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We analyze two different fermionic systems that defy Mott localization showing a metallic ground
state at integer filling and very large Coulomb repulsion. The first is a multiorbital Hubbard model
with a Hund’s coupling, where this physics has been widely studied and the new metallic state is
called a Hund’s metal, and the second is a SU(3) Hubbard model with a patterned single-particle po-
tential designed to display a similar interaction-resistant metal in a set-up which can be implemented
with SU(N) ultracold atoms. With simple analytical arguments and exact numerical diagonalization
of the Hamiltonians for a minimal three-site system, we demonstrate that the interaction-resistant
metal emerges in both cases as a compromise between two different insulating solutions which are
stabilized by different terms of the models. This provides a strong evidence that the Hund’s metal
is a specific realization of a more general phenomenon which can be realized in various strongly
correlated systems.

I. INTRODUCTION

The Mott metal-insulator transition is one of the most
striking manifestations of electronic correlations [1]. In a
single-orbital Hubbard model at half filling (one particle
per lattice site), carriers localize when the ratio between
the Hubbard on-site repulsion U and the hopping t ex-
ceeds a certain critical value Uc/t. In multiorbital mod-
els, this simple scenario is modified as U is supplemented
by interorbital terms, such as the Hund’s exchange cou-
pling, J , which favours high-spin configurations [2–4].
For instance, an effective decoupling between the or-
bitals [4–9] opens the doors to orbital-dependent corre-
lations and even to orbital-selective Mott phases where
only some orbitals become Mott-localized [5, 10–12],
while the spin degrees of freedom are partially frozen [13],
anomalous responses are observed [14], and a peculiar
spectral weight redistribution favours orbital-selective su-
perconductivity [15].

Turning back to the Mott transition, it has been shown
that in a N -orbital Hubbard model at integer filling dif-
ferent from N , increasing J/U (see below for the defi-
nition of the Hamiltonian) pushes Uc/t to very high val-
ues [3] leading to a wide region of an interaction-resistant
metal that has been labelled as a “Hund’s metal”. For
the specific value J/U = 1/3, the system remains metal-
lic even in the limit of infinite U and J . This scenario
is particularly surprising, at least at first sight, because
both U and J constrain the motion and are expected
to localize the carriers. In Ref. [16], the resilience of the
metallic solution for large interactions has been described
in terms of the competition between two strongly corre-
lated solutions, a high-spin Mott state favoured by U and
a disproportionated Hund’s insulator favoured by J .

In the last years, a new platform for the quantum sim-
ulation of multicomponent Hubbard-like models has been
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realized by means of ultracold 87Sr [17], 173Yb [18], and
6Li atoms [19, 20]. In these atoms, the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom, thus providing one with 10, 6, or 3 different spin fla-
vors, and allowing for the quantum simulation of SU(N)-
symmetric Hubbard models, if loaded in deep optical lat-
tices [21–29].

Rather than a direct quantum simulation of the mul-
tiorbital Hubbard model with Hund’s coupling, which
is complicated by the need to define an orbital and a
spin degree of freedom, we propose a different model
which is expected to display a physics similar to the one
of the Hund’s metal, namely an SU(3) system with a
site-dependent single-particle potential characterized by
a three-site pattern where two sites out of three have a
lower energy with respect to the third. In this model the
standard Mott insulator competes with a density wave
pattern, similarly to the ionic Hubbard model on bipar-
tite lattice.

In this work, we solve the two models by exact diag-
onalization in the smallest system that can capture the
main physics of the two models, namely a three-site clus-
ter, or “trimer”. The choice of this minimal lattice allows
one to perform a full diagonalization of the Hamiltonian
and to present thorough results for both the ground state
and the thermal properties in an unbiased way. In par-
ticular, as we discuss in the following, the trimer is the
smallest cluster which can host all the insulating solu-
tions expected in the model.

For the multiorbital Hubbard model, we show that
the trimer reproduces the most important features which
have been uncovered in the thermodynamic limit using
Dynamical Mean-Field Theory (DMFT) [30], slave-spin
mean-field theory [9], and rotation-invariant slave bosons
(RISB) [31]. This agreement represents a cross validation
of different approaches with different limitations. In fact
all the above methods are defined in the thermodynamic
limit, but they treat dynamical correlations only at a lo-
cal level, while the exact diagonalization of the trimer ob-
viously includes also non-local (nearest-neighbor) corre-
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lations, but it suffers from finite-size effects. The present
results complement the previous literature with an anal-
ysis of the low-energy excitations and their relation with
finite-temperature properties and with the investigation
of nearest-neighbor correlations and their comparison
with the on-site counterparts.

We highlight the similarity between the three-band
Hubbard model and the three-flavor Hubbard model,
which both display an interaction-resilient metal as a re-
sult of the competition between two different localiza-
tion mechanisms. In both cases the metallic character
is shown to be supported by the coexistence, within the
same state, of atomic multiplets characteristic of the two
competing localized solutions.

The outline of our work is the following. In Sec. II
we investigate the three-site three-orbital Hubbard model
with Kanamori interactions. In Sec. III we analyze the
different physical regimes offered by a three-flavor ultra-
cold fermionic gas with a patterned potential. Sec. IV is
devoted to some concluding remarks.

II. THE HUBBARD-KANAMORI TRIMER

In this section we introduce the three-orbital Hubbard-
Kanamori model on a trimer

H = −
∑
ij,ab,σ

tabij d
†
iaσdjbσ +

∑
j

Hint,j (1)

where operator d†iaσ creates a spin-1/2 fermion with
spin σ =↑, ↓ in orbital a = 1, 2, 3, of site i. We as-
sume three degenerate levels with orbital-diagonal hop-
ping tabij = taj,j+1δabδij =: t∀j, a, i.e., we do not include
hybridization between orbitals or crystal-field splitting.
We expect our results to be robust with respect to terms
breaking the symmetry between the orbitals, including
different hopping, hybridization and crystal-field split-
ting as long as these terms are not comparable with the
interaction terms. The robustness of the results is ex-
pected also in light of previous calculations for realis-
tic electronic structures for iron-based superconductors
[6, 32, 33] which confirm the picture obtained for the
symmetric model.

The local interaction reads

Hint,j = U
∑
a

nja↑nja↓ + (U − 3J)
∑
a<b, σ

njaσnjbσ

+ (U − 2J)
∑
a 6=b

nja↑njb↓ + J
∑
a6=b

d†ja↑d
†
ja↓ djb↓djb↑

− J
∑
a 6=b

d†ja↑dja↓ d
†
jb↓djb↑, (2)

where U > 0 and J > 0 are the standard Hubbard repul-
sion, and the Hund’s exchange coupling, respectively.

The interaction term (2) can be recast in the form

Hint,j =
U − 3J

2
n̂j(n̂j−1)−J

(
2S2

j +
1

2
L2
j −

5

2
n̂j

)
(3)

where n̂j =
∑
aσ d

†
jaσdjaσ counts the total number of

fermions at site j, Sj = 1
2

∑
a, σσ′ d

†
jaσσ̂σσ′djaσ′ and

Lj =
∑
ab, σ d

†
jaσ

ˆ̀
abdjbσ represent the local spin and

orbital angular momentum operators, being σ̂σσ′ the

Pauli matrices and ˆ̀(a)
bc = −iεabc the generators of group

O(3). The form (3) is rather instructive, as it highlights
the presence of two contributions: the on-site repulsion
(∝ U − 3J) and the exchange mechanism (∝ J) which
favours primarily high-spin states and, as a second con-
dition, high-orbital-angular-momentum states, thus real-
izing the first two Hund’s rules.

We consider a system with L = 3 lattice sites (so that
i, j = 1, 2, 3) with periodic boundary conditions and a to-
tal of 6 particles, i.e. 2 particles on average per site. This
very small system has proven to be an effective minimal
lattice in the investigation of a number of physical phe-
nomena, for both fermionic [34–37] and bosonic [38–42]
systems. To our purposes, the trimer system is particu-
larly useful because it can host all the insulating solutions
expected in our model (and in the second model we dis-
cuss in Sec. III). Furthermore, small clusters can be used
as building blocks for quantum cluster theories such as
cluster perturbation theory [43], variational cluster ap-
proximation [44] or cluster extensions of DMFT [45, 46].

A. Atomic multiplets

We begin reviewing known results about the atomic
limit (t = 0) of the Hamiltonian (1) which are useful to
understand the results and to compare them with the
three-component model we propose in Sec. III.

If J/U is small, the system is in a Mott insulating (MI)
state, which means that there are exactly 2 fermions on
each site (nj = 2, ∀ j). Moreover, due to the presence of a
non-zero J , on each site we have Sj = 1 and Lj = 1, and
so the energy reads EMI = 3(U − 3J). For larger values
of J/U the tendency to realize high-spin configurations
is so strong that it becomes energetically convenient to
have different numbers of fermions on different sites. In
particular, for 1/3 < J/U < 3/4, the ground state fea-
tures two sites with nj = 3, Sj = 3/2, and Lj = 0, while
one site is empty (nj = Sj = Lj = 0). This state is a
disproportionated Hund’s insulator (HI) [16] with energy
EHI = 6(U − 3J). Thus the MI and the HI are degen-
erate, EMI = EHI, for J/U = 1/3, as shown in Fig. 1,
where we compare these limiting results with the exact
ground state energy E0 = 〈ψ0|H|ψ0〉 computed for a fi-
nite U/t = 22. Following Ref. [16], in Fig. 2 we show the
evolution, as a function of J/U , of the population of the
most relevant atomic multiplets for U/t = 22. The popu-
lations are simply the sum over degenerate atomic states
of |〈nj , Sj |ψ0〉|2 where |nj , Sj〉 is an atomic state with
the corresponding quantum numbers. The results do not
depend on the site because of translation invariance. We
only show the most relevant configurations, which are
those with a high spin, because of the finite value of the
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FIG. 1. Ground state energy of a three-band Kanamori trimer
hosting 6 particles as a function of J/U . Comparison between
exact numerical diagonalization of Hamiltonian (1) for t = 1
and U = 22 (yellow dash-dotted line) and the atomic limit for
J/U � 1/3 (blue solid line) and J/U � 1/3 (red dashed line).
The gray vertical line has been drawn at J/U = 1/3. The two
sketches show the fermionic configurations for MI-like (left)
and HI-like (right) states.

Hund’s coupling. As expected, for small values of J/U ,
the ground state is a high-spin MI and the configuration
n = 2, S = 1 is predominant. Conversely, for large values
of J/U , we find the two local configurations with differ-
ent values of n characteristic of the HI: high-spin triplets
(n = 3, S = 3/2) with weight ≈ 2/3 and empty sites
with weight ≈ 1/3. Following, in Fig. 2, the evolution

FIG. 2. Multiplets’ populations relevant to the ground state
of Hamiltonian (1) as functions of the control parameter J/U .
t = 1, U = 22 and 6 particles have been used. The gray
vertical line has been drawn at J/U = 1/3.

of the multiplets as a function of J/U at fixed and large
U , one can notice that, for J/U ≈ 1/3, the multiplet
n = 2, S = 1 falls, while multiplets n = 3, S = 3/2 and
n = 0 rise. In this region, an additional multiplet, n = 1,
gets populated. This is understood from the atomic limit,
where, for J/U = 1/3, the energy EMI = EHI coincides

with that of the configuration n1 = 1, S1 = 1/2, L1 = 1;
n2 = 2, S2 = 1, L2 = 1; n3 = 3, S3 = 3/2, L3 = 0
(or any other permutation of the site indices). In this
regime, different high-spin multiplets with different local
occupation are selected. We notice that the sum of the
probabilities of these multiplets is persistently very close
to 1, signaling that all the other configurations with lower
spin are essentially irrelevant. In Sec. III D we will show
that the region where different multiplets are populated
is linked to a well-defined maximum of the associated
entropy.

Finally we notice that this scenario is determined es-
sentially by the competition between local interaction
terms. In this light, we expect it to be robust to the varia-
tion of single-particle terms, including orbital-dependent
hoppings and energy splittings between the atomic en-
ergies of the various orbitals, at least as long as these
changes are not so large to overcome the effect of the on-
site terms. For instance, lifting one orbital by an energy
∆ favors an uneven occupation between orbitals. There-
fore a ∆ � J would quench the effect of J introducing
qualitative changes, while a reasonably smaller ∆ would
only introduce minor corrections.

B. Conduction Properties

Even if our small system can not display real metal-
insulator transitions, in this section we probe the conduc-
tion properties of the ground state to address its metal-
lic nature in the region around J/U = 1/3. We follow
the standard prescription [47–50] to compute the cur-
rent by rotating the ring. In the rotating frame, the
Coriolis force is formally equivalent to a magnetic flux
Φ = 2πmeR

2Ω/~ threading the ring (me is the fermion
mass, and R is the radius of the circumference where
the ring-trimer is inscribed in, and Ω the angular rota-
tion frequency) [51]. Accordingly, the hopping term of
Hamiltonian (1) acquires a Peierls phase

Hhop = −t
∑
j,a,σ

(
ei

Φ
L d†j+1,a,σdj,a,σ + h.c.

)
, (4)

while the interaction term (2) is unchanged. Denoting
with H ′ the new Hamiltonian, and with |ψ′0〉 the corre-
sponding ground state, we consider the expectation value

of the current operator I =
〈
ψ′0

∣∣∣−∂H′

∂Φ

∣∣∣ψ′0〉 in this new

ground state. For small fluxes, I is proportional to the
Drude weight [49], which is, in turn, proportional to the
(singular part of the) DC electrical conductivity. Rather
than a numerically unstable calculation of the conductiv-
ity in the limit of zero flux, in Fig. 3 we plot the current
for a fixed small flux Φ = 0.1π.

The results are consistent with an insulating behavior
in two regions of the plane (U/t, J/t). The first region is
the one for large values of U/t and small values of J/t,
while the second region is found at large values of J/t.
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As discussed in Sec. II A, these are the MI and HI re-
spectively. Importantly, one can appreciate the presence
of a stripe centered about the line J/U = 1/3 where the
current I is persistently rather large. This is the Hund’s
metal region, where the simultaneous presence of differ-
ent atomic multiplets (see Fig. 2) connected by hopping
processes ensures the motion of the carriers regardless of
the large values of U and J .

Our results follow the qualitative behaviour shown in
Ref. [16] demonstrating that the trimer captures the com-
petition between solutions which is present in the ther-
modynamic limit.

The analysis we reported so far shows that the exact re-
sults for the trimer provide a very similar picture as those
obtained using RISB [16] which are in turn consistent
with slave-spin [4, 9] and DMFT [3] results. This agree-
ment is far from trivial since all the above approaches
are defined in the thermodynamic limit, but they include
only on-site dynamical correlation effects, while the solu-
tion of the trimer is numerically exact, but it is obviously
limited by important finite-size effects. In this regard, the
agreement is a mutual validation of the two approaches
which strengthens the evidence of a correlation-resistant
Hund’s metal.

FIG. 3. Expectation value of the current for Φ = 0.1π as a
function of U/t and J/t for t = 1 and 6 particles. Yellow
corresponds to large values of I, while dark-blue corresponds
to vanishing small values of I. The red line corresponds to
J/U = 1/3.

C. Energy spectrum and specific heat

The exact numerical diagonalization of the system’s
Hamiltonian gives access to the full excitation spec-
trum. In Fig. 4, we plot the first 3.500 energy levels
Ei = 〈ψi|H|ψi〉 of Hamiltonian (1), as a function of the
control parameter J/U . One can clearly notice the pres-
ence of different bundles of energy levels, which come

together or move apart upon varying J/U . Each bun-
dle corresponds to a specific class of excitations. Impor-
tantly, at any given value of J/U , we can extract from
these data valuable information about the hierarchical
structure of the excitations, for example which degrees
of freedom are active and which other are frozen.

As an example, the lowest bundle which is found in the
MI at J/U = 0.1 is composed by 729 = 93 energy levels,
which is easily understood because the degeneracy of the
multiplet with ni = 2, Si = 1, and Li = 1 is indeed
9 [16]. All these states are degenerate in the atomic
limit and they display small splittings for finite t due
to virtual hopping processes depending on the specific
arrangement of the fermions in each state. The second
lowest bundle is formed by 1215 = 92 · 5 · 3 levels. This
is the number of possible states such that one of the
three sites features one minimal violation of Hund rules,
namely ni = 2, Si = 0, Li = 2 (the degeneracy of this
single-site configuration is 5). The energy gap between
this bundle and the lowest one is 2J (≈ 4.4 for J = 0.1U
and for the same model parameters used in Fig. 4). With
a similar reasoning, one can verify that the third lowest
bundle, which includes 675 = 9 · 52 · 3 levels, corresponds
to states where two sites feature ni = 2, Si = 0, Li = 2
and it lies around an energy 4J (≈ 8.8 for J = 0.1U
and for the same model parameters used in Fig. 4). It is
only after another bundle including 243 = 92 · 1 · 3 levels
(where 1 is the degeneracy of single-site configuration
ni = 2, Si = 0, Li = 0) and having energy EMI + 5J ,
that we reach states in which the Mott condition ni = 2
is violated. The energy gap of these charge excitations
is, for small values of J/U , U − 3J . Notice that this
gap depends on both U and J , and closes exactly at
J/U = 1/3, where Hund’s metallicity is found. This
gap closure is clearly visible in the figure, and, indeed, it
corresponds to the lowering of the energy of the charge
excitation as J/U grows.

FIG. 4. First 3.500 energy levels of Hamiltonian (1) as a
function of J/U . t = 1, U = 22 and 6 particles have been
used. The gray vertical line has been drawn at J/U = 1/3.

In the opposite limit (right side of Fig. 4), the lowest
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bundle is made up of 48 = 4 · 4 · 1 · 3 levels, where 4
is the degeneracy of the single-site configuration ni = 3,
Si = 3/2, Li = 0, and 1 is the degeneracy of ni = 0,
Si = 0, Li = 0. As opposed to the case of small Hund’s
coupling, here the second lowest bundle already involves
charge excitations. In fact, it includes 1296 = 9 · 4 · 6 · 6
levels, where one factor 6 is the degeneracy of the single-
site configuration n1 = 1, S1 = 1/2, Li = 1, and the other
factor 6 represents the number of possible permutations
of site indices. Notice that the gap of this bundle is of
the order of 6J − 2U (≈ 15.4 for J = 0.45U and for the
same model parameters used in Fig. 4) and that also this
gap tends to close approaching J/U = 1/3.

In spite of the rather complex dependence of the energy
levels’ structure on the control parameter J/U (see Fig.
4), we have now a clear picture in which, approaching the
limit J/U = 1/3, the charge gap collapses coming from
both the MI and the HI, leading to the metallization.

The spectrum we have discussed is naturally reflected
in the thermodynamic properties. We compute the spe-

cific heat c = L−1∂〈E〉/∂T where 〈E〉 = 1
Z

∑
iEie

− Ei
kBT

is the thermal expectation value of the internal energy
and Z is the partition function. The result is shown in
Fig. 5 in a J/U -T plane (where the logarithmic scale for
the temperature T is used for graphical clarity). For a
given value of J/U , the specific heat (regarded as a func-
tion of T ) features peaks where a certain class of excita-
tions unfreezes [34, 52]. Therefore, the evolution of the
different “ridges” which we observe is directly connected
with the evolution of the different bundles of energy levels
in Fig. 4.

FIG. 5. Specific heat as a function of J/U and temperature
T (in logarithmic scale). Model parameters: t = 1, U = 22,
kB = 1, and 6 particles. The two dashed red (white) lines
correspond to simple analytical estimates of the specific heat
contribution coming from charge excitations (local variations
of quantum numbers Sj and Lj) The vertical solid red line
corresponds to J/U = 1/3.

D. On-site and nearest-neighbors correlation
properties

In this section, we focus on charge and spin correlation
functions of the Hubbard-Kanamori trimer. This analy-
sis extends previous investigations based on DMFT and
slave-particle mean-field approaches, which only focused
on local correlators. We define the charge correlation
functions between sites i and j

Ctot
i,j = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉, (5)

where n̂j =
∑
a

∑
σ n̂j,a,σ is the total density operator

on site j.
We can decompose the correlations in an intra-orbital

and an inter-orbital contribution according to Ctot
i,j =

C intra
i,j + C inter

i,j [8], where

C intra
i,j = N (〈n̂i,an̂j,a〉 − 〈n̂i,a〉〈n̂j,a〉) , (6)

C inter
i,j = N(N − 1) (〈n̂i,an̂j,b〉 − 〈n̂i,a〉〈n̂j,b〉) . (7)

FIG. 6. On-site (upper panel) and first-neighbors (lower
panel) charge correlations as a function of J/U . t = 1,
U = 22, and 6 particles. The vertical gray line corresponds
to J/U = 1/3.

Before discussing the results for these observables,
we notice that in our small cluster we have an impor-
tant constraint. The trivial relation 〈n2〉 =

∑
i〈n2

i 〉 +
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2
∑
i<j〈ninj〉 and the fact that 〈n2〉 is a conserved quan-

tity implies that the sum of the on-site correlators is di-
rectly connected with the sum of the nearest-neighbor
ones, which are the only non-local contributions to the
sum for a three-site system. Therefore, the informa-
tion about the on-site and nearest-neighbor correlation
functions are not independent in our cluster. Yet, they
provide us with useful physical information that comple-
ments previous studies [53].

Fig. 6 illustrates the behavior of on-site (upper panel)
and nearest-neighbor (lower panel) charge correlations as
a function of J for fixed U = 22 t. For both quantities,
we resolve intra- and inter-orbital contributions. The be-
havior of the on-site charge correlation function resem-
bles the results obtained with local mean-fields [8]. The
total correlations are very small in the small-J/U region,
where the system is a Mott insulator, and they gradu-
ally increase as J/U increases and the system reaches
the Hund’s insulator (passing through the Hund’s-metal
region). We notice, in particular, that charge fluctua-
tions are not maximal in the metallic region, but they
are even larger in the Hund’s insulator, a circumstance
which reflects the charge disproportionation. It is also
clear from the figure that the evolution as a function of
J of the charge correlations is entirely due to the inter-
orbital component, while the intra-orbital contribution is
totally unaffected by J and it only depends on U/t.

As expected, the results for the nearest-neighbor cor-
relations follow a similar qualitative trend, with the total
correlator vanishing in the MI and increasing (in absolute
value) as J/U grows. We remark that the inter-orbital
correlations cross zero around the Hund’s metal region for
J/U = 1/3 reflecting the decoupling between excitations
in different orbitals, or orbital decoupling [4, 5, 8, 9]. We
find therefore that the decoupling, which has been so far
reported for on-site correlations, extends also to nearest-
neighbor quantities, thereby strengthening its relevance.

Another important piece of information comes from
the spin-spin correlation functions

M tot
i,j = 〈σ̂iσ̂j〉 − 〈σ̂i〉〈σ̂j〉 (8)

where σ̂j =
∑
a σ̂j,a, where σ̂j,a = (nj,a,↑ − nj,a,↓)/2.

Also in this case, the correlators can be expressed in
terms of inter- and intra-orbital correlators as M tot

i,j =

M intra
i,j +M inter

i,j , where

M intra
i,j = N (〈σ̂i,aσ̂j,a〉 − 〈σ̂i,a〉〈σ̂j,a〉) , (9)

M inter
i,j = N(N − 1) (〈σ̂i,aσ̂j,b〉 − 〈σ̂i,a〉〈σ̂j,b〉) . (10)

Also in this case on-site and nearest-neighbors corre-
lators are connected by 〈σ2

z〉 =
∑
i〈σ2

i 〉 + 2
∑
i<j〈σiσj〉.

The functional dependence of these on-site magnetic cor-
relations on J/U is illustrated in the upper panel of Fig.
7 in the regime U/t � 1. On-site spin correlations are
positive and they grow with J/U signalling the increased

on-site magnetic moment. Since intra-orbital spin fluctu-
ations are constant throughout the whole explored range
of J/U , the only contribution comes from inter-orbital
spin alignment due to the Hund’s coupling.

FIG. 7. On-site (upper panel) and first-neighbours (lower
panel) magnetic correlations with respect to the control pa-
rameter J/U . Model parameters t = 1, U = 22, and 6 par-
ticles have been used. The vertical gray line corresponds to
J/U = 1/3.

Nearest-neighbor magnetic correlations are shown in
the lower panel of Fig. 7. The total correlator M tot

j,j+1

is negative, signalling antiferromagnetic spin correlations
between the large local magnetic moments. The abso-
lute value grows with J/U without any anomaly when
the Hund’s metal region is reached and crossed. An an-
tiferromagnetic ordering is found also in the Hund’s in-
sulator. In this case the intra-orbital correlations are
negative and they have a mild dependence on J/U which
combines with the larger dependence of the inter-orbital
terms to provide the final result.
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III. THE SU(3) HUBBARD TRIMER WITH
PATTERNED POTENTIAL

In this section, we focus on a fermionic SU(3) Hubbard
model with a suitable patterned potential which favours
a charge-ordered state. The Hamiltonian reads

H = −t
L∑
j=1

N∑
a=1

(
d†j,adj+1,a + h.c.

)

+
U

2

L∑
j=1

n̂j(n̂j − 1) +

L∑
j=1

µj n̂j , (11)

where operator d†j,a creates a fermion with flavor a =

1, 2, 3 on site j, and operator n̂j :=
∑N
a=1 n̂j,a counts the

number of fermions at site j. Here, N = 3 is the number
of flavors, and L = 3 is the number of sites, t represents
the hopping, U is the Hubbard interaction and µj a site-
dependent potential corresponding to the presence of a
superlattice. We will assume two sites with the same
energy and one at a higher energy µ1 = −µ, µ2 = 0,
µ3 = −µ (µ > 0). The physics of this model is ruled
by the competition between U , which penalizes local oc-
cupancies different from the global average density, and
µ, which favours the occupation of the low-energy sites
over the high-energy one. A similar pattern can also be
realized in larger lattices formed by periodic repetitions
of the three-site cluster. In this sense, also in this case,
the trimer can be seen as the building block of a quantum
cluster theory for a larger system.

The model can be seen as a three-flavour/three-site
version of the ionic Hubbard model [54–62], where the
local Hubbard repulsion competes with a staggered po-
tential. This leads to a competition between Mott and
charge-density-wave insulators, separated in the phase
diagram by a narrow stripe where, depending on the di-
mensionality, a metal [63] or a bond-order-wave phase
have been reported, the latter being characterized by a
staggered kinetic-energy on the bonds [64]. The ionic
Hubbard model has been recently realized in a Fermi
gas loaded into a honeycomb optical lattice with a stag-
gered energy offset [65]. The two insulating phases were
observed, but the bond-order-wave phase still eludes ex-
perimental detection [66].

This kind of system, where the three-site unit is peri-
odically repeated in space, can be experimentally realized
by means of a multicomponent fermionic quantum gas,
for example 6Li [19, 20], 87Sr [17], or 173Yb [18] prepar-
ing a balanced mixture of three species with different
nuclear spin. The second step is to introduce an opti-
cal lattice which can be partitioned in three sublattices
such as the triangular [67] or the Kagome lattice [68] in
two dimensions, or a simple one-dimensional chain [69],
thus realizing a SU(N) Hubbard model [21]. If the laser
is used to build one of these lattices, we would realize a
model with uniform single-particle potential. In order to

introduce the patterned potential where one site out of
three has a higher energy, one can superimpose a second
optical lattice with a larger wavelength which selects only
one of the three sublattices [65, 70].

A. From a Mott-like insulator to a band-like
insulator through metal-like states

We start our study from the atomic limit (t = 0) of
the Hamiltonian (11) in the presence of 2L = 6 fermions.
In contrast with the Hubbard-Kanamori model, we find
three different regimes (see Fig. 8). For 0 < µ/U < 1,
the ground state describes a Mott insulator with exactly
two fermions per site (see the left part of the upper
panel of Fig. 10), which cannot hop due to the large
Coulomb repulsion U . The energy of this configuration
is EMI = 3U − 4µ. On the other hand, for µ/U > 2,
the non-uniform potential prevails over the Coulomb in-
teraction and it is energetically convenient to pack all
the fermions in the two low-energy sites, thus manifestly
violating Mott’s condition (see the right part of the up-
per panel of Fig. 10). This configuration, whose energy
is EBI = 6U − 6µ can be regarded as the atomic ver-
sion of a band insulator (BI) (in analogy to the band-
insulating phase of the well-known ionic Hubbard model
[63]). Indeed, if we consider a large lattice with a fi-
nite hopping, the three atomic levels will broaden into
bands. For small hopping amplitudes, the bands arising
from the low-energy sites will be fully occupied while the
band originating from the high-energy site will be empty.
These two solutions are conceptually connected with the
Mott and Hund’s insulators found in the three-orbital
Hubbard-Kanamori model.

FIG. 8. Ground state energy of a three-flavor Hubbard trimer
with staggered potential hosting 6 fermions for t = 1, U = 22
(purple dotted line). Atomic estimates for µ/U < 1 (blue
solid line), 1 < µ/U < 2 (red dashed line), and µ/U > 2
(yellow dash-dotted line) are also shown. The three atomic
configurations are sketched in the corresponding regions. The
gray vertical lines have been drawn at µ/U = 1 and µ/U = 2.

While the two solutions of the previous model become
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degenerate on a line, here we find a whole intermedi-
ate solution which is stable in the range 1 < µ/U < 2.
Here, the competition between U and µ results in a set
of degenerate ground states such that the high-energy
site hosts one fermion, while the low-energy sites host
the remaining 5 fermions (see the central part of the
upper panel of Fig. 10). The total energy of this
intermediate configuration, in the atomic limit, reads
EINT = 4U−5µ and, as illustrated in Fig. 8, one can ver-
ify that EMI = EINT for µ/U = 1, and that EINT = EBI

for µ/U = 2.
In the following, we discuss the fate of these solutions

once a finite hopping is included and their connection
with the Hund’s metal.

FIG. 9. Expectation value of the current operator, as a func-
tion of the control parameters U/t and µ/t for 6 fermions and
Φ = 0.4π. Yellow corresponds to large values of I, while
dark-blue corresponds to a vanishing small value of I. The
red lines correspond to µ/U = 1 and µ/U = 2.

B. Conduction properties

We begin the characterization of the model for finite
value of the hopping by computing the current as de-
scribed in Sec. II B. The results are reported in Fig. 9.
For U/t� 1 and small values of µ/t, we recover the famil-
iar Mott insulator, in which the current is suppressed in
order to avoid creating triple occupancies. On the other
hand, for µ/U � 2, we have a band insulator with fully
occupied low-energy sites and empty high-energy site, a
configuration which inhibits the current as well.

Interestingly, and in contrast with the Hubbard-
Kanamori system, the intermediate region between the
two limiting lines µ = U and µ = 2U does not host a
metallic region. When we approach and cross the two
lines µ = U and µ = 2U , we have an enhancement of the
current, while the intermediate region between the two
lines appears to host a metal only for small values of U

and µ. These results suggest that an interaction-resistant
metal is only realized close to the boundary lines found in
the atomic limit, while the intermediate region appears
to undergo a Mott transition as U/t increases at fixed
µ/U . However, the stabilization of a metal for very large
values of U and µ along the two boundary lines emerges
as the counterpart of the Hund’s metal for the present
SU(3) model. In the next section, we explore in more
depth the connection between the two results.

C. Local configurations in the SU(3) Hubbard
model with patterned potential

In the upper panel of Fig. 10, we report the popula-
tion of states with fixed number of fermions per site in
the SU(3) Hubbard model with patterned potential in the
strong-coupling regime. Given the nature of the atomic
states of this model, we do not need to disentangle the
contribution between different multiplets with the same
local occupation. Our results clearly highlight that the
solutions for finite t are connected with the atomic solu-
tion. In particular, it is evident that we obtain a Mott
insulator (where all the sites have n = 2) for small val-
ues of µ/U , and a band insulator [with two filled sites
(n = 3) and one empty site (n = 0)] for large µ/U . The
intermediate region is instead characterized by a nearly
uniform probability distribution of local configurations
with n = 1, n = 2 and n = 3, while the one with n = 0 is
suppressed. Interestingly, comparing the present results
with the plot of the current of Fig. 9, the maximum value
of the current is not obtained in the region where the local
configurations are similar, but rather close to the bound-
aries of the intermediate region. This result may appear
surprising since a metal is a state characterized by large
density fluctuations.

We can understand this discrepancy noting that the
present SU(3) Hubbard model is not translationally in-
variant because of the different local potential in the three
sites. A more insightful picture of the local configurations
and their relation with the metallic behavior can be ob-
tained by showing the local occupation at each site, as
we do in the lower panels of Fig. 10. It is clear that, for
large µ/U , the low-energy sites 1 and 3 are completely
filled, while the high-energy site 2 is practically empty
(see Sec. III A), while for small µ/U all the three sites
host 2 fermions.

On the other hand, in the middle of the intermedi-
ate region (consider, for example, µ ' 1.5U), the high-
energy site hosts 1 fermion, while the low-energy sites
are occupied by the remaining five fermions (each site
with an equal probability to have two or three fermions).
This configuration is not favourable for conduction be-
cause the hopping processes involving the high-energy
site have a large energetic cost, so that the only allowed
hopping processes are those connecting the low-energy
sites.

When we approach the boundaries of the intermediate
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FIG. 10. The top panel shows the occupation of the atomic
states in the ground state of the Hamiltonian (11) as a func-
tion of µ/U . t = 1, U = 22 and 6 particles have been used.
The gray vertical lines have been drawn at µ/U = 1 and
µ/U = 2. The bottom panels show the site-resolved occupa-
tions for the three sites.

region, for example for µ ' U , the low-energy sites have
a finite amplitude to host two or three fermions, while
the high-energy site can host one or two fermions. This
pattern of local configurations allows instead for hopping
processes as long as the hopping is finite, giving rise to a
situation which closely resembles the Hund’s metal.

This analysis clarifies the physical origin of the behav-
ior of the current. In the intermediate region 1 < µ/U <
2, we certainly have hopping processes connecting the
two low-energy sites, while the high-energy one remains
disconnected as long as the hopping is not large enough to
overcome the energy difference. According to the geom-
etry and the dimensionality of the lattice, this may lead
to metallic or insulating phases. In our small cluster, we
clearly find a reduction of the conductivity as U increases
along all the lines with constant µ/U within the window
1 < µ/U < 2. The residual current is merely associated
with the hopping between the low-energy sites.

Along the two lines in the (U/t, µ/t) plane correspond-
ing to µ/U = 1 and to µ/U = 2, where the intermediate
phase becomes degenerate with one of the two limiting
solutions in the atomic limit, we find, instead, a metal-
lic solution which exploits the competition between two
different tendencies controlled by U and µ.

FIG. 11. Comparison between the entropy associated with
the occupation of atomic states S and the current I for the
Hubbard-Kanamori model (upper panel) and the SU(3) Hub-
bard model (lower panel). For both panels, model parameters
t = 1, U = 22 have been used, and the data have been nor-
malized to 1 in order to allow for a direct comparison.

D. Entropy and multiplet population

We conclude our investigation of the analogies and dif-
ferences between the two models by computing the en-
tropy, which is in turn directly connected with the dis-
tribution of the local configurations reported in Fig. 2
and Fig. 10. As anticipated in Sec. II A, it is possible to
compute the entropy as

S = −
∑
`

p` log(p`), (12)

where p` is the population of the `-th atomic state.
In Fig. 11 we show, for both models, the evolution

of the entropy and of the current along the usual cuts
for U/t = 22. In the case of the Hubbard-Kanamori
trimer (upper panel), S and I increase in a very simi-
lar way in the region J/U < 1/3 and they reach rela-
tively close maxima in the Hund’s metal region before
dropping when the Hund’s insulator regime is reached.
In this case the best metallic behavior is found where
various atomic states are democratically populated, so
that the entropy is maximized. For J/U & 1/3, S con-
verges towards 0.64 ≈ −2/3 log(2/3)−1/3 log(1/3), while
I drops towards 0. This happens because the two multi-
plets which remain populated and determine a non-zero
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S are not compatible with hopping processes (and hence
cannot support conductance).

For the SU(3) Hubbard trimer (lower panel of Fig. 11),
we find a similar behavior in the two external regions.
Within the Mott insulator the entropy and the current
increase at the same rate. In the intermediate region
we find a different behavior, consistent with the previous
observations. The current is maximized close to µ = U
and µ = 2U while the entropy remains large in the whole
intermediate window. This is due to the fact that the
atomic states selected in the middle of the intermedi-
ate region are not compatible with the conduction. The
large µ/U behavior is similar to the large J/U region of
the Hubbard-Kanamori model with a finite entropy as-
sociated with a residual degeneracy which does not lead
to a finite current because the degenerate states are not
connected by hopping.

IV. CONCLUDING REMARKS

In this manuscript, we have studied the general mech-
anism that stabilizes an interaction-resistant metal, i.e.
a metal which survives to large values of repulsion at
integer fillings. In particular, we have uncovered the ex-
istence of a similar metallic phase in two rather different
models of strongly correlated fermions.

Namely, we studied and compared a three-orbital
Hubbard model and a three-component SU(3) Hubbard
model with a three-site patterned potential. In both
models, the standard Hubbard repulsion, which tends to
stabilize a Mott insulator, competes with a term of the
Hamiltonian which favours a different state with inhomo-
geneous density distribution, namely the Hund’s coupling
in the first model and a non-uniform single-particle po-
tential in the second. In both cases, the competition be-
tween the two terms of the Hamiltonian leads to different
insulating solutions which are separated in the respective
phase diagrams by families of states which exhibit persis-
tent metallicity, even in the presence of strong Coulomb
repulsions, hence the name “interaction-resilient metals”.
In the case of the Hubbard-Kanamori model, this metal-
lic state has been recently labelled Hund’s metal.

The exact results on the small cluster allow us to
provide information on the nearest-neighbor correlation
functions of the model, which have not been discussed
using the above-mentioned approaches. In particular, we
have demonstrated that, in the Hund’s metal region, the
nearest-neighbor inter-orbital charge correlations vanish
just like the onsite components, strengthening the rela-
tion between the Hund’s metal and the effective decou-
pling between orbitals. Moreover we have found that the
nearest-neighbor spin correlators are always negative im-
plying a tendency towards antiferromagnetic ordering in
all the regions of the phase diagram, including the Hund’s
metal and the Hund’s insulator.

We have supplemented previous studies with a detailed
analysis of the fingerprint associated to the formation

of the Hund’s metal in the evolution of the many-body
energy spectrum and in the temperature dependence of
the specific heat.

In the second part of the manuscript, we have per-
formed a similar analysis for the SU(3) Hubbard model
with a three-site energy pattern (one site out of three
with a higher energy). Here, we find a slightly richer
phase diagram, which is marked by two different lines
along which metallic solutions outlive large interactions,
in analogy with the Hund’s metal. This result is under-
stood by inspecting the probability distribution of dif-
ferent local configurations in the ground state, and is
connected with the similar physical scenario emerging
within the Hubbard-Kanamori model. An investigation
of the entropy and its comparison with the conductivity
strengthens the connection between the two models and
the identification of the mechanism behind the stabiliza-
tion of the discussed interaction-resilient metals.

We have therefore provided a strong evidence that an
interaction-resistant metallic state is not peculiar of the
Hund’s physics, where it has been widely discussed, but
it is a more general feature which is present for a wide
class of models featuring competing insulating states as-
sociated with different local configurations. Tuning the
parameters to make the insulating states degenerate or
nearly degenerate, a correlation-resistant metal exists as
long as the local configurations corresponding to the two
insulators are connected by hopping processes.

In this work, we considered a minimal three-site cluster
to explore the differences and similarities between the two
models. For the Hubbard-Kanamori model, our trimer
reproduces the scenario obtained with other approaches
including DMFT, RISB, and slave-spin mean-field. This
agreement between different approaches represents a mu-
tual validation of the different methods and confirms that
the existence of the Hund’s metal is an intrinsic feature
of the multiorbital Hubbard model.

Moreover, exact result for small clusters can be used to
reconstruct the properties of infinite lattices using quan-
tum cluster methods such as cluster perturbation the-
ory [43], variational cluster approximation [44], or clus-
ter extensions of DMFT [45, 46]. The discussed results
represent, in this perspective, the basic building block
from which the lattice physics can be built. These ap-
proximations are particularly accurate for the strongly
correlated insulating solutions, which have an essentially
local character, but they should not alter significantly the
shape of the phase diagram including the region where
the interaction-resistant metal is stable.
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