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Abstract
For a quasi-smooth hypersurface X in a projective simplicial toric variety P� , the
morphism i∗ : H p(P�) → H p(X) induced by the inclusion is injective for p = dim X
and an isomorphism for p < dim X − 1. This allows one to define the Noether–
Lefschetz locus NLβ as the locus of quasi-smooth hypersurfaces of degree β such that
i∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that,
under some assumptions, if dim P� = 2k +1 and kβ−β0 = nη, n ∈ N, where η is the
class of a 0-regular ample divisor, and β0 is the anticanonical class, every irreducible
component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree
β satisfies the bounds n + 1 � codim Z � hk−1, k+1(X).
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1 Introduction

The classical Noether–Lefschetz theory is about the Picard number of surfaces in
3-dimensional projective space. Let Ud ⊂ PH0(P3,OP3(d)) be the locus of smooth
surfaces of degree d in P

3, with d � 4; then the very general surface in Ud has
Picard number 1 (for a historical perspective of the Noether–Lefschetz problem and
exhaustive references the reader may consult [3]). Moreover, if Z is a component of
the locus in Ud whose points correspond to surfaces with Picard number greater than
1 (the Noether–Lefschetz locus), then

d − 3 � codimUd Z �
(

d − 1

3

)
.

This result was generalized in [5,13] to quasi-smooth surfaces in projective simplicial
toric threefolds satisfying some conditions.1 The purpose of the present paper is to
extend these bounds to the case of projective simplicial toric varieties of higher odd
dimension, see Theorems 2.1 and 3.1 (when the ambient variety has even dimension
the problem is trivial as the middle cohomology of hypersurfaces is controlled by the
Lefschetz hyperplane theorem).

This short paper is a natural sequel to [7], where the definition of the Noether–
Lefschetz locus was extended to simplicial projective toric varieties P2k+1

� of arbitrary
odd dimension. Given an ample class β in Pic(P2k+1

� ), one considers sections f ∈
P(H0(P2k+1

� ),O
P
2k+1
�

(β)) such that X f = { f = 0} is a quasi-smooth hypersurface.

LetUβ ⊂ P(H0(P2k+1
� ),O

P
2k+1
�

(β))) be the open subset parameterizing quasi-smooth

hypersurfaces and let π : χβ → Uβ be the tautological family. One considers the local
system H2k = R2kπ�C⊗OUβ

over Uβ . The associated flat connection (the Gauss–
Manin connection) will be denoted by ∇.

Let 0 �= λ f ∈ Hk,k(X f ,Q)/i∗(Hk,k(P2k+1
� ,Q)) and let U ⊂ Uβ be a contractible

open subset around f . Finally, let λ ∈ H2k(U ) be the section defined by λ f and let λ̄
be its image in (H2k/FkH2k)(U ), where FkH2k = H2k,0⊕H2k−1,1 ⊕ · · · ⊕ Hk,k .

Definition 1.1 (Local Noether–Lefschetz locus) NLk,β
λ,U = {G ∈ U | λ̄G = 0}.

In this paper we continue the study of the Noether–Lefschetz locus and establish
lower and upper bounds for the codimension of its components. In Sect. 2 we obtain
the lower bound, which, following the terminology in [3], we call the “explicit
Noether–Lefschetz theorem for toric varieties.” In Sect. 3, using the Hodge theory
for hypersurfaces in complete simplicial toric varieties, and the orbifold structure of
the quasi-smooth hyper-surfaces (see [1]), we establish the upper bound, extending
the ideas in [5].

1 A neat way to define the notion of quasi-smooth hypersurface X in a toric variety P� is to regard P� as
an orbifold: then X is quasi-smooth if and only if it is a sub-orbifold of P� . Heuristically, X is quasi-smooth
if its only singularities are those “inherited” from P� .
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2 Explicit Noether–Lefschetz theorem in toric varieties

This section is a natural extension to higher dimensions of the ideas developed in
[5,13] for the case of threefolds. To this end there are two points to consider:

1. Let

S =
⊕

β∈Cl(P2k+1
� )

Sβ

be the Cox ring of the toric variety P2k+1
� under consideration. In [5,13] the following

assumption was made in the case k = 1. Let β and η be ample classes in Pic(P3
�), with

η primitive and 0-regular (in the sense of Castelnuovo regularity), and β − β0 = nη

for some n � 0, where β0 is the anticanonical class of P3
� . Then one assumes that the

multiplication map Sβ ⊗ Snη → Sβ+nη is surjective; this implies that a very general
quasi-smooth surface of degree β in P

3
� has the same Picard number as P3

� . In the
higher dimensional case, if we assume again the surjectivity of the multiplication map,
using [1, Theorem 10.13 and Proposition 13.7] and [4, Lemma 3.7], one proves that
the primitive cohomology of degree 2k of a very general quasi-smooth hypersurface
of degree β is zero. Of course we recover the result of [10] when k = 1.

2. In [4,13] it was also assumed that H1(P3
�,O

P
3
�
(β − η)) = H2(P3

�,O
P
3
�
(β − 2η))

= 0, which allowed one to conclude that a certain vector bundle was 1-regular with
respect to η. Here we assume

Hq(
P
2k+1
� ,O

P
2k+1
�

(β − qη)
) = 0 for 1 � q � 2k, (1)

and will prove the same regularity for the analogue of that vector bundle.
The next theorem establishes the lower bound for the codimension of the compo-

nents of the Noether–Lefschetz locus.

Theorem 2.1 Let P2k+1
� be a Gorenstein projective simplicial toric variety, η a 0-

regular primitive ample Cartier class, and β a Cartier class such that kβ − β0 = nη,
n > 0, where β0 is the anticanonical class of P2k+1

� . Assume that the multiplication
morphism Sβ ⊗ Snη → Sβ+nη is surjective, and that Hq(P2k+1

� ,O
P
2k+1
�

(β − qη)) = 0

for q = 1, . . . , 2k; then

codim Z � n + 1

for every irreducible component Z of the Noether–Lefschetz locus.

Proof The proof is a higher dimensional generalization of that in [5] (which in turn
largely mimics the proof of [9,10] for the case of P3), with the modification proposed
in [13]. We take a base point free linear system W in H0(P2k+1

� ,O
P
2k+1
�

(β)) and a
complete flag of linear subspaces

W = Wc ⊂ Wc−1 ⊂ · · · ⊂ W1 ⊂ W0 = H0(
P
2k+1
� ,O

P
2k+1
�

(β)
)
.
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Let Mi be the kernel of the surjective map Wi ⊗O
P
2k+1
�

→ O
P
2k+1
�

(β), which is locally

free. We have to prove that M0 is 1-regular with respect to η, i.e., that Hq(P2k+1
� ,

M0((1− q)η)) = 0 for every positive q (this is the regularity property we hinted at in
the introduction). Taking cohomology from

0 → M0 → W0⊗O
P
2k+1
�

→ O
P
2k+1
�

(β) → 0 (2)

we get

0 → H0(M0) → H0(W0⊗O
P
2k+1
�

) π−→ H0(O
P
2k+1
�

(β)
) → H1(M0) → 0;

as π is surjective, H1(M0) = 0. The vanishing of Hq(P2k+1
� , M0(1 − q)η) = 0

for 1 < q � 2k + 1 is obtained by induction, tensoring the short exact sequence
(2) by O

P
2k+1
�

((1 − q)η), and considering the segment of the long exact sequence of
cohomology

· · · → Hq−1(O
P
2k+1
�

(β − (q − 1)η)
) → Hq(M0(−(q − 1)η))

→ Hq(
W0⊗O

P
2k+1
�

(−(q − 1)η)
) → · · ·

where Hq−1(O
P
2k+1
�

(β − (q − 1)η)) = 0 by the inductive assumption, while

Hq(
P
2k+1
� , W0⊗O

P
2k+1
�

(−(q − 1)η)
) = 0

as η is 0-regular. The remainder of the proof follows as in [5,13]. 
�
In [5] the simplicial toric varieties that satisfy the following condition:

if α is an ample Cartier class, and β a nef class,

then the multiplication morphism Sα ⊗ Sβ → Sα+β is surjective

were called Oda varieties. Thus, Oda varieties satisfy the surjectivity requirement in
Theorem 2.1.

3 Upper bound for the codimension of the Noether–Lefschetz
components in toric varieties

The explicit Noether–Lefschetz Theorem provides with a lower bound for the codi-
mension of the Noether–Lefschetz components. Hodge theory in toric varieties will
give us the upper bound. For a class β as in the previous section, let f be a point in
the Noether–Lefschetz locus, let X f be the corresponding hypersurface in P

2k+1
� , and

let λ be a class as in Definition 1.1.
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Theorem 3.1 codim Z � hk−1, k+1(X f ) for every irreducible component Z of the

Noether–Lefschetz locus NLk,β
λ,U .

This section is devoted to proving this theorem. Classically it is a consequence of
Griffiths’ transversality, whichwewant to extend to the context of projective simplicial
toric varieties.

Variations of Hodge Structure. The tautological family π : Xβ ⊂ Uβ ×P� → Uβ is
of finite type and separated sinceXβ andUβ are varieties. By [18, Corollary 5.1] there
exists a Zariski open set U ⊂ Uβ such that X = π−1(U) → U is a locally trivial
fibration in the classical topology, i.e., there exists an open cover of U by contractible
open sets such that for every element U of the cover and every point X0 ∈ U we
have X|U � π−1(U ) � U × X0, which implies that Xu � X0 for all u ∈ U as
C∞ orbifolds; moreover, Hk(Xu) � Hk(X0). Thanks to the locally trivialization and
as quasi-smooth hypersurfaces are orbifolds [1], we can put an orbifold structure on
X = π−1(U ).

The Cartan–Lie formula. For every k, let Hk be the complex vector bundle on Uβ

associated to the local system Rkπ∗C. Let 
 be a Zariski k-form on the orbifold X

such that
u = 
|Xu is closed for every u ∈ U ; we can associate with it a local section
ω of the vector bundle Hk by letting

ω(u) = [
u] ∈ Hk(Xu,C).

The following result computes the Gauss–Manin connection ∇ : Hk → Hk ⊗
U in
the direction w restricted to X0.

Proposition 3.2 (Cartan–Lie formula) If w ∈ TU,X0 and v ∈ �(TX|X0) is such that
φ∗,x (v) = w for all x ∈ X0, one has

∇w(ω) = [
ιv(d
)|X0

]
.

Proof See [15]; actually the proof goes as in the classical case, see [20, Proposition
9.2.2]. 
�
Again we take U a contractible open set trivializing XU|U � U × X0.

Definition 3.3 The period map

Pp,k : U → Grass(bp,k, Hk(X ,C))

is the map which to u ∈ U associates the term F p Hk(Xu,C) in the Hodge filtration
of Hk(Xu,C) � Hk(X0,C).

Here bp,k = dim F p Hk(Xu,C). Note that Pp,k is a map of complex manifolds.

Proposition 3.4 The period map Pp,k is holomorphic.
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Proof For the reader’s convenience we sketch here a proof of this result, although it
has been actually already proved in [15]. By [12, Theorem 7.9] and the fact that Hodge
theorem holds also in the orbifold case ([17,22] and also [14, Section 2.1]) Pp,k is a
C∞ map. The rest of the proof follows as in [20, Theorem 10.9], whose strategy is to
prove that the C-linear extension of the differential to TuU ⊗C of Pp,k vanishes on
the vectors of type (0, 1). 
�
Remark 3.5 There is an intrinsic relation between the differential

dPp,k
u (w) : F p Hk(Xu) → Hk(X0)/F p Hk(Xu)

and the covariant derivative ∇w : Hk → Hk, namely, given σ ∈ F p Hk(Xu), one can
construct a local section of Hk over U

σ̃ : U → Hk(Xu),

u′ �→ σ̃ (u′) ∈ F p H(Xu′)

such that σ̃ (u) = σ . Hence,

dPp,k
u (w)(σ ) = ∇wσ̃ mod F p Hk(Xu).

Remark 3.6 The Hodge decomposition

Hk =
⊕

p+q=k

Hp,q

of the bundle Hk is not holomorphic, but the bundles of the Hodge filtration

F pHk =
k⊕

p=0

Hk−p,p

are. This can be shown using the period map. Indeed by the very definition of the
period map one has (see also [20, Section 10.2.1], for the smooth case)

F pHk � (Pp,k)∗ Tp,k,

where Tp,k is the tautological bundle on the Grassmannian Grass (bp, Hk(Xu0 ,C)).
Thus the bundles F pHk are indeed holomorphic.

Proposition 3.7 (Griffiths transversality)

∇F pHk ⊂ F p−1Hk .

Proof By the Cartan–Lie formula and the above remark

dPp,k
w (σ) = [

ιvd
|X0

]
mod F p Hk(Xu).

123



Codimension bounds for the Noether–Lefschetz components…

The fact that Pp,k is holomorphic implies that that ιvd
|X0 ∈ F p Hk(Xu) if v is of
type (0, 1), so that if v is of type (1, 0) we get ιvd
|X0 ∈ F p−1Hk(Xu). 
�
Theorem 3.8 Each NLk,β

λ,U ⊂ U can be defined locally by hk−1, k+1 holomorphic

equations, where hk−1, k+1= rk Fk−1H2k/FkH2k .

Proof Once Griffiths transversality has been generalized, the proof goes as in the
classical case, see [19, Lemma 3.1] and [21, Section 5.3]. 
�
This proves Theorem 3.1.

4 Examples

3-dimensional examples where the hypotheses of Theorem 2.1 are satisfiedwere given
in [5]. We give here some higher dimensional examples.

Example 4.1 Examples are provided in every dimension by some weighted projective
spaces. We recall here two facts about them. Suitable references are [2,8,16].

Let P = P[q0, . . . , qn], where (q0, . . . , qn) is a minimal set of weights, and set
Q = ∑

i qi , δ = lcm(q0, . . . , qn). Then P is Gorestein if and only if δ | Q; if this
holds true, then the canonical bundle of P is ω = OP

(− Q
δ
η
)
, where η is the ample

generator of Pic(P).
Moreover, we shall need the Bott vanishing theorem, which says that

Hi (P,OP(k)) = 0 for all i �= 0, n and all k ∈ Z. (3)

Let P2k+1
� = P[q0, . . . , q2k+1] with

q0 = q1 = 1, qi = 2 for 2 � i � 2k + 1.

Then Q = 4k + 2 and δ = 2, so that ω = O
P
2k+1
�

(−(2k + 1)η). We check that η is 0-

regular. In view of (3), we need only to check that H2k+1(P2k+1
� ,O

P
2k+1
�

(−2kη)) = 0.
We have indeed

H2k+1(
P
2k+1
� ,O

P
2k+1
�

(−2kη)
) = H0(

P
2k+1
� ,O

P
2k+1
�

(−η)
)∗ = 0.

Then by [5, Proposition 3.11], P2k+1
� is an Oda variety.

For every nonnegative n such that k | (n+1) the Cartier class β = ((n + 1)/k +2)η
is ample and satisfies kβ − β0 = nη. Moreover, the vanishings (1) are automatic by
the Bott vanishing (3). So all hypotheses of Theorem 2.1 are satisfied.

Example 4.2 Other examples are provided by some products of projectives spaces. All
these varieties are Oda by [11, Theorem 3.10] (which is turn is [11, Corollary 4.2])
and [5, Proposition 3.11]. Take for instance P5

� = P
4×P

1, and choose η = H1+2H2,
where H1 and H2 are the hyperplane classes in P4 and P1. Then η is primitive, ample
and 0-regular, and for every n odd, n � 1, the class β = n+5

2 H1 + (n + 1)H2 is ample
and satisfies 2β − β0 = nη. The vanishings (1) hold for n � 1.
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