑
j

λj |φAj 〉 ⊗ |φBj 〉 , (2.12)

where {|φAj 〉} and {|φBj 〉} are orthonormal bases for HA and HB, respectively, and∑
j λ

2
j = 1. The last relation ensures the correct normalization of |ψ〉. Such a de-
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2.3. Schmidt decomposition and entanglement entropy

composition can always be obtained from the full coefficient tensor C in Eq. (2.1) by

an appropriate application of the SVD. For instance, consider two subsystems with

physical indices i1, .., im and im+1, .., iL. The SVD on the coefficient tensor with appro-

priately joint indices is

C(i1,..,im),(im+1,..,iL) =
∑
j

U(i1,..,im),j λjV
†
j,(im+1,..,iL) ,

and hence Eq. (2.1) becomes

|ψ〉 =
∑
j

λj
∑
i1,..,iL

Ui1,..,im,j V
†
j,im+1,..,iL

|i1, .., im〉 ⊗ |im+1, .., iL〉 . (2.13)

Comparing with Eq. (2.12) we identify |φAj 〉 =
∑

i1,..,im
Ui1,..,im,j |i1, .., im〉 and |φBj 〉 =∑

im+1,..,iL
V †j,im+1,..,iL

|im+1, .., iL〉. Note that these states are orthonormal by construc-

tion, as U and V † result from the SVD, and are therefore unitary.

The entanglement entropy S quantifies the entanglement of pure quantum states |ψ〉
between subsystems A and B. In terms of the corresponding reduced density matrices

ρ̂A = TrB |ψ〉〈ψ| and ρ̂B = TrA |ψ〉〈ψ|, it is defined as the von Neumann entropy of

either of the two 1

S ≡ −TrA
(
ρ̂A log ρ̂A

)
= −TrB

(
ρ̂B log ρ̂B

)
. (2.14)

Using the Schmidt decomposition, Eq. (2.12), it directly follows that the entangle-

ment entropy is determined by the singular values λj through

S = −
∑
j

λ2
j log λ2

j . (2.15)

Connection to matrix product states. Consider an MPS in mixed canonical gauge

(see Fig. 2.6(a)) with orthogonality center A(m) and corresponding physical index im.

The SVD of the orthogonality center with joint index (km−1, im) and km is

A
(m)
km−1,im,km

=
∑
j

Ukm−1,im,jλjV
†
j,km

.

We insert this decomposition into the MPS form (see Eq. (2.6)) to find

|ψ〉 =
∑
i1,..,iL

k1,..,kL−1

∑
j

A
(1)
i1,k1

. . . A
(m−1)
km−2,im−1,km−1

Ukm−1,im,jλjV
†
j,km

A
(m+1)
km,im+1,km+1

. . . A
(L)
kL−1,iL

× |i1, .., im〉 ⊗ |im+1, .., iL〉

with graphical representation in Fig. 2.6(b). This MPS is still in mixed-canonical

gauge, with orthogonality center being the diagonal matrix with elements λj,j ≡ λj as

1One can easily show that the two expressions indeed coincide.
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2. Matrix product states techniques

Figure 2.6.: Schmidt decomposition of an MPS. a) MPS in mixed-canonical gauge

with orthogonality center A(m). b) MPS obtained after decomposing A(m) with an SVD.

The tensor is replaced by its decomposition, encircled in blue. The MPS remains in mixed-

canonical form, where the orthogonality center is the diagonal matrix of the SVD, with

elements λj,j ≡ λj . The green and orange boxes contain the coefficients to build states |φAj 〉
and |φBj 〉 of subsystems A and B, respectively.

obtained from the SVD. We realize that this is the Schmidt decomposition of the state

|ψ〉, with

|φAj 〉 =
∑
i1,..,im

k1,..,km−1

A
(1)
i1,k1

. . . A
(m−1)
km−2,im−1,km−1

Ukm−1,im,j |i1, .., im〉

|φBj 〉 =
∑

im+1,..,iL
km,..,kL−1

V †j,km A
(m+1)
km,im+1,km+1

. . . A
(L)
kL−1,iL

|im+1, .., iL〉 .

Note that this is true because the MPS is in mixed-canonical gauge, and hence the

tensors to the left of the diagonal matrix λ are left-orthogonal, while those to the

right are right-orthogonal. This implies that the states of sets {|φAj 〉} and {|φBj 〉} are

orthonormal.

Summary. The Schmidt decomposition of any bipartition that requires a single

cut of the MPS is easy to find: First, we need to bring the MPS in mixed-canonical

form with orthogonality center at the cut of the bipartition. Then an appropriate

SVD yields the Schmidt decomposition with Schmidt coefficients λj, from which

we can calculate the entanglement entropy S using Eq. (2.15).

i

Area laws and truncation of an MPS. We have previously seen how any quantum

many-body state can be brought into an MPS form. However, so far it is not clear how

and when the representation of a state in MPS form can be computationally efficient.

Here, the so-called area laws for the entanglement entropy play a crucial role. A system
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is said to satisfy an area law if the entanglement between two subsystems scales with

the size of the boundary between them, rather than with the volume of the subsystems.

For one-dimensional systems, this means that the entanglement is bound by a constant

since the size of the boundary (two points) is independent of the system size. Area

laws are known to hold for a variety of systems. In 1D, for instance, ground states of

gapped Hamiltonians with local interactions are known to satisfy the area law [52].

Let us discuss the implications of area laws on the efficiency of the MPS representa-

tion. Recall that the entanglement entropy is connected to the distribution of Schmidt

coefficients λj, see Eq. (2.15). Generally speaking, the entanglement entropy tends to

be small if the Schmidt coefficients decay fast, while, on the contrary, high entropy is

associated with slowly decaying Schmidt coefficients: the maximum possible entropy

occurs for a flat distribution of the {λj}. Even though there is no direct implication,

the opposite is usually true as well: States with low entanglement show a rapid decay

of Schmidt coefficients, and hence, only a few λjs contribute significantly. This allows

us to truncate the sum in Eq. (2.12), keeping only the largest D Schmidt coefficients,

while discarding the remaining states having a low probability. The number of kept

states D is called bond dimension and defines the size of the tensors in the MPS: Each

tensor — except the first and last one — has three indices, two of them being bond

indices and one being the physical index. The dimension of the bond indices, however,

equals the number of kept states D, see Fig. 2.6(b). Hence, any tensor has at most

D2d elements, where d is the local physical dimension (d = 2 for spin 1/2 particles).

Consequently, the MPS representation is very efficient whenever the many-body state

can be well approximated with a low bond dimension D, which is the case when the

entanglement between bipartitions of the system is low.

2.4. Variational ground state search: DMRG

As discussed previously, TN techniques originate from the Density Matrix Renormal-

ization Group (DMRG) algorithm introduced by White [12, 13], who used it to study

the ground state of lattice models. To date, DMRG for MPS is likely the most popular

TN algorithm to study equilibrium properties of quantum many-body systems. In this

section, we discuss in some detail the DMRG algorithm in the language of MPS for

closed finite systems governed by a Hamiltonian Ĥ. Our goal, in particular, is to find

the ground state |ψ0〉 of the time-independent Schrödinger equation,

Ĥ|ψ0〉 = E0|ψ0〉 , (2.16)

and the corresponding ground state energy E0. The ground state energy is the mini-

mum possible eigenvalue of Ĥ, which, according to the variational principle, is found
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2. Matrix product states techniques

by minimizing the energy expectation value over all quantum states |ψ〉:

E0 = min
|ψ〉

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 (2.17)

When employing the MPS Ansatz, however, we restrict our variational space to a

subspace of the Hilbert space, and hence, the variational energy will generally be higher

than the true ground state energy. The variational space is set by the MPS bond di-

mension D, and our goal is to find the optimal MPS therein. Assume that we start with

some randomly initialized MPS, with a given bond dimension D. An approximation to

the ground state is found by optimizing the tensor elements such that the energy of the

corresponding quantum state is minimal. However, optimizing all tensor elements at

the same time is computationally demanding and therefore impractical. To circumvent

this issue, DMRG uses the following strategy: Instead of optimizing all MPS elements

simultaneously, only one or two tensors are optimized at a time, leading to the 1-site or

2-site version of DMRG, respectively. In general, the single-site DMRG is much more

efficient as it acts on only one tensor of the network, while the 2-site version is working

on two contracted tensors.2

In the following, we restrict our discussion to the 2-site version of DMRG, since, due

to its simplicity, it is our method of choice for practical applications. We are going to

discuss the essential building block of the DMRG algorithm, by showing how one can

optimize two consecutive tensors. Clearly, this is not enough to find the globally best

MPS: the full algorithm that exploits this building block will be presented at the end

of the section.

Optimizing two consecutive tensors. Imagine an MPS consisting of tensorsA(1), .., A(L),

and suppose we want to optimize A(m) and its neighbor A(m+1). Consider the MPS to

be in mixed-canonical gauge with orthogonality center A(m) (or A(m+1)). This means

that tensors on the left hand side of A(m) are left-orthogonal and tensors on the right

hand side of A(m+1) are right-orthogonal, see Eq. (2.7) and Eq. (2.8). First, we compute

the contraction of A(m) and A(m+1), which yields the tensor T (m) to be optimized:

T
(m)
km−1,im,im+1,km+1

=
∑
km

A
(m)
km−1,im,km

A
(m+1)
km,im+1,km+1

(2.18)

Consider now the numerator and denominator of Eq. (2.17). Since the MPS is in

mixed-canonical gauge, the normalization 〈ψ|ψ〉 is fully encoded in the orthogonality

center, see Fig. 2.7(b). Hence, the denominator depends only on the variational tensor

T (m), via

〈ψ|ψ〉 = |T(m)|2 , (2.19)

2On the other hand, the standard single-site version is plagued by convergence issues, in particular

when symmetries are encoded explicitly in the TN, since it is impossible to resize different symme-

try sectors. Further progress, most notably subspace expansions, however, has cured this downside

by temporarily expanding the bond links of the tensor to be optimized [118–120].
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Figure 2.7.: Effective Hamiltonian for MPS in mixed-canonical gauge. a) MPS in

mixed canonical gauge with respect to tensors A(m) and A(m+1). b) Scalar product 〈ψ|ψ〉 for

an MPS in mixed canonical gauge. Due to the right- and left-orthogonality property of the

tensors, the scalar product depends only on the orthogonality center. c) Effective Hamiltonian

Ĥ
(m)
eff for the MPS with 2-site orthogonality center in panel (a): Tensors A(m) and A(m+1) are

taken out from the MPS, while all remaining tensors are contracted into the Hamiltonian Ĥ.

d) Effective Hamiltonian K(m+1) for the single site orthogonality center A(m+1) as required

by the TDVP algorithm. It is presented here already for better comparison with panel (c):

Notice that K(m+1) can easily be obtained by contracting A(m) into Ĥ
(m)
eff from above and

below.

where T(m) is the vectorised tensor T (m). Notice that any tensor can be reshaped

into a vector by merging the indices. Technical details and an example for this are

provided in Appendix A.1. On the other hand, the numerator of Eq. (2.17) is the

energy expectation value of the Hamiltonian for state |ψ〉. Hence the Hamiltonian

must be sandwiched in between the MPS representing |ψ〉. This can be written as

〈ψ|Ĥ|ψ〉 = (T(m))†Ĥ(m)
eff T(m) , (2.20)

with effective Hamiltonian Ĥ
(m)
eff obtained in the following way: The full expectation

value 〈ψ|Ĥ|ψ〉 is the contraction of the MPS into the Hamiltonian from above (ket) and

below (bra). Removing the tensor T (m) from the expectation value in both the bra and

the ket yields the effective Hamiltonian Ĥ
(m)
eff (see Fig. 2.7(c)). Upon multiplication of
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2. Matrix product states techniques

Ĥ
(m)
eff with T (m) from above and below one obtains, once again, the energy expectation

value, see Eq. (2.20). Notice that in Fig. 2.7 the Hamiltonian is drawn as a single block

for simplicity, while in practice it is represented by a matrix product operator3 [17].

Hence, an upper bound for the ground state energy is

E ′ = min
T (m)

(T(m))†Ĥ(m)
eff T(m)

|T(m)|2
, (2.21)

with minimization over the variational tensor T (m). Notice that E ′ is larger than the

true ground state energy E0, as the minimization is carried out only over a subset

of possible quantum states. The optimization problem is solved when T(m) is the

eigenvector of Ĥ
(m)
eff corresponding to the smallest eigenvalue:

Ĥ
(m)
eff T(m) = E ′T(m) (2.22)

In practice, one often applies iterative approaches, such as the Davidson algorithm [121],

to compute the lowest eigenvalue with the corresponding eigenvector numerically.

Warning: It is only in tensor networks without loops, such as open boundary

conditions MPS or TTNs that the optimization leads to a standard eigenvalue

problem. In the more general case, e.g in periodic boundary MPS, PEPS or MERA,

the optimization results in a generalized eigenvalue problem, which can be much

more difficult to solve [23].

i

After the optimal tensor T (m) is found, we need to restore the state to the MPS

format: Indeed, recall that T (m) has been built from the two tensors A(m) and A(m+1),

and hence needs to be split into two tensors again. This is achieved using the SVD,

where the number of kept singular values, and hence the dimension of the tensors, can

be chosen and adapted during the simulation. Assume that the SVD yields singular

values λ1, .., λM , ordered in descending order. Usually one uses a combination of two

criteria for the truncation:

(i) One keeps only the largest r singular values, where r is chosen such that the dis-

carded ones have a summed weight of less then some error threshold wt,

M∑
j=r+1

λ2
j < wt . (2.23)

3The MPO representation of an operator is similar to the MPS representation of a state, where

however, each tensor has two physical indices instead of one. Here, it is only important to know

that an efficient MPO representation can be obtained for basically any Hamiltonian of interest,

even in presence of long-range interactions, and hence we simply represent the Hamiltonian by a

single tensor.
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2.4. Variational ground state search: DMRG

(ii) If r is larger than the so-called bond dimension D, only the largest D singular

values are kept.

The two criteria follow a different strategy. (i) sets an upper bound for the error,

but can lead to a strong growth of the matrix dimensions. Instead, (ii) sets an upper

bound for the matrix dimensions, but does not control the error. Hence, sometimes

only criterion (i) is used, see Ref. [39] for example. In either case, it is necessary to

check that the result converges with respect to the control parameter wt or D.

Algorithm 1: 2-site DMRG for MPS

1: for s = 1,#Sweeps do

2: for m = 1, L− 1 do

3: Make A(m) the MPS’ orthogonality center

4: Find T (m) through contraction of A(m) and A(m+1)

5: Compute effective Hamiltonian Ĥ
(m)
eff for T (m)

6: Find lowest energy eigenvector T(m) of Ĥ
(m)
eff

7: Decompose T (m) via SVD into A(m) and A(m+1), gauge on A(m+1)

8: end for

9: end for

Optimize the full MPS using the DMRG algorithm. Now that we know how a pair

of consecutive tensors is optimized, we can discuss the full DMRG algorithm, sketched

in Algorithm 1 above. It basically contains two nested loops in which tensors are

optimized. In the inner loop, we optimize all pairs of neighboring tensors in the MPS.

Usually, this is done by starting from the left end of the MPS, sweeping towards the

right end, and optimizing one pair after the other. In general, the order in which tensors

are optimized is not crucial. However, the pair to optimize must be the orthogonality

center of the MPS, since otherwise Eq. (2.19) is not true, which finally would lead to a

generalized eigenvalue problem instead of a standard one. Notice that for the special

case where the pair to optimize involves the first or last tensor of the MPS, the MPS

is required to be in right- or left-canonical gauge, respectively. In the outer loop, we

simply repeat the entire procedure for several sweeps to reach convergence.

To illustrate the algorithm, we graphically show in Fig. 2.8 several steps carried out

in a DMRG sweep for a system with L = 4. Starting from right-orthogonal MPS (panel

a), one contracts the two leftmost tensors, A(1) and A(2), to obtain T (1) (panel b), see

Eq. (2.18). Afterwards, the corresponding effective Hamiltonian Ĥ
(1)
eff is built, in order

to find the optimal tensor for T (1), given by the lowest energy eigenvector of Ĥ
(1)
eff . We

then need to restore the MPS format by decomposing the optimized T (1) via SVD.

Notice that the singular values are directly contracted into the right tensor, such that

A(2) is the new orthogonality center of the MPS. These steps are then repeated until

the entire MPS is optimized, with one more optimization step shown in Fig. 2.8.
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Figure 2.8.: Several steps of a DMRG sweep for L = 4 sites. (a→b) Starting from a

right orthogonal MPS (A(2) is not required right orthogonal), we contract A(1) and A(2) to

build the two-site block T (1). (b→c) We build the effective Hamiltonian Ĥ
(1)
eff , Fig. 2.7, and

optimize T (1) by computing the lowest energy eigenvector of Ĥ
(1)
eff , see Eq. (2.22). Optimized

tensor is coloured in green. (c→d) Compute SVD of optimized T (1) and contract singular

values into the right tensor, A(2), becoming the new orthogonality center of the MPS. (d→e)

Contract A(2) and A(3) to get T (2). The block is partially colored as one of the two building

blocks was optimized. (e→f) Optimize T (2) using corresponding effective Hamiltonian Ĥ
(2)
eff .

(f→g) Decompose T (2) via SVD. Afterwards, continue in the same way until all tensors in

the MPS are optimized.

2.5. Time evolution: TDVP

While an earlier version of the time-dependent variational principle (TDVP) algo-

rithm was developed already a decade ago [115], it has caught widespread attention

only recently after further algorithmic improvements have been made [116, 117]. Since

then, TDVP has been established as one of the most popular methods to carry out

the time evolution of MPS. As we will see, the algorithm is very similar to DMRG,

and hence only minor changes need to be made to implement TDVP starting from a

DMRG code [117]. Just like DMRG, TDVP sweeps through the entire MPS, updating

only individual tensors or blocks of two consecutive tensors at a time, making the al-

gorithm highly efficient. In contrast to TEBD, TDVP naturally allows for long-range

interactions, without the need to swap sites. Similar to DMRG it can be employed effi-

ciently in any tensor network structure that does not contain loops, such as tree tensor

networks [3, 122] or MPS with optimized boson basis [123]. Due to its importance in
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Figure 2.9.: 2-site TDVP projectors for an MPS. a) Projectors in the first sum of

Eq. (2.27). The projector consists of two projectors, P̂<m and P̂>m+1, acting on physical sites

1, ..,m − 1 and m + 2, .., L, respectively. They are built from the MPS in mixed canonical

gauge with orthogonality center A(m) or A(m+1). b) Second term projector of Eq. (2.27). As

compared to panel (a), the left projector includes a projection for tensor A(m) and has to be

built from the MPS with orthogonality center A(m+1).

this thesis, we are going to discuss TDVP for MPS in some detail here.

Our goal is to solve the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉, (2.24)

where |ψ(t)〉 is represented in MPS form. Consider now a small discrete time step

∆t. The state at time t + ∆t can be written as |ψ(t + ∆t)〉 = |ψ(t)〉 + ∆t
i~ Ĥ|ψ(t)〉.

However, in MPS form this state will generally require a larger bond dimension than

|ψ(t)〉. The TDVP tackles this issue by projecting the right-hand side of Eq. (2.24)

onto the tangent space of the MPS, by introducing the tangent space projector P̂|ψ〉.

We will provide details for this projector on the next pages. The Schrödinger equation,

supplemented with the projection operator, then becomes

i~
∂

∂t
|ψ(t)〉 = P̂|ψ〉Ĥ|ψ(t)〉 . (2.25)

In the single-site version of TDVP, only variations of individual tensors are allowed,

which means that only one tensor can be changed at a time. In practice, this leads to

an algorithm that does not allow for a dynamical increase of the bond dimension [117].

However, this can be problematic for non-equilibrium dynamics with growing entan-

glement, as the growth of entanglement requires to increase the bond dimension. To

overcome this issue, one can allow for more general variations in the MPS. Rather than

restricting to variations in individual tensors — leading to the single-site version of

TDVP — we can allow variations that leave the original MPS manifold (see discussion
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in Ref. [117]), and hence can describe an enlarged set of states. For example, consider

a bond with bond dimension D, connecting two neighboring tensors. We can contract

the two tensors and allow for arbitrary variations in this larger tensor, which is some-

how similar to the application of a nearest-neighbor operator in TEBD. Clearly, such

an idea requires an SVD with truncation to restore the original MPS format, allow-

ing, however, for a dynamical adjustment of the bond dimension D. This strategy is

called the two-site version of TDVP. Two-site TDVP has been proven to be both very

efficient and accurate in many scenarios [50] and has therefore been employed in our

simulations. In the following, we restrict the discussion on TDVP to the 2-site version:

the single-site version is very similar [116, 117, 123].

Consider a quantum many-body system with L lattice sites, described by a MPS in

mixed canonical gauge with orthogonality center A(m+1). We write the state as

|ψ〉 =
∑

km,im,km+1

A
(m+1)
km,im+1,km+1

|φ(1:m)
km
〉|im+1〉|φ(m+2:L)

km+1
〉 , (2.26)

where {|φ(1:m)
km
〉}km and {|φ(m+2:L)

km+1
〉}km+1 are orthonormal sets of quantum states describ-

ing the states of sites 1, ..,m and m + 2, .., L, and are built from left-orthogonal MPS

tensors A(1), .., A(m) and right-orthogonal tensors A(m+2), .., A(L), respectively. The 2-

site TDVP projector is given by [117]

P̂|ψ〉 =
L−1∑
m=1

P̂<m ⊗ 1m ⊗ 1m+1 ⊗ P̂>m+1︸ ︷︷ ︸
P̂

(+)
m

−
L−2∑
m=1

P̂≤m ⊗ 1m+1 ⊗ P̂>m+1︸ ︷︷ ︸
P̂

(−)
m

, (2.27)

where P̂<m, P̂≤m, and P̂>m+1 are projectors onto the reduced density matrix of the

corresponding MPS region [117], namely:

P̂<m =
∑
km−1

|φ(1:m−1)
km−1

〉〈φ(1:m−1)
km−1

| (2.28)

P̂≤m =
∑
km

|φ(1:m)
km
〉〈φ(1:m)

km
| (2.29)

P̂>m+1 =
∑
km+1

|φ(m+2:L)
km+1

〉〈φ(m+2:L)
km+1

| (2.30)

Notice that states |φ(1:m−1)
km−1

〉 — not introduced so far — are constructed from left-

orthogonal tensors A(1), .., A(m−1) in the same way as states |φ(1:m)
km
〉, with the only

difference that they only describe sites 1, ..,m − 1, excluding site m. The projectors

are visualized in Fig. 2.9. We observe that P̂
(+)
m is acting on all physical indices except

im and im+1, while P̂
(−)
m acts additionally on im. Knowing the projector, our goal is

to solve the TDVP equation in Eq. (2.25). The essential idea is to split the equation

using a so-called Lie-Trotter splitting [124], and solve it for just a single term of the
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projector at a time. The splitting leads to the following system of equations:

i~
∂

∂t
|ψ(t)〉 = +P̂

(+)
1 Ĥ|ψ(t)〉

i~
∂

∂t
|ψ(t)〉 = −P̂ (−)

1 Ĥ|ψ(t)〉

i~
∂

∂t
|ψ(t)〉 = +P̂

(+)
2 Ĥ|ψ(t)〉

i~
∂

∂t
|ψ(t)〉 = −P̂ (−)

2 Ĥ|ψ(t)〉
...

(2.31)

Here, we can solve one equation after the other [116]. Notice that there are two types

of differential equations, corresponding to the two types of projectors in Eq. (2.27).

Until now, the differential equations still contain some time-dependence for the entire

MPS. However, it has been shown in Ref. [116] that the differential equations can be

solved by making only the non-projected tensors time-dependent, while keeping all the

remaining ones constant (see also Appendix A.3 for more details). Hence, the two

types of equations are reduced to

i~
d

dt
T(m) = + Ĥ

(m)
eff T(m) (2.32)

i~
d

dt
A(m+1) =−K(m+1)A(m+1) . (2.33)

Here, T(m) is the vectorized two-site orthogonality center of the MPS, built from tensors

A(m) andA(m+1), Eq. (2.18), and Ĥ
(m)
eff is the corresponding effective Hamiltonian known

already from DMRG, see Fig. 2.7(c). In the second line, A(m+1) is the vectorized

tensor A(m+1), and K(m+1) is the corresponding effective Hamiltonian, obtained when

contracting A(m) into Ĥ
(m)
eff , see Fig. 2.7(d). These differential equations can be solved

employing Krylov subspace techniques [113] to compute the result of the application of

the operator exponential on a state [50, 114], without the need to calculate the operator

exponential explicitly. Notice the negative sign in the second line, which leads to an

evolution backward in time. Furthermore, it needs to be stressed that after solving a

differential equation like Eq. (2.32), we need to perform an SVD on T (m), in order to

restore the MPS format, see also Appendix A.3.
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Algorithm 2: 2-site TDVP for MPS

1: for m = 1, L− 1 do

2: Make A(m) the MPS’ orthogonality center

3: Find T (m) through contraction of A(m) and A(m+1), Eq. (2.18)

4: Compute effective Hamiltonian Ĥ
(m)
eff

5: Evolve T (m) according to Eq. (2.32)

6: Decompose T (m) via SVD into A(m) and A(m+1), gauge on A(m+1)

7: if m 6= L− 1 then

8: Compute effective Hamiltonian K(m+1)

9: Evolve A(m+1) backwards according to Eq. (2.33)

10: end if

11: end for

We have now discussed all the building blocks to formulate the 2-site TDVP algo-

rithm, which is summarized in Algorithm 2 for an evolution by one time step ∆t. As

pointed out in Ref. [117], the TDVP algorithm is closely connected to the DMRG algo-

rithm: In both of them, a single optimization (DMRG) or time evolution step (TDVP)

is achieved by sweeping through the MPS. In each sweep, the MPS is optimized/evolved

through operations acting locally on the MPS. While in DMRG a pair of neighboring

tensors is optimized by solving an eigenvalue problem for its effective Hamiltonian, in

TDVP the very same effective Hamiltonian determines its time evolution. Addition-

ally, TDVP contains a backward evolution step, for which there is no counterpart in

DMRG. Just like for DMRG, we show in Fig. 2.10 the first steps of a TDVP sweep.

As compared to DMRG, Fig. 2.8, all steps up to panel (d) are the same, where only

the optimization is replaced by the time evolution. Before proceeding with the next

block of tensors, however, TDVP requires the backward evolution of the right tensor

after the SVD (d→e).

Remarks. In practice it can be beneficial to use a symmetric choice, with time

step ∆t/2 for the left-to-right sweep and an additional right-to-left sweep with

∆t/2 as well, to reduce the time step error [50, 117, 122]. Furthermore, there

are various possibilities to combine the single-site and two-site versions to further

improve efficiency. For example, one can employ the different versions for different

parts of a tensor network [122]. Alternatively, one can start the time evolution with

the 2-site version until the maximum bond dimension is reached and then continue

with single-site TDVP.

i

2.6. Jordan-Wigner transformation

The quantum many-body simulation of quantum particles such as spin-1/2 or bosons

is straightforward with Tensor Networks, due to the commutator vanishing for different
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2.6. Jordan-Wigner transformation

Figure 2.10.: Several steps of a TDVP sweep for L = 4 sites. (a→b) Starting from

a right orthogonal MPS (A(2) is not required right orthogonal), we contract A(1) and A(2) to

build the two-site block T (1). (b→c) We build the effective Hamiltonian Ĥ
(1)
eff , Fig. 2.7(c),

and evolve T (1) in time by solving the differential equation in Eq. (2.32). The evolved tensor

is colored in green. (c→d) Compute SVD of evolved tensor T (1) and contract singular values

into the right tensor, becoming the new orthogonality center of the MPS. (d→e) Find the

effective Hamiltonian K(2) for A(2), see Fig. 2.7(d), and evolve A(2) backwards in time by

solving Eq. (2.33). (e→f) Contract A(2) and A(3) to get T (2). (f→g) Evolve T (2) using

corresponding effective Hamiltonian Ĥ
(2)
eff . (g→h) Decompose T (2) via SVD. (h→i) Evolve

A(3) backwards in time using K(3). Afterward, continue in the same way until all tensors in

the MPS are evolved. Notice that there is no backward evolution for the last tensor.

lattice sites. When dealing with fermions, however, the situation changes drastically

due to the change of sign when exchanging two fermions as required by the anti-

commutator {ĉl , ĉ†j} = δl,j, where {Â, B̂} = ÂB̂+B̂Â. The most prominent way to deal

with this issue in one dimension is the so-called Jordan-Wigner transformation [125],

a unitary transformation which maps spinless fermions into spin-1/2 particles. Let us

define two operators

σ+
j = exp

(
+iπ

j−1∑
k=1

ĉ†kĉk

)
ĉ†j (2.34)

σ−j = exp

(
−iπ

j−1∑
k=1

ĉ†kĉk

)
ĉj. (2.35)
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2. Matrix product states techniques

Notice that this transformation is non-local as it acts on all sites with index k < j

simultaneously. We can easily show that these operators satisfy the commutation re-

lations [σ−l , σ
+
j ] = δl,j and [σ−l , σ

−
j ] = [σ+

l , σ
+
j ] = 0, characteristic for spin-1/2 particles.

The spin sites are built from two basis states |↑〉 and |↓〉, with operators σ+ = |↑〉 〈↓|
and σ− = |↓〉 〈↑| exchanging between the basis states. These operators are the spin-

equivalent of the fermionic creation and annihilation operators, ĉ† and ĉ , respectively.

The inverse transformation is given by

ĉ†j = exp

(
−iπ

j−1∑
k=1

σ+
k σ
−
k

)
σ+
j (2.36)

ĉj = exp

(
+iπ

j−1∑
k=1

σ+
k σ
−
k

)
σ−j . (2.37)

Using the inverse transformation we can show that the fermionic number operator,

n̂j = ĉ†j ĉj, and nearest-neighbor hopping terms take the simple form

ĉ†j ĉj = σ+
j σ
−
j (2.38)

ĉ†j ĉj+1 = σ+
j σ
−
j+1 (2.39)

ĉ†j+1ĉj = σ+
j+1σ

−
j . (2.40)

However, the transformation of operators ĉ†l ĉj is non-trivial in general. Assuming l < j

we observe an additional string operator in the spin-basis, which acts on all sites in

between the two operators ĉ†l and ĉj:

ĉ†l ĉj = σ+
l exp

(
+iπ

j−1∑
k=l+1

σ+
k σ
−
k

)
σ−j . (2.41)

Hence, fermionic models with only nearest-neighbor hopping terms can easily be im-

plemented using the Jordan-Wigner transformation with no further complications. On

the other hand, terms with interaction range > 1 require the implementation of the

string operators, where local operators are acting on the two interacting sites and all

sites in between. When using the MPO representation, such string operators can lead

to a more complex representation of the Hamiltonian, which, however, is still possible.

In our simulations, we use the iTensor library [126], which handles fermionic operators

and the resulting string operators automatically.
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techniques

The Anderson model is one of the most prominent models in condensed matter

physics. Introduced to study the effect of a magnetic impurity in a metal [58], and the

emerging Kondo effect [56, 57], it finds applications in various fields. In the framework

of dynamical mean-field theory (DMFT), the single-impurity Anderson model (SIAM)

serves as a building block to study strongly correlated materials [10, 127]. Coupled to

an additional bath, the SIAM provides a simple playground to study quantum transport

through the impurity, induced by a temperature gradient or an electric voltage between

the leads [53, 63], as realizable with quantum dots [61, 62].

The most popular techniques used so far to study the Anderson model are exact diag-

onalization (ED), Quantum Monte Carlo [68–70], Wilson’s numerical renormalization

group (NRG) [9, 71–73, 76, 128] and tensor-network-based methods [34–40, 63], all of

them with their own advantages and disadvantages. ED is numerically exact and has

equal resolution on all energy scales, but is usually limited in the number of conduction

modes that can be treated. Monte-Carlo-based methods and NRG are very successful

in calculating equilibrium properties, such as the impurity Green’s function for DMFT

applications. However, simulating real-time dynamics is more challenging. Matrix

product states (MPS), or tensor-network methods in general, are well suited to deal

with one-dimensional systems [14, 17]: ground states of 1D models with short-range

interactions are known to follow an area law for the entanglement entropy [52], mak-

ing tensor networks a very efficient tool for equilibrium simulations. However, when

simulating the dynamics, e.g. after a sudden quench, the entanglement typically grows

in time, often even linearly. This results in an exponential increase of the required

numerical resources.

Hence, for real-time simulations employing MPS, it is crucial to reduce the entangle-

ment as much as possible. For the Anderson model, a very natural idea to represent the

conduction modes would be to apply Wilson’s chain mapping [128]: free electrons are

represented by a tight-binding chain, which is well suited for NRG calculations and was

believed to be the best strategy for MPS simulations as well, due to the interactions

being short range. However, it has been shown that simulations in the so-called “star-

geometry”, avoiding Wilson’s chain mapping, show significantly less entanglement [39].

In this chapter, we introduce the Anderson model, which is the model of interest in
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the following chapters, and we discuss the various possibilities to simulate it, with a

focus on ideas suitable for MPS. In addition to the discussion of previously employed

methods, we introduce an idea that combines the advantages of the tight-binding chain

mapping and the star geometry, which can even be generalized to finite temperatures.

This chapter is structured as follows. In Section 3.1 we introduce the single impurity

Anderson model, both in its discrete variant and the continuum, where the latter is

obtained from the discrete one in the thermodynamic limit. The connection between

the two is established in Section 3.2, where we show how to discretize the continuum.

Furthermore, we show how the star-like Anderson model can be transformed into a

tight-binding chain, which is well suited for numerical simulations. We then show

in Section 3.3 an alternative method to carry out the chain mapping directly from

the continuum, which is based on orthogonal polynomials. Section 3.4 is devoted to

an example of the chain mapping at zero temperature, where we compare the two

aforementioned methods. Following this, we discuss in Section 3.5 some of the issues

one encounters in practical simulations when employing the chain mapping. Discussing

the zero temperature case only up to this point, we show how one can deal with finite

temperatures in Section 3.6, with corresponding chain mapping being presented in

Section 3.7. We conclude the chapter with an example for the finite temperature chain

mapping, Section 3.8, and a summary with a discussion about the different simulation

methods suitable for MPS, see Section 3.9.

3.1. Single impurity Anderson model

We start the chapter by introducing the essential model of this thesis, the single

impurity Anderson model (SIAM). We present the SIAM in the discrete version, as

is usually done, and in the continuum, which is useful for practical simulations. We

moreover establish a connection between the discrete and continuum formulation of

the SIAM, and discuss practical aspects of simulations in the star geometry.

3.1.1. Discrete SIAM

The single impurity Anderson model (SIAM) [58] consists of a single spin-full impu-

rity orbital hybridizing with a bath of free conduction electrons:

ĤSIAM(t) = Ĥloc(t) + Ĥhyb + Ĥcond (3.1)

The local Hamiltonian describes the localized impurity embedded in the bath of con-

duction electrons,

Ĥloc(t) =
∑
σ

εd(t)d̂
†
σd̂σ + U(t) n̂↑n̂↓ , (3.2)
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3.1. Single impurity Anderson model

Figure 3.1.: SIAM in star geometry. a) Graphical representation of the single impurity

Anderson model. The localized impurity, labeled by ”d”, is coupled to a bath of free electron

modes, labeled through their index k, with corresponding energies εk. Bath modes below

the Fermi energy Ef (black circles) are filled at T = 0, while modes above Ef are empty

(white circles). The hybridization interaction with coupling coefficient Vk allows electrons to

hop from the bath into the impurity and vice-versa. b) For simulations with MPS, the bath

modes are organized as a one-dimensional chain, with artificial long-range interactions [39].

where d̂†σ creates an electron with spin σ =↑, ↓ in the impurity orbital, n̂σ = d̂†σd̂σ
is the number operator, and U the on-site Hubbard repulsion. Here we could allow

for a time-dependent impurity level εd(t) = Ed(t) − µ, where µ denotes the chemical

potential of the conduction electron bath, and even for a time-dependent U(t), for pos-

sible applications to non-equilibrium problems. The impurity-bath hybridization term

models the interaction of the impurity with the conduction electrons, see Fig. 3.1(a),

and is given by:

Ĥhyb =
∑
σ

∑
k

Vk

(
d̂†σ ĉk,σ + ĉ†k,σ d̂σ

)
(3.3)

where Vk is a (real) hybridization matrix element and ĉ†k,σ creates a conduction electron

in an orbital labeled by k. The conduction electrons are assumed to be free, and hence

are described by the Hamiltonian

Ĥcond =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ . (3.4)

Here εk denotes energies referred to the conduction electron chemical potential µ. The

interactions between impurity and conduction electrons are characterized by a “star”

geometry, see Fig. 3.1(a). In the star geometry, we can directly simulate the SIAM

using matrix product states. To this end, one organizes the impurity and the bath sites

as a one-dimensional chain, with artificial long-range interaction [39], as visualized in

Fig. 3.1(b). A more detailed discussion of the simulation strategies, however, will follow

in the next sections.
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Symmetries in the SIAM

Let us briefly discuss the symmetries of the Anderson model here, see also section

2.3.1 of Ref. [129]. Clearly, the model is symmetric in spin, and hence invariant under

the transformation

ĉk,σ −→ ĉk,−σ . (3.5)

This implies that in equilibrium and during time evolution with spin-symmetric initial

state observables are the same for spin-up and spin-down. This symmetry would be

broken in the presence of a magnetic field B, where the local impurity Hamiltonian

would be supplemented by a term like B(n̂↑ − n̂↓). One can easily show that for

parameters satisfying the conditions

εd = −U/2 , Vk = V−k , εk = −ε−k (3.6)

the SIAM is particle-hole (PH) symmetric [129], meaning that it is invariant under the

transformation

ĉk,σ −→ ĉ†−k,σ and d̂σ −→ −d̂†σ . (3.7)

Essentially, the conditions boil down to a symmetric hybridization function and a

symmetric choice for the local impurity levels. The PH-symmetric case is extremely

useful for benchmarks of numerical methods since certain values of observables are

known exactly due to the symmetry. For example, in equilibrium and at PH-symmetry,

the impurity population is always 〈n̂σ〉 = 1/2 per spin.

3.1.2. SIAM in the continuum

Previously we have introduced the SIAM with discrete conduction electron modes.

However, as we approach the thermodynamic limit, it is reasonable to employ a con-

tinuum representation for the electron bath. Denoting the half-bandwidth by W , we

work with energy dimensionless units x = ε/W . In the continuum limit [9, 130], with

some more details given in the next section, we replace the sum over k-modes by an in-

tegral,
∑

k →
∫

dx, and we substitute the hybridization couplings and dispersion with

their continuum versions, Vk → V (x), εk → g(x). The fermionic operators become

ĉkσ → ĉσ(x), with a Dirac-delta anti-commutation relationship

{ĉσ(x), ĉ†σ′(x
′)} = δσ,σ′δ(x− x′) .

Hence, we recast the kinetic term as:

Ĥcond = W
∑
σ

∫ 1

−1

dx g(x) ĉ†σ(x) ĉσ(x) (3.8)
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Similarly, the hybridization term is given by

Ĥhyb = W
∑
σ

∫ 1

−1

dx V (x)
(
d̂†σ ĉσ(x) + H.c.

)
. (3.9)

Remarkably enough, the dispersion g(x) and the hybridization couplings V (x) are not

completely independent. Instead, the conduction electron bath is characterized by only

a single function ∆(ω), the hybridization function. ∆(ω) is related to V (x) and g(x)

through the relation [130]

dx(ω)

dω
V 2(x(ω)) =

∆(ω)

π
, (3.10)

where x(ω) = g−1(ω) is the inverse of g(x), such that g(g−1(ω)) = ω. For bosonic

baths, the role of the hybridization function is taken by the so called spectral density,

as will be discussed in more detail in Chapter 7.

3.2. Chain mapping I: Discretization plus Lanczos

In principle, it is possible to simulate the Anderson model — after an appropriate

discretization — directly in the star geometry, using exact diagonalization, for instance.

However, advanced methods such as the Numerical Renormalization Group (NRG),

require a mapping of the conduction electrons from the star geometry into a tight-

binding chain with nearest-neighbor couplings only. Similarly, a chain structure can

be well employed in TN simulations, as dealing with short-range couplings is usually

easier than working with long-range interactions. For this reason, let us discuss in

some detail different possibilities to carry out the chain mapping of the electron bath.

In this section, we first show how the discrete version of the SIAM is obtained when

discretizing its continuum counterpart. We then map the discrete model into a chain

using Lanczos’ tridiagonalization algorithm, to obtain the chain representation of the

bath.

3.2.1. Bath discretization

Let us now establish a relation between the Anderson impurity model in the contin-

uum limit, see Section 3.1.2, and its discretized version as given in Eq. (3.1). To this

end, we discuss two different ideas to discretize the continuum bath. The first method

is rather simple, and introduces the conceptual idea for the discretization, while the

second one is slightly more involved, but leads to an improved approximation of the

original bath.
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Simple discretization. We start from the continuum SIAM in Section 3.1.2, and

we choose the linear dispersion relation g(x) = x, with inverse x(ω) = g−1(ω) = ω.

Notice, that we take ω to be dimensionless. According to Eq. (3.10), this implies

V 2(x) = ∆(x)/π. We discretize the support [−1, 1] of x, into intervals Ik centered

around some discrete values xk, with interval length Lk = ∆xk. In each interval we

can define a Fourier basis:

ψk,n(x) =


1√
Lk

ei2πnx/Lk for x ∈ Ik

0 otherwise

(3.11)

where n = 0, · · ·∞. Being a complete orthonormal basis, we can introduce a set of

discrete operators ĉk,n through the unitary transformation

ĉk,n =

∫ 1

−1

dx ψ∗k,n(x) ĉ(x) , (3.12)

whose inverse is

ĉ(x) =
∑
k

∞∑
n=0

ψk,n(x) ĉk,n . (3.13)

Notice that we have dropped spin indices, since they are irrelevant here and in the

following. Employing this transformation, we can rewrite the Hamiltonian in terms of

the (infinitely many) discrete modes. For instance, the term entering the hybridization

coupling reads

W

∫ 1

−1

dxV (x)ĉ(x) =
∑
k

∞∑
n=0

W

∫ 1

−1

dxV (x)ψk,n(x)ĉk,n

=
∑
k

∞∑
n=0

Vk,nĉk,n with

Vk,n
def
= W

∫ 1

−1

dxV (x)ψk,n(x) . (3.14)

Until now, the transformation is still exact but contains an infinite number of Fourier

contributions. The usual approximation — which becomes exact in the limit Lk → 0

— is to drop all Fourier harmonics with n > 0, keeping only the constant term ψk,n=0.

This is valid because for Lk → 0 we can approximate V (x) as a constant in each

interval Ik, and hence, only the constant term of ψk,n survives in the integral. For the

hybridization term, we then find

W

∫ 1

−1

dxV (x)ĉ(x)
Lk→0−→

∑
k

Vk ĉk , (3.15)

where we have introduced a short notation for the fermion operator ĉk,n=0,

ĉk = ĉk,n=0 =
1√
Lk

∫
Ik

dx ĉ(x) , (3.16)
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and the hybridization coupling Vk,n=0:

Vk = Vk,n=0 =
W√
Lk

∫
Ik

dxV (x) (3.17)

Applying the very same approximation, we drop all n 6= 0 terms in the conduction

Hamiltonian, which then becomes

W

∫ 1

−1

dx x ĉ†(x)ĉ(x)
Lk→0−→

∑
k

εkĉ
†
kĉk , (3.18)

where the discrete energies are given by

εk =
W

Lk

∫
Ik

dx x . (3.19)

Advanced discretization. In the previous paragraph, we argued that only the zeroth

Fourier component survives in the limit Lk → 0. Hence, dropping all the remaining

components introduces an error, for finite Lk. In this section, we discuss an improved

discretization scheme, following Refs. [9, 130]. In contrast to the above strategy, here it

will not be an approximation that only the zeroth component of the Fourier expansion

couples to the impurity. This is achieved in the following way. Due to Eq. (3.10) we

have the freedom to choose V (x) to be stepwise constant in each interval Ik: the energy

dependence of the hybridization function ∆(ω) is fully encoded in g(x) and its inverse

x(ω), while V (x) is kept constant in each discretization interval. We choose V 2(x) to

take the mean value of ∆(ω)/π in each interval:

V 2(x ∈ Ik) = Ṽ 2
k =

1

πLk

∫
Ik

dω ∆(ω) (3.20)

By exploiting the decomposition of ĉ(x), Eq. (3.13), and the stepwise constant nature

of V (x), the hybridization term becomes∫ 1

−1

dxV (x) ĉ(x) =
∑
k

∞∑
n=0

Ṽk

∫ 1

−1

dxψk,n(x) ĉk,n . (3.21)

Now we realize that ψk,n(x) is the only non-constant term in the integral: Only the n =

0 component contributes. This is the improvement as compared to the last paragraph,

where n > 0 terms only vanished in the limit of small intervals. Since
∫ 1

−1
dx ψk,n(x) =√

Lkδn,0 we obtain

W

∫ 1

−1

dxV (x) ĉ(x) = W
∑
k

√
Lk Ṽk ĉk =

∑
k

Vk ĉk , (3.22)

with discrete hybridization couplings

V 2
k = W 2LkṼ

2
k =

W 2

π

∫
Ik

dω ∆(ω) . (3.23)
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Let us turn to the free conduction modes now. Inserting the decomposition of ĉ(x) and

ĉ†(x) we find:∫ 1

−1

dx g(x) ĉ†(x) ĉ(x) =

∫ 1

−1

dx g(x)
∑
k,k′

∞∑
n,n′=0

ψ∗k,n(x)ψk′,n′(x) ĉ†kĉk′ (3.24)

Notice that up to this point no approximation has been made. In the next step,

however, we carry out the same approximation as in the last paragraph, dropping all

terms with n > 0. There are two arguments for this approximation [9]:

(i) The impurity couples only to the n = 0 state, while n > 0 states contribute only

through their coupling to the n = 0 state.

(ii) The coupling between n = 0 and n > 0 states vanishes as Lk → 0, and hence the

approximation becomes exact. For a more detailed discussion of these issues, we

refer to Refs. [9, 130].

Dropping all terms with n, n′ 6= 0 we have∫ 1

−1

dx g(x) ĉ†(x) ĉ(x) =

∫ 1

−1

dx g(x)
∑
k,k′

ψ∗k,n=0(x)ψk′,n=0(x) ĉ†kĉk′ (3.25)

=
∑
k

1

Lk

∫
Ik

dx g(x) ĉ†k ĉk . (3.26)

Here, we have used that ψk,n=0(x) = 0 for x /∈ Ik, which implies ψ∗k,n=0(x)ψk′,n=0(x) =

δk,k′/Lk. Hence, the discrete version of the conduction term is given by

W

∫ 1

−1

dx g(x) ĉ†(x) ĉ(x) =
∑
k

εkĉ
†
kĉk , (3.27)

with discrete energies

εk =
W

Lk

∫
Ik

dx g(x) . (3.28)

When fixing the hybridization coupling V (x) in Eq. (3.20), we have simultaneously

defined g(x) and its inverse x(ω) through Eq. (3.10), since the hybridization function

∆(x) is fixed. Now one might think that, in order to find the discrete energies, we need

to solve Eq. (3.10) for x(ω) and invert it to obtain g(x). However, it turns out that

this is not the case. Instead, we can simply calculate them as [9, 130]

εk = W

∫
Ik

dω ∆(ω) ω∫
Ik

dω ∆(ω)
=

W 3

πV 2
k

∫
Ik

dω ∆(ω) ω . (3.29)

Let us prove that this is indeed equal to Eq. (3.28). We start from Eq. (3.10), with

constant V 2(x(ω)) = Ṽ 2
k = W−2L−1

k V 2
k as chosen previously. Hence, Eq. (3.10) becomes

dx(ω)

dω
W−2L−1

k V 2
k =

∆(ω)

π
. (3.30)

40



3.2. Chain mapping I: Discretization plus Lanczos

We insert this into the right hand side of Eq. (3.29) and find

W 3

πV 2
k

∫
Ik

dω ∆(ω) ω =
W

Lk

∫
Ik

dω
dx(ω)

dω
ω . (3.31)

We can now use the substitution ω = g(x) to make x the variable of integration, and

hence

W 3

πV 2
k

∫
Ik

dω ∆(ω) ω =
W

Lk

∫
Ik

dx
dg(x)

dx

∂x(ω(x))

∂ω(x)
g(x) (3.32)

=
W

Lk

∫
Ik

dx g(x) , (3.33)

where we have used that x(ω) = g−1(ω) is the inverse of g(x). This proves the equiva-

lence of Eq. (3.28) and Eq. (3.29): the latter can be easily evaluated to find the discrete

energies εk in practice.

Summary. In this section we have shown how to transform the Anderson impu-

rity model in the continuum

ĤSIAM = Ĥloc +W
∑
σ

[∫ 1

−1

dx V (x)
(
d̂†σ ĉσ(x) + H.c.

)
+

∫ 1

−1

dx g(x) ĉ†σ(x) ĉσ(x)

]
into its discrete version

ĤSIAM = Ĥloc +
∑
k,σ

Vk

(
d̂†σ ĉk,σ + ĉ†k,σ d̂σ

)
+
∑
k,σ

εk ĉ
†
k,σ ĉk,σ .

We have provided two possibilities for the discretization:

(i) One can choose g(x) = x, which, by Eq. (3.10), gives V 2(x) = ∆(x)/π. The

discretizatization then leads to hybridization and energy coefficients

Vk =
W

π
√

∆xk

∫
Ik

dx∆(x) and εk =
W

∆xk

∫
Ik

dx x .

(ii) We can choose V 2(x ∈ Ik) = (πLk)
−1
∫
Ik

dx∆(x) to be step-wise constant,

obtaining

V 2
k =

W 2

π

∫
Ik

dx ∆(x) and εk = W

∫
Ik

dx ∆(x) x∫
Ik

dx ∆(x)
.

i

Linear and logarithmic discretization. So for we have always assumed that we have

some given intervals Ik. In principle, we are free to choose them at will, as long as their

length Lk is sufficiently small. In practice, there are two popular discretization schemes,

namely linear and logarithmic discretization. In the linear discretization scheme, in-

tervals Ik are all equally sized, meaning that Lk = L is independent of k, providing
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3. Anderson model and simulation techniques

equal resolution over the spectrum. On the other hand, logarithmic discretization is

particularly useful when dealing with low-energy phenomena, and is typically employed

in NRG simulations [9]. In this case, we take intervals Ik = [xk+1, xk] with xk = Λ−k,

and hence, Lk = Λ−k(1− Λ−1). The parameter Λ is the discretization parameter, and

the continuum limit is recovered for Λ→ 1.

3.2.2. Lanczos chain mapping

Figure 3.2.: Mapping from star to chain geometry. Starting from a discretized con-

duction electron bath with N sites, hybridization couplings Vk and corresponding on-site

energies εk, the star-like Anderson model is mapped into a one-dimensional chain. In the

chain, only the first bath mode â0 couples to the impurity, while all remaining chain sites are

coupled to their nearest-neighbors.

In the previous section, we have seen how the continuum bath of the Anderson

impurity model can be discretized into a finite number of bath modes. In this form,

the impurity interacts with all bath modes, while the bath modes do not interact with

each other directly. The “geometry” of the Hamiltonian looks like a star, with the

impurity, in the middle, connected to all bath sites, see Fig. 3.2: it is called the “star

geometry”. However, when simulating the model using numerical techniques such as

NRG or TN techniques, it is often beneficial to have short-range couplings. Employing

the Lanczos tridiagonalization algorithm, it is possible to map the star-like bath into a

chain, Fig. 3.2. Here, only the first bath site is interacting with the impurity, while the

remaining bath sites couple with their nearest neighbors. Let us now briefly discuss

how this mapping works from a mathematical viewpoint. The Hamiltonian for the

bath term — after truncation of the bath modes — is given in matrix notation as

Ĥcond = ĉ†Hcondĉ =
(
ĉ†1, ĉ†2, . . . , ĉ†N

)

ε1 0 . . . 0

0 ε2
...

...
. . . 0

0 . . . 0 εN



ĉ1

ĉ2

...

ĉN

 , (3.34)

where we have dropped spin indices as usual. In the first step, we want to simplify the

hybridization term,
∑

k Vk d̂
† ĉk, by introducing a new bath mode â0 that captures the
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3.2. Chain mapping I: Discretization plus Lanczos

entire hybridization interaction. We define

â0 = J−1
0

∑
k

Vkĉk , (3.35)

with J0 =
√∑

k V
2
k to ensure the correct normalization, {â0, â

†
0} = 1. The hybridiza-

tion Hamiltonian then takes the simple form

Ĥhyb = J0

(
d̂†â0 + H.c.

)
. (3.36)

The chain mapping can then be performed by transforming the matrix Hcond as Hcond =

Q†H′condQ, where Q is an orthogonal matrix and H′cond is tridiagonal

H′cond =



α0 β1 0 . . . 0

β1 α1 β2

...
... β2 α2

. . . 0
. . .

. . . βN−1

0 . . . 0 βN−1 αN−1


. (3.37)

This transformation can be obtained employing Lanczos’ algorithm. Choosing the

initial vector Q1,k = J−1
0 Vk we ensure that â0 is defined as above. Hence, we can

rewrite the conduction electron Hamiltonian as

Ĥcond = ĉ† Q†H′condQ ĉ = â† H′cond â , (3.38)

with â = Q ĉ. Due to the tridiagonal form of H′cond, the conduction Hamiltonian

transforms into a chain with only nearest-neighbor couplings

Ĥcond =
N−1∑
n=1

(
Jnâ

†
nân−1 + H.c.

)
+

N−1∑
n=0

En â
†
nân , (3.39)

where energies En = αn and couplings Jn>0 = βn are easily obtained from Lanczos

algorithm.

Warning. It is well known that Lanczos’ algorithm is intrinsically unstable. For

the practical application here, however, there is a brute force way to circumvent

the problem: We can simply carry out calculations with extremely high numerical

precision. For example, we have employed floating-point numbers with ≈ 200

digits using the variable precision arithmetic (VPA) in Matlab. After finding the

Lanczos coefficients it is then possible to diagonalize the matrix with the chain

coefficients, from which one obtains the corresponding Hamiltonian parameters

in star geometry. Clearly, those coefficients should match the original ones we

started with. This is a simple check to ensure that the chain parameters have been

calculated correctly.

i
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3. Anderson model and simulation techniques

Summary. Using Lanczos’ tridiagonalization algorithm we have discussed how
the discrete Anderson impurity model can be transformed from the star-geometry
to the chain-geometry, where the spinful Hamiltonian

ĤSIAM = Ĥloc +
∑
σ

(
J0

(
d̂†σ â0,σ + H.c.

)
+
N−1∑
n=1

(
Jnâ

†
n,σân−1,σ + H.c.

)
+
N−1∑
n=0

En â
†
n,σân,σ

)
(3.40)

is essentially one-dimensional, and consists of nearest-neighbor terms only. The

on-site energies and hopping rates in the chain are related to the hybridization

couplings and Lanczos coefficients as

J0 =

√∑
k

V 2
k , Jn≥1 = Wβn , En≥0 = Wαn . (3.41)

i

3.3. Chain mapping II: Orthogonal Polynomials

In this section, we discuss another possibility to carry out the chain mapping of

the Anderson impurity model. In contrast to the previous section, this technique is

directly applied to the continuum version of the SIAM and does not require an explicit

discretization. Hence, discretization errors are in principle absent in this approach, see

also Ref.[131], at the cost of an infinitely long chain. In practical applications, the chain

needs to be truncated, often with negligible additional errors. The chain mapping is

performed by employing a unitary transformation based on orthogonal polynomials.

For this reason, we first discuss some crucial theoretical basics of orthogonal polynomi-

als. Later, we show explicitly how the SIAM is transformed from the star to the chain

geometry.

3.3.1. Theory of orthogonal polynomials

Let us discuss some of the essential theory of orthogonal polynomials required in the

following section. Here, and later, we follow Refs. [54, 55, 132], where the orthogonal

polynomial chain mapping has been introduced for open quantum systems. We start

by defining the inner product of two real polynomials p and q as

〈p, q〉 =

∫ b

a

p(x) q(x) dµ(x) , (3.42)

where dµ(x) denotes a positive measure dµ(x) = V 2(x) dx. Of course, it is not by

accident that we have denoted the function in the measure by V (x), but this will become

clear later. Two polynomials p(x) and q(x) are said be orthogonal with respect to the
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3.3. Chain mapping II: Orthogonal Polynomials

measure dµ(x), if 〈p, q〉 = 0. The inner product induces a norm for the polynomials,

given by ||p|| =
√
〈p, p〉.

Given some measure function V 2(x), we construct a set of orthogonal polynomials

using a Gram-Schmidt orthogonalization procedure for the basis functions 1, x, x2, · · · .
The whole procedure does indeed show some similarities to the Lanczos’ algorithm

employed in the last section. We start by constructing a set of orthogonal monic

polynomials, i.e., with the coefficient of maximal degree equal to one, which we denote

by πn(x). Obviously, πn(x) is related to the corresponding normalized polynomials

pn(x) through pn(x) = πn(x)/||πn|| and πn(x) can be obtained from pn(x) through

division by the leading coefficient an of pn(x), πn(x) = pn(x)/an.

Suppose we have constructed a set of such orthogonal polynomials, and we have the

corresponding monic polynomials {πn}. The difference πn+1 − xπn is a polynomial of

degree ≤ n, and hence can be expanded in terms of the monic polynomials as

πn+1(x)− xπn(x) =
n∑
k=0

ck πk(x) . (3.43)

Our goal is now to find all expansion coefficients ck. Due to the orthogonality property

of the polynomials, we can find the coefficient cn by taking the scalar product of

Eq. (3.43) with πn,

〈πn, πn+1 − xπn〉 =
〈
πn,

n∑
k=0

ck πk
〉

= cn〈πn, πn〉 , (3.44)

and hence

cn = −〈πn, xπn〉〈πn, πn〉
. (3.45)

We can proceed in the same way to obtain the coefficient cn−1. We now take the scalar

product with πn−1, which yields

cn−1 = − 〈πn−1, xπn〉
〈πn−1, πn−1〉

= − 〈xπn−1, πn〉
〈πn−1, πn−1〉

= − 〈πn, πn〉
〈πn−1, πn−1〉

. (3.46)

Notice that in the scalar product we can simply move x from the ket into the bra as

they are simply multiplied, see Eq. (3.42). Further, we have employed that xπn−1 can

be expanded in monic polynomials up to degree n, where only πn survives in the scalar

product with unit expansion coefficient. In the next step, we notice that all remaining

coefficients, given just like before as

cl<n−1 = −〈πl, xπn〉〈πl, πl〉
= −〈xπl, πn〉〈πl, πl〉

= −〈πl+1, πn〉
〈πl, πl〉

= 0 , (3.47)

disappear exactly since 〈πl+1, πn〉 = 0 for l < n − 1. Hence, we find that the sum in

Eq. (3.43) has just two nonzero terms. So, we obtain the so called three-term recurrence

relation:

πn+1(x)− xπn(x) = cn−1 πn−1(x) + cn πn(x) (3.48)
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3. Anderson model and simulation techniques

It relates a monic polynomial πn+1 to the previous two, πn and πn−1. Notice the

similarity with Lanczos’ algorithm, where a new Lanczos vector is expressed in terms

of the previous two.

Recurrence relation for orthogonal polynomials. Given a measure dµ(x),

the corresponding set of orthogonal monic polynomials satisfies the three-term

recurrence relation

πn+1(x) = (x− αn)πn(x)− βnπn−1(x) ∀n ≥ 0 , (3.49)

with π−1(x) = 0, and αn and βn given by

αn = −cn =
〈πn, xπn〉
〈πn, πn〉

and βn = −cn−1 =
〈πn, πn〉
〈πn−1, πn−1〉

. (3.50)

The normalized polynomials are then obtained by pn(x) = πn(x)/||πn||. For the

chain mapping it will be important to find the recurrence coefficients αn and βn for

a given dµ(x), which is related to the hybridization function, while the polynomials

are not needed explicitly. These coefficients can be obtained analytically for some

special cases [54], but are usually calculated numerically [133, 134]. For a weighting

function V 2(x) with finite support [a, b], it can be shown that αn and βn converge

as αn → (a+ b)/2 and βn → (b− a)2/16 for n→∞ [54].

i

The recurrence relation in Eq. (3.49) can also be formulated for normalized polynomials

and is given by [54]

pn+1(x) = (Cnx− An)pn(x)−Bnpn−1(x) ∀n ≥ 0 , (3.51)

where again p−1(x) = 0. The coefficients An, Bn and Cn are related to the coefficients

αn and βn in Eq. (3.49) through the equations

An =
αn√
βn+1

, Bn =

√
βn
βn+1

, Cn =
1√
βn+1

. (3.52)

These relations will be used in the next section.

3.3.2. Chain mapping for the Anderson impurity model

Let us now discuss how orthogonal polynomials can be employed to map the contin-

uum Anderson impurity model into a chain with nearest-neighbor interactions. The

first thing we notice is that there is a well defined combination of operators that couples

to the system

â0 = J−1
0 W

∫ +1

−1

dxV (x) ĉ(x) , (3.53)
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3.3. Chain mapping II: Orthogonal Polynomials

where J0 is a normalization factor such that

1 = {â0, â
†
0} = J−2

0 W 2

∫ +1

−1

dxV 2(x) =⇒ J0 = W

√∫ +1

−1

dxV 2(x) . (3.54)

How can we extend this â0 to a complete discrete set of operators {ân, n = 0, · · ·∞}
made from appropriate combinations of the original ĉ(x)?

Question

The solution to this question is a unitary transformation based on orthogonal polyno-

mials. We can define new fermionic modes an as a linear combination of the continuum

modes ĉ(x),

ân =

∫ +1

−1

dxUn(x) ĉ(x) for n = 0 · · ·∞ , (3.55)

and impose the canonical commutation relations1:

{ân, â†m} =

∫ +1

−1

∫ +1

−1

dx dy Un(x)Um(y)

δ(x−y)︷ ︸︸ ︷
{ĉ(x), ĉ†(y)}

=

∫ +1

−1

dxUn(x)Um(x) = δn,m

(3.56)

We see that the canonical commutation relationships are obeyed if and only if the

{Un(x)} are orthogonal polynomials. It turns out that the correct choice the transfor-

mation Un(x) is [54]

Un(x) = V (x) pn(x) , (3.57)

where {pn(x)} is a set of orthonormal polynomials with respect to the measure dµ(x) =

V 2(x) dx. The inverse transformation can be written explicitly and is given by

ĉ(x) =
∞∑
n=0

Un(x) ân . (3.58)

To verify this, simply multiply both sides by Um(x) and integrate. We now check how

the transformation allows to rewrite the Hamiltonian in the new basis. Let us start

with the hybridization term:

Ĥhyb = W

∫ +1

−1

dxV (x)
(
d̂†ĉ(x) + H.c.

)
(3.59)

1Notice that {ân, âm} = {â†n, â†m} = 0 due to the anti-commutation relations of the original operators

ĉ(x) and ĉ†(x), independently of the explicit choice of Un(x).
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3. Anderson model and simulation techniques

We insert the transformation in Eq. (3.58) for the fermionic operators ĉ(x) and ĉ†(x),

and use that Un(x) = V (x)pn(x) to find:

Ĥhyb = W

∞∑
n=0

∫ +1

−1

dxV 2(x) pn(x)
(
d̂†ân + H.c.

)
= J0

∞∑
n=0

∫ +1

−1

dxV 2(x) p0pn(x)︸ ︷︷ ︸
〈p0,pn〉

(
d̂†ân + H.c.

)

= J0

(
d̂†â0 + H.c.

)
(3.60)

Here, we have used that p0 = W/J0 is just a constant and only the constant polynomial

survives the integral, due to their orthogonality property. Notice that J0/W = p−1
0 =√∫ +1

−1
dxV 2(x) as expected. Consider now the bath Hamiltonian, where we choose

g(x) = x for a reason that will become clear shortly:

Ĥcond = W

∫ +1

−1

dx x ĉ†(x) ĉ(x) (3.61)

Notice that according to Eq. (3.10) this choice for g(x) implies V 2(x) = ∆(x)/π. Again,

we first insert the transformation for the operators ĉ(x) and ĉ†(x) (see Eq. (3.58)),

finding:

Ĥcond = W
∞∑

n,m=0

∫ +1

−1

dx xV 2(x) pn(x)pm(x) â†mân (3.62)

We cannot directly employ the orthogonality property of the polynomials, due to the

additional factor x in the integral. However, the choice g(x) = x allows us to exploit

the three-term recurrence relation of the orthogonal polynomials, see Eq. (3.51). We

can solve it for the term xpn(x):

xpn(x) =
Bn

Cn
pn−1(x) +

An
Cn

pn(x) +
1

Cn
pn+1(x) (3.63)

Inserting into the integral we get:

Ĥcond = W

∞∑
n,m=0

∫ +1

−1

dxV 2(x) pm(x)

(
Bn

Cn
pn−1(x) +

An
Cn

pn(x) +
1

Cn
pn+1(x)

)
â†mân

(3.64)

Now we can use the orthogonality relations and carry out the sum over m, since the

integration brings Krönecker delta’s for the three terms2:

Ĥcond = W
∞∑
n=0

(
Bn+1

Cn+1

â†nân+1 +
An
Cn

â†nân +
1

Cn
â†n+1ân

)
(3.65)

2We also shift the index in the first term, n → n + 1, as the n = 0 contribution of the first term in

Eq. (3.64) vanishes: (p−1 = 0).
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Using the relation between the coefficients An, Bn, Cn and αn, βn given in Eq. (3.52),

we finally get the bath Hamiltonian in the desired tight-binding form:

Ĥcond = W

∞∑
n=0

(√
βn+1

(
â†nân+1 + â†n+1ân

)
+ αnâ

†
nân

)
(3.66)

Summary. Here we have shown how to map the SIAM in the continuum, see

Section 3.1.2, into an infinitely long-tight binding chain using orthogonal polyno-

mials as introduced in Refs. [54, 55]. Reinstalling spin indices, the final form of the

Hamiltonian is

ĤSIAM = Ĥloc +
∑
σ

J0

(
d̂†σ â0,σ + H.c.

)
+

∑
σ

∞∑
n=1

(
Jnâ

†
n,σân−1,σ + H.c.

)
+
∑
σ

∞∑
n=0

En â
†
n,σân,σ , (3.67)

where:

Jn=0 = W

√∫ +1

−1

dxV 2(x) Jn≥1 = W
√
βn En≥0 = Wαn (3.68)

Recall that V (x) is defined through the hybridization function as V 2(x) = ∆(x)/π.

The Hamiltonian looks the same as in Eq. (3.40), which was obtained from Lanc-

zos chain mapping. The difference, however, is the infinitely long chain, while in

Lanczos mapping the number of bath sites is finite from the beginning, due to dis-

cretization and truncation. When using orthogonal polynomials instead, we have

to truncate the chain appropriately, usually done in such a way that no excita-

tion reaches the end of the chain [123]. For practical simulations we need find

the recurrence coefficients αn≥0 and βn≥1 for the measure dµ(x) = V 2(x) dx. In

most cases, this will be done numerically, by employing the routines presented in

Refs. [133, 134]. Once the recurrence coefficients are known, we have all the chain

parameters and we can simulate the Anderson model in the chain representation.

i

3.4. Example: Chain mapping at T = 0

To illustrate the chain mapping, let us consider an explicit example. As in the

following chapters, we employ a semi-circular hybridization function

V 2(x) =
1

π
∆(ε = Wx) =

Γ

Wπ

√
1− x , (3.69)

see Fig. 3.3(a), with W the half-bandwidth and Γ the hybridization coupling strength.

In the thermodynamic (continuum) limit, the corresponding chain coefficients are an-

alytically known to be Jn = W/2 and En = 0 [135]. Numerically we carry out the
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Figure 3.3.: Chain coefficients for semi-circular hybridization function. a) Semi-

circular hybridization function V 2(x) = Γ
√

1− x/Wπ, where chain coefficients are analyti-

cally known to be Jn = W/2 and En = 0 [135]. b,c) On-site energies En (b) and nearest

neighbor couplings Jn (c) of chain sites as obtained from linear discretization plus Lanczos

with N = 29, and orthogonal polynomials. d) Dependence of the couplings on the number

of bath sites N when using simple linear discretization.

chain mapping by employing two different methods: (i) We discretize the bath using

the simple discretization scheme with constant interval length Lk, the so-called linear

discretization, and map the discrete star-like Hamiltonian to a chain using Lanczos’

algorithm. (ii) We carry out the chain mapping exploiting orthogonal polynomials.

In Fig. 3.3(b) we see that the on-site energies En of the chain sites are the same for

linear discretization with N = 29 bath sites and orthogonal polynomials, En = 0, in

agreement with the values expected for the thermodynamic limit. Using orthogonal

polynomials, which indeed work in the continuum limit, we find the numerical results

for the nearest neighbor couplings to match the theoretic expectation Jn = W/2, see

Fig. 3.3(c). The linear discretization, however, shows deviations from the analytic and

orthogonal polynomial results, due to the finite discretization prior to the chain map-

ping. As we increase the number of sites, and by that making the discretization finer,

the coupling coefficients approach the value Jn = W/2 expected in the thermodynamic

limit, as shown in Fig. 3.3(d).
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3.5. The issue of the chain mapping

3.5. The issue of the chain mapping

In this section, we briefly discuss the issue of the chain mapping, that causes problems

in practical simulations with tensor networks. To understand the issue, suppose we have

a bath of discrete conduction electron modes at T = 0, which are decoupled from the

impurity. The ground state of the free electrons is given by the Fermi sea state

|FS〉 =

εk<0∏
k

ĉ†k|0〉 , (3.70)

where all electron modes with energy εk below the chemical potential µ = 0 are occu-

pied, while modes with energy εk > 0 are empty. As usual, |0〉 denotes the vacuum state

with no electrons. It is clear that this state is very simple in the star geometry: It is just

a product state with no correlations between different modes, and hence it can be rep-

resented by an MPS with bond dimension D = 1. Furthermore, the ground state can

be trivially set up, without the need for an explicit ground-state search. As discussed

previously, the star geometry can be mapped into a chain with only nearest-neighbor

interaction, which was believed to be beneficial for tensor network simulations. Hence,

the chain geometry has been used regularly in practical simulations, and is employed

sometimes even today [36–38, 63, 136]. However, this mapping brings one major dis-

advantage: It builds new fermionic bath modes as a linear combination of all original

bath modes, thereby mixing occupied and empty bath modes. Hence, the Fermi sea

is not a trivial product state in the chain geometry but is indeed entangled: it has

partially filled chain sites. For MPS simulations, unfortunately, this is very detrimen-

tal as it strongly increases the numerical costs [39]. Moreover, in contrast to the star

geometry, finding the ground state of the bath in the chain geometry requires a full

DMRG ground-state search.

Let us now discuss how to circumvent this problem of the original chain mapping.

Simply notice that all problems are caused by the mixing of occupied and empty

conduction modes. Hence, a reasonable strategy is to separate them before mapping

them into a chain, as has proven beneficial in Lanczos exact diagonalization calculations

already [67]. We can simply write the bath Hamiltonian as a sum of occupied and empty

modes (again, without spin indices, at T = 0 and decoupled impurity)∑
k

εk ĉ
†
kĉk =

εk<0∑
k

εk ĉ
†
kĉk +

εk>0∑
k

εk ĉ
†
kĉk =

∑
k

εk f̂
†
2kf̂2k +

∑
k

εk f̂
†
1kf̂1k . (3.71)

Here, we have introduced two new fermions f̂1k and f̂2k

f̂1k = ĉk if εk > 0 and f̂2k = ĉk if εk < 0 , (3.72)

to make the separation of modes explicit also in the notation. Hence, the hybridization

term becomes∑
k

Vk

(
d̂†ĉk + H.c.

)
=
∑
k

V1k

(
d̂†f̂1k + H.c.

)
+
∑
k

V2k

(
d̂†f̂2k + H.c.

)
, (3.73)
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3. Anderson model and simulation techniques

with V1k = VkΘ(εk) and V2k = VkΘ(−εk), where Θ(·) is the Heaviside theta function.

The essential idea is now to carry out independent chain mappings for f̂1k and f̂2k.

This will lead to two independent chains, both of them coupled to the impurity. Since

the chain mapping is carried out only for occupied (empty) modes, also the chains will

be fully occupied (empty) in the bath ground state. Hence, the mixing can be avoided.

Details of the chain mapping will be presented in the next section, after generalizing

the approach to finite temperatures.

3.6. A fermionic thermo-field transformation

Simulating systems at finite temperature is usually a challenging task for tensor

network techniques. While originally designed to simulate pure states at zero temper-

ature, matrix product states — or tensor networks in general — can be adapted to

represent density matrices as well [29, 30]. The generalization of MPS to represent a

density matrix is a matrix product operator (MPO). Theoretically, it is then rather

simple to prepare the thermal state of a quantum system. Given some Hamiltonian Ĥ,

the thermal state at temperature T is ρ̂ ∝ e−Ĥ/kBT . Hence, one simply needs to ini-

tialize the infinite temperature density matrix 1, and evolve it in imaginary time [41].

Numerically, however, this can be very resource-demanding.

Alternatively, there is another idea to represent mixed states. Suppose we have some

Hamiltonian Ĥ acting on the systems Hilbert space HS. We can then enlarge HS by

an ancillary HA, forming a new Hilbert space HS⊗HA. The idea is then to find a pure

quantum state |T 〉 in the enlarged Hilbert space such that tracing out the ancillary

space leads to the required thermal state, ρ̂S = TrA |T 〉 〈T |. This method is sometimes

referred to as purification [17, 29]. A variant of purification, the so-called thermofield

transformation, will be employed throughout this thesis.

Let us briefly summarize the thermofield transformation in the present context [65,

66]. First, we rename the physical conduction modes, ĉkσ → ĉ1kσ, by adding the

additional index ’1’. We then add ancillary fermions, denoted by ĉ2kσ, supplementing

the conduction Hamiltonian with an ancillary bath term:

Ĥcond →
∑
k,σ

εk

(
ĉ†1kσ ĉ1kσ− ĉ†2kσ ĉ2kσ

)
=
∑
k,σ

εk

(
ĉ†1kσ ĉ1kσ + ĉ2kσ ĉ

†
2kσ

)
−
∑
k,σ

εk . (3.74)

The ancillary fermions ĉ2kσ do not couple to either the impurity or the physical con-

duction electrons, and therefore will not affect the dynamics. Dropping spin indices

for a while, we introduce two new fermionic operators as linear combinations of phys-

ical and ancillary fermionic operators, through the unitary (orthogonal) thermofield

transformation [63, 65, 66, 136](
f̂1k

f̂2k

)
=

(
cos θk − sin θk
sin θk cos θk

)(
ĉ1k

ĉ†2k

)
= O

(
ĉ1k

ĉ†2k

)
, (3.75)
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3.6. A fermionic thermo-field transformation

with inverse given by:(
ĉ1k

ĉ†2k

)
=

(
cos θk sin θk
− sin θk cos θk

)(
f̂1k

f̂2k

)
= O−1

(
f̂1k

f̂2k

)
(3.76)

Note that the transformation includes an additional particle-hole transformation on

f̂2k as compared to the original formulation [65, 66], in order to maintain the particle

number conservation of the Hamiltonian [63]. Hence, in absence of the impurity, the

thermal state is not represented by the vacuum state of f̂1k and f̂2k, but rather by the

vacuum |∅1〉 of f̂1k and the fully occupied state |F2〉 of f̂2k, which in the following we

will denote by |∅1〉 ⊗ |F2〉 = |∅1,F2〉. Using Eq. (3.76) we can show that the number

operator n̂1k = ĉ†1kĉ1k of the physical fermions transforms as

ĉ†1kĉ1k = cos2(θk)f̂
†
1kf̂1k + sin2(θk)f̂

†
2kf̂2k + cos(θk) sin(θk)

(
f̂ †1kf̂2k + f̂ †2kf̂1k

)
. (3.77)

Hence, the average physical electron occupation in the state |∅1,F2〉 is

〈∅1,F2| ĉ†1k ĉ1k|∅1,F2〉 = sin2(θk) . (3.78)

To enforce that these follow the thermal distribution, given by the Fermi function fF (ε),

we simply need to choose [136]:

sin2(θk) ≡ fF (εk) =
1

eβεk + 1
(3.79)

Remark: the T = 0 case. At zero temperature the Fermi function becomes

a step function, fF (εk)
T→0−−−→ Θ(−εk), and hence the thermofield transformation is

simply  f̂1k = ĉ1k and f̂2k = ĉ†2k for εk > 0

f̂1k = −ĉ†2k and f̂2k = ĉ1k for εk < 0
, (3.80)

which separates occupied and empty modes precisely as we did in the last section,

see Eq. (3.72). Notice that at T = 0 the ancillary bath, described through the ĉ2k

modes, is totally irrelevant.

i

Knowing how to prepare the thermal state in the basis of the bath modes f̂1k and

f̂2k, we transform the Hamiltonian into this basis, by using the unitary transformation

in Eq. (3.76). The hybridization term (still ignoring spin indices) becomes∑
k

Vk d̂
†ĉ1k =

∑
k

(
V1k d̂

†f̂1k + V2k d̂
†f̂2k

)
, (3.81)

with V1k = Vk cos θk and V2k = Vk sin θk, as visualized in Fig. 3.4. Originally coupled

to the physical conduction electrons only, the impurity now interacts with both trans-

formed modes, f̂1k and f̂2k, with renormalized temperature-dependent couplings V1k
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3. Anderson model and simulation techniques

Figure 3.4.: Thermofield transformation. At finite temperature, free conduction modes

ĉ1k are partially occupied. The thermofield transformation maps the mixed thermal state

ρ̂ ∝ e−Ĥcond/kBT of the bath into a pure state |∅1,F2〉 of an enlarged Hilbert space, with new

fermionic modes f̂1k and f̂2k as defined in Eq. (3.75). They are coupled to the impurity with

effective couplings V1k = Vk cos θk and V2k = Vk sin θk, respectively, where sin2(θk) = fF (εk).

In the thermal state, f̂1k-modes are completely empty, while f̂2k-modes are fully occupied.

The two baths can be mapped into independent chains, see Section 3.7.

and V2k. Hence, the temperature-dependent thermofield transformation encodes finite

temperature into the hybridization couplings, while the state in the basis of fermions

f̂1k and f̂2k is independent of T . The conduction term including the ancillary bath,

Eq. (3.74), without the irrelevant constant term
∑

k εk, transforms as∑
k

εk

(
ĉ†1k ĉ1k + ĉ2k ĉ

†
2k

)
=
∑
k

εk

(
f̂ †1k f̂1k + f̂ †2k f̂2k

)
, (3.82)

where we used the fact that O is orthogonal and the 2×2 form of the Hamiltonian was

simply εk12, hence unchanged by the rotation.

Summary. The thermofield transformation is given by Eq. (3.75). Reinstalling

spin indices, the hybridization coupling becomes

Ĥhyb =
∑
σ

∑
k

(
V1k d̂

†
σ f̂1kσ + V2k d̂

†
σ f̂2kσ + H.c.

)
, (3.83)

where V1k = Vk cos θk and V2k = Vk sin θk are temperature-dependent couplings,

with sin2(θk) = fF (εk). For the free electron term we have:

Ĥcond =
∑
σ

∑
k

εk

(
f̂ †1kσ f̂1kσ + f̂ †2kσ f̂2kσ

)
(3.84)

i

Hence, the thermofield transformation leads to two independent baths, both coupled

only to the impurity. The crucial improvement is the efficient representation of the
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3.7. Thermofield chain mapping

thermal state of the conduction electrons. In the new basis, its purification is given

by a pure state |∅1,F2〉 of the extended system, with fermion modes f̂1kσ empty, and

f̂2kσ-modes completely filled.

3.7. Thermofield chain mapping

When employing the thermofield method we need to simulate two independent baths

of free fermions — one empty (f̂1k) and one completely filled (f̂2k) —, both interacting

with the impurity only. While in principle a direct simulation in the star geometry

— using artificial long-range interactions, as discussed in Section 3.1 — would be

possible, we focus on the chain geometry in this section. Notice that the two baths

have different hybridization functions, defined through the couplings V1k = Vk cos θk
and V2k = Vk sin θk. If we employ the orthogonal polynomial chain mapping 3 after

changing to a continuum description, see Section 3.1.2, we define new fermions

âcn,σ =

∫ 1

−1

dx Ucn(x) f̂cσ(x) , (3.85)

where Ucn(x) = Vc(x) pcn(x) as discussed in Section 3.3. Notice that U, V and p have

an additional index, corresponding to the empty (c = 1) and filled (c = 2) bath. The

final form of the Hamiltonian transformed into a Wilson’s chain is

ĤSIAM = Ĥloc +
∑
σ

2∑
c=1

Jc,0

(
d̂†σ âc0,σ + â†c0,σ d̂σ

)
+

∑
σ

2∑
c=1

∞∑
n=1

(
Jc,nâ

†
cn,σâcn−1,σ + H.c.

)
+
∑
σ

2∑
c=1

∞∑
n=0

Ec,n â
†
cn,σâcn,σ , (3.86)

where c = 1, 2 denotes the two chains associated to f̂1k (and hybridization V1k) and f̂2k

(and hybridization V2k). The geometry of the Hamiltonian is visualized in Fig. 3.4.

3.8. Example: Chain coefficients at finite T

Let us now discuss an example for the chain mapping at finite temperature that will

be particularly important in the next chapters. In Fig. 3.5 we show the two renor-

malized couplings V 2
c (x) in the continuum limit for the semi-circular hybridization

V 2(x) = Γ
√

1− x2/πW , and the corresponding chain coefficients Jc,n and Ec,n. We

clearly see that after only a few sites the chain coefficients converge towards the values

expected from the theory of orthogonal polynomials 4: At T = 0 the renormalized hy-

bridization functions have support [0, 1] (V1(x)) and [−1, 0] (V2(x)), hence the couplings

3Of course, Lanczos chain mapping would work as well.
4For V 2(x) with support [a, b], the orthogonal polynomial recurrence coefficients converge as αn →

(a+ b)/2 and βn → (b− a)2/16 for n→∞, see Section 3.3.1, and Jn≥1 = W
√
βn, En≥0 = Wαn.
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Figure 3.5.: Chain coefficients for semi-circular hybridization at finite tem-

perature. (a,b) Renormalized hybridzation couplings V 2
2 (x) = V 2(x) sin2(θ) (a) and

V 2
1 (x) = V 2(x) cos2(θ) (b) for different temperatures T (see legend panel (c)), where

sin2(θ) = fF (x) is the Fermi function, to ensure the correct distribution of bath electrons, and

V 2(x) = Γ
√

1− x2/πW (dashed line). c) Couplings Jc,n along the initially empty (c = 1) and

fully occupied (c = 2) chains. d) On-site energies E1,n (crosses) and E2,n (open circles). Here,

J1,n = J2,n and E2,n = −E1,n due to the symmetric hybridization function, V (x) = V (−x).

All chain coefficients were calculated using the orthogonal chain mapping technique.

converge as Jc,n → W/4, while for the on-site energies E1,n → W/2 and E2,n → −W/2.

For T > 0 instead, both V1(x) and V2(x) have support [−1, 1], implying Jc,n → W/2

and Ec,n → 0 for n→∞. For reasons of numerical convergence, it can be beneficial to

truncate the support of Vc(x) for the calculation of the chain coefficients, to eliminate

regions where Vc(x) falls below computational precision. This typically happens at low

temperatures, where the Fermi function has tails with very small values.

3.9. Summary and discussion of simulation techniques

Let us summarize this chapter and discuss the different possibilities to simulate the

single impurity Anderson model utilizing MPS. There are two major cases that we need

to distinguish: T = 0, where any state we deal with is a pure state, and T > 0, where

the state is mixed.

56



3.9. Summary and discussion of simulation techniques

Figure 3.6.: Possible geometries to simulate the SIAM. a) SIAM in star geometry.

Black and white circles represent filled and empty bath modes, respectively. b) Star geometry

represented on a one-dimensional chain with artificial long-range interaction. c) Standard

chain mapping: All bath modes are mapped into a single chain, leading to partially filled

chain sites (grey color) d) Filled and empty modes are mapped into independent chains,

preserving the “totally filled/empty” property. This structure is naturally encountered when

employing the thermofield transformation plus chain mapping.

Zero Temperature. At zero temperature any quantum state is pure, and hence can be

represented using standard tensor network techniques, even though the representation

is not necessarily efficient. So far there have been two different geometries to simulate

the SIAM at T = 0:

(i) The star-like Hamiltonian, see Fig. 3.6(a), can be mapped into a chain with ar-

tificial long-range interaction, Fig. 3.6(b), where the impurity interacts with all

remaining sites. The advantage of the star geometry is the efficient representa-

tion of the conduction electrons’ ground state, which is simply a product state,

with filled modes below the Fermi energy Ef and empty modes above Ef . Hence,

it can be represented in an MPS very efficiently, and the bath ground state can

be initialized without the need for numerical optimization. If the ground state

of impurity plus bath is required, one can carry out a numerical ground-state

search using DMRG. However, the star geometry comes at the cost of introduc-

ing long-range interactions in the MPS, which can be more difficult to deal with,
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3. Anderson model and simulation techniques

even though from an entanglement point of view this is not a problem [39].

(ii) The second very common possibility is the chain geometry, visualized in Fig. 3.6(c),

which is obtained from the star through unitary transformations, see Section 3.2

and Section 3.3. The clear advantage of the chain geometry is that it contains only

nearest-neighbor interaction, which is particularly well suited for NRG and tensor

network simulations. However, as pointed out in Ref. [39], the chain geometry is

significantly more entangled in the bath ground state as compared to the star,

due to the mixing of filled and empty modes, leading to an increased numerical

cost in MPS based simulations. Moreover, the ground state of the bath —either

coupled to the impurity or not — has to be calculated numerically using DMRG.

However, we can design a third possibility, to combine the advantages of the two

previous techniques:

(iii) Rather than mapping the entire bath into a single chain, we separate filled and

empty modes, and map them into independent chains, see Section 3.5 and Sec-

tion 3.7, as visualized in Fig. 3.6(d). This geometry contains only nearest-

neighbor interaction, while at the same time the bath ground state is a product

state just like in the star geometry.

Finite Temperature. Let us discuss how the three possibilities generalize at finite

temperatures, where we need to describe mixed states.

(i) For the star geometry, Fig. 3.6(a) and Fig. 3.6(b), there are essentially two ways to

deal with finite temperature. First, one could move from an MPS description of

the state to an MPO, to represent a density matrix. The thermal state of either

the bath alone or bath plus impurity would then be obtained through imaginary

time evolution. Alternatively, one could employ the thermofield transformation

to efficiently represent the thermal state of the conduction electrons as a pure

state. It is an open question how exactly the bath sites should be ordered in the

MPS to keep the entanglement low during real-time dynamics.

(ii) For the single-chain approach there is just one way to deal with finite temperature.

One needs to employ an MPO to represent the mixed state, and thermal states

have to be prepared using imaginary time evolution, as was done in [41].

(iii) When mapping the bath into two chains, we can proceed as for the star geometry.

In principle, we can map the Hamiltonian into two chains, by separating modes

below and above the chemical potential, and then use imaginary time evolution

to prepare the thermal state. However, it is unclear how this idea would perform

in practice as it has not been employed so far. Instead, the thermofield plus chain

mapping approach allows for a very efficient representation and preparation of

the conduction mode thermal state. We will discuss it in the next chapter.
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model at finite temperature

In this chapter, we study the out-of-equilibrium real-time dynamics — more precisely,

a quantum quench — of the single impurity Anderson model at finite temperature. We

will focus, in particular, on the entanglement along the corresponding MPS represen-

tation and the analysis of the fermionic bath. The content of this chapter is published

in Ref. [2].

More in detail, we consider an impurity and a half-filled conduction band, which

are initially decoupled from each other. We suddenly turn on, at time t = 0, the

hybridization coupling, evolving the system with a constant Hamiltonian ĤSIAM, where

ĤSIAM =
∑
σ

εdd̂
†
σd̂σ + U n̂↑n̂↓ +

∑
k,σ

Vk

(
d̂†σ ĉkσ + ĉ†kσ d̂σ

)
+
∑
k,σ

εk ĉ
†
kσ ĉkσ ,

see Chapter 3. As discussed previously, we employ a thermofield transformation to deal

with finite temperatures, Section 3.6, and we map the two emerging baths into two

independent chains, Section 3.7. The final Hamiltonian we simulate, see Section 3.7, is

ĤSIAM = Ĥloc +
∑
σ

2∑
c=1

Jc,0

(
d̂†σ âc0,σ + â†c0,σ d̂σ

)
+
∑
σ

2∑
c=1

∞∑
n=1

(
Jc,nâ

†
cn,σâcn−1,σ + H.c.

)
+
∑
σ

2∑
c=1

∞∑
n=0

Ec,n â
†
cn,σâcn,σ .

Recall that c labels the two chains, which are empty (c = 1) or filled (c = 2) in the

thermal state. We initialize the system in the state |ψ0〉 = |0〉 ⊗ |∅1,F2〉, where |0〉
is the impurity vacuum and |∅1,F2〉 is the thermal state of the conduction electrons,

represented as a pure state in the extended Hilbert space. For the hybridization of

the impurity with the conduction electrons, we choose a semi-circular form, V 2(x) =

Γ
√

1− x2/πW , where x = ε/W is the dimensionless energy, and W half the bandwidth,

see also Section 3.8 for the corresponding chain coefficients. Throughout this chapter,

we fix the hybridization coupling Γ such that W = 10Γ.

The chapter is organized as follows. We first discuss different possible orderings of

sites in the MPS. Section 4.2 illustrates the results we have obtained, concerning, in

particular, the SIAM in the Kondo regime. In our approach, the dynamics of the

entire system, including the conduction modes, is simulated, and hence we also have
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4. Quenching the Anderson impurity model at finite temperature

information about the quantum state of the bath. By analyzing the bath state we find

signatures of the Kondo effect in the quench dynamics. We particularly discuss the

dynamics of the entanglement along the MPS for different chain orderings. In Sec-

tion 4.3, we summarize our results and draw our conclusions. In the final sections, we

provide some additional information on the numerical simulations, including numerical

convergence checks and simulations with an alternative initial state.

4.1. How to order sites in the MPS

To carry out simulations using MPS there is one more decision to make: How to

order the chain sites in the MPS. This question is crucial for the simulation, since it

affects the entanglement structure in the MPS, and therefore has a major impact on

the performance, as we will see. Three different possibilities have been considered, and

will be discussed below:

A) The most intuitive idea is to employ fermionic sites with spin degree of freedom,

i.e. spinful fermionic sites, with the impurity placed in the middle of the MPS.

The two chains, for empty and filled modes, are both connected to the impurity,

one to the left and one to the right (see Fig. 4.1(a)). In this way, there are only

nearest-neighbor interactions in the MPS, and each tensor represents both spin

up and spin down states, with local (physical) dimension d = 4, corresponding

to states |0〉, |↑〉, |↓〉, |↑↓〉. This choice reflects the interaction structure of the

Hamiltonian.

B) The second possibility is obtained by reordering the tensors of structure A. Here,

the impurity is placed at the very first site of the MPS. The subsequent sites

represent the two chains, with chain sites corresponding to the filled and empty

chain, in an alternating fashion. Since the interaction within the two chains is

nearest-neighbor, the interaction in the MPS is now up to next-nearest neighbors.

The impurity is interacting with the first site of the filled chain (second tensor

in Fig. 4.1(b)) and the first site of the empty chain (third tensor in Fig. 4.1(b)).

The idea behind this structure is the following. Imagine that during the dynam-

ics an electron moves from the filled into the empty chain, creating an entangled

particle-hole pair. Such a particle-hole pair will be traveling along the MPS with-

out being much spatially separated in structure B, while a long-ranged entan-

glement is certainly required in structure A. Similar interleaved geometries were

recently used to study quantum transport [137] and 1D systems with periodic

boundary conditions [138, 139].

C) The third structure follows the idea of structure B. However, instead of working

with spinful sites, we build the MPS with spinless sites, separating spin-up and

spin-down degrees of freedom. This idea is suggested by the structure of the

Hamiltonian: Spin-up and spin-down modes interact only at the impurity site. It
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Figure 4.1.: Different possibilities to order the sites in the MPS. The impurity

is visualized in light grey and empty (filled) chain sites are coloured in white (black). A)

Structure suggested by the Hamiltonian, with spinful fermionic sites (local dimension d = 4).

Filled (left) and empty (right) chains are separated and connected to the impurity, placed in

the middle of the MPS. The interaction is only nearest neighbor. B) Interleaved ordering,

with the impurity on the left and alternating filled and empty chain sites. In the MPS the

couplings become next-nearest neighbor. C) Same as B, with separated spin components.

The local sites are spinless (local dimension d = 2).

is well known that spatially separating the spins can be beneficial for numerical

simulations [38, 40, 53].

4.2. Results: Impurity, bath and entanglement

dynamics

In the following, we study the dynamics of the SIAM, with a special focus on the evo-

lution of the entanglement entropy for the different MPS structures, see Fig. 4.1. Since

we simulate the entire dynamics, we not only analyze the dynamics of the impurity,

but also investigate how the population of the bath modes changes over time.

4.2.1. Noninteracting case U = 0

For U = 0 the Anderson model reduces to the so-called “resonant level model”,

where spin degrees of freedom are decoupled, and the model is fully quadratic in the

fermions. Hence, we can forget about the spin index and consider spinless fermions
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Figure 4.2.: Impurity dynamics in the noninteracting case. (a,b) Dynamics of the

U = 0 impurity occupation 〈d̂†d̂〉 for impurity energy level εd = 0 (a) and εd = −1.25πΓ

(b) at different temperatures T . The dynamics is independent of T for εd = 0. Dashed lines

represent results obtained from exact diagonalization, with linear discretization and 400 bath

sites. MPS results were obtained using the structure B of Fig. 4.1.

instead. In this case structures A and B in Fig. 4.1 are simplified, and we use fermionic

sites with local dimension d = 2. Structure C will not be considered.

Impurity occupation. First, let us discuss the quench dynamics of the impurity oc-

cupation. We compare our results obtained from the MPS approach using structure

B with exact diagonalization (ED) results, finding perfect agreement between the two

methods. Since the impurity is initially empty, it starts to fill up at t ≥ 0, as shown

in Fig. 4.2. For εd = 0, see Fig. 4.2(a), we observe a very smooth convergence to-

wards 〈d̂†d̂ 〉 = 1/2, a value consistent with the particle-hole symmetry of the final

Hamiltonian. In this case, moreover, the dynamics is independent of temperature. For

εd = −1.25πΓ, instead, as the impurity level lies below the Fermi energy εf = 0, the

impurity occupation converges towards a temperature-dependent steady-state value

〈d̂†d̂ 〉> 1/2, see Fig. 4.2(b). As expected, the equilibrium occupation goes towards

〈d̂†d̂ 〉 = 1/2 as temperature increases.

Conduction electron density. We have seen that the initially empty impurity is pop-

ulated during the dynamics. Particle number conservation implies that the conduction

modes lose exactly the number of electrons that is gained by the impurity. Our method

computes the dynamics of the entire system, including the conduction modes. Hence,

we are able to study also the dynamics of the bath. Here we focus on the occupation

of the conduction modes, although other quantities might be calculated as well. More

in detail, the quantity we calculate is the time-dependent expectation value

∆ρk(t) = 〈ψ(t)| : ĉ†1kĉ1k : |ψ(t)〉 (4.1)
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Figure 4.3.: Bath dynamics in the noninteracting case. (a,b) Conduction band oc-

cupation density ∆ρ(ε, t) at different times t, for εd = 0 (a) and εd = −1.25πΓ (b) at

temperature kBT = 4Γ. A well defined negative peak close to the impurity energy level

appears. (c+d) Converged ∆ρ(ε) in the long-time limit for different temperatures T (c) and

εd (d). At low temperatures a kink at the Fermi energy εf emerges (c), which is reduced as

the impurity energy level moves away from εf (d).

of the conduction electron occupation number operator

: ĉ†1kĉ1k :
def
= ĉ†1kĉ1k − 〈ψ0|ĉ†1kĉ1k|ψ0〉 .

Here, subtracting the initial state value is a device, akin to normal ordering, which

takes care of the infinite number of electrons in the bath, and captures only the change

in conduction electron density induced by the hybridization.

Details on the practical evaluation of this expression are given in Section 4.4.2. In

the continuum limit, we calculate ∆ρ(x, t) in dimensionless energy units, x = ε/W . We

show it in panels (a) and (b) of Fig. 4.3, for a temperature kBT = 4Γ. Starting from

∆ρ(x, t = 0) ≡ 0, we observe the growth of a peak close to the impurity level energy

εd, similarly to what has been found for the Spin-Boson model [123]. Note that ∆ρ is

predominantly negative, since particle conservation requires

〈ψ(t)|d̂†d̂|ψ(t)〉 = −
∫ +1

−1

dx ∆ρ(x, t)

at any time. As temperature is reduced, Fig. 4.3(c), we observe the appearance of

a kink at the Fermi energy εf , which we easily understand in the limit T → 0: The
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4. Quenching the Anderson impurity model at finite temperature

conduction bath is completely filled below the Fermi energy, and empty above. The

tail of the spectral weight — corresponding to the local impurity level — drains some

of the initially occupied modes below εf , and provokes the occupation of some initially

empty modes above εf . As we move the impurity level further away from the Fermi

energy, lowering the spectral weight at εf , the kink is clearly reduced in size, as shown

in Fig. 4.3(d). Once again, we benchmarked our calculations through comparison with

ED data (not shown). As we will show later on, ∆ρ(x, t) can even contain information

about many-body physics, in particular the Kondo effect.

Entanglement. We now turn to the analysis of the entanglement dynamics. To

quantify the amount of entanglement we calculate the entanglement entropy Sl (see

Eq. (1.1)) between the first l sites of the MPS and the rest of the system. Since our

initial state |ψ0〉 = |0〉 ⊗ |∅1,F2〉 — an empty impurity and the bath in the thermal

state — is represented by a product state, the entanglement is zero along the MPS for

t = 0. For t > 0, excitations — particles in the empty chain or holes in the filled chain

— are created in the vicinity of the impurity. Hence, we observe the entanglement

to grow (see Fig. 4.4) starting from the impurity’s position in the MPS. Notice that

the impurity is placed in the middle of the MPS for structure A and on the left in

structure B. The region of nonzero entanglement is growing during the dynamics in a

light-cone-like fashion, due to the spreading of excitations along the chains. We note

a slight asymmetry in the entanglement of structure A, due to the initial state: Since

we start with an empty impurity, and the particle number is conserved, only the filled

chain is able to interact with the impurity at t = 0, leading to an initial entanglement

predominantly between impurity and filled chain. Overall, we find the entanglement’s

magnitude to be similar for both MPS structures at T = 0.

At higher temperature, kBT = 4Γ (see Fig. 4.4(c,d)), we note that entanglement is

spreading faster. Hence, longer chains are needed, independently of the MPS structure.

However, the most striking effect of a higher temperature is the significant increase of

entanglement in structure A: While structure B shows similar entanglement as for

T = 0, we observe a massive increase in structure A, mostly in the middle of the MPS,

indicating a strongly increasing entanglement between the empty and filled chain.

We define the maximum entanglement entropy Smax = maxl Sl along the MPS, and

study its behaviour versus the simulation time t. For kBT = 4Γ we find (see Fig. 4.4(e))

that Smax increases linearly in t for structure A, while, after some initial increase, it

stays almost constant for structure B. An entanglement entropy which increases linearly

in t requires the bond dimension to grow exponentially in time, and thus strongly limits

the accessible simulation times. As shown in Fig. 4.4(f), the entanglement highly

depends on temperature for the structure A. These observations are in agreement with

the findings of Ref. [140]. At T = 0 the effective hybridization functions V 2
1 (x) and

V 2
2 (x) only touch at the Fermi energy x = 0 (see Fig. 4.5(a)). In this case, Ref. [140]

found the entanglement entropy to grow only logarithmically. At T > 0, instead, the
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Figure 4.4.: Entanglement dynamics dynamics in the noninteracting case. Color

plots: Dynamics of the entanglement entropy within the MPS in the noninteracting case

U = 0. Structures A (a+c) and B (b+d) are considered, with conduction electrons at tem-

perature T = 0 (a+b) and T = 4Γ (c+d). (e+f) Maximum entanglement entropy Smax along

the MPS as a function of time at fixed temperature kBT = 4Γ (e) and as a function of tem-

perature at fixed time t = 5~/Γ (f). Structure A shows significantly stronger entanglement

growth as temperature increases, while structure B has almost no entanglement growth and

is independent of temperature.

hybridization functions do overlap on a finite interval, see Fig. 4.5(b), leading to linear

entanglement growth [140]. Remarkably, merging the two chains, as we suggested in

structure B, Fig. 4.1(b), results in a temperature-independent maximum entanglement

(see Fig. 4.4(f)).

To add further intuition for this behavior, we measure the total number of particles

in the initially empty chain, through the average of the corresponding number operator

(written here for spinless fermions, for simplicity):

〈ψ(t)|N̂1|ψ(t)〉 =
∞∑
n=0

〈ψ(t)|â†1,nâ1,n|ψ(t)〉 (4.2)
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Figure 4.5.: Hybridization overlap and particle movement. (a,b): Effective hybridiza-

tion functions V2(x) and V1(x) for the filled and empty bath, respectively, at temperatures

kBT = 0 (a) and kBT = 4Γ (b). x = ε/W is the dimensionless energy. At zero tem-

perature, the effective hybridization functions do not overlap, touching only at the Fermi

energy (x = 0). For T > 0 they do have a nonzero overlap, allowing particles to travel from

the filled to the empty bath. (c,d): Total number of electrons in the initially empty chain

〈ψ(t)|N̂1|ψ(t)〉 as a function of time for increasing temperature kBT (c), and at fixed time

t = 5~/Γ as a function of temperature kBT (d). Notice that 〈N̂1〉 is independent of the MPS

structure.

〈ψ(t)|N̂1|ψ(t)〉 counts how many particles flow from the filled chain — after passing

through the impurity — into the empty chain “1”. Fig. 4.5(c) shows that 〈N̂1〉 increases

linearly in time at finite temperature and sub-linearly at kBT = 0, similar to the

entanglement in Ref. [140]. Fig. 4.5(d) shows that the temperature dependence of 〈N̂1〉
at fixed time t = 5~/Γ agrees qualitatively well with our findings for the entanglement,

see Fig. 4.4(f). Notice that any particle leaving the filled chain “2” creates a hole there.

Hence, the dynamics creates particle-hole pairs: particles created in the empty chain

“1” and holes in the filled chain “2”. Our results suggest that such particle-hole pairs

carry the entanglement, leading to an overall entanglement growth between the two

chains.
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Figure 4.6.: Impurity dynamics at U = 2.5πΓ. (a,b) Dynamics of the total impurity

occupation 〈n̂↑ + n̂↓〉 for U = 2.5πΓ for the particle-hole symmetric choice εd = −U/2.

(c) Double occupancy 〈n̂↑n̂↓〉. (d) Entanglement entropy between impurity and bath, S1.

Dashed line in (d) indicates the theoretically maximum value of the entanglement entropy,

S1 = log(4). Data are obtained the using MPS ordering structure B (see Fig. 4.1).

4.2.2. Interacting case U > 0

Turning on the on-site interaction, we need to consider spinful fermions, with spin-up

and spin-down electrons in the impurity interacting through Coulomb repulsion U . Let

us start with a brief analysis of the dynamics, with fixed interaction U = 2.5πΓ and

energy level εd = −1.25πΓ, where the model is particle-hole symmetric (U = −2εd)

with an estimated Kondo temperature kbTK = 0.07Γ. Hence, the impurity occupation

— starting again from zero — converges towards 〈d̂†σd̂σ〉 → 1/2 for both spin-up and

spin-down at any temperature, with total impurity occupation 〈n̂↑ + n̂↓〉 → 1 (see

Fig. 4.6(a)). In contrast to the non-interacting case, however, the dynamics of the

impurity occupation does show some small temperature dependence before reaching

convergence, as visualized by an appropriate zoom-in, see Fig. 4.6(b). The double

occupancy, shown in Fig. 4.6(c), is equivalent to the probability to find the impurity

in the filled state |↑↓〉, and shows a clear (non-monotonic) temperature dependence in

its final value. Note that the curve for kBT = 0 converges much more slowly than the

remaining ones. We believe that the slow convergence — and, connected to that, also

the non-monotonicity in temperature — is related to the building up of the Kondo
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Figure 4.7.: Bath dynamics at U = 2.5πΓ. Conduction electron occupation density

∆ρ(ε, t) of spin-up conduction modes (spin-down is equivalent) at temperatures T = 0 (a),

kBT = 0.15Γ (b), kBT = 0.5Γ (c) and kBT = Γ (d). Curves are taken at times t = 30~/Γ
(kBT = 0), t = 15~/Γ (kBT = 0.15Γ), t = 10~/Γ (kBT = 0.5Γ) and t = 5~/Γ (kBT = Γ).

For T > 0 they are converged with respect to time and do not change anymore. Peaks

are observed close to the impurity level εd = −1.25πΓ, marked through arrows, and for low

temperatures around the Fermi energy, indicating the presence of the Kondo effect. The

Kondo temperature is kBTK ≈ 0.07Γ.

effect, for which slow convergence of the Greens function has been observed previously

at low temperatures [1][supplementary material]. Similar behavior is found for the

entanglement entropy between the impurity and the free electron bath, including the

non-monotonic temperature dependence and the slow convergence for T = 0. Notice

that, as temperature gets higher, the entanglement entropy tends towards its maximum

possible value S1 = log(4).

Conduction electron density. In the non-interacting case, we saw that the conduc-

tion electron occupation density ∆ρ(ε, t) — see Eq. (4.1) — develops a (negative) peak

around the impurity energy level at εd. In the interacting case, we find signatures of

the Kondo peak at low temperatures. The Kondo effect manifests itself through two

peaks of opposite sign around the Fermi energy εf = 0, which are similar to the kink
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Figure 4.8.: Entanglement dynamics at U = 2.5πΓ. Temporal evolution of the entan-

glement entropy along the MPS at temperatures kBT = 0 (a-c) and kBT = 4Γ (d-f), for

structures A, B, and C, as illustrated in Fig. 4.1, at fixed interaction U = 2.5πΓ, for the

particle-hole symmetric case εd = −U/2. Bottom: Dynamics of the maximum entanglement

entropy Smax at fixed kBT = 4Γ (g) and temperature dependence of Smax at the final simu-

lation time t = 5~/Γ (h). In panel (h) the curve for structure A is a lower bound for Smax,

as convergence with respect to the bond dimension has not been reached (see Section 4.4.5).

Filled and empty chains are made of 90 sites each.
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4. Quenching the Anderson impurity model at finite temperature

at U = 0, but significantly more pronounced. Hence, the increased impurity spectral

weight around the Fermi energy — due to the formation of the Kondo cloud singlet

— results in two peaks of different sign in ∆ρ(ε, t→∞), see Fig. 4.7. As we increase

T above the Kondo temperature kBTK ≈ 0.07Γ, the two peaks close to εf disappear,

just like the Kondo peak in the impurity spectral function, leaving peaks correspond-

ing to the impurity level. Note that at U > 0 there is a second impurity level at

εd + U , corresponding to a fully occupied impurity. This state is not probed in our

scenario, since we are starting from an empty impurity, and the doubly occupied state

has little impact on the dynamics. However, we can probe this level starting from the

fully occupied impurity (see Section 4.4.3 for details). It is worth mentioning that the

convergence of ∆ρ(ε, t) with respect to time is strongly temperature-dependent, with

faster convergence for higher temperatures, again, similarly to the convergence of the

Green’s function [1]. At T = 0 we did not even reach convergence at time t = 30~/Γ,

where peaks at ε = 0 are still growing.

Entanglement. Turning to the entanglement, we investigate all MPS orderings illus-

trated in Fig. 4.1, where, additionally to structures A and B, we now consider structure

C with spatially separated spin-up and spin-down.

For T = 0, we find similarly low entanglement for all structures, as shown in

Fig. 4.8(a-c). Once again, for kBT = 4Γ, we observe the entanglement to grow

strongly for structure A, with a maximum entropy that increases linearly in time.

On the contrary, for our mixed structure B the entanglement stays significantly lower,

see Fig. 4.8(h), although a slight increase in time is also visible here. For structure

C, where spin-up sites are separated from spin-down sites, the entanglement struc-

ture is similar to the one of structure A, with a massive entanglement growth during

the dynamics. Interestingly, the blow-up of entanglement is observed in the middle of

the MPS, suggesting that spin-up and spin-down sites are getting heavily entangled

at higher temperatures. Hence, the separation of spins unavoidably leads to strong

entanglement growth, independent of the explicit structure used to represent the bath.

This might affect all finite temperature generalizations of approaches exploiting a spa-

tial separation, like the one recently developed by Rams et al. to simulate transport

through an impurity [53].

Let us now investigate the effect of different physical model parameters. To simplify

the discussion we focus on the maximum entanglement entropy encountered during the

dynamics up to time t = 5~/Γ, while the general entanglement structure along the MPS

was observed to be similar to that discussed previously. Fig. 4.9 shows the temperature

dependence of the maximum entanglement entropy for U = 0.5πΓ (a) and for the

particle-hole symmetric choice U = 2.5πΓ (b). For both values of U , we observe a strong

temperature dependence for structure A, while structure B is significantly less sensitive

to temperature, similarly to what we found in the noninteracting case. Structure C,

instead, shows little T -dependence for small interactions, but strong dependence for
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constant. Here εd = −1.25πΓ.

U = 2.5πΓ. This behavior is easy to understand. We have seen in Fig. 4.8 that the

entanglement for U = 2.5πΓ and kBT = 4Γ grows strongly in between spin-up and

spin-down modes. At U = 0, however, spin-up and down are decoupled. Therefore, at

low values of U , the entanglement growth between the opposite spins is still modest.

To analyze the effect of the interaction in more detail, we show the maximum en-

tanglement entropy as a function of U in the bottom row of Fig. 4.9. Structures A

and C display a non-monotonic behavior with maximum entanglement in the order of

U/Γ ≈ (1 ÷ 2), while the spinful interleaved ordering B is rather independent from

the interaction. Hence, from an entanglement point of view, structure A never seems

advantageous. The interleaved ordering with spin splitting, structure C, shows low

entanglement at weak coupling and low temperatures. In several scenarios, includ-

ing high temperature at intermediate interactions, however, the entanglement grows

strongly for orderings A and C, while structure B can capture the dynamics much

more efficiently.
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4. Quenching the Anderson impurity model at finite temperature

4.3. Conclusions

We have studied the dynamics of the quenched Anderson model in a wide range

of temperatures T and interactions U . By employing the chain geometry for the two

conduction electron baths emerging from the thermofield approach, we have shown

that the entanglement can dramatically depend on the ordering of the chain sites in

the MPS.

While at zero temperature all orderings considered show slow-to-modest entangle-

ment growth, the situation changes dramatically at higher temperature: entanglement

strongly grows if either the empty/filled chains or sites with different spin are spatially

separated. Instead, merging the chains with alternating empty and filled sites — such

that the interaction terms in the MPS are next-nearest neighbor — leads to significantly

lower entanglement growth, allowing for much longer simulations with low numerical

resources. For the separation of filled/empty chains, we have reasoned that the growing

entanglement is due to the increased rate at which particle-hole pairs are created, fol-

lowing from the overlap of effective hybridization functions at finite temperature. Our

analysis has shown that, in non-equilibrium situations, it is not necessarily beneficial to

mimic the Hamiltonian structure in the MPS. Instead, the ongoing physical processes,

such as the movement of particles, determine the entanglement properties.

Notice that a further simplification is possible if two conditions are met: (i) the

system-bath coupling factorizes, meaning that it can be written as Â⊗ B̂, where Â and

B̂ are solely acting on the system and the environment, respectively. (ii) the chemical

potential lies at the bottom of the environmental band modes, such that the bath modes

are empty in the bath’s ground state. Then the two continuum baths are equivalent

to a single bath with modified hybridization function [109], which can be mapped into

a single chain. In this way, one avoids the problem of growing entanglement between

the two chains. Such a scenario can often be found in the context of open quantum

systems, see also Chapter 7.

Furthermore, we have shown that the analysis of the conduction bath — available

when simulating the full dynamics of system and “environment” — can reveal inter-

esting many-body physics, like the Kondo-effect. As an outlook for further research, it

would be interesting to study how the star geometry would perform at finite temper-

atures. Our results suggest that the separation of filled and empty baths would lead

to strong entanglement growth also in the star-geometry. However, a mixed ordering

according to the energy of the modes might be a low-entanglement candidate for the

star geometry.
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4.4. Additional information

4.4.1. Numerical details and parameters

We have carried out simulations using the 2-site version of the time-dependent varia-

tional principle (TDVP) [50, 115–117], which, in combination with the matrix product

operator representation of the Hamiltonian, allows us to deal with next-nearest neigh-

bor interaction. Using TDVP, it would also be possible to simulate more complicated

networks [3, 122, 123], which would be needed to split both spin degrees of freedom

and empty/filled chains. Depending on the MPS ordering, we use bond dimensions

between D = 150 and D = 1600 to reach convergence (see Section 4.4.5) and a total

truncated weight wt — the summed probability of discarded states — of wt = 10−12 for

the truncation of the MPS. We further employ a minimum bond dimension Dmin ≈ 10,

keeping even states with low probability, to reduce the projection error of TDVP (see

Section 4.4.4 for details). The time-step is fixed to be ∆t = 0.1~/W . We explicitly

exploit the particle-number conservation of the Hamiltonian to speed up simulations.

In practice, we must use a finite number of chain sites. We choose the number of sites

such that no excitation — being either a particle in the empty chain or a hole in the

filled chain — reaches the end of the chain (see also Ref. [123]). For simulations up to

time t = 5~/Γ, we typically use about 100 sites for each chain.

4.4.2. Calculating the conduction occupation density

Here we provide details in the calculation of the residual bath occupation density

∆ρ(x, t). The starting point is the transformation of : ĉ†1kĉ1k := ĉ†1kĉ1k − 〈ψ0|ĉ†1kĉ1k|ψ0〉,
see Eq. (3.77), which leads to:

: ĉ†1kĉ1k := cos2(θk) : f̂ †1kf̂1k : + sin2(θk) : f̂ †2kf̂2k : + cos(θk) sin(θk)(: f̂
†
1kf̂2k : +H.c.) .

Next, observe that since |ψ0〉 = |∅1,F2〉 we have : f̂ †1kf̂1k := f̂ †1kf̂1k, and : f̂ †1kf̂2k := f̂ †1kf̂2k.

However,

: f̂ †2kf̂2k := f̂ †2kf̂2k − 1 = −f̂2kf̂
†
2k .

Hence, in the continuum limit we get:

∆ρ(x, t) = cos2(Θ)〈ψ(t)|f̂ †1(x)f̂1(x)|ψ(t)〉 − sin2(Θ)〈ψ(t)|f̂2(x)f̂ †2(x)|ψ(t)〉
+ cos(Θ) sin(Θ)

(
〈ψ(t)|f̂ †1(x)f̂2(x)|ψ(t)〉+ c.c.

)
,

where we used the short notation Θ ≡ Θ(x) for the continuum version of the thermofield

angle (see Eq. (3.79)), defined through the Fermi function:

sin2(Θ(x)) ≡ 1

eWx/kBT + 1
. (4.3)
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Figure 4.10.: Conduction electron occupation for initially filled impurity. ∆ρ(ε, t)

in the symmetric SIAM with U = 2.5πΓ, at temperatures kBT = 0.15Γ (a) and kBT = 0.5Γ

(b). The initial state |ψ0〉 is here a factorized state with doubly occupied impurity |↑↓〉 and

conduction modes in the thermal state, |ψ0〉 = |↑↓〉 ⊗ |∅1,F2〉. ∆ρ(ε, t) is plotted for times

t = 15~/Γ (a) and t = 10~ (b), after which it does not change anymore.

The final transformation involves re-writing the f̂c (x) in terms of orthogonal chain

operators, see Eq. (3.58). One can show that the quantities involved in the expectation

value are all well defined. For instance:

f̂2(x)f̂ †2(x) =
∞∑

n,m=0

U2,n(x)U2,m(x) â2,nâ
†
2,m

Hence, by considering 〈ψ(t)|â2,nâ
†
2,m|ψ(t)〉, one easily realises that these matrix ele-

ments vanish exactly for n,m > L̃(t), where L̃(t) is the effective distance reached by

the excitations at time t. The infinite sums are therefore effectively cut-off by L̃(t).

4.4.3. Starting from an occupied impurity

We have previously seen that the conduction bath occupation density ∆ρ(ε, t) shows

a peak corresponding to the impurity level εd (see Fig. 4.7). However, the second

impurity level at energy εd + U has not been observed. The reason is that such a

level corresponds to a double occupied state, which plays only a minor role in the

dynamics when starting from an empty impurity. Here, we study ∆ρ(ε, t) for the same

dynamics as before, starting, however, from the doubly occupied impurity state |↑↓〉,
see Fig. 4.10. We clearly observe the peak close to energy εd+U = 1.25πΓ = 0.125πW ,

while peaks at energy εd — corresponding to the empty impurity state — are absent.

4.4.4. TDVP beyond nearest neighbor hopping

This section is devoted to an analysis of the projection error of the TDVP algorithm.

Our structure A contains at most nearest-neighbor interactions, and thus projection
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Figure 4.11.: Why we use a minimum bond dimension. a) Impurity occupation

obtained when using B, at U = 0 and temperature kBT = 0, for an initially occupied

impurity. TDVP gets stuck due to the next-nearest neighbor interaction, as manifested

by the constant impurity occupation. The problem is solved by setting a minimum bond

dimension, and the dynamics agrees well with ED data. b) Error of the impurity occupation,

calculated as the difference of MPS and ED data for structures A and B, by employing a

minimum bond dimension MinD=10. Note that in structure A interactions are only nearest

neighbor, and thus projection errors are absent.

errors are absent when using 2-site TDVP [50]. On the other hand, the Hamiltonians

of structures B and C both contain mainly next-nearest neighbor terms, where pro-

jection errors do not vanish, in general. For simplicity, we restrict our analysis to the

noninteracting case U = 0, where only structures A and B are relevant (structure C

is equivalent to B). Similarly to the previous section, we initialize the impurity in the

filled state |1〉 with one spinless fermion, and set the temperature to T = 0 to avoid

strong entanglement growth in structure A.

We study the dynamics of the impurity occupation, which for U = 0 can easily be

compared with exact diagonalization (ED) results. Without setting a minimum bond

dimension we find TDVP to get stuck, as indicated by the horizontal curve in Fig. 4.11.

Since the impurity is initially filled, the interaction term between impurity and the first

filled chain site does not change the state. On the other hand, the impurity electron

could move to the first empty chain site. In the MPS, however, this interaction is a

next-nearest neighbor term, and since the initial state is a product state, this process

is projected out by TDVP. Setting a minimum bond dimension for the state, we can

enlarge the projector to avoid this issue. Indeed we find excellent agreement with ED

data for the impurity occupation, see Fig. 4.11(b), with error similar to structure A,

where projection errors do not play a role.
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Figure 4.12.: Entanglement convergence with bond dimension. Dynamics of the

maximum entanglement entropy along the MPS, Smax, for different bond dimensions D and

Structures A (panel a) and C (panel b), at temperature kB = 4Γ. Even at bond dimension

D = 1600, the entanglement entropy is clearly not converged at the end of the dynamics for

structure A, while structure C is sufficiently converged at D = 1200.

4.4.5. Convergence with Bond dimension

The bond dimension D is the crucial numerical parameter in our simulations, as it

sets an upper bound for the number of states kept. To ensure that the simulations

deliver correct results we need to converge the quantity of interest with respect to

the bond dimension. Here we study the convergence of the maximum entanglement

entropy Smax for the structures A and C (see Fig. 4.12). We omit details for structure

B as results were converged already at D = 150. For structures A and C instead, we

find significantly slower convergence, due to the higher entanglement. For structure A

— separating filled and empty chains — Smax is clearly not converged at the end of

the simulation even with bond dimension D = 1600. Indeed the entanglement increase

seems to be linear in time, but starts to flatten due to the insufficient bond dimension.

However, the massive increase of computational costs prevents us from going to higher

D. For structure C, instead, we are able to reach convergence using a bond dimension

of D = 1200. Note that this is still significantly larger than bond dimension, D = 150,

required for structure B, and longer simulations would be impossible due to the required

exponentially increasing bond dimension.
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5. Spectral functions from MPS

simulations of the Anderson

impurity model

In this chapter, we demonstrate the effectiveness of the previously developed strate-

gies for the calculation of Green’s functions. The material contained in this chapter

is published in Ref. [1]. Throughout this chapter we again consider the SIAM with

semicircular hybridization function, see Chapter 4, and we focus on the Kondo regime.

Let us summarize the crucial aspects of the strategies discusses in the preceding chap-

ters. We have discussed that a direct simulation in the star-geometry, see Fig. 5.1(a,b),

is possible through an appropriate ordering of the MPS sites with artificial long-range

interactions. In the chain geometry instead, Fig. 5.1(c), the Hamiltonian consists of

nearest-neighbor terms only. However, it has been shown that the mixing of filled and

empty modes is highly detrimental for numerical simulations [39]. We have discussed

in Section 3.5(d) that an independent chain mapping for filled and empty modes would

resolve this issue, combining the advantages of the star and chain geometry. At the

same time, this approach generalizes immediately to finite temperatures by employing

the thermofield transformation, see Section 3.6. Due to the insights we got from quan-

tum quenches in Chapter 4, we decided to use a mixed ordering of MPS sites also in

this chapter, Fig. 5.1(e), to reduce the entanglement creation at finite temperatures.

The chapter is organized as follows. First, in Section 5.1 we introduce the objects of

interest, the retarded Green’s function and the spectral function, and discuss how to

calculate them at zero temperature. The finite temperature case is presented in Sec-

tion 5.2, which requires an advanced strategy to obtain the equilibrium state and the

Green’s function. In Section 5.3 we provide some results for the spectral function and

the entanglement entropy for different Hamiltonian structures. In Section 5.4 we ana-

lyze and justify the equilibration scheme employed for the preparation of equilibrium

states at finite T . Next, we provide benchmarks against NRG in Section 5.5. Conclu-

sions are drawn, with a small summary of the results, in Section 5.6. Finally, additional

technical details are given in Appendix B, including an interesting comparison between

our chain mapping approach and the star geometry, see Appendix B.2.
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5. Spectral functions from MPS simulations of the Anderson impurity model

Figure 5.1.: a) Star-like representation of the SIAM. The impurity orbital “d” hybridizes

with a half-filled bath of conduction electrons. Here and below, grey circles denote partially

filled orbitals, black/white fully-occupied/empty ones. b) The topologically equivalent chain

with long-range hoppings, with orbitals ordered according to their increasing energy εk. c)

The bath is mapped into a 1D chain with nearest-neighbor couplings, mixing filled and empty

orbitals. d) Structure A of Fig. 4.1: Separate chain mapping for filled and empty modes. e)

Structure B of Fig. 4.1: Interleaved MPS ordering, with alternating filled and empty sites,

leading to next-nearest neighbor couplings.

5.1. Green’s functions

In the following we are interested in the retarded Green’s function

GR

σ(t) = −iΘ(t) TrS

(
{d̂σ(t), d̂†σ(0)}ρ̂S

)
, (5.1)

where d̂σ(t) is the Heisenberg impurity operator, ρ̂S the thermal density matrix of the

system, TrS the trace over the system, Θ(·) the Heaviside function and {·, ·} denotes

the anti-commutator. The Fourier transform of the GR
σ(t) provides the experimentally

accessible spectral function

Aσ(ω) = − 1

π
Im

∫ ∞
−∞

dt eiωtGR

σ(t) . (5.2)
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5.2. T > 0 equilibrium state and Green’s functions

To calculate GR
σ in Eq. (5.1) we first split it as GR

σ(t) = Θ(t) (G>
σ (t)−G<

σ (t)), where

iG>
σ (t) = TrS(d̂σ(t)d̂†σ(0)ρ̂S) and iG<

σ (t) = −TrS(d̂
†
σ(0)d̂σ(t)ρ̂S) (5.3)

are the greater and lesser Green’s functions, respectively, calculated in separate simu-

lations. For the discussion we focus on iG>
σ (t), as G<

σ (t) deserves similar comments.

Zero temperature. In general, ρ̂S is the state where impurity and bath are in thermal

equilibrium. Physically, equilibrium can be established by starting from a state where

impurity and bath are isolated, by slowly turning on the hybridization between the

two, see also Ref. [74]. At T = 0, however, there is a short-cut, and ρ̂S can be obtained

by a DMRG ground state (GS) search [38–40]. In particular, the equilibrium density

operator is simply the projector on the ground state |E0〉, ρ̂S = |E0〉 〈E0|. After writing

explicitly the time dependence of the Heisenberg operators and carrying out the trace

we get:

iG>
σ (t) = 〈E0| d̂σe−iĤt/~d̂†σ |E0〉 eiE0t/~ . (5.4)

Here, E0 is the ground state energy of |E0〉.

Practical remark. Notice that one can split the time-evolution operator to write

the Green’s function as

iG>
σ (t) = 〈E0| d̂σe−iĤt/2~e−iĤt/2~d̂†σ |E0〉 eiE0t/~ .

Hence, instead of evolving d̂†σ |E0〉 up to time t one can carry out two separate

simulations for the bra and the ket, one up to t/2 (ket) and one backwards in time

up to −t/2 (bra). In practice, this can be beneficial if the entanglement grows

strongly during the simulations, as longer simulation times can be reached [40].

i

5.2. T > 0 equilibrium state and Green’s functions

While at T = 0 we can use DMRG to find the equilibrium state, for finite T > 0 we

cannot do that. Following the previous idea of a real-time equilibration, the thermal

state ρ̂S is obtained through a TDVP evolution, with total equilibration times τ that

increase with the interaction U and decrease with temperature T , as detailed later. In

practice, this involves three steps:

1) we initialize a state with empty impurity |0〉 and “thermal” conduction electrons,

with an MPS pure state |ψ0〉 = |0〉 ⊗ |∅1,F2〉;

2) We evolve the system by slowly ramping-up the local and hybridization terms as

Ĥeq
SIAM(t) = w(t)(Ĥloc + Ĥhyb) + Ĥcond , (5.5)
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5. Spectral functions from MPS simulations of the Anderson impurity model

with w(t) starting from zero and linearly approaching one, see Fig. 5.2(a), until

reaching ĤSIAM;

3) We finally relax the system with ĤSIAM, getting to a final MPS pure state |E〉
effectively encoding the correct equilibrium state, such that ρ̂S = TrA (|E〉〈E|),
where the trace is taken over the ancillary modes introduced with the thermofield

transformation.

By employing the explicit form of the Heisenberg operators, we do some reordering

within the trace to find for the greater Green’s function, Eq. (5.3):

iG>
σ (t) = TrS+A

(
e−iĤt/~d̂†σ |E〉〈E| eiĤt/~d̂σ

)
(5.6)

Note that in contrast to Eq. (5.1) we traced over both the physical fermions, subscript

“S”, and over the ancillary ones, subscript “A”, as required by ρ̂S [141]. Defining states

|φ>L(t)〉 = e−iĤt/~ d̂†σ |E〉 and 〈φ>R(t)| = 〈E| eiĤt/~d̂σ, calculated by two independent

TDVP evolutions, we finally rewrite

iG>
σ (t) = Tr

(
|φ>L(t)〉〈φ>R(t)|

)
= 〈φ>R(t)|φ>L(t)〉 . (5.7)
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Figure 5.2.: a) Equilibration scheme employed to construct the thermal state of the system,

see text for explanation. Local and hybridization terms are ramped-up linearly and kept

constant for t/τ > 0.5. Below: Evolution of 〈n̂↑〉 for the noninteracting U = 0 (b) and

particle-hole symmetric case U = 2.5πΓ (c) at fixed impurity level energy εd = −1.25πΓ.

Here τ = 8~/Γ and bond dimension D = 150. Dashed lines represent exact equilibrium

values obtained from exact diagonalization for U = 0, and the particle-hole symmetric value

〈n̂↑〉 = 〈n̂↓〉 = 1/2 for U = 2.5πΓ = −2εd.
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Figure 5.3.: Spectral function as obtained from the Fourier transform of the retarded Green’s

function at different temperatures, showing the disappearance of the Kondo peak for increas-

ing T . The interaction is U = 2.5πΓ for the symmetric (a) and U = 3.25πΓ for the non-

symmetric case (b). Vertical lines mark impurity level energies at εd and εd + U . In the

symmetric case, we estimate a Kondo temperature kBTK ∼ 0.07Γ.

5.3. Main results

In our simulations we used a semi-elliptical fermion bath hybridization with half

bandwidth W and coupling Γ, which in the continuum limit gives∑
k

V 2
k δ(ε− εk)→

Γ

π

√
1− (ε/W )2 .

We fixed W = 10Γ and the impurity energy level εd = −1.25πΓ. From here on we use

Γ as our unit of energy. As discussed, our method involves two main blocks: First, we

determine the equilibrium pure state |E〉 either by a direct DMRG GS-search (T = 0)

or by a dynamical ramp-up, see Fig. 5.2(a), of Ĥloc and Ĥhyb (T > 0). Second, we

calculate the Green’s function by TDVP evolutions starting from |E〉.

Equilibration. To test the first (equilibration) step we start from the empty impurity

state |ψ0〉 = |0〉 ⊗ |∅1,F2〉 and study the evolution of the spin-up impurity occupation

〈n̂↑〉. We benchmark 〈n̂↑〉 against exact values, for the noninteracting case (U = 0),

Fig. 5.2(b), where exact diagonalization is possible, and for the particle-hole symmetric

case (εd = −1.25πΓ, U = 2.5πΓ), Fig. 5.2(c), where the impurity is half-filled at any

temperature 〈n̂↑〉 = 〈n̂↓〉 = 1/2. We find that 〈n̂↑〉, starting from 0, converges to

the exact values at the end of the equilibration in all cases. Further details on the

equilibration step are given in Section 5.4.

Spectral function. Once the equilibrium state |E〉 is obtained, we calculate the

Green’s function and — by means of a Fourier transform — the corresponding spectral

81



5. Spectral functions from MPS simulations of the Anderson impurity model

Figure 5.4.: Top: Evolution of the entanglement entropy along the MPS for the original

chain method (a) and our work (b) in the symmetric SIAM at T = 0. Bottom: (c) The

entanglement entropy at time t = 25~/Γ and (d) time-evolution of the maximum entropy for

the original chain mapping, Fig. 5.1(c), our chain mapping, Fig. 5.1(e), and the star geometry,

Fig. 5.1(b).

function A(ω). To obtain a smooth A(ω) we employ a “linear prediction” scheme [38,

141, 142] to extrapolate simulation data to longer times. In the symmetric case, at

sufficiently strong repulsion U , we find two symmetrically located broad peaks due to

the impurity close to energies εd and εd + U , and a Kondo peak at the Fermi energy,

see Fig. 5.3(a) [143]. We observe the disappearance of the Kondo peak as T increases.

For the non-symmetric case of Fig. 5.3(b), at larger U , the Kondo peak becomes nar-

rower but is still located at the Fermi energy. Our spectral functions are in excellent

agreement with NRG results, see details in Section 5.5.

Entanglement. We now show how efficient is our mapping in terms of entanglement.

We consider here T = 0, and we use the MPS structure C of Fig. 4.1, where spin

degrees of freedom are spatially separated — which is known to be very efficient at

T = 0 [38, 53, 144] — with spin-up on the left half of the MPS, spin-down on the

right half, and the impurity in the middle. In principle, we could have carried out

simulations with spinfull modes, ordered as in structure B of Fig. 4.1, as we did at finite

temperature, or structure A. We have seen in the previous chapter that at T = 0 they

all show similar behavior in the entanglement. However, the standard chain mapping

approach to which we compare our results is impractically inefficient when working

with spinfull fermions. Hence, we decided to employ spin-splitting in all approaches to

allow for a fair comparison.
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5.4. Analysis of the equilibration scheme

Fig. 5.4(a,b) show that our mapping leads to significantly lower entanglement entropy

as compared to a standard chain mapping, with a characteristic “light-cone” spreading

of entanglement, typical of short-ranged models. Fig. 5.4(c) shows a snapshot of the

entanglement entropy across the whole MPS at time t = 25~/Γ: interestingly, not only

do we drastically improve on the standard chain mapping, but we also significantly

improve on the star geometry, see Appendix B.2 for details. Fig. 5.4(d) shows the

time-evolution of the maximum entanglement in the MPS: the original chain mapping,

and also the star geometry, seem to show a logarithmic growth of entanglement, consis-

tently with the analysis of Ref. [140], while the maximum entanglement entropy of our

mapping seems to saturate, or in any case increase much more slowly. 1 Finally, let

us mention that our method shows excellent scaling with the bath size, as increasing

the number of sites will only lead to an extension of the zero entanglement region (see

Fig. 5.4(b)) at the end of the chain, barely increasing the computational costs (see SM

for details).

5.4. Analysis of the equilibration scheme

In this section, we provide a more detailed analysis of our evolution scheme employed

to prepare the equilibrium state, which is then used for the calculation of the Green’s

function. As explained previously, we expect the thermal conduction electrons to equi-

librate with the impurity after bringing them into contact, hence converging towards

the equilibrium state |E〉 we are looking for. In practice, we decided to smoothly turn

on the local impurity and hybridization terms in a time-dependent fashion, see Fig. 5.2,

in order to minimize the entanglement growth as compared to a sudden quench. In

the following, we investigate this equilibration procedure in different scenarios. We

first consider the noninteracting case, where we show that the hybridization energy

converges towards the correct thermal value, and Green’s functions are reproduced

correctly. Afterward, the effect of finite interaction U is studied at zero temperature,

showing that stronger interactions lead to slower equilibration, but accurate Green’s

functions can be obtained also for U > 0. The last subsections are devoted to the anal-

ysis of finite temperature effects, a quantitative analysis of the required equilibration

time, and a summary including a qualitative discussion of the equilibration process.

5.4.1. Noninteracting case U = 0

At zero interaction, U = 0, the single impurity Anderson model (SIAM) reduces

to the resonant level model and is solvable through exact diagonalization (ED), see

1 For reference, our T = 0 simulations with bond dimension D = 100 and comparable accuracy

required a CPU time of 15:31h in our chain geometry and 37:51h in the star geometry, on a single

core of an Intel i7 9700K. These long computation times are due to the presence of a narrow Kondo

peak, which requires us to calculate the Green’s function for long times.
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Figure 5.5.: Analysis of the equilibration scheme for the noninteracting case U = 0. a)

Hybridization energy measured during equilibration with τ = 12~/Γ. Dashed lines correspond

to hybridization energy in the thermal state as obtained from exact diagonalization. b)

Difference between solid and dashed lines, showing excellent convergence of the hybridization

energy. c) Size dependence of the hybridization energy at temperature T = 0. The fermionic

bath is linearly discretized into Nb bath modes, and Nb → ∞ is obtained using orthogonal

polynomials for the equilibration (solid lines) and through extrapolation of finite-size data in

exact diagonalization (ED, dashed horizontal lines). See text for comments on the various

curves, in particular on the reason for the discrepancy between finite-Nb ED and MPS data.

d) Extrapolation of finite-size data obtained from ED.

Ref. [145][Appendix A]. Hence, we are able to calculate expectation values not only in

the ground state of the model, but also in the exact thermal state at any temperature

T , to compare with our dynamical equilibration scheme. Previously we showed that

the impurity occupation converges towards the thermal value. Here we would like to

expand on this analysis. In particular, one quantity that we are able to compare is the

hybridization energy, calculated as the expectation value Ehyb(t) = 〈ψ(t)|Ĥhyb|ψ(t)〉 of

the hybridization term

Ĥhyb =
∑
σ

∑
k

Vk

(
d̂†σ ĉk,σ + H.c.

)
=
∑
σ

2∑
c=1

Jc,0

(
d̂†σ âc,0,σ + H.c.

)
, (5.8)

on the MPS state |ψ(t)〉 during equilibration. In Fig. 5.5(a) we show the time-

dependence of the hybridization energy and the corresponding thermal state value
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5.4. Analysis of the equilibration scheme

obtained through ED. For all temperatures, we find very smooth convergence and

excellent agreement at the end of the dynamics (see also Fig. 5.5(b)).

At this point, let us briefly take a step away and discuss the effect of discretization.

For ED, we generally use linear discretization with different numbers of bath modes

Nb. For MPS simulations we use either linear discretization (plus Lanczos tridiagonal-

ization) or orthogonal polynomials. In Fig. 5.5(c) we investigate the convergence of the

hybridization energy for different discretizations at T = 0, with linear discretization

being used for all curves with finite Nb. In the limit Nb → ∞ — obtained using or-

thogonal polynomial discretization for the dynamics (orange curve) and extrapolation

of finite-size ED data as presented in Fig. 5.5(d) — we observe excellent agreement

between our MPS equilibration scheme and ED. The finite-size behavior, however, is

clearly different for ED and the MPS dynamics. This can be understood from the

following arguments. For the MPS dynamics, only chain sites sufficiently close to the

impurity do have an impact on the hybridization energy, since any excitation created

due to the interaction of impurity and fermion bath — being either a particle in the

empty chain or a hole in the filled chain — is traveling at finite speed along the chain.

Hence, it cannot reach chain sites too far away from the impurity by the end of the

dynamics. On the other hand, in equilibrium simulations (DMRG or ED) all chain

sites contribute to the equilibrium state, including those far away from the impurity

and unreachable by the dynamics. The discrepancy at finite bath size Nb seen in

Fig. 5.5(c) is therefore expected, and, in all of the energy comparisons, we consider the

limit Nb →∞.
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Figure 5.6.: (a+b) Imaginary part of the lesser impurity Green’s function for U = 0. Initial

states to calculate G<σ were prepared through equilibration with τ = 12~/Γ (solid line) and

exact diagonalization (ED, dashed line). c) Absolute error of the lesser Green’s function when

using real-time equilibration as compared to ED results.

Let us turn to the object of interest: the Green’s function. For the comparison

with ED, we focus on the lesser Green’s function G<
σ (t) = i TrS(d̂

†
σ(0)d̂σ(t)ρ̂S), since, in

contrast to the retarded Green’s function, it does show temperature dependence even

at U = 0. We compare the Green’s function obtained from ED, starting from the

exact thermal state, with the one calculated with our MPS-based approach, where a
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5. Spectral functions from MPS simulations of the Anderson impurity model

real-time equilibration is used to prepare the initial state. As shown in Fig. 5.6, we find

excellent agreement, verifying that our approach correctly reproduces the temperature

dependence of the Green’s function.
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Convergence behavior of partial energies. We subtract EM (t = 5~/Γ) to have the same

energy scale for all curves even with different M . c) Convergence of the partial energy E1 for
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Figure 5.8.: a) Imaginary part of the lesser Green’s function for U = 2.5πΓ using the initial

state obtained from equilibration (with τ = 32~/Γ) and DMRG ground state search. b)

Error of the lesser Green’s function obtained after equilibrating for τ = 12~/Γ as compared

to starting from the DMRG ground state. Stronger repulsion leads to slower equilibration,

hence to larger errors in the Green’s function. c) Error of G<σ for different equilibration times

at U = 2.5πΓ, which is found to decreases smoothly as we let the system equilibrate longer.

5.4.2. Interacting case at zero temperature

At T = 0 and finite interaction U , we can benchmark the equilibration procedure

with the ground state as obtained from equilibrium DMRG calculations. We concen-

trate on the Green’s function, as well as on the energy obtained by taking into account

only chain sites at a finite distance from the impurity. The full SIAM with truncated
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5.4. Analysis of the equilibration scheme

chain length (finite L) is given by

Ĥ
(L)
SIAM = Ĥloc + Ĥhyb +

∑
σ

2∑
c=1

( L−1∑
n=1

(
Jc,nâ

†
c,n,σâc,n−1,σ + H.c.

)
+

L−1∑
n=0

Ec,n â
†
c,n,σâc,n,σ

)
.

We define the partial energies to be expectation values EM = 〈ψ(t)|Ĥ(M)
SIAM|ψ(t)〉, with

M ≤ L, such that only chain sites closest to the impurity are considered for the energy

measurement. As expected, we find these partial energies to converge: for fixed U = πΓ

the final values are in perfect agreement with the corresponding expectation value in

the DMRG ground state (see Fig. 5.7(a+b)). Similarly to the previous section, static

DMRG data were obtained using linear discretization with various numbers of bath

modes Nb, and were extrapolated to the thermodynamic limit employing a polynomial

fitting function EM(Nb) = a(Nb)
−c + d, with fitting parameters a, c, d. Zooming into

the convergence behavior at the end of the equilibration (that is why we subtract

EM(t = 5~/Γ)), we find that smaller M partial energies converge faster, implying that

bath sites closer to the impurity equilibrate faster than sites further away. Investigating

the effect of the interaction U , we find that stronger interactions lead to significantly

slower equilibration (see Fig. 5.7(c)). Hence, longer evolution times are required to

reach equilibrium. This behavior also impacts the accuracy of the Green’s function,

shown in Fig. 5.8(a). Comparing the Green’s function obtained after the equilibration

step with the one computed starting from the DMRG ground state, we observe larger

deviations as U increases, see Fig. 5.8(b). Indeed, this error is due to insufficient

equilibration and can be controlled through the equilibration time τ , Fig. 5.8(c). The

longer the equilibration, the more accurate the Green’s function. In practice, it is

therefore important to converge the Green’s function with respect to τ .

5.4.3. Effect of finite temperature at U = 2.5πΓ

In this section, we investigate the effect of temperature on the equilibration in the

interacting case. We fix the interaction to be U = −2εd = 2.5πΓ, where at T = 0 we

observed rather slow convergence of the partial energy and the Green’s function with

respect to the total equilibration time τ . We start by analyzing the convergence of the

partial energy EM=1(t) at fixed τ = 14~/Γ in Fig. 5.9. While at T = 0 EM=1(t) has not

yet converged by the end of the equilibration dynamics, such converge is achieved, sig-

nificantly faster, at higher temperatures. These findings suggest that also the Green’s

function will converge much faster at finite temperature, as we will now show.

At both finite interaction and temperature — in contrast to the previous sections —

we do not have any reference results to benchmark the time-dependence of the Green’s

function. For this reason, we use an alternative strategy to investigate convergence

with τ : We calculate the difference |G<
σ, τ1
− G<

σ, τ2
| of two Green’s functions obtained

after equilibration with different equilibration times τ1 and τ2, where we fix τ2 =

τ1 + 2~/Γ. At convergence, this difference should vanish, since the Green’s functions
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Figure 5.10.: Convergence of the Green’s function is presented for temperatures kBT = 0

(a), kBT = 0.15Γ (b) and kBT = 0.5Γ (c). Plots show the difference of two Green functions

obtained after equilibrating for total time τ1 and τ2 = τ1 + 2~/Γ. Higher temperature leads

to significantly reduced differences, indicating faster convergence of the equilibration with

respect to τ .

become independent of the equilibration time. In Fig. 5.10 we show this convergence

indicator for zero and finite temperature. We observe that for T = 0 it decreases as

we increase τ1 (and implicitly τ2), as expected. At T > 0 we find the Green’s function

to converge significantly faster as compared to the zero temperature case (note the

different scale of the y-axis). While at kBT = 0.15Γ our convergence indicator nicely

decreases down to only 10−4, for kBT = 0.5Γ it already stays below that value even for

short equilibration times, with τ1 = 6~/Γ.

5.4.4. Quantitative analysis of the equilibration time τ

We have seen previously that the system equilibrates faster at higher temperatures,

while strong coupling U leads to slower equilibration. Here we quantify these effects

and analyze the required equilibration time τ for different system parameters. To this
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5.4. Analysis of the equilibration scheme

end, we calculate the Green’s function after equilibrating for a sufficiently long time

τref , using it as a reference. We then calculate G<
τ ′(t) for various equilibration times τ ′

and calculate the absolute error with respect to the reference simulation. The minimum

possible equilibration time with error less than εerr = 2× 10−3 is what we define to be

the required equilibration time τ :

τ = min(τ ′) such that max
t
|G<

τ ′(t)−G<
τref

(t)| < εerr (5.9)

As expected from the previous discussions, we find the required equilibration time to

grow as we lower temperature, see Fig. 5.11(a), where we identify two distinct regimes:

At high temperatures T � TK , where the Kondo effect is suppressed, the equilibration

time shows a plateau, since the relevant energy scale is given by the local impurity

level width Γ. Hence, one expects τ ∝ Γ−1. For temperatures T & TK , where the

Kondo effect plays a role, we observe power-law scaling, with τ ∝ T−1, as obtained

from the fit. For very low temperatures T � TK , it is currently unclear how the

equilibration time behaves since this regime is hard to reach. However, considering the

smooth convergence of the Green’s function (see Fig. 5.8), it seems possible that the

equilibration criterion is satisfied for large τ even at T = 0. It is an open question if

the observed behavior for the equilibration time is directly connected to Anderson’s

orthogonality catastrophe [146] and the absorption edge singularity [147].
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Figure 5.11.: a) Equilibration time as a function of temperature for the particle-hole sym-

metric Anderson model with U = 2.5πΓ. The inset shows the same data in a log-log plot,

together with a polynomial fit for 0.07Γ ≤ kBT ≤ 0.25Γ, which yields τ ∝ (kBT )−1 (dashed

line). b) Equilibration time versus interaction U at particle-hole symmetry and fixed tem-

perature kBT = 0.05Γ. Inset: Same data with log-linear axes, and exponential curve with

τ ∝ exp( πU16Γ) ∝ 1/
√
TK (dashed line).

As is well known, the Kondo temperature is exponentially small in the interaction
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5. Spectral functions from MPS simulations of the Anderson impurity model

U at strong coupling [57], with

kBTK ∼
√

2UΓ

π2
exp

(
− πU

8Γ
+
πΓ

2U

)
, (5.10)

for the symmetric case. Hence, it is not surprising that τ increases with U , as the

narrow Kondo peak can be resolved only on long time scales. For kBT = 0.05Γ, we

find, see Fig. 5.11(b), the equilibration time τ to grow exponentially for moderately

small U , where the corresponding Kondo temperature is still TK � T . Taking the

scaling of the Kondo temperature with U as in Eq. (5.10), our data seem to suggest a

τ ∝ 1/
√
TK behavior. As the interaction U increases further, the exponential growth

of τ is cut-off by temperature, when TK becomes of the order of T . Further study

would be needed to fully characterize and understand the scaling of the equilibration

time in the whole parameter space of T and U .

5.4.5. Summary and discussion of the equilibration step

We have studied in detail the procedure we use to prepare the equilibrium state at

finite temperature. We find that, after turning on the hybridization (and the local

term), impurity occupation, hybridization energy, and more generally, partial energies

(taking into account only chain sites closest to the impurity), converge towards their

respective values in the exact equilibrium state. In particular, we focused on the cases

of either zero interaction or zero temperature, where exact results for the equilibrium

state are available, but we expect our conclusion to hold at finite interaction and

temperature as well. We have quantitatively studied the required equilibration time

and its dependence on U and T . We found that equilibration takes more and more

time as the interaction U increases. On the other hand, increasing the temperature

tends to speed up the equilibration process.

The qualitative picture we have in mind for the equilibration is that — in the chain

geometry — fermionic sites locally converge towards their equilibrium state, with sites

close to the impurity converging faster than sites further away. With this picture, we

can discuss the issue of unitary dynamics versus equilibration. Since we consider a

closed quantum system (consisting of impurity and bath fermions) with Hamiltonian

dynamics only, the evolution is unitary. Hence, the quantum state contains information

about the initial state at all times. At first sight, this might seem to be in contradiction

with the idea of converging towards some equilibrium steady state. However, excita-

tions — created in the chain sites connected to the impurity while/after turning on the

hybridization — can travel along the (infinitely long) chain forever. Hence, they can

carry information and residual energy of the initial state away from the impurity, while

sites closer to the impurity can equilibrate. This is, in essence, a mechanism of local

thermalization, as described in Ref. [148], where local here refers to the topology of the

chain. It is important to note that the calculation of the Green’s function requires the
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application of creation/ annihilation operators at the impurity, which does not inter-

fere with the non-equilibrated part of the state far away from the impurity. For this

reason, we can obtain accurate Green’s functions that do not contain any signs of the

equilibration procedure.

5.5. Benchmark against Numerical Renormalization

Group results
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U = 2.5πΓ (Kondo temperature kBTK ' 0.07Γ) at temperature kBT = 0.15Γ. b) Zoom into

the Kondo peak at various temperatures. Solid lines correspond to our MPS calculations,

while dashed black lines are obtained from NRG.

At non-zero interaction, we can benchmark our spectral functions against the nu-

merical renormalization group (NRG) method. To perform NRG calculations, we used

the ’full density matrix’ method of the open-source library “NRG Ljubljana”, based on

the work of Ref. [72], with z-averaging parameter Nz = 8 and logarithmic discretiza-

tion Λ = 2. We find an excellent agreement between NRG and our MPS results, see

Fig. 5.12, where, in particular, we show that the Kondo peak is resolved correctly at

all temperatures. Note that the Kondo peak is the most difficult feature to capture

for our technique since it requires long time-evolutions. We further mention that we

observe equally good agreement between MPS and NRG in the non-symmetric case

with U = 3.25πΓ (not shown).

5.6. Summary and conclusions

We presented an efficient chain-mapping-based method to simulate Anderson impu-

rity models using matrix product states. Our method overcomes a major problem of
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5. Spectral functions from MPS simulations of the Anderson impurity model

the original chain mapping, where mixing empty and filled sites led to large entan-

glement within the chain. Separating empty from filled sites and mapping them into

separate chains, we drastically reduced the entanglement, providing significant perfor-

mance improvements. In contrast to the star geometry, our method does not involve

long-range couplings, but only next-nearest-neighbor terms.

Using a thermo-field transformation the idea neatly generalizes to finite tempera-

tures, where we demonstrated its capabilities by studying the Kondo physics regime.

Future research directions include the application to non-equilibrium dynamics, and the

implementation of the DMFT loop, where multi-orbital problems are within reach [38,

40].
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impurity model

Atomic force (AFM) or scanning tunneling microscopes (STM) with nanoscale res-

olution have a long history in condensed matter physics, with outstanding capabilities

in imaging and force measurements of material surfaces. Experimental progress has

enabled the accurate measurement of dissipation in oscillating tips experiments [149–

152], where energy is dissipated into the nanomechanical system due to the interaction

of the oscillating tip and the sample underneath. The dissipated energy can then be

used to investigate the sample, for example, to distinguish between a superconducting

or metallic state [150].

Recently, it was suggested that the on and off switching of the Kondo effect through

the oscillating tip might be detected in pendulum AFM dissipation measurements,

where the cost to create or destroy the Kondo cloud should be in the order of the

Kondo temperature kBTK [153]. In this work, the Kondo switching has been modeled

by turning on and off the hybridization interaction between the impurity and the free

electrons in the metal. Due to the slow frequency of the oscillating tip, in the order

of few kHz, it was assumed that the system equilibrates between switching on and

off the Kondo effect. On the other hand, the switching itself has been assumed to be

instantaneous, allowing to express the dissipation in terms of equilibrium quantities.

The finite frequency case, discussed in Ref. [154], essentially confirmed that the Kondo

effect should contribute to the dissipation with an energy per cycle of about kBTK .

Experimentally, the controlled switching of the Kondo effect has been realized in

combined STM/ AFM experiments, by chemically changing the impurity spin between

spin-1/2 (Kondo) and spin-1 (non-Kondo) [155], and should be possible also via me-

chanical lifting of the impurity [156], where dissipation measurements are possible.

In view of currently ongoing oscillating tip-based Force Microscopy (AFM) exper-

iments [157], this chapter reports some theoretical early-stage work on the issue of

nanomechanical dissipation in quantum impurity systems, discussing possible exten-

sions of Refs. [153, 154]. In particular, we explore the possibilities to simulate the

real-time dynamics, and hence the dissipation, of the SIAM with flexible driving and

at any temperature, employing the approach developed in previous chapters. The

material contained in this Chapter is still unpublished.
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6.1. Model and setting of the problem

The essential physics that needs to be captured in the model is the Kondo effect. We

will consider the single impurity Anderson model discussed in the previous chapters.

We recall that it consists of three terms

ĤSIAM = Ĥloc + Ĥhyb + Ĥcond . (6.1)

The local term Ĥloc describes the impurity

Ĥloc =
∑
σ

εd d̂
†
σd̂σ + U n̂↑n̂↓ +B(n̂↑ − n̂↓) , (6.2)

with energy level εd and on-site Coulomb repulsion U . In addition to the standard

terms of the previous chapters, we also included a magnetic field B. As is well known,

the magnetic field destroys the Kondo effect [57, 158] and hence provides a control

parameter that allows us to extract the Kondo contribution to the dissipation. The

impurity couples to conduction electrons through the hybridization interaction

Ĥhyb =
∑
σ

∑
k

Vk

(
d̂†σ ĉkσ + ĉ†kσ d̂σ

)
,

with spin-independent hybridization couplings Vk. The conduction electrons are, as

usual, free fermions

Ĥcond =
∑
σ

∑
k

εk ĉ
†
kσ ĉkσ . (6.3)

As mentioned in Section 3.1, the magnetic field breaks the spin-symmetry, and also

particle-hole (PH) symmetry, if present. However, the model is invariant under the

combined PH and spin-flip transformation

ĉk,σ −→ ĉ†−k,−σ d̂σ −→ −d̂†−σ , (6.4)

provided we make the particle-hole symmetric choice εd = −U/2, Vk = V−k, εk = −ε−k.
As before, we choose the hybridization to have a semi-circular shape, given in the

continuum limit given by V 2(x) = Γ
√

1− x2/πW , with hybridization coupling Γ, half-

bandwidth W , and dimensionless energy x = ε/W . While in absence of the magnetic

field particle-hole symmetry implies 〈n̂σ〉 = 1/2 for equilibrium states, in presence of

B we have lower symmetry with 〈n̂↑ + n̂↓〉 = 1 for the impurity population.

6.1.1. Protocol and dissipation

We model the action of the tip as a periodic time-dependent shift of the energy level

εd → εd(t), caused by electrostatic interactions between tip and impurity. A full cycle

consists of the following four steps, as visualized in Fig. 6.1(a):
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Figure 6.1.: Dissipation due to external driving. a) Time dependence of the impurity

energy level during a single cycle. In steps 1○ and 3○ the Hamiltonian is kept constant and

the system equilibrates. In step 2○ the level is lifted from ε0 to ε1 in a time tramp, with linear

time-dependence. In the last step 4○ it is brought back to its original value ε0. b) Schematic

time evolution of the total energy of the system. The dissipation Ediss is given by the energy

difference at the beginning and the end of the cycle, and is absorbed by the infinitely large

bath.

1○ The initial Hamiltonian with impurity energy level ε0 is kept constant until the

system has reached its equilibrium state. This stage models the tip far away

from the impurity, where the Kondo effect is present. We expect that this is a

reasonable approximation since the tip oscillation frequency is slow as compared

to the relevant time scales of the Kondo impurity.

2○ The impurity energy level is raised (or lowered) linearly from ε0 to ε1 within a

time tramp, modeling the tip approaching the impurity.

3○ For simplicity, we let the system evolve until it reaches its new equilibrium state.

In future research one could alternatively skip this step, assuming that no equi-

libration occurs when the tip is close to the impurity.

4○ In the last step the impurity energy level is lowered (or raised) back to its original

value ε0 of step 1○.

In Fig. 6.1(b) we schematically show the total energy E(t) of the system within a

single cycle. During the equilibration steps 1○ and 3○, the total energy stays constant

since the Hamiltonian is time-independent. In steps 2○ and 4○ however, the energy

can change due to the time-dependence of the impurity energy level, and hence, energy

can be pumped into the impurity. Of course, the energy can then flow into the bath
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due to the hybridization coupling. The dissipation per cycle, Ediss is defined as the net

energy that is pumped into the system. It can be calculated as the difference between

the energies E0 and Ef at the beginning and at the end of the cycle:

Ediss = Ef − E0 (6.5)

One might ask the question of where the energy goes, and how a closed system can

continuously absorb energy. The reason lies in the macroscopic (infinitely large) bath,

which is able to take all the energy without ever heating up. This is particularly easy

to understand if the bath is represented as a tight-binding chain, see Chapter 3. We

can imagine that energy is pumped into the impurity, and then flows into the bath.

Within the bath, the energy can continuously flow along the chain, and since the chain

is infinitely long in the thermodynamic limit, it never comes back, and hence is lost

forever in the infinity of the bath.

Let us discuss some practical aspects of the simulations: In steps 1○ and 3○, one

should evolve the system until it reaches its equilibrium state. However, the equilibrium

state does not depend on the preceding dynamics, and therefore we can carry out steps

1○ + 2○ and steps 3○ + 4○ in separate simulations. In this case the dissipation is then

calculated as

Ediss =
(
E(t0 + tramp)− E(t0)

)
+
(
E(t1 + tramp)− E(t1)

)
. (6.6)

Notice that this reduces to the original definition if E(t0 + tramp) = E(t1), which is the

case when all steps are done in a single run, but is not necessarily true if the dynamics

is split into two parts. At zero temperature there is one more simplification possible.

Instead of calculating the equilibrium state through real-time evolution, we can simply

use the DMRG algorithm to calculate the ground state of the system.

6.1.2. Dissipation for a sudden quench

Let us briefly discuss the special case where the ramp is sudden (tramp = 0). Assuming

that the system is in its equilibrium state at the end of step 1○, the sudden quench of

εd in step 2○ causes the energy of the closed system to change by

∆E( 2○) = (ε1 − ε0) n( 1○), (6.7)

where n( 1○)=〈ψ(t0)|n̂↑ + n̂↓|ψ(t0)〉 is the impurity particle occupation at the end of

1○. Similarly, the change of energy in step 4○ depends on the occupation n( 3○) at the

end of step 3○ through

∆E( 4○) = (ε0 − ε1) n( 3○) . (6.8)

The dissipation is then given as the sum of the energy changes in steps 2○ and 4○:

Ediss = ∆E( 2○) + ∆E( 4○)

= (ε1 − ε0) [n( 1○)− n( 3○)]
(6.9)
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Figure 6.2.: Equilibrium (ground state) impurity occupation. a) Deviation from

unit impurity filling, ∆Nd = 〈N̂d〉 − 1, in the ground state of the SIAM, as a function of the

energy level shift ∆ε with respect to particle-hole symmetry, εd = −U/2 + ∆ε. Dashed lines

represent linear fits, and Kondo temperatures in the legend are estimated from the symmetric

case ∆ε = 0 using Eq. (6.10). The hybridization Γ is fixed to be 10% of the half-bandwidth

W , Γ = 0.1W . b) ∆Nd as a function of the Kondo temperature at fixed Γ = 0.1W and

∆ε = 0.1Γ.

Hence, it is clear that, in the sudden quench scenario, the dissipation depends only

on the equilibrium particle occupation of the impurity. This will be discussed in more

detail in the next section.

6.2. Preliminary results

This section provides some preliminary results for the dissipation at zero tempera-

ture. The purpose of this analysis is to understand whether or not the dissipation shows

signatures of the Kondo effect if the impurity energy level of the SIAM is periodically

moved up and down.

6.2.1. Equilibrium impurity occupation

We study the equilibrium impurity occupation in the T = 0 ground state for different

system parameters. For the symmetric SIAM with εd = −U/2 we find the impurity

occupation 〈N̂d〉 = 〈n̂↑ + n̂↓〉 = 1 to be independent of the magnetic field B (not

shown), due to the particle-hole plus spin-flip symmetry discussed previously. Since

the magnetic field does destroy the Kondo effect but does not affect the impurity

occupation, it is clear that the impurity occupation alone does not contain information

about the Kondo effect in the particle-hole symmetric case. For this reason we consider

also the nonsymmetric case with εd = −U/2+∆ε and measure the deviation from unit
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Figure 6.3.: Magnetic field dependence of the equilibrium impurity population.

Deviation from unit filling, ∆Nd, as a function of the magnetic field B, at ∆ε = 0.1Γ and

estimated Kondo temperature as indicated in the legend.

filling, ∆Nd = 〈N̂d〉 − 1, hoping to see some Kondo-related magnetic field dependence.

Let us first analyze how the impurity occupation depends on the various physical

parameters of the model. We find ∆Nd to be linear in the deviation from particle-hole

symmetry, ∆ε, see Fig. 6.2(a). The slope, however, depends on the interaction, and

hence the Kondo temperature, which we estimate as [159]

kBTK
Γ

=

√
2u

π
exp

(−π2u

8
+

1

2u

)
. (6.10)

at particle-hole symmetry. Here, u = U/πΓ is the dimensionless interaction. Indeed

∆Nd shows a strong dependence on the Kondo temperature, see Fig. 6.2(b), with the

magnitude of ∆Nd increasing with TK . Hence, the results are indeed promising to

find some Kondo-related dissipation. To further elaborate on this issue, we study the

magnetic field dependence of ∆Nd. If ∆Nd is indeed related to the Kondo effect, we

expect it to converge towards zero as we increase the magnetic field, as B destroys

the Kondo effect. Indeed this is what we also find numerically, see Fig. 6.3, where the

deviation from unit filling seems to decrease rapidly at small magnetic fields, but only

slowly at strong fields B > 10kBTK , where the Kondo effect is not existent anymore.

6.2.2. Dissipation

Let us now turn to the main object of interest, the dissipation within a full cycle.

The impurity energy level is periodically driven between ε0 and ε1. We fix the initial

level energy at particle-hole symmetry, ε0 = −U/2, and lift it by ∆ε = 0.7Γ, such that

ε1 = −U/2 + 0.7Γ.

We start our analysis considering the noninteracting case with U = 0. Here, the

impurity spectral function has just a single peak, corresponding to the local level of the
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Figure 6.4.: Dissipation at finite ramp speed. Dissipation per cycle in the noninteract-

ing U = 0 (a) and interacting case U = 2.5πΓ at zero temperature, for different ramp times

tramp. The impurity level is driven between the particle-hole symmetric value ε0 = −U/2
and ε1 = ε0 + ∆ε, with ∆ε = 0.7Γ(= 10kBTK) and Kondo temperature kBTK = 0.07Γ in

the interacting case. Dissipation is given in units of Γ (left scale) and in units of the Kondo

temperature (right scale).

impurity, broadened due to the hybridization coupling, see Section 6.3(a). For a sudden

quench (tramp = 0) and zero magnetic field B, we find the dissipation Ediss = 0.29Γ to

be in the order of the level shift ∆ε = 0.7Γ. The dissipation decreases monotonically

with the magnetic field, see Fig. 6.4(a), due to the opposite effect of the field on the

spin-up and spin-down impurity levels. Furthermore, dissipation is reduced by slower

annealing. This is generally expected in the limit of slow dynamics since dissipation

vanishes for adiabatic ramps.

Let us now move to the interacting case with U = 2.5πΓ, and corresponding Kondo

temperature kBTK = 0.07Γ as obtained from Eq. (6.10). Again, the impurity level

energy is lifted by ∆ε = 0.07Γ = 10kBTK . The dissipation turns out to be significantly

lower as compared to the noninteracting case, by about one order of magnitude for the

sudden quench, see Fig. 6.4, however, being in the order of the Kondo temperature.

The magnetic field dependence of the dissipation at tramp = 0 follows the (inverse)

behavior of the impurity population at ε1, since the occupation is field-independent

at particle-hole symmetry εd = ε0 and the dissipation is given by the difference in

equilibrium occupations, Eq. (6.9). The decay of the dissipation with increasing ramp

time turns out to be very rapid. In fact, the time scale on which dissipation disappears

is clearly smaller than the Kondo time scale ~/kBTK , in contrast to what one would

expect for the case of dissipation emerging from the Kondo effect. This issue will be

discussed in the next section.
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Figure 6.5.: Impurity spectral function for the SIAM.. Zero temperature spectral

function in the noninterating U = 0 (a) and interacting case U = 2.5πΓ (b), with Kondo

temperature kBTK = 0.07Γ. Two different placements of the impurity energy level are

considered, the particle-hole symmetric choice ∆ε = 0 and ∆ε = 0.7Γ(= 10kBTK).

6.3. Spectral functions

To get a better understanding of the mechanisms leading to the observed dissipation,

let us analyze the impurity spectral function A(ω), obtained from MPS calculations,

as discussed in more detail in Chapter 5.

The noninteracting U = 0 spectral function has just a single peak, due to the lo-

cal impurity level, see Fig. 6.5(a). The interacting U = 2.5πΓ spectral function, see

Fig. 6.5(b), shows two peaks corresponding to the local impurity levels at ~ω = εd and

~ω = εd + U , and a Kondo peak at the baths Fermi energy, ~ω = 0. By shifting the

impurity energy level from ∆ε = 0 to ∆ε = 10kBTK the two side-peaks move accord-

ingly. However, the Kondo peak is barely affected. The overall change of the spectral

function upon moving the impurity level is much more significant in the noninteracting

case, which we expect to cause the much larger dissipation.

6.4. Discussion and outlook

In this chapter, we have discussed the concept of dissipation in the SIAM. Even

though the model is a closed system, it continuously absorbs energy due to the peri-

odic, external driving. The amount of absorbed energy can be measured as dissipation

in oscillating tip experiments. Here, we have modeled the action of the tip on the im-

purity as an energy shift of the impurity energy level, due to electrostatic interactions,

intending to detect signatures of the Kondo effect in the experimentally accessible dis-

sipation. However, it turned out that shifting the impurity level leads to dissipation
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which is mainly due to the side peaks of the spectral function, while the Kondo peak

is rather insensitive to the position of the impurity energy level.

We believe that the Kondo effect creates signatures in the dissipation only if the

Kondo peak in the instantaneous spectral function is strongly modified during the

dynamics. For example, this can be achieved by modifying the hybridization cou-

pling [153]: In the extreme case of Γ → 0 the Kondo peak is getting narrower until

it disappears, losing a lot of spectral weight. This indeed should be detectable in the

dissipation, as done in Ref. [153] for the sudden quench case. It would be interesting

to see how the dissipation then behaves for finite ramps, i.e. what is the time scale

on which the adiabatic regime is reached. However, due to a lack of experimental re-

sults, it is currently unclear what exactly is the relevant mechanism in oscillating tip

experiments.
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7. Simulating non-equilibrium open

quantum systems with MPS

In previous chapters, we have concentrated on the Anderson model, which describes

an impurity interacting with a bath of free fermions. In this chapter we will consider

the case of free bosons, which appears in the context of open quantum systems [84–

86], quantum thermodynamics [98, 99] or in understanding electronic transport in

biological systems [41, 100, 101]. Recent progress has made it possible to study the

spin-boson model at strong coupling experimentally, with the spin implemented with

a superconducting qubit, and the bosonic bath realized through the electromagnetic

continuum of a one-dimensional waveguide [102]. Due to the high degree of control, it

is now possible to investigate even scenarios with explicit time-dependence. Motivated

by the experimental possibilities, we study here the applicability of the method recently

developed by Tamascelli et al. [109] for explicitly time-dependent problems, applying

it to the paradigmatic example of a Landau-Zener-Stückelberg interferometer [108].

7.1. Introduction

The superposition principle is a key ingredient in quantum computation algorithms,

which, roughly speaking, profit from the ability to process multiple states at the same

time. However, for these algorithms to work well, it is of crucial importance that the

relative complex phase between states is well defined and controlled [160]. The dynam-

ics of any real quantum system is unavoidably affected by its environment, and perfect

isolation is never possible. Even though dissipation might turn out beneficial in cer-

tain scenarios [4, 87, 88], in most cases the coupling to the environment is undesirable,

and poses a great challenge in the realization of quantum information processing and

quantum simulation [89–91]. Hence, it is crucial to understand the physical processes

and underlying detrimental effects associated with a quantum environment, in order

to develop strategies to reduce their negative impact.

In this chapter, we revisit the problem of a single dissipative two-level system (TLS),

which is driven back and forth over a Landau-Zener avoided crossing [161]. In absence of

dissipation, this process shows interference effects as a consequence of the superposition

principle, known as Stückelberg interference [108]. The interference, however, strongly

depends on the phase coherence between the evolved states. Hence, it provides a simple
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toy model to study the effect of dissipation on a microscopic level. Furthermore, the

Landau-Zener-Stückelberg (LZS) interferometer has also been proposed as a scheme for

the implementation of quantum gates in quantum computation [108, 162]. LZS inter-

ferometry can be realized in various experimental setups, such as single electron charge

qubits [163], nitrogen-vacancies in diamond [164] or superconducting qubits [108].

On the theoretical side, it is challenging to model and simulate thermal baths, due

to their macroscopic number of degrees of freedom. Hence, it can be convenient to

approximate the dynamics, by taking the effects of the environment into account only

effectively. For example, the assumption of weak system-bath coupling allows for the-

oretical simplifications, including Markov and/or Born approximations, which require

that system-bath correlations can be neglected [84, 85]. As a result, the quantum sys-

tem is described by a density matrix, whose non-unitary dynamics is governed by a

so-called quantum master equation. The most prominent examples are the Redfield

and Gorini-Kossakowski-Sudarshan-Lindblad, or Lindblad equation [95, 96]. How-

ever, the weak coupling assumption is not always valid, and non-Markovian effects

can be relevant for the dynamics [97]. In these scenarios, more involved techniques

are needed [103], such as hierarchical equations of motion (HEOM) [104, 105] or the

quasi-adiabatic propagator path integral (QUAPI) [106, 107].

Previous theoretical studies of the LZS interferometer in presence of dissipation have

focused on an effective description of the environment using Master equations [165] in

the context of double quantum dot experiments, or by using Bloch equations including

phenomenological relaxation times [108]. Here we follow a different approach. We

explicitly model the environment as a set of (infinitely many) harmonic oscillators. The

interaction, and consequently, the growth of entanglement between two-level system

and bath leads to decoherence.

We show that the dissipative LZS interferometer has an optimal working point with

respect to the annealing velocity, which emerges from the competition of coherent

dynamics and dissipation. In absence of dissipation, interference effects are most pro-

nounced for a certain well-defined annealing velocity, while dissipation generally favors

fast annealing, to reduce the loss of coherence. Similar observations were made in the

context of dissipative quantum annealing [166, 167].

The chapter is organized as follows. In Section 7.2 we introduce the model for the

TLS and the bath, and we discuss Stückelberg interference for fully coherent dynamics.

Details of the non-perturbative MPS-based method to simulate the full dynamics of

TLS and bath are provided in Section 7.3. In Section 7.4 we discuss the effect of

dissipation on the interference pattern and the state of the TLS, by analyzing its

entanglement with the bath and its Bloch vector. We further show in Section 7.5 that

the interferometer possesses an optimal working point with respect to the Landau-

Zener annealing velocity, where the visibility of interference oscillations is maximum.

We conclude the chapter in Section 7.6. Finally, we discuss and demonstrate further
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possible research directions for strongly coupled and driven open quantum systems in

Section 7.7. Additional technical information and details about the simulations can be

found in Appendix C.

7.2. Dissipative Landau-Zener-Stückelberg

interferometer

7.2.1. Coherent LZS interferometer

We study interference in quantum systems using a simple two-level system (TLS),

with time-dependent Hamiltonian

ĤLZS(t) = −∆

2
σ̂x −

h(t)

2
σ̂z . (7.1)

The first term is time-independent, and defines the barrier/ transition rate between σ̂z
eigenstates |↑〉 and |↓〉. The second term carries the time-dependence, and controls the

energy imbalance of |↑〉 and |↓〉. For our interference dynamics we choose

h(t) =

{
v(t− t0) t < t0 + τ/2

v(t0 + τ − t) t > t0 + τ/2,
(7.2)

as visualized in Fig. 7.1(a). The protocol is essentially composed of two consecutive

Landau-Zener (LZ) sweeps. In each of them, the imbalance h(t) changes linearly in

time, with slopes v and −v during the first (t < t0 + τ/2) and second LZ sweep

(t > t0 + τ/2), respectively. The corresponding eigenenergies of ground and excited

state show avoided level-crossings with minimum gap ∆ at times t = t0 and t = t0 + τ ,

when h(t) = 0, see Fig. 7.1(b).

Now, the idea of the interferometer is as follows. We initialize the system in its

ground state at t = 0 and evolve in time according to ĤLZS(t). In the vicinity of

the first avoided crossing, the TLS gets excited, and hence its state |ψ(t+0 )〉 after the

transition is a superposition of instantaneous ground state |GS(t0)〉 and excited state

|EXC(t0)〉,
|ψ(t+0 )〉 =

√
Pgs|GS(t0)〉+

√
1− Pgs eiφ|EXC(t0)〉 .

The probability to remain in the ground state, Pgs, depends on the velocity v at which

we sweep over the avoided crossing. For a perfect, infinitely long LZ sweep with

annealing velocity v it is given by [161]

Pgs,LZ = 1− e
−π∆2

2~v . (7.3)

After the first avoided crossing, an evolution crucial for interference follows. Due to

their energy difference, |GS〉 and |EXC〉 accumulate different phases, leading to an
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accumulated phase difference ∆φ ≈
∫ t0+τ

t0
dt∆E(t) at the second avoided crossing

(t = t0 + τ). Here, ∆E(t) is the instantaneous energy gap between ground and excited

state. Hence, the state immediately before the second transition at time t = t0 + τ− is

|ψ(t0 + τ−)〉 =
√
Pgs|GS(t0 + τ−)〉+

√
1− PGS ei(φ−∆φ)|EXC(t0 + τ−)〉 .

The relative phase of the states — depending on the interference time τ — massively

affects the dynamics at the second avoided crossing, and thus the probability to end

up in the ground or excited state. This is directly observed from the dynamics of

the instantaneous ground state population Pgs(t) = |〈GS(t)|ψ(t)〉|2, see Fig. 7.2(a).

As we change the interference time τ , the probability to end up in the ground state

shows so-called Stückelberg oscillations, the signature of interference (see Fig. 7.2(b)).

The oscillations are most pronounced when the state ends up in a 50:50 splitting of

ground and excited state after the first LZ sweep, allowing for perfect constructive or

destructive interference at the second avoided crossing. Using Eq. (7.3) the condition

Pgs,LZ = 1/2 leads to the optimal annealing velocity

vopt =
π∆2

2 log(2)
, (7.4)

in absence of dissipation, as has been used in Fig. 7.2.

7.2.2. Dissipative LZS

We study the effect of dissipation by coupling the TLS to a macroscopic environment

at inverse temperature β = 1/kBT . We consider the paradigmatic spin-boson model

with Hamiltonian [93]

Ĥ = ĤLZS(t) + Ĥint + ĤB , (7.5)

where ĤLZS(t) is the (time-dependent) Hamiltonian for the TLS, while ĤB and Ĥint

describe the environment and its interaction to the TLS, respectively. We model the

bath as a set of harmonic oscillators [168], which in our quantum mechanical framework

is defined through the Hamiltonian

ĤB =
∑
k

εk b̂
†
kb̂k . (7.6)

Here, the bosonic operators, with canonical commutation rules [b̂k, b̂
†
k′ ] = δk,k′ , create

(b̂†k) or annihilate (b̂k) an excitation with energy εk in mode k. The interaction of

the TLS and the bath is modeled with a standard spin-boson type of coupling. The

Hamiltonian term is taken as a (tensor) product of an operator Â, acting solely on the

TLS, and the sum of displacement operators X̂k = b̂k + b̂†k, acting on the bath modes.

Hence, it can be written as

Ĥint = Â⊗
∑
k

λk(b̂k + b̂†k) . (7.7)
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Figure 7.1.: LZS protocol and instantaneous eigenenergies. a) Time dependence of

the σ̂z coupling h(t). The two-level system is driven linearly back and forth. b) Instanta-

neous eigenenergies E(t) = ±
√

∆2 + h2(t)/2 of the two-level system, showing two consecu-

tive Landau-Zener avoided crossings, with minimum gaps when h(t) = 0, at times t = t0 and

t = t0 + τ . The interference time τ controls the phase accumulation between the avoided

crossing, and hence the interference. In practical simulations we fixed t0 = 2.5~/Γ for the

warm-up step up to the first avoided crossing, and tf − (t0 + τ) = 5~/Γ for the relaxation

step after the second avoided crossing. These values are chosen as small as possible such that

the warm-up step is initially adiabatic, and to give the system enough time to relax after the

second avoided crossing.

The bath and its interaction with the system is characterized by just a single func-

tion [130], the so called spectral function J(ω) =
∑

k λ
2
kδ(ω− ωk), which takes the role

of the hybridization function in the Anderson model, see Chapter 3. Here, we assume

the spectral function to be follow a power-law with a hard cut-off at ωc
1

J(ω) = 2α~2ω1−s
c ωs Θ(ωc − ω) , (7.8)

where Θ is the Heaviside function to set a hard high-energy cut-off ωc, and α the

system-bath coupling strength. For s = 1 the spectral function is called “ohmic”,

while s < 1 and s > 1 defines sup- and super-ohmic spectral functions, respectively.

At zero temperature and s ≤ 1, the spin-boson model shows a quantum phase transition

between a localized and a delocalized phase [93]. The critical coupling is αc = 1 for

s = 1 and decreases with the exponent s [123]. Unless stated otherwise, we choose

Â = σ̂z for the system-bath interaction, an ohmic spectral function s = 1, and v = vopt

for the annealing velocity, see Eq. (7.4).

1An alternative more standard choice [93] employs an exponential cut-off function e−ω/ωc . The hard

cut-off Θ(ωc−ω) is chosen here because it is more convenient for the simulations, as the exponential

cut-off requires to simulate high energy modes, and therefore smaller time steps are necessary.
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Figure 7.2.: Coherent LZS interference. a) Dynamics of the instantaneous ground state

population in the LZS interferometer in absence of dissipation at different interference times τ .

b) Ground state population at the end of the dynamics as a function of the interference time.

The probability to find the system in its ground state shows perfect Stückelberg oscillations

between zero and one.

7.3. Methods

Among the variety of methods to study the spin-boson model, we chose to employ

a numerically exact technique based on matrix product states to simulate the full

dynamics of the two-level system and the bath. In the following sections, we will

present the method developed by Tamascelli et al.[109] to efficiently represent and

simulate environments at finite temperature. However, we will go through a different

derivation of the method, similar to that for the fermionic case [136]. The approach is

based on the thermofield transformation introduced by Takahashi and Umezawa [65],

which we used for the single impurity Anderson model in the previous chapters. It was

first applied in the framework of MPS by de Vega et al. [66].

Before going into the details, let us sketch the idea again. Instead of writing the

thermal state of the bath directly as a density matrix, the state is represented by a

pure quantum state in an extended system, by introducing an ancillary bath, similar

to the idea of purification [17, 29]. The thermofield transformation then transforms the

physical and the ancillary baths into two novel baths, such that the thermal state is the

vacuum state of the extended environment in the new basis. While de Vega et al. [66]

were simulating the two baths after mapping them into two independent tight-binding
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chains, in certain cases it is possible to recombine the environments before the chain

mapping, ending up with just a single bath/chain, which is one of the important results

of Ref. [109].

7.3.1. Thermofield transformation

In this section we show how to efficiently represent the thermal state of the bosonic

bath using the thermofield transformation [65, 66]. As mentioned earlier, the ther-

mal state is represented as pure state in an extended Hilbert space. Hence, we first

supplement the bath Hamiltonian with ancillary bath modes b̂2k, such that

ĤB → ĤB =
∑
k

εk

(
b̂†1kb̂1k − b̂†2kb̂2k

)
. (7.9)

Note that we renamed the original physical modes b̂k by adding the additional index

’1’, b̂k → b̂1k. We then mix the physical and ancillary modes by defining new modes

via the thermofield transformation [65, 66]

(
ĉ1k

ĉ†2k

)
=

(
cosh(Θk) − sinh(Θk)

− sinh(Θk) cosh(Θk)

)(
b̂1k

b̂†2k

)
, (7.10)

whose inverse is (
b̂1k

b̂†2k

)
=

(
cosh(Θk) sinh(Θk)

sinh(Θk) cosh(Θk)

)(
ĉ1k

ĉ†2k

)
. (7.11)

Our goal is to represent the thermal state of the original physical system as the

vacuum state of the extended transformed system. Using Eq. (7.11) it is easy to show

that the occupation of the physical bosons is

〈∅|b̂†1kb̂1k|∅〉 = sinh2(Θk) , (7.12)

where |∅〉 is the vacuum state of the new bosons ĉ1k and ĉ2k. For the environment in

the thermal state we require the population to follow the Bose-Einstein distribution

fB, and hence we take

sinh2(Θk) ≡ fB(εk) =
1

eβεk − 1
. (7.13)

A proof that the physical bath is indeed in a Gibbs state is presented in Appendix C.1.

Now that we know that the thermal state of the bath is represented by the vacuum

state in the transformed basis, we can use Eq. (7.11) to transform the Hamiltonian to

this basis. The free boson term becomes

ĤB =
∑
k

εk

(
ĉ†1kĉ1k − ĉ†2kĉ2k

)
. (7.14)
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Hence, it describes free bosons with energies εk and −εk just as the original physical

and ancillary baths. While the TLS couples only to the physical bath and not to the

ancillary one, it interacts with both baths in the new basis:

Ĥint = Â⊗
∑
k

λk

(
cosh Θk(ĉ1k + ĉ†1k) + sinh Θk(ĉ2k + ĉ†2k)

)
(7.15)

Hence, the transformed Hamiltonian consists of two baths of free bosons, both of them

coupled to the two-level system, and the thermal state of the physical environment is

represented by the pure vacuum state of the two novel baths.

So far we have considered a discrete set of bath modes. In practice, however, we

directly work in the continuum limit, where the role of the mode index k is taken

by the continuous dimensionless variable x = ω/ωc, with the cut-off frequency ωc
setting the maximum relevant energy scale of the environment. The continuum limit

is obtained through the replacements
∑

k → ~ωc
∫

dx, λk → λ(x), εk → g(x), and

Θk → Θ(x). More details on the discrete-to-continuum transformation can be found

in Ref. [9] and Chapter 3. As mentioned before, the action of the bath on the TLS is

characterized by the spectral function, which is related to the coupling function λ(x)

and the dispersion g(x) via [54, 130]

J(ω) = λ2(g−1(ω))
dg−1(ω)

dω
, (7.16)

where g−1(ω) is the inverse of g(x), just like in the fermionic case, see Eq. (3.10). The

full Hamiltonian in the continuum limit is given by

Ĥ(t) = ĤLZS(t) + ~ωc
∫ 1

0

dx x
(
ĉ†1(x)ĉ1(x)− ĉ†2(x)ĉ2(x)

)
+ ~ωc Â⊗

∫ 1

0

dxλ(x)

(
cosh(Θ(x))

(
ĉ†1(x) + ĉ1(x)

)
+ sinh(Θ(x))

(
ĉ†2(x) + ĉ2(x)

))
, (7.17)

where we have chosen g(x) = x. This choice will turn out beneficial for the following

steps.

7.3.2. Merging the baths

At this stage there are two possible routes we could follow:

i) We can simulate the model with two baths, either in the star-geometry or in the

chain geometry, with independent chain mappings for the two baths, as has been

done in Ref. [66].

ii) Since the system-bath coupling is a product of two self-adjoint operators and the

chemical potential for the bath is zero, i.e. the bath is completely empty in its

ground state, it is possible to merge the two baths into just a single one [109].
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Here, we will employ method (ii), since it requires us to simulate just a single bath.

In the following, we show the calculation on how this can be achieved, which is very

similar to the fermionic case discussed in Ref. [136]. In the first step we carry out the

substitution x→ −x for all terms involving ĉ2 or ĉ†2 operators:

Ĥ = ĤLZS + ~ωc
∫ 1

0

dx x ĉ†1(x)ĉ1(x) + ~ωc
∫ 0

−1

dx x ĉ†2(−x)ĉ2(−x)

+ ~ωc Â⊗
∫ 1

0

dxλ(x) cosh Θ(x)
(
ĉ†1(x) + ĉ1(x)

)
+ ~ωc Â⊗

∫ 0

−1

dxλ(−x) sinh Θ(−x)
(
ĉ†2(−x) + ĉ2(−x)

)
We now define an effective temperature-dependent coupling λβ(x) as

λβ(x) =

 λ(x) cosh(Θ(x)) for x ≥ 0

λ(|x|) sinh(Θ(|x|)) for x < 0
, (7.18)

with support extended to negative x ∈ [−1,+1]. We further define in a similar way

new bosonic operators as

ĉ(x) =

 ĉ1(x) for x ≥ 0

ĉ2(|x|) for x < 0
. (7.19)

The Hamiltonian can then be written as

Ĥ = ĤLZS + ~ωc
∫ +1

−1

dx x ĉ†(x)ĉ(x) + ~ωcÂ⊗
∫ +1

−1

dxλβ(x)
(
ĉ†(x) + ĉ(x)

)
. (7.20)

Notice that essentially we just mapped all the modes ĉ2 to negative frequencies. With

the Hamiltonian in this form, we have just a single environment coupled to the TLS,

with dispersion g(x) = x and temperature-dependent coupling λβ(x). Using Eq. (7.16)

this translates into an effective spectral function [109]

Jβ(ω) =
sgn(ω)J(|ω|)

2

(
1 + coth(βω/2)

)
, (7.21)

which is obtained by rewriting Eq. (7.18) into a single function. Hence, it suffices to

replace the spectral function by the effective spectral function Jβ to simulate baths at

finite temperature, which is one of the important results of Tamascelli et al.[109].

7.3.3. Chain mapping

As a final step, we map the Hamiltonian Eq. (7.20) into a tight-binding chain with

only nearest-neighbor interaction, which is very well suited for simulations with matrix
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Figure 7.3.: Chain coefficients for ohmic spectral function. a) Ohmic spectral density

J(ω) = 2α~2ωΘ(ω − ωc) with hard cut-off frequency ωc. b) Effective spectral density Jβ for

various temperatures, with support extended to negative energies. c+d) Nearest-neighbor

hoppings (c) and on-site energies (d) of the chain sites for the effective spectral densities in

panel (b).

product states. As discussed in Chapter 3 there are essentially two different possi-

bilities for the chain mapping: i) One can discretize the continuous bath and map

the discrete bath modes into a chain, using Lanczos’ tridiagonalization algorithm. ii)

By exploiting the theory of orthogonal, the continuum bath is directly mapped into a

chain without prior discretization. This can be advantageous especially when the bath

spectral function has sharp features.

Due to its simplicity, which also avoids checking convergence in the discretization,

we decided to work with orthogonal polynomials. We simply need to choose the chain

long enough such that no excitation reaches its end [123], to avoid the introduction of

finite size effects.

Let us briefly summarize the chain mapping, which is similar to the fermionic case

in Section 3.3. The star-like bath maps into a chain through a unitary transformation,

where new bosonic modes ân are introduced as

ân =

∫ +1

−1

dx Un(x) ĉ(x) , (7.22)
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with inverse transformation

ĉ(x) =
∞∑
n=0

Un(x)ân(x) . (7.23)

The transformation coefficients Un(x) = λ(x) pn(x) are built from the coupling func-

tion λβ(x) and normalized orthogonal polynomials pn(x) fulfilling the orthonormality

condition ∫ +1

−1

dx λ2
β(x)pn(x)pm(x) = δn,m . (7.24)

Notice that polynomials pn are orthonormal with respect to the weighting function

λ2
β(x). The crucial identity that allows us to map the star-like bath into a chain is the

three term recurrence relation

πn+1(x) = (x− αn)πn(x)− βnπn−1(x) , (7.25)

with recurrence coefficients αn, βn and the monic polynomials 2 πn(x).

By exploiting the previous recurrence relation it is easy to show [54] that the bath

maps into a tight binding chain, and the Hamiltonian becomes

Ĥ = ĤLZS + J0Â⊗ (â†0 + â0) +
∞∑
n=1

Jn(â†nân−1 + H.c.) +
∞∑
n=0

En â
†
nân , (7.26)

with chain coefficients

Jn=0 = ~ωc

√∫ +1

−1

dx λ2
β(x) Jn≥1 = ~ωc

√
βn En≥0 = ~ωcαn . (7.27)

Hence, all we need are the recurrence coefficients αn and βn corresponding to the

weighting function λ2(x). Notice that the coupling strength α only affects the coupling

J0 between system and first chain site, and hence does not affect any of the remaining

chain coefficients. For certain special cases at zero temperature analytic solutions are

known for the recurrence coefficients. In most cases, however, we need to calculate

them numerically. Here, we use the Matlab packages of Gautschi [133, 134].

7.4. Results: Dissipative Stückelberg interference

We investigate the effect of dissipation on the interference dynamics. In particular,

we study the ground state occupation Pgs, which in presence of the bath is given by

Pgs(t) = |〈GS(t)|ψ(t)|2 = Tr
(
|GS(t)〉〈GS(t)| ρ̂S(t)

)
, (7.28)

2These polynomials are related to the normalized polynomials pn(x) through a rescaling, such that

the coefficient an of the leading power of πn(x) = anx
n + an−1x

n−1 + ... + a0 is equal to one,

an = 1.
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Figure 7.4.: Dissipative LZS interference. a+c) Probability to find the TLS in its

ground state at the end of the annealing as a function of the interference time τ . Stückelberg

oscillations are suppressed as the system-bath coupling α (a) or temperature T (c) is in-

creased. b) Dynamics of the instantaneous ground state probability for different system-bath

couplings α. The dynamics shows strong α-dependence only after the second LZ crossing,

where interference takes place. d) Dynamics of the coherence |Γ(t)|, Eq. (7.29), which is the

off-diagonal matrix element of the reduced density matrix of the TLS in the instantaneous

eigenbasis. The decay of coherence takes place between the two LZ crossings and is respon-

sible for the disappearance of interference effects. The color code is the same as in panels

(a,b). In panels (b+d) the temperature is kBT = 3∆ and the interference time is fixed to

τ = 5.4~/∆.

where |ψ(t)〉 is the pure state of the TLS-plus-bath, and ρ̂S(t) = Trbath |ψ(t)〉〈ψ(t)| is

the TLS’s reduced density matrix obtained by tracing out the bath.

As we have seen previously for the coherent (non-dissipative) case, Pgs taken at the

end of the dynamics shows Stückelberg oscillations as we change the duration of in-

terference τ . Turning on the system-bath coupling α, we find that the amplitude of

the Stückelberg oscillations decays as we increase α, see Fig. 7.4(a). Moreover, we find

the oscillation amplitude to decrease even stronger for long interference times, which

is easy to understand. As we increase the interference time τ between the avoided

crossings, the bath can act longer on the dynamics of the TLS. Hence, it is benefi-

cial to keep the interference time as short as possible in order to observe Stückelberg

oscillations. Usually, the coupling strength is determined by the underlying physics,
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and can not be controlled experimentally. The temperature of the environment, on

the other hand, can be accessed and sometimes even controlled, e.g., when the bosonic

environment describes the vibration (phonons) of a molecule. As shown in Fig. 7.4(c),

the temperature of the environment plays an important role for the observation of

Stückelberg oscillations. As one might expect, high temperature is detrimental for the

observation of quantum effects, and hence leads to a suppression of interference effects

as well, similar to the increase of system-bath coupling. Note that even the coupling to

an environment at zero temperature leads to dissipation. Here, the environment acts

as a vacuum in spontaneous emission, allowing the quantum system to lose excitations

incoherently into the bath.

To understand the mechanism that leads to the decay of Stückelberg oscillations,

let us investigate the dynamics of the instantaneous ground state occupation, see

Fig. 7.4(b), for a fixed interference time with maximum interference at α = 0. The

dynamics shows very little α-dependence up to the second LZ avoided crossing. Hence,

the bath is too weak to drive a transition from the ground to the excited state or

vice-versa. However, after the second LZ transition where interference takes place, the

curves strongly deviate from each other. While the bath is not strong enough to drive

a direct transition between the energy eigenstates of the TLS, it can destroy interfer-

ence. This is can be understood from the dynamics of the quantum coherence, which

is defined as the off-diagonal element of the reduced density matrix of the TLS, ρ̂S, in

the instantaneous eigenbasis

Γ(t) = Tr
(
|GS(t)〉〈EXC(t)|ρ̂S(t)

)
. (7.29)

Interference can only be observed if there is a well-defined phase between the two

interfering states, the ground and the excited state of the TLS. This phase is encoded in

the coherence Γ(t), and hence its magnitude |Γ(t)| quantifies the ability of the system

to show interference. In absence of the environment, |Γ(t)| takes its maximum value

0.5 between the LZ transitions, corresponding to a coherent 50:50 occupation of ground

and excited state. In contrast to the populations, the coherence is strongly affected by

the presence of the bath, and decays in time, Fig. 7.4(d), thereby reducing the systems

ability to show interference.

Clearly, the decay of coherence is caused by the interaction of the TLS with the envi-

ronment. While the TLS is initially decoupled from the environment, and hence they

are not entangled, the interaction unavoidably creates entanglement between them.

We can quantify the system-bath entanglement of the state |ψ〉 using the entangle-

ment entropy

S = −
∑
j

λ2
j log λ2

j , (7.30)
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Figure 7.5.: System-bath entanglement and pureness of the TLS. a) Dynamics of

the entanglement entropy between the two-level system and the thermal bath, for different

system bath couplings α. The dashed line represents the maximum possible entanglement

entropy S = log(2). b) Length of the Bloch vector of the TLS, quantifying its pureness. The

interference time is τ = 5.4~/∆ and the bath temperature is kBT = 3∆.

where λj are the Schmidt coefficients of the Schmidt decomposition of the state |ψ〉

|ψ〉 =
∑
j

λj|φSj 〉 ⊗ |φBj 〉 . (7.31)

As one might expect, the rate at which entanglement builds up increases with the

interaction strength α, see Fig. 7.5(a), and similarly with temperature (not shown).

Notice that even a coupling of α = 0.020 almost leads to the maximum possible entan-

glement entropy of log(2). Hence, using a weak coupling approach that exploits the

Born approximation would not be valid here, and might eventually fail.

In our approach, the TLS and the bath are considered a closed quantum system.

Hence, the initially pure state of the TLS is getting mixed as a consequence of the

creation of entanglement. Its reduced density matrix is given by

ρ̂S =
∑
j

λ2
j |φS,j〉〈φS,j| . (7.32)

We quantify the purity of the TLS through the length of the Bloch vector R =√
〈σ̂x〉2 + 〈σ̂y〉2 + 〈σ̂z〉2. In general, R = 1 for a pure state, while any state with R < 1

is mixed. We find R to start from R = 1 and decay in time. Again, the decay is faster

for stronger system-bath coupling with a lower final value. For our strongest coupling,

the TLS is almost in the fully mixed state, characterized by R = 0, in agreement with

the entanglement entropy being close to its maximum possible value.
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Figure 7.6.: Effect of the systems coupling operator Â. a) Probability to find the

system in its ground state at the end of the dynamics for different interaction operators Â,

at fixed system-bath interaction α = 0.005 and bath temperature kBT = 3∆. The coupling

Â = σ̂x reduces Stückelberg oscillations as compared to Â = σ̂z. b) Dynamics of the ground

state population for different τ and coupling to the bath through Â = σ̂x.

7.4.1. Effect of the coupling operator Â

So far, we have considered only the case where the TLS is coupled to the bath

through the Pauli operator Â = σ̂z. Here we study the effect of the choice Â = σ̂x. We

find that this coupling leads to reduced Stückelberg oscillations as compared to our

standard case Â = σ̂z, with an additional shift upwards. While the local maxima show

little Θ-dependence, the minima tend to move to higher ground state populations. We

can easily understand this trend from the dynamics of the ground state occupation

(see Fig. 7.6(a)). Up to the second avoided crossing the dynamics is barely affected by

the coupling angle Θ. After the second LZ process, however, the bath pushes the TLS

towards the ground state, leading to a linear increase of Pgs. This is not possible for

Â = σ̂z as the instantaneous eigenstates of the TLS are approximately eigenstates of

Â for h(t)� ∆ and hence the populations are conserved.

7.4.2. Sub- and Super-ohmic spectral functions

Thanks to the flexibility of the method employed, we are able to use basically any

spectral function [55], and hence we can study the effect of the functional form of J(ω).

Here, we consider power-law spectral functions with a sharp cut-off ωc, characterized

through the exponent s, see Eq. (7.8).

In Fig. 7.7 we show the dependence of the Stückelberg oscillations with s: At fixed

coupling and temperature, we find that the amplitude of the oscillations is strongly

reduced in the sub-ohmic regime, while dissipative effects are less pronounced at super-

ohmic coupling. Qualitatively this is consistent with the reduction of the critical cou-
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Figure 7.7.: Sub- and super-ohmic spectral functions. Stückelberg oscillations for

sub- and super-ohmic spectral functions, characterized through the exponent s. System-

bath coupling is α = 0.01 and environmental temperature is kBT = 3∆. At fixed coupling,

sub-ohmic spectral functions suppress interference effects much stronger than ohmic and

super-ohmic spectral functions.

pling αc separating the localized and delocalized phase at T = 0: Effectively, sub-ohmic

spectral functions couple stronger to the TLS, and hence reduce the Stückelberg oscil-

lations even more.

7.5. Optimal annealing velocity

So far we have considered the annealing velocity to be fixed such that a single perfect

Landau-Zener sweep leads to a ground state population of 1/2. In absence of dissi-

pation, we find perfect Stückelberg oscillations for this choice. However, dissipation

reduces the amplitude of these oscillations, with a damping effect that increases with

the interference time. If we are interested in the observation of interference effects, it is

beneficial to keep the interference time as short as possible. In this section, we analyze

how the modification of the annealing velocity affects the visibility, a measure for the

oscillation amplitude.

We focus on the first Stückelberg oscillation, around τ = 3~/∆ for v = vopt, and

observe the ground state occupation to be shifted upwards as we increase v, see Fig. 7.8.

This shift is due to modified LZ probabilities. A fast LZ sweep increases the population

of the excited state after the first avoided crossing, but then leads to increased ground

state occupation after the second LZ transition. On the other hand, the oscillation

period is reduced, and hence the first oscillation locates at smaller interference times

τ . Let us define the visibility to be the difference in ground state population at the

local minimum and maximum, see Fig. 7.8(a). Note that very fast annealing reduces
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Figure 7.8.: Optimal working point for visibility: a) Probability to end up in the

systems ground state, for different annealing velocities. Faster annealing reduces the period

of Stückelberg oscillations and shifts the curves upwards. We define the visibility to be the

difference between maximum and minimum of the first full oscillation. b) Visibility as a

function of the annealing velocity v for different system-bath couplings α.

the system’s ability to show interference between ground and excited state, due to the

modified LZ probabilities. On the other hand, fast annealing reduces the overall time

of the protocol, giving the environment less time to destroy coherence. Those two

opposite effects lead to an optimal annealing velocity, where the visibility is maximum,

see Fig. 7.8(b). Similar observations were made in the context of dissipative adiabatic

quantum annealing, where the competition between adiabaticity and dissipation results

in an optimal annealing time [166]. With this intuitive understanding in mind, it is not

surprising that the optimal annealing velocity increases with the system-bath coupling

strength α.

7.6. Conclusions

In this chapter we have studied the effect of dissipation on the LZS interferometer

employing a numerically exact technique based on matrix product states, see Ref. [109].

We have shown that, as one would expect, interference effects are suppressed once the

two-level system is coupled to an environment, due to the rapid decay of coherence.

The Stückelberg oscillations decrease in a very similar manner as the system-bath

coupling or the temperature of the bath are increased. Even at system-bath couplings

of the order of α = 0.01 — which are usually still considered small — we found the

TLS to become strongly entangled with the bath, implying an almost fully mixed state

for the TLS. We have shown that the interferometer has an optimal working point for

the annealing velocity, where interference effects can be observed best. This optimal

working point emerges from the competition of the optimal velocity in the coherent

case and dissipation. In absence of the bath, the visibility is maximum when the

annealing velocity leads to a 50:50 population of ground and excited state between
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the two avoided crossings. On the other hand, the effects of dissipation favor a short

interference time, to reduce the loss of coherence. Hence, the globally best annealing

velocity is higher than in the coherent case.

Experimentally it might be possible to realize the LZS interferometer also with highly

controllable systems of trapped ions. Rather than exploiting internal electronic levels

to build the qubit, one could use the ion in an effective double-well potential as a two-

level system [169]. Here, the two levels correspond to the particle being in the left or

right well, and the time-dependence could be realized through suitable manipulation of

the external potential. Similar experimental setups [170–173] were employed to study

(classical) friction [174, 175], but might be extended to study quantum effects as well.

Indeed, it would be particularly interesting to see if such a system does show quantum

effects such as LZS interference.

7.7. Outlook

In this chapter, we have explored the possibility to carry out time-dependent nu-

merically exact simulations of the spin-boson model. However, due to the LZS inter-

ferometer showing signatures of interference only at weak coupling, α � 0.1, we have

restricted ourselves to this regime. To demonstrate the capabilities of the method, let

us now discuss the combination of time-dependent driving plus strong coupling for fu-

ture applications. Consider the spin-boson model, see Section 7.2, with strongly driven

time-dependent σ̂z coupling

h(t) = εdr cos(ωdrt) , (7.33)

where εdr and ωdr define the driving power and frequency, respectively. This model

has been realized already with a superconducting qubit that is coupled to an electro-

magnetic environment [7]. After initializing the qubit in state |↑〉 and the bath in its

thermal state with no correlation between them, we are interested in the dynamics of

the qubit’s expectation value 〈σ̂z〉, which is the relevant quantity that relates to the

experimentally accessible transmission. We fix a temperature of kBT = 0.26∆, corre-

sponding to the experimental values ∆/2π~ = 7.23GHz and T = 90mK, a high energy

cut-off ~ωc = 10∆, a driving frequency ~ωdr = 1.5∆ and the experimental system bath

coupling α = 0.21, which is one order of magnitude larger than previously.

At zero driving power, we find the spin to relax towards 〈σ̂z〉 = 0, as known from

the static case [123], with only little oscillations. As the driving power increases, we

find oscillations to emerge around the static curve, with amplitudes increasing with the

driving power. The results demonstrate our capabilities to simulate non-equilibrium

open system dynamics in experimentally relevant regimes.
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Figure 7.9.: Two-level system dynamics. Dynamics of the spin expectation value 〈σ̂z〉
for different driving powers εdr, at fixed system bath coupling strength α = 0.21, driving fre-

quency ωdr = 1.5∆ and temperature kBT = 0.26∆, similar to the values in the experimental

realization of Ref. [7]. In absence of driving, the spin dynamics relaxes, due to the coupling

to the environment, while at stronger driving spin-oscillations are visible.
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In this thesis, we have discussed how to efficiently simulate real-time dynamics of

quantum systems interacting with finite temperature macroscopic environments using

matrix product states. We have focused on essentially two cases, where macroscopic

environments of free particles play a crucial role: The Anderson impurity model, rel-

evant in the context of the Kondo effect and dynamical mean-field theory, and the

spin-boson model, as a paradigmatic realization of an open quantum system.

Starting with the Anderson model in Chapter 3, we have recapitulated the two ma-

jor existing simulation geometries that can be employed in MPS simulations: The star

geometry and the chain geometry. We have argued that an independent chain mapping

for bath modes above and below the baths’ chemical potential combines the advantages

of the two geometries, namely low entanglement and short-range interactions. Further-

more, we have shown that this approach neatly generalizes to finite temperatures when

exploiting the so-called thermofield transformation, which allows us to represent finite

temperature density matrices as pure states of an extended Hilbert space.

In Chapter 4 we have presented a detailed numerical analysis of the chain mapping

approach developed in Chapter 3. In particular, we have addressed the question of how

to order the fermionic sites within an MPS, for the example of a sudden quench in the

SIAM. We have shown that the naive implementation of the Hamiltonian according

to its geometric structure leads to a massive growth of entanglement within the MPS

at finite temperature, due to the creation of particle-hole pairs in the two chains. As

a solution to this problem, we have introduced an interleaved ordering, where the

chains are merged by alternating sites from the two chains. Due to particle-hole pairs

staying localized in this geometry, entanglement is significantly reduced, allowing for

much longer simulations at lower numerical cost. We exploited this technique to study

the dynamics not only of the impurity, but also the macroscopic bath, revealing clear

signatures of many-body effects.

Chapter 5 has been devoted to the calculation of Green’s and spectral functions, as

relevant for Kondo-related problems and the dynamical mean-field theory. We provided

evidence that the separated chain mapping reduces the amount of entanglement as

compared to both the star and chain geometry at T = 0, while additionally allowing

for finite temperatures. Furthermore, at finite temperatures, we have shown that the

equilibrium state required for the calculation of Green’s functions can be prepared

through real-time evolution. However, it is still an open question whether or not there
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are more efficient ways to prepare finite temperature steady states, as will be discussed

below.

In Chapter 6 we have employed the previously developed technique to compute

dissipation in the driven single impurity Anderson model, as relevant for currently

ongoing pendulum AFM experiments [157]. We have shown that it is possible to

simulate the real-time dynamics with explicit time-dependence and to calculate the

dissipation from the total energy of the system. Preliminary results indicate that the

mechanism of moving the impurity energy level contains little contribution of the Kondo

effect, in contrast to mechanisms where the hybridization is modified in time [153, 154].

However, further research is required on these issues, especially when experimental

results are available.

The last chapter instead deals with bosonic environments, as regularly employed to

model open quantum systems. We have explored the possibility to simulate real-time

dynamics with explicit time-dependence employing the numerically exact technique de-

veloped in Ref. [109], which is very similar to the approach we chose for fermionic baths

but exploits additional properties of the spin-boson model. We have shown that the

presence of a dissipative bath heavily reduces interference effects in quantum interfer-

ometry, due to the increasing system-bath entanglement. The presence of dissipation

also leads to an optimal working point in the annealing velocity, due to the competition

of dissipation and coherent dynamics, where interference effects are maximum.

8.1. Future perspectives

Clearly, there are still several open questions and problems.

On the physical side, further analysis of the issue regarding dissipation in presence of

the Kondo effect is required. It is currently unclear in which scenarios one can detect

signatures of the Kondo effect in dissipation measurements, both in theoretical models

and in pendulum AFM experiments. Most importantly, the role of the slow driving of

the tip in the experiment and its relation to the typical time scales of the Kondo effect

are unknown and require further investigation.

On the technological side, further improvements for DMFT impurity solvers, the

simulation of multi-bath models for quantum transport, and the efficient computation

of steady states are possible, as discussed in more detail below.

Multi-orbital DMFT. Regarding the topic of DMFT impurity solvers, it is clear that

in the next step one should implement the actual DMFT loop, which we have not done

so far. Indeed, it would be very interesting to consider directly the two orbital case.
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Figure 8.1.: Possible orderings for a two-orbital model. Two SIAMs are interacting

through the impurities. b) Chain mapping using the double-chain method with alternat-

ing filled and empty chain sites. The baths corresponding to the impurities are spatially

separated. c) Chain ordering with additional alternation of the two baths, introducing inter-

actions over a longer range. Such ordering might be able to better capture the dynamics of

excitations.

Consider the two band model

Ĥ2-band = ĤSIAM,1 + ĤSIAM,2 + Ĥd−d , (8.1)

built from two SIAMs, ĤSIAM,1 and ĤSIAM,2, and an interaction between the impurities,

Ĥd−d, which we do not specify explicitly here. Since similar “dimeric” structures have

been successfully studied with the original chain mapping [38], it should be doable

without any major issues with our two-chain approach as well. This model is in-

deed of crucial importance. As pointed out in Ref. [40], in multi-orbital scenarios the

entanglement grows the most between different SIAMs. Hence, understanding the en-

tanglement dynamics in more detail is key to further improve tensor-network-based

impurity solvers. For example, we have seen that at finite temperature it can be highly

beneficial to merge the two chains of the SIAM, which emerge from the thermofield
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transformation. Similarly, one could ask if improvements are possible by merging the

two baths corresponding to different SIAMs.

In Fig. 8.1(a) the model is visualized in the star-geometry. Again, a direct simulation

of such a model is indeed possible [35, 53] and provides a promising path for future

development. On the other hand, we can once again employ a chain mapping, with in-

dependent mappings for filled and empty chains of the two baths, see Fig. 8.1(b). Here

we have already visualized it with interleaved empty and filled chains corresponding to

the same bath, but with separation of the two baths. Since entanglement tends to grow

most in between different impurity models [40], it is clear that further improvements

are only possible when merging the baths in some way. In the chain geometry, this

could be achieved by simply merging not only empty and filled chains, but also chains

corresponding to different baths, see Fig. 8.1(c). Of course, this will make the inter-

actions more long-ranged, but might eventually reduce the growth of entanglement.

Notice that for the special case of zero or weak interaction between the impurities such

ordering would be inefficient as entanglement would only grow slowly between the two

SIAMs, but might be beneficial at stronger interactions. However, further analysis is

required on these issues.

Equilibrium steady state. For the calculation of the spectral function in Chapter 5

we have prepared the finite temperature equilibrium state through real-time evolution:

After turning on the hybridization between impurity and free electron bath at finite

temperature, the system is evolved until reaching the equilibrium state. While the

obtained results have been very accurate, such procedure clearly is numerically de-

manding, due to the requirement for long real-time dynamics. Hence, it would be a

major improvement if the equilibrium state could be determined through a variational

algorithm, similar to DMRG for ground states. In this paragraph, we discuss some

thoughts and ideas on how this might be achieved.

Consider the SIAM with chain mapping and interleaved MPS ordering, see Fig. 8.2(a),

as discussed in Chapter 4. In Section 5.4 we have shown that in the chain geometry,

after turning on the hybridization interaction, local observables of chain sites converge

towards a steady-state value. In particular, chain sites close to the impurity are found

to equilibrate faster than sites far away from the impurity, as one would expect intu-

itively. Consequently, it is reasonable to expect the reduced density matrix of impurity

and chain sites to converge in the long-time limit, where, once again, chain sites closer

to the impurity equilibrate faster. Suppose that we let the system evolve for some time

until chain sites within the box of Fig. 8.2(a) have equilibrated. Then the corresponding

MPS tensors should be constant in time up to some global phase.
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Figure 8.2.: MPS equilibration in chain geometry. a) The SIAM in chain geometry

with separate chain mapping for filled and empty modes. The MPS is ordered with interleaved

geometry, see also Chapter 4. The box encircles the impurity and the first two chains sites

of both filled and empty chains, representing the ”system”, while the remaining sites of the

chains are considered an effective environment. b) One idea to deal with the infinitely long

chain is to replace the environment section with an effective description, hence discarding the

chain, for example using Lindblad operators. c) The reduced density matrix of the encircled

sites can be built by mirroring the system and connecting the open bond links of the MPS.

Notice that no physical legs are drawn here.

Can we design a DMRG-like variational algorithm that directly yields the equilib-

rium MPS tensors of chain sites that are “close” to the impurity?

Question

One way to look at the problem is to treat the impurity and several chain sites as the

“system”, as visualized by the box in Fig. 8.2(a), while the rest of the infinitely long

chain is considered to be an effective environment. It is currently an open question

how to deal with this effective environment. For example, one might simply replace the

infinitely long chains with Lindblad operators, see Fig. 8.2(b), which could deliver parti-

cles and holes into the filled and empty chains of the system. Such an approach requires

working with the reduced density matrix of the “system”, as visualized in Fig. 8.2(c).

The condition for the steady-state reduced density matrix, d
dt
ρ̂ = 0, can then be trans-

lated into a ground state search problem that can be solved via DMRG [176]. The

crucial part of this idea, however, is to find an accurate and efficient way to mimic the

infinitely long chains and to replace them. However, it is currently unclear if this can

be done with Lindblad operators in some way, or if there are other possibilities.
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A. Tensor network operations and

algorithmic details

In this chapter we provide some additional information on elementary tensor network

operations and the algorithms discussed in Chapter 2. In Appendix A.1 we discuss the

reshaping procedure to transform a tensor into a vector and vice versa. This is very

important as linear algebra routines such as singular value decomposition (SVD) or

eigendecomposition usually work with matrices and vectors, and hence we need to re-

shape our tensors. The particular example of an SVD is presented in Appendix A.2,

where we discuss different possibilities to carry out an SVD of a rank-3 tensor de-

pending on how the indices are merged. Understanding these differences is crucial in

MPS algorithms, as it affects the resulting tensors and their orthogonality properties.

Finally, in Appendix A.3 we show how the TDVP equations in Eq. (2.31) can be solved

efficiently.

A.1. Reshaping

In tensor networks we often deal with tensors of rank r > 2. However, mathematical

routines such as QR or singular value decomposition are built for matrices only. Hence,

we need to reshape the tensors into matrices or vectors before applying linear algebra

routines on them. Consider a tensor with at least two indices, which are called i and

j. Merging those two indices into a single index k corresponds to the mapping given

in Table A.1: Every combination of index values i and j is labeled by a unique value

of the index k. This procedure is similar to the creation of a Hilbert space from two

smaller subsystem through the use of the tensor product.

Notice that the reverse is possible as well: The index k can be split into indices i and j

through the mapping in Table A.1. The usual procedure we encounter in tensor network

algorithms is as follows: 1) We merge the indices of a tensor to obtain either a matrix

or a vector as required. 2) We perform a single or multiple linear algebra operations

on the matrix/ vector, such as an QR decomposition, SVD, numerical optimization or

time evolution. 3) We split the indices to bring the MPS in its original form.
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Table A.1.: Merging two tensor indices: Any two indices i and j of a tensor can be

merged into a single (vector-)index k. To this end we label all possible combinations of i and

j with a unique number k. In this example, i = 1, 2 and j = 1, 2, 3.

Tensor indices i, j Vector index k

1,1 1

1,2 2

1,3 3

2,1 4

2,2 5

2,3 6

A.2. Singular value decomposition for tensors

The singular value decomposition is one of the most important routines in tensor

network algorithms. We can compute the SVD for any arbitrary matrix A ∈ Cm×n,

which is given by

A = UDV †, (A.1)

where U ∈ Cm×min(m,n) has orthonormal columns, V † ∈ Cmin(m,n)×n has orthonormal

rows, and D = diag(λ1, .., λmin(m,n)) is real diagonal. This implies U †U = 1 and

V †V = 1, a property that is essential in tensor network algorithms as it allows to set

the orthogonality center of the (loopfree) network. Consider now a rank-3 tensor A

with elements Ai1,i2,i3 . There are multiple ways to compute the SVD of this tensor,

depending on how we merge the indices. For example, we can merge i1 and i2 to build

the row index of the matrix, while the column index is i3. Then the SVD is given by

Ai1,i2,i3 =
∑
k1,k2

Ui1,i2,k1 Dk1,k2 V
†
k2,i3

, (A.2)

as visualized in Fig. A.1(a). Note that i1 and i2 are indices of the tensor U , while i3 is

an index of V †. The orthogonality property of the SVD matrices U and V † translates

into ∑
i1,i2

Ui1,i2,k1U
?
i1,i2,k′1

= δk1,k′1
and

∑
i3

V †k2,i3
(V †k′2,i3

)? = δk2,k′2
(A.3)

Graphically the orthogonality property of a tensor is visualized by the triangular shape,

where legs going into the triangle are those we sum over in the orthogonality condition

Eq. (A.3) (here i1 and i2). Alternatively, we can do the SVD in a different way: For

example, we can merge i2 and i3 to build the column index and use i1 as row index.

In this case the SVD yields

Ai1,i2,i3 =
∑
k1,k2

Ũi1,k1 D̃k1,k2 Ṽ
†
k2,i2,i3

. (A.4)

Fig. A.1(b) shows that the leg i2 is now an index of Ṽ †. Hence, by properly merging

indices prior to the SVD, we are able to choose if an index will be in U or V †.
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Figure A.1.: SVD of a rank-3 tensor: a) The SVD is performed on the matrix with

joint row index (i1, i2) and column index i3. Hence, i1 and i2 are indices of U , while i3 is an

index of V †. Tensors U and V † satisfy the orthogonality condition Eq. (A.3), indicated by

the triangular shape in graphical notation. b) SVD of tensor A when merging i2 and i3 to

build the column index, while row index is just i1. Consequently, i2 is now an index of Ṽ †.

A.3. Solving a TDVP equation

In this section we discuss in some detail how the TDVP equations in Eq. (2.31) can

be solved efficiently, following the ideas of Ref. [116]. First, we notice that there are

two types of differential equations (DEs), corresponding to the two types of projectors,

P
(+)
m and P

(−)
m . In this section, however, we will restrict ourselves on the differential

equations containing P
(+)
m , as the case for P

(−)
m is similar. Consider the differential

equation

i~
∂

∂t
|ψ(t)〉 = P̂ (+)

m Ĥ|ψ(t)〉 (A.5)

with P̂
(+)
m as given in Eq. (2.27) and Fig. 2.9.

In the first step we build the 2-site orthogonality center by contracting the two ten-

sors to evolve, drawn in red, Fig. A.2(a). This is necessary so solve the differential

equation later on. Before moving on with the details of the algorithm, let us intro-

duce the notation we use throughout the section. The MPS can be split into three

important parts, as indicated by different colors in Fig. A.2(a). The three parts are

the left-orthogonal tensors with physical indices i1, .., im−1 (blue), the 2-site orthog-

onality center T (m) with physical indices im and im+1 (red), see Eq. (2.18), and the

right orthogonal tensors with indices im+2, .., iL (green). We simplify the notation by

representing each of the three parts by just a single tensor symbol. Notice that the

contraction of right (left) orthogonal tensors remains right (left) orthogonal, and hence

is represented by a triangle as well. In practical applications, however, the contraction

of left and right orthogonal tensors is — in contrast to the contraction of the two center

sites —never carried out, as it is highly inefficient.
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Let us now go back to the TDVP equation of interest, Eq. (A.5). The left hand

side, i~ ∂
∂t
|ψ(t)〉 contains the derivative of the state with respect to time. Employing

the simplified MPS notation, the derivative is given in Fig. A.2(b), where the product

rule has been used. We obtain three terms, each of them containing a derivative of a

tensor with respect to time, as indicated by the dot above the corresponding tensor.

The right hand side of Eq. (A.5) contains the application of the Hamiltonian Ĥ and the

projector P̂
(+)
m on the state |ψ(t)〉, visualized in Fig. A.2(c). Notice that the projector

is the same as in Fig. 2.9(a), but represented in the simplified notation. In the orange

box we identify the effective Hamiltonian, obtained when contracting the left and right

orthogonal tensors into the Hamiltonian. It acts solely on the 2-site orthogonality

center T (m), and produces a new tensor that is inserted in between the left and right

orthogonal tensors.

To solve the TDVP equation, Eq. (A.5), we need the left and right hand side to be

equal (dropping the factor i~ for the moment). Comparing Fig. A.2(b) and Fig. A.2(c)

we realize that they can be made equal by choosing the derivative of the blue and green

tensors to be zero. Hence, only the second term of the product rule in Fig. A.2(b)

remains, where the derivative of T (m) is taken. Comparing this term with Fig. A.2(c),

we find that the two diagrams are equal, and hence the TDVP equation is solved,

provided

i~
d

dt
T(m) = + Ĥ

(m)
eff T(m), (A.6)

as visualized in Fig. A.2(d). Hence, the TDVP equation can indeed be solved by

making only the orthogonality center T (m) time-dependent, keeping all the remaining

tensors constant. For the second type of TDVP equation,

i~
∂

∂t
|ψ(t)〉 = −P̂ (−)

m Ĥ|ψ(t)〉 (A.7)

(A.8)

a similar analysis can be carried out. One finds that the DE is solved by making only

thesingle site orthogonality center A(m+1) time-dependent, evolving it as

i~
d

dt
A(m+1) =−K(m+1)A(m+1) . (A.9)

Here, K(m+1) is the corresponding single site effective Hamiltonian as given in Fig. 2.7(d).

As discussed in the main text, the effective DEs for the 2-site orthogonality center and

1-site orthogonality center can be solved numerically using Krylov subspace techniques.

However, there is one one additional step to be taken when solving the DE for the 2-site

tensor T (m): In order to restore the MPS format, it needs to be split into two tensors

again by means of an SVD.
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Figure A.2.: How to solve a TDVP equation: a) MPS in mixed canonical gauge. For

the sake of simple notation we represent all left orthogonal tensors (blue), and the right

orthogonal tensors (green) in a single tensor each. In the short notation each physical index

is a joint index representing several physical sites as given in brackets. Further, we carry out

a real contraction of the center tensors A(m) and A(m+1) (red) to form the 2-site orthogonality

center T (m) (red), see also Eq. (2.18). b) Left hand side of the TDVP equation, Eq. (A.5).

Using the product rule for derivatives we have three terms, where in each term there is a

derivative of a tensor with respect to time, as indicated by the dot. c) Right hand side of

Eq. (A.5), where the Hamiltonian Ĥ and the tangent space projector P̂
(+)
m are applied on

the MPS. The tensors in the orange box define an effective Hamiltonian for the orthogonality

center (red tensor). d) Differential equation for the orthogonality center, see Eq. (A.6).
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We provide here additional details for the simulations discussed in Section 5.3.

B.1. Parameters and numerical details

In our tensor network simulations we have two crucial parameters to restrict the

number of states kept in the MPS: 1) first, we have the truncated weight, correspond-

ing to the summed probability of discarded states; 2) second, we also use a hard cutoff

on the number of states we keep, the so-called bond dimension. We use a small trun-

cated weight, of wt = 10−12, and a maximum bond dimension of, typically, D = 150.

Only for the zero temperature simulations with the standard chain mapping, the bond

dimension was increased to D = 400, in order to deal with the increase of entangle-

ment. For all real time evolutions we use time steps in the range ∆t = 0.01− 0.02~/Γ.

(The largest energy scale in our system is given by the half bandwidth W = 10Γ.) We

verified that our results are converged in all relevant numerical parameters. We further

found that setting a minimum bond dimension of Dmin u 20 (i.e., keeping even some

states with low probability) can be beneficial for the numerical stability of the time-

dependent variation principle (TDVP) approach we have adopted when dealing with

next-nearest neighbohr interactions, see also Section 4.4.4 for details. We confirmed

that 2-site TDVP delivers accurate results, by comparison of different MPS orderings.

We compared our results with simulations employing the two separated chains ordering

(see Fig.1(d) in the main text). Here, projection errors are absent due to the Hamilto-

nian terms being at most nearest neighbohr in distance [50]. The “separated chains”

ordering works fine at low temperatures, where we carried out the comparison, but

shows strong entanglement growth for higher temperatures, see Chapter 4.

In our simulations, we explicitly exploit conservation of particle number and spin to

speed-up the calculations [120, 177, 178]. We have previously seen that equilibration is

faster for higher temperature. For this reason, we use different equilibration times τ =

32~/Γ (kBT = 0.05Γ), τ = 12~/Γ (kBT = 0.15Γ), τ = 6~/Γ (kBT = 0.5Γ), and τ =

4~/Γ (kBT = 4Γ). Green’s functions are computed up to time tf = 7.5~/Γ (finite T ),

tf = 30~/Γ (T = 0, U = 2.5πΓ) and tf = 40~/Γ (T = 0, U = 3.25πΓ) before applying

the “linear prediction method” to extrapolate the exponential tail [38, 141, 142], as

explained in Appendix B.3.
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Figure B.1.: Entanglement entropy along the MPS at our final time t = 30~/Γ at zero

temperature, for the symmetric SIAM. At T = 0 we separate spin-up and spin-down degrees

of freedom into two chains, connected in the middle (see also Fig. B.3). Two different bath

sizes Nb = 279 and Nb = 559 are considered, where L/2 labels the middle of the MPS. Note

that the curves are centered around L/2 such that the smaller Nb curve does not extend to

the boundaries of the window. During time evolution the nonzero entanglement region grows

continuously (see Fig. B.3) and almost reaches the end of the Nb = 279 chains. Hence, any

further evolution with this discretization would lead to significant errors in the dynamics.

Finally, let us discuss the discretization issue. In the dynamical case, which employs

the equilibration procedure, we are able to work directly in the continuum limit Nb →
∞ using orthogonal polynomials, as discussed previously. In practice, we truncate the

infinitely long chain such that no excitation — being either a particle in the empty chain

or a hole in the filled chain — does reach the end of the chain during the dynamics [123].

Clearly, this does not introduce any error, since the truncation does not have any impact

on the quantum state at any time (as long as the chain is long enough). At T = 0

instead, where DMRG can be used to calculate the equilibrium (ground) state, we use

linear discretization of the bath. This turned out to yield more accurate results for the

ground state. For the calculations of Green’s functions at T = 0 we linearly discretized

the bath into Nb = 559 modes, mapping 280 modes to the empty chain and 279 modes

to the filled chain in our approach. We observed convergence with respect to Nb.

B.1.1. Performance dependence on bath size

For practical applications it can be crucial to have a fine discretization of the bath,

in order to sample the hybridization function as accurate as possible. However, fine

discretization translates into a large bath with many discrete conduction band levels.

For an algorithm to be efficient, we require it to scale well with the number of bath

modes. We investigate this issue by analyzing the entanglement entropy at the end

of our zero-temperature Green’s function calculation (see Fig. B.1). We find that the

number of bath sites — translating into the equivalent number of chain sites — barely
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Figure B.2.: Error |G<ref(t) − G<D(t)| in the lesser Green’s function as compared to the

reference simulation (D = 250, wt = 10−14), for different bond dimensions D (wt = 10−12).

The symmetric SIAM is considered, with εd = −1.25πΓ and U = 2.5πΓ, and temperatures

kBT = 0 (a), kBT = 0.15Γ(b) and kBT = 4Γ (c). We consider different maximum simulation

times depending on temperature due to the faster decay of the Green’s function at higher

temperature.

affects the entanglement structure in the MPS. Within the region reached by excitations

(nonzero entanglement) differences between the two curves are negligible. The larger

bath has an extended region not reached by any excitation, and, since the state has

zero entanglement there, time evolution is very efficient. Hence, our approach shows

excellent scaling with the number of sites and allows to accurately simulate discretized

baths without any significant increase of computational costs.

B.1.2. Convergence with bond dimension D

In tensor network algorithms, the bond dimension D is the key numerical parameter,

defining how many states are kept at each bond, hence determining the accuracy of

the simulation. For an algorithm to be efficient, it is crucial that the results converge

sufficiently fast with respect to the bond dimension. Since no exact results are available,

we investigate the convergence of the Green’s function as compared to a reference

simulation with large bond dimension D = 250 and small truncated weight wt =

10−14. We define the error to be the difference |G<
ref(t)−G<

D(t)| between the reference

simulation and simulations with bond dimension D and the usual truncated weight

wt = 10−12. In Fig. B.2 we show the convergence of the lesser Green’s function with

respect to the bond dimension at different temperatures. We find already qualitatively

good results at bond dimensions as low as D ∼ 50, improving further when increasing

D, as expected. For our simulations in the main paper we used D = 150, to reduce

numerical errors to a minimum.
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Figure B.3.: Top: Ordering of the sites in the MPS for our chain mapping based method

(left) and the star geometry (right). At T = 0 we split spin degrees of freedom into two

chains, due to the reduced amount of entanglement. Grey symbols represent impurity sites,

while black and white symbols correspond to modes that are filled and empty (in absence

of hybridization), respectively. Bottom: Entanglement entropy along the MPS during the

calculation of the greater Green’s function at T = 0 and different times t, for the symmetric

SIAM.

B.2. Comparison with the star geometry

In the main text we already discussed the entanglement entropy of our approach,

showing that it is significantly lower as compared to the original chain mapping. How-

ever, it has been shown by Wolf et al.[39] that the original chain-mapping-based ap-

proach is rather inefficient, and a direct simulation in the star geometry can reduce

the entanglement in the MPS. For our comparison we employ the MPS ordering of

Ref.[40], which includes an additional splitting of spin-up and spin-down, as compared

to Ref. [39]. We found this splitting of spin degrees of freedom to lower the entangle-

ment in the scenario considered here. Hence, the star geometry MPS consists of two

impurity sites in the middle, one for spin-up and one for spin-down (see Fig. B.3). Both

impurity sites are coupled to their individual conduction modes, represented in the star

geometry: Conduction modes are ordered according to their energy, starting with the

lowest energy mode next to the corresponding impurity, and increasing in energy as we

move away from the impurity sites. For simplicity, we restrict our analysis to T = 0,

where neither the thermofield transformation nor the equilibration process are needed.

For the star geometry, we find the entanglement to show a plateau in the middle of the

MPS (see Fig. B.3), with almost constant entanglement. We believe that this plateau

is due to the entanglement between the impurity and the conduction modes close to
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the Fermi energy. These modes, however, are located in the middle of each bath, where

we also find entanglement peaks (one for spin-up and one for spin-down). In our chain-

mapping-based method we find clearly lower entanglement along the MPS, leading

to much faster simulations. However, the entanglement structure highly depends on

the ordering of the sites in the MPS, especially in the star geometry, and different

orderings might reduce the entanglement. Here, the main disadvantage of the star

geometry seems to be the spacial separation of the impurity and modes close to the

Fermi energy, leading to significantly worse scaling with the number of bath sites, as

compared to our chain-mapping-based approach. This might be avoided by moving to

a nonlinear tensor network [53]. We further note that we have concentrated on the

Kondo regime here, and that the entanglement can strongly depend on the physical

parameters. Hence, further analysis is needed on these issues.

B.3. Linear prediction

The calculation of Greens functions through real time evolution is usually limited by

the numerical resources available. Hence, in many cases we are only able to compute

it up to some finite time, while the tail is inaccessible due to the requirement for long

simulations. However, long tails of the Greens function can be important to calculate

the spectral function accurately. The linear prediction method discussed here is a very

simple tool to extrapolate a set of data points, thereby improving the accuracy of the

spectral function [38, 141, 142]. Below we present some details of the linear prediction

technique, following Ref.[38] with some additional details.

Let us assume that the simulations yields a sequence of 2N equidistant data points

x1, ..., x2N . In the framework of linear prediction a new data point x̃n is predicted as a

linear combination of the previous N values:

x̃n = −
N∑
i=1

aixn−i ∀n > N , (B.1)

where a1, .., aN are unknown constants. Notice that we use the tilde to indicate that the

value is obtained through linear prediction, while non-tilde variables are data points

from the original simulation. Before predicting new data points, we first have to find the

rule after which the new points are computed. Hence, we need to find the coefficients ai
based on the available data. To this end we split the data set into two halves, x1, ..xN
and xN+1, .., x2N . Now pretend that we only know the first N points, while the second

set should be predicted from those points. Since in fact we also know the correct values

of the second half, we can define a cost/loss function using square errors:

L =
2N∑

n=N+1

|x̃n − xn|2 (B.2)
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Here, any predicted value x̃n of the second half is compared to its true value xn. The

coefficients a1, ..., aN can then be found through minimization of the loss function

L =
2N∑

n=N+1

(x̃n − xn)(x̃n − xn)∗ (B.3)

=
2N∑

n=N+1

x̃nx̃
∗
n − x̃nx∗n − xnx̃∗n + xnx

∗
n. (B.4)

Let us carry out the minimization explicitly by setting the derivatives of the loss func-

tion with respect to the coefficients ai and their complex conjugates a∗i equal to zero.

The derivatives are given by

∂L

∂ak
=

2N∑
n=N+1

−xn−kx̃∗n + xn−kx
∗
n

=
2N∑

n=N+1

xn−k

(
N∑
j=1

a∗jx
∗
n−j

)
+ xn−kx

∗
n

∂L

∂a∗k
=

2N∑
n=N+1

−x̃nx∗n−k + xnx
∗
n−k

=
2N∑

n=N+1

(
N∑
j=1

ajxn−j

)
x∗n−k + xnx

∗
n−k

(B.5)

where we have used that

∂x̃n
∂ak

= −xn−k ,
∂x̃∗n
∂a∗k

= −x∗n−k , and
∂x̃∗n
∂ak

=
∂x̃n
∂a∗k

= 0. (B.6)

Notice that the two derivatives are complex conjugates of each other since the cost

function is real, and hence we can continue with just one of them. Setting the derivative

equal to zero, we find a linear system of equations

N∑
j=1

2N∑
n=N+1

xn−jx
∗
n−kaj = −xnx∗n−k, (B.7)

which is typically written in matrix notation as

Ra = −r (B.8)

with

Rkj =
2N∑

n=N+1

x∗n−kxn−j rk =
2N∑

n=N+1

x∗n−kxn . (B.9)
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Calculating the pseudo-inverse of R we can invert Eq. (B.8) and finally obtain the

coefficients a1, ..., aN . In practice, the pseudo-inverse is calculated through a singular

value decomposition, with cutoff δ to truncate small singular values for reasons of nu-

merical stability. In our calculations we use the cutoff δ = 10−8 relative to the largest

singular value (see documentation of numpy function ’numpy.linalg.pinv’). Before pre-

dicting new data points, there is one more issue to discuss: Let introduce an alternative

way to write the prediction of new values in Eq. (B.1). To simplify the notation, we

drop the tilde and treat predicted values the same way as the original simulation data.

Rewriting Eq. (B.1) as vector product, we have

xn = −aTx(n−1), (B.10)

where aT = (a1, a2, ..., aN) and

x(n−1) =


xn−1

xn−2

...

xn−N

 . (B.11)

Notice that x(n) is only defined for indices n ≥ N . If we want to predict a data point

xn, we are looking for the vector x(n), which contains xn as its first element. This

vector on the other hand, is related to the previous one through the relation

x(n) =


xn
xn−1

...

xn−N+2

xn−N+1

 =


−a1 −a2 −a3 . . . −aN

1 0 0 . . . 0

0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 0


︸ ︷︷ ︸

M


xn−1

xn−2

...

xn−N+1

xn−N


︸ ︷︷ ︸

x(n−1)

= Mx(n−1) (B.12)

Hence, any vector x(n) can be obtained from the previous one by multiplication with

the Matrix M . Since M is independent of n we find for k ≥ 1

x(N+k) = Mkx(N), (B.13)

where x(N) contains the first N data points as obtained from the simulation. Any

predicted data point is given by the first element of the corresponding vector (see

Eq. (B.11)), i.e

xN+k = [x(N+k)]1 = [Mkx(N)]1. (B.14)

It is clear that any eigenvalue of M larger than one will lead to a diverging prediction,

which needs to be taken care of. While alternative schemes are possible, we simply

eliminate any eigenvalue larger than one, which has proven to work well.
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B.3.1. Example: Symmetric Anderson impurity model

Let us discuss a an example to show give some idea of what linear prediction can do.

We consider the symmetric Anderson impurity model with semi-circular hybridization,

see Section 3.4, with Γ = 0.5W . The impurity Hamiltonian is defined through the en-

ergy level εd = −W and Coulomb interaction U = 2W = 4Γ, which is a popular choice

in the context of DMFT impurity solvers [39]. We choose to work at zero temperature,

and calculate the initial state via DMRG ground state search. The retarded Green’s

function, defined in Section 5.1, is computed up to time t = 25~/W , and additional

data points up to time t = 100~/W are obtained from linear prediction. Results for

the Greens function and the corresponding spectral function are shown in Fig. B.4. At

the final simulation time t = 25~/W the Greens function is clearly different from zero.

Hence, the spectral function does show unphysical oscillations. Employing linear pre-

diction, the oscillations disappear in the spectral function, with additional adjustments

of the height of the side peaks, significantly improving the spectral functions quality.
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Figure B.4.: Linear prediction example: a) Retarded Green’s function of the symmetric

SIAM with hybridization coupling Γ = 0.5W , impurity energy level εd = −W and interaction

U = −2εd = 4Γ. Time evolution is carried out up to t = 25~/W , while additional data points

are obtained from linear prediction. b) Spectral function with and without linear prediction.

Unphysical oscillations are removed and peak heights are adjusted when employing linear

prediction.
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C.1. Proof that the Gibbs state is represented by the

thermofield vacuum

We have previously seen that the thermofield vaccum |∅〉 indeed provides the correct

boson occupation for the physical bath, 〈∅|b̂†1kb̂1k|∅〉 = fB(εk). Let us now prove directly

that the reduced density matrix of the physical bath in the thermofield vacuum |∅〉 is

the Gibbs state, which, to the best of our knowledge, has not been presented explicitly

in literature so far. The proof is done in two steps:

(i) Let us define the maximally entangled state (not normalized) |I〉 =
∑

l |l〉|l〉 on the

extended Hilbert space, with |l〉|l〉 = |l〉S ⊗ |l〉anc being the product of eigenstates |l〉S
and |l〉anc of bath Hamiltonians

∑
k εkb̂

†
1kb̂1k and

∑
k εkb̂

†
2kb̂2k, respectively. Consider

now the state |φ〉 = Ne−βĤS/2|I〉, with ĤS =
∑

k εkb̂
†
1kb̂1k being the physical bath

Hamiltonian. The reduced density matrix of the physical bosons – obtained when

tracing over the ancillary ones – equals the thermal state Tranc |φ〉〈φ| = |N|2e−βĤS ,

since the exponential does not act on the ancillary bath and Tranc |I〉〈I| = 1S.

(ii) It remains to show that |φ〉 is the vacuum state in the transformed basis. The

vacuum state |∅〉 is uniquely defined through the property ĉ1k|∅〉 = 0 and ĉ2k|∅〉 = 0.

Hence, we show below that ĉ1k|φ〉 = 0. The proof for ĉ2k is omitted but can be done

similarly. For the sake of brevity we drop the normalization constant N from here

on. We start by rewriting the annihilation operator (see Eq. (7.10)) and apply the

exponential on the states |l〉|l〉:

ĉ1k e
−βĤS/2|I〉 = cosh Θk b̂1ke

−βĤS/2
∑
l

|l〉|l〉 − sinh Θk b̂
†
2ke
−βĤS/2

∑
l

|l〉|l〉

= cosh Θk b̂1k

∑
l

|l〉|l〉e−βEl/2 − sinh Θk b̂
†
2k

∑
l

|l〉|l〉e−βEl/2 .

The eigenstates |l〉 of the free boson Hamiltonians can be characterized through the par-

ticle occupations of the different modes, |l〉 = |nl1, nl2, nl3, ..〉, where nlk is the number of

bosons in mode k of eigenstate l. In this notation the application of b̂1k and b̂†2k on |l〉|l〉
yields b̂1k|l〉|l〉 =

√
nlk |nl1, .., nlk − 1, ..〉|l〉 and b̂†2k|l〉|l〉 =

√
nlk + 1 |l〉|nl1, .., nlk + 1, ..〉,
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and hence:

ĉ1k e
−βĤS/2|I〉 = cosh Θk

∑
l

√
nlk |nl1, .., nlk − 1, ..〉|l〉e−βEl/2

− sinh Θk

∑
l

√
nlk + 1 |l〉|nl1, .., nlk + 1, ..〉e−βEl/2 .

We carry out an index shift l → l′ in the second term such that eigenstate |l′〉 has

one boson more in mode k than |l〉, nl′k = nlk + 1. We find

ĉ1k e
−βĤS/2|I〉 = cosh Θk

∑
l

√
nlk |nl1, .., nlk − 1, ..〉|l〉e−βEl/2

− sinh Θk

∑
l′

√
nl′k |nl′1, .., nl′k − 1, ..〉|l′〉e−β(El′−εk)/2

= 0,

which completes the proof. Notice that for the last step we used the identity cosh Θk =

sinh Θk e
βεk/2 as obtained from the definition of the transformation Eq. (7.13).

C.2. Bloch vector and Schmidt decomposition

The entanglement entropy is defined through the Schmidt values of the corresponding

bipartition. In this section we show that the length of the Bloch vector — a measure-

ment for the pureness of a two-level system — depends only on the Schmidt values as

well. To this end, let us evaluate the expectation value of the Pauli matrices using the

Schmidt decomposition of the state given in Eq. (7.31). We find that

〈ψ|σ̂α|ψ〉 = λ2
1 〈φS1 |σ̂α|φS1 〉+ λ2

2 〈φS2 |σ̂α|φS2 〉

where we have used the orthonormality of bath states, 〈φB1 |φV2 〉 = 0, and α ∈ {x, y, z}.
Since |φS1 〉 and |φS2 〉 are orthogonal, the expectation values differ in sign, 〈φS2 |σ̂α|φS2 〉 =

−〈φS1 |σ̂α|φS1 〉, and hence

〈ψ|σ̂α|ψ〉 =
(
λ2

1 − λ2
2

)
〈φS1 |σ̂α|φS1 〉 .

We can then write the length of the Bloch vector as a function of the Schmidt coeffi-

cients

R2 =
∑
α

〈ψ|σ̂α|ψ〉2 =
(
λ2

1 − λ2
2

)2
∑
α

〈φS1 |σ̂α|φS1 〉2 (C.1)

=
(
λ2

1 − λ2
2

)2
, (C.2)

which explains the similarity between the entanglement entropy and R.
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C.3. Numerical details and parameters

Working with bosonic sites requires the truncation of the maximum boson occupa-

tion. The local dimension has major impact on the simulation efficiency, and hence

it should be chosen as small as possible, but large enough to keep the relevant states.

Since the TLS is coupled only to the first chain site and the bosons travel at finite

speed along the chain, we choose larger maximum occupations for sites close to the

TLS. In particular, for a chain with L bosonic sites we choose for n = 0, .., L− 1

d(n) = dmax − round

(
(dmax − dmin)n

L− 1

)
,

with local dimension d(0) = dmax at the first chain site and local dimension d(L− 1) =

dmin at the end of the chain. Notice that in cases where large local dimensions are

necessary for an accurate simulation, numerical efficiency can be increased by using

randomized SVDs in 2-site TDVP and TEBD algorithms [179, 180]. Those randomized

SVDs only compute the largest singular values and corresponding singular vectors, and

are more efficient than a full SVD whenever a small fraction of the singular values is

retained. In 2-site TDVP and also TEBD, the SVD is carried out on a two-tensor

block with dimension dD×dD, with local dimension d and bond dimension D. Hence,

the matrix to decompose has a total of dD singular values, while only D of them are

kept, the fraction of kept singular values therefore being 1/d. The randomized SVD

algorithms typically show beneficial over a full SVD for d & 10 [180].

In our simulations, we compute the dynamics of the MPS using the 2-site version of

the time-dependent variational principle (TDVP) [115–117], which allows to increase

the bond dimension on the fly. We employ a maximum bond dimension of only D = 10,

where results are already converged, a time step ∆t = 0.005~/∆, and local dimensions

of typically dmax = 6 and dmin = 4.
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product state impurity solver for dynamical mean-field theory, Phys. Rev. B 90,

115124 (2014).

[38] M. Ganahl, M. Aichhorn, H. G. Evertz, P. Thunström, K. Held, and F. Ver-

straete, Efficient DMFT impurity solver using real-time dynamics with matrix

product states, Phys. Rev. B 92, 155132 (2015).

[39] F. A. Wolf, I. P. McCulloch, and U. Schollwöck, Solving nonequilibrium dy-
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[141] T. Barthel, U. Schollwöck, and S. R. White, Spectral functions in one-

dimensional quantum systems at finite temperature using the density matrix

renormalization group, Phys. Rev. B 79, 245101 (2009).

[142] S. R. White and I. Affleck, Spectral function for the s = 1 Heisenberg antiferro-

magetic chain, Phys. Rev. B 77, 134437 (2008).

[143] B. Horvatic, D. Sokcevic, and V. Zlatic, Finite-temperature spectral density for

the Anderson model, Phys. Rev. B 36, 675 (1987).

[144] H. Saberi, A. Weichselbaum, and J. von Delft, Matrix-product-state comparison

of the numerical renormalization group and the variational formulation of the

density-matrix renormalization group, Phys. Rev. B 78, 035124 (2008).

[145] A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC

Press, 2017).

[146] P. W. Anderson, Infrared catastrophe in Fermi gases with local scattering poten-

tials, Phys. Rev. Lett. 18, 1049 (1967).
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ion-crystal simulator, Science 348, 1115 (2015).

[171] D. Gangloff, A. Bylinskii, I. Counts, W. Jhe, and V. Vuletić, Velocity tuning of
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